Powered by Deep Web Technologies
Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Learning from Buildings: Technologies for Measuring, Benchmarking, and Improving Performance  

E-Print Network (OSTI)

and P. Price, 2009. “Building Energy Information Systems:2011. Learning from buildings: technologies for measuring,Information to Improve Building Performance: A Study of

Arens, Edward; Brager, Gail; Goins, John; Lehrer, David

2011-01-01T23:59:59.000Z

2

Improved Building Performance Through Effective Communication & Training  

E-Print Network (OSTI)

IMPROVED BUILDING PERFORMANCE THROUGH EFFECTIVE COMMUNICATION & TRAINING Rick Bates Project Manager Environmental Education Foundation Gilbert, AZ ABSTRACT This paper describes the procedures involved in the development of a...) PNC Multi-Family Capital Pure Air Control ESL-IC-10/05-51 4 RickBates.net The HVAC Source The National Air Quality Institute, LLC Thomas Rutherfoord Inc. Trade-Winds Environmental Restoration Vesar, Inc. XL...

Bates, R.

2005-01-01T23:59:59.000Z

3

Energy Performance Certification of Buildings: A Policy Tool to Improve  

Open Energy Info (EERE)

Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Efficiency Jump to: navigation, search Tool Summary Name: Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Efficiency Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Policies/deployment programs Resource Type: Guide/manual, Lessons learned/best practices Website: www.iea.org/papers/pathways/buildings_certification.pdf Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Efficiency Screenshot References: nergy Performance Certification of Buildings[1] Logo: Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Efficiency

4

Improving Building Performance at Urban Scale with a Framework for  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Performance at Urban Scale with a Framework for Building Performance at Urban Scale with a Framework for Real-time Data Sharing Title Improving Building Performance at Urban Scale with a Framework for Real-time Data Sharing Publication Type Conference Proceedings LBNL Report Number LBNL-6303E Year of Publication 2013 Authors Pang, Xiufeng, Tianzhen Hong, and Mary Ann Piette Date Published 05/2013 Keywords building performance, energy efficiency, energy modeling, optimal operation, urban scale. Abstract This paper describes work in progress toward an urban-scale system aiming to reduce energy use in neighboring buildings by providing three components: a database for accessing past and present weather data from high quality weather stations; a network for communicating energy-saving strategies between building owners; and a set of modeling tools for real-time building energy simulation.

5

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

operation with energy efficiency in building systems. X X Xoperation with energy efficiency in building systems. 10.3.energy efficiency improvements in healthcare buildings. A

Singer, Brett C.

2010-01-01T23:59:59.000Z

6

Using Building Commissioning to Improve Performance in State Buildings  

E-Print Network (OSTI)

reports the results of a recent survey of members of the National Association of State Facility Administrators (NASFA) on their use and understanding of commissioning for new construction and existing buildings. The results of two commissioning case...

Haasl, T.; Wilkinson, R.

1998-01-01T23:59:59.000Z

7

Furnace Blower Performance Improvements- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Top Innovation profile describes Building America research into improving efficiency of furnace fan blowers.

8

Improving Building Energy System Performance by Continuous Commissioning  

E-Print Network (OSTI)

data. The first buildings to undergo a continuous commissioning process were in the Texas LoanSTAR program [Liu, et al, 1994, Claridge, et al, 1994]. These buildings had been retrofitted with various energy efficiency improvements, and measured hourly...

Turner, W. D.; Liu, M.; Claridge, D. E.; Haberl, J. S.

1996-01-01T23:59:59.000Z

9

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

Integrated design, incorporation of models from other advanced buildingsand building operators. Communication with users through integrated designintegrated design process has great potential to advance cost-effective reductions in energy intensity – often while improving building

Singer, Brett C.

2010-01-01T23:59:59.000Z

10

Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings- Control strategies to improve hydronic space heating performance  

Energy.gov (U.S. Department of Energy (DOE))

This webinar was presented on July 16, 2014, and provided information about improving the performance of central space conditioning systems in multifamily buildings.

11

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

attention to “sustainable” building design is reflected bySustainable Hospitals 10.1. Effect of building form and systems designsand sustainable hospital designs. • Study building & staff

Singer, Brett C.

2010-01-01T23:59:59.000Z

12

Optimizing HVAC Control to Improve Building Comfort and Energy Performance  

E-Print Network (OSTI)

This paper demonstrates the benefits of optimal control in well-designed and operated buildings using a case study. The case study building was built in 2001. The HVAC and control systems have been installed with state-of-the-art equipment which...

Song, L.; Joo, I.; Dong, D.; Liu, M.; Wang, J.; Hansen, K.; Quiroz, L.; Swiatek, A.

2003-01-01T23:59:59.000Z

13

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

Roadmap to Improved Energy Efficiency iii 11-Sept-2009 ListA Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /A Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /

Singer, Brett C.

2010-01-01T23:59:59.000Z

14

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

source heat pumps (newer designs are greatly improved), condensing boilers, advanced control sequences to allow utilization of variable air

Singer, Brett C.

2010-01-01T23:59:59.000Z

15

Improving Real World Efficiency of High Performance Buildings  

E-Print Network (OSTI)

the measured and design energy use intensity are the same. Project Description NBI will begin this shortfall is critical as the focus on moving toward zero net energy buildings and carbon reduction of variation in individual results. Figure ES4 to the right shows the measured energy use intensity (EUI

16

APPLICATION OF IT AND INTERNATIONAL STANDARDS TO IMPROVE BUILDING ENVELOPE PERFORMANCE  

E-Print Network (OSTI)

, Quebec, Canada ABSTRACT Improving thermal performance of building envelopes reduces energy consumption to be introduced to provide the required fresh air to the occupants. In other words, the energy performance must, thermal performance, indoor air quality, structural stability, acoustic performance, fire control, etc

Hammad, Amin

17

High Performance Healthcare Buildings: A Roadmap to Improved Energy  

E-Print Network (OSTI)

and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design

18

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

Efficiency 11-Sept-2009 9. Economic and Organizationaland Organizational Issues 9.1. Strategies to overcome structural challenges to energy efficiencyorganizational scheme to facilitate discussion of challenges to improving energy efficiency

Singer, Brett C.

2010-01-01T23:59:59.000Z

19

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

SciTech Connect

This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

Singer, Brett C.; Tschudi, William F.

2009-09-08T23:59:59.000Z

20

Approach for the Improvement of Energy Performance of a Stock of Buildings  

E-Print Network (OSTI)

. - The tools must be accessible via the Intranet of the ministry in order to be easily and widely accessible. DEVELOPMENT OF TOOLS ADAPTED TO END-USER To analyze and improve the performance of the ministry of equipment stock of buildings we have.... - The tools must be accessible via the Intranet of the ministry in order to be easily and widely accessible. DEVELOPMENT OF TOOLS ADAPTED TO END-USER To analyze and improve the performance of the ministry of equipment stock of buildings we have...

Vaezi-Nejad, H.; Bouillon, J.; Crozier, L.; Guyot, G.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Improving Building Performance at Urban Scale with a Framework for Real-time Data Sharing  

E-Print Network (OSTI)

approaches for building energy modeling: forward model andbe developed for rapid building energy modeling at the urbanbuilding performance, energy efficiency, energy modeling,

Pang, Xiufeng

2014-01-01