Powered by Deep Web Technologies
Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Improvement of snowpack simulations in a regional climate model  

SciTech Connect (OSTI)

To improve simulations of regional-scale snow processes and related cold-season hydroclimate, the Community Land Model version 3 (CLM3), developed by the National Center for Atmospheric Research (NCAR), was coupled with the Pennsylvania State University/NCAR fifth-generation Mesoscale Model (MM5). CLM3 physically describes the mass and heat transfer within the snowpack using five snow layers that include liquid water and solid ice. The coupled MM5–CLM3 model performance was evaluated for the snowmelt season in the Columbia River Basin in the Pacific Northwestern United States using gridded temperature and precipitation observations, along with station observations. The results from MM5–CLM3 show a significant improvement in the SWE simulation, which has been underestimated in the original version of MM5 coupled with the Noah land-surface model. One important cause for the underestimated SWE in Noah is its unrealistic land-surface structure configuration where vegetation, snow and the topsoil layer are blended when snow is present. This study demonstrates the importance of the sheltering effects of the forest canopy on snow surface energy budgets, which is included in CLM3. Such effects are further seen in the simulations of surface air temperature and precipitation in regional weather and climate models such as MM5. In addition, the snow-season surface albedo overestimated by MM5–Noah is now more accurately predicted by MM5–CLM3 using a more realistic albedo algorithm that intensifies the solar radiation absorption on the land surface, reducing the strong near-surface cold bias in MM5–Noah. The cold bias is further alleviated due to a slower snowmelt rate in MM5–CLM3 during the early snowmelt stage, which is closer to observations than the comparable components of MM5–Noah. In addition, the over-predicted precipitation in the Pacific Northwest as shown in MM5–Noah is significantly decreased in MM5 CLM3 due to the lower evaporation resulting from the longer snow duration.

Jin, J.; Miller, N.L.

2011-01-10T23:59:59.000Z

2

An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1  

E-Print Network [OSTI]

into the numerical weather prediction model COSMO, BorealCurrent numerical weather prediction (NWP) models, regionalof lakes in numerical weather prediction and climate models:

Subin, Z.M.

2013-01-01T23:59:59.000Z

3

IMPROVING PREDICTIONS OF CLIMATE CHANGE: OBSERVATIONAL AND MODELING REQUIREMENTS  

E-Print Network [OSTI]

in the atmosphere, largely because of emissions from fossil fuel combustion. An increase in atmospheric CO2 would, Brookhaven National Laboratory, Upton NY 11973 USA (ses@bnl.gov) Carbon dioxide (CO2) is building up is the extent of climate change that will result from future increases in atmospheric CO2. Confident knowledge

4

Improving the Simulation of the West African Monsoon Using the MIT Regional Climate Model  

E-Print Network [OSTI]

This paper presents an evaluation of the performance of the Massachusetts Institute of Technology (MIT) regional climate model (MRCM) in simulating the West African monsoon. The MRCM is built on the Regional Climate Model, ...

Im, Eun-Soon

5

Refining climate models  

ScienceCinema (OSTI)

Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

2014-06-26T23:59:59.000Z

6

Refining climate models  

SciTech Connect (OSTI)

Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

2012-10-31T23:59:59.000Z

7

Improving the representation of terrestrial ecosystem processes in Earth system models to increase the quality of climate model projections and inform DOE's energy decisions  

E-Print Network [OSTI]

Improving the representation of terrestrial ecosystem processes in Earth system models to increase results are incorporated into Earth system models to improve climate projections. e overarching goal of TES is to improve the representation of terrestrial ecosystem processes in Earth system models

8

Global Climate Modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds  

E-Print Network [OSTI]

Radiative effects of water ice clouds have noteworthy consequences on the Martian atmosphere, its thermal structure and circulation. Accordingly, the inclusion of such effects in the LMD Mars Global Climate Model (GCM) greatly modifies the simulated Martian water cycle. The intent of this paper is to address the impact of radiatively active clouds on atmospheric water vapor and ice in the GCM and improve its representation. We propose a new enhanced modeling of the water cycle, consisting of detailed cloud microphysics with dynamic condensation nuclei and a better implementation of perennial surface water ice. This physical modeling is based on tunable parameters. This new version of the GCM is compared to the Thermal Emission Spectrometer observations of the water cycle. Satisfying results are reached for both vapor and cloud opacities. However, simulations yield a lack of water vapor in the tropics after Ls=180{\\deg} which is persistent in simulations compared to observations, as a consequence of aphelion c...

Navarro, Thomas; Forget, François; Spiga, Aymeric; Millour, Ehouarn; Montmessin, Franck

2013-01-01T23:59:59.000Z

9

Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation  

SciTech Connect (OSTI)

Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplanktonproduced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS{sup -}) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr{sup -1}, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS{sup -} (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr{sup -1}, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ngm{sup -3}, with values up to 400 ngm{sup -3} over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2), both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20 %) in CCN (at a supersaturation (S) of 0.2 %) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea-salt provides diverse results with increases and decreases in the concentration of CCN over different parts of the ocean. The sign of the CCN change due to the addition of marine organics to seasalt aerosol is determined by the relative significance of the increase in mean modal diameter due to addition of mass, and the decrease in particle hygroscopicity due to compositional changes in marine aerosol. Based on emerging evidence for increased CCN concentration over biologically active surface ocean areas/periods, our study suggests that treatment of sea spray in global climate models (GCMs) as an internal mixture of marine organic aerosols and sea-salt will likely lead to an underestimation in CCN number concentration.

Meskhidze, N.; Xu, J.; Gantt, Brett; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

2011-11-23T23:59:59.000Z

10

Regional Climate Modeling: Progress, Challenges, and Prospects  

SciTech Connect (OSTI)

Regional climate modeling with regional climate models (RCMs) has matured over the past decade and allows for meaningful utilization in a broad spectrum of applications. In this paper, latest progresses in regional climate modeling studies are reviewed, including RCM development, applications of RCMs to dynamical downscaling for climate change assessment, seasonal climate predictions and climate process studies, and the study of regional climate predictability. Challenges and potential directions of future research in this important area are discussed, with the focus on those to which less attention has been given previously, such as the importance of ensemble simulations, further development and improvement of regional climate modeling approach, modeling extreme climate events and sub-daily variation of clouds and precipitation, model evaluation and diagnostics, applications of RCMs to climate process studies and seasonal predictions, and development of regional earth system models. It is believed that with both the demonstrated credibility of RCMs’ capability in reproducing not only monthly to seasonal mean climate and interannual variability but also the extreme climate events when driven by good quality reanalysis and the continuous improvements in the skill of global general circulation models (GCMs) in simulating large-scale atmospheric circulation, regional climate modeling will remain an important dynamical downscaling tool for providing the needed information for assessing climate change impacts and seasonal climate predictions, and a powerful tool for improving our understanding of regional climate processes. An internationally coordinated effort can be developed with different focuses by different groups to advance regional climate modeling studies. It is also recognized that since the final quality of the results from nested RCMs depends in part on the realism of the large-scale forcing provided by GCMs, the reduction of errors and improvement in physics parameterizations in both GCMs and RCMs remain a priority for climate modeling community.

Wang, Yuqing; Leung, Lai R.; McGregor, John L.; Lee, Dong-Kyou; Wang, Wei-Chyung; Ding, Yihui; Kimura, Fujio

2004-12-01T23:59:59.000Z

11

Improving Rainfall Processes in Climate Models | U.S. DOE Office...  

Office of Science (SC) Website

Bldg. 815E, Upton, NY 11973-5000 hsong@bnl.gov Funding This work is supported by the Earth System Modeling program within the Department of Energy's Office of Biological and...

12

A National Strategy for Advancing Climate Modeling  

SciTech Connect (OSTI)

Climate models are the foundation for understanding and projecting climate and climate-related changes and are thus critical tools for supporting climate-related decision making. This study developed a holistic strategy for improving the nationâ??s capability to accurately simulate climate and related Earth system changes on decadal to centennial timescales. The committeeâ??s report is a high level analysis, providing a strategic framework to guide progress in the nationâ??s climate modeling enterprise over the next 10-20 years. This study was supported by DOE, NSF, NASA, NOAA, and the intelligence community.

Dunlea, Edward; Elfring, Chris

2012-12-04T23:59:59.000Z

13

Climate Modeling using High-Performance Computing  

SciTech Connect (OSTI)

The Center for Applied Scientific Computing (CASC) and the LLNL Climate and Carbon Science Group of Energy and Environment (E and E) are working together to improve predictions of future climate by applying the best available computational methods and computer resources to this problem. Over the last decade, researchers at the Lawrence Livermore National Laboratory (LLNL) have developed a number of climate models that provide state-of-the-art simulations on a wide variety of massively parallel computers. We are now developing and applying a second generation of high-performance climate models. Through the addition of relevant physical processes, we are developing an earth systems modeling capability as well.

Mirin, A A

2007-02-05T23:59:59.000Z

14

Climate and Institutional Change ADVANCE efforts to improve  

E-Print Network [OSTI]

#12;Climate and Institutional Change ADVANCE efforts to improve departmental climate #12;Why Climate? Recruitment--women more likely to come to a department with good climate Retention--women faculty more likely to stay in a department with good climate Advancement--women more likely to be promoted

Sheridan, Jennifer

15

Ensemble climate predictions using climate models and observational constraints  

E-Print Network [OSTI]

REVIEW Ensemble climate predictions using climate models and observational constraints BY PETER A. STOTT 1,* AND CHRIS E. FOREST 2 1 Hadley Centre for Climate Change (Reading Unit), Meteorology Building for constraining climate predictions based on observations of past climate change. The first uses large ensembles

16

Climatic extremes improve predictions of spatial patterns of tree species  

E-Print Network [OSTI]

Climatic extremes improve predictions of spatial patterns of tree species Niklaus E. Zimmermanna,1 of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate

Zimmermann, Niklaus E.

17

``Climate Modelling & Global Change'' scientific report ``Climate Modelling & Global Change'' Team  

E-Print Network [OSTI]

``Climate Modelling & Global Change'' scientific report ``Climate Modelling & Global Change'' Team) : : : : : : : : : : : : : : : : : 6 2.2 Anthropogenic climate change studies: scenario experiments (96) : : : : : : : : : 7 2 following its creation, the ``Climate Modelling & Global Change'' team had to make its proofs in order

18

Developing Models for Predictive Climate Science  

SciTech Connect (OSTI)

The Community Climate System Model results from a multi-agency collaboration designed to construct cutting-edge climate science simulation models for a broad research community. Predictive climate simulations are currently being prepared for the petascale computers of the near future. Modeling capabilities are continuously being improved in order to provide better answers to critical questions about Earth's climate. Climate change and its implications are front page news in today's world. Could global warming be responsible for the July 2006 heat waves in Europe and the United States? Should more resources be devoted to preparing for an increase in the frequency of strong tropical storms and hurricanes like Katrina? Will coastal cities be flooded due to a rise in sea level? The National Climatic Data Center (NCDC), which archives all weather data for the nation, reports that global surface temperatures have increased over the last century, and that the rate of increase is three times greater since 1976. Will temperatures continue to climb at this rate, will they decline again, or will the rate of increase become even steeper? To address such a flurry of questions, scientists must adopt a systematic approach and develop a predictive framework. With responsibility for advising on energy and technology strategies, the DOE is dedicated to advancing climate research in order to elucidate the causes of climate change, including the role of carbon loading from fossil fuel use. Thus, climate science--which by nature involves advanced computing technology and methods--has been the focus of a number of DOE's SciDAC research projects. Dr. John Drake (ORNL) and Dr. Philip Jones (LANL) served as principal investigators on the SciDAC project, 'Collaborative Design and Development of the Community Climate System Model for Terascale Computers.' The Community Climate System Model (CCSM) is a fully-coupled global system that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states. The collaborative SciDAC team--including over a dozen researchers at institutions around the country--developed, validated, documented, and optimized the performance of CCSM using the latest software engineering approaches, computational technology, and scientific knowledge. Many of the factors that must be accounted for in a comprehensive model of the climate system are illustrated in figure 1.

Drake, John B [ORNL; Jones, Philip W [Los Alamos National Laboratory (LANL)

2007-01-01T23:59:59.000Z

19

``Climate Modelling & Global Change'' scientific report 1 ``Climate Modelling & Global Change'' Team  

E-Print Network [OSTI]

``Climate Modelling & Global Change'' scientific report 1 ``Climate Modelling & Global Change of the tropical climate : : : : : : : : : : : : : : : : : : : : : 6 2.2 Short­term variability studies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8 2.3 Climate drift sensitivity studies

20

UNCORRECTED Grid geometry effects on convection in ocean climate models  

E-Print Network [OSTI]

UNCORRECTED PROOF Grid geometry effects on convection in ocean climate models: a conceptual study is the 12 improvement of convection parameterization schemes, but the question of grid geometry also plays to an at- 14 mosphere model. Such ocean climate models have mostly structured, coarsely resolved grids. 15

Kuhlbrodt, Till

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Supercomputers Fuel Global High-Resolution Climate Models  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supercomputers Fuel Global High-Resolution Climate Models Supercomputers Fuel Global High-Resolution Climate Models Berkeley Lab Researcher Says Climate Science is Entering New...

22

3, 11331166, 2007 Glacier-climate model  

E-Print Network [OSTI]

of the Past Reconstructing glacier-based climates of LGM Europe and Russia ­ Part 1: Numerical modelling for climate change the LGM is a popular time period for testing the ability of GCMs to simulate past cli-25CPD 3, 1133­1166, 2007 Glacier-climate model for recosntructing palaeoclimates R. Allen et al

Paris-Sud XI, Université de

23

Questions of bias in climate models  

SciTech Connect (OSTI)

The recent work by Shindell usefully contributes to the debate over estimating climate sensitivity by highlighting an important aspect of the climate system: that climate forcings that occur over land result in a more rapid temperature response than forcings that are distributed more uniformly over the globe. While, as noted in this work, simple climate models may be biased by assuming the same temperature response for all forcing agents, the implication that the MAGICC model is biased in this way is not correct.

Smith, Steven J.; Wigley, Tom M.; Meinshausen, Malte; Rogelj, Joeri

2014-08-27T23:59:59.000Z

24

Development of Frameworks for Robust Regional Climate Modeling PRINCIPAL INVESTIGATOR: Moetasim Ashfaq  

E-Print Network [OSTI]

goals of climate modeling. Water supports the ecosystems as well as a wide range of human activities to improve region- al predictions of the hydrologic cycle to address climate change impacts, adaptationDevelopment of Frameworks for Robust Regional Climate Modeling PRINCIPAL INVESTIGATOR: Moetasim

25

Modeling Water, Climate, Agriculture, and the Economy  

E-Print Network [OSTI]

Describes two models used in the integrated modeling framework designed to study water, climate, agriculture and the economy in Pakistan's Indus Basin: (1) the Indus Basin Model Revised (IBMR-1012), a hydro-economic ...

Yu, Winston

26

The Los Alamos coupled climate model  

SciTech Connect (OSTI)

To gain a full understanding of the Earth`s climate system, it is necessary to understand physical processes in the ocean, atmosphere, land and sea ice. In addition, interactions between components are very important and models which couple all of the components into a single coupled climate model are required. A climate model which couples ocean, sea ice, atmosphere and land components is described. The component models are run as autonomous processes coupled to a flux coupler through a flexible communications library. Performance considerations of the model are examined, particularly for running the model on distributed-shared-memory machine architectures.

Jones, P.W.; Malone, R.C.; Lai, C.A.

1998-12-31T23:59:59.000Z

27

The Community Climate System Model Version 4  

SciTech Connect (OSTI)

The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community. This paper describes developments to all the CCSM components, and documents fully coupled pre-industrial control runs compared to the previous version, CCSM3. Using the standard atmosphere and land resolution of 1{sup o} results in the sea surface temperature biases in the major upwelling regions being comparable to the 1.4{sup o} resolution CCSM3. Two changes to the deep convection scheme in the atmosphere component result in the CCSM4 producing El Nino/Southern Oscillation variability with a much more realistic frequency distribution than the CCSM3, although the amplitude is too large compared to observations. They also improve the representation of the Madden-Julian Oscillation, and the frequency distribution of tropical precipitation. A new overflow parameterization in the ocean component leads to an improved simulation of the deep ocean density structure, especially in the North Atlantic. Changes to the CCSM4 land component lead to a much improved annual cycle of water storage, especially in the tropics. The CCSM4 sea ice component uses much more realistic albedos than the CCSM3, and the Arctic sea ice concentration is improved in the CCSM4. An ensemble of 20th century simulations runs produce an excellent match to the observed September Arctic sea ice extent from 1979 to 2005. The CCSM4 ensemble mean increase in globally-averaged surface temperature between 1850 and 2005 is larger than the observed increase by about 0.4 C. This is consistent with the fact that the CCSM4 does not include a representation of the indirect effects of aerosols, although other factors may come into play. The CCSM4 still has significant biases, such as the mean precipitation distribution in the tropical Pacific Ocean, too much low cloud in the Arctic, and the latitudinal distributions of short-wave and long-wave cloud forcings.

Gent, Peter R.; Danabasoglu, Gokhan; Donner, Leo J.; Holland, Marika M.; Hunke, Elizabeth C.; Jayne, Steve R.; Lawrence, David M.; Neale, Richard; Rasch, Philip J.; Vertenstein, Mariana; Worley, Patrick; Yang, Zong-Liang; Zhang, Minghua

2011-10-01T23:59:59.000Z

28

Climate Impact of Transportation A Model Comparison  

SciTech Connect (OSTI)

Transportation contributes to a significant and rising share of global energy use and GHG emissions. Therefore modeling future travel demand, its fuel use, and resulting CO2 emission is highly relevant for climate change mitigation. In this study we compare the baseline projections for global service demand (passenger-kilometers, ton-kilometers), fuel use, and CO2 emissions of five different global transport models using harmonized input assumptions on income and population. For four models we also evaluate the impact of a carbon tax. All models project a steep increase in service demand over the century. Technology is important for limiting energy consumption and CO2 emissions, but quite radical changes in the technology mix are required to stabilize or reverse the trend. While all models project liquid fossil fuels dominating up to 2050, they differ regarding the use of alternative fuels (natural gas, hydrogen, biofuels, and electricity), because of different fuel price projections. The carbon tax of US$200/tCO2 in 2050 stabilizes or reverses global emission growth in all models. Besides common findings many differences in the model assumptions and projections indicate room for improvement in modeling and empirical description of the transport system.

Girod, Bastien; Van Vuuren, Detlef; Grahn, Maria; Kitous, Alban; Kim, Son H.; Kyle, G. Page

2013-06-01T23:59:59.000Z

29

Climate Insights 101 Questions and Discussion Points: Module 1, Lesson 4: An Introduction to Climate Modelling  

E-Print Network [OSTI]

Climate Insights 101 Questions and Discussion Points: Module 1, Lesson 4: An Introduction to Climate Modelling 1 Climate Insights 101 Questions and Discussion Points Module 1, Lesson 4: An Introduction to Climate Modelling Available at http://pics.uvic.ca/education/climate-insights-101 Updated May

Pedersen, Tom

30

Climate determinism revisited: multiple equilibria in a complex climate model  

E-Print Network [OSTI]

by incoming solar radiation at the top of the atmosphere. We demonstrate that the multiple equilibria owe `snowball' state. Although low-order energy balance models of the climate are known to exhibit-640 Ma ago, e.g. Hoffmann et al. 1998), to a warm-house (no-ice) in the Cretaceous (e.g. Zachos et al

Marshall, John

31

Constructive Contrasts Between Modeled and Measured Climate  

E-Print Network [OSTI]

Constructive Contrasts Between Modeled and Measured Climate Responses Over a Regional Scale of simulated net primary production (NPP) to climate variables and the response observed in field measurements of NPP. Residual contrasts com- pared deviations of NPP from the empirical surface to identify groupings

Hargrove, William W.

32

Statistics and Climate Models Cari Kaufman  

E-Print Network [OSTI]

of the Climate System · Atmosphere · Ocean · Cryosphere · Land surface, biosphere · Atmospheric chemistry SAMSI Components of climate models: · Radiation - input, absorption, and emission · Dynamics - movement of energy's planetary radiation budget · Can run on a desktop computer · Predict surface temperature · Usually are 0-D

33

Climate change and uncertainty in ecological niche modeling  

E-Print Network [OSTI]

in California." Journal of Climate 8(3): 606- Elith, J. , C.vegetation model for use with climate models: concepts andthe suitability of spatial climate data sets." International

Alvarez, Otto

2011-01-01T23:59:59.000Z

34

Climate Forcings and Climate Sensitivities Diagnosed from Coupled Climate Model Integrations  

SciTech Connect (OSTI)

A simple technique is proposed for calculating global mean climate forcing from transient integrations of coupled Atmosphere Ocean General Circulation Models (AOGCMs). This 'climate forcing' differs from the conventionally defined radiative forcing as it includes semi-direct effects that account for certain short timescale responses in the troposphere. Firstly, we calculate a climate feedback term from reported values of 2 x CO{sub 2} radiative forcing and surface temperature time series from 70-year simulations by twenty AOGCMs. In these simulations carbon dioxide is increased by 1%/year. The derived climate feedback agrees well with values that we diagnose from equilibrium climate change experiments of slab-ocean versions of the same models. These climate feedback terms are associated with the fast, quasi-linear response of lapse rate, clouds, water vapor and albedo to global surface temperature changes. The importance of the feedbacks is gauged by their impact on the radiative fluxes at the top of the atmosphere. We find partial compensation between longwave and shortwave feedback terms that lessens the inter-model differences in the equilibrium climate sensitivity. There is also some indication that the AOGCMs overestimate the strength of the positive longwave feedback. These feedback terms are then used to infer the shortwave and longwave time series of climate forcing in 20th and 21st Century simulations in the AOGCMs. We validate the technique using conventionally calculated forcing time series from four AOGCMs. In these AOGCMs the shortwave and longwave climate forcings we diagnose agree with the conventional forcing time series within {approx}10%. The shortwave forcing time series exhibit order of magnitude variations between the AOGCMs, differences likely related to how both natural forcings and/or anthropogenic aerosol effects are included. There are also factor of two differences in the longwave climate forcing time series, which may indicate problems with the modeling of well-mixed-greenhouse-gas changes. The simple diagnoses we present provide an important and useful first step for understanding differences in AOGCM integrations, indicating that some of the differences in model projections can be attributed to different prescribed climate forcing, even for so-called standard climate change scenarios.

Forster, P M A F; Taylor, K E

2006-07-25T23:59:59.000Z

35

Climate Analysis, Monitoring, and Modeling  

E-Print Network [OSTI]

facing California, with projected impacts reaching every sector of the state's economy and public health. The energy sector will not be spared. The potential repercussions of climate change include frequent heat waves, increased energy consumption, reduced hydropower generation in the summer season

36

Application of Improved Radiation Modeling to General Circulation Models  

SciTech Connect (OSTI)

This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

Michael J Iacono

2011-04-07T23:59:59.000Z

37

Constraining Climate Model Parameters from Observed 20th Century Changes  

E-Print Network [OSTI]

We present revised probability density functions for climate model parameters (effective climate sensitivity, the rate of deep-ocean heat uptake, and the strength of the net aerosol forcing) that are based on climate change ...

Forest, Chris Eliot

38

Climate modeler David Stainforth. Photo courtesy of David Stainforth.  

E-Print Network [OSTI]

Climate modeler David Stainforth. Photo courtesy of David Stainforth. 3. SCIENCE: Intrepid British climate modeler sets out to win over doubters (07/19/2011) Jeremy Lovell, E&E European correspondent the climate debate by explaining why uncertainty has to be a part of the computerized climate models

Stevenson, Paul

39

Hydrologic Response to Climate Variability, Climate Change, and Climate Extreme in the U.S.: Climate Model Evaluation and Projections  

SciTech Connect (OSTI)

Water resources are sensitive to climate variability and change; predictions of seasonal to interannual climate variations and projections of long-term climate trends can provide significant values in managing water resources. This study examines the control (1975–1995) and future (1995–2100) climate simulated by a global climate model (GCM) and a regional climate simulation driven by the GCM control simulation for the U.S. Comparison of the regional climate simulation with observations across 13 subregions showed that the simulation captured the seasonality and the distributions of precipitation rate quite well. The GCM control and climate change simulations showed that, as a result of a 1% increase in greenhouse gas concentrations per year, there will be a warming of 2–3°C across the U.S. from 2000 to 2100. Although precipitation is not projected to change during this century, the warming trend will increase evapotranspiration to reduce annual basin mean runoff over five subregions along the coastal and south-central U.S.

Leung, Lai R.; Qian, Yun

2005-08-01T23:59:59.000Z

40

Atmospheric Climate Model Experiments Performed at Multiple Horizontal Resolutions  

SciTech Connect (OSTI)

This report documents salient features of version 3.3 of the Community Atmosphere Model (CAM3.3) and of three climate simulations in which the resolution of its latitude-longitude grid was systematically increased. For all these simulations of global atmospheric climate during the period 1980-1999, observed monthly ocean surface temperatures and sea ice extents were prescribed according to standard Atmospheric Model Intercomparison Project (AMIP) values. These CAM3.3 resolution experiments served as control runs for subsequent simulations of the climatic effects of agricultural irrigation, the focus of a Laboratory Directed Research and Development (LDRD) project. The CAM3.3 model was able to replicate basic features of the historical climate, although biases in a number of atmospheric variables were evident. Increasing horizontal resolution also generally failed to ameliorate the large-scale errors in most of the climate variables that could be compared with observations. A notable exception was the simulation of precipitation, which incrementally improved with increasing resolution, especially in regions where orography plays a central role in determining the local hydroclimate.

Phillips, T; Bala, G; Gleckler, P; Lobell, D; Mirin, A; Maxwell, R; Rotman, D

2007-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Improved steamflood analytical model  

E-Print Network [OSTI]

two field cases, a 45x23x8 model was used that represented 1/8 of a 10-acre 5-spot pattern unit, using typical rock and reservoir fluid properties. In the SPE project case, three models were used: 23x12x12 (2.5 ac), 31x16x12 (5 ac) and 45x23x8 (10 ac...

Chandra, Suandy

2006-10-30T23:59:59.000Z

42

The Community Land Model and Its Climate Statistics as a Component of the Community Climate System Model  

E-Print Network [OSTI]

to the Fourth Assessment Report (AR4) by the Intergovernmental Panel on Climate Change [IPCC; i.e., the followThe Community Land Model and Its Climate Statistics as a Component of the Community Climate System carried out with the new version of the Community Climate System Model (CCSM). This paper reports

Hoffman, Forrest M.

43

Introduction. Stochastic physics and climate modelling  

E-Print Network [OSTI]

become a backbone of numerical weather prediction and is used not only by weather forecasters but also. Stochastic physics schemes within weather and climate models have the potential to represent the dynamical history, the present era, whereby predictions are made from numerical solutions of the underlying dynamic

Williams, Paul

44

Improving understanding of climate change dynamics using interactive simulations  

E-Print Network [OSTI]

Global climate change is one of the most complex problems that human kind will face during the 21st century. Long delays in changing greenhouse gas emissions and in the response of the climate to anthropogenic forcing mean ...

Martin Aguirre, Juan Francisco

2008-01-01T23:59:59.000Z

45

Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis  

SciTech Connect (OSTI)

The social cost of carbon (SCC) is a monetized metric for evaluating the benefits associated with marginal reductions in carbon dioxide (CO2) emissions. It represents the expected welfare loss from the future damages caused by the release of one tonne of CO2 in a given year, expressed in consumption equivalent terms. It is intended to be a comprehensive measure, taking into account changes in agricultural productivity, human health risks, loss of ecosystem services and biodiversity, and the frequency and severity of flooding and storms, among other possible impacts. Estimating the SCC requires long-term modeling of global economic activity, the climate system, and the linkages between the two through anthropogenic greenhouse gas (GHG) emissions and the effects of changing climatic conditions on economic activity and human well-being. The United States government currently uses the SCC in regulatory benefit-cost analyses to assess the welfare effects of changes in CO2 emissions. Consistent application of the SCC to federal rulemaking analyses began in 2009-2010 with the development of a set of global SCC estimates that employed three prominent integrated assessment models (IAMs) -- DICE, FUND, and PAGE. The U.S. government report identified a number of limitations associated with SCC estimates in general and its own assumptions in particular: an incomplete treatment of damages, including potential “catastrophic” impacts; uncertainty regarding the extrapolation of damage functions to high temperatures; incomplete treatment of adaptation and technological change; and the evaluation of uncertain outcomes in a risk-neutral fashion. External experts have identified other potential issues, including how best to model long-term socio-economic and emissions pathways, oversimplified physical climate and carbon cycle modeling within the IAMs, and an inconsistency between non-constant economic growth scenarios and constant discount rates. The U.S. government has committed to updating the estimates regularly as modeling capabilities and scientific and economic knowledge improves. To help foster further improvements in estimating the SCC, the U.S. Environmental Protection Agency and the U.S. Department of Energy hosted a pair of workshops on “Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis.” The first focused on conceptual and methodological issues related to integrated assessment modeling and the second brought together natural and social scientists to explore methods for improving damage assessment for multiple sectors. These two workshops provide the basis for the 13 papers in this special issue.

Marten, Alex; Kopp, Robert E.; Shouse, Kate C.; Griffiths, Charles; Hodson, Elke L.; Kopits, Elizabeth; Mignone, Bryan K.; Moore, Chris; Newbold, Steve; Waldhoff, Stephanie T.; Wolverton, Ann

2013-04-01T23:59:59.000Z

46

Improving the Water Component of an Agricultural Climate Change Assessment : Issues from the Standpoint of Agricultural Economists  

E-Print Network [OSTI]

Improving the Water Component of an Agricultural Climate Change Assessment : Issues from The National Global Climate Change Research Program is supporting appraisals of water and agriculture among assessment. Key Terms; Economics, Climate Change Assessment, Agriculture, Irrigation, Water use tradeoffs

McCarl, Bruce A.

47

Studying the Causes of Recent Climate Change Program for Climate Model Diagnosis and Intercomparison  

E-Print Network [OSTI]

1 Studying the Causes of Recent Climate Change Ben Santer Program for Climate Model Diagnosis of evidence suggests a discernible human influence on global climate" "There is new and stronger evidence that most of the warming observed over the last 50 years is attributable to human activities" "Most

Kammen, Daniel M.

48

Influence of spatial resolution on regional climate model derived wind climates  

E-Print Network [OSTI]

of northern Europe is more profound in the wind extremes than in the central tendency. The domain are of similar magnitude to the climate change signal in extreme wind events derived in prior research and mayInfluence of spatial resolution on regional climate model derived wind climates S. C. Pryor,1 G

Pryor, Sara C.

49

Climate Multi-model Regression Using Spatial Smoothing Karthik Subbian  

E-Print Network [OSTI]

Climate Multi-model Regression Using Spatial Smoothing Karthik Subbian Arindam Banerjee Abstract There are several Global Climate Models (GCMs) reported by var- ious countries to the Intergovernmental Panel on Climate Change (IPCC). Due to the varied nature of the GCM assumptions, the fu- ture projections

Banerjee, Arindam

50

Modeling Climate Change Adaptation: Challenges, Recent Developments and Future Directions  

E-Print Network [OSTI]

Modeling Climate Change Adaptation: Challenges, Recent Developments and Future Directions Karen of modeling practice in the field of integrated assessment of climate change and ways forward. Past efforts assessments of climate change have concentrated on developing baseline emissions scenarios and analyzing

Wing, Ian Sue

51

A Framework for Modeling Uncertainty in Regional Climate Change  

E-Print Network [OSTI]

In this study, we present a new modeling framework and a large ensemble of climate projections to investigate the uncertainty in regional climate change over the US associated with four dimensions of uncertainty. The sources ...

Monier, Erwan

52

Climate Sensitivity of the Community Climate System Model, Version 4 Atmospheric Sciences, University of Washington, Seattle, Washington  

E-Print Network [OSTI]

Climate Sensitivity of the Community Climate System Model, Version 4 C. M. BITZ Atmospheric climate sensitivity of the Community Climate System Model, version 4 (CCSM4) is 3.208C for 18 horizontal). The transient climate sensitivity of CCSM4 at 18 resolution is 1.728C, which is about 0.28C higher than in CCSM3

Reif, Rafael

53

Sensitivity of climate models: Comparison of simulated and observed patterns for past climates. Progress report, February 1, 1992--January 31, 1993  

SciTech Connect (OSTI)

Predicting the potential climatic effects of increased concentrations of atmospheric carbon dioxide requires the continuing development of climate models. Confidence in the predictions will be much enhanced once the models are thoroughly tested in terms of their ability to simulate climates that differ significantly from today`s climate. As one index of the magnitude of past climate change, the global mean temperature increase during the past 18,000 years is similar to that predicted for carbon dioxide--doubling. Simulating the climatic changes of the past 18,000 years, as well as the warmer-than-present climate of 6000 years ago and the climate of the last interglacial, around 126,000 years ago, provides an excellent opportunity to test the models that are being used in global climate change research. During the past several years, we have used paleoclimatic data to test the accuracy of the National Center for Atmospheric Research, Community Climate Model, Version 0, after changing its boundary conditions to those appropriate for past climates. We have assembled regional and near-global paleoclimatic data sets of pollen, lake level, and marine plankton data and calibrated many of the data in terms of climatic variables. We have also developed methods that permit direct quantitative comparisons between the data and model results. Our research has shown that comparing the model results with the data is an evolutionary process, because the models, the data, and the methods for comparison are continually being improved. During 1992, we have completed new modeling experiments, further analyzed previous model experiments, compiled new paleodata, made new comparisons between data and model results, and participated in workshops on paleoclimatic modeling.

Prell, W.L.; Webb, T. III

1992-08-01T23:59:59.000Z

54

Using Weather Data and Climate Model Output in Economic Analyses of Climate Change  

SciTech Connect (OSTI)

Economists are increasingly using weather data and climate model output in analyses of the economic impacts of climate change. This article introduces a set of weather data sets and climate models that are frequently used, discusses the most common mistakes economists make in using these products, and identifies ways to avoid these pitfalls. We first provide an introduction to weather data, including a summary of the types of datasets available, and then discuss five common pitfalls that empirical researchers should be aware of when using historical weather data as explanatory variables in econometric applications. We then provide a brief overview of climate models and discuss two common and significant errors often made by economists when climate model output is used to simulate the future impacts of climate change on an economic outcome of interest.

Auffhammer, Maximilian [University of California at Berkeley; Hsiang, Solomon M. [Princeton University; Schlenker, Wolfram [Columbia University; Sobel, Adam H. [Columbia University

2013-06-28T23:59:59.000Z

55

Bayesian methods for discontinuity detection in climate model predictions.  

SciTech Connect (OSTI)

Discontinuity detection is an important component in many fields: Image recognition, Digital signal processing, and Climate change research. Current methods shortcomings are: Restricted to one- or two-dimensional setting, Require uniformly spaced and/or dense input data, and Give deterministic answers without quantifying the uncertainty. Spectral methods for Uncertainty Quantification with global, smooth bases are challenged by discontinuities in model simulation results. Domain decomposition reduces the impact of nonlinearities and discontinuities. However, while gaining more smoothness in each subdomain, the current domain refinement methods require prohibitively many simulations. Therefore, detecting discontinuities up front and refining accordingly provides huge improvement to the current methodologies.

Safta, Cosmin; Debusschere, Bert J.; Najm, Habib N.; Sargsyan, Khachik

2010-06-01T23:59:59.000Z

56

COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL  

SciTech Connect (OSTI)

The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

Gutowski, William J.

2013-02-07T23:59:59.000Z

57

Thunderstorms in a changing climate: A cloudresolving modeling study  

E-Print Network [OSTI]

prediction of surface water and groundwater dynamics under projected climate change scenarios Thunderstorms in a changing climate: A cloudresolving modeling study Joseph Galewsky@unm.edu One of the potential impacts of a changing climate is an increase in the severity of thunderstorms

Maccabe, Barney

58

RESEARCH ARTICLE Climate change model predicts 33 % rice yield decrease  

E-Print Network [OSTI]

RESEARCH ARTICLE Climate change model predicts 33 % rice yield decrease in 2100 in Bangladesh parameters on rice. The effects of climate change on yield of a popular winter rice cultivar in Bangladesh online: 12 June 2012 # INRA and Springer-Verlag, France 2012 Abstract In Bangladesh, projected climate

Boyer, Edmond

59

Cpl6: The New Extensible, High-Performance Parallel Coupler forthe Community Climate System Model  

SciTech Connect (OSTI)

Coupled climate models are large, multiphysics applications designed to simulate the Earth's climate and predict the response of the climate to any changes in the forcing or boundary conditions. The Community Climate System Model (CCSM) is a widely used state-of-art climate model that has released several versions to the climate community over the past ten years. Like many climate models, CCSM employs a coupler, a functional unit that coordinates the exchange of data between parts of climate system such as the atmosphere and ocean. This paper describes the new coupler, cpl6, contained in the latest version of CCSM,CCSM3. Cpl6 introduces distributed-memory parallelism to the coupler, a class library for important coupler functions, and a standardized interface for component models. Cpl6 is implemented entirely in Fortran90 and uses Model Coupling Toolkit as the base for most of its classes. Cpl6 gives improved performance over previous versions and scales well on multiple platforms.

Craig, Anthony P.; Jacob, Robert L.; Kauffman, Brain; Bettge,Tom; Larson, Jay; Ong, Everest; Ding, Chris; He, Yun

2005-03-24T23:59:59.000Z

60

Improving Availability, Access and Use of Climate Information in Africa: Ethiopia's experience  

E-Print Network [OSTI]

Improving Availability, Access and Use of Climate Information in Africa: Ethiopia's experience Tufa. National Meteorology Agency, Addis Ababa, Ethiopia 3. Department of Meteorology, University of Reading, UK of climate information in development practices. The National Meteorology Agency of Ethiopia has been

Miami, University of

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Subtask 2.4 - Integration and Synthesis in Climate Change Predictive Modeling  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) completed a brief evaluation of the existing status of predictive modeling to assess options for integration of our previous paleohydrologic reconstructions and their synthesis with current global climate scenarios. Results of our research indicate that short-term data series available from modern instrumental records are not sufficient to reconstruct past hydrologic events or predict future ones. On the contrary, reconstruction of paleoclimate phenomena provided credible information on past climate cycles and confirmed their integration in the context of regional climate history is possible. Similarly to ice cores and other paleo proxies, acquired data represent an objective, credible tool for model calibration and validation of currently observed trends. It remains a subject of future research whether further refinement of our results and synthesis with regional and global climate observations could contribute to improvement and credibility of climate predictions on a regional and global scale.

Jaroslav Solc

2009-06-01T23:59:59.000Z

62

The effects of small perturbations in climate models  

E-Print Network [OSTI]

constant shown with the integrated autocorrelation for degree n ? 2. . . . . . . . . , . . CHAPTER I INTRODUCTION The subject of global climate change is a topic of growing importance in the world today. One of the most crucial aspects of the climate..., perpendicular to the line joining the earth and sun averaged through the year. The sensitivity of a. climate model to changes in the solar constant is generally the first quantity calculated to compare one model with another (North et al. , 1983a). This study...

Bell, Robert Eugene

1991-01-01T23:59:59.000Z

63

Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP)1! Ben Kravitz,1*  

E-Print Network [OSTI]

! 1 Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP)1! 2! Ben, MSIN K9-24, Richland, WA32! 99352, ben.kravitz@pnnl.gov.33! #12;! 2 Abstract34! Solar geoengineering of the Geoengineering Model37! Intercomparison Project (GeoMIP), in which 12 climate models have simulated the climate38

Robock, Alan

64

Regional-Scale Climate Change: Observations and Model Simulations  

SciTech Connect (OSTI)

This collaborative proposal addressed key issues in understanding the Earthâ??s climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

Raymond S. Bradley; Henry F. Diaz

2010-12-14T23:59:59.000Z

65

Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity  

E-Print Network [OSTI]

Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate ...

Monier, Erwan

66

New Gravity Wave Treatments for GISS Climate Models  

E-Print Network [OSTI]

Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of ...

Geller, Marvin A.

67

The rapidly evolving field of decadal climate prediction, using initialized climate models to produce time-evolving predictions of regional climate, is producing new results for  

E-Print Network [OSTI]

, and it is on those time scales of interest to water managers that decadal climate prediction is being appliedThe rapidly evolving field of decadal climate prediction, using initialized climate models to produce time-evolving predictions of regional climate, is producing new results for predictions

68

Improving week two forecasts with multi-model re-forecast ensembles  

E-Print Network [OSTI]

Improving week two forecasts with multi-model re-forecast ensembles Jeffrey S. Whitaker and Xue Wei NOAA-CIRES Climate Diagnostics Center, Boulder, CO Fr´ed´eric Vitart Seasonal Forecasting Group, ECMWF dataset of ensemble 're-forecasts' from a single model can significantly improve the skill

Whitaker, Jeffrey S.

69

Climate Change Modeling and Downscaling Issues and Methodological Perspectives for the U.S. National Climate Assessment  

SciTech Connect (OSTI)

This is the full workshop report for the modeling workshop we did for the National Climate Assessment, with DOE support.

Janetos, Anthony C.; Collins, William D.; Wuebbles, D.J.; Diffenbaugh, Noah; Hayhoe, Katharine; Hibbard, Kathleen A.; Hurtt, George

2012-03-31T23:59:59.000Z

70

The Program for climate Model diagnosis and Intercomparison: 20-th anniversary Symposium  

SciTech Connect (OSTI)

Twenty years ago, W. Lawrence (Larry) Gates approached the U.S. Department of Energy (DOE) Office of Energy Research (now the Office of Science) with a plan to coordinate the comparison and documentation of climate model differences. This effort would help improve our understanding of climate change through a systematic approach to model intercomparison. Early attempts at comparing results showed a surprisingly large range in control climate from such parameters as cloud cover, precipitation, and even atmospheric temperature. The DOE agreed to fund the effort at the Lawrence Livermore National Laboratory (LLNL), in part because of the existing computing environment and because of a preexisting atmospheric science group that contained a wide variety of expertise. The project was named the Program for Climate Model Diagnosis and Intercomparison (PCMDI), and it has changed the international landscape of climate modeling over the past 20 years. In spring 2009 the DOE hosted a 1-day symposium to celebrate the twentieth anniversary of PCMDI and to honor its founder, Larry Gates. Through their personal experiences, the morning presenters painted an image of climate science in the 1970s and 1980s, that generated early support from the international community for model intercomparison, thereby bringing PCMDI into existence. Four talks covered Gates���¢��������s early contributions to climate research at the University of California, Los Angeles (UCLA), the RAND Corporation, and Oregon State University through the founding of PCMDI to coordinate the Atmospheric Model Intercomparison Project (AMIP). The speakers were, in order of presentation, Warren Washington [National Center for Atmospheric Research (NCAR)], Kelly Redmond (Western Regional Climate Center), George Boer (Canadian Centre for Climate Modelling and Analysis), and Lennart Bengtsson [University of Reading, former director of the European Centre for Medium-Range Weather Forecasts (ECMWF)]. The afternoon session emphasized the scientific ideas that are the basis of PCMDI���¢��������s success, summarizing their evolution and impact. Four speakers followed the various PCMDI-supported climate model intercomparison projects, beginning with early work on cloud representations in models, presented by Robert D. Cess (Distinguished Professor Emeritus, Stony Brook University), and then the latest Cloud Feedback Model Intercomparison Projects (CFMIPs) led by Sandrine Bony (Laboratoire de M�������©t�������©orologie Dynamique). Benjamin Santer (LLNL) presented a review of the climate change detection and attribution (D & A) work pioneered at PCMDI, and Gerald A. Meehl (NCAR) ended the day with a look toward the future of climate change research.

Potter, Gerald L; Bader, David C; Riches, Michael; Bamzai, Anjuli; Joseph, Renu

2011-01-05T23:59:59.000Z

71

Climate change and hydropower production in the Swiss Alps:potential impacts and modelling uncertainties Hydrol. Earth Syst. Sci., 11(3), 11911205, 2007  

E-Print Network [OSTI]

Climate change and hydropower production in the Swiss Alps:potential impacts and modelling/1191/2007 © Author(s) 2007. This work is licensed under a Creative Commons License. Climate change and hydropower Improvement Laboratory, CH-1015 Lausanne, Switzerland 2 Ouranos, Consortium on Regional Climate Change

Paris-Sud XI, Université de

72

Graduate Opportunities in Earth Systems Modeling and Climate Impacts on Hydrology and Water Resources  

E-Print Network [OSTI]

Graduate Opportunities in Earth Systems Modeling and Climate Impacts on Hydrology and Water research assistantships available in the general area of earth systems modeling and climate impacts

73

[10-386] Assessing and Improving the Scale Dependence of Ecosystem Processes in Earth System Models  

E-Print Network [OSTI]

. Goodale Cornell U. *Overall Project Lead *Lead Institution Intellectual Merit: Earth system models include policies. Our research assesses and improves Earth system model simulations of the carbon cycle, ecosystem of the Community Climate System Model/Community Earth System Model, which includes statistical meteorological

74

Investment Dimension: Enhanced Data Equals Better Climate Models  

SciTech Connect (OSTI)

Through the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy provided the Atmospheric Radiation Measurement (ARM) Climate Research Facility with $60 million for new and upgraded instrumentation, equipment, and infrastructure to improve atmospheric data sets. These enhancements will take place among the permanent ARM research sites in Oklahoma and Alaska in the United States, and near the equator in the tropical Western Pacific. They will also advance the capabilities of ARM’s mobile and aerial research platforms. This article focuses on key enhancements - particularly new scanning radars, enhanced lidar technologies, aerosol observation systems, and in situ aircraft probes - that will provide unprecedented data sets for the modeling community.

Roeder, Lynne R.

2010-11-01T23:59:59.000Z

75

Climate Determinism Revisited: Multiple Equilibria in a Complex Climate Model  

E-Print Network [OSTI]

Multiple equilibria in a coupled ocean–atmosphere–sea ice general circulation model (GCM) of an aquaplanet with many degrees of freedom are studied. Three different stable states are found for exactly the same set of ...

Ferreira, David

76

Uncertainty in emissions projections for climate models  

E-Print Network [OSTI]

Future global climate projections are subject to large uncertainties. Major sources of this uncertainty are projections of anthropogenic emissions. We evaluate the uncertainty in future anthropogenic emissions using a ...

Webster, Mort David.; Babiker, Mustafa H.M.; Mayer, Monika.; Reilly, John M.; Harnisch, Jochen.; Hyman, Robert C.; Sarofim, Marcus C.; Wang, Chien.

77

Modeling Water Resource Systems under Climate Change: IGSM-WRS  

E-Print Network [OSTI]

Through the integration of a Water Resource System (WRS) component, the MIT Integrated Global System Model (IGSM) framework has been enhanced to study the effects of climate change on managed water-resource systems. ...

Strzepek, K.

78

RICCI Sophie Global Change and Climate Modeling Team  

E-Print Network [OSTI]

RICCI Sophie Global Change and Climate Modeling Team CERFACS - Toulouse, FRANCE Technical Report TR covariance matrix#17;. This hypothesis stems from the T S water mass properties conservation over long term

79

Climate Survey Original TemplateClimate Survey Original TemplateClimate Survey Original TemplateClimate Survey Original Template The Chair of the Department of DEPT NAME, NAME, is dedicated to improving workplace climate in your office. As part  

E-Print Network [OSTI]

Climate Survey Original TemplateClimate Survey Original TemplateClimate Survey Original TemplateClimate workplace climate in your office. As part of this effort, we will be assessing the climate as perceived the success of this campus climate initiative across universities. Again, we will aggregate the data so

Sheridan, Jennifer

80

Predicting Improved Chiller Performance Through Thermodynamic Modeling  

E-Print Network [OSTI]

This paper presents two case studies in which thermodynamic modeling was used to predict improved chiller performance. The model predicted the performance (COP and total energy consumption) of water-cooled centrifugal chillers as a function...

Figueroa, I. E.; Cathey, M.; Medina, M. A.; Nutter, D. W.

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Regional climate models, spatial data and extremes  

E-Print Network [OSTI]

density function. f(y) = eg(y) or g(y) = log(f(y)) we are interested in the (simple) behavior of g when p from five clim forcings due to solar activity and volcanoes. Red shaded bands show the 5­95% range greenhouse gases ­ without Summary figure from Intergovernmental Panel on Climate Change, Fourth Assessement

Nychka, Douglas

82

Regional climate models, spatial data and extremes  

E-Print Network [OSTI]

density function. f(y) = eg(y) or g(y) = log(f(y)) we are interested in the (simple) behavior of g when y bands show the 5­95% range for 19 simulations from five clim forcings due to solar activity Intergovernmental Panel on Climate Change, Fourth Assessement Report. Used as evidence for attributing global

Nychka, Douglas

83

Regional Climate Model Projections for the State of Washington  

SciTech Connect (OSTI)

Global climate models do not have sufficient spatial resolution to represent the atmospheric and land surface processes that determine the unique regional heterogeneity of the climate of the State of Washington. If future large-scale weather patterns interact differently with the local terrain and coastlines than current weather patterns, local changes in temperature and precipitation could be quite different from the coarse-scale changes projected by global models. Regional climate models explicitly simulate the interactions between the large-scale weather patterns simulated by a global model and the local terrain. We have performed two 100-year climate simulations using the Weather and Research Forecasting (WRF) model developed at the National Center for Atmospheric Research (NCAR). One simulation is forced by the NCAR Community Climate System Model version 3 (CCSM3) and the second is forced by a simulation of the Max Plank Institute, Hamburg, global model (ECHAM5). The mesoscale simulations produce regional changes in snow cover, cloudiness, and circulation patterns associated with interactions between the large-scale climate change and the regional topography and land-water contrasts. These changes substantially alter the temperature and precipitation trends over the region relative to the global model result or statistical downscaling. To illustrate this effect, we analyze the changes from the current climate (1970-1999) to the mid 21st century (2030-2059). Changes in seasonal-mean temperature, precipitation, and snowpack are presented. Several climatological indices of extreme daily weather are also presented: precipitation intensity, fraction of precipitation occurring in extreme daily events, heat wave frequency, growing season length, and frequency of warm nights. Despite somewhat different changes in seasonal precipitation and temperature from the two regional simulations, consistent results for changes in snowpack and extreme precipitation are found in both simulations.

Salathe, E.; Leung, Lai-Yung R.; Qian, Yun; Zhang, Yongxin

2010-05-05T23:59:59.000Z

84

Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP)  

E-Print Network [OSTI]

Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP) Ben Kravitz,1 Received 7 January 2013; revised 3 July 2013; accepted 10 July 2013. [1] Solar geoengineering Experiment G1 of the Geoengineering Model Intercomparison Project, in which 12 climate models have simulated

Moore, John

85

The origins of computer weather prediction and climate modeling  

SciTech Connect (OSTI)

Numerical simulation of an ever-increasing range of geophysical phenomena is adding enormously to our understanding of complex processes in the Earth system. The consequences for mankind of ongoing climate change will be far-reaching. Earth System Models are capable of replicating climate regimes of past millennia and are the best means we have of predicting the future of our climate. The basic ideas of numerical forecasting and climate modeling were developed about a century ago, long before the first electronic computer was constructed. There were several major practical obstacles to be overcome before numerical prediction could be put into practice. A fuller understanding of atmospheric dynamics allowed the development of simplified systems of equations; regular radiosonde observations of the free atmosphere and, later, satellite data, provided the initial conditions; stable finite difference schemes were developed; and powerful electronic computers provided a practical means of carrying out the prodigious calculations required to predict the changes in the weather. Progress in weather forecasting and in climate modeling over the past 50 years has been dramatic. In this presentation, we will trace the history of computer forecasting through the ENIAC integrations to the present day. The useful range of deterministic prediction is increasing by about one day each decade, and our understanding of climate change is growing rapidly as Earth System Models of ever-increasing sophistication are developed.

Lynch, Peter [Meteorology and Climate Centre, School of Mathematical Sciences, University College Dublin, Belfield (Ireland)], E-mail: Peter.Lynch@ucd.ie

2008-03-20T23:59:59.000Z

86

Climate Modeling using High-Performance Computing The Center for Applied Scientific Computing (CASC) and the LLNL Climate and Carbon  

E-Print Network [OSTI]

and NCAR in the development of a comprehensive, earth systems model. This model incorporates the most-performance climate models. Through the addition of relevant physical processes, we are developing an earth systems modeling capability as well. Our collaborators in climate research include the National Center

87

Regional climate model data used within the SWURVE project 2: addressing uncertainty in regional climate model data Hydrol. Earth Syst. Sci., 11(1), 10851096, 2007  

E-Print Network [OSTI]

.Ekstrom@uea.ac.uk Abstract To aid assessments of the impact of climate change on water related activities in the case study on the impacts of climate change on specific water management activities (Kilsby, 2007). Uncertainties linked, temperature, rainfall, Europe Introduction As climate model projections are often used in climate change

Boyer, Edmond

88

Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios  

SciTech Connect (OSTI)

This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

2012-10-01T23:59:59.000Z

89

Climate system modeling on massively parallel systems: LDRD Project 95-ERP-47 final report  

SciTech Connect (OSTI)

Global warming, acid rain, ozone depletion, and biodiversity loss are some of the major climate-related issues presently being addressed by climate and environmental scientists. Because unexpected changes in the climate could have significant effect on our economy, it is vitally important to improve the scientific basis for understanding and predicting the earth`s climate. The impracticality of modeling the earth experimentally in the laboratory together with the fact that the model equations are highly nonlinear has created a unique and vital role for computer-based climate experiments. However, today`s computer models, when run at desired spatial and temporal resolution and physical complexity, severely overtax the capabilities of our most powerful computers. Parallel processing offers significant potential for attaining increased performance and making tractable simulations that cannot be performed today. The principal goals of this project have been to develop and demonstrate the capability to perform large-scale climate simulations on high-performance computing systems (using methodology that scales to the systems of tomorrow), and to carry out leading-edge scientific calculations using parallelized models. The demonstration platform for these studies has been the 256-processor Cray-T3D located at Lawrence Livermore National Laboratory. Our plan was to undertake an ambitious program in optimization, proof-of-principle and scientific study. These goals have been met. We are now regularly using massively parallel processors for scientific study of the ocean and atmosphere, and preliminary parallel coupled ocean/atmosphere calculations are being carried out as well. Furthermore, our work suggests that it should be possible to develop an advanced comprehensive climate system model with performance scalable to the teraflops range. 9 refs., 3 figs.

Mirin, A.A.; Dannevik, W.P.; Chan, B.; Duffy, P.B.; Eltgroth, P.G.; Wehner, M.F.

1996-12-01T23:59:59.000Z

90

Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model  

SciTech Connect (OSTI)

In this paper, we use a more comprehensive approach by coupling a climate model with a 3-D global chemistry model to investigate the forcing by anthropogenic aerosol sulfate. The chemistry model treats the global-scale transport, transformation, and removal of SO{sub 2}, DMS and H{sub 2}SO{sub 4} species in the atmosphere. The mass concentration of anthropogenic sulfate from fossil fuel combustion and biomass burning is calculated in the chemistry model and provided to the climate model where it affects the shortwave radiation. We also investigate the effect, with cloud nucleation parameterized in terms of local aerosol number, sulfate mass concentration and updraft velocity. Our simulations indicate that anthropogenic sulfate may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. Uncertainties in these results will be discussed.

Chuang, C.C.; Penner, J.E.; Taylor, K.E.; Walton, J.J.

1993-09-01T23:59:59.000Z

91

Final Report on Evaluating the Representation and Impact of Convective Processes in the NCAR Community Climate System Model  

SciTech Connect (OSTI)

Convection and clouds affect atmospheric temperature, moisture and wind fields through the heat of condensation and evaporation and through redistributions of heat, moisture and momentum. Individual clouds have a spatial scale of less than 10 km, much smaller than the grid size of several hundred kilometers used in climate models. Therefore the effects of clouds must be approximated in terms of variables that the model can resolve. Deriving such formulations for convection and clouds has been a major challenge for the climate modeling community due to the lack of observations of cloud and microphysical properties. The objective of our DOE CCPP project is to evaluate and improve the representation of convection schemes developed by PIs in the NCAR (National Center for Atmospheric Research) Community Climate System Model (CCSM) and study its impact on global climate simulations. • The project resulted in nine peer-reviewed publications and numerous scientific presentations that directly address the CCPP’s scientific objective of improving climate models. • We developed a package of improved convection parameterization that includes improved closure, trigger condition for convection, and comprehensive treatment of convective momentum transport. • We implemented the new convection parameterization package into several versions of the NCAR models (both coupled and uncoupled). This has led to 1) Improved simulation of seasonal migration of ITCZ; 2) Improved shortwave cloud radiative forcing response to El Niño in CAM3; 3) Improved MJO simulation in both uncoupled and coupled model; and 4) Improved simulation of ENSO in coupled model. • Using the dynamic core of CCM3, we isolated the dynamic effects of convective momentum transport. • We implemented mosaic treatment of subgrid-scale cloud-radiation interaction in CCM3.

X. Wu, G. J. Zhang

2008-04-23T23:59:59.000Z

92

Climate Models from the Joint Global Change Research Institute  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Staff at the Joint Institute develop and use models to simulate the economic and physical impacts of global change policy options. The GCAM, for example, gives analysts insight into how regional and national economies might respond to climate change mitigation policies including carbon taxes, carbon trading, and accelerated deployment of energy technology. Three available models are Phoenix, GCAM, and EPIC. Phoenix is a global, dynamic recursive, computable general equilibrium model that is solved in five-year time steps from 2005 through 2100 and divides the world into twenty-four regions. Each region includes twenty-six industrial sectors. Particular attention is paid to energy production in Phoenix. There are nine electricity-generating technologies (coal, natural gas, oil, biomass, nuclear, hydro, wind, solar, and geothermal) and four additional energy commodities: crude oil, refined oil products, coal, and natural gas. Phoenix is designed to answer economic questions related to international climate and energy policy and international trade. Phoenix replaces the Second Generation Model (SGM) that was formerly used for general equilibrium analysis at JGCRI. GCAM is the Global Change Assessment Model, a partial equilibrium model of the world with 14 regions. GCAM operates in 5 year time steps from 1990 to 2095 and is designed to examine long-term changes in the coupled energy, agriculture/land-use, and climate system. GCAM includes a 151-region agriculture land-use module and a reduced form carbon cycle and climate module in addition to its incorporation of demographics, resources, energy production and consumption. The model has been used extensively in a number of assessment and modeling activities such as the Energy Modeling Forum (EMF), the U.S. Climate Change Technology Program, and the U.S. Climate Change Science Program and IPCC assessment reports. GCAM is now freely available as a community model. The Environmental Policy Integrated Climate (EPIC) Model is a process-based agricultural systems model composed of simulation components for weather, hydrology, nutrient cycling, pesticide fate, tillage, crop growth, soil erosion, crop and soil management and economics. Staff at PNNL have been involved in the development of this model by integrating new sub-models for soil carbon dynamics and nitrogen cycling.

93

Climate, Ocean and Sea Ice Modeling (COSIM)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristinaCliff joinsClimate, Ocean and Sea Ice

94

Estimating present climate in a warming world: a model-based approach  

SciTech Connect (OSTI)

Weather services base their operational definitions of 'present' climate on past observations, using a 30-year normal period such as 1961-1990 or 1971-2000. In a world with ongoing global warming, however, past data give a biased estimate of the actual present-day climate. Here we propose to correct this bias with a 'delta change' method, in which model-simulated climate changes and observed global mean temperature changes are used to extrapolate past observations forward in time, to make them representative of present or future climate conditions. In a hindcast test for the years 1991-2002, the method works well for temperature, with a clear improvement in verification statistics compared to the case in which the hindcast is formed directly from the observations for 1961-1990. However, no improvement is found for precipitation, for which the signal-to-noise ratio between expected anthropogenic changes and interannual variability is much lower than for temperature. An application of the method to the present (around the year 2007) climate suggests that, as a geographical average over land areas excluding Antarctica, 8-9 months per year and 8-9 years per decade can be expected to be warmer than the median for 1971-2000. Along with the overall warming, a substantial increase in the frequency of warm extremes at the expense of cold extremes of monthly-to-annual temperature is expected.

Raeisaenen, J.; Ruokolainen, L. [University of Helsinki (Finland). Division of Atmospheric Sciences and Geophysics

2008-09-30T23:59:59.000Z

95

A multi-resolution method for climate system modeling: application of Spherical Centroidal A multi-resolution method for climate system modeling: Application of Spherical Centroidal Voroni Tessellations  

SciTech Connect (OSTI)

During the next decade and beyond, climate system models will be challenged to resolve scales and processes that are far beyond their current scope. Each climate system component has its prototypical example of an unresolved process that may strongly influence the global climate system, ranging from eddy activity within ocean models, to ice streams within ice sheet models, to surface hydrological processes within land system models, to cloud processes within atmosphere models. These new demands will almost certainly result in the develop of multi-resolution schemes that are able, at least regional to faithfully simulate these fine-scale processes. Spherical Centroidal Voronoi Tessellations (SCVTs) offer one potential path toward the development of robust, multi-resolution climate system component models, SCVTs allow for the generation of high quality Voronoi diagrams and Delaunay triangulations through the use of an intuitive, user-defined density function, each of the examples provided, this method results in high-quality meshes where the quality measures are guaranteed to improve as the number of nodes is increased. Real-world examples are developed for the Greenland ice sheet and the North Atlantic ocean. Idealized examples are developed for ocean-ice shelf interaction and for regional atmospheric modeling. In addition to defining, developing and exhibiting SCVTs, we pair this mesh generation technique with a previously developed finite-volume method. Our numerical example is based on the nonlinear shallow-water equations spanning the entire surface of the sphere. This example is used to elucidate both the potential benefits of this multi-resolution method and the challenges ahead.

Ringler, Todd D [Los Alamos National Laboratory; Gunzburger, Max [FLORIDA STATE UNIV; Ju, Lili [UNIV OF SOUTH CAROLINA

2008-01-01T23:59:59.000Z

96

Aerosols and clouds in chemical transport models and climate models.  

SciTech Connect (OSTI)

Clouds exert major influences on both shortwave and longwave radiation as well as on the hydrological cycle. Accurate representation of clouds in climate models is a major unsolved problem because of high sensitivity of radiation and hydrology to cloud properties and processes, incomplete understanding of these processes, and the wide range of length scales over which these processes occur. Small changes in the amount, altitude, physical thickness, and/or microphysical properties of clouds due to human influences can exert changes in Earth's radiation budget that are comparable to the radiative forcing by anthropogenic greenhouse gases, thus either partly offsetting or enhancing the warming due to these gases. Because clouds form on aerosol particles, changes in the amount and/or composition of aerosols affect clouds in a variety of ways. The forcing of the radiation balance due to aerosol-cloud interactions (indirect aerosol effect) has large uncertainties because a variety of important processes are not well understood precluding their accurate representation in models.

Lohmann,U.; Schwartz, S. E.

2008-03-02T23:59:59.000Z

97

Developing fast and efficient climate models  

E-Print Network [OSTI]

, based on the global model of Tim Lenton. The resulting package comprises an Earth System Model was closely integrated with the GENIE (Grid ENabled Integrated Earth system model) project, funded by the NERC

Williamson, Mark

98

Evaluating the Representation and Impact of Convective Processes in the NCAR’s Community Climate System Model  

SciTech Connect (OSTI)

Convection and clouds affect atmospheric temperature, moisture and wind fields through the heat of condensation and evaporation and through redistributions of heat, moisture and momentum. Individual clouds have a spatial scale of less than 10 km, much smaller than the grid size of several hundred kilometers used in climate models. Therefore the effects of clouds must be approximated in terms of variables that the model can resolve. Deriving such formulations for convection and clouds has been a major challenge for the climate modeling community due to the lack of observations of cloud and microphysical properties. The objective of our DOE CCPP project is to evaluate and improve the representation of convection schemes developed by PIs in the NCAR (National Center for Atmospheric Research) Community Climate System Model (CCSM) and study its impact on global climate simulations.

Xiaoqing Wu

2008-07-31T23:59:59.000Z

99

Climate Change Science Institute at Oak Ridge National Laboratory  

E-Print Network [OSTI]

Climate Change Science Institute at Oak Ridge National Laboratory A multidisciplinary research fields. The Climate Change Science Institute at Oak Ridge National Laboratory routinely partners simulations to improve regional modeling of climate extremes - Partners from Oak Ridge, Lawrence Berkeley

100

Sandia National Laboratories: Global Climate & Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... Sandia Participated in the...

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

RHP: HOW CLIMATE MODELS GAIN AND EXERCISE How Climate Models Gain and Exercise Authority  

E-Print Network [OSTI]

-dimensional models, intermediate complexity models, general circulation models, and Earth system models. 2 www

Hulme, Mike

102

The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and Description of Models, Simulations and Climate Diagnostics  

SciTech Connect (OSTI)

The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of timeslice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting radiative forcing and the associated composition changes. Here we introduce the various simulations performed under ACCMIP and the associated model output. The ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions lead to a significant range in emissions, mostly for ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to-model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results, but with outliers different enough to possibly affect their representation of climate impact on chemistry.

Lamarque, J.-F.; Shindell, Drew; Josse, B.; Young, P. J.; Cionni, I.; Eyring, Veronika; Bergmann, D.; Cameron-Smith, Philip; Collins, W. J.; Doherty, R.; Dalsoren, S.; Faluvegi, G.; Folberth, G.; Ghan, Steven J.; Horowitz, L.; Lee, Y. H.; MacKenzie, I. A.; Nagashima, T.; Naik, Vaishali; Plummer, David; Righi, M.; Rumbold, S.; Schulz, M.; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Sudo, K.; Szopa, S.; Voulgarakis, A.; Zeng, G.

2013-02-07T23:59:59.000Z

103

Increase of Carbon Cycle Feedback with Climate Sensitivity: Results from a coupled Climate and Carbon Cycle Model  

SciTech Connect (OSTI)

Coupled climate and carbon cycle modeling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in larger warming. In this paper, we investigate the sensitivity of this feedback for year-2100 global warming in the range of 0 K to 8 K. Differing climate sensitivities to increased CO{sub 2} content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully-coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA) the NCAR/DOE Parallel Coupled Model coupled to the IBIS terrestrial biosphere model and a modified-OCMIP ocean biogeochemistry model. In our model, for scenarios with year-2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO{sub 2} emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO{sub 2} concentration increases were 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO{sub 2} content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K.

Govindasamy, B; Thompson, S; Mirin, A; Wickett, M; Caldeira, K; Delire, C

2004-04-01T23:59:59.000Z

104

An Interactive Multi-Model for Consensus on Climate Change  

SciTech Connect (OSTI)

This project purports to develop a new scheme for forming consensus among alternative climate models, that give widely divergent projections as to the details of climate change, that is more intelligent than simply averaging the model outputs, or averaging with ex post facto weighting factors. The method under development effectively allows models to assimilate data from one another in run time with weights that are chosen in an adaptive training phase using 20th century data, so that the models synchronize with one another as well as with reality. An alternate approach that is being explored in parallel is the automated combination of equations from different models in an expert-system-like framework.

Kocarev, Ljupco [University of California, San Diego] [University of California, San Diego

2014-07-02T23:59:59.000Z

105

Modeling Climate Dynamically James Walsh and Richard McGehee  

E-Print Network [OSTI]

to tropical latitudes, leaving a narrow strip of open ocean water about the equator? Can mathematical models and present day evidence. Global climate is determined by the radiation balance of the planet. The Earth warms through the absorption of incoming solar radiation (or insolation). Due to the shortwave nature

Wilmer, Elizabeth

106

A SIMULATION MODEL FOR CANADA-US CLIMATE POLICY ANALYSIS  

E-Print Network [OSTI]

forecasts how energy trade between Canada and the US might change due to the policies. The results gas emissions; carbon tax; energy consumption; energy supply; energy trade Subject Terms: Climatic policies to reduce greenhouse gas emissions in Canada and the US. A model of the combined energy

107

Impact of emissions, chemistry, and climate on atmospheric carbon monoxide : 100-year predictions from a global chemistry-climate model  

E-Print Network [OSTI]

The possible trends for atmospheric carbon monoxide in the next 100 yr have been illustrated using a coupled atmospheric chemistry and climate model driven by emissions predicted by a global economic development model. ...

Wang, Chien.; Prinn, Ronald G.

108

A Gaussian graphical model approach to climate networks  

SciTech Connect (OSTI)

Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately.

Zerenner, Tanja, E-mail: tanjaz@uni-bonn.de [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany)] [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Friederichs, Petra; Hense, Andreas [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany) [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany); Lehnertz, Klaus [Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany) [Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany); Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany)

2014-06-15T23:59:59.000Z

109

Climate change uncertainty evaluation, impacts modelling and resilience of farm scale dynamics in Scotland   

E-Print Network [OSTI]

evidence of how primary production components of agriculture in Scotland may change under a future climate. The work used a generic Integrated Modelling Framework to structure the following sequence of investigations: Evaluate a Regional Climate Model...

Rivington, Michael

2011-06-28T23:59:59.000Z

110

A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming  

E-Print Network [OSTI]

Review: A Vast Machine: Computer Models, Climate Data, andEdwards, Paul N. A Vast Machine: Computer Models, ClimateEdwards, Paul N. 2004. "A vast machine: standards as social

Maret, Susan

2011-01-01T23:59:59.000Z

111

Conceptual stochastic climate models Peter Imkeller  

E-Print Network [OSTI]

to be thoroughly inve- stigated but too simple to be treated as quantitatively accurate, through Earth System Models of Intermediate Complexity (EMICs) which represent some clima- te subsystems (e.g. the ocean

Monahan, Adam Hugh

112

Climate Projections Using Bayesian Model Averaging and Space-Time Dependence  

E-Print Network [OSTI]

Climate Projections Using Bayesian Model Averaging and Space-Time Dependence K. Sham Bhat, Murali Haran, Adam Terando, and Klaus Keller. Abstract Projections of future climatic changes are a key input to the design of climate change mitiga- tion and adaptation strategies. Current climate change projections

Haran, Murali

113

Conceptual understanding of climate change with a globally resolved energy balance model  

E-Print Network [OSTI]

Conceptual understanding of climate change with a globally resolved energy balance model Dietmar on the surface energy balance by very simple repre- sentations of solar and thermal radiation, the atmospheric and cold regions to warm more than other regions. Keywords Climate dynamics Á Climate change Á Climate

Dommenget, Dietmar

114

COMPARING MODEL RESULTS TO NATIONAL CLIMATE POLICY GOALS: RESULTS FROM THE ASIA MODELING EXERCISE  

SciTech Connect (OSTI)

While the world has yet to adopt a single unified policy to limit climate change, many countries and regions have adopted energy and climate policies that have implications for global emissions. In this paper, we discuss a few key policies and how they are included in a set of 24 energy and integrated assessment models that participated in the Asia Modeling Exercise. We also compare results from these models for a small set of stylized scenarios to the pledges made as part of the Copenhagen Accord and the goals stated by the Major Economies Forum. We find that the targets outlined by the United States, the European Union, Japan, and Korea require significant policy action in most of the models analyzed. For most of the models in the study, however, the goals outlined by India are met without any climate policy. The stringency of climate policy required to meet China’s Copenhagen pledges varies across models and accounting methodologies.

Calvin, Katherine V.; Fawcett, Allen A.; Jiang, Kejun

2012-12-01T23:59:59.000Z

115

Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM...  

Broader source: Energy.gov (indexed) [DOE]

Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results This presentation by...

116

Final Report for High Latitude Climate Modeling: ARM Takes Us Beyond Case Studies  

SciTech Connect (OSTI)

The main thrust of this project was to devise a method by which the majority of North Slope of Alaska (NSA) meteorological and radiometric data, collected on a daily basis, could be used to evaluate and improve global climate model (GCM) simulations and their parameterizations, particularly for cloud microphysics. Although the standard ARM Program sensors for a less complete suite of instruments for cloud and aerosol studies than the instruments on an intensive field program such as the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC), the advantage they offer lies in the long time base and large volume of data that covers a wide range of meteorological and climatological conditions. The challenge has been devising a method to interpret the NSA data in a practical way, so that a wide variety of meteorological conditions in all seasons can be examined with climate models. If successful, climate modelers would have a robust alternative to the usual “case study” approach (i.e., from intensive field programs only) for testing and evaluating their parameterizations’ performance. Understanding climate change on regional scales requires a broad scientific consideration of anthropogenic influences that goes beyond greenhouse gas emissions to also include aerosol-induced changes in cloud properties. For instance, it is now clear that on small scales, human-induced aerosol plumes can exert microclimatic radiative and hydrologic forcing that rivals that of greenhouse gas–forced warming. This project has made significant scientific progress by investigating what causes successive versions of climate models continue to exhibit errors in cloud amount, cloud microphysical and radiative properties, precipitation, and radiation balance, as compared with observations and, in particular, in Arctic regions. To find out what is going wrong, we have tested the models' cloud representation over the full range of meteorological conditions found in the Arctic using the ARM North Slope of Alaska (NSA) data.

Russell, Lynn M [Scripps/UCSD; Lubin, Dan [Scripps/UCSD

2013-06-18T23:59:59.000Z

117

U.S. Senate Committee on Commerce, Science and Transportation Hearing on "A Time for Change: Improving the Federal Climate Change  

E-Print Network [OSTI]

: Improving the Federal Climate Change Research and Information Program" November 14, 2007 Testimony of Dr to appear before you today to address improving the Federal climate change research and information program engaged in several assessments of the environmental consequences of climate change. Notably, I served

118

SIMPLE CLIMATE MODELS 10.1 Abstract  

E-Print Network [OSTI]

principles (e. g. the principle of least action in me­ chanics or Fermat's principle of least time in optics requires: I 0 \\Gamma F \\Gamma E 0 = 0 (10.1) I 1 + F \\Gamma E 1 = 0 (10.2) In this model, I 0 and I 1. It is hypothesized that the rate of entropy production (F=T 1 \\Gamma F=T 0 ) within the #12; 309 0.0 0.2 0.4 0.6 0

Withers, Paul

119

A multi-resolution method for climate system modeling: application of spherical centroidal Voronoi tessellations  

SciTech Connect (OSTI)

During the next decade and beyond, climate system models will be challenged to resolve scales and processes that are far beyond their current scope. Each climate system component has its prototypical example of an unresolved process that may strongly influence the global climate system, ranging from eddy activity within ocean models, to ice streams within ice sheet models, to surface hydrological processes within land system models, to cloud processes within atmosphere models. These new demands will almost certainly result in the develop of multiresolution schemes that are able, at least regionally, to faithfully simulate these fine-scale processes. Spherical centroidal Voronoi tessellations (SCVTs) offer one potential path toward the development of a robust, multiresolution climate system model components. SCVTs allow for the generation of high quality Voronoi diagrams and Delaunay triangulations through the use of an intuitive, user-defined density function. In each of the examples provided, this method results in high-quality meshes where the quality measures are guaranteed to improve as the number of nodes is increased. Real-world examples are developed for the Greenland ice sheet and the North Atlantic ocean. Idealized examples are developed for ocean–ice shelf interaction and for regional atmospheric modeling. In addition to defining, developing, and exhibiting SCVTs, we pair this mesh generation technique with a previously developed finite-volume method. Our numerical example is based on the nonlinear, shallow water equations spanning the entire surface of the sphere. This example is used to elucidate both the potential benefits of this multiresolution method and the challenges ahead.

Ringler, Todd [Los Alamos National Laboratory; Ju, Lili [University of South Carolina; Gunzburger, Max [Florida State University

2008-01-01T23:59:59.000Z

120

Aerosol, Cloud, and Climate: From Observation to Model  

ScienceCinema (OSTI)

Scientists have long been investigating this phenomenon of "global warming," which is believed to be at least partly due to the increased carbon dioxide (CO2) concentration in the air from burning fossil fuels. Funded by DOE, teams of researchers from BNL and other national labs have been gathering data in the U.S. and internationally to build computer models of climate and weather to help in understanding general patterns, causes, and perhaps, solutions.

Jian Wang

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Aerosol, Cloud, and Climate: From Observation to Model  

SciTech Connect (OSTI)

Scientists have long been investigating this phenomenon of "global warming," which is believed to be at least partly due to the increased carbon dioxide (CO2) concentration in the air from burning fossil fuels. Funded by DOE, teams of researchers from BNL and other national labs have been gathering data in the U.S. and internationally to build computer models of climate and weather to help in understanding general patterns, causes, and perhaps, solutions.

Jian Wang

2010-05-12T23:59:59.000Z

122

A climate model intercomparison at the dynamics level Karsten Steinhaeuser Anastasios A. Tsonis  

E-Print Network [OSTI]

A climate model intercomparison at the dynamics level Karsten Steinhaeuser · Anastasios A. Tsonis-Verlag Berlin Heidelberg 2013 Abstract Until now, climate model intercomparison has focused primarily on annual they generate, we have adopted a new approach based on climate networks. We have considered 28 pre

Minnesota, University of

123

A climate model intercomparison at the dynamics level Karsten Steinhaeuser Anastasios A. Tsonis  

E-Print Network [OSTI]

A climate model intercomparison at the dynamics level Karsten Steinhaeuser · Anastasios A. Tsonis Until now, climate model intercomparison has focused primarily on annual and global averages of various adopted a new approach based on climate networks. We have considered 28 pre-industrial control runs

Minnesota, University of

124

Climate change and uncertainty in ecological niche modeling  

E-Print Network [OSTI]

enhance regional climate change impact studies." Eos Trans.hydrologic impacts of climate change in the Sierra Nevada,of a century of climate change on small-mammal communities

Alvarez, Otto

2011-01-01T23:59:59.000Z

125

Evaluating Energy Performance and Improvement Potential of China Office Buildings in the Hot Humid Climate Against U.S. Reference Buildings: Preprint  

SciTech Connect (OSTI)

This study compares the building code standards for office buildings in hot humid climates of China and the USA. A benchmark office building model is developed for Guangzhou, China that meets China's minimum national and regional building codes with incorporation of common design and construction practices for the area. The Guangzhou office benchmark model is compared to the ASHRAE standard based US model for Houston, Texas which has similar climate conditions. The research further uses a building energy optimization tool to optimize the Chinese benchmark with existing US products to identify the primary areas for potential energy savings. The most significant energy-saving options are then presented as recommendations for potential improvements to current China building codes.

Herrman, L.; Deru, M.; Zhai, J.

2010-08-01T23:59:59.000Z

126

World Climate Research Programme (WCRP) Coupled Model Intercomparison Project phase 3 (CMIP3): Multi-Model Dataset Archive at PCMDI (Program for Climate Model Diagnosis and Intercomparison)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

In response to a proposed activity of the WCRP's Working Group on Coupled Modelling (WGCM),PCMDI volunteered to collect model output contributed by leading modeling centers around the world. Climate model output from simulations of the past, present and future climate was collected by PCMDI mostly during the years 2005 and 2006, and this archived data constitutes phase 3 of the Coupled Model Intercomparison Project (CMIP3). In part, the WGCM organized this activity to enable those outside the major modeling centers to perform research of relevance to climate scientists preparing the Fourth Asssessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The IPCC was established by the World Meteorological Organization and the United Nations Environmental Program to assess scientific information on climate change. The IPCC publishes reports that summarize the state of the science. This unprecedented collection of recent model output is officially known as the WCRP CMIP3 multi-model dataset. It is meant to serve IPCC's Working Group 1, which focuses on the physical climate system - atmosphere, land surface, ocean and sea ice - and the choice of variables archived at the PCMDI reflects this focus. A more comprehensive set of output for a given model may be available from the modeling center that produced it. As of November 2007, over 35 terabytes of data were in the archive and over 303 terabytes of data had been downloaded among the more than 1200 registered users. Over 250 journal articles, based at least in part on the dataset, have been published or have been accepted for peer-reviewed publication. Countries from which models have been gathered include Australia, Canada, China, France, Germany and Korea, Italy, Japan, Norway, Russia, Great Britain and the United States. Models, variables, and documentation are collected and stored. Check http://www-pcmdi.llnl.gov/ipcc/data_status_tables.htm to see at a glance the output that is available. (Description taken from http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php)

127

Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP)  

E-Print Network [OSTI]

Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP) Ben Kravitz,1 geoengineering--deliberate reduction in the amount of solar radiation retained by the Earth--has been proposed present results from Experiment G1 of the Geoengineering Model Intercomparison Project, in which 12

Robock, Alan

128

Evaluation of Continental Precipitation in 20th-Century Climate Simulations: The Utility of Multi-Model Statistics  

SciTech Connect (OSTI)

At the request of the Intergovernmental Panel on Climate Change (IPCC), simulations of 20th-century climate have been performed recently with some 20 global coupled ocean-atmosphere models. In view of its central importance for biological and socio-economic systems, model-simulated continental precipitation is evaluated relative to three observational estimates at both global and regional scales. Many models are found to display systematic biases, deviating markedly from the observed spatial variability and amplitude/phase of the seasonal cycle. However, the point-wise ensemble mean of all the models usually shows better statistical agreement with the observations than does any single model. Deficiencies of current models that may be responsible for the simulated precipitation biases as well as possible reasons for the improved estimate afforded by the multi-model ensemble mean are discussed. Implications of these results for water-resource managers also are briefly addressed.

Phillips, T J; Gleckler, P J

2005-11-01T23:59:59.000Z

129

Simulations of Present and Future Climates in the Western United States with Four Nested Regional Climate Models  

SciTech Connect (OSTI)

We analyze simulations of present and future climates in the western U.S. performed with four regional climate models (RCMs) nested within two global ocean-atmosphere climate models. Our primary goal is to assess the range of regional climate responses to increased greenhouse gases in available RCM simulations. The four RCMs used different geographical domains, different increased greenhouse gas scenarios for future-climate simulations, and (in some cases) different lateral boundary conditions. For simulations of the present climate, we compare RCM results to observations and to results of the GCM that provided lateral boundary conditions to the RCM. For future-climate (increased greenhouse gas) simulations, we compare RCM results to each other and to results of the driving GCMs. When results are spatially averaged over the western U.S., we find that the results of each RCM closely follow those of the driving GCM in the same region, in both present and future climates. This is true even though the study area is in some cases a small fraction of the RCM domain. Precipitation responses predicted by the RCMs are in many regions not statistically significant compared to interannual variability. Where the predicted precipitation responses are statistically significant, they are positive. The models agree that near-surface temperatures will increase, but do not agree on the spatial pattern of this increase. The four RCMs produce very different estimates of water content of snow in the present climate, and of the change in this water content in response to increased greenhouse gases.

Duffy, Phil; Arritt, R.; Coquard, J.; Gutowski, William; Han, J.; Iorio, J.; Kim, Jongil; Leung, Lai R.; Roads, J.; Zeledon, E.

2006-03-15T23:59:59.000Z

130

A Finite Element Algorithm of a Nonlinear Diffusive Climate Energy Balance Model  

E-Print Network [OSTI]

A Finite Element Algorithm of a Nonlinear Diffusive Climate Energy Balance Model R. BERMEJO,1 J. This model belongs to the category of energy balance models introduced independently by the climatologists M climate. The energy balance model we are dealing with consists of a two-dimensional nonlinear parabolic

Díaz, Jesús Ildefonso

131

A conceptual model to estimate cost effectiveness of the indoor environment improvements  

SciTech Connect (OSTI)

Macroeconomic analyses indicate a high cost to society of a deteriorated indoor climate. The few example calculations performed to date indicate that measures taken to improve IEQ are highly cost-effective when health and productivity benefits are considered. We believe that cost-benefit analyses of building designs and operations should routinely incorporate health and productivity impacts. As an initial step, we developed a conceptual model that shows the links between improvements in IEQ and the financial gains from reductions in medical care and sick leave, improved work performance, lower employee turn over, and reduced maintenance due to fewer complaints.

Seppanen, Olli; Fisk, William J.

2003-06-01T23:59:59.000Z

132

A framework for interpreting climate model outputs Nadja A. Leith and Richard E. Chandler  

E-Print Network [OSTI]

to illustrate the methodology. Some key words: Climate change; Climate model uncertainty; Contemporaneous ARMA acknowledged that human activities have caused changes in the Earth's climate (Solomon et al., 2007). Indeed #12;the hydrological cycle (Solomon et al., 2007). To accommodate this possibility therefore, planners

Guillas, Serge

133

Extreme events in solutions of hydrostatic and non-hydrostatic climate models  

E-Print Network [OSTI]

the assumptions made in applying them to operational numerical weather prediction (NWP), climate modelling-hydrostatic (NPE) primitive equations that have been used extensively in numerical weather prediction and climate weather, climate and global ocean circulation predictions for many decades. The HPE govern incompressible

Gibbon, J. D.

134

Crash testing hydrological models in contrasted climate conditions: An experiment on 216 Australian catchments  

E-Print Network [OSTI]

of these models (flow simulation, forecasting, design, reservoir management, climate change impact assessments of climate change on stream- flow has been an increasing concern in the past few years and has been the focus this transposability is a critical issue in the context of climate change impact studies where nonstationary condi

Boyer, Edmond

135

Improvement of snowpack simulations in a regional climate model  

E-Print Network [OSTI]

that intensifies the solar radiation absorption on the landulate and predict the solar radiation budget at the sur-SW # the downward solar radiation, LWNET the net longwave

Jin, J.

2012-01-01T23:59:59.000Z

136

Process Modeling for Process Improvement A Process Conformance Approach  

E-Print Network [OSTI]

Process Modeling for Process Improvement - A Process Conformance Approach Sigurd Thunem September processes. In order to improve these processes, knowledge about them is necessary. To support process improve- ment the organization should collect process data, transform process data into knowledge

137

What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?  

SciTech Connect (OSTI)

Regional climate change impact (CCI) studies have widely involved downscaling and bias-correcting (BC) Global Climate Model (GCM)-projected climate for driving land surface models. However, BC may cause uncertainties in projecting hydrologic and biogeochemical responses to future climate due to the impaired spatiotemporal covariance of climate variables and a breakdown of physical conservation principles. Here we quantify the impact of BC on simulated climate-driven changes in water variables(evapotranspiration, ET; runoff; snow water equivalent, SWE; and water demand for irrigation), crop yield, biogenic volatile organic compounds (BVOC), nitric oxide (NO) emissions, and dissolved inorganic nitrogen (DIN) export over the Pacific Northwest (PNW) Region. We also quantify the impacts on net primary production (NPP) over a small watershed in the region (HJ Andrews). Simulation results from the coupled ECHAM5/MPI-OM model with A1B emission scenario were firstly dynamically downscaled to 12 km resolutions with WRF model. Then a quantile mapping based statistical downscaling model was used to downscale them into 1/16th degree resolution daily climate data over historical and future periods. Two series climate data were generated according to the option of bias-correction (i.e. with bias-correction (BC) and without bias-correction, NBC). Impact models were then applied to estimate hydrologic and biogeochemical responses to both BC and NBC meteorological datasets. These im20 pact models include a macro-scale hydrologic model (VIC), a coupled cropping system model (VIC-CropSyst), an ecohydrologic model (RHESSys), a biogenic emissions model (MEGAN), and a nutrient export model (Global-NEWS). Results demonstrate that the BC and NBC climate data provide consistent estimates of the climate-driven changes in water fluxes (ET, runoff, and water demand), VOCs (isoprene and monoterpenes) and NO emissions, mean crop yield, and river DIN export over the PNW domain. However, significant differences rise from projected SWE, crop yield from dry lands, and HJ Andrews’s ET between BC and NBC data. Even though BC post-processing has no significant impacts on most of the studied variables when taking PNW as a whole, their effects have large spatial variations and some local areas are substantially influenced. In addition, there are months during which BC and NBC post-processing produces significant differences in projected changes, such as summer runoff. Factor-controlled simulations indicate that BC post-processing of precipitation and temperature both substantially contribute to these differences at region scales. We conclude that there are trade-offs between using BC climate data for offline CCI studies vs. direct modeled climate data. These trade-offs should be considered when designing integrated modeling frameworks for specific applications; e.g., BC may be more important when considering impacts on reservoir operations in mountainous watersheds than when investigating impacts on biogenic emissions and air quality (where VOCs are a primary indicator).

Liu, M. L.; Rajagopalan, K.; Chung, S. H.; Jiang, X.; Harrison, J. H.; Nergui, T.; Guenther, Alex B.; Miller, C.; Reyes, J.; Tague, C. L.; Choate, J. S.; Salathe, E.; Stockle, Claudio O.; Adam, J. C.

2014-05-16T23:59:59.000Z

138

educating, engaging and empowering californians to improve our state's future California Climate  

E-Print Network [OSTI]

and Resources (BeaR) model, we find that if California improves energy efficiency by just 1 percent per year order #s­3­05 (schwarzenegger 2005) which calls for a 30 percent reduction below business- as on emissions that cause global warming, requires that the California air Resources Board (CaRB) put

Sadoulet, Elisabeth

139

Climate Change Impact Valuation Models Revisited | U.S. DOE Office...  

Office of Science (SC) Website

Climate Change Impact Valuation Models Revisited Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER...

140

Improving efficiency of a vehicle HVAC system with comfort modeling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices Improving efficiency of a vehicle HVAC system with comfort modeling, zonal...

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ENERGY INVESTMENTS UNDER CLIMATE POLICY: A COMPARISON OF GLOBAL MODELS  

SciTech Connect (OSTI)

The levels of investment needed to mobilize an energy system transformation and mitigate climate change are not known with certainty. This paper aims to inform the ongoing dialogue and in so doing to guide public policy and strategic corporate decision making. Within the framework of the LIMITS integrated assessment model comparison exercise, we analyze a multi-IAM ensemble of long-term energy and greenhouse gas emissions scenarios. Our study provides insight into several critical but uncertain areas related to the future investment environment, for example in terms of where capital expenditures may need to flow regionally, into which sectors they might be concentrated, and what policies could be helpful in spurring these financial resources. We find that stringent climate policies consistent with a 2°C climate change target would require a considerable upscaling of investments into low-carbon energy and energy efficiency, reaching approximately $45 trillion (range: $30–$75 trillion) cumulative between 2010 and 2050, or about $1.1 trillion annually. This represents an increase of some $30 trillion ($10–$55 trillion), or $0.8 trillion per year, beyond what investments might otherwise be in a reference scenario that assumes the continuation of present and planned emissions-reducing policies throughout the world. In other words, a substantial "clean-energy investment gap" of some $800 billion/yr exists — notably on the same order of magnitude as present-day subsidies for fossil energy and electricity worldwide ($523 billion). Unless the gap is filled rather quickly, the 2°C target could potentially become out of reach.

McCollum, David; Nagai, Yu; Riahi, Keywan; Marangoni, Giacomo; Calvin, Katherine V.; Pietzcker, Robert; Van Vliet, Jasper; van der Zwaan, Bob

2013-11-01T23:59:59.000Z

142

Feedbacks in a simple prognostic tropical climate model  

SciTech Connect (OSTI)

A simple four-cell model of the tropical atmosphere in equilibrium with its boundaries is introduced, which can support a variable diabatic circulation and prognostic temperature and humidity profiles. The model is used to predict atmospheric perturbations away from the observed base state. Prognostic variables include radiation, surface fluxes, and dynamic transports, with temperature and water vapor levels determined by conservation constraints. The model includes a specially developed water vapor scheme that performs favorably compared with observations. The model is used to simulate the local and nonlocal sensitivity of the tropical maritime atmosphere to changes in surface temperature and other boundary conditions at very large horizontal scales. The main findings are as follows: (i) The sensitivity of boundary layer convergence to sea surface temperature (SST) variations depends on the behavior of convective heating over cooler regions and may be overestimated by heuristic models that ignore or oversimplify thermodynamic and radiative constraints; (ii) The maintenance of humidity equilibrium over weakly convective areas is modulated by local radiative feedback; (iii) Evaporation feedbacks on SST may be overestimated by heuristic arguments that do not carefully treat atmospheric water transport. An explanation for the constant-relative humidity behavior of general circulation models under climate changes is also offered based on the results.

Sherwood, S.C. (Scripps Institution of Oceanography, La Jolla, CA (United States))

1999-07-01T23:59:59.000Z

143

Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5  

E-Print Network [OSTI]

Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 J relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model climate and Earth System Models, both developed in France and contributing to the 5th coupled model

Codron, Francis

144

The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments  

SciTech Connect (OSTI)

The Community Atmosphere Model, version 4 (CAM4) was released as the atmosphere component of the Community Climate System Model, version 4 (CCSM4) and is described. The finite volume dynamical core available in CAM3 is now the default due to its superior transport and conservation properties. Deep convection parameterization changes include a dilute plume calculation of convective available potential energy (CAPE) and the introduction of a formulation for Convective Momentum Transport (CMT). For the cloud fraction an additional calculation is performed following macrophysical state updates that provides improved thermodynamic condistancy. A freeze-drying modification is further made to the cloud fraction calculation in very dry environments, such as arctic Winter, where cloud fractionand cloud water estimates were often inconsistant in CAM3. In CAM4 the finite volume dynamical core leads to a degradation in the excessive trade-wind simulation, but with an accompanying reduction in zonal stresses at higher latitudes. Plume dilution leads to a moister deep tropics alleviating much of the mid-tropospheric dry biases and reduces the persistant precipitation biases over the Arabian peninsular and the southern Indian ocean during the Indian Monsoon. CMT reduces much of the excessive trade-wind biases in eastern ocean basins. The freeze drying modification alleviates much of the high latitude, winter-time excessive cloud bias and improves the associated surface cloud-related energy budget, but the updated cloud macrophysical calculation generally leads to reduced cloud fraction and cloud forcing away from high latitudes. Although there are marginal improvements in time-averaged, large-scale hydrology there are signficant improvements in regional climate features such as the generation of tropical and propagation of stationary waves from the Pacific into mid-latitudes and in the seasonal frequency of Northern Hemisphere blocking events. A 1? versus 2? horizontal resolution of the finite volume 24 dynamical core exhibits signficiant improvements in model climate. Improvements in the fully coupled mean climate between CAM3 and CAM4 are also much more signficant than in forced Sea Surface Temperature (SST) simulations. Furthermore, improvements in the transient characteristics ofthe model climate, documented elsewhere, are substantial.

Neale, Richard; Richter, Jadwiga; Park, Sungsu; Lauritzen, P. H.; Vavrus, Steven J.; Rasch, Philip J.; Zhang, Minghua

2013-07-15T23:59:59.000Z

145

Multi-century Changes to Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model  

SciTech Connect (OSTI)

In this paper, we use a coupled climate and carbon cycle model to investigate the global climate and carbon cycle changes out to year 2300 that would occur if CO{sub 2} emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By year 2300, the global climate warms by about 8 K and atmospheric CO{sub 2} reaches 1423 ppmv. The warming is higher than anticipated because the sensitivity to radiative forcing increases as the simulation progresses. In our simulation, the rate of emissions peak at over 30 PgC yr{sup -1} early in the 22nd century. Even at year 2300, nearly 50% of cumulative emissions remain in the atmosphere. In our simulations both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, our model projections suggest severe long-term consequences for global climate if all the fossil-fuel carbon is ultimately released to the atmosphere.

Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C

2005-02-17T23:59:59.000Z

146

Super Models, Old King Coal II, & Civil Disobedience For fellow technocrats: "Climate simulations for 1880-2003 with GISS modelE", to appear soon  

E-Print Network [OSTI]

Super Models, Old King Coal II, & Civil Disobedience Model: For fellow technocrats: "Climate simulations for 1880-2003 with GISS modelE", to appear soon in Clim. Dyn., is available at http and filesize.) The paper documents how well the model simulates past climate. Simulations with this model

Hansen, James E.

147

A Vast Machine Computer Models, Climate Data, and the Politics of Global Warming  

E-Print Network [OSTI]

A Vast Machine Computer Models, Climate Data, and the Politics of Global Warming Paul N. Edwards models, climate data, and the politics of global warming / Paul N. Edwards. p. cm. Includes. Climatology--History. 3. Meteorology--History. 4. Climatology--Technological innovation. 5. Global temperature

148

A Sparse Bayesian Model for Dependence Analysis of Extremes: Climate Applications  

E-Print Network [OSTI]

A Sparse Bayesian Model for Dependence Analysis of Extremes: Climate Applications Debasish Das applications, such as climate, finance and social media among others, we are often interested in extreme events. An important part of modeling extremes is dis- covery of covariates on which the quantities related

Obradovic, Zoran

149

Development of Ensemble Neural Network Convection Parameterizations for Climate Models  

SciTech Connect (OSTI)

The novel neural network (NN) approach has been formulated and used for development of a NN ensemble stochastic convection parametrization for climate models. This fast parametrization is built based on data from Cloud Resolving Model (CRM) simulations initialized with and forced by TOGA-COARE data. The SAM (System for Atmospheric Modeling), developed by D. Randall, M. Khairoutdinov, and their collaborators, has been used for CRM simulations. The observational data are also used for validation of model simulations. The SAM-simulated data have been averaged and projected onto the GCM space of atmospheric states to implicitly define a stochastic convection parametrization. This parametrization is emulated using an ensemble of NNs. An ensemble of NNs with different NN parameters has been trained and tested. The inherent uncertainty of the stochastic convection parametrization derived in such a way is estimated. Due to these inherent uncertainties, NN ensemble is used to constitute a stochastic NN convection parametrization. The developed NN convection parametrization have been validated in a diagnostic CAM (CAM-NN) run vs. the control CAM run. Actually, CAM inputs have been used, at every time step of the control/original CAM integration, for parallel calculations of the NN convection parametrization (CAM-NN) to produce its outputs as a diagnostic byproduct. Total precipitation (P) and cloudiness (CLD) time series, diurnal cycles, and P and CLD distributions for the large Tropical Pacific Ocean for the parallel CAM-NN and CAM runs show similarity and consistency with the NCEP reanalysis. The P and CLD distributions for the tropical area for the parallel runs have been analyzed first for the TOGA-COARE boreal winter season (November 1992 through February 1993) and then for the winter seasons of the follow-up parallel decadal simulations. The obtained results are encouraging and practically meaningful. They show the validity of the NN approach. This constitutes an important practical conclusion of the study: the obtained results on NN ensembles as a stochastic physics parametrization show a realistic possibility of development of NN convection parametrization for climate (and NWP) models based on learning cloud physics from CRM/SAM simulated data.

Fox-Rabinovitz, M. S.; Krasnopolsky, V. M.

2012-05-02T23:59:59.000Z

150

CLIMATE MODELING BEST ESTIMATE DATASET (CMBE) -NEW ADDITIONS Renata McCoy, Shaocheng Xie, Stephen Klein, Lawrence Livermore National Laboratory  

E-Print Network [OSTI]

CLIMATE MODELING BEST ESTIMATE DATASET (CMBE) - NEW ADDITIONS Renata McCoy, Shaocheng Xie, Stephen ARM product, the Climate Modeling Best Estimate (CMBE) dataset, is being augmented with the additional observational and model data. The CMBE dataset was created to serve the needs of climate model developers

151

Intercomparison of the Cloud Water Phase among Global Climate Models  

SciTech Connect (OSTI)

Mixed-phase clouds (clouds that consist of both cloud droplets and ice crystals) are frequently present in the Earth’s atmosphere and influence the Earth’s energy budget through their radiative properties, which are highly dependent on the cloud water phase. In this study, the phase partitioning of cloud water is compared among six global climate models (GCMs) and with Cloud and Aerosol Lidar with Orthogonal Polarization retrievals. It is found that the GCMs predict vastly different distributions of cloud phase for a given temperature, and none of them are capable of reproducing the spatial distribution or magnitude of the observed phase partitioning. While some GCMs produced liquid water paths comparable to satellite observations, they all failed to preserve sufficient liquid water at mixed-phase cloud temperatures. Our results suggest that validating GCMs using only the vertically integrated water contents could lead to amplified differences in cloud radiative feedback. The sensitivity of the simulated cloud phase in GCMs to the choice of heterogeneous ice nucleation parameterization is also investigated. The response to a change in ice nucleation is quite different for each GCM, and the implementation of the same ice nucleation parameterization in all models does not reduce the spread in simulated phase among GCMs. The results suggest that processes subsequent to ice nucleation are at least as important in determining phase and should be the focus of future studies aimed at understanding and reducing differences among the models.

Komurcu, Muge; Storelvmo, Trude; Tan, Ivy; Lohmann, U.; Yun, Yuxing; Penner, Joyce E.; Wang, Yong; Liu, Xiaohong; Takemura, T.

2014-03-27T23:59:59.000Z

152

TSINGHUA -MIT China Energy & Climate Project  

E-Print Network [OSTI]

TSINGHUA - MIT China Energy & Climate Project Will economic restructuring in China reduce trade to: discover new interactions among natural and human climate system components; objectively assess future; and improve methods to model, monitor and verify greenhouse gas emissions and climatic impacts

153

Moisture Flux Convergence in Regional and Global Climate Models: Implications for Droughts in the Southwestern United States Under Climate Change  

SciTech Connect (OSTI)

The water cycle of the southwestern United States (SW) is dominated by winter storms that maintain a positive annual net precipitation. Analysis of the control and future climate from four pairs of regional and global climate models (RCMs and GCMs) shows that the RCMs simulate a higher fraction of transient eddy moisture fluxes because the hydrodynamic instabilities associated with flow over complex terrain are better resolved. Under global warming, this enables the RCMs to capture the response of transient eddies to increased atmospheric stability that allows more moisture to converge on the windward side of the mountains by blocking. As a result, RCMs simulate enhanced transient eddy moisture convergence in the SW compared to GCMs, although both robustly simulate drying due to enhanced moisture divergence by the divergent mean flow in a warmer climate. This enhanced convergence leads to reduced susceptibility to hydrological change in the RCMs compared to GCMs.

Gao, Yanhong; Leung, Lai-Yung R.; Salathe, E.; Dominguez, Francina; Nijssen, Bart; Lettenmaier, D. P.

2012-05-10T23:59:59.000Z

154

Progress Report 2008: A Scalable and Extensible Earth System Model for Climate Change Science  

SciTech Connect (OSTI)

This project employs multi-disciplinary teams to accelerate development of the Community Climate System Model (CCSM), based at the National Center for Atmospheric Research (NCAR). A consortium of eight Department of Energy (DOE) National Laboratories collaborate with NCAR and the NASA Global Modeling and Assimilation Office (GMAO). The laboratories are Argonne (ANL), Brookhaven (BNL) Los Alamos (LANL), Lawrence Berkeley (LBNL), Lawrence Livermore (LLNL), Oak Ridge (ORNL), Pacific Northwest (PNNL) and Sandia (SNL). The work plan focuses on scalablity for petascale computation and extensibility to a more comprehensive earth system model. Our stated goal is to support the DOE mission in climate change research by helping ... To determine the range of possible climate changes over the 21st century and beyond through simulations using a more accurate climate system model that includes the full range of human and natural climate feedbacks with increased realism and spatial resolution.

Drake, John B [ORNL; Worley, Patrick H [ORNL; Hoffman, Forrest M [ORNL; Jones, Phil [Los Alamos National Laboratory (LANL)

2009-01-01T23:59:59.000Z

155

Technical Note: On the Use of Nudging for Aerosol-Climate Model Intercomparison Studies  

SciTech Connect (OSTI)

Nudging is an assimilation technique widely used in the development and evaluation of climate models. Con- straining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the artificial forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5, due to the systematic temperature bias in the standard model and the relatively strong sensitivity of homogeneous ice nucleation to aerosol concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on longwave cloud forcing. In order to reduce discrepancies between the nudged and unconstrained simulations and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud ice amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. This suggests that nudging the horizontal winds but not temperature is a good strategy, especially for studies that involve both warm and cold clouds.

Zhang, Kai; Wan, Hui; Liu, Xiaohong; Ghan, Steven J.; Kooperman, G. J.; Ma, Po-Lun; Rasch, Philip J.; Neubauer, David; Lohmann, U.

2014-08-26T23:59:59.000Z

156

IMPROVING CATASTROPHE MODELING FOR BUSINESS INTERRUPTION INSURANCE NEEDS  

E-Print Network [OSTI]

IMPROVING CATASTROPHE MODELING FOR BUSINESS INTERRUPTION INSURANCE NEEDS by Adam Rose Price School, Surrey, UK KT21 2BT May 10, 2012 #12;1 IMPROVING CATASTROPHE MODELING FOR BUSINESS INTERRUPTION INSURANCE modeling of business interruption (BI) is still in a relative state of infancy. One reason

Wang, Hai

157

Open problem: Dynamic Relational Models for Improved Hazardous Weather Prediction  

E-Print Network [OSTI]

. Current weather radar detection and prediction sys- tems primarily rely on numerical models. We proposeOpen problem: Dynamic Relational Models for Improved Hazardous Weather Prediction Amy McGovern1, #12;Dynamic Relational Models for Improved Hazardous Weather Prediction Radar velocity Radar

McGovern, Amy

158

A Study of Longwave Radiation Codes for Climate Studies: Validation with ARM Observations and Tests in General Circulation Models  

SciTech Connect (OSTI)

One specific goal of the Atmospheric Radiation Measurements (ARM) program is to improve the treatment of radiative transfer in General Circulation Models (GCMs) under clear-sky, general overcast and broken cloud conditions. Our project was geared to contribute to this goal by attacking major problems associated with one of the dominant radiation components of the problem --longwave radiation. The primary long-term project objectives were to: (1) develop an optimum longwave radiation model for use in GCMs that has been calibrated with state-of-the-art observations for clear and cloudy conditions, and (2) determine how the longwave radiative forcing with an improved algorithm contributes relatively in a GCM when compared to shortwave radiative forcing, sensible heating, thermal advection and convection. The approach has been to build upon existing models in an iterative, predictive fashion. We focused on comparing calculations from a set of models with operationally observed data for clear, overcast and broken cloud conditions. The differences found through the comparisons and physical insights have been used to develop new models, most of which have been tested with new data. Our initial GCM studies used existing GCMs to study the climate model-radiation sensitivity problem. Although this portion of our initial plans was curtailed midway through the project, we anticipate that the eventual outcome of this approach will provide both a better longwave radiative forcing algorithm and from our better understanding of how longwave radiative forcing influences the model equilibrium climate, how improvements in climate prediction using this algorithm can be achieved.

Robert G. Ellingson

2004-09-28T23:59:59.000Z

159

Data Collection for Improved Cold Temperature Thermal Modeling  

Broader source: Energy.gov (indexed) [DOE]

FY Data Collection for Improved Cold Temperature Thermal Modeling This presentation does not contain any proprietary, confidential, or otherwise restricted information Forrest...

160

Data Collection for Improved Cold Temperature Thermal Modeling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Data Collection for Improved Cold Temperature Thermal Modeling Energy Management Strategies for Fast Battery Temperature Rise and Engine...

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Improving the Performance of Air-Conditioning Systems in an ASEAN Climate  

E-Print Network [OSTI]

This paper describes an analysis of air conditioning performance under hot and humid tropical climate conditions appropriate to the Association of South East Asian Nations (ASEAN) countries. This region, with over 280 million people, has one...

Busch, J. F.; Warren, M. L.

1988-01-01T23:59:59.000Z

162

PAGES 111–112 Climate and Earth system models are the  

E-Print Network [OSTI]

only tools used to make predictions of future climate change. Such predictions are subject to considerable uncertainties, and understanding these uncertainties has clear and important policy implications. This Forum highlights the concepts of reductionism and emergence, and past climate variability, to illuminate some of the uncertainties faced by those wishing to model the future evolution of global climate. General circulation models (GCMs) of the atmosphere-ocean system are scientists’ principal tools for providing information about future climate. GCMs consequently have considerable influence on climate change–related policy questions. Over the past decade, there have been significant attempts, mainly by statisticians and mathematicians, to explore the uncertainties in model simulations of possible futures, accompanied by growing debate about the interpretation of these simulations as aids in societal decisions. In this Forum, we discuss atmosphere-ocean GCMs in the context of reductionist and emergent approaches to scientific study.

unknown authors

163

Using Dempster-Shafer Theory to model uncertainty in climate change and environmental impact  

E-Print Network [OSTI]

Using Dempster-Shafer Theory to model uncertainty in climate change and environmental impact]. The design wave overtopping in a context of changing climate cannot be deterministically predicted due defense structure due to (1) uncertain elevation of the mean water level and (2) uncertain level of storm

Boyer, Edmond

164

Climate simulations and projections with a super-parameterized climate model. Journal of Environmental Modeling and Software. Volume: 60. Pages: 134-152  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The mean climate and its variability are analyzed in a suite of numerical experiments with a fully coupled general circulation model in which subgrid-scale moist convection is explicitly represented through embedded 2D cloud-system resolving models. Control simulations forced by the present day, fixed atmospheric carbon dioxide concentration are conducted using two horizontal resolutions and validated against observations and reanalyses. The mean state simulated by the higher resolution configuration has smaller biases. Climate variability also shows some sensitivity to resolution but not as uniform as in the case of mean state. The interannual and seasonal variability are better represented in the simulation at lower resolution whereas the subseasonal variability is more accurate in the higher resolution simulation. The equilibrium climate sensitivity of the model is estimated from a simulation forced by an abrupt quadrupling of the atmospheric carbon dioxide concentration. The equilibrium climate sensitivity temperature of the model is 2.77 degrees C, and this value is slightly smaller than the mean value (3.37 degrees C) of contemporary models using conventional representation of cloud processes. The climate change simulation forced by the representative concentration pathway 8.5 scenario projects an increase in the frequency of severe droughts over most of the North America.

Stan, Cristiana; Xu, Li

2014-10-01T23:59:59.000Z

165

Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic using a High-Resolution Regional Arctic Climate System Model  

SciTech Connect (OSTI)

Primary activities are reported in these areas: climate system component studies via one-way coupling experiments; development of the Regional Arctic Climate System Model (RACM); and physical feedback studies focusing on changes in Arctic sea ice using the fully coupled model.

Lettenmaier, Dennis P

2013-04-08T23:59:59.000Z

166

Optimization models for improving periodic maintenance schedules by utilizing opportunities  

E-Print Network [OSTI]

to this as preventive maintenance activities at an oppor- tunity. The original opportunistic replacement problemOptimization models for improving periodic maintenance schedules by utilizing opportunities Torgny of Technology Abstract We present mathematical models for finding optimal opportunistic maintenance schedules

Patriksson, Michael

167

Climate Change and Extinctions  

E-Print Network [OSTI]

Lectures presents: Climate Change and Extinctions Happening2013. He will present a climate change extinction model that

Sinervo, Barry

2013-01-01T23:59:59.000Z

168

Simulation Models for Improved Water Heating Systems  

E-Print Network [OSTI]

Storage Water Heater .point for modeling storage water heaters. The algorithmsfired, natural draft storage water heater. Figure 1 shows a

Lutz, Jim

2014-01-01T23:59:59.000Z

169

CLIMATE SCIENCE The Community Climate System Model results from a multi-agency collaboration  

E-Print Network [OSTI]

. Could global warming be responsible for the July 2006 heat waves in Europe and the United States? Should- ter(NCDC),whicharchivesallweatherdataforthe nation, reports that global surface temperatures have, the DOEisdedicatedtoadvancingclimateresearchin order to elucidate the causes of climate change, includingtheroleofcarbonloadingfromfossilfuel use

Long, Nicholas

170

Leveraging The Open Provenance Model as a Multi-Tier Model for Global Climate Research  

SciTech Connect (OSTI)

Global climate researchers rely upon many forms of sensor data and analytical methods to help profile subtle changes in climate conditions. The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program provides researchers with curated Value Added Products (VAPs) resulting from continuous sensor data streams, data fusion, and modeling. The ARM operations staff and software development teams (data producers) rely upon a number of techniques to ensure strict quality control (QC) and quality assurance (QA) standards are maintained. Climate researchers (data consumers) are highly interested in obtaining as much provenance (data quality, data pedigree) as possible to establish data trustworthiness. Currently all the provenance is not easily attainable or identifiable without significant efforts to extract and piece together information from configuration files, log files, codes, and status information from ARM databases. The need for a formalized approach to managing provenance became paramount with the planned addition of 120 new instruments, new data products, and data collection scaling to half a terabyte daily. Last year our research identified the need for a multi-tier provenance model to enable the data consumer easy access to the provenance for their data. This year we are leveraging the Open Provenance Model as a foundational construct that serves the needs of both the VAP producers and consumers, we are organizing the provenance in different tiers of granularity to model VAP lineage, causality at the component level within a VAP, and the causality for each time step as samples are being assembled within the VAP. This paper shares our implementation strategy and how the ARM operations staff and the climate research community can greatly benefit from this approach to more effectively assess and quantify VAP provenance.

Stephan, Eric G.; Halter, Todd D.; Ermold, Brian D.

2010-12-08T23:59:59.000Z

171

Improvement of Offshore Wind Resource Modeling in the Mid-  

E-Print Network [OSTI]

Improvement of Offshore Wind Resource Modeling in the Mid- Atlantic Bight Wind Energy Symposium Sienkiewicz , Chris Hughes 26 February 2013 #12;Improving Atmospheric Models for Offshore Wind Resource Interaction Tower ­ 23 m NOAA Buzzard's Bay Tower ­ 25 m Cape Wind Tower (60 m from 2003-2011; just platform

Firestone, Jeremy

172

Valuing Climate Impacts in Integrated Assessment Models: The MIT IGSM  

E-Print Network [OSTI]

We discuss a strategy for investigating the impacts of climate change on Earth’s physical, biological and human resources and links to their socio-economic consequences. The features of the integrated global system framework ...

Reilly, John

2012-05-22T23:59:59.000Z

173

Modeling Climate Feedbacks to Energy Demand: The Case of China  

E-Print Network [OSTI]

This paper is an empirical investigation of the effects of climate on the use of electricity by consumers and producers in urban and rural areas within China. It takes advantage of an unusual combination of temporal and ...

Asadoorian, Malcolm O.

174

Modeled climate change effects on distributions of Canadian butterfly species  

E-Print Network [OSTI]

Abstract: Climate change effects on biodiversity are being documented now frequently in the form of changes in phenology and distributional shifts. However, the form that these effects will take over a longer timespan is ...

Peterson, A. Townsend; Martí nez-Meyer, Enrique; Gonzá lez-Salazar, Constantino; Hall, Peter W.

2004-07-30T23:59:59.000Z

175

Predicting Coupled Ocean-Atmosphere Modes with a Climate Modeling Hierarchy -- Final Report  

SciTech Connect (OSTI)

The goal of the project was to determine midlatitude climate predictability associated with tropical-extratropical interactions on interannual-to-interdecadal time scales. Our strategy was to develop and test a hierarchy of climate models, bringing together large GCM-based climate models with simple fluid-dynamical coupled ocean-ice-atmosphere models, through the use of advanced probabilistic network (PN) models. PN models were used to develop a new diagnostic methodology for analyzing coupled ocean-atmosphere interactions in large climate simulations made with the NCAR Parallel Climate Model (PCM), and to make these tools user-friendly and available to other researchers. We focused on interactions between the tropics and extratropics through atmospheric teleconnections (the Hadley cell, Rossby waves and nonlinear circulation regimes) over both the North Atlantic and North Pacific, and the ocean’s thermohaline circulation (THC) in the Atlantic. We tested the hypothesis that variations in the strength of the THC alter sea surface temperatures in the tropical Atlantic, and that the latter influence the atmosphere in high latitudes through an atmospheric teleconnection, feeding back onto the THC. The PN model framework was used to mediate between the understanding gained with simplified primitive equations models and multi-century simulations made with the PCM. The project team is interdisciplinary and built on an existing synergy between atmospheric and ocean scientists at UCLA, computer scientists at UCI, and climate researchers at the IRI.

Michael Ghil, UCLA; Andrew W. Robertson, IRI, Columbia Univ.; Sergey Kravtsov, U. of Wisconsin, Milwaukee; Padhraic Smyth, UC Irvine

2006-08-04T23:59:59.000Z

176

High-Resolution Modeling to Assess Tropical Cyclone Activity in Future Climate Regimes  

SciTech Connect (OSTI)

Applied research is proposed with the following objectives: (i) to determine the most likely level of tropical cyclone intensity and frequency in future climate regimes, (ii) to provide a quantitative measure of uncertainty in these predictions, and (iii) to improve understanding of the linkage between tropical cyclones and the planetary-scale circulation. Current mesoscale weather forecasting models, such as the Weather Research and Forecasting (WRF) model, are capable of simulating the full intensity of tropical cyclones (TC) with realistic structures. However, in order to accurately represent both the primary and secondary circulations in these systems, model simulations must be configured with sufficient resolution to explicitly represent convection (omitting the convective parameterization scheme). Most previous numerical studies of TC activity at seasonal and longer time scales have not utilized such explicit convection (EC) model runs. Here, we propose to employ the moving nest capability of WRF to optimally represent TC activity on a seasonal scale using a downscaling approach. The statistical results of a suite of these high-resolution TC simulations will yield a realistic representation of TC intensity on a seasonal basis, while at the same time allowing analysis of the feedback that TCs exert on the larger-scale climate system. Experiments will be driven with analyzed lateral boundary conditions for several recent Atlantic seasons, spanning a range of activity levels and TC track patterns. Results of the ensemble of WRF simulations will then be compared to analyzed TC data in order to determine the extent to which this modeling setup can reproduce recent levels of TC activity. Next, the boundary conditions (sea-surface temperature, tropopause height, and thermal/moisture profiles) from the recent seasons will be altered in a manner consistent with various future GCM/RCM scenarios, but that preserves the large-scale shear and incipient disturbance activity. This will allow (i) a direct comparison of future TC activity that could be expected for an active or inactive season in an altered climate regime, and (ii) a measure of the level of uncertainty and variability in TC activity resulting from different carbon emission scenarios.

Lackmann, Gary

2013-06-10T23:59:59.000Z

177

Improved computer models support genetics research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simple computer models unravel genetic stress reactions in cells Integrated biological and computational methods provide insight into why genes are activated. February 8, 2013 When...

178

Transformer Thermal Modeling: Improving Reliability Using Data Quality Control  

E-Print Network [OSTI]

1 Transformer Thermal Modeling: Improving Reliability Using Data Quality Control Daniel J. Tylavsky--Eventually all large transformers will be dynamically loaded using models updated regularly from field measured data. Models obtained from measured data give more accurate results than models based on transformer

179

Estimation of the mean depth of boreal lakes for use in numerical weather prediction and climate modelling  

E-Print Network [OSTI]

in the numerical weather prediction (NWP) and climate models through parameterisation. For parameterisation, data. The effect of lakes should be parameterised in numerical weather prediction (NWP) and climate modellingEstimation of the mean depth of boreal lakes for use in numerical weather prediction and climate

Paris-Sud XI, Université de

180

Variation in Estimated Ozone-Related Health Impacts of Climate Change due to Modeling Choices and Assumptions  

SciTech Connect (OSTI)

Future climate change may cause air quality degradation via climate-induced changes in meteorology, atmospheric chemistry, and emissions into the air. Few studies have explicitly modeled the potential relationships between climate change, air quality, and human health, and fewer still have investigated the sensitivity of estimates to the underlying modeling choices.

Post, Ellen S.; Grambsch, A.; Weaver, C. P.; Morefield, Philip; Huang, Jin; Leung, Lai-Yung R.; Nolte, Christopher G.; Adams, P. J.; Liang, Xin-Zhong; Zhu, J.; Mahoney, Hardee

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

New approaches to data-assimilation in paleo-climatic modeling  

E-Print Network [OSTI]

approaches to data-assimilation in paleo-climatic modeling ­ p.1 #12;NH temperature reconstruction ECHO-G (Erik1), ECHO-G (Erik2), CCSM ECBilt-Clio, Jones and Mann (2004) New approaches to data

Schrier, Gerard van der

182

Modeling land surface processes of the midwestern United States : predicting soil moisture under a warmer climate  

E-Print Network [OSTI]

This dissertation seeks to quantify the response of soil moisture to climate change in the midwestern United States. To assess this response, a dynamic global vegetation model, Integrated Biosphere Simulator, was coupled ...

Winter, Jonathan (Jonathan Mark)

2010-01-01T23:59:59.000Z

183

The Surface-Pressure Signature of Atmospheric Tides in Modern Climate Models  

E-Print Network [OSTI]

Although atmospheric tides driven by solar heating are readily detectable at the earth’s surface as variations in air pressure, their simulations in current coupled global climate models have not been fully examined. This ...

Covey, Curt

184

Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts  

E-Print Network [OSTI]

events such as trop- ical cyclone activity. On decadal timescales, some aspects of internal climate skill of individual models have been analyzed separately for multi-year prediction horizons over

Webster, Peter J.

185

Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion: Preprint  

SciTech Connect (OSTI)

Climate change has the potential to exacerbate water availability concerns for thermal power plant cooling, which is responsible for 41% of U.S. water withdrawals. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water projections from Coupled Model Intercomparison Project 3 (CMIP3) data are applied to surface water rights available to new generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water rights. The mean climate projection has only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water rights to offset climate impacts. Climate impacts are notable in southwestern states that purchase fewer water rights and obtain a greater share from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.

Cohen, S. M.; Macknick, J.; Averyt, K.; Meldrum, J.

2014-05-01T23:59:59.000Z

186

Simulation Models for Improved Water Heating Systems  

E-Print Network [OSTI]

and Simulation of a Smart Water Heater. ” In Workshop inFreezers, Furnaces, Water Heaters, Room and Central AirNovember. ADL. 1982b. Water Heater Computer Model User’s

Lutz, Jim

2014-01-01T23:59:59.000Z

187

An improved model for multiple effect distillation  

E-Print Network [OSTI]

Increasing global demand for fresh water is driving research and development of advanced desalination technologies. As a result, a detailed model of multiple effect distillation (MED) is developed that is flexible, simple ...

Mistry, Karan H.

188

Climate Systems and Climate Change Is Climate Change Real?  

E-Print Network [OSTI]

Chapter 10 Climate Systems and Climate Change #12;Is Climate Change Real? 1980 1898 2005 2003 #12;Arctic Sea Ice Changes #12;Observed Global Surface Air Temperature #12;! Current climate: weather station data, remote sensing data, numerical modeling using General Circulation Models (GCM) ! Past climate

Pan, Feifei

189

The Role of Asia in Mitigating Climate Change: Results from the Asia Modeling Exercise  

SciTech Connect (OSTI)

In 2010, Asia accounted for 60% of global population, 39% of Gross World Product, 44% of global energy consumption and nearly half of the world’s energy system CO2 emissions. Thus, Asia is an important region to consider in any discussion of climate change or climate change mitigation. This paper explores the role of Asia in mitigating climate change, by comparing the results of 23 energy-economy and integrated assessment models. We focus our analysis on seven key areas: base year data, future energy use and emissions absent climate policy, the effect of urban and rural development on future energy use and emissions, the role of technology in emissions mitigation, regional emissions mitigation, and national climate policies

Calvin, Katherine V.; Clarke, Leon E.; Krey, Volker; Blanford, Geoffrey J.; Jiang, Kejun; Kainuma, M.; Kriegler, Elmar; Luderer, Gunnar; Shukla, Priyadarshi R.

2012-12-01T23:59:59.000Z

190

Modeling the response of plants and ecosystems to elevated CO sub 2 and climate change  

SciTech Connect (OSTI)

While the exact effects of elevated CO{sub 2} on global climate are unknown, there is a growing consensus among climate modelers that global temperature and precipitation will increase, but that these changes will be non-uniform over the Earth's surface. In addition to these potential climatic changes, CO{sub 2} also directly affects plants via photosynthesis, respiration, and stomatal closure. Global climate change, in concert with these direct effects of CO{sub 2} on plants, could have a significant impact on both natural and agricultural ecosystems. Society's ability to prepare for, and respond to, such changes depends largely on the ability of climate and ecosystem researchers to provide predictions of regional level ecosystem responses with sufficient confidence and adequate lead time.

Reynolds, J.F.; Hilbert, D.W.; Chen, Jia-lin; Harley, P.C.; Kemp, P.R.; Leadley, P.W.

1992-03-01T23:59:59.000Z

191

Modeling the response of plants and ecosystems to elevated CO{sub 2} and climate change  

SciTech Connect (OSTI)

While the exact effects of elevated CO{sub 2} on global climate are unknown, there is a growing consensus among climate modelers that global temperature and precipitation will increase, but that these changes will be non-uniform over the Earth`s surface. In addition to these potential climatic changes, CO{sub 2} also directly affects plants via photosynthesis, respiration, and stomatal closure. Global climate change, in concert with these direct effects of CO{sub 2} on plants, could have a significant impact on both natural and agricultural ecosystems. Society`s ability to prepare for, and respond to, such changes depends largely on the ability of climate and ecosystem researchers to provide predictions of regional level ecosystem responses with sufficient confidence and adequate lead time.

Reynolds, J.F.; Hilbert, D.W.; Chen, Jia-lin; Harley, P.C.; Kemp, P.R.; Leadley, P.W.

1992-03-01T23:59:59.000Z

192

Climate-Soil-Vegetation Control on Groundwater Table Dynamics and its Feedbacks in a Climate Model  

SciTech Connect (OSTI)

Among the three dynamically linked branches of the water cycle, including atmospheric, surface, and subsurface water, groundwater is the largest reservoir and an active component of the hydrologic system. Because of the inherent slow response time, groundwater may be particularly relevant for long time-scale processes such as multi-years or decadal droughts. This study uses regional climate simulations with and without surface water – groundwater interactions for the conterminous U.S. to assess the influence of climate, soil, and vegetation on groundwater table dynamics, and its potential feedbacks to regional climate. Analysis shows that precipitation has a dominant influence on the spatial and temporal variations of groundwater table depth (GWT). The simulated GWT is found to decrease sharply with increasing precipitation. Our simulation also shows some distinct spatial variations that are related to soil porosity and hydraulic conductivity. Vegetation properties such as minimum stomatal resistance, and root depth and fraction are also found to play an important role in controlling the groundwater table. Comparing two simulations with and without groundwater table dynamics, we find that groundwater table dynamics mainly influences the partitioning of soil water between the surface (0 – 0.5 m) and subsurface (0.5 – 5 m) rather than total soil moisture. In most areas, groundwater table dynamics increases surface soil moisture at the expense of the subsurface, except in regions with very shallow groundwater table. The change in soil water partitioning between the surface and subsurface is found to strongly correlate with the partitioning of surface sensible and latent heat fluxes. The evaporative fraction (EF) is generally higher during summer when groundwater table dynamics is included. This is accompanied by increased cloudiness, reduced diurnal temperature range, cooler surface temperature, and increased cloud top height. Although both convective and non-convective precipitation are enhanced, the higher EF changes the partitioning to favor more non-convective precipitation, but this result could be sensitive to the convective parameterization used. Compared to simulations without groundwater table dynamics, the dry bias in the summer precipitation is slightly reduced over the central and eastern U.S. Groundwater table dynamics can provide important feedbacks to atmospheric processes, and these feedbacks are stronger in regions with deeper groundwater table, because the interactions between surface and subsurface are weak when the groundwater table is deep. This increases the sensitivity of surface soil moisture to precipitation anomalies, and therefore enhances land surface feedbacks to the atmosphere through changes in soil moisture and evaporative fraction. By altering the groundwater table depth, land use change and groundwater withdrawal can alter land surface response and feedback to the climate system.

Leung, Lai-Yung R.; Huang, Maoyi; Qian, Yun; Liang, Xu

2010-01-29T23:59:59.000Z

193

Fuel Cell System Improvement for Model-Based Diagnosis Analysis  

E-Print Network [OSTI]

Fuel Cell System Improvement for Model-Based Diagnosis Analysis Philippe Fiani & Michel Batteux of a model of a fuel cell system, in order to make it usable for model- based diagnosis methods. A fuel cell for the fuel cell stack but also for the system environment. In this paper, we present an adapted library which

Paris-Sud XI, Université de

194

MODELING CLIMATE POLICY: ADDRESSING THE CHALLENGES OF POLICY EFFECTIVENESS AND  

E-Print Network [OSTI]

on average do not appear to have been cost-effective in reducing energy consumption. iii #12;Acknowledgments aggressive cli- mate change policies. Policy makers and the public are concerned that such policies could, or economic sectors. The aim of this thesis is to show that the design of climate change policy has

195

Perspective: The Climate-Population-Infrastructure Modeling and Simulation Fertile Area for New Research  

SciTech Connect (OSTI)

Managing the risks posed by climate change and extreme weather to energy production and delivery is a challenge to communities worldwide. As climate conditions change, populations will shift, and demand will re-locate; and networked infrastructures will evolve to accommodate new load centers, and, hopefully, minimize vulnerability to natural disaster. Climate effects such as sea level rise, increased frequency and intensity of natural disasters, force populations to move locations. Displaced population creates new demand for built infrastructure that in turn generates new economic activity that attracts new workers and associated households to the new locations. Infrastructures and their interdependencies will change in reaction to climate drivers as the networks expand into new population areas and as portions of the networks are abandoned as people leave. Thus, infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Forecasting the location of these vulnerabilities by combining climate predictions and agent based population movement models shows promise for defining these future population distributions and changes in coastal infrastructure configurations. By combining climate and weather data, engineering algorithms and social theory it has been only recently possible to examine electricity demand response to increased climactic temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. These emerging results suggest a research agenda of coupling these disparate modelling approaches to understand the implications of climate change for protecting the nation s critical infrastructure.

Allen, Melissa R [ORNL; Fernandez, Steven J [ORNL; Walker, Kimberly A [ORNL; Fu, Joshua S [ORNL

2014-01-01T23:59:59.000Z

196

Combining Modeling Methodologies for Improved Understanding of Smart Material Characteristics  

E-Print Network [OSTI]

Combining Modeling Methodologies for Improved Understanding of Smart Material Characteristics Material Systems and Structures February 2, 1998 ABSTRACT Smart materials are complex materials performance capabilities but the synergistic response of the smart material and companion structure. Behavior

Lindner, Douglas K.

197

Agriculture and Climate Change in Global Scenarios: Why Don't the Models Agree  

SciTech Connect (OSTI)

Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs makes direct use of weather inputs. Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes of key variables such as prices, production, and trade. These divergent outcomes arise from differences in model inputs and model specification. The goal of this paper is to review climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. By providing common productivity drivers that include climate change effects, differences in model outcomes are reduced. All models show higher prices in 2050 because of negative productivity shocks from climate change. The magnitude of the price increases, and the adaptation responses, differ significantly across the various models. Substantial differences exist in the structural parameters affecting demand, area, and yield, and should be a topic for future research.

Nelson, Gerald; van der Mensbrugghe, Dominique; Ahammad, Helal; Blanc, Elodie; Calvin, Katherine V.; Hasegawa, Tomoko; Havlik, Petr; Heyhoe, Edwina; Kyle, G. Page; Lotze-Campen, Hermann; von Lampe, Martin; Mason d'Croz, Daniel; van Meijl, Hans; Mueller, C.; Reilly, J. M.; Robertson, Richard; Sands, Ronald; Schmitz, Christoph; Tabeau, Andrzej; Takahashi, Kiyoshi; Valin, Hugo; Willenbockel, Dirk

2014-01-01T23:59:59.000Z

198

Improved load models for multi-area reliability calculations  

E-Print Network [OSTI]

IMPROVED LOAD MODELS FOR MULTI-AREA RELIABILITY CALCULATIONS A Thesis by SANJESH PATHAK Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1992 Major Subject: Electrical Engineering IMPROVED LOAD MODELS FOR MULTI-AREA RELIABILITY CALCULATIONS A Thesis by SAN JESH PATHAK Approved as to style and content by: Chanan Singh (Chair of Committee) Prasad Enjeti (Member) Ces . Mal, e...

Pathak, Sanjesh

1992-01-01T23:59:59.000Z

199

Cloud/Aerosol Parameterizations: Application and Improvement of General Circulation Models  

SciTech Connect (OSTI)

One of the biggest uncertainties associated with climate models and climate forcing is the treatment of aerosols and their effects on clouds. The effect of aerosols on clouds can be divided into two components: The first indirect effect is the forcing associated with increases in droplet concentrations; the second indirect effect is the forcing associated with changes in liquid water path, cloud morphology, and cloud lifetime. Both are highly uncertain. This project applied a cloud-resolving model to understand the response of clouds under a variety of conditions to changes in aerosols. These responses are categorized according to the large-scale meteorological conditions that lead to the response. Meteorological conditions were sampled from various fields, which, together with a global aerosol model determination of the change in aerosols from present day to pre-industrial conditions, was used to determine a first order estimate of the response of global cloud fields to changes in aerosols. The response of the clouds in the NCAR CAM3 GCM coupled to our global aerosol model were tested by examining whether the response is similar to that of the cloud resolving model and methods for improving the representation of clouds and cloud/aerosol interactions were examined.

Penner, Joyce

2012-06-30T23:59:59.000Z

200

Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic Using a High-Resolution Regional Arctic Climate Model  

SciTech Connect (OSTI)

The primary research task completed for this project was the development of the Regional Arctic Climate Model (RACM). This involved coupling existing atmosphere, ocean, sea ice, and land models using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) coupler (CPL7). RACM is based on the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP) ocean model, the CICE sea ice model, and the Variable Infiltration Capacity (VIC) land model. A secondary research task for this project was testing and evaluation of WRF for climate-scale simulations on the large pan-Arctic model domain used in RACM. This involved identification of a preferred set of model physical parameterizations for use in our coupled RACM simulations and documenting any atmospheric biases present in RACM.

Cassano, John [Principal Investigator

2013-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ReseaRch at the University of Maryland Climate Modeling and Prediction  

E-Print Network [OSTI]

between the familiar seven-day weather forecast and the century-long global-warming projection, Maryland-Rabinovitz's work is leading to improved predictions of extreme weather events such as monsoons, intense storms-use patterns and their contribution to climate change. Ning Zeng investigates how ice sheets store carbon

Hill, Wendell T.

202

Building America Best Practices Series: Volume 4; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Mixed-Humid Climate Climate Regions  

SciTech Connect (OSTI)

This best practices guide is part of a series produced by Building America. The guide book is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the mixed-humid climate region. The savings are in comparison with the 1993 Model Energy Code. The guide contains chapters for every member of the builder?s team?from the manager to the site planner to the designers, site supervisors, the trades, and marketers. There is also a chapter for homeowners on how to use the book to provide help in selecting a new home or builder.

Baechler, M. C.; Love, P. M.

2005-09-01T23:59:59.000Z

203

Subgrid-Scale Mixing in Climate Models: A Novel Look at Diffusion, Accuracy, Stability and Climate Sensitivity  

SciTech Connect (OSTI)

This project focuses on evaluating the role of subgrid-scale dissipation in the dynamical core of atmospheric models. All dynamical cores of atmospheric general circulation models (GCMs) employ some form of subgrid-scale dissipation, either explicitly specified or inherent in the chosen numerical schemes. The dissipation processes are needed to keep the simulation stable or to satisfy important physical properties, and the hope is that they capture and mimic in some poorly understood way the true processes at the unresolved subgrid scale. There is no physical basis that such dissipation can accomplish this. We originally posed a set of numerical test cases chosen or designed to isolate the role of the filters and fixers on both the dynamical variables (pressure, temperature, velocity, vorticity) and trace constituents. From these test case results, we synthesize the information to determine the impact of the subgrid-scale assumptions on weather and climate models.

Rood, Richard B; Jablonowski, Christiane

2012-10-31T23:59:59.000Z

204

Inferring Likelihoods and Climate System Characteristics from Climate Models and Multiple  

E-Print Network [OSTI]

the information contained in large-scale observational data sets with simulations of Earth system models in a sta

Haran, Murali

205

Climate Change Impacts for Conterminous USA: An Integrated Assessment Part 2. Models and Validation  

SciTech Connect (OSTI)

As CO{sub 2} and other greenhouse gases accumulate in the atmosphere and contribute to rising global temperatures, it is important to examine how a changing climate may affect natural and managed ecosystems. In this series of papers, we study the impacts of climate change on agriculture, water resources and natural ecosystems in the conterminous United States using a suite of climate change predictions from General Circulation Models (GCMs) as described in Part 1. Here we describe the agriculture model EPIC and the HUMUS water model and validate them with historical crop yields and streamflow data. We compare EPIC simulated grain and forage crop yields with historical crop yields from the US Department of Agriculture and find an acceptable level of agreement for this study. The validation of HUMUS simulated streamflow with estimates of natural streamflow from the US Geological Survey shows that the model is able to reproduce significant relationships and capture major trends.

Thomson, Allison M.; Rosenberg, Norman J.; Izaurralde, R Cesar C.; Brown, Robert A.

2005-03-01T23:59:59.000Z

206

Does increasing model stratospheric resolution improve extended range forecast skill?  

E-Print Network [OSTI]

Does increasing model stratospheric resolution improve extended range forecast skill? Greg Roff,1 forecast skill at high Southern latitudes is explored. Ensemble forecasts are made for two model configurations that differ only in vertical resolution above 100 hPa. An ensemble of twelve 30day forecasts

207

RESEARCH ARTICLE A model for improving microbial biofuel production using  

E-Print Network [OSTI]

RESEARCH ARTICLE A model for improving microbial biofuel production using a synthetic feedback loop be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels

Dunlop, Mary

208

IMPROVEMENTS IN MODELLING DISSOLVED OXYGEN IN ACTIVATED SLUDGE SYSTEMS  

E-Print Network [OSTI]

1 IMPROVEMENTS IN MODELLING DISSOLVED OXYGEN IN ACTIVATED SLUDGE SYSTEMS Jacek Makinia*, Scott A in a full-scale activated sludge reactor. The Activated Sludge Model No. 1 was used to describe for dissolved oxygen. KEYWORDS Activated sludge; dispersion; dissolved oxygen dynamics; mass transfer

Wells, Scott A.

209

USING NETWORKS OF JOURNEYS TO IMPROVE A PETROL MARKET MODEL  

E-Print Network [OSTI]

USING NETWORKS OF JOURNEYS TO IMPROVE A PETROL MARKET MODEL Alison Heppenstall1 , Andrew Evans1 that the majority of consumers purchased petrol on their way to work or on shopping trips. A network model at the micro level are not tied to global level variables like oil prices); the parameters are often difficult

Clark, Joanna

210

Scaling Process Studies and Observations in the Arctic for Improved Climate Predictability  

E-Print Network [OSTI]

and representation of that knowledge in Earth System models. Geomorphological units, including thaw lakes, drained

Hubbard, Susan

211

RESEARCH ARTICLE A novel soil organic C model using climate, soil type  

E-Print Network [OSTI]

RESEARCH ARTICLE A novel soil organic C model using climate, soil type and management data-Verlag, France 2012 Abstract This report evidences factors controlling soil or- ganic carbon at the national scale by modelling data of 2,158 soil samples from France. The global soil carbon amount, of about 1

Paris-Sud XI, Université de

212

A Global Interactive Chemistry and Climate Model Chien Wang, Ronald G. Prinn and Andrei P. Sokolov  

E-Print Network [OSTI]

with calculated or estimated trace gas emissions from both anthropogenic and natural sources, it is designed to the chemistry sub-model. Model predictions of the surface trends of several key species are close, if the current increasing trends of anthropogenic emissions of climate-relevant gases are continued over the next

213

Coupling of Integrated Biosphere Simulator to Regional Climate Model version 3  

E-Print Network [OSTI]

Presented in this thesis is a description of the coupling of Integrated Biosphere Simulator (IBIS) to Regional Climate Model version 3 (RegCM3), and an assessment of the coupled model (RegCM3-IBIS). RegCM3 is a 3-dimensional, ...

Winter, Jonathan (Jonathan Mark)

2006-01-01T23:59:59.000Z

214

Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century  

E-Print Network [OSTI]

of historical and future climate states simulated by six Coupled Model Intercomparison Project 5 (CMIP5) global energy of the subcloud layer. On time scales larger than that characterizing the thermal equilibration of greater intensity. Calculations with a single-column model (4) confirm that increasing greenhouse gas

Rothman, Daniel

215

Modeling the response of subglacial drainage at Paakitsoq, West Greenland, to 21st century climate change  

E-Print Network [OSTI]

, and into the future. Here, we apply a physically-based, subglacial hydrological model to the Paakitsoq region, west Greenland, and run it into the future to calculate patterns of daily subglacial water pressure fluctuations in response to climatic warming. The model...

Mayaud, Jerome R.; Banwell, Alison F.; Arnold, Neil S.; Willis, Ian C.

2015-01-22T23:59:59.000Z

216

Why are climate models reproducing the observed global surface warming so well?  

E-Print Network [OSTI]

Why are climate models reproducing the observed global surface warming so well? Reto Knutti1 global surface warming so well?, Geophys. Res. Lett., 35, L18704, doi:10.1029/ 2008GL034932. 1 models reproduce the observed surface warming better than one would expect given the uncertainties

Fischlin, Andreas

217

A climate sensitivity estimate using Bayesian fusion of instrumental observations and an Earth System model  

E-Print Network [OSTI]

sensitivity estimate using Bayesian fusion of instrumental observations and an Earth System model, J. Geophys System model Roman Olson,1 Ryan Sriver,1 Marlos Goes,2,3 Nathan M. Urban,4,5 H. Damon Matthews,6 MuraliA climate sensitivity estimate using Bayesian fusion of instrumental observations and an Earth

218

Recent Advances in Regional Climate System Modeling and Climate Change Analyses of Extreme Heat  

E-Print Network [OSTI]

California hydrology. J. Am. Water Resources Association 39,Land Surface and Ground Water Model for use in WatershedN.L. , 2003: California Water Resources Research, CEC Sept

Miller, Norman L.

2004-01-01T23:59:59.000Z

219

The Faculty of Science and the Bolin Centre for Climate Research  

E-Print Network [OSTI]

: Future Development of Climate and Earth System Models for Scientific and Policy Use Warren M. Washington of climate and Earth system models has been regarded primarily as the making of scientific tools to study, the development of climate and Earth system models became intimately linked to the need to not only improve our

220

Modeling High-Impact Weather and Climate: Lessons From a Tropical Cyclone Perspective  

SciTech Connect (OSTI)

Although the societal impact of a weather event increases with the rarity of the event, our current ability to assess extreme events and their impacts is limited by not only rarity but also by current model fidelity and a lack of understanding of the underlying physical processes. This challenge is driving fresh approaches to assess high-impact weather and climate. Recent lessons learned in modeling high-impact weather and climate are presented using the case of tropical cyclones as an illustrative example. Through examples using the Nested Regional Climate Model to dynamically downscale large-scale climate data the need to treat bias in the driving data is illustrated. Domain size, location, and resolution are also shown to be critical and should be guided by the need to: include relevant regional climate physical processes; resolve key impact parameters; and to accurately simulate the response to changes in external forcing. The notion of sufficient model resolution is introduced together with the added value in combining dynamical and statistical assessments to fill out the parent distribution of high-impact parameters. Finally, through the example of a tropical cyclone damage index, direct impact assessments are resented as powerful tools that distill complex datasets into concise statements on likely impact, and as highly effective communication devices.

Done, James; Holland, Greg; Bruyere, Cindy; Leung, Lai-Yung R.; Suzuki-Parker, Asuka

2013-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models  

E-Print Network [OSTI]

coupled climate-carbon earth system models part i: PhysicalChange in the CMIP5 Earth System Models  Koven, C.D. , W.J.output from a set of Earth System Models (ESMs) (Table 1)

Koven, C.D.

2014-01-01T23:59:59.000Z

222

Improved Climate Prediction through a System Level Understanding of Arctic Terrestrial Ecosystems  

E-Print Network [OSTI]

understood and many remain uncertain in terms of their representation in Earth System models. Increasing our System models. By extending an already well-established framework for fractional sub-grid area System Model grid cell (i.e., 30x30 km grid size). This vision includes mechanistic studies in the field

Hubbard, Susan

223

CONSEQUENCES OF SPATIAL AND TEMPORAL CLIMATE VARIABILITY FOR SPECIES DISTRIBUTION MODELING  

E-Print Network [OSTI]

Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean

Fernandez, Miguel

2013-01-01T23:59:59.000Z

224

Population and Climate Change:Population and Climate Change: Coupling Population Models withCoupling Population Models with  

E-Print Network [OSTI]

Coupling Population Models with Earth System ModelsEarth System Models Eugenia Kalnay, Safa Motesharrei, Jorge Rivas Change: Fully Coupling Population and Earth System Models" My research at the U. of Maryland #12

Kalnay, Eugenia

225

Final Report on Hierarchical Coupled Modeling and Prediction of Regional Climate Change in the Atlantic Sector  

SciTech Connect (OSTI)

During the course of this project, we have accomplished the following: a) Carried out studies of climate changes in the past using a hierarchy of intermediate coupled models (Chang et al., 2008; Wan et al 2009; Wen et al., 2010a,b) b) Completed the development of a Coupled Regional Climate Model (CRCM; Patricola et al., 2011a,b) c) Carried out studies testing hypotheses testing the origin of systematic errors in the CRCM (Patricola et al., 2011a,b) d) Carried out studies of the impact of air-sea interaction on hurricanes, in the context of barrier layer interactions (Balaguru et al)

Saravanan, Ramalingam [Texas A& M University

2011-10-30T23:59:59.000Z

226

A Hierarchical Evaluation of Regional Climate Simulations  

SciTech Connect (OSTI)

Global climate models (GCMs) are the primary tools for predicting the evolution of the climate system. Through decades of development, GCMs have demonstrated useful skill in simulating climate at continental to global scales. However, large uncertainties remain in projecting climate change at regional scales, which limit our ability to inform decisions on climate change adaptation and mitigation. To bridge this gap, different modeling approaches including nested regional climate models (RCMs), global stretch-grid models, and global high-resolution atmospheric models have been used to provide regional climate simulations (Leung et al. 2003). In previous efforts to evaluate these approaches, isolating their relative merits was not possible because factors such as dynamical frameworks, physics parameterizations, and model resolutions were not systematically constrained. With advances in high performance computing, it is now feasible to run coupled atmosphere-ocean GCMs at horizontal resolution comparable to what RCMs use today. Global models with local refinement using unstructured grids have become available for modeling regional climate (e.g., Rauscher et al. 2012; Ringler et al. 2013). While they offer opportunities to improve climate simulations, significant efforts are needed to test their veracity for regional-scale climate simulations.

Leung, Lai-Yung R.; Ringler, Todd; Collins, William D.; Taylor, Mark; Ashfaq, Moetasim

2013-08-20T23:59:59.000Z

227

Demonstrating the improvement of predictive maturity of a computational model  

SciTech Connect (OSTI)

We demonstrate an improvement of predictive capability brought to a non-linear material model using a combination of test data, sensitivity analysis, uncertainty quantification, and calibration. A model that captures increasingly complicated phenomena, such as plasticity, temperature and strain rate effects, is analyzed. Predictive maturity is defined, here, as the accuracy of the model to predict multiple Hopkinson bar experiments. A statistical discrepancy quantifies the systematic disagreement (bias) between measurements and predictions. Our hypothesis is that improving the predictive capability of a model should translate into better agreement between measurements and predictions. This agreement, in turn, should lead to a smaller discrepancy. We have recently proposed to use discrepancy and coverage, that is, the extent to which the physical experiments used for calibration populate the regime of applicability of the model, as basis to define a Predictive Maturity Index (PMI). It was shown that predictive maturity could be improved when additional physical tests are made available to increase coverage of the regime of applicability. This contribution illustrates how the PMI changes as 'better' physics are implemented in the model. The application is the non-linear Preston-Tonks-Wallace (PTW) strength model applied to Beryllium metal. We demonstrate that our framework tracks the evolution of maturity of the PTW model. Robustness of the PMI with respect to the selection of coefficients needed in its definition is also studied.

Hemez, Francois M [Los Alamos National Laboratory; Unal, Cetin [Los Alamos National Laboratory; Atamturktur, Huriye S [CLEMSON UNIV.

2010-01-01T23:59:59.000Z

228

Accounting for Global Climate Model Projection Uncertainty in Modern Statistical Downscaling  

SciTech Connect (OSTI)

Future climate change has emerged as a national and a global security threat. To carry out the needed adaptation and mitigation steps, a quantification of the expected level of climate change is needed, both at the global and the regional scale; in the end, the impact of climate change is felt at the local/regional level. An important part of such climate change assessment is uncertainty quantification. Decision and policy makers are not only interested in 'best guesses' of expected climate change, but rather probabilistic quantification (e.g., Rougier, 2007). For example, consider the following question: What is the probability that the average summer temperature will increase by at least 4 C in region R if global CO{sub 2} emission increases by P% from current levels by time T? It is a simple question, but one that remains very difficult to answer. It is answering these kind of questions that is the focus of this effort. The uncertainty associated with future climate change can be attributed to three major factors: (1) Uncertainty about future emission of green house gasses (GHG). (2) Given a future GHG emission scenario, what is its impact on the global climate? (3) Given a particular evolution of the global climate, what does it mean for a particular location/region? In what follows, we assume a particular GHG emission scenario has been selected. Given the GHG emission scenario, the current batch of the state-of-the-art global climate models (GCMs) is used to simulate future climate under this scenario, yielding an ensemble of future climate projections (which reflect, to some degree our uncertainty of being able to simulate future climate give a particular GHG scenario). Due to the coarse-resolution nature of the GCM projections, they need to be spatially downscaled for regional impact assessments. To downscale a given GCM projection, two methods have emerged: dynamical downscaling and statistical (empirical) downscaling (SDS). Dynamic downscaling involves configuring and running a regional climate model (RCM) nested within a given GCM projection (i.e., the GCM provides bounder conditions for the RCM). On the other hand, statistical downscaling aims at establishing a statistical relationship between observed local/regional climate variables of interest and synoptic (GCM-scale) climate predictors. The resulting empirical relationship is then applied to future GCM projections. A comparison of the pros and cons of dynamical versus statistical downscaling is outside the scope of this effort, but has been extensively studied and the reader is referred to Wilby et al. (1998); Murphy (1999); Wood et al. (2004); Benestad et al. (2007); Fowler et al. (2007), and references within those. The scope of this effort is to study methodology, a statistical framework, to propagate and account for GCM uncertainty in regional statistical downscaling assessment. In particular, we will explore how to leverage an ensemble of GCM projections to quantify the impact of the GCM uncertainty in such an assessment. There are three main component to this effort: (1) gather the necessary climate-related data for a regional SDS study, including multiple GCM projections, (2) carry out SDS, and (3) assess the uncertainty. The first step is carried out using tools written in the Python programming language, while analysis tools were developed in the statistical programming language R; see Figure 1.

Johannesson, G

2010-03-17T23:59:59.000Z

229

A Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US  

SciTech Connect (OSTI)

To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic dataset with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation including meteorologic forcings, soil, land class, vegetation, and elevation were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous United States at refined 1/24 (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter dataset was prepared for the macro-scale Variable Infiltration Capacity (VIC) hydrologic model. The VIC simulation was driven by DAYMET daily meteorological forcing and was calibrated against USGS WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter dataset may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous United States. We anticipate that through this hydrologic parameter dataset, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter dataset will be provided to interested parties to support further hydro-climate impact assessment.

Oubeidillah, Abdoul A [ORNL] [ORNL; Kao, Shih-Chieh [ORNL] [ORNL; Ashfaq, Moetasim [ORNL] [ORNL; Naz, Bibi S [ORNL] [ORNL; Tootle, Glenn [University of Alabama, Tuscaloosa] [University of Alabama, Tuscaloosa

2014-01-01T23:59:59.000Z

230

The Thermodynamic Influence of Subgrid Orography in a Global Climate Model  

SciTech Connect (OSTI)

Assessments of the impacts of climate change typically require information at scales of 10 km or less. Such a resolution will not be achieved by global climate models for many years. We have developed an alternative to explicit resolution that can meet the needs of climate change impact assessment now. We have applied to a global climate model a physically-based subgrid-scale treatment of the influence of orography on temperature, clouds, precipitation, and land surface hydrology. The treatment represents subgrid variations in surface elevation in terms of fractional area distributions of discrete elevation classes. For each class it calculates the height rise/descent of air parcels traveling through the grid cell, and applies the influence of the rise/descent to the temperature and humidity profiles of the elevation class. Cloud, radiative, and surface processes are calculated separately for each elevation class using the same physical parameterizations used by the model without the subgrid parameterization. The simulated climate fields for each elevation class can then be distributed in post-processing according to the spatial distribution of surface elevation within each grid cell. Parallel 10-year simulations with and without the subgrid treatment have been performed. The simulated temperature, precipitation and snow water are mapped to 2.5 minute (~5 km) resolution and compared with gridded analyses of station measurements. The simulation with the subgrid scheme produces a much more realistic distribution of snow water and significantly more realistic distributions of temperature and precipitation than the simulation without the subgrid scheme. Moreover, the grid cell means of most other fields are virtually unchanged by the subgrid scheme. This suggests that the tuning of the climate model without the subgrid scheme is also applicable to the model with the scheme.

Ghan, Steven J.; Bian, Xindi; Hunt, Allen G.; Coleman, Andre M.

2002-11-01T23:59:59.000Z

231

Evaluation of Hydrometeor Occurrence Profiles in the Multiscale Modeling Framework Climate Model using Atmospheric Classification  

SciTech Connect (OSTI)

Vertical profiles of hydrometeor occurrence from the Multiscale Modeling Framework (MMF) climate model are compared with profiles observed by a vertically pointing millimeter wavelength cloud-radar (located in the U.S. Southern Great Plains) as a function of the largescale atmospheric state. The atmospheric state is determined by classifying (or clustering) the large-scale (synoptic) fields produced by the MMF and a numerical weather prediction model using a neural network approach. The comparison shows that for cold frontal and post-cold frontal conditions the MMF produces profiles of hydrometeor occurrence that compare favorably with radar observations, while for warm frontal conditions the model tends to produce hydrometeor fractions that are too large with too much cloud (non-precipitating hydrometeors) above 7 km and too much precipitating hydrometeor coverage below 7 km. We also find that the MMF has difficulty capturing the formation of low clouds and that for all atmospheric states that occur during June, July, and August, the MMF produces too much high and thin cloud, especially above 10 km.

Marchand, Roger T.; Beagley, Nathaniel; Ackerman, Thomas P.

2009-09-01T23:59:59.000Z

232

Investigation of Aerosol Indirect Effects using a Cumulus Microphysics Parameterization in a Regional Climate Model  

SciTech Connect (OSTI)

A new Zhang and McFarlane (ZM) cumulus scheme includes a two-moment cloud microphysics parameterization for convective clouds. This allows aerosol effects to be investigated more comprehensively by linking aerosols with microphysical processes in both stratiform clouds that are explicitly resolved and convective clouds that are parameterized in climate models. This new scheme is implemented in the Weather Research and Forecasting (WRF) model, which is coupled with the physics and aerosol packages from the Community Atmospheric Model version 5 (CAM5). A test case of July 2008 during the East Asian summer monsoon is selected to evaluate the performance of the new ZM scheme and to investigate aerosol effects on monsoon precipitation. The precipitation and radiative fluxes simulated by the new ZM scheme show a better agreement with observations compared to simulations with the original ZM scheme that does not include convective cloud microphysics and aerosol convective cloud interactions. Detailed analysis suggests that an increase in detrained cloud water and ice mass by the new ZM scheme is responsible for this improvement. To investigate precipitation response to increased anthropogenic aerosols, a sensitivity experiment is performed that mimics a clean environment by reducing the primary aerosols and anthropogenic emissions to 30% of that used in the control simulation of a polluted environment. The simulated surface precipitation is reduced by 9.8% from clean to polluted environment and the reduction is less significant when microphysics processes are excluded from the cumulus clouds. Ensemble experiments with ten members under each condition (i.e., clean and polluted) indicate similar response of the monsoon precipitation to increasing aerosols.

Lim, Kyo-Sun; Fan, Jiwen; Leung, Lai-Yung R.; Ma, Po-Lun; Singh, Balwinder; Zhao, Chun; Zhang, Yang; Zhang, Guang; Song, Xiaoliang

2014-01-29T23:59:59.000Z

233

Collaborative Proposal: Transforming How Climate System Models are Used: A Global, Multi-Resolution Approach  

SciTech Connect (OSTI)

Despite the great interest in regional modeling for both weather and climate applications, regional modeling is not yet at the stage that it can be used routinely and effectively for climate modeling of the ocean. The overarching goal of this project is to transform how climate models are used by developing and implementing a robust, efficient, and accurate global approach to regional ocean modeling. To achieve this goal, we will use theoretical and computational means to resolve several basic modeling and algorithmic issues. The first task is to develop techniques for transitioning between parameterized and high-fidelity regional ocean models as the discretization grid transitions from coarse to fine regions. The second task is to develop estimates for the error in scientifically relevant quantities of interest that provide a systematic way to automatically determine where refinement is needed in order to obtain accurate simulations of dynamic and tracer transport in regional ocean models. The third task is to develop efficient, accurate, and robust time-stepping schemes for variable spatial resolution discretizations used in regional ocean models of dynamics and tracer transport. The fourth task is to develop frequency-dependent eddy viscosity finite element and discontinuous Galerkin methods and study their performance and effectiveness for simulation of dynamics and tracer transport in regional ocean models. These four projects share common difficulties and will be approach using a common computational and mathematical toolbox. This is a multidisciplinary project involving faculty and postdocs from Colorado State University, Florida State University, and Penn State University along with scientists from Los Alamos National Laboratory. The completion of the tasks listed within the discussion of the four sub-projects will go a long way towards meeting our goal of developing superior regional ocean models that will transform how climate system models are used.

Estep, Donald

2013-04-15T23:59:59.000Z

234

Climate Change Policy: What Do the Models Tell Us?  

E-Print Network [OSTI]

Very little. A plethora of integrated assessment models (IAMs) have been constructed and used to estimate the social cost of carbon (SCC) and evaluate alternative abatement policies. These models have crucial flaws that ...

Pindyck, Robert S.

235

Weakly screened thermonuclear reactions in astrophysical plasmas: Improving Salpeter's model  

E-Print Network [OSTI]

This paper presents a detailed study of the electron degeneracy and nonlinear screening effects which play a crucial role in the validity of Salpeter's weak-screening model. The limitations of that model are investigated and an improved one is proposed which can take into account nonlinear screening effects. Its application to the solar pp reaction derives an accurate screening enhancement factor and provides a very reliable estimation of the associated neutrino flux uncertanties.

Theodore E. Liolios

2003-06-23T23:59:59.000Z

236

On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry  

E-Print Network [OSTI]

Effective, economic extraction of ocean wave energy requires an intimate under- standing of the ocean waveOn the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry

Victoria, University of

237

Construction Logistics Improvements using the SCOR model Tornet Case  

E-Print Network [OSTI]

Construction Logistics Improvements using the SCOR model ­Tornet Case Fredrik Persson1 , Jonas over the last decades. Initiatives such as Lean Construction and Prefabrication have emerged in the construction industry to reduce the cost of house production and thereby the cost of the house itself

Paris-Sud XI, Université de

238

Earth System Modeling Facility: Linking Climate to Cal-(IT)2 and OptIPuter  

E-Print Network [OSTI]

Earth System Modeling Facility: Linking Climate to Cal-(IT)2 and OptIPuter Charlie Zender @uci.edu> Jay Famiglietti Department of Earth System Science Falko Kuester arise from indirect effects and feedbacks among components of the Earth sys- tem [1]. The UCI Earth

Rose, Michael R.

239

Modeling Climate Change Policies in Canada and the U.S.: An Update  

E-Print Network [OSTI]

In a report to the IETC in 2007, we described the set of CIMS models that would be used to simulate different climate policies in both the United States and Canada. This report will describe the various policies simulated in the two countries...

Roop, J. M.; Tubbs, W. J.

240

Use of models and observations to assess trends in the 19502005 water balance and climate  

E-Print Network [OSTI]

) was about 50% of normal during 2000­2001. The ensuing drought-related water shortage led to seriousUse of models and observations to assess trends in the 1950­2005 water balance and climate of Upper-driven interannual (and longer) variability is evident. Evaporation and the other components of the water balance

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Selected translated abstracts of Russian-language climate-change publications. 4: General circulation models  

SciTech Connect (OSTI)

This report presents English-translated abstracts of important Russian-language literature concerning general circulation models as they relate to climate change. Into addition to the bibliographic citations and abstracts translated into English, this report presents the original citations and abstracts in Russian. Author and title indexes are included to assist the reader in locating abstracts of particular interest.

Burtis, M.D. [comp.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Razuvaev, V.N.; Sivachok, S.G. [All-Russian Research Inst. of Hydrometeorological Information--World Data Center, Obninsk (Russian Federation)

1996-10-01T23:59:59.000Z

242

Net accumulation of the Greenland ice sheet: High resolution modeling of climate changes  

E-Print Network [OSTI]

: Kiilsholm, S., J. H. Christensen, K. Dethloff, and A. Rinke, Net accumulation of the Greenland ice sheetNet accumulation of the Greenland ice sheet: High resolution modeling of climate changes Sissi, Denmark Klaus Dethloff and Annette Rinke Alfred Wegener Institute for Polar and Marine Research

Born, Andreas

243

Introduction: the concept of the MOC Climate models project a slow down of the Atlantic  

E-Print Network [OSTI]

be sustained. Also the `pull' by small-scale mixing, that gradually lightens the deep waters, is necessary water cools and sinks, forming North Atlantic Deep Water which spreads southward into the deep ocean78 Introduction: the concept of the MOC Climate models project a slow down of the Atlantic

Drijfhout, Sybren

244

Modelling the future distribution of the amphibian chytrid fungus: the influence of climate and  

E-Print Network [OSTI]

FORUM Modelling the future distribution of the amphibian chytrid fungus: the influence of climate of amphibians are believed to be caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd). Hence, determining its present and future environmental suitability should help to inform management and surveillance

Rohr, Jason

245

A Multi-Model Assessment of Regional Climate Disparities Caused by Solar Geoengineering  

E-Print Network [OSTI]

1 A Multi-Model Assessment of Regional Climate Disparities Caused by Solar Geoengineering Normal University, Beijing, China. 9 School of Engineering and Applied Sciences, Harvard University levels. G1 involves a reduction in solar irradiance to counteract the radiative forcing5 in abrupt4xCO2

Robock, Alan

246

Computable General Equilibrium Models for the Analysis of Energy and Climate Policies  

E-Print Network [OSTI]

Computable General Equilibrium Models for the Analysis of Energy and Climate Policies Ian Sue Wing of energy and environmental policies. Perhaps the most important of these applications is the analysis Change, MIT Prepared for the International Handbook of Energy Economics Abstract This chapter is a simple

Wing, Ian Sue

247

Climate WorkshopsClimate Workshops for Department Chairsp  

E-Print Network [OSTI]

Climate WorkshopsClimate Workshops for Department Chairsp University of Wisconsin ADVANCE-IT Slides) #12;Why focus on departmental climate? Individuals experience climate in their immediate workplace negative climate than male faculty Improving department climate is critical for retention and advancement

Tilbury, Dawn

248

Improving the transition modelling in hidden Markov models for ECG segmentation  

E-Print Network [OSTI]

Improving the transition modelling in hidden Markov models for ECG segmentation Benoît Frénay, Gaël/ELEC/DICE - Place du Levant, 3 1348 Louvain-la-Neuve, Belgium Abstract. The segmentation of ECG signal is a useful-dependent. Experiments show that both methods improve the results on pathological ECG signals. 1 Introduction Physicians

Verleysen, Michel

249

A look at the ocean in the EC-Earth climate model Andreas Sterl Richard Bintanja Laurent Brodeau Emily Gleeson  

E-Print Network [OSTI]

to the special issue on EC-Earth, a global climate and earth system model based on the seasonal forecast system-011-1239-2 #12;phytoplankton) processes are involved. To study such complex interactions, Earth System Models

Haak, Hein

250

Terrestrial biogeochemistry in the community climate system model (CCSM)  

E-Print Network [OSTI]

Project (C4 MIP) Phase 1 experiments. In addition, CASA is one of three models--in addition to CN, and sea ice linked through a coupler that exchanges mass and energy fluxes and state information among, 5], the Community Sea Ice Model Version 5 (CSIM5) [6], and the Parallel Ocean Program Version 1

Hoffman, Forrest M.

251

Incorporation of Aerosol Optical Properties into Climate Models  

E-Print Network [OSTI]

precipitation and, with no flux adjustment, correctly does not produce a double ITCZ #12;Modeled vs. Measured Sea Ice Area Antarctic Model (at 4 x 5 degree resolution) predicts stable sea ice area Data from NASA that of BC from FF+BF soot #12;Black Carbon in Snow and Sea Ice #12;Black Carbon Absorption in Clouds #12

252

Global vegetation model diversity and the risks of climate-driven ecosystem shifts  

SciTech Connect (OSTI)

Climate change is modifying global biogeochemical cycles, and is expected to exert increasingly large effects in the future. How these changes will in turn affect and interact with the structure and function of particular ecosystems is unclear, however, both because of scientific uncertainties and the very diversity of global vegetation models in use. Writing in Environmental Research Letters, Warszawski et al. (1) aggregate results from a group of models, across a range of emissions scenarios and climate data, to investigate these risks. Although the models frequently disagree about which specific regions are at risk, they consistently predict a greater chance of ecosystem restructuring with more warming; this risk roughly doubles between 2 and 3 °C increases in global mean temperature. The innovative work of Warszawski et al. represents an important first step towards fully consistent multi-model, multi-scenario assessments of the future risks to global ecosystems.

Bond-Lamberty, Benjamin

2013-11-08T23:59:59.000Z

253

Probabilistic Forecast for 21st Century Climate Based on Uncertainties in Emissions (without Policy) and Climate Parameters  

E-Print Network [OSTI]

The MIT Integrated Global System Model is used to make probabilistic projections of climate change from 1861 to 2100. Since the model's first projections were published in 2003 substantial improvements have been made to ...

Sokolov, Andrei P.

254

Simulating the Biogeochemical and Biogeophysical Impacts of Transient Land Cover Change and Wood Harvest in the Community Climate System Model (CCSM4) from 1850 to 2100  

E-Print Network [OSTI]

To assess the climate impacts of historical and projected land cover change in the Community Climate System Model, version 4 (CCSM4), new time series of transient Community Land Model, version 4 (CLM4) plant functional ...

Lawrence, Peter J.; Feddema, Johannes J.; Bonan, Gordon B.; Meehl, Gerald A.; O’ Neill, Brian C.; Oleson, Keith W.; Levis, Samuel; Lawrence, David M.; Kluzek, Erik; Lindsay, Keith

2012-05-01T23:59:59.000Z

255

Impact of Agricultural Practice on Regional Climate in a CoupledLand Surface Mesoscale Model  

SciTech Connect (OSTI)

The land surface has been shown to form strong feedbacks with climate due to linkages between atmospheric conditions and terrestrial ecosystem exchanges of energy, momentum, water, and trace gases. Although often ignored in modeling studies, land management itself may form significant feedbacks. Because crops are harvested earlier under drier conditions, regional air temperature, precipitation, and soil moisture, for example, affect harvest timing, particularly of rain-fed crops. This removal of vegetation alters the land surface characteristics and may, in turn, affect regional climate. We applied a coupled climate(MM5) and land-surface (LSM1) model to examine the effects of early and late winter wheat harvest on regional climate in the Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility in the Southern Great Plains, where winter wheat accounts for 20 percent of the land area. Within the winter wheat region, simulated 2 m air temperature was 1.3 C warmer in the Early Harvest scenario at mid-day averaged over the two weeks following harvest. Soils in the harvested area were drier and warmer in the top 10 cm and wetter in the 10-20 cm layer. Midday soils were 2.5 C warmer in the harvested area at mid-day averaged over the two weeks following harvest. Harvest also dramatically altered latent and sensible heat fluxes. Although differences between scenarios diminished once both scenarios were harvested, the short-term impacts of land management on climate were comparable to those from land cover change demonstrated in other studies.

Cooley, H.S.; Riley, W.J.; Torn, M.S.; He, Y.

2004-07-01T23:59:59.000Z

256

Community Climate System Model (CCSM) Experiments and Output Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The CCSM web makes the source code of various versions of the model freely available and provides access to experiments that have been run and the resulting output data.

257

Studies of climate variability in a simple coupled model  

E-Print Network [OSTI]

The mechanisms of variability of a coupled atmosphere-ocean model are investigated through the study of two coupled configurations: an aquaplanet in which gyres are absent, and an aquaplanet in which a ridge extending from ...

Abiven, Claude

2007-01-01T23:59:59.000Z

258

Short ensembles: An Efficient Method for Discerning Climate-relevant Sensitivities in Atmospheric General Circulation Models  

SciTech Connect (OSTI)

This paper explores the feasibility of an experimentation strategy for investigating sensitivities in fast components of atmospheric general circulation models. The basic idea is to replace the traditional serial-in-time long-term climate integrations by representative ensembles of shorter simulations. The key advantage of the proposed method lies in its efficiency: since fewer days of simulation are needed, the computational cost is less, and because individual realizations are independent and can be integrated simultaneously, the new dimension of parallelism can dramatically reduce the turnaround time in benchmark tests, sensitivities studies, and model tuning exercises. The strategy is not appropriate for exploring sensitivity of all model features, but it is very effective in many situations. Two examples are presented using the Community Atmosphere Model version 5. The first example demonstrates that the method is capable of characterizing the model cloud and precipitation sensitivity to time step length. A nudging technique is also applied to an additional set of simulations to help understand the contribution of physics-dynamics interaction to the detected time step sensitivity. In the second example, multiple empirical parameters related to cloud microphysics and aerosol lifecycle are perturbed simultaneously in order to explore which parameters have the largest impact on the simulated global mean top-of-atmosphere radiation balance. Results show that in both examples, short ensembles are able to correctly reproduce the main signals of model sensitivities revealed by traditional long-term climate simulations for fast processes in the climate system. The efficiency of the ensemble method makes it particularly useful for the development of high-resolution, costly and complex climate models.

Wan, Hui; Rasch, Philip J.; Zhang, Kai; Qian, Yun; Yan, Huiping; Zhao, Chun

2014-09-08T23:59:59.000Z

259

Sensitivity of Remote Aerosol Distributions to Representation of Cloud-Aerosol Interactions in a Global Climate Model  

SciTech Connect (OSTI)

Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5), have large biases in predicting aerosols in remote regions such as upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol-climate model (PNNL-MMF) that explicitly represents convection and aerosol-cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC) due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the sub-grid scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a10-fold (5-fold) increase in the winter (summer) months, resulting in a much better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold) increase in the Arctic winter (summer) BC burden. This BC aging treatment, however, has minimal effect on other under-predicted species. Interestingly, our modifications to CAM5 that aim at improving prediction of high-latitude and upper tropospheric aerosols also produce much better AOD and AAOD over various other regions globally when compared to multi-year AERONET retrievals. The improved aerosol distributions have impacts on other aspects of CAM5, improving the simulation of global mean liquid water path and cloud forcing.

Wang, Hailong; Easter, Richard C.; Rasch, Philip J.; Wang, Minghuai; Liu, Xiaohong; Ghan, Steven J.; Qian, Yun; Yoon, Jin-Ho; Ma, Po-Lun; Vinoj, V.

2013-06-05T23:59:59.000Z

260

Detecting vegetation-precipitation feedbacks in mid-Holocene North Africa from two climate models  

SciTech Connect (OSTI)

Using two climate-vegetation model simulations from the Fast Ocean Atmosphere Model (FOAM) and the Community Climate System Model (CCSM, version 2), we investigate vegetation-precipitation feedbacks across North Africa during the mid-Holocene. From mid-Holocene snapshot runs of FOAM and CCSM2, we detect a negative feedback at the annual timescale with our statistical analysis. Using the Monte- Carlo bootstrap method, the annual negative feedback is further confirmed to be significant in both simulations. Additional analysis shows that this negative interaction is partially caused by the competition between evaporation and transpiration in North African grasslands. Furthermore, we find the feedbacks decrease with increasing timescales, and change signs from positive to negative at increasing timescales in FOAM. The proposed mechanism for this sign switch is associated with the different persistent timescales of upper and lower soil water contents, and their interactions with vegetation and atmospheric precipitation.

Wang, Yi; Notaro, Michael; Liu, Zhengyu; Gallimore, Robert; Levis, Samuel; Kutzbach, John E.

2008-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Baseline for Climate Change: Modeling Watershed Aquatic Biodiversity Relative to Environmental and Anthropogenic Factors  

SciTech Connect (OSTI)

Objectives of the two-year study were to (1) establish baselines for fish and macroinvertebrate community structures in two mid-Atlantic lower Piedmont watersheds (Quantico Creek, a pristine forest watershed; and Cameron Run, an urban watershed, Virginia) that can be used to monitor changes relative to the impacts related to climate change in the future; (2) create mathematical expressions to model fish species richness and diversity, and macroinvertebrate taxa and macroinvertebrate functional feeding group taxa richness and diversity that can serve as a baseline for future comparisons in these and other watersheds in the mid-Atlantic region; and (3) heighten people’s awareness, knowledge and understanding of climate change and impacts on watersheds in a laboratory experience and interactive exhibits, through internship opportunities for undergraduate and graduate students, a week-long teacher workshop, and a website about climate change and watersheds. Mathematical expressions modeled fish and macroinvertebrate richness and diversity accurately well during most of the six thermal seasons where sample sizes were robust. Additionally, hydrologic models provide the basis for estimating flows under varying meteorological conditions and landscape changes. Continuations of long-term studies are requisite for accurately teasing local human influences (e.g. urbanization and watershed alteration) from global anthropogenic impacts (e.g. climate change) on watersheds. Effective and skillful translations (e.g. annual potential exposure of 750,000 people to our inquiry-based laboratory activities and interactive exhibits in Virginia) of results of scientific investigations are valuable ways of communicating information to the general public to enhance their understanding of climate change and its effects in watersheds.

Maurakis, Eugene G

2010-10-01T23:59:59.000Z

262

Chemistryclimate model simulations of twenty-first century stratospheric climate  

E-Print Network [OSTI]

recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced to an overall global cooling of the stratosphere in the simulations (0.59 6 0.07 K decade21 at 10 hPa), ozone cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and

Wirosoetisno, Djoko

263

Instability of Glacial Climate in a Model of the Ocean-  

E-Print Network [OSTI]

, and the horizontal trans- ports of energy and moisture are parameter- ized as diffusive processes. A dynamic.2 1015 W of poleward heat trans- port (7). Near-surface currents bring warm, saline waters from integrated energy moisture balance model of the atmosphere (18). Atmospheric dynamics are absent

Schmittner, Andreas

264

Modeled Interactive Effects of Precipitation, temperature, and [CO2] on Ecosystem Carbon and Water Dynamics in Different Climatic Zones  

SciTech Connect (OSTI)

Interactive effects of multiple global change factors on ecosystem processes are complex. It is relatively expensive to explore those interactions in manipulative experiments. We conducted a modeling analysis to identify potentially important interactions and to stimulate hypothesis formulation for experimental research. Four models were used to quantify interactive effects of climate warming (T), altered precipitation amounts [doubled (DP) and halved (HP)] and seasonality (SP, moving precipitation in July and August to January and February to create summer drought), and elevated [CO2] (C) on net primary production (NPP), heterotrophic respiration (Rh), net ecosystem production (NEP), transpiration, and runoff.We examined those responses in seven ecosystems, including forests, grasslands, and heathlands in different climate zones. The modeling analysis showed that none of the threeway interactions among T, C, and altered precipitation was substantial for either carbon or water processes, nor consistent among the seven ecosystems. However, two-way interactive effects on NPP, Rh, and NEP were generally positive (i.e. amplification of one factor s effect by the other factor) between T and C or between T and DP. A negative interaction (i.e. depression of one factor s effect by the other factor) occurred for simulated NPP between T and HP. The interactive effects on runoff were positive between T and HP. Four pairs of two-way interactive effects on plant transpiration were positive and two pairs negative. In addition, wet sites generally had smaller relative changes in NPP, Rh, runoff, and transpiration but larger absolute changes in NEP than dry sites in response to the treatments. The modeling results suggest new hypotheses to be tested in multifactor global change experiments. Likewise, more experimental evidence is needed for the further improvement of ecosystem models in order to adequately simulate complex interactive processes.

Luo, Yiqi [University of Oklahoma; Gerten, Dieter [Potsdam Institute for Climate Impact Research, Potsdam, Germany; Le Maire, Guerric [Laboratoire des Sciences du Climat et de l'Environement, France; Parton, William [University of Colorado, Fort Collins; Weng, Ensheng [University of Oklahoma, Norman; Zhou, Xuhuui [University of Oklahoma; Keough, Cindy [University of Colorado, Fort Collins; Beier, Claus [Riso National Laboratory, Roskilde, Denmark; Ciais, Philippe [Laboratoire des Sciences du Climat et de l'Environement, France; Cramer, Wolfgang [Potsdam Institute for Climate Impact Research, Potsdam, Germany; Dukes, Jeff [University of Massachusetts, Boston; Emmett, Bridget [Centre for Ecology and Hydrology, Bangor, Gwynedd, United Kingdom; Hanson, Paul J [ORNL; Knapp, Alan [Colorado State University, Fort Collins; Linder, Sune [Swedish University of Agricultural Sciences, Upsalla, Sweden; Nepstad, Daniel [Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA; Rustad, Lindsey [USDA Forest Service

2008-01-01T23:59:59.000Z

265

"Managing Department Climate Change"  

E-Print Network [OSTI]

"Managing Department Climate Change" #12;Presenters · Ronda Callister Professor, Department Department Climate? · Assesment is essential for determining strategies for initiating change · In a research climate · Each panelist will describe an intervention designed to improve department climate ­ Ronda

Sheridan, Jennifer

266

Uncertainty in Simulating Wheat Yields Under Climate Change  

SciTech Connect (OSTI)

Anticipating the impacts of climate change on crop yields is critical for assessing future food security. Process-based crop simulation models are the most commonly used tools in such assessments1,2. Analysis of uncertainties in future greenhouse gas emissions and their impacts on future climate change has been increasingly described in the literature3,4 while assessments of the uncertainty in crop responses to climate change are very rare. Systematic and objective comparisons across impact studies is difficult, and thus has not been fully realized5. Here we present the largest coordinated and standardized crop model intercomparison for climate change impacts on wheat production to date. We found that several individual crop models are able to reproduce measured grain yields under current diverse environments, particularly if sufficient details are provided to execute them. However, simulated climate change impacts can vary across models due to differences in model structures and algorithms. The crop-model component of uncertainty in climate change impact assessments was considerably larger than the climate-model component from Global Climate Models (GCMs). Model responses to high temperatures and temperature-by-CO2 interactions are identified as major sources of simulated impact uncertainties. Significant reductions in impact uncertainties through model improvements in these areas and improved quantification of uncertainty through multi-model ensembles are urgently needed for a more reliable translation of climate change scenarios into agricultural impacts in order to develop adaptation strategies and aid policymaking.

Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, Jerry; Ruane, Alex; Boote, K. J.; Thorburn, Peter; Rotter, R.P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, AJ; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, Robert; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, Roberto C.; Kersebaum, K.C.; Mueller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.O.; Olesen, JE; Osborne, T.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stockle, Claudio O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J.

2013-09-01T23:59:59.000Z

267

An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1  

E-Print Network [OSTI]

of the heat capacity of the ice mass and liquid water mass.all the ice (liquid) is melted (frozen). Heat capacities are

Subin, Z.M.

2013-01-01T23:59:59.000Z

268

An Improved Probabilistic Fracture Mechanics Model for Pressurized Thermal Shock  

SciTech Connect (OSTI)

This paper provides an overview of an improved probabilistic fracture mechanics (PFM) model used for calculating the conditional probabilities of fracture and failure of a reactor pressure vessel (RPV) subjected to pressurized-thermal-shock (PTS) transients. The updated PFM model incorporates several new features: expanded databases for the fracture toughness properties of RPV steels; statistical representations of the fracture toughness databases developed through application of rigorous mathematical procedures; and capability of generating probability distributions for RPV fracture and failure. The updated PFM model was implemented into the FAVOR fracture mechanics program, developed at Oak Ridge National Laboratory as an applications tool for RPV integrity assessment; an example application of that implementation is discussed herein. Applications of the new PFM model are providing essential input to a probabilistic risk assessment (PRA) process that will establish an improved technical basis for re-assessment of current PTS regulations by the US Nuclear Regulatory Commission (NRC). The methodology described herein should be considered preliminary and subject to revision in the PTS re-evaluation process.

Dickson, T.L.

2001-10-29T23:59:59.000Z

269

Modeling of Oceanic Gas Hydrate Instability and Methane Release in Response to Climate Change  

SciTech Connect (OSTI)

Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating global climate, implicating global oceanic deposits of methane gas hydrate as the main culprit in instances of rapid climate change that have occurred in the past. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those predicted under future climate change scenarios, is poorly understood. To determine the fate of the carbon stored in these hydrates, we performed simulations of oceanic gas hydrate accumulations subjected to temperature changes at the seafloor and assessed the potential for methane release into the ocean. Our modeling analysis considered the properties of benthic sediments, the saturation and distribution of the hydrates, the ocean depth, the initial seafloor temperature, and for the first time, estimated the effect of benthic biogeochemical activity. The results show that shallow deposits--such as those found in arctic regions or in the Gulf of Mexico--can undergo rapid dissociation and produce significant methane fluxes of 2 to 13 mol/yr/m{sup 2} over a period of decades, and release up to 1,100 mol of methane per m{sup 2} of seafloor in a century. These fluxes may exceed the ability of the seafloor environment (via anaerobic oxidation of methane) to consume the released methane or sequester the carbon. These results will provide a source term to regional or global climate models in order to assess the coupling of gas hydrate deposits to changes in the global climate.

Reagan, Matthew; Reagan, Matthew T.; Moridis, George J.

2008-04-15T23:59:59.000Z

270

Transforming the representation of the boundary layer and low clouds for high-resolution regional climate modeling: Final report  

SciTech Connect (OSTI)

Stratocumulus and shallow cumulus clouds in subtropical oceanic regions (e.g., Southeast Pacific) cover thousands of square kilometers and play a key role in regulating global climate (e.g., Klein and Hartmann, 1993). Numerical modeling is an essential tool to study these clouds in regional and global systems, but the current generation of climate and weather models has difficulties in representing them in a realistic way (e.g., Siebesma et al., 2004; Stevens et al., 2007; Teixeira et al., 2011). While numerical models resolve the large-scale flow, subgrid-scale parameterizations are needed to estimate small-scale properties (e.g. boundary layer turbulence and convection, clouds, radiation), which have significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. To represent the contribution of these fine-scale processes to the resolved scale, climate models use various parameterizations, which are the main pieces in the model that contribute to the low clouds dynamics and therefore are the major sources of errors or approximations in their representation. In this project, we aim to 1) improve our understanding of the physical processes in thermal circulation and cloud formation, 2) examine the performance and sensitivity of various parameterizations in the regional weather model (Weather Research and Forecasting model; WRF), and 3) develop, implement, and evaluate the advanced boundary layer parameterization in the regional model to better represent stratocumulus, shallow cumulus, and their transition. Thus, this project includes three major corresponding studies. We find that the mean diurnal cycle is sensitive to model domain in ways that reveal the existence of different contributions originating from the Southeast Pacific land-masses. The experiments suggest that diurnal variations in circulations and thermal structures over this region are influenced by convection over the Peruvian sector of the Andes cordillera, while the mostly dry mountain-breeze circulations force an additional component that results in semi-diurnal variations near the coast. A series of numerical tests, however, reveal sensitivity of the simulations to the choice of vertical grid, limiting the possibility of solid quantitative statements on the amplitudes and phases of the diurnal and semidiurnal components across the domain. According to our experiments, the Mellor-Yamada-Nakanishi-Niino (MYNN) boundary layer scheme and the WSM6 microphysics scheme is the combination of schemes that performs best. For that combination, mean cloud cover, liquid water path, and cloud depth are fairly wellsimulated, while mean cloud top height remains too low in comparison to observations. Both microphysics and boundary layer schemes contribute to the spread in liquid water path and cloud depth, although the microphysics contribution is slightly more prominent. Boundary layer schemes are the primary contributors to cloud top height, degree of adiabaticity, and cloud cover. Cloud top height is closely related to surface fluxes and boundary layer structure. Thus, our study infers that an appropriate tuning of cloud top height would likely improve the low-cloud representation in the model. Finally, we show that entrainment governs the degree of adiabaticity, while boundary layer decoupling is a control on cloud cover. In the intercomparison study using WRF single-column model experiments, most parameterizations show a poor agreement of the vertical boundary layer structure when compared with large-eddy simulation models. We also implement a new Total-Energy/Mass- Flux boundary layer scheme into the WRF model and evaluate its ability to simulate both stratocumulus and shallow cumulus clouds. Result comparisons against large-eddy simulation show that this advanced parameterization based on the new Eddy-Diffusivity/Mass-Flux approach provides a better performance than other boundary layer parameterizations.

Huang, Hsin-Yuan; Hall, Alex

2013-07-24T23:59:59.000Z

271

3D climate modeling of Earth-like extrasolar planets orbiting different types of host stars  

E-Print Network [OSTI]

The potential habitability of a terrestrial planet is usually defined by the possible existence of liquid water on its surface. The potential presence of liquid water depends on many factors such as, most importantly, surface temperatures. The properties of the planetary atmosphere and its interaction with the radiative energy provided by the planet's host star are thereby of decisive importance. In this study we investigate the influence of different main-sequence stars upon the climate of Earth-like extrasolar planets and their potential habitability by applying a 3D Earth climate model accounting for local and dynamical processes. The calculations have been performed for planets with Earth-like atmospheres at orbital distances where the total amount of energy received from the various host stars equals the solar constant. In contrast to previous 3D modeling studies, we include the effect of ozone radiative heating upon the vertical temperature structure of the atmospheres. The global orbital mean results o...

Godolt, M; Hamann-Reinus, A; Kitzmann, D; Kunze, M; Langematz, U; von Paris, P; Patzer, A B C; Rauer, H; Stracke, B

2015-01-01T23:59:59.000Z

272

Voronoi Tessellations and Their Application to Climate and Global Modeling  

SciTech Connect (OSTI)

We review the use of Voronoi tessellations for grid generation, especially on the whole sphere or in regions on the sphere. Voronoi tessellations and the corresponding Delaunay tessellations in regions and surfaces on Euclidean space are defined and properties they possess that make them well-suited for grid generation purposes are discussed, as are algorithms for their construction. This is followed by a more detailed look at one very special type of Voronoi tessellation, the centroidal Voronoi tessellation (CVT). After defining them, discussing some of their properties, and presenting algorithms for their construction, we illustrate the use of CVTs for producing both quasi-uniform and variable resolution meshes in the plane and on the sphere. Finally, we briefly discuss the computational solution of model equations based on CVTs on the sphere.

Ju, Lili [University of South Carolina; Ringler, Todd [Los Alamos National Laboratory; Gunzburger, Max [Florida State University

2011-01-01T23:59:59.000Z

273

Validation of Climate Models The CliMaTiC sysTeM is constituted by four inti-  

E-Print Network [OSTI]

of macroscopic driving and modulating agents, such as solar heating, Earth's rotation, and gravitation Panel on Climate Change (IPCC4AR) are unprecedented. The validation or auditing--overall evaluation

Lucarini, Valerio

274

programs in climate change  

E-Print Network [OSTI]

existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM) project develops and maintains advanced numerical models of the ocean, sea ice, and ice sheets for use in global climate change

275

Improving Comfort in Hot-Humid Climates with a Whole-House Dehumidifier, Windermere, Florida (Fact Sheet)  

SciTech Connect (OSTI)

Maintaining comfort in a home can be challenging in hot-humid climates. At the common summer temperature set point of 75 degrees F, the perceived air temperature can vary by 11 degrees F because higher indoor humidity reduces comfort. Often the air conditioner (AC) thermostat set point is lower than the desirable cooling level to try to increase moisture removal so that the interior air is not humid or "muggy." However, this method is not always effective in maintaining indoor relative humidity (RH) or comfort. In order to quantify the performance of a combined whole-house dehumidifier (WHD) AC system, researchers from the U.S. Department of Energy's Building America team Consortium of Advanced Residential Buildings (CARB) monitored the operation of two Lennox AC systems coupled with a Honeywell DH150 TrueDRY whole-house dehumidifier for a six-month period. By using a WHD to control moisture levels (latent cooling) and optimizing a central AC to control temperature (sensible cooling), improvements in comfort can be achieved while reducing utility costs. Indoor comfort for this study was defined as maintaining indoor conditions at below 60% RH and a humidity ratio of 0.012 lbm/lbm while at common dry bulb set point temperatures of 74 degrees -80 degrees F. In addition to enhanced comfort, controlling moisture to these levels can reduce the risk of other potential issues such as mold growth, pests, and building component degradation. Because a standard AC must also reduce dry bulb air temperature in order to remove moisture, a WHD is typically needed to support these latent loads when sensible heat removal is not desired.

Not Available

2013-11-01T23:59:59.000Z

276

Evaluating Clouds, Aerosols, and their Interactions in Three Global Climate Models using COSP and Satellite Observations  

SciTech Connect (OSTI)

Accurately representing aerosol-cloud interactions in global climate models is challenging. As parameterizations evolve, it is important to evaluate their performance with appropriate use of observations. In this work we compare aerosols, clouds, and their interactions in three climate models (AM3, CAM5, ModelE) to MODIS satellite observations. Modeled cloud properties were diagnosed using the CFMIP Observations Simulator Package (COSP). Cloud droplet number concentrations (N) were derived using the same algorithm for both satellite-simulated model values and observations. We find that aerosol optical depth tau simulated by models is similar to observations. For N, AM3 and CAM5 capture the observed spatial pattern of higher values in near-coast versus remote ocean regions, though modeled values in general are higher than observed. In contrast, ModelE simulates lower N in most near-coast versus remote regions. Aerosol- cloud interactions were computed as the sensitivity of N to tau for marine liquid clouds off the coasts of South Africa and Eastern Asia where aerosol pollution varies in time. AM3 and CAM5 are in most cases more sensitive than observations, while the sensitivity for ModelE is statistically insignificant. This widely used sensitivity could be subject to misinterpretation due to the confounding influence of meteorology on both aerosols and clouds. A simple framework for assessing the N – tau sensitivity at constant meteorology illustrates that observed sensitivity can change from positive to statistically insignificant when including the confounding influence of relative humidity. Satellite simulated values of N were compared to standard model output and found to be higher with a bias of 83 cm-3.

Ban-Weiss, George; Jin, Ling; Bauer, S.; Bennartz, Ralph; Liu, Xiaohong; Zhang, Kai; Ming, Yi; Guo, Huan; Jiang, Jonathan

2014-09-23T23:59:59.000Z

277

Regional climate effects of irrigation and urbanization in thewestern united states: a model intercomparison  

SciTech Connect (OSTI)

In the western United States, more than 30,500 square miles has been converted to irrigated agriculture and urban areas. This study compares the climate responses of four regional climate models (RCMs) to these past land-use changes. The RCMs used two contrasting land cover distributions: potential natural vegetation, and modern land cover that includes agriculture and urban areas. Three of the RCMs represented irrigation by supplementing soil moisture, producing large decreases in August mean (-2.5 F to -5.6 F) and maximum (-5.2 F to -10.1 F) 2-meter temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture also resulted in large increases in relative humidity (9 percent 36 percent absolute change). Only one of the RCMs produced increases in summer minimum temperature. Converting natural vegetation to urban land cover produced modest but discernable climate effects in all models, with the magnitude of the effects dependent upon the preexisting vegetation type. Overall, the RCM results indicate that land use change impacts are most pronounced during the summer months, when surface heating is strongest and differences in surface moisture between irrigated land and natural vegetation are largest. The irrigation effect on summer maximum temperatures is comparable in magnitude (but opposite in sign) to predicted future temperature change due to increasing greenhouse gas concentrations.

Snyder, M.A.; Kueppers, L.M.; Sloan, L.C.; Cavan, D.C.; Jin, J.; Kanamaru, H.; Miller, N.L.; Tyree, M.; Du, H.; Weare, B.

2006-05-01T23:59:59.000Z

278

Flooding Experiments and Modeling for Improved Reactor Safety  

SciTech Connect (OSTI)

Countercurrent two-phase flow and “flooding” phenomena in light water reactor systems are being investigated experimentally and analytically to improve reactor safety of current and future reactors. The aspects that will be better clarified are the effects of condensation and tube inclination on flooding in large diameter tubes. The current project aims to improve the level of understanding of flooding mechanisms and to develop an analysis model for more accurate evaluations of flooding in the pressurizer surge line of a Pressurized Water Reactor (PWR). Interest in flooding has recently increased because Countercurrent Flow Limitation (CCFL) in the AP600 pressurizer surge line can affect the vessel refill rate following a small break LOCA and because analysis of hypothetical severe accidents with the current flooding models in reactor safety codes shows that these models represent the largest uncertainty in analysis of steam generator tube creep rupture. During a hypothetical station blackout without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg and flooding may occur in the surge line. The flooding model heavily influences the pressurizer emptying rate and the potential for surge line structural failure due to overheating and creep rupture. The air-water test results in vertical tubes are presented in this paper along with a semi-empirical correlation for the onset of flooding. The unique aspects of the study include careful experimentation on large-diameter tubes and an integrated program in which air-water testing provides benchmark knowledge and visualization data from which to conduct steam-water testing.

Solmos, M., Hogan, K.J., VIerow, K.

2008-09-14T23:59:59.000Z

279

Detection of greenhouse-gas-induced climatic change  

SciTech Connect (OSTI)

The aims of the US Department of Energy's Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. This project will address: The regional and seasonal details of the expected climatic changes; how rapidly will these changes occur; how and when will the climatic effects of CO[sub 2] and other greenhouse gases be first detected; and the relationships between greenhouse-gas-induced climatic change and changes caused by other external and internal factors. The present project addresses all of these questions. Many of the diverse facets of greenhouse-gas-related climate research can be grouped under three interlinked subject areas: modeling, first detection and supporting data. This project will include the analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulation Models (GCMs).

Wigley, T.M.L.; Jones, P.D.

1992-07-15T23:59:59.000Z

280

Formation of algae growth constitutive relations for improved algae modeling.  

SciTech Connect (OSTI)

This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

Gharagozloo, Patricia E.; Drewry, Jessica L.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A georeferenced Agent-Based Model to analyze the climate change impacts on the Andorra winter tourism  

E-Print Network [OSTI]

This study presents a georeferenced agent-based model to analyze the climate change impacts on the ski industry in Andorra and the effect of snowmaking as future adaptation strategy. The present study is the first attempt to analyze the ski industry in the Pyrenees region and will contribute to a better understanding of the vulnerability of Andorran ski resorts and the suitability of snowmaking as potential adaptation strategy to climate change. The resulting model can be used as a planning support tool to help local stakeholders understand the vulnerability and potential impacts of climate change. This model can be used in the decision-making process of designing and developing appropriate sustainable adaptation strategies to future climate variability.

Pons-Pons, M; Rosas-Casals, M; Sureda, B; Jover, E

2011-01-01T23:59:59.000Z

282

Improving Convection Parameterization Using ARM Observations and NCAR Community Atmosphere Model  

SciTech Connect (OSTI)

Highlight of Accomplishments: We made significant contribution to the ASR program in this funding cycle by better representing convective processes in GCMs based on knowledge gained from analysis of ARM/ASR observations. In addition, our work led to a much improved understanding of the interaction among aerosol, convection, clouds and climate in GCMs.

Zhang, Guang J [Scripps Institution of Oceanography

2013-07-29T23:59:59.000Z

283

DOE Workshop; Pan-Gass Conference on the Representation of Atmospheric Processes in Weather and Climate Models  

SciTech Connect (OSTI)

This is the first meeting of the whole new GEWEX (Global Energy and Water Cycle Experiment) Atmospheric System Study (GASS) project that has been formed from the merger of the GEWEX Cloud System Study (GCSS) Project and the GEWEX Atmospheric Boundary Layer Studies (GABLS). As such, this meeting will play a major role in energizing GEWEX work in the area of atmospheric parameterizations of clouds, convection, stable boundary layers, and aerosol-cloud interactions for the numerical models used for weather and climate projections at both global and regional scales. The representation of these processes in models is crucial to GEWEX goals of improved prediction of the energy and water cycles at both weather and climate timescales. This proposal seeks funds to be used to cover incidental and travel expenses for U.S.-based graduate students and early career scientists (i.e., within 5 years of receiving their highest degree). We anticipate using DOE funding to support 5-10 people. We will advertise the availability of these funds by providing a box to check for interested participants on the online workshop registration form. We will also send a note to our participants' mailing lists reminding them that the funds are available and asking senior scientists to encourage their more junior colleagues to participate. All meeting participants are encouraged to submit abstracts for oral or poster presentations. The science organizing committee (see below) will base funding decisions on the relevance and quality of these abstracts, with preference given to under-represented populations (especially women and minorities) and to early career scientists being actively mentored at the meeting (e.g. students or postdocs attending the meeting with their advisor).

Morrison, PI Hugh

2012-09-21T23:59:59.000Z

284

Development and evaluation of a convection scheme for use in climate models  

SciTech Connect (OSTI)

Cumulus convection is a key process in controlling the water vapor content of the atmosphere, which is in turn the largest feedback mechanism for climate change in global climate models. Yet scant attention has been paid to designing convective representations that attempt to handle water vapor with fidelity, and even less to evaluating their performance. Here the authors attempt to address this deficiency by designing a representation of cumulus convection with close attention paid to convective water fluxes and by subjecting the scheme to rigorous tests using sounding array data. The authors maintain that such tests, in which a single-column model is forced by large-scale processes measured by or inferred from the sounding data, must be carried out over a period at least as long as the radiative-subsidence timescale--about 30 days--governing the water vapor adjustment time. The authors also argue that the observed forcing must be preconditioned to guarantee integral enthalpy conservation, else errors in the single-column prediction may be falsely attributed to convective schemes. Optimization of the new scheme`s parameters is performed using one month of data from the intensive flux array operating during the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment, with the aid of the adjoint of the linear tangent of the single-column model. Residual root-mean-square errors, after optimization, are about 15% in relative humidity and .8 K in temperature. It is difficult to reject the hypothesis that the residual errors are due to noise in the forcing. Evaluation of the convective scheme is performed using Global Atmospheric Research Program Atlantic Tropical Experiment data. The performance of the scheme is compared to that of a few other schemes used in current climate models. It is also shown that a vertical resolution better than 50 mb in pressure is necessary for accurate prediction of atmospheric water vapor.

Emanuel, K.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Program for Atmospheres, Oceans, and Climate] [Massachusetts Inst. of Tech., Cambridge, MA (United States). Program for Atmospheres, Oceans, and Climate; Zivkovic-Rothman, M. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States)] [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States)

1999-06-01T23:59:59.000Z

285

Seasonal cycle of Precipitation over Major River Basins in South and Southeast Asia: A Review of the CMIP5 climate models data for present climate and future climate projections  

E-Print Network [OSTI]

We review the skill of thirty coupled climate models participating in Coupled Model Intercomparison Project 5 in terms of reproducing properties of the seasonal cycle of precipitation over the major river basins of South and Southeast Asia (Indus, Ganges, Brahmaputra and Mekong) for historical period (1961-2000). We also present projected changes by these models by end of century (2061-2100) under extreme scenario RCP8.5. First, we assess their ability to reproduce observed timings of the monsoon onset and the rate of rapid fractional accumulation (RFA slope) - a measure of seasonality within active monsoon period. Secondly, we apply a threshold-independent seasonality index (SI) - a multiplicative measure of precipitation and extent of its concentration relative to the uniform distribution (relative entropy - RE). We apply SI distinctly for monsoonal precipitation regime (MPR), westerly precipitation regime (WPR) and annual precipitation regime. For present climate, neither any single model nor the multi-mod...

Hasson, Shabeh ul; Lucarini, Valerio; Böhner, Jürgen

2015-01-01T23:59:59.000Z

286

Aerosol, Cloud, and Climate: From Observation to Model (457th Brookhaven Lecture)  

SciTech Connect (OSTI)

In the last 100 years, the Earth has warmed by about 1ºF, glaciers and sea ice have been melting more quickly than previously, especially during the past decade, and the level of the sea has risen about 6-8 inches worldwide. Scientists have long been investigating this phenomenon of “global warming,” which is believed to be at least partly due to the increased carbon dioxide (CO2) concentration in the air from burning fossil fuels. Funded by DOE, teams of researchers from BNL and other national labs have been gathering data in the U.S. and internationally to build computer models of climate and weather to help in understanding general patterns, causes, and perhaps, solutions. Among many findings, researchers observed that atmospheric aerosols, minute particles in the atmosphere, can significantly affect global energy balance and climate. Directly, aerosols scatter and absorb sunlight. Indirectly, increased aerosol concentration can lead to smaller cloud droplets, changing clouds in ways that tend to cool global climate and potentially mask overall warming from man-made CO2.

Wang, Jian (Ph.D., Environmental Sciences Department) [Ph.D., Environmental Sciences Department

2010-05-12T23:59:59.000Z

287

NEW WORK AND STUDY OPPORTUNITIES IN CLIMATE CHANGE Climate System Analysis Group (CSAG)  

E-Print Network [OSTI]

. - Postdoc: Climate modeling - Postdoc: Climate change information communication and dissemination - Research Associate: Climate change information communication and dissemination - PhD: Climate change information communication and dissemination - MSc/PhD: Physical science of climate change What to expect: Successful

Cohen, Ronald C.

288

COUNTERCURRENT FLOW LIMITATION EXPERIMENTS AND MODELING FOR IMPROVED REACTOR SAFETY  

SciTech Connect (OSTI)

This project is investigating countercurrent flow and “flooding” phenomena in light water reactor systems to improve reactor safety of current and future reactors. To better understand the occurrence of flooding in the surge line geometry of a PWR, two experimental programs were performed. In the first, a test facility with an acrylic test section provided visual data on flooding for air-water systems in large diameter tubes. This test section also allowed for development of techniques to form an annular liquid film along the inner surface of the “surge line” and other techniques which would be difficult to verify in an opaque test section. Based on experiences in the air-water testing and the improved understanding of flooding phenomena, two series of tests were conducted in a large-diameter, stainless steel test section. Air-water test results and steam-water test results were directly compared to note the effect of condensation. Results indicate that, as for smaller diameter tubes, the flooding phenomena is predominantly driven by the hydrodynamics. Tests with the test sections inclined were attempted but the annular film was easily disrupted. A theoretical model for steam venting from inclined tubes is proposed herein and validated against air-water data. Empirical correlations were proposed for air-water and steam-water data. Methods for developing analytical models of the air-water and steam-water systems are discussed, as is the applicability of the current data to the surge line conditions. This report documents the project results from July 1, 2005 through June 30, 2008.

Vierow, Karen

2008-09-26T23:59:59.000Z

289

Smoke inputs to climate models: optical properties and height distribution for nuclear winter studies  

SciTech Connect (OSTI)

Smoke from fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in land surface temperatures. The extent of the decrease and even the sign of the temperature change depend on the optical characteristics of the smoke and how it is distributed with altitude. The height distribution of smoke over a fire is determined by the amount of buoyant energy produced by the fire and the amount of energy released by the latent heat of condensation of water vapor. The optical properties of the smoke depend on the size distribution of smoke particles which changes due to coagulation within the lofted plume. We present calculations demonstrating these processes and estimate their importance for the smoke source term input for climate models. For high initial smoke densities and for absorbing smoke ( m = 1.75 - 0.3i), coagulation of smoke particles within the smoke plume is predicted to first increase, then decrease, the size-integrated extinction cross section. However, at the smoke densities predicted in our model (assuming a 3% emission rate for smoke) and for our assumed initial size distribution, the attachment rates for brownian and turbulent collision processes are not fast enough to alter the smoke size distribution enough to significantly change the integrated extinction cross section. Early-time coagulation is, however, fast enough to allow further coagulation, on longer time scales, to act to decrease the extinction cross section. On these longer time scales appropriate to climate models, coagulation can decrease the extinction cross section by almost a factor of two before the smoke becomes well mixed around the globe. This process has been neglected in past climate effect evaluations, but could have a significant effect, since the extinction cross section enters as an exponential factor in calculating the light attenuation due to smoke. 10 refs., 20 figs.

Penner, J.E.; Haselman, L.C. Jr.

1985-04-01T23:59:59.000Z

290

Final Technical Report for "Collaborative Research: Regional climate-change projections through next-generation empirical and dynamical models"  

SciTech Connect (OSTI)

This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs, we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceans mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceans thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes. Each of these project components is elaborated on below, followed by a list of publications resulting from the grant.

Robertson, A.W.; Ghil, M.; Kravtsov, K.; Smyth, P.J.

2011-04-08T23:59:59.000Z

291

Final Technical Report for "Collaborative Research: Regional climate-change projections through next-generation empirical and dynamical models"  

SciTech Connect (OSTI)

This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs, we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceansâ?? mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceansâ?? thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes. Each of these project components is elaborated on below, followed by a list of publications resulting from the grant.

Kravtsov, S.; Robertson, A. W.; Ghil, M.; Smyth, P. J.

2011-04-08T23:59:59.000Z

292

Tropical and subtropical cloud transitions in weather and climate prediction models: the GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI)  

SciTech Connect (OSTI)

A model evaluation approach is proposed where weather and climate prediction models are analyzed along a Pacific Ocean cross-section, from the stratocumulus regions off the coast of California, across the shallow convection dominated trade-winds, to the deep convection regions of the ITCZ: the GCSS/WGNE Pacific Cross-section Intercomparison (GPCI). The main goal of GPCI is to evaluate, and help understand and improve the representation of tropical and sub-tropical cloud processes in weather and climate prediction models. In this paper, a detailed analysis of cloud regime transitions along the cross-section from the sub-tropics to the tropics for the season JJA of 1998 is presented. This GPCI study confirms many of the typical weather and climate prediction model problems in the representation of clouds: underestimation of clouds in the stratocumulus regime by most models with the corresponding consequences in terms of shortwave radiation biases; overestimation of clouds by the ECMWF Re-Analysis (ERA40) in the deep tropics (in particular) with the corresponding impact in the outgoing longwave radiation; large spread between the different models in terms of cloud cover, liquid water path and shortwave radiation; significant differences between the models in terms of vertical crosssections of cloud properties (in particular), vertical velocity and relative humidity. An alternative analysis of cloud cover mean statistics is proposed where sharp gradients in cloud cover along the GPCI transect are taken into account. This analysis shows that the negative cloud bias of some models and ERA40 in the stratocumulus regions (as compared to ISCCP) is associated not only with lower values of cloud cover in these regimes, but also with a stratocumulus-to-cumulus transition that occurs too early along the trade-wind Lagrangian trajectory. Histograms of cloud cover along the cross-section differ significantly between models. Some models exhibit a quasi-bimodal structure with cloud cover being either very large (close to 100%) or very small, while other models show a more continuous transition. The ISCCP observations suggest that reality is in-between these two extreme examples. These different patterns reflect the diverse nature of the cloud, boundary layer, and convection parameterizations in the participating weather and climate prediction models.

Teixeira, J.; Cardoso, S.; Bonazzola, M.; Cole, Jason N.; DelGenio, Anthony D.; DeMott, C.; Franklin, A.; Hannay, Cecile; Jakob, Christian; Jiao, Y.; Karlsson, J.; Kitagawa, H.; Koehler, M.; Kuwano-Yoshida, A.; LeDrian, C.; Lock, Adrian; Miller, M.; Marquet, P.; Martins, J.; Mechoso, C. R.; Meijgaard, E. V.; Meinke, I.; Miranda, P.; Mironov, D.; Neggers, Roel; Pan, H. L.; Randall, David A.; Rasch, Philip J.; Rockel, B.; Rossow, William B.; Ritter, B.; Siebesma, A. P.; Soares, P.; Turk, F. J.; Vaillancourt, P.; Von Engeln, A.; Zhao, M.

2011-11-01T23:59:59.000Z

293

Improvements in Hanford TRU Program Utilizing Systems Modeling and Analyses  

SciTech Connect (OSTI)

Hanford's Transuranic (TRU) Program is responsible for certifying contact-handled (CH) TRU waste and shipping the certified waste to the Waste Isolation Pilot Plant (WIPP). Hanford's CH TRU waste includes material that is in retrievable storage as well as above ground storage, and newly generated waste. Certifying a typical container entails retrieving and then characterizing it (Non-Destructive Examination [NDE], Non-Destructive Assay [NDA], and Head Space Gas Sampling [HSG]), validating records (data review and reconciliation), and designating the container for a payload. The certified payload is then shipped to WIPP. Systems modeling and analysis techniques were applied to Hanford's TRU Program to help streamline the certification process and increase shipping rates. The modeling and analysis yields several benefits: - Maintains visibility on system performance and predicts downstream consequences of production issues. - Predicts future system performance with higher confidence, based on tracking past performance. - Applies speculation analyses to determine the impact of proposed changes (e.g., apparent shortage of feed should not be used as basis to reassign personnel if more feed is coming in the queue). - Positively identifies the appropriate queue for all containers (e.g., discovered several containers that were not actively being worked because they were in the wrong 'physical' location - method used previously for queuing up containers). - Identifies anomalies with the various data systems used to track inventory (e.g., dimensional differences for Standard Waste Boxes). A model of the TRU Program certification process was created using custom queries of the multiple databases for managing waste containers. The model was developed using a simplified process chart based on the expected path for a typical container. The process chart was augmented with the remediation path for containers that do not meet acceptance criteria for WIPP. Containers are sorted into queues based on their current status in the process. A container can be in only one queue at any given time. Existing data systems are queried to establish the quantity of containers in each queue on any given day. This sets the amount of feed available that is then modeled to be processed according to the daily production plans. The daily production plans were created by identifying the equipment necessary and the staff that performs each process step, and determining the expected production rate for each step. Production performance is monitored on a weekly basis with Project senior staff to establish a total operating efficiency (TOE) for each step (comparing actual performance to production capacity). The unit operations were modeled to be constrained by each day's feed queue plus the performance of the preceding step. The TOE for each unit operation was applied to an integrated model to determine bottlenecks and identify areas for improvement. All of the steps were linked to predict future system performance based on available feed and integrated system-level TOE. It has been determined that at times sub-optimization of a particular unit operation is necessary to ensure the system remains balanced (e.g., having excess capacity in assay does no good if there is no feed available because the real-time radiography [RTR] is working at half capacity). Several recommendations have been provided to the Project management team resulting in improvements in the performance of TRU certification activities by Hanford's TRU Program. (authors)

Baynes, P.A.; Bailey, K.B.; McKenney, D.E. [Fluor Hanford, Inc., Richland, WA (United States); Uytioco, E. [Fluor Government Group, Richland, WA (United States)

2008-07-01T23:59:59.000Z

294

Does the Danube exist? Versions of reality given by various regional climate models and climatological datasets  

E-Print Network [OSTI]

We present an intercomparison and verification analysis of several regional climate models (RCMs) nested into the same run of the same Atmospheric Global Circulation Model (AGCM) regarding their representation of the statistical properties of the hydrological balance of the Danube river basin for 1961-1990. We also consider the datasets produced by the driving AGCM, from the ECMWF and NCEP-NCAR reanalyses. The hydrological balance is computed by integrating the precipitation and evaporation fields over the area of interest. Large discrepancies exist among RCMs for the monthly climatology as well as for the mean and variability of the annual balances, and only few datasets are consistent with the observed discharge values of the Danube at its Delta, even if the driving AGCM provides itself an excellent estimate. Since the considered approach relies on the mass conservation principle and bypasses the details of the air-land interface modeling, we propose that the atmospheric components of RCMs still face diffic...

Lucarini, V; Kriegerova, I; Speranza, A; Danihlik, Robert; Kriegerova, Ida; Lucarini, Valerio; Speranza, Antonio

2006-01-01T23:59:59.000Z

295

Climate Past, Climate Present, Climate Future Douglas Nychka,  

E-Print Network [OSTI]

series and an energy balance model. 1000 1200 1400 1600 1800 2000 -1.5-1.0-0.50.00.5 Year Degree. Supported by US NSF 7th World Congress Prob. and Stat., Singapore July 2008 #12;What is climate? Climate will use statistics to talk about the "known un- knowns" for the Earth's climate Statistics uses

Nychka, Douglas

296

Modeling the Uncertain Future of a Threatened Habitat: Climate Change and Urban Growth in California Sage Scrub  

E-Print Network [OSTI]

Under projected climate change, mediterranean-climate in theland use and climate change in mediterranean regions,TO PROJECTED CLIMATE CHANGE IN A THREATENED, MEDITERRANEAN-

Riordan, Erin Coulter

2013-01-01T23:59:59.000Z

297

Climate and Environmental Sciences Division Strategic Plan Water is a key component of the earth and human  

E-Print Network [OSTI]

, and subsurface processes, as well as climate and earth system modeling and integrated assessment modeling and plan the development of next- generation human-earth system models for improving long-term predictions

Wood, Robert

298

Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model  

SciTech Connect (OSTI)

Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

2014-05-13T23:59:59.000Z

299

Climate response to tropical cyclone-induced ocean mixing in an1 Earth system model of intermediate complexity2  

E-Print Network [OSTI]

Climate response to tropical cyclone-induced ocean mixing in an1 Earth system model of intermediate system model of intermediate complexity. The parameterization is based on21 previously published global. Abstract19 We introduce a parameterization of ocean mixing by tropical cyclones (TCs) into20 an Earth

300

Forest dynamics at regional scales: predictive models constrained with inventory data  

E-Print Network [OSTI]

by scaling from key tree-level processes, but models typically have no climate dependency. In this thesis I demonstrate how large-scale national inventories combined with improvements in computational methods mean that models that incorporate the climate...

Lines, Emily

2012-06-12T23:59:59.000Z

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Little Ice Age glaciers in Britain: Glacier–climate modelling in the Cairngorm Mountains  

SciTech Connect (OSTI)

It is widely believed that the last glaciers in the British Isles disappeared at the end of the Younger Dryas stadial (12.9–11.7 cal. kyr BP). Here, we use a glacier–climate model driven by data from local weather stations to show for the first time that glaciers developed during the Little Ice Age (LIA) in the Cairngorm Mountains. Our model is forced from contemporary conditions by a realistic difference in mean annual air temperature of -1.5 degrees C and an increase in annual precipitation of 10%, and confirmed by sensitivity analyses. These results are supported by the presence of small boulder moraines well within Younger Dryas ice limits, and by a dating programme on a moraine in one cirque. As a result, we argue that the last glaciers in the Cairngorm Mountains (and perhaps elsewhere in upland Britain) existed in the LIA within the last few hundred years, rather than during the Younger Dryas.

Stephan Harrison; Ann V. Rowan; Neil F. Glasser; Jasper Knight; Mitchell A. Plummer; Stephanie C. Mills

2014-02-01T23:59:59.000Z

302

Final Report for DOE Grant DE-FG02-07ER64470 [“Incorporation of the HYbrid Coordinate Ocean Model (HYCOM) into the Community Climate System Model (CCSM): Evaluation and Climate Applications”  

SciTech Connect (OSTI)

The primary goal of the project entitled “Incorporation of the HYbrid Coordinate Ocean Model (HYCOM) into the Community Climate System Model (CCSM): Evaluation and Climate Applications” was to systematically investigate the performance of the HYbrid Coordinate Ocean Model (HYCOM) as an alternative oceanic component of the NCAR’s Community Climate System Model (CCSM). We have configured two versions of the fully coupled CCSM3/HYCOM: one with a medium resolution (T42) Community Atmospheric Model (CAM) and the other with higher resolution (T85). We have performed a comprehensive analysis of the 400-year fully coupled CCSM3/HYCOM simulations and compared the results with those from CCSM3/POP and with climatological observations, and also we have performed tuning of critical model parameters, including Smagorinsky viscosity, isopycnal diffusivity, and background vertical diffusivity. The analysis shows that most oceanic features are well represented in the CCSM3/HYCOM. The coupled CCSM3/HYCOM (T42) has been integrated for 400 years, and the results have been archived and transferred to the High Performance Computer in the Florida State Univesity. In the last year, we have made comprehensive diagnostics of the long-term simulations by the comparison with the original CCSM3/POP simulation and with the observations. To gain some understanding of the model biases, the mean climate and modes of climate variability of the two models are compared with observations. The examination includes the Northern and Southern Annular Modes (NAM and SAM), the Pacific-North-American (PNA) pattern, the Atlantic Multidecadal Oscillation (AMO), and the main Southern Ocean SST mode. We also compared the performance of ENSO simulation in the coupled models. This report summarizes the main findings from the comparison of long-term CCSM3/HYCOM and CCSM3/POP simulations.

Chassignet, Eric P

2013-03-18T23:59:59.000Z

303

On the origins of the ice ages : insolation forcing, age models, and nonlinear climate change  

E-Print Network [OSTI]

This thesis revolves about the relationship between orbital forcing and climate variability. To place paleo and modern climate variability in context, the spectrum of temperature variability is estimated from time-scales ...

Huybers, Peter, 1974-

2004-01-01T23:59:59.000Z

304

Climate change and agriculture : global and regional effects using an economic model of international trade  

E-Print Network [OSTI]

Empirical estimates of the economic welfare implications of the impact of climate change on global agricultural production are made. Agricultural yield changes resulting from climate scenarios associated with a doubling ...

Reilly, John M.

1993-01-01T23:59:59.000Z

305

Global air quality and climate  

E-Print Network [OSTI]

Evaluation of Chemistry- Climate Models 5, 2010. 320 S. Wu,and R. Van Dorland, in Climate Change 2007: The PhysicalInter- governmental Panel on Climate Change, ed. D. Qin, M.

2012-01-01T23:59:59.000Z

306

Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations  

SciTech Connect (OSTI)

This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

2013-01-01T23:59:59.000Z

307

Mexican drought: an observational modeling and tree ring study of variability and climate change  

E-Print Network [OSTI]

changes in Mexican agriculture over the last decade and a half are the combined result of severe climate-

2009-01-01T23:59:59.000Z

308

Planetary boundary layer depth in Global climate models induced biases in surface climatology  

E-Print Network [OSTI]

The Earth has warmed in the last century with the most rapid warming occurring near the surface in the arctic. This enhanced surface warming in the Arctic is partly because the extra heat is trapped in a thin layer of air near the surface due to the persistent stable-stratification found in this region. The warming of the surface air due to the extra heat depends upon the amount of turbulent mixing in the atmosphere, which is described by the depth of the atmospheric boundary layer (ABL). In this way the depth of the ABL determines the effective response of the surface air temperature to perturbations in the climate forcing. The ABL depth can vary from tens of meters to a few kilometers which presents a challenge for global climate models which cannot resolve the shallower layers. Here we show that the uncertainties in the depth of the ABL can explain up to 60 percent of the difference between the simulated and observed surface air temperature trends and 50 percent of the difference in temperature variability...

Davy, Richard

2014-01-01T23:59:59.000Z

309

An optimal fitting approach to improve the GISS ModelE aerosol optical property parameterization using AERONET data  

E-Print Network [OSTI]

and absorbing solar radiation and the indirect effect by interacting with water vapor to affect cloud formation and lifetime. Absorbing aerosols also have the semidirect effect by heating the atmosphere layer, reducing; Intergovernmental Panel on Climate Change, 2001]. [3] Globalscale models, which simulate the emission, transport

310

Identification of Linear Climate Models from the CMIP3 Multimodel Ensemble  

E-Print Network [OSTI]

to geoengineering of the climate based on solar radiation management (SRM). 1. INTRODUCTION In response to the risks and advocates to consider a "Plan B" response known as geoengineering or climate engineering. Broadly defined, geoengineering involves deliberate and large-scale interventions in the Earth's climatic system to counter

Phipps, Steven J.

311

Modeling Potential Equilibrium States of Vegetation and Terrestrial Water Cycle of Mesoamerica under Climate Change Scenarios*  

E-Print Network [OSTI]

precipitation, the impacts of climate change on vegetation and water cycle are predicted with relatively low under Climate Change Scenarios* PABLO IMBACH,1 LUIS MOLINA,1 BRUNO LOCATELLI,# OLIVIER ROUPSARD,1,@ GIL MAHE´ ,& RONALD NEILSON,**,&& LENIN CORRALES,11 MARKO SCHOLZE,## AND PHILIPPE CIAIS @@ 1 Climate Change

Boyer, Edmond

312

Improvement of an Esocid Bioenergetics Model for Juvenile Fish CASEY W. SCHOENEBECK*  

E-Print Network [OSTI]

Improvement of an Esocid Bioenergetics Model for Juvenile Fish CASEY W. SCHOENEBECK* Department temperature are known to influence the accuracy of fish bioenergetics models. In an effort to improve the accuracy of a juvenile esocid bioenergetics model, we used a regression-based approach to develop

313

Do Coupled Climate Models Correctly SImulate the Upward Branch of the Deept Ocean Global Conveyor?  

SciTech Connect (OSTI)

The large-scale meridional overturning circulation (MOC) connects the deep ocean, a major reservoir of carbon, to the other components of the climate system and must therefore be accurately represented in Earth System Models. Our project aims to address the specific question of the pathways and mechanisms controlling the upwelling branch of the MOC, a subject of significant disagreement between models and observational syntheses, and among general circulation models. Observations of these pathways are limited, particularly in regions of complex hydrography such as the Southern Ocean. As such, we rely on models to examine theories of the overturning circulation, both physically and biogeochemically. This grant focused on a particular aspect of the meridional overturning circulation (MOC) where there is currently significant disagreement between models and observationally based analyses of the MOC, and amongst general circulation models. In particular, the research focused on addressing the following questions: 1. Where does the deep water that sinks in the polar regions rise to the surface? 2. What processes are responsible for this rise? 3. Do state-of-the-art coupled GCMs capture these processes? Our research had three key components: observational synthesis, model development and model analysis. In this final report we outline the key results from these areas of research for the 2007 to 2012 grant period. The research described here was carried out primarily by graduate student, Daniele Bianchi (now a Postdoc at McGill University, Canada), and Postdoc Stephanie Downes (now a Research Fellow at The Australian national University, Australia). Additional support was provided for programmers Jennifer Simeon as well as Rick Slater.

Sarmiento, Jorge L; Downes, Stephanie; Bianchi, Daniele

2013-01-17T23:59:59.000Z

314

Synthesis of Remote Sensing and Field Observations to Model and Understand Disturbance and Climate Effects on the Carbon Balance of Oregon & Northern California  

SciTech Connect (OSTI)

The goal is to quantify and explain the carbon (C) budget for Oregon and N. California. The research compares "bottom -up" and "top-down" methods, and develops prototype analytical systems for regional analysis of the carbon balance that are potentially applicable to other continental regions, and that can be used to explore climate, disturbance and land-use effects on the carbon cycle. Objectives are: 1) Improve, test and apply a bottom up approach that synthesizes a spatially nested hierarchy of observations (multispectral remote sensing, inventories, flux and extensive sites), and the Biome-BGC model to quantify the C balance across the region; 2) Improve, test and apply a top down approach for regional and global C flux modeling that uses a model-data fusion scheme (MODIS products, AmeriFlux, atmospheric CO2 concentration network), and a boundary layer model to estimate net ecosystem production (NEP) across the region and partition it among GPP, R(a) and R(h). 3) Provide critical understanding of the controls on regional C balance (how NEP and carbon stocks are influenced by disturbance from fire and management, land use, and interannual climate variation). The key science questions are, "What are the magnitudes and distributions of C sources and sinks on seasonal to decadal time scales, and what processes are controlling their dynamics? What are regional spatial and temporal variations of C sources and sinks? What are the errors and uncertainties in the data products and results (i.e., in situ observations, remote sensing, models)?

Beverly Law; David Turner; Warren Cohen; Mathias Goeckede

2008-05-22T23:59:59.000Z

315

Evaluating sub-national building-energy efficiency policy options under uncertainty: Efficient sensitivity testing of alternative climate, technolgical, and socioeconomic futures in a regional intergrated-assessment model.  

SciTech Connect (OSTI)

Improving the energy efficiency of the building stock, commercial equipment and household appliances can have a major impact on energy use, carbon emissions, and building services. Subnational regions such as U.S. states wish to increase their energy efficiency, reduce carbon emissions or adapt to climate change. Evaluating subnational policies to reduce energy use and emissions is difficult because of the uncertainties in socioeconomic factors, technology performance and cost, and energy and climate policies. Climate change may undercut such policies. Assessing these uncertainties can be a significant modeling and computation burden. As part of this uncertainty assessment, this paper demonstrates how a decision-focused sensitivity analysis strategy using fractional factorial methods can be applied to reveal the important drivers for detailed uncertainty analysis.

Scott, Michael J.; Daly, Don S.; Zhou, Yuyu; Rice, Jennie S.; Patel, Pralit L.; McJeon, Haewon C.; Kyle, G. Page; Kim, Son H.; Eom, Jiyong; Clarke, Leon E.

2014-05-01T23:59:59.000Z

316

Improved Space Charge Modeling for Simulation and Design of Photoinjectors  

SciTech Connect (OSTI)

Photoinjectors in advanced high-energy accelerators reduce beam energy spreads and enhance undulator photon fluxes. Photoinjector design is difficult because of the substantial differences in time and spatial scales. This Phase I program explored an innovative technique, the local Taylor polynomial (LTP) formulation, for improving finite difference analysis of photoinjectors. This included improved weighting techniques, systematic formula for high order interpolation and electric field computation, and improved handling of space charge. The Phase I program demonstrated that the approach was powerful, accurate, and efficient. It handles space charge gradients better than currently available technology.

Robert H. Jackson, Thuc Bui, John Verboncoeur

2010-04-19T23:59:59.000Z

317

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

for improving microbial biofuel production using a synthetica model for microbial biofuel production where a syntheticcell viability and biofuel yields. Although microbes can be

Dunlop, Mary

2012-01-01T23:59:59.000Z

318

The Impact of IBM Cell Technology on the Programming Paradigm in the Context of Computer Systems for Climate and Weather Models  

SciTech Connect (OSTI)

The call for ever-increasing model resolutions and physical processes in climate and weather models demands a continual increase in computing power. The IBM Cell processor's order-of-magnitude peak performance increase over conventional processors makes it very attractive to fulfill this requirement. However, the Cell's characteristics, 256KB local memory per SPE and the new low-level communication mechanism, make it very challenging to port an application. As a trial, we selected the solar radiation component of the NASA GEOS-5 climate model, which: (1) is representative of column physics components (half the total computational time), (2) has an extremely high computational intensity: the ratio of computational load to main memory transfers, and (3) exhibits embarrassingly parallel column computations. In this paper, we converted the baseline code (single-precision Fortran) to C and ported it to an IBM BladeCenter QS20. For performance, we manually SIMDize four independent columns and include several unrolling optimizations. Our results show that when compared with the baseline implementation running on one core of Intel's Xeon Woodcrest, Dempsey, and Itanium2, the Cell is approximately 8.8x, 11.6x, and 12.8x faster, respectively. Our preliminary analysis shows that the Cell can also accelerate the dynamics component (~;;25percent total computational time). We believe these dramatic performance improvements make the Cell processor very competitive as an accelerator.

Zhou, Shujia; Duffy, Daniel; Clune, Thomas; Suarez, Max; Williams, Samuel; Halem, Milton

2009-01-10T23:59:59.000Z

319

Reliability of regional climate model trends This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network [OSTI]

Reliability of regional climate model trends This article has been downloaded from IOPscience.1088/1748-9326/8/1/014055 Reliability of regional climate model trends G J van Oldenborgh1, F J Doblas Reyes2, S S Drijfhout1 and E probabilistic forecast is that the forecast system is shown to be reliable: forecast probabilities should equal

Drijfhout, Sybren

320

Transient Climate Response in a Two-Layer Energy-Balance Model. Part I: Analytical Solution and Parameter Calibration Using CMIP5 AOGCM Experiments  

E-Print Network [OSTI]

analyzing the global thermal properties of atmosphere­ocean coupled general circulation models (AOGCMs perturbation, some EBMs assume that the thermal energy balance of the climate system is only expressedTransient Climate Response in a Two-Layer Energy-Balance Model. Part I: Analytical Solution

Ribes, Aurélien

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Toward hydro-social modeling: Merging human variables and the social sciences with climate-glacier runoff models (Santa River, Peru)  

E-Print Network [OSTI]

Toward hydro-social modeling: Merging human variables and the social sciences with climate mountain range, this paper provides a holistic hydro-social framework that identifies five major human of watershed dynamics. This hydro-social framework has wide- spread implications for hydrological modeling

McKenzie, Jeffrey M.

322

Detection of CO sub 2 -induced climatic change  

SciTech Connect (OSTI)

The aims of the US Department of Energy's CO{sub 2} Climate Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. We propose to continue earlier work in five areas: updating, improvement and analysis of our global (land and marine) temperature data set; the development and use of multivariate techniques for the detection of greenhouse-gas-induced climatic change; the further development and use of simple transient-response climate models in order to elucidate the responses of the climate system to external and internal forcing; validation of General Circulation Models using a variety of test statistics, and the use of regression methods to produce sub-grid-scale information from GCM output. The present project addresses all of these questions. This document contains information of the progress in each area. 25 refs., 2 figs., 2 tabs.

Wigley, T.M.L.; Jones, P.D.

1990-07-15T23:59:59.000Z

323

Climate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling and Policy Analysis  

E-Print Network [OSTI]

-based relationship between income growth and travel demand, turnover of the vehicle stock, and cost-driven investment both in reduction of internal combustion engine (ICE) vehicle fuel consumption as well as in adoptionClimate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling

324

Modelling the impact of superimposed ice on the mass balance of an Arctic glacier under scenarios of future climate change  

E-Print Network [OSTI]

). A consequence of climatic warming in the high Arctic will be an increase in surface melting of glaciers and ice component of the mass accumulation of many glaciers and ice caps in thModelling the impact of superimposed ice on the mass balance of an Arctic glacier under scenarios

325

The Role of Stratification-Dependent Mixing for the Stability of the Atlantic Overturning in a Global Climate Model*  

E-Print Network [OSTI]

in a Global Climate Model* BEN MARZEION Nansen Environmental and Remote Sensing Center, and Bjerknes Centre oceanic heat transport. Subsequently, and in opposition to results from previous studies, the overturning, as seen, for example, in temperature reconstructions from Greenland ice cores, are often ex- plained

Marzeion, Ben

326

Modeling hydrologic and water quality extremes in a changing climate: A statistical approach based on extreme value theory  

E-Print Network [OSTI]

Modeling hydrologic and water quality extremes in a changing climate: A statistical approach based on extreme value theory Erin Towler,1,2 Balaji Rajagopalan,1,3 Eric Gilleland,2 R. Scott Summers,1 David makes quantifying changes to hydrologic extremes, as well as associated water quality effects

Katz, Richard

327

Dynamics of Arctic and Sub-Arctic Climate and Atmospheric Circulation: Diagnosis of Mechanisms and Biases Using Data Assimilation  

SciTech Connect (OSTI)

The overall goal of work performed under this grant is to enhance understanding of simulations of present-day climate and greenhouse gas-induced climate change. The examination of present-day climate also includes diagnostic intercomparison of model simulations and observed mean climate and climate variability using reanalysis and satellite datasets. Enhanced understanding is desirable 1) as a prerequisite for improving simulations; 2) for assessing the credibility of model simulations and their usefulness as tools for decision support; and 3) as a means to identify robust behaviors which commonly occur over a wide range of models, and may yield insights regarding the dominant physical mechanisms which determine mean climate and produce climate change. A further objective is to investigate the use of data assimilation as a means for examining and correcting model biases. Our primary focus is on the Arctic, but the scope of the work was expanded to include the global climate system.

Eric T. DeWeaver

2010-02-17T23:59:59.000Z

328

Comparison of simplified models of urban climate for improved prediction of building energy use in cities  

E-Print Network [OSTI]

Thermal simulation of buildings is a requisite tool in the design of low-energy buildings, yet, definition of weather boundary conditions during simulation of urban buildings suffers from a lack of data that accounts for ...

Street, Michael A. (Michael Anthony)

2013-01-01T23:59:59.000Z

329

Using A-Train Arctic cloud observations to constrain and improve climate models  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsedUser ServicesUsers June radiation

330

Building America Best Practices Series: Volume 3; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in Cold and Very Cold Climates  

SciTech Connect (OSTI)

This best practices guide is part of a series produced by Building America. The guide book is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the cold and very cold climates. The savings are in comparison with the 1993 Model Energy Code. The guide contains chapters for every member of the builder's team-from the manager to the site planner to the designers, site supervisors, the trades, and marketers. There is also a chapter for homeowners on how to use the book to provide help in selecting a new home or builder.

Not Available

2005-08-01T23:59:59.000Z

331

Building America Best Practices Series: Volume 5; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Marine Climate  

SciTech Connect (OSTI)

This best practices guide is part of a series produced by Building America. The guide book is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the Marine climate region. The savings are in comparison with the 1993 Model Energy Code. The guide contains chapters for every member of the builder's team--from the manager to the site planner to the designers, site supervisors, the trades, and marketers. There is also a chapter for homeowners on how to use the book to provide help in selecting a new home or builder.

Baechler, M. C.; Taylor, Z. T.; Bartlett, R.; Gilbride, T.; Hefty, M.; Steward, H.; Love, P. M.; Palmer, J. A.

2006-10-01T23:59:59.000Z

332

Northeast Climate Science Center: Transposing Extreme Rainfall to Assess Climate Vulnerability  

Office of Energy Efficiency and Renewable Energy (EERE)

Climate models predict significant increases in the magnitude and frequency of extreme rainfalls.  However, climate model projections of precipitation vary greatly across models.  For communities...

333

Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones  

SciTech Connect (OSTI)

The ongoing changes in the global climate expose the world s ecosystems not only to increasing CO2 concentrations and temperatures but also to altered precipitation (P) regimes. Using four well-established process-based ecosystem models (LPJ, DayCent, ORCHIDEE, TECO), we explored effects of potential P changes on water limitation and net primary production (NPP) in seven terrestrial ecosystems with distinctive vegetation types in different hydroclimatic zones. We found that NPP responses to P changes differed not only among sites but also within a year at a given site. The magnitudes of NPP change were basically determined by the degree of ecosystem water limitation, which was quantified here using the ratio between atmospheric transpirational demand and soil water supply. Humid sites and/or periods were least responsive to any change in P as compared with moderately humid or dry sites/periods. We also found that NPP responded more strongly to doubling or halving of P amount and a seasonal shift in P occurrence than that to altered P frequency and intensity at constant annual amounts. The findings were highly robust across the four models especially in terms of the direction of changes and largely consistent with earlier P manipulation experiments and modelling results. Overall, this study underscores the widespread importance of P as a driver of change in ecosystems, although the ultimate response of a particular site will depend on the detailed nature and seasonal timing of P change.

Gerten, Dieter [Potsdam Institute for Climate Impact Research, Potsdam, Germany; Luo, Yiqi [University of Oklahoma; Le Maire, Guerric [Laboratoire des Sciences du Climat et de l'Environement, France; Parton, William [University of Colorado, Fort Collins; Keough, Cindy [University of Colorado, Fort Collins; Weng, Ensheng [University of Oklahoma, Norman; Beier, Claus [Riso National Laboratory, Roskilde, Denmark; Ciais, Philippe [Laboratoire des Sciences du Climat et de l'Environement, France; Cramer, Wolfgang [Potsdam Institute for Climate Impact Research, Potsdam, Germany; Dukes, Jeff [University of Massachusetts, Boston; Hanson, Paul J [ORNL; Knapp, Alan [Colorado State University, Fort Collins; Linder, Sune [Swedish University of Agricultural Sciences, Upsalla, Sweden; Nepstad, Daniel [Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA; Rustad, Lindsey [USDA Forest Service; Sowerby, ALWYN [Centre for Ecology and Hydrology, Bangor, Gwynedd, United Kingdom

2008-01-01T23:59:59.000Z

334

The long-term change of El Niño Southern Oscillation in an ensemble reanalysis and climate coupled models  

E-Print Network [OSTI]

THE LONG-TERM CHANGE OF EL NI?O SOUTHERN OSCILLATION IN AN ENSEMBLE REANALYSIS AND CLIMATE COUPLED MODELS A Dissertation by CHUNXUE YANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...ESM1-M Norwegian Climate Centre 3 F19, L26 gx1v6L53 Bentsen et al. [2012] 20 CHAPTER III RESULTS Ensemble Reanalysis Ensemble Statistics El Ni?o/Southern Oscillation (ENSO) has significant impact on world economics, society...

Yang, Chunxue 1984-

2012-12-06T23:59:59.000Z

335

An improved structural mechanics model for the FRAPCON nuclear fuel performance code  

E-Print Network [OSTI]

In order to provide improved predictions of Pellet Cladding Mechanical Interaction (PCMI) for the FRAPCON nuclear fuel performance code, a new model, the FRAPCON Radial-Axial Soft Pellet (FRASP) model, was developed. This ...

Mieloszyk, Alexander James

2012-01-01T23:59:59.000Z

336

Vapor intrusion modeling : limitations, improvements, and value of information analyses  

E-Print Network [OSTI]

Vapor intrusion is the migration of volatile organic compounds (VOCs) from a subsurface source into the indoor air of an overlying building. Vapor intrusion models, including the Johnson and Ettinger (J&E) model, can be ...

Friscia, Jessica M. (Jessica Marie)

2014-01-01T23:59:59.000Z

337

A model for improving ocean wind forecasts using satellite  

E-Print Network [OSTI]

Using the dynamical model from previous talk we now want to assimilate the satellite measurements Using the dynamical model from previous talk we now want to assimilate the satellite measurements now want to assimilate the satellite measurements into this model. We will discuss the measurement

Malmberg, Anders

338

Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework  

SciTech Connect (OSTI)

As long-term socioeconomic transformation and energy service expansion show large spatial heterogeneity, advanced understanding of climate impact on building energy use at the sub-national level will offer useful insights into climate policy and regional energy system planning. In this study, we presented a detailed building energy model with a U.S. state-level representation, nested in the GCAM integrated assessment framework. We projected state-level building energy demand and its spatial pattern over the century, considering the impact of climate change based on the estimates of heating and cooling degree days derived from downscaled USGS CASCaDE temperature data. The result indicates that climate change has a large impact on heating and cooling building energy and fuel use at the state level, exhibiting large spatial heterogeneity across states (ranges from -10% to +10%). The sensitivity analysis reveals that the building energy demand is subject to multiple key factors, such as the magnitude of climate change, the choice of climate models, and the growth of population and GDP, and that their relative contributions vary greatly across the space. The scale impact in building energy use modeling highlights the importance of constructing a building energy model with the spatially-explicit representation of socioeconomics, energy system development, and climate change. These findings will help the climate-based policy decision and energy system, especially utility planning related to building sector at the U.S. state and regional level facing the potential climate change.

Zhou, Yuyu; Clarke, Leon E.; Eom, Jiyong; Kyle, G. Page; Patel, Pralit L.; Kim, Son H.; Dirks, James A.; Jensen, Erik A.; Liu, Ying; Rice, Jennie S.; Schmidt, Laurel C.; Seiple, Timothy E.

2014-01-01T23:59:59.000Z

339

Submitted to BAMS v5, 13/10/2011 Documenting the climate modelling process: how climate scientists now share their  

E-Print Network [OSTI]

(DKRZ, Germany), Sylvia Murphy (NOAA, US), Karl Taylor (PCMDI, US) and the METAFOR team In earth system system models"). The complexity of these simulators, measured in terms of the number of the processes we modelling, the performance of common simulation experiments by multiple research groups has emerged

Guilyardi, Eric

340

Effects of mineral aerosols on the summertime climate of southwest Asia: Incorporating subgrid variability in a dust emission scheme  

E-Print Network [OSTI]

[1] Improvements in modeling mineral aerosols over southwest Asia are made to the dust scheme in a regional climate model by representing subgrid variability of both wind speed and surface roughness length. The new module ...

Marcella, Marc Pace

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Solving Problems with GCMs: General Circulation Models and Their Role in the Climate Modeling Hierarchy  

E-Print Network [OSTI]

­Southern Oscillation, from the Devil's Staircase to prediction 16 A. ENSO's regularity and irregularity 16 B. The Devil's Staircase across the modeling hierarchy 18 C. Regularity and prediction 22 IV. Interdecadal oscillations

Robertson, Andrew W.

342

Modeling the Ranges of Stresses for Different Climates/Applications (Presentation)  

SciTech Connect (OSTI)

This presentation outlines the environmental, site-specific attributes that must be considered when evaluating the durability of photovoltaic (PV) modules in different climates/applications.

Kempe, M.; Kurtz, S.; Wohlgemuth, J.; Miller, D.; Reese, M.; Dameron, A.

2011-07-01T23:59:59.000Z

343

Continuous-time model reference adaptive control with improved transient performance  

E-Print Network [OSTI]

. . 10 3. 1. Introduction . . 3. 2. Performance of a Standard MRAC Scheme. . . . . . . . . 3. 3. Performance Improvement as Input Disturbance Rejection 3. 4. A Modified MRAC Scheme for Improved Transient Per- formance . 3. 5. Example and Simulations... 10 13 16 21 24 IV MODEL REFERENCE ADAPTIVE CONTROL OF RIGID ROBOTS WITH IMPROVED TRANSIENT PERFORMANCE 27 4. 1. Introduction 4. 2. Performance of a Standard MRAC Scheme for a Robotic Manipulator . 4. 3. Performance Improvement as Input...

Ho, Ming-Tzu

1993-01-01T23:59:59.000Z

344

Climate Extremes, Uncertainty and Impacts Climate Change Challenge: The Fourth Assessment Report of the Intergovernmental Panel on Climate Change  

E-Print Network [OSTI]

Climate Extremes, Uncertainty and Impacts Climate Change Challenge: The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, AR4) has resulted in a wider acceptance of global climate change climate extremes and change impacts. Uncertainties in process studies, climate models, and associated

345

Improving Air-Conditioner and Heat Pump Modeling (Presentation)  

SciTech Connect (OSTI)

A new approach to modeling residential air conditioners and heat pumps allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted 'behind-the-scenes' without negatively impacting the reliability of energy simulations.

Winkler, J.

2012-03-01T23:59:59.000Z

346

Global well-posedness of strong solutions to a tropical climate model  

E-Print Network [OSTI]

In this paper, we consider the Cauchy problem to the TROPIC CLIMATE MODEL derived by Frierson-Majda-Pauluis in [Comm. Math. Sci, Vol. 2 (2004)] which is a coupled system of the barotropic and the first baroclinic modes of the velocity and the typical midtropospheric temperature. The system considered in this paper has viscosities in the momentum equations, but no diffusivity in the temperature equation. We establish here the global well-posedness of strong solutions to this model. In proving the global existence of strong solutions, to overcome the difficulty caused by the absence of the diffusivity in the temperature equation, we introduce a new velocity $w$ (called the pseudo baroclinic velocity), which has more regularities than the original baroclinic mode of the velocity. An auxiliary function $\\phi$, which looks like the effective viscous flux for the compressible Navier-Stokes equations, is also introduced to obtain the $L^\\infty$ bound of the temperature. Regarding the uniqueness, we use the idea of p...

Li, Jinkai

2015-01-01T23:59:59.000Z

347

NREL: News - NREL Model Licensed to Improve Accuracy of Battery...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the development of next generation electric-drive vehicle batteries," NREL Energy Storage Group Manager Ahmad Pesaran said. "By adding this model to their software package,...

348

Data Collection for Improved Cold Temperature Thermal Modeling...  

Broader source: Energy.gov (indexed) [DOE]

be generalized to other temperatures - Methodology uses response surface and empirical data-fitting techniques - Techniques result in simplified general models Cold Ambient...

349

Modeling economic impacts of climate change on U.S. forests  

E-Print Network [OSTI]

Climate change is expected to modify forest growth. As a result, the forestry sector of the United States could be affected. The primary objective of this study was to examine the economic impacts of climate change on the U.S. forestry sector...

Sousa, Claudio Ney Martins De

1994-01-01T23:59:59.000Z

350

Pluralistic Modelling Approaches to Simulating Climate-Land Change Interactions in East Africa  

E-Print Network [OSTI]

with atmospheric trends such as greenhouse gas concentrations, to loop back to regional and global climate change dynamics (Giorgi and Mearns 1999). Developing robust forecasts of land use change is essential in the proper simulation of land-climate interactions. Forecasts of land use at regional scales require several

351

Impact of subgrid-scale radiative heating variability on the stratocumulus-to-trade cumulus transition in climate models  

SciTech Connect (OSTI)

Subgrid-scale interactions between turbulence and radiation are potentially important for accurately reproducing marine low clouds in climate models. To better understand the impact of these interactions, the Weather Research and Forecasting (WRF) model is configured for large eddy simulation (LES) to study the stratocumulus-to-trade cumulus (Sc-to-Cu) transition. Using the GEWEX Atmospheric System Studies (GASS) composite Lagrangian transition case and the Atlantic Trade Wind Experiment (ATEX) case, it is shown that the lack of subgrid-scale turbulence-radiation interaction, as is the case in current generation climate models, accelerates the Sc-to-Cu transition. Our analysis suggests that in cloud-topped boundary layers subgrid-scale turbulence-radiation interactions contribute to stronger production of temperature variance, which in turn leads to stronger buoyancy production of turbulent kinetic energy and helps to maintain the Sc cover.

Xiao, Heng; Gustafson, William I.; Wang, Hailong

2014-04-29T23:59:59.000Z

352

Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations  

SciTech Connect (OSTI)

Mixed-phase stratus clouds are ubiquitous in the Arctic and play an important role in climate in this region. However, climate models have generally proven unsuccessful at simulating the partitioning of condensed water into liquid droplets and ice crystals in these Arctic clouds, which affect modeled cloud phase, cloud lifetime and radiative properties. An ice nucleation parameterization and a vapor deposition scheme were developed that together provide a physically-consistent treatment of mixed-phase clouds in global climate models. These schemes have been implemented in the National Center for Atmospheric Research (NCAR) Community Atmospheric Model Version 3 (CAM3). This report documents the performance of these schemes against ARM Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the CAM single column model version (SCAM). SCAM with our new schemes has a more realistic simulation of the cloud phase structure and the partitioning of condensed water into liquid droplets against observations during the M-PACE than the standard CAM simulations.

Liu, X; Ghan, SJ; Xie, S

2007-04-01T23:59:59.000Z

353

Improved di-neutron cluster model for 6He scattering  

E-Print Network [OSTI]

The structure of the three-body Borromean nucleus 6He is approximated by a two-body di-neutron cluster model. The binding energy of the 2n-\\alpha system is determined to obtain a correct description of the 2n-\\alpha coordinate, as given by a realistic three-body model calculation. The model is applied to describe the break-up effects in elastic scattering of 6He on several targets, for which experimental data exist. We show that an adequate description of the di-neutron-core degree of freedom permits a fairly accurate description of the elastic scattering of 6He on different targets.

A. M. Moro; K. Rusek; J. M. Arias; J. Gomez-Camacho; M. Rodriguez-Gallardo

2007-03-01T23:59:59.000Z

354

Increasing NOAA's computational capacity to improve global forecast modeling  

E-Print Network [OSTI]

Systems Division Stephen J. Lord Director, NWS NCEP Environmental Modeling Center 19 July 2010 (303) 4973060 tom.hamill@noaa.gov #12; 2 Executive Summary The accuracy of many

Hamill, Tom

355

Advanced Measurement and Modeling Techniques for Improved SOFC Cathodes  

SciTech Connect (OSTI)

The goal of this project was to develop an improved understanding of factors governing performance and degradation of mixed-conducting SOFC cathodes. Two new diagnostic tools were developed to help achieve this goal: (1) microelectrode half-cells for improved isolation of cathode impedance on thin electrolytes, and (2) nonlinear electrochemical impedance spectroscopy (NLEIS), a variant of traditional impedance that allows workers to probe nonlinear rates as a function of frequency. After reporting on the development and efficacy of these tools, this document reports on the use of these and other tools to better understand performance and degradation of cathodes based on the mixed conductor La{sub 1-x}Sr{sub x}CoO{sub 3-{delta}} (LSC) on gadolinia or samaria-doped ceria (GDC or SDC). We describe the use of NLEIS to measure O{sub 2} exchange on thin-film LSC electrodes, and show that O{sub 2} exchange is most likely governed by dissociative adsorption. We also describe parametric studies of porous LSC electrodes using impedance and NLEIS. Our results suggest that O{sub 2} exchange and ion transport co-limit performance under most relevant conditions, but it is O{sub 2} exchange that is most sensitive to processing, and subject to the greatest degradation and sample-to-sample variation. We recommend further work that focuses on electrodes of well-defined or characterized geometry, and probes the details of surface structure, composition, and impurities. Parallel work on primarily electronic conductors (LSM) would also be of benefit to developers, and to improved understanding of surface vs. bulk diffusion.

Stuart Adler; L. Dunyushkina; S. Huff; Y. Lu; J. Wilson

2006-12-31T23:59:59.000Z

356

Improvements to the SHDOM Radiative Transfer Modeling Package  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270 300 219Improvements to the SHDOM Radiative

357

A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part II: Single-Column Modeling of Arctic Clouds  

E-Print Network [OSTI]

of the arctic bound- ary layer, the presence of leads (cracks) in the sea ice surface, the persistence of mixed-phaseA New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part- dicted cloud boundaries and total cloud fraction compare reasonably well with observations. Cloud phase

Shupe, Matthew

358

The role of solar absorption in climate and climate change  

E-Print Network [OSTI]

1 The role of solar absorption in climate and climate change William Collins UC Berkeley Research Boulder, Colorado, USA #12;2 Prior Research on Absorption and Climate Field Experiments: · Central · Climate with enhanced cloud absorption Synthesis of models and aerosol observations: · Development

359

Data Collection for Improved Cold Temperature Thermal Modeling | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department1 Prepared by:DTE Energy VideoDarkof Energy Modeling

360

Dissemination of Climate Model Output to the Public and Commercial Sector  

SciTech Connect (OSTI)

Climate is defined by the Glossary of Meteorology as the mean of atmospheric variables over a period of time ranging from as short as a few months to multiple years and longer. Although the term climate is often used to refer to long-term weather statistics, the broader definition of climate is the time evolution of a system consisting of the atmosphere, hydrosphere, lithosphere, and biosphere. Physical, chemical, and biological processes are involved in interactions among the components of the climate system. Vegetation, soil moisture, and glaciers are part of the climate system in addition to the usually considered temperature and precipitation (Pielke, 2008). Climate change refers to any systematic change in the long-term statistics of climate elements (such as temperature, pressure, or winds) sustained over several decades or longer. Climate change can be initiated by external forces, such as cyclical variations in the Earth's solar orbit that are thought to have caused glacial and interglacial periods within the last 2 million years (Milankovitch, 1941). However, a linear response to astronomical forcing does not explain many other observed glacial and interglacial cycles (Petit et al., 1999). It is now understood that climate is influenced by the interaction of solar radiation with atmospheric greenhouse gasses (e.g., carbon dioxide, chlorofluorocarbons, methane, nitrous oxide, etc.), aerosols (airborne particles), and Earth's surface. A significant aspect of climate are the interannual cycles, such as the El Nino La Nina cycle which profoundly affects the weather in North America but is outside the scope of weather forecasts. Some of the most significant advances in understanding climate change have evolved from the recognition of the influence of ocean circulations upon the atmosphere (IPCC, 2007). Human activity can affect the climate system through increasing concentrations of atmospheric greenhouse gases, air pollution, increasing concentrations of aerosol, and land alteration. A particular concern is that atmospheric levels of CO{sub 2} may be rising faster than at any time in Earth's history, except possibly following rare events like impacts from large extraterrestrial objects (AMS, 2007). Atmospheric CO{sub 2} concentrations have increased since the mid-1700s through fossil fuel burning and changes in land use, with more than 80% of this increase occurring since 1900. The increased levels of CO{sub 2} will remain in the atmosphere for hundreds to thousands of years. The complexity of the climate system makes it difficult to predict specific aspects of human-induced climate change, such as exactly how and where changes will occur, and their magnitude. The Intergovernmental Panel for Climate Change (IPCC) was established by World Meteorological Organization (WMO) and the United Nations in 1988. The IPCC was tasked with assessing the scientific, technical and socioeconomic information needed to understand the risk of human-induced climate change, its observed and projected impacts, and options for adaptation and mitigation. The IPCC concluded in its Fourth Assessment Report (AR4) that warming of the climate system is unequivocal, and that most of the observed increase in globally averaged temperatures since the mid-20th century is very likely due to the observed increased in anthropogenic greenhouse gas concentrations (IPCC, 2007).

Robert Stockwell, PhD

2010-09-23T23:59:59.000Z

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Can a more realistic model error structure improve the parameter estimation in modelling the dynamics of sh populations?  

E-Print Network [OSTI]

or applying an estimation method that is robust to the error structure assumption in modelling the dynamicsCan a more realistic model error structure improve the parameter estimation in modelling the dynamics of ®sh populations? Y. Chena,* , J.E. Paloheimob a Fisheries Conservation Chair Program, Fisheries

Chen, Yong

362

Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model  

E-Print Network [OSTI]

forests indi- cates that the model representation of competition between plants and microbes for new mineral nitrogen resources is reasonable. Our results suggest a weaker dependence of net land carbon flux on soil moisture changes in tropical regions... National Laboratory, Oak Ridge, TN 37831-6335, USA 2Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543-1543, USA 3Climate and Global Dynamics Division, National Center for Atmospheric Research...

Thornton, P. E.; Doney, S. C.; Lindsay, Keith; Moore, J. K.; Mahowald, N. M.; Randerson, J. T.; Fung, I.; Lamarque, J. F.; Feddema, Johannes J.

2009-01-01T23:59:59.000Z

363

Improved Economic Operation of MSWC Plants with a New Model Based PID Control Strategy  

E-Print Network [OSTI]

Improved Economic Operation of MSWC Plants with a New Model Based PID Control Strategy M. Leskens the performance of the MSWC plant combustion control system, which typically is of the PID-type. In this paper models. More specific, from a closer analysis of the dynamics of these models a new PID-type of MSWC

Van den Hof, Paul

364

BLACK-BOX MODELLING OF HVAC SYSTEM: IMPROVING THE PERFORMANCES OF NEURAL NETWORKS  

E-Print Network [OSTI]

BLACK-BOX MODELLING OF HVAC SYSTEM: IMPROVING THE PERFORMANCES OF NEURAL NETWORKS Eric FOCK Ile de La Réunion - FRANCE ABSTRACT This paper deals with neural networks modelling of HVAC systems of HVAC system can be modelled using manufacturer design data presented as derived performance maps

Boyer, Edmond

365

Improving Efficiency of Data Assimilation Procedure for a Biomechanical Heart Model by  

E-Print Network [OSTI]

Improving Efficiency of Data Assimilation Procedure for a Biomechanical Heart Model by Representing to perform parameter estimation in a biomechanical model of the heart using synthetic observations [1, 3, 7, 8, 12, 15, 16] as an es- sential tool in heart modeling in order to personalize from

Paris-Sud XI, Université de

366

Improvements to Nuclear Data and Its Uncertainties by Theoretical Modeling  

SciTech Connect (OSTI)

This project addresses three important gaps in existing evaluated nuclear data libraries that represent a significant hindrance against highly advanced modeling and simulation capabilities for the Advanced Fuel Cycle Initiative (AFCI). This project will: Develop advanced theoretical tools to compute prompt fission neutrons and gamma-ray characteristics well beyond average spectra and multiplicity, and produce new evaluated files of U and Pu isotopes, along with some minor actinides; Perform state-of-the-art fission cross-section modeling and calculations using global and microscopic model input parameters, leading to truly predictive fission cross-sections capabilities. Consistent calculations for a suite of Pu isotopes will be performed; Implement innovative data assimilation tools, which will reflect the nuclear data evaluation process much more accurately, and lead to a new generation of uncertainty quantification files. New covariance matrices will be obtained for Pu isotopes and compared to existing ones. The deployment of a fleet of safe and efficient advanced reactors that minimize radiotoxic waste and are proliferation-resistant is a clear and ambitious goal of AFCI. While in the past the design, construction and operation of a reactor were supported through empirical trials, this new phase in nuclear energy production is expected to rely heavily on advanced modeling and simulation capabilities. To be truly successful, a program for advanced simulations of innovative reactors will have to develop advanced multi-physics capabilities, to be run on massively parallel super- computers, and to incorporate adequate and precise underlying physics. And all these areas have to be developed simultaneously to achieve those ambitious goals. Of particular interest are reliable fission cross-section uncertainty estimates (including important correlations) and evaluations of prompt fission neutrons and gamma-ray spectra and uncertainties.

Danon, Yaron; Nazarewicz, Witold; Talou, Patrick

2013-02-18T23:59:59.000Z

367

Modeling distributions of stem characteristics of genetically improved loblolly pine  

E-Print Network [OSTI]

presented in this study. N de 'n th Parame s Once the parameter estimates for each plot had been computed for the chosen distribution, multiple regression techniques were utilized to relate the parameter estimates to stand characteristics. Regression... best characterized the data. Models were subsequently developed to predict the diameter, height, and volume distributions using the moment-based beta probability density function. The probability density function parameters were predicted from stand...

Janssen, Jill Elizabeth

1988-01-01T23:59:59.000Z

368

Dark Stars: Improved Models and First Pulsation Results  

E-Print Network [OSTI]

We use the stellar evolution code MESA to study dark stars. Dark stars (DSs), which are powered by dark matter (DM) self-annihilation rather than by nuclear fusion, may be the first stars to form in the Universe. We compute stellar models for accreting DSs with masses up to 10^6 M_{sun}. The heating due to DM annihilation is self-consistently included, assuming extended adiabatic contraction of DM within the minihalos in which DSs form. We find remarkably good overall agreement with previous models, which assumed polytropic interiors. There are some differences in the details, with positive implications for observability. We found that, in the mass range of 10^4 -10^5 M_{sun}, our DSs are hotter by a factor of 1.5 than those in Freese et al.(2010), are smaller in radius by a factor of 0.6, denser by a factor of 3 - 4, and more luminous by a factor of 2. Our models also confirm previous results, according to which supermassive DSs are very well approximated by (n=3)-polytropes. We also perform a first study of dark star pulsations. Our DS models have pulsation modes with timescales ranging from less than a day to more than two years in their rest frames, at z ~ 15, depending on DM particle mass and overtone number. Such pulsations may someday be used to identify bright, cool objects uniquely as DSs; if properly calibrated, they might, in principle, also supply novel standard candles for cosmological studies.

Tanja Rindler-Daller; Michael H. Montgomery; Katherine Freese; Donald E. Winget; Bill Paxton

2015-01-12T23:59:59.000Z

369

Data Collection for Improved Cold Temperature Thermal Modeling and Strategy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department1 Prepared by:DTE Energy VideoDark

370

Coastal communities and climate change : a dynamic model of risk perception, storms, and adaptation  

E-Print Network [OSTI]

Climate change impacts, including sea-level rise and changes in tropical storm frequency and intensity, will pose signicant challenges to city planners and coastal zone managers trying to make wise investment and protection ...

Franck, Travis Read

2009-01-01T23:59:59.000Z

371

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions  

SciTech Connect (OSTI)

The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

1992-06-01T23:59:59.000Z

372

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions  

SciTech Connect (OSTI)

The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

1992-06-01T23:59:59.000Z

373

Improvements to building energy usage modeling during early design stages and retrofits  

E-Print Network [OSTI]

A variety of improvements to the MIT Design Advisor, a whole-building energy usage modeling tool intended for use during early design stages, are investigated. These include changes to the thermal mass temperature distribution ...

Mandelbaum, Andrew (Andrew Joseph)

2014-01-01T23:59:59.000Z

374

Final Technical Report for Collaborative Research: Regional climate-change projections through next-generation empirical and dynamical models, DE-FG02-07ER64429  

SciTech Connect (OSTI)

This is the final report for a DOE-funded research project describing the outcome of research on non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. The main results consist of extensive development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes.

Smyth, Padhraic [University of California, Irvine

2013-07-22T23:59:59.000Z

375

An integrated assessment modeling framework for uncertainty studies in global and regional climate change: the MIT IGSM-CAM (version 1.0)  

E-Print Network [OSTI]

This paper describes a computationally efficient framework for uncertainty studies in global and regional climate change. In this framework, the Massachusetts Institute of Technology (MIT) Integrated Global System Model ...

Monier, Erwan

376

Tropical and Subtropical Cloud Transitions in Weather and Climate Prediction Models: The GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI)  

E-Print Network [OSTI]

, Paris, France e Canadian Centre for Climate Modelling and Analysis, Victoria, British Columbia, Canada f, Melbourne, Victoria, Australia i Monash University, Melbourne, Victoria, Australia j Department of Earth for the season June­July­August

Randall, David A.

377

TOWARDS IMPROVED 1-D SETTLER MODELLING: CALIBRATION OF THE B URGER MODEL AND CASE STUDY  

E-Print Network [OSTI]

wastewater treatment plants (WWTP). Indeed, the performance of secondary clarifiers affects the effluent. Furthermore, more intense rain events and longer draughts between rain events, caused by climate change quality as well as the biomass inventory in the entire treatment plant. As biomass is the driving force

Bürger, Raimund

378

Improved user interface design for site selection modeling system  

SciTech Connect (OSTI)

The Site Selection Modeling System (SSMS) is a customized application within the Environmental Data Atlas (EDA), which is an integrated geographic information system (GIS) for environmental applications at the Savannah River site (SRS) developed jointly by the Environmental Sciences Section (ESS) of Westinghouse Savannah River Company and by the University of South Carolina (USC). The SSMS was developed to assist analysts with site selection activities carried out by the ESS and is a powerful tool with a graphical user interface that allows non-GIS analysts to use the application. However, use of the SSMS in recent siting exercises revealed deficiencies in the user interface as a production tool. This paper specifies user interface design criteria necessary for a production application and describes the implementation of these design criteria in the SSMS.

Koffman, L.D. [Westinghouse Savannah River Site, Aiken, SC (United States)

1996-12-31T23:59:59.000Z

379

Uncertainty analysis of an aviation climate model and an aircraft price model for assessment of environmental effects  

E-Print Network [OSTI]

Estimating, presenting, and assessing uncertainties are important parts in assessment of a complex system. This thesis focuses on the assessment of uncertainty in the price module and the climate module in the Aviation ...

Jun, Mina

2007-01-01T23:59:59.000Z

380

RESIDUA UPGRADING EFFICIENCY IMPROVEMENT MODELS: COKE FORMATION PREDICTABILITY MAPS  

SciTech Connect (OSTI)

The dispersed particle solution model of petroleum residua structure was used to develop predictors for pyrolytic coke formation. Coking Indexes were developed in prior years that measure how near a pyrolysis system is to coke formation during the coke formation induction period. These have been demonstrated to be universally applicable for residua regardless of the source of the material. Coking onset is coincidental with the destruction of the ordered structure and the formation of a multiphase system. The amount of coke initially formed appears to be a function of the free solvent volume of the original residua. In the current work, three-dimensional coke make predictability maps were developed at 400 C, 450 C, and 500 C (752 F, 842 F, and 932 F). These relate residence time and free solvent volume to the amount of coke formed at a particular pyrolysis temperature. Activation energies for two apparent types of zero-order coke formation reactions were estimated. The results provide a new tool for ranking residua, gauging proximity to coke formation, and predicting initial coke make tendencies.

John F. Schabron; A. Troy Pauli; Joseph F. Rovani Jr.

2002-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

STATISTICS OF EXTREMES IN CLIMATE: RECONCILING THEORY WITH OBSERVATIONS  

E-Print Network [OSTI]

1 STATISTICS OF EXTREMES IN CLIMATE: RECONCILING THEORY WITH OBSERVATIONS Rick Katz Institute) Unified Modeling of Distributions (6) Resources #12;4 #12;5 (1) Background · Use of Extremal Models -- Stochastic weather generators Improved treatment of extremes #12;6 (2) Observed Tail Behavior · Extreme Value

Katz, Richard

382

An improved model for the transit entropy of monatomic liquids  

SciTech Connect (OSTI)

In the original formulation of V-T theory for monatomic liquid dynamics, the transit contribution to entropy was taken to be a universal constant, calibrated to the constant-volume entropy of melting. This model suffers two deficiencies: (a) it does not account for experimental entropy differences of {+-}2% among elemental liquids, and (b) it implies a value of zero for the transit contribution to internal energy. The purpose of this paper is to correct these deficiencies. To this end, the V-T equation for entropy is fitted to an overall accuracy of {+-}0.1% to the available experimental high temperature entropy data for elemental liquids. The theory contains two nuclear motion contributions: (a) the dominant vibrational contribution S{sub vib}(T/{theta}{sub 0}), where T is temperature and {theta}{sub 0} is the vibrational characteristic temperature, and (b) the transit contribution S{sub tr}(T/{theta}{sub tr}), where {theta}{sub tr} is a scaling temperature for each liquid. The appearance of a common functional form of S{sub tr} for all the liquids studied is a property of the experimental data, when analyzed via the V-T formula. The resulting S{sub tr} implies the correct transit contribution to internal energy. The theoretical entropy of melting is derived, in a single formula applying to normal and anomalous melting alike. An ab initio calculation of {theta}{sub 0}, based on density functional theory, is reported for liquid Na and Cu. Comparison of these calculations with the above analysis of experimental entropy data provides verification of V-T theory. In view of the present results, techniques currently being applied in ab initio simulations of liquid properties can be employed to advantage in the further testing and development of V-T theory.

Wallace, Duane C [Los Alamos National Laboratory; Chisolm, Eric D [Los Alamos National Laboratory; Bock, Nicolas [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

383

Response of water vapor to interannual variations of SST: Results from NCAR Community Climate Model (CCM2)  

SciTech Connect (OSTI)

This paper very briefly documents the response of water vapor to interannual changes in sea surface temperature (SST) in two of the most frequently used climate models: the National Center for Atmospheric Research (NCAR) community climate model (CCM2) and the GFDL spectral model (R30). The corresponding results from radiosonde data are also presented for reference. A simple linear regression model is used to quantify the response of water vapor to changes in SST in the two simulations. Except for the negative response of water vapor over Australia, CCM2 simulates the major characteristics in the horizontal structure of the water vapor response shown in the radiosonde data. The negative response of water over Australia is also not well simulated by GFDL R30. In addition, GFDL R30 significantly underestimates the positive response over the Indian Ocean. The horizontal contrasts between the negative response over the western Pacific and the positive response over the central and eastern Pacific in the model simulations are larger than in the radiosonde data. The negative response in the subtropical region in CCM2 is more pronounced than in R30. Averaged over the tropics, CCM2 has a larger water vapor response in both the boundary layer and the upper troposphere than R30. The correlations between variations of water vapor in the upper troposphere and those at the surface level are also stronger in CCM2 than in R30. 2 refs., 5 figs.

Sun, De-Zheng [National Center For Atmospheric Research, Boulder, CO (United States)

1997-11-01T23:59:59.000Z

384

Detection of greenhouse-gas-induced climatic change. Progress report, 1 December 1991--30 June 1992  

SciTech Connect (OSTI)

The aims of the US Department of Energy`s Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. This project will address: The regional and seasonal details of the expected climatic changes; how rapidly will these changes occur; how and when will the climatic effects of CO{sub 2} and other greenhouse gases be first detected; and the relationships between greenhouse-gas-induced climatic change and changes caused by other external and internal factors. The present project addresses all of these questions. Many of the diverse facets of greenhouse-gas-related climate research can be grouped under three interlinked subject areas: modeling, first detection and supporting data. This project will include the analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulation Models (GCMs).

Wigley, T.M.L.; Jones, P.D.

1992-07-15T23:59:59.000Z

385

Improving the Production Efficiency of Beef Cows through Mathematical Modeling and Genomics  

E-Print Network [OSTI]

Improving the Production Efficiency of Beef Cows through Mathematical Modeling and Genomics that integrating recent advances in genomics, the identification of intrinsic genetic factors that determine and evaluate the individual-based model for production efficiency· of beef cows using genomic and biomarker

386

A Supply-Demand Model Based Scalable Energy Management System for Improved Energy  

E-Print Network [OSTI]

the dependency of an electronic system to primary energy sources (i.e. AC power or battery). For reliable energy generation and consumption parameters. The system uses economics inspired supply-demand modelA Supply-Demand Model Based Scalable Energy Management System for Improved Energy Utilization

Bhunia, Swarup

387

Improved Swing-Cut Modeling for Planning and Scheduling of Oil-Refinery Distillation Units  

E-Print Network [OSTI]

, Pennsylvania 15213, United States. Crude-oil assays, Distillation, Fractionation, Swing-cuts, Temperature cut with in the nonlinear optimization. 1. INTRODUCTION Distillation or fractionation models for planning and scheduling1 Improved Swing-Cut Modeling for Planning and Scheduling of Oil-Refinery Distillation Units Brenno

Grossmann, Ignacio E.

388

Computational Modeling of Ballast Tanks to Improve Understanding and Maximize Effectiveness of Management Practices and Treatment  

E-Print Network [OSTI]

Computational Modeling of Ballast Tanks to Improve Understanding and Maximize Effectiveness tanks exchange coastal ballast water with mid-ocean seawater (referred to as "ballast water exchange of high-resolution computational fluid dynamics (CFD) to model ballast tank water flow and to predict EE

389

An Improved Global Model for Air-Sea Exchange of Mercury: High  

E-Print Network [OSTI]

An Improved Global Model for Air-Sea Exchange of Mercury: High Concentrations over the North by inputs from Hg enriched subsurface waters through entrainment and Ekman pumping. Globally, subsurface). Previous efforts to model Hg air-sea exchange (2) and atmospheric transport (4-6) have been unable

Holmes, Christopher D.

390

IN THIS ISSUE Regional Climate Change..............1  

E-Print Network [OSTI]

IN THIS ISSUE · Regional Climate Change..............1 · From the Executive Director...........2 release of new climate change scenarios from the Canadian Regional Climate Model (CRCM) heralds of the fundamental questions remaining with respect to understanding climate change and even climate variability. And

Hamann, Andreas

391

Determining Greenland Ice Sheet sensitivity to regional climate change: one-way coupling of a 3-D thermo-mechanical ice sheet model with a mesoscale climate model  

E-Print Network [OSTI]

in running RCM’s over Greenland to produce high-qualityoutlet glaciers. For Greenland, this detail is specificallyCurrently, no coupled Greenland Ice Sheet model experiment

Schlegel, Nicole-Jeanne

2011-01-01T23:59:59.000Z

392

Small Residence Multizone Modeling with Partial Conditioning for Energy Effieiency in Hot and Humid Climates  

E-Print Network [OSTI]

The purpose of this study is to reduce the energy cost of the low-income households in the hot and humid climates of the U.S. and thereby to help them afford comfortable homes. In this perspective, a new HVAC energy saving strategy, i.e. “partial...

Andolsun, Simge

2013-07-30T23:59:59.000Z

393

Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment  

E-Print Network [OSTI]

-10, 12165 Berlin, Germany H. Huebener Hessian Agency for the Environment and Geology, Rheingaustra�e 186, Italy W. May Á S. Yang Danish Climate Centre, Danish Meteorological Institute, Lyngbyvej 100, 2100.4) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K, is studied

Dufresne, Jean-Louis

394

On the Use of Autoregression Models to Estimate Climate Sensitivity Michael E. Schlesinger1  

E-Print Network [OSTI]

anthropogenic sulfate aerosol (GA), (3) GA plus tropospheric ozone and putative solar irradiance variations changes. To do so the ARM considerably reduces the heat capacity of the climate system such that h ranges Science and Management and Department of Economics, University of California, Santa Barbara, CA 93106. 3

Kolstad, Charles

395

A model for simulation of the climate and hydrology of the Great Lakes basin  

E-Print Network [OSTI]

. One factor that makes the net supply of water (precipitation minus evaporation) to the Great Lakes troublesome are the tendency for unrealistically low pressure at mean sea level and for persistent heavy low stratus clouds. INDEX TERMS: 1620 Global Change: Climate dynamics (3309); 1655 Global Change: Water cycles

396

P 4.3 MIADAC Modelling Climate Change Policies: Mitigation, Adaptation, and  

E-Print Network [OSTI]

in emission trading markets. · Analyze the political economy side of national and international climate policy in Switzerland We will extend our phase 2 work on adaptation measures (Gonseth, 2008) and refine existing estimates of impact costs for the Swiss economy (Ecoplan - Sigmaplan, 2007) in order to achieve more

Richner, Heinz

397

4, 28752899, 2007 Climate change  

E-Print Network [OSTI]

HESSD 4, 2875­2899, 2007 Climate change impact and model inaccuracy P. Droogers et al. Title Page are under open-access review for the journal Hydrology and Earth System Sciences Climate change impact­2899, 2007 Climate change impact and model inaccuracy P. Droogers et al. Title Page Abstract Introduction

Paris-Sud XI, Université de

398

Modeling, Analysis, Predictions, and Projections Email: oar.cpo.mapp@noaa.gov  

E-Print Network [OSTI]

Earth system models to better simulate the climate system? Can we improve intraseasonal to seasonal mission, MAPP supports the development of advanced Earth system models that can predict climate variations, and the external research community. MAPP Objectives · Improve Earth system models · Achieve an integrated Earth

399

Polar amplification of climate change in coupled models Received: 21 November 2002 / Accepted: 11 March 2003 / Published online: 17 June 2003  

E-Print Network [OSTI]

the models. The range of simulated polar warming in the Arctic is from 1.5 to 4.5 times the global mean among models that the Arctic warms more than subpolar regions when subject to increasing levels hemispheres the range of warming across global climate models is considerable, with the range of warm- ing

Bitz, Cecilia

400

Climate change effects on agriculture: Economic responses to biophysical shocks  

SciTech Connect (OSTI)

Agricultural production is sensitive to weather and will thus be directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the IPCC’s Representative Concentration Pathway that result in end-of-century radiative forcing of 8.5 watts per square meter. The mean biophysical impact on crop yield with no incremental CO2 fertilization is a 17 percent reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11 percent, increase area of major crops by 12 percent, and reduce consumption by 2 percent. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences includes model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

Nelson, Gerald; Valin, Hugo; Sands, Ronald; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, G. Page; von Lampe, Martin; Lotze-Campen, Hermann; Mason d'Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Mueller, C.; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, E.; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk

2013-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Sandia National Laboratories: Global Climate & Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

20, 2013, in Advanced Materials Laboratory, Energy Efficiency, Facilities, Global Climate & Energy, Materials Science, Modeling, Modeling & Analysis, Partnership, Research &...

402

Improvement of modelling capabilities for assessing urban contamination : The EMRAS Urban Remediation Working Group.  

SciTech Connect (OSTI)

The Urban Remediation Working Group of the International Atomic Energy Agency's Environmental Modeling for Radiation Safety (EMRAS) programme was established to improve modeling and assessment capabilities for radioactively contaminated urban situations, including the effects of countermeasures. An example of the Working Group's activities is an exercise based on Chernobyl fallout data in Ukraine, which has provided an opportunity to compare predictions among several models and with available measurements, to discuss reasons for discrepancies, and to identify areas where additional information would be helpful.

Thiessen, K. M.; Batandjieva, B.; Andersson, K. G.; Arkhipov, A.; Charnock, T. W.; Gallay, F.; Gaschak, S.; Golikov, V.; Hwang, W. T.; Kaiser, J. C.; Kamboj, S.; Steiner, M.; Tomas, J.; Trifunovic, D.; Yu, C.; Ziemer, R. L.; Zlobenko, B.; Environmental Science Division; SENES Oak Ridge; IAEA; Riso National Lab.; Chernobyl Center for Nuclear Safety; Health Protection Agency; IRSN; Inst. of Radiation Hygene of the Ministry of Public Health, Russian Federation; KAERI, Republic of Korea; GSF, Germany; BfS, Germany; CPHR, Cuba; State Office for Radiation Protection, Croatia; AECL, Canada; National Academy of Science, Ukraine

2008-01-01T23:59:59.000Z

403

Effect of Scale on the Modeling of Hydrologic Effects of Climate Change on the Niger River Basin  

E-Print Network [OSTI]

infrastructural investments for irrigation and hydroelectricity development. Climate change is a potential threat

Mountziaris, T. J.

404

Simulated diurnal rainfall physics in a multi-scale global climate model with embedded explicit convection  

E-Print Network [OSTI]

their Community Earth System Model (Richard Neale, personaldevelopment of Earth system models capable of reproducing

Pritchard, Michael Stephen

2011-01-01T23:59:59.000Z

405

he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study  

SciTech Connect (OSTI)

This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistryâ??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earthâ??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

Keene, William C. [University of Virginia] [University of Virginia; Long, Michael S. [University of Virginia] [University of Virginia

2013-05-20T23:59:59.000Z

406

Integrated Assessment of Hadley Centre (HadCM2) Climate Change Projections on Agricultural Productivity and Irrigation Water Supply in the Conterminous United States.I. Climate change scenarios and impacts on irrigation water supply simulated with the HUMUS model.  

SciTech Connect (OSTI)

This paper describes methodology and results of a study by researchers at PNNL contributing to the water sector study of the U.S. National Assessment of Climate Change. The vulnerability of water resources in the conterminous U.S. to climate change in 10-y periods centered on 2030 and 2095--as projected by the HadCM2 general circulation model--was modeled with HUMUS (Hydrologic Unit Model of the U.S.). HUMUS consists of a GIS that provides data on soils, land use and climate to drive the hydrology model Soil Water Assessment Tool (SWAT). The modeling was done at the scale of the 2101 8-digit USGS hydrologic unit areas (HUA). Results are aggregated to the 4-digit and 2-digit (Major Water Resource Region, MWRR) scales for various purposes. Daily records of temperature and precipitation for 1961-1990 provided the baseline climate. Water yields (WY)--sum of surface and subsurface runoff--increases from the baseline period over most of the U.S. in 2030 and 2095. In 2030, WY increases in the western US and decreases in the central and southeast regions. Notably, WY increases by 139 mm from baseline in the Pacific NW. Decreased WY is projected for the Lower Mississippi and Texas Gulf basins, driven by higher temperatures and reduced precipitation. The HadCM2 2095 scenario projects a climate significantly wetter than baseline, resulting in WY increases of 38%. WY increases are projected throughout the eastern U.S. WY also increases in the western U.S. Climate change also affects the seasonality of the hydrologic cycle. Early snowmelt is induced in western basins, leading to dramatically increased WYs in late winter and early spring. The simulations were run at current (365 ppm) and elevated (560 ppm) atmospheric CO2 concentrations to account for the potential impacts of the CO2-fertilization effect. The effects of climate change scenario were considerably greater than those due to elevated CO2 but the latter, overall, decreased losses and augmented increases in water yield.

Rosenberg, Norman J.; Brown, Robert A.; Izaurralde, R Cesar C.; Thomson, Allison M.

2003-06-30T23:59:59.000Z

407

Data Quality Assessment and Control for the ARM Climate Research Facility  

SciTech Connect (OSTI)

The mission of the Atmospheric Radiation Measurement (ARM) Climate Research Facility is to provide observations of the earth climate system to the climate research community for the purpose of improving the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their coupling with the Earth's surface. In order for ARM measurements to be useful toward this goal, it is important that the measurements are of a known and reasonable quality. The ARM data quality program includes several components designed to identify quality issues in near-real-time, track problems to solutions, assess more subtle long-term issues, and communicate problems to the user community.

Peppler, R

2012-06-26T23:59:59.000Z

408

Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land-surface model (WRF3-CLM3.5)  

SciTech Connect (OSTI)

A regional atmosphere model [Weather Research and Forecasting model version 3 (WRF3)] and a land surface model [Community Land Model, version 3.5 (CLM3.5)] were coupled to study the interactions between the atmosphere and possible future California land-cover changes. The impact was evaluated on California's climate of changes in natural vegetation under climate change and of intentional afforestation. The ability of WRF3 to simulate California's climate was assessed by comparing simulations by WRF3-CLM3.5 and WRF3-Noah to observations from 1982 to 1991. Using WRF3-CLM3.5, the authors performed six 13-yr experiments using historical and future large-scale climate boundary conditions from the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1). The land-cover scenarios included historical and future natural vegetation from the Mapped Atmosphere-Plant-Soil System-Century 1 (MC1) dynamic vegetation model, in addition to a future 8-million-ha California afforestation scenario. Natural vegetation changes alone caused summer daily-mean 2-m air temperature changes of -0.7 to +1 C in regions without persistent snow cover, depending on the location and the type of vegetation change. Vegetation temperature changes were much larger than the 2-m air temperature changes because of the finescale spatial heterogeneity of the imposed vegetation change. Up to 30% of the magnitude of the summer daily-mean 2-m air temperature increase and 70% of the magnitude of the 1600 local time (LT) vegetation temperature increase projected under future climate change were attributable to the climate-driven shift in land cover. The authors projected that afforestation could cause local 0.2-1.2 C reductions in summer daily-mean 2-m air temperature and 2.0-3.7 C reductions in 1600 LT vegetation temperature for snow-free regions, primarily because of increased evapotranspiration. Because some of these temperature changes are of comparable magnitude to those projected under climate change this century, projections of climate and vegetation change in this region need to consider these climate-vegetation interactions.

Subin, Z.M.; Riley, W.J.; Kueppers, L.M.; Jin, J.; Christianson, D.S.; Torn, M.S.

2010-11-01T23:59:59.000Z

409

Improvement of capabilities of the Distributed Electrochemistry Modeling Tool for investigating SOFC long term performance  

SciTech Connect (OSTI)

This report provides an overview of the work performed for Solid Oxide Fuel Cell (SOFC) modeling during the 2012 Winter/Spring Science Undergraduate Laboratory Internship at Pacific Northwest National Laboratory (PNNL). A brief introduction on the concept, operation basics and applications of fuel cells is given for the general audience. Further details are given regarding the modifications and improvements of the Distributed Electrochemistry (DEC) Modeling tool developed by PNNL engineers to model SOFC long term performance. Within this analysis, a literature review on anode degradation mechanisms is explained and future plans of implementing these into the DEC modeling tool are also proposed.

Gonzalez Galdamez, Rinaldo A.; Recknagle, Kurtis P.

2012-04-30T23:59:59.000Z

410

Moving Toward Climate Change  

E-Print Network [OSTI]

as a response to climate disruption. Even the most optimistic models forecast that if greenhouse-gas emissions Appendix 1 Solutions on the Ground 67 Appendix 2 Reliability of Trends and Forecasts 78 Literature Cited 81. In the absence of substantial reductions in global greenhouse gas emissions, the climate of the Y2Y region

411

Potential impacts of climate change on tropospheric ozone in California: a preliminary episodic modeling assessment of the Los Angeles basin and the Sacramento valley  

SciTech Connect (OSTI)

In this preliminary and relatively short modeling effort, an initial assessment is made for the potential air quality implications of climate change in California. The focus is mainly on the effects of changes in temperature and related meteorological and emission factors on ozone formation. Photochemical modeling is performed for two areas in the state: the Los Angeles Basin and the Sacramento Valley.

Taha, Haider

2001-01-01T23:59:59.000Z

412

An improved Reynolds-equation model for gas damping of microbeam motion.  

SciTech Connect (OSTI)

An improved gas-damping model for the out-of-plane motion of a near-substrate microbeam is developed based on the Reynolds equation (RE). A boundary condition for the RE is developed that relates the pressure at the beam edge to the beam motion. The coefficients in this boundary condition are determined from Navier-Stokes slip-jump (NSSJ) simulations for small slip lengths (relative to the gap height) and from direct simulation Monte Carlo (DSMC) molecular gas dynamics simulations for larger slip lengths. This boundary condition significantly improves the accuracy of the RE when the microbeam width is only slightly greater than the gap height between the microbeam and the substrate. The improved RE model is applied to microbeams fabricated using the SUMMiT V process.

Gallis, Michail A.; Torczynski, John Robert

2003-09-01T23:59:59.000Z

413

Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes  

SciTech Connect (OSTI)

We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States, but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching >1300 mgN/m2/yr averaged over regional to continental scale regions in RCP 2.6 and 8.5, ~30-50% larger than the values in any region currently (2000). Despite known issues, the new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

Lamarque, Jean-Francois; Dentener, Frank; McConnell, J.R.; Ro, C-U; Shaw, Mark; Vet, Robert; Bergmann, D.; Cameron-Smith, Philip; Dalsoren, S.; Doherty, R.; Faluvegi, G.; Ghan, Steven J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, David; Shindell, Drew; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Zeng, G.; Curran, M.; Dahl-Jensen, D.; Das, S.; Fritzsche, D.; Nolan, M.

2013-08-20T23:59:59.000Z

414

An improved numerical scheme for a coupled system to model soil erosion and polydispersed sediments transport  

E-Print Network [OSTI]

An improved numerical scheme for a coupled system to model soil erosion and polydispersed sediments, the positivity of both water depth and sediment concentrations. Recently, a well-balanced MUSCL-Hancock scheme step is required to ensure the positivity of sediment concentrations. The main result of this paper

Boyer, Edmond

415

Project Title Improved Emission Models for Project Evaluation (MOVES-Matrix) University Georgia Institute of Technology  

E-Print Network [OSTI]

Project Title Improved Emission Models for Project Evaluation (MOVES-Matrix) University Georgia or organization) DOT - $92,292.15 Total Project Cost $92,292.15 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates November 2013 - June 2015 Brief Description of Research Project Local governments are using

California at Davis, University of

416

"How Can Earth Observation Data Be Implemented To Improve Parameterisation of Carbon Models"  

E-Print Network [OSTI]

"How Can Earth Observation Data Be Implemented To Improve Parameterisation of Carbon Models practices, afforestation and reforestation. The quantification of the strength of carbon uptake by forests is therefore important if we intend to offset emissions by the management of forests for sequestration. Current

417

Carbon Nanotube Mats and Fibers with Irradiation-Improved Mechanical Characteristics: ATheoretical Model  

E-Print Network [OSTI]

Carbon Nanotube Mats and Fibers with Irradiation-Improved Mechanical Characteristics: ATheoretical model to calculate mechanical characteristics of macroscopic mats and fibers of single-walled carbon-flow technique [4]. The SWNT fibers, which in contrast to most ordinary carbon fibers could be strongly bent with

Krasheninnikov, Arkady V.

418

Improving estimates of African woodland biomass by fusing radar data, models and ground observations  

E-Print Network [OSTI]

Improving estimates of African woodland biomass by fusing radar data, models and ground management of savannahs and woodlands requires accurate estimates of the woody biomass. For these reasons, developing new methods to accurately estimate woody biomass and its changes is high on the political

419

Improving Managed Environmental Water Use: Shasta River Flow and Temperature Modeling  

E-Print Network [OSTI]

i Improving Managed Environmental Water Use: Shasta River Flow and Temperature Modeling By SARAH and perhaps reduce some water management conflicts. Additional research for managing environmental water use manage water supplies and demands to increase water use efficiency through conservation, water markets

Lund, Jay R.

420

Adaptive Software Testing in the Context of an Improved Controlled Markov Chain Model  

E-Print Network [OSTI]

Adaptive Software Testing in the Context of an Improved Controlled Markov Chain Model Hai Hu, Chang@buaa.edu.cn Abstract Adaptive software testing is the counterpart of adaptive control in software testing. It means that software testing strategy should be adjusted on- line by using the testing data collected during software

Kundu, Sukhamay

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hands-On and Minds-On Modeling Activities to Improve Students' Conceptions of Microscopic Friction  

E-Print Network [OSTI]

Hands-On and Minds-On Modeling Activities to Improve Students' Conceptions of Microscopic Friction of microscopic friction. We will also present our investigation on the relative effectiveness of the use, it is possible to facilitate the refinement of students' ideas of microscopic friction. Keywords: friction

Zollman, Dean

422

A Hierarchical Bayesian Model for Improving Short-Term Forecasting of Hospital Demand by Including Meteorological  

E-Print Network [OSTI]

A Hierarchical Bayesian Model for Improving Short-Term Forecasting of Hospital Demand by Including Sarran4 Abstract The effect of weather on health has been widely researched, and the ability to forecast, better predictions of hospital demand that are more sensitive to fluctuations in weather can allow

Sahu, Sujit K

423

Resveratrol Improves Survival, Hemodynamics and Energetics in a Rat Model of Hypertension Leading to  

E-Print Network [OSTI]

Resveratrol Improves Survival, Hemodynamics and Energetics in a Rat Model of Hypertension Leading and vascular function as well as cardiac and skeletal muscle energy metabolism were assessed in a hypertensive/kg/day; HS-RSV) was given for 8 weeks after hypertension and cardiac hypertrophy were established (which

Paris-Sud XI, Université de

424

USING TIME-LAPSE SEISMIC MEASUREMENTS TO IMPROVE FLOW MODELING OF CO2 INJECTION  

E-Print Network [OSTI]

Marly. The EOR process in the RCP section of the Weyburn Field uses CO2 and water injection to displaceUSING TIME-LAPSE SEISMIC MEASUREMENTS TO IMPROVE FLOW MODELING OF CO2 INJECTION IN THE WEYBURN, particularly CO2. Time lapse seismic monitoring has motivated changes to the reservoir description in a flow

425

Wake models are used to improve predictions of Annual Energy Production (AEP) of wind farms.  

E-Print Network [OSTI]

deficit in the near field, Proceedings of the European Wind Energy Conference, Madrid, Spain, European, Boundary Layer Meteorology 132, pp. 129-149, 2009. [3] G. Larsen, H. Madsen and N. Sørensen, Mean wake·Wake models are used to improve predictions of Annual Energy Production (AEP) of wind farms. ·Wake

Daraio, Chiara

426

Mathematical Modeling of Carbon Dioxide Injection in the Subsurface for Improved Hydrocarbon Recovery and Sequestration  

E-Print Network [OSTI]

Mathematical Modeling of Carbon Dioxide Injection in the Subsurface for Improved Hydrocarbon Recovery and Sequestration Philip C. Myint, Laurence Rongy, Kjetil B. Haugen, Abbas Firoozabadi Department. Combustion of fossil fuels contributes to rising atmospheric carbon dioxide (CO2) levels that have been

Firoozabadi, Abbas

427

Detection of CO sub 2 -induced climatic change  

SciTech Connect (OSTI)

In spite of the strong circumstantial evidence that the greenhouse effect has contributed significantly to the observed global warming, we are still unable to state unequivocally that the effect has been detected. Either we must eliminate all other possibilities, or we must identify one or more multivariate characteristics of the observed changes in climate that are unique signature of the greenhouse effect. We propose to continue earlier work in five areas: Updating, improvement and analysis of our global (land and marine) temperature data set, The development and use of multivariate techniques for the detection of greenhouse-gas-induced climatic change, The further development and use of simple transient-response climate models in order to elucidate the responses of the climate system to external and internal forcing, Validation of General Circulation Models using a variety of test statistics, and The use of regression methods to produce sub-grid-scale information from GCM output. 63 refs., 2 figs., 1 tab.

Wigley, T.M.L.

1990-07-15T23:59:59.000Z

428

Regional & Global Climate Modeling (RGCM) Program | U.S. DOE Office of  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC) Regional & Global Climate

429

CLIMATE CHANGE IMPACTS, VULNERABILITIES, AND  

E-Print Network [OSTI]

CLIMATE CHANGE IMPACTS, VULNERABILITIES, AND ADAPTATION IN THE SAN FRANCISCO BAY AREA Commission's California Climate Change Center JULY 2012 CEC5002012071 Prepared for: California Energy, as well as projections of future changes in climate based on modeling studies using various plausible

430

On an improved sub-regional water resources management representation for integration into earth system models  

SciTech Connect (OSTI)

Human influence on the hydrologic cycle includes regulation and storage, consumptive use and overall redistribution of water resources in space and time. Representing these processes is essential for applications of earth system models in hydrologic and climate predictions, as well as impact studies at regional to global scales. Emerging large-scale research reservoir models use generic operating rules that are flexible for coupling with earth system models. Those generic operating rules have been successful in reproducing the overall regulated flow at large basin scales. This study investigates the uncertainties of the reservoir models from different implementations of the generic operating rules using the complex multi-objective Columbia River Regulation System in northwestern United States as an example to understand their effects on not only regulated flow but also reservoir storage and fraction of the demand that is met. Numerical experiments are designed to test new generic operating rules that combine storage and releases targets for multi-purpose reservoirs and to compare the use of reservoir usage priorities, withdrawals vs. consumptive demand, as well as natural vs. regulated mean flow for calibrating operating rules. Overall the best performing implementation is the use of the combined priorities (flood control storage targets and irrigation release targets) operating rules calibrated with mean annual natural flow and mean monthly withdrawals. The challenge of not accounting for groundwater withdrawals, or on the contrary, assuming that all remaining demand is met through groundwater extractions, is discussed.

Voisin, Nathalie; Li, Hongyi; Ward, Duane L.; Huang, Maoyi; Wigmosta, Mark S.; Leung, Lai-Yung R.

2013-09-30T23:59:59.000Z

431

Modeling the downstream improvements in dissolved oxygen from aeration of Cherokee and Douglas releases  

SciTech Connect (OSTI)

This report is an evaluation of downstream improvements in dissolved oxygen (DO) which can be anticipated as a result of different levels of aeration at Cherokee and Douglas Dams. The report describes (a) field studies undertaken to describe late summer conditions for model calibration and verification; (b) development and calibration of unsteady flow and water quality models for the tailwater reaches from Cherokee and Douglas Dams to the Holston and French Broad River confluence at the head of Fort Loudoun Reservoir; and (c) model predictions of DO in the tailwater reaches and at their confluence (after mixing) with and without aeration. 7 refs., 47 figs., 4 tabs.

Hauser, G.E.; Beard, L.M.; Brown, R.T.; McKinnon, M.K.

1983-09-01T23:59:59.000Z

432

Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008  

SciTech Connect (OSTI)

The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

LR Roeder

2008-12-01T23:59:59.000Z

433

Climate Change: The Physical Basis and Latest Results  

ScienceCinema (OSTI)

The 2007 Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concludes: "Warming in the climate system is unequivocal." Without the contribution of Physics to climate science over many decades, such a statement would not have been possible. Experimental physics enables us to read climate archives such as polar ice cores and so provides the context for the current changes. For example, today the concentration of CO2 in the atmosphere, the second most important greenhouse gas, is 28% higher than any time during the last 800,000 years. Classical fluid mechanics and numerical mathematics are the basis of climate models from which estimates of future climate change are obtained. But major instabilities and surprises in the Earth System are still unknown. These are also to be considered when the climatic consequences of proposals for geo-engineering are estimated. Only Physics will permit us to further improve our understanding in order to provide the foundation for policy decisions facing the global climate change challenge.

None

2011-10-06T23:59:59.000Z

434

Role of the stratosphere in Northern winter climate change as simulated by the1 CMIP5 models2  

E-Print Network [OSTI]

1 Role of the stratosphere in Northern winter climate change as simulated by the1 CMIP5; 3 Abstract39 40 Stratospheric climate change and its potential for surface climate change Studies, NASA, New York, USA34 (20) Institute of Numerical Mathematics, Moscow, Russia35 (21) Japan

Gerber, Edwin

435

Developing shrub fire behaviour models in an oceanic climate: Burning in the British Uplands   

E-Print Network [OSTI]

Prescribed burning of moorland vegetation in the UK is used to provide habitat for red grouse, a game bird, and to improve grazing for sheep and deer. The peak time of fire risk corresponds to the normal legal burning ...

Davies, Gwilym Matthew; Legg, Colin; Smith, Adam; MacDonald, Angus

2006-01-01T23:59:59.000Z

436

Detection of Greenhouse-Gas-Induced Climatic Change  

SciTech Connect (OSTI)

The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

Jones, P.D.; Wigley, T.M.L.

1998-05-26T23:59:59.000Z

437

Development and application of WRF3.3-CLM4crop to study of agriculture - climate interaction  

E-Print Network [OSTI]

Global Climate Change and United-States Agriculture, Nature,climate modeling Land surface modeling Agriculture and climate interaction Land use change

Lu, Yaqiong

2013-01-01T23:59:59.000Z

438

Incorporating Urban Systems in Global Climate Models: The Role of GIScience  

E-Print Network [OSTI]

0.92 brick 0.7 1360.0 0.3 1700 800 0.9 mud 1.0 1456.0 0.3 1820 800 0.9 wood 0.1 1127.5 0.5 550 2050 0.87 glass 0.9 2100.0 0.08 2500 840 0.91 stone 2.6 2310.0 0.275 2750 840 0.92 adobe 1.0 1456.0 0.3 1820 800 0.91 rubble 0.8 950 0.275 1900 500 0..., Cooperative Agreement No. DE-FC02- 97ER62402, by the National Science Foundation grant numbers ATM-0107404, and ATM-0413540, the NCAR Weather and Climate Impact Assessment Science Initiative, and the University of Kansas, Center for Research. Motivation...

Feddema, Johannes J.

2006-11-15T23:59:59.000Z

439

Global climate feedbacks  

SciTech Connect (OSTI)

The important physical, chemical, and biological events that affect global climate change occur on a mesoscale -- requiring high spatial resolution for their analysis. The Department of Energy has formulated two major initiatives under the US Global Change Program: ARM (Atmospheric Radiation Measurements), and CHAMMP (Computer Hardware Advanced Mathematics and Model Physics). ARM is designed to use ground and air-craft based observations to document profiles of atmospheric composition, clouds, and radiative fluxes. With research and models of important physical processes, ARM will delineate the relationships between trace gases, aerosol and cloud structure, and radiative transfer in the atmosphere, and will improve the parameterization of global circulation models. The present GCMs do not model important feedbacks, including those from clouds, oceans, and land processes. The purpose of this workshop is to identify such potential feedbacks, to evaluate the uncertainties in the feedback processes (and, if possible, to parameterize the feedback processes so that they can be treated in a GCM), and to recommend research programs that will reduce the uncertainties in important feedback processes. Individual reports are processed separately for the data bases.

Manowitz, B.

1990-10-01T23:59:59.000Z

440

Climate Change Effects on the Sacramento Basin's Flood Control Projects ANN DENISE FISSEKIS  

E-Print Network [OSTI]

Climate Change Effects on the Sacramento Basin's Flood Control Projects By ANN DENISE FISSEKIS B.......................................................................6 Chapter III. Climate Change................................................................11 models...........................................................20 Climate change data

Lund, Jay R.

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Improved Formulations for Air-Surface Exchanges Related to National Security Needs: Dry Deposition Models  

SciTech Connect (OSTI)

The Department of Homeland Security and others rely on results from atmospheric dispersion models for threat evaluation, event management, and post-event analyses. The ability to simulate dry deposition rates is a crucial part of our emergency preparedness capabilities. Deposited materials pose potential hazards from radioactive shine, inhalation, and ingestion pathways. A reliable characterization of these potential exposures is critical for management and mitigation of these hazards. A review of the current status of dry deposition formulations used in these atmospheric dispersion models was conducted. The formulations for dry deposition of particulate materials from am event such as a radiological attack involving a Radiological Detonation Device (RDD) is considered. The results of this effort are applicable to current emergency preparedness capabilities such as are deployed in the Interagency Modeling and Atmospheric Assessment Center (IMAAC), other similar national/regional emergency response systems, and standalone emergency response models. The review concludes that dry deposition formulations need to consider the full range of particle sizes including: 1) the accumulation mode range (0.1 to 1 micron diameter) and its minimum in deposition velocity, 2) smaller particles (less than .01 micron diameter) deposited mainly by molecular diffusion, 3) 10 to 50 micron diameter particles deposited mainly by impaction and gravitational settling, and 4) larger particles (greater than 100 micron diameter) deposited mainly by gravitational settling. The effects of the local turbulence intensity, particle characteristics, and surface element properties must also be addressed in the formulations. Specific areas for improvements in the dry deposition formulations are 1) capability of simulating near-field dry deposition patterns, 2) capability of addressing the full range of potential particle properties, 3) incorporation of particle surface retention/rebound processes, and. 4) development of dry deposition formulations applicable to urban areas. Also to improve dry deposition modeling capabilities, atmospheric dispersion models in which the dry deposition formulations are imbedded need better source-term plume initialization and improved in-plume treatment of particle growth processes. Dry deposition formulations used in current models are largely inapplicable to the complex urban environment. An improved capability is urgently needed to provide surface-specific information to assess local exposure hazard levels in both urban and non-urban areas on roads, buildings, crops, rivers, etc. A model improvement plan is developed with a near-term and far-term component. Despite some conceptual limitations, the current formulations for particle deposition based on a resistance approach have proven to provide reasonable dry deposition simulations. For many models with inadequate dry deposition formulations, adding or improving a resistance approach will be the desirable near-term update. Resistance models however are inapplicable aerodynamically very rough surfaces such as urban areas. In the longer term an improved parameterization of dry deposition needs to be developed that will be applicable to all surfaces, and in particular urban surfaces.

Droppo, James G.

2006-07-01T23:59:59.000Z

442

Recovery Boiler Modeling: An Improved Char Burning Model Including Sulfate Reduction and Carbon Removal  

E-Print Network [OSTI]

gasification, reactions between oxygen and combustibles in the boundary layer, and integration of sulfate reduction and sulfide reoxidation into the char burning process. Simulations using the model show that for typical recovery boiler conditions, char burning...

Grace, T. M.; Wag, K. J.; Horton, R. R.; Frederick, W. J.

443

IMPROVED MODELING OF THE MASS DISTRIBUTION OF DISK GALAXIES BY THE EINASTO HALO MODEL  

SciTech Connect (OSTI)

Analysis of the rotation curves (RCs) of spiral galaxies provides an efficient diagnostic for studying the properties of dark matter halos and their relations with baryonic material. Since the cored pseudo-isothermal (Iso) model usually provides a better description of observed RCs than does the cuspy Navarro-Frenk-White (NFW) model, there have been concerns that the {Lambda}CDM primordial density fluctuation spectrum may not be the correct one. We have modeled the RCs of galaxies from The H I Nearby Galaxy Survey (THINGS) with the Einasto halo model, which has emerged as the best-fitting model of the halos arising in dissipationless cosmological N-body simulations. We find that the RCs are significantly better fit with the Einasto halo than with either Iso or NFW halo models. In our best-fit Einasto models, the radius of density slope -2 and the density at this radius are highly correlated. The Einasto index, which controls the overall shape of the density profile, is near unity on average for intermediate and low mass halos. This is not in agreement with the predictions from {Lambda}CDM simulations. The indices of the most massive halos are in rough agreement with those cosmological simulations and appear correlated with the halo virial mass. We find that a typical Einasto density profile declines more strongly in its outermost parts than any of the Iso or NFW models whereas it is relatively shallow in its innermost regions. The core nature of those regions of halos thus extends the cusp-core controversy found for the NFW model with low surface density galaxies to the Einasto halo with more massive galaxies like those of THINGS. The Einasto concentrations decrease as a function of halo mass, in agreement with trends seen in numerical simulations. However, they are generally smaller than values expected for simulated Einasto halos. We thus find that, so far, the Einasto halo model provides the best match to the observed RCs and can therefore be considered as a new standard model for dark matter halos.

Chemin, Laurent [Universite de Bordeaux, Observatoire Aquitain des Sciences de l'Univers, BP 89, 33271 Floirac Cedex (France); De Blok, W. J. G. [ACGC, Department of Astronomy, University of Cape Town, Rondebosch 7700 (South Africa); Mamon, Gary A., E-mail: chemin@obs.u-bordeaux1.fr, E-mail: edeblok@ast.uct.ac.za, E-mail: gam@iap.fr [Institut d'Astrophysique de Paris (UMR 7095: CNRS and UPMC), 98 bis Bd. Arago, 75014 Paris (France)

2011-10-15T23:59:59.000Z

444

Mechanisms of aerosol-forced AMOC variability in a state of the art climate model  

E-Print Network [OSTI]

with a new state-of-the-art Earth system model. Anthropogenic aerosols have previously been highlighted anthropogenic aerosols force a strengthening of the AMOC by up to 20% in our state-of-the-art Earth system model

445

1Earth System Models of Intermediate Complexity: Closing the Gap in the Spectrum of Climate System  

E-Print Network [OSTI]

system models of intermediate complexity (EMICs) is discussed. It be-comes apparent that there exists a

Martin Claussen; Michel Crucifix; Thierry Fichefet; Andrey Ganopolski; Huges Goosse; Vladimir Petoukhov; Thomas Stocker; Peter Stone; Zhaoming Wang; Andrew Weaver; Susanne L. Weber

446

Ocean Heat Transport, Sea Ice, and Multiple Climate States: Insights from Energy Balance Models  

E-Print Network [OSTI]

Several extensions of energy balance models (EBMs) are explored in which (i) sea ice acts to insulate the

Rose, Brian Edward James

447

Assimilation of satellite reflecance dataa into a dynamical leaf model to infer seasonally varying leaf area for climate and carbon models  

SciTech Connect (OSTI)

Leaf area index is an important input for many climate and carbon models. The widely used leaf area products derived from satellite-observed surface reflectances contain substantial erratic fluctuations in time due to inadequate atmospheric corrections and observational and retrieval uncertainties. These fluctuations are inconsistent with the seasonal dynamics of leaf area, known to be gradual. Their use in process-based terrestrial carbon models corrupts model behavior, making diagnosis of model performance difficult. We propose a data assimilation approach that combines the satellite observations of Moderate Resolution Imaging Spectroradiometer (MODIS) albedo with a dynamical leaf model. Its novelty is that the seasonal cycle of the directly retrieved leaf areas is smooth and consistent with both observations and current understandings of processes controlling leaf area dynamics. The approach optimizes the dynamical model parameters such that the difference between the estimated surface reflectances based on the modeled leaf area and those of satellite observations is minimized. We demonstrate the usefulness and advantage of our new approach at multiple deciduous forest sites in the United States.

Liu, Qing [Georgia Institute of Technology; Gu, Lianhong [ORNL; Dickinson, Robert E. [Georgia Institute of Technology; Tian, Y [Georgia Institute of Technology; Zhou, L [Georgia Institute of Technology; Post, Wilfred M [ORNL

2007-01-01T23:59:59.000Z

448

Improved model for the analysis of air fluorescence induced by electrons  

E-Print Network [OSTI]

A model recently proposed for the calculation of air-fluorescence yield excited by electrons is revisited. Improved energy distributions of secondary electrons and a more realistic Monte Carlo simulation including some additional processes have allowed us to obtain more accurate results. The model is used to study in detail the relationship between fluorescence intensity and deposited energy in a wide range of primary energy (keVs - GeVs). In addition, predictions on the absolute value of the fluorescence efficiency in the absence of collisional quenching will be presented and compared with available experimental data.

F. Arqueros; F. Blanco; J. Rosado

2008-07-24T23:59:59.000Z

449

Improved Coefficient Calculator for the California Energy Commission 6 Parameter Photovoltaic Module Model  

SciTech Connect (OSTI)

This paper describes an improved algorithm for calculating the six parameters required by the California Energy Commission (CEC) photovoltaic (PV) Calculator module model. Rebate applications in California require results from the CEC PV model, and thus depend on an up-to-date database of module characteristics. Currently, adding new modules to the database requires calculating operational coefficients using a general purpose equation solver - a cumbersome process for the 300+ modules added on average every month. The combination of empirical regressions and heuristic methods presented herein achieve automated convergence for 99.87% of the 5487 modules in the CEC database and greatly enhance the accuracy and efficiency by which new modules can be characterized and approved for use. The added robustness also permits general purpose use of the CEC/6 parameter module model by modelers and system analysts when standard module specifications are known, even if the module does not exist in a preprocessed database.

Dobos, A. P.

2012-05-01T23:59:59.000Z

450

Improvements of the shock arrival times at the Earth model STOA  

E-Print Network [OSTI]

Prediction of the shocks' arrival times (SATs) at the Earth is very important for space weather forecast. There is a well-known SAT model, STOA, which is widely used in the space weather forecast. However, the shock transit time from STOA model usually has a relative large error compared to the real measurements. In addition, STOA tends to yield too much `yes' prediction, which causes a large number of false alarms. Therefore, in this work, we work on the modification of STOA model. First, we give a new method to calculate the shock transit time by modifying the way to use the solar wind speed in STOA model. Second, we develop new criteria for deciding whether the shock will arrive at the Earth with the help of the sunspot numbers and the angle distances of the flare events. It is shown that our work can improve the SATs prediction significantly, especially the prediction of flare events without shocks arriving at the Earth.

Liu, H -L

2015-01-01T23:59:59.000Z

451

2, 11551186, 2006 Mid-Holocene climate  

E-Print Network [OSTI]

CPD 2, 1155­1186, 2006 Mid-Holocene climate change in Europe: a data-model comparison S. Brewer et.clim-past-discuss.net/2/1155/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Climate of the Past Discussions Climate of the Past Discussions is the access reviewed discussion forum of Climate

Boyer, Edmond

452

Incorporating Single-nucleotide Polymorphisms Into the Lyman Model to Improve Prediction of Radiation Pneumonitis  

SciTech Connect (OSTI)

Purpose: To determine whether single-nucleotide polymorphisms (SNPs) in genes associated with DNA repair, cell cycle, transforming growth factor-{beta}, tumor necrosis factor and receptor, folic acid metabolism, and angiogenesis can significantly improve the fit of the Lyman-Kutcher-Burman (LKB) normal-tissue complication probability (NTCP) model of radiation pneumonitis (RP) risk among patients with non-small cell lung cancer (NSCLC). Methods and Materials: Sixteen SNPs from 10 different genes (XRCC1, XRCC3, APEX1, MDM2, TGF{beta}, TNF{alpha}, TNFR, MTHFR, MTRR, and VEGF) were genotyped in 141 NSCLC patients treated with definitive radiation therapy, with or without chemotherapy. The LKB model was used to estimate the risk of severe (grade {>=}3) RP as a function of mean lung dose (MLD), with SNPs and patient smoking status incorporated into the model as dose-modifying factors. Multivariate analyses were performed by adding significant factors to the MLD model in a forward stepwise procedure, with significance assessed using the likelihood-ratio test. Bootstrap analyses were used to assess the reproducibility of results under variations in the data. Results: Five SNPs were selected for inclusion in the multivariate NTCP model based on MLD alone. SNPs associated with an increased risk of severe RP were in genes for TGF{beta}, VEGF, TNF{alpha}, XRCC1 and APEX1. With smoking status included in the multivariate model, the SNPs significantly associated with increased risk of RP were in genes for TGF{beta}, VEGF, and XRCC3. Bootstrap analyses selected a median of 4 SNPs per model fit, with the 6 genes listed above selected most often. Conclusions: This study provides evidence that SNPs can significantly improve the predictive ability of the Lyman MLD model. With a small number of SNPs, it was possible to distinguish cohorts with >50% risk vs <10% risk of RP when they were exposed to high MLDs.

Tucker, Susan L., E-mail: sltucker@mdanderson.org [Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li Minghuan [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China)] [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Xu Ting; Gomez, Daniel [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Yuan Xianglin [Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)] [Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Yu Jinming [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China)] [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Liu Zhensheng; Yin Ming; Guan Xiaoxiang; Wang Lie; Wei Qingyi [Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Vinogradskiy, Yevgeniy [University of Colorado School of Medicine, Aurora, Colorado (United States)] [University of Colorado School of Medicine, Aurora, Colorado (United States); Martel, Mary [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

2013-01-01T23:59:59.000Z

453

The connection between the Atlantic Multidecadal Oscillation and the Indian1 Summer Monsoon in Bergen Climate Model Version 2.02  

E-Print Network [OSTI]

A pre-industrial multi-century simulation with Bergen Climate Model Version 227 (BCM in brief) is used (ISR), several recent66 Formatted: Font: (Default) Times New Roman Formatted: Font: (Default) Times New Roman Formatted: Font: (Default) Times New Roman Formatted: Font: (Default) Times New Roman Formatted

454

Modeling Sea Ice-Ocean-Ecosystem Responses to Climate Changes in the Bering-Chukchi-Beaufort Seas with Data Assimilation of  

E-Print Network [OSTI]

of Marine Science and Technology, Haoguo Hu - CILER, University of Michigan Overview This project will useModeling Sea Ice-Ocean-Ecosystem Responses to Climate Changes in the Bering-Chukchi-Beaufort Seas-Investigators: Leo Oey - Princeton University, Tel Ezer - Old Dominion University, K. Mizobata - Tokyo University

455

THE IDENTIFICATION OF A SOLAR SIGNAL IN CLIMATE RECORDS OF THE LAST 500 YEARS USING PROXY AND MODEL-BASED ANALYSIS AND  

E-Print Network [OSTI]

for their help with acquiring solar data and figures, as well as helping me to interpret them. Jay Lawrimore there is no consensus as to the best method for estimating past variations in solar output, it seems likely that overTHE IDENTIFICATION OF A SOLAR SIGNAL IN CLIMATE RECORDS OF THE LAST 500 YEARS USING PROXY AND MODEL

Massachusetts at Amherst, University of

456

Using NASA Remote Sensing Data to Reduce Uncertainty of Land-Use Transitions in Global Carbon-Climate Models: Data Management Plan  

E-Print Network [OSTI]

-use transitions and their inherent uncertainty. Our plan for managing these datasets includes quality assessmentUsing NASA Remote Sensing Data to Reduce Uncertainty of Land-Use Transitions in Global Carbon-Climate Models: Data Management Plan L. Chini, G.C. Hurtt, M. Hansen, and P. Potapov Department of Geography

457

Frontal Scale AirSea Interaction in High-Resolution Coupled Climate Models FRANK O. BRYAN, ROBERT TOMAS, AND JOHN M. DENNIS  

E-Print Network [OSTI]

Frontal Scale Air­Sea Interaction in High-Resolution Coupled Climate Models FRANK O. BRYAN, ROBERT The emerging picture of frontal scale air­sea interaction derived from high-resolution satellite observations have revealed fundamentally different air­sea coupling mechanisms on the scale of ocean fronts

Kurapov, Alexander

458

An improved simple polarisable water model for use in biomolecular simulation  

SciTech Connect (OSTI)

The accuracy of biomolecular simulations depends to some degree on the accuracy of the water model used to solvate the biomolecules. Because many biomolecules such as proteins are electrostatically rather inhomogeneous, containing apolar, polar, and charged moieties or side chains, a water model should be able to represent the polarisation response to a local electrostatic field, while being compatible with the force field used to model the biomolecules or protein. The two polarisable water models, COS/G2 and COS/D, that are compatible with the GROMOS biomolecular force fields leave room for improvement. The COS/G2 model has a slightly too large dielectric permittivity and the COS/D model displays a much too slow dynamics. The proposed COS/D2 model has four interaction sites: only one Lennard-Jones interaction site, the oxygen atom, and three permanent charge sites, the two hydrogens, and one massless off-atom site that also serves as charge-on-spring (COS) polarisable site with a damped or sub-linear dependence of the induced dipole on the electric field strength for large values of the latter. These properties make it a cheap and yet realistic water model for biomolecular solvation.

Bachmann, Stephan J.; Gunsteren, Wilfred F. van, E-mail: wfvgn@igc.phys.chem.ethz.ch [Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich (Switzerland)

2014-12-14T23:59:59.000Z

459

NREL Reduces Climate Control Loads in Electric Vehicles (Fact Sheet)  

SciTech Connect (OSTI)

NREL demonstrates that zonal climate control can reduce air conditioning power and improve range while maintaining driver thermal sensation.

Not Available

2014-08-01T23:59:59.000Z

460

Experiments with a time-dependent, zonally averaged, seasonal, enery balance climatic model  

E-Print Network [OSTI]

planetary albedo a~ insolation Q~ albedo constant b , mixing temperature T ~ and 0 0he consistency factor c 20 Presen zonal values of extraterrestrial -2 insolation for the middle of the month (Wm ). . . . . 23 Zonal values of planetary albedo... values of the fraction of ocean, f~ R from (22), model determined R, and the five sets of R4. 30 Nomenclature used for model experiment. ". . . 32 The difference between observed and experiment Cl(R1) mean annual temperatures, AT; the model...

Thompson, Starley Lee

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "improve climate models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

E-Print Network 3.0 - atmospheric climate model Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

changes in atmospheric condensation nuclei (CN... capabilities of the Earth System Models and reduce ... Source: Knuth, Kevin H. - Department of Physics, State...

462

Development of a High-Performance Office Building Simulation Model for a Hot and Humid Climate  

E-Print Network [OSTI]

48% total energy savings above the ASHRAE 90.1-1999 code and 61% savings when compared to the calibrated simulation model of the case-study building. The results show that substantial energy savings can be achieved only by using common... to the field measured data and was presented in the previous publication (Cho and Haberl, 2008a). The calibrated simulation model was further extended to an ASHRAE 90.1 code-compliant model, which was used as the baseline model for the development of a...

Cho, S.; Haberl, J.

463

Author's personal copy Two-way coupling of an ENSO model to the global climate model CLIMBER-3a  

E-Print Network [OSTI]

it is possible to introduce ENSO variability to an Earth system Model of Intermediate Complexity (EMIC we are using here. In this study we couple the Earth system model of intermediate complexity (EMIC

Levermann, Anders

464

Dynamics of Arctic and Sub-Arctic Climate and Atmospheric Circulation: Diagnosis of Mechanisms and Model Biases Using data Assimilation  

SciTech Connect (OSTI)

These five publications are summarized: Key role of the Atlantic Multidecadal Oscillation in 20th century drought and wet periods over the Great Plains; A Sub-Seasonal Teleconnection Analysis: PNA Development and Its Relationship to the NAO; AMO's Structure and Climate Footprint in Observations and IPCC AR5 Climate Simulations; The Atlantic Multidecadal Oscillation in 20th Century Climate Simulations: Uneven Progress from CMIP3 to CMIP5; and Tropical Atlantic Biases in CCSM4.

Sumant Nigam

2013-02-05T23:59:59.000Z

465

Late Holocene Climate Change on Isla Isabela, Gulf of California  

E-Print Network [OSTI]

solar activity on climate variations remains unclear, this data represents a convergence of model output

Englebrecht, Amy

2010-01-01T23:59:59.000Z

466

Integrating Remote Sensing, Field Observations, and Models to Understand Disturbance and Climate Effects on the Carbon Balance of the West Coast U.S.  

SciTech Connect (OSTI)

As an element of NACP research, the proposed investigation is a two pronged approach that derives and evaluates a regional carbon (C) budget for Oregon, Washington, and California. Objectives are (1) Use multiple data sources, including AmeriFlux data, inventories, and multispectral remote sensing data to investigate trends in carbon storage and exchanges of CO2 and water with variation in climate and disturbance history; (2) Develop and apply regional modeling that relies on these multiple data sources to reduce uncertainty in spatial estimates of carbon storage and NEP, and relative contributions of terrestrial ecosystems and anthropogenic emissions to atmospheric CO2 in the region; (3) Model terrestrial carbon processes across the region, using the Biome-BGC terrestrial ecosystem model, and an atmospheric inverse modeling approach to estimate variation in rate and timing of terrestrial uptake and feedbacks to the atmosphere in response to climate and disturbance.

Cohen, Warren [USDA Forest Service] [USDA Forest Service

2014-07-03T23:59:59.000Z

467

Integrating Remote Sensing, Field Observations, and Models to Understand Disturbance and Climate Effects on the Carbon Balance of the West Coast U.S., Final Report  

SciTech Connect (OSTI)

As an element of NACP research, the proposed investigation is a two pronged approach that derives and evaluates a regional carbon (C) budget for Oregon, Washington, and California. Objectives are (1) Use multiple data sources, including AmeriFlux data, inventories, and multispectral remote sensing data to investigate trends in carbon storage and exchanges of CO2 and water with variation in climate and disturbance history; (2) Develop and apply regional modeling that relies on these multiple data sources to reduce uncertainty in spatial estimates of carbon storage and NEP, and relative contributions of terrestrial ecosystems and anthropogenic emissions to atmospheric CO2 in the region; (3) Model terrestrial carbon processes across the region, using the Biome-BGC terrestrial ecosystem model, and an atmospheric inverse modeling approach to estimate variation in rate and timing of terrestrial uptake and feedbacks to the atmosphere in response to climate and disturbance.

Beverly E. Law

2011-10-05T23:59:59.000Z

468

Estimating extinction risk under climate change: next-generation models simultaneously incorporate demography, dispersal, and biotic interactions  

E-Print Network [OSTI]

interactions Estimating species-level extinction risk underin predicting species-level extinction risk under climateto assess extinction risk of select species under climate

Kissling, W. Daniel

2013-01-01T23:59:59.000Z

469

Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model  

E-Print Network [OSTI]

2009 P. E. Thornton et al. : Carbon-nitrogen interactionsregulate climate-carbon cycle feedbacks Monfray, P. ,T. H. : A global ocean carbon climatology: Results from

2009-01-01T23:59:59.000Z

470

Influence of climate model biases and daily-scale temperature and precipitation events on hydrological impacts assessment: A case study of the United States  

SciTech Connect (OSTI)

The Intergovernmental Panel on Climate Change's Fourth Assessment Report concludes that climate change is now unequivocal, and associated increases in evaporation and atmospheric water content could intensify the hydrological cycle. However, the biases and coarse spatial resolution of global climate models limit their usefulness in hydrological impact assessment. In order to reduce these limitations, we use a high-resolution regional climate model (RegCM3) to drive a hydrological model (variable infiltration capacity) for the full contiguous United States. The simulations cover 1961-1990 in the historic period and 2071-2100 in the future (A2) period. A quantile-based bias correction technique is applied to the times series of RegCM3-simulated precipitation and temperature. Our results show that biases in the RegCM3 fields not only affect the magnitude of hydrometeorological variables in the baseline hydrological simulation, but they also affect the response of hydrological variables to projected future anthropogenic increases in greenhouse forcing. Further, we find that changes in the intensity and occurrence of severe wet and hot events are critical in determining the sign of hydrologic change. These results have important implications for the assessment of potential future hydrologic changes, as well as for developing approaches for quantitative impacts assessment.

Ashfaq, Moetasim [ORNL; Bowling, Laura C. [Purdue University; Cherkauer, Keith [Purdue University; Pal, Jeremy [Loyola University; Diffenbaugh, Noah [Stanford University

2010-01-01T23:59:59.000Z

471

Detection of greenhouse-gas-induced climatic change. Progress report, 1 December 1992--30 June 1993  

SciTech Connect (OSTI)

The aims of the US Department of Energy`s Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. The main research areas covered by this proposal are (b), First Detection and (c) Supporting Data. The project will also include work under area (a), Modeling: specifically, analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulating Models (GCMs).

Wigley, T.M.L.; Jones, P.D.

1993-07-09T23:59:59.000Z

472

Technology detail in a multi-sector CGE model : transport under climate policy  

E-Print Network [OSTI]

A set of three analytical models is used to study the imbedding of specific transport technologies within a multi-sector, multi-region evaluation of constraints on greenhouse emissions. Key parameters of a computable general ...

Schafer, Andreas.

473

Climatically Diverse Data Set for Flat-Plate PV Module Model Validations (Presentation)  

SciTech Connect (OSTI)

Photovoltaic (PV) module I-V curves were measured at Florida, Colorado, and Oregon locations to provide data for the validation and development of models used for predicting the performance of PV modules.

Marion, B.

2013-05-01T23:59:59.000Z

474

Advanced Technologies in Energy-Economy Models for Climate Change Assessment  

E-Print Network [OSTI]

Considerations regarding the roles of advanced technologies are crucial in energy-economic modeling, as these technologies, while usually not yet commercially viable, could substitute for fossil energy when relevant policies ...

Morris, J.F.

475

A climate-soil-crop model to evaluate drought incidence and severity  

E-Print Network [OSTI]

evaluation models. This definitely would have resulted in the "detec- tion" of "droughts" that were not real droughts and in the failure to detect real droughts as droughts are not 14 always caused by lack of rain. In several parts of Australia... winds are mainly responsible for the very high evapotran- spiration rates and the consequent drought. Therefore, in such areas, the use of rainfall data alone to detect and quantify drought would be a meaningless exercise. Later Im roved Models...

Puvirajasinghe, Patrick

1982-01-01T23:59:59.000Z

476

Utilizing CLASIC observations and multiscale models to study the impact of improved Land surface representation on modeling cloud- convection  

SciTech Connect (OSTI)

The CLASIC experiment was conducted over the US southern great plains (SGP) in June 2007 with an objective to lead an enhanced understanding of the cumulus convection particularly as it relates to land surface conditions. This project was design to help assist with understanding the overall improvement of land atmosphere convection initiation representation of which is important for global and regional models. The study helped address one of the critical documented deficiency in the models central to the ARM objectives for cumulus convection initiation and particularly under summer time conditions. This project was guided by the scientific question building on the CLASIC theme questions: What is the effect of improved land surface representation on the ability of coupled models to simulate cumulus and convection initiation? The focus was on the US Southern Great Plains region. Since the CLASIC period was anomalously wet the strategy has been to use other periods and domains to develop the comparative assessment for the CLASIC data period, and to understand the mechanisms of the anomalous wet conditions on the tropical systems and convection over land. The data periods include the IHOP 2002 field experiment that was over roughly same domain as the CLASIC in the SGP, and some of the DOE funded Ameriflux datasets.

Niyogi, Devdutta S. [Purdue

2013-06-07T23:59:59.000Z

477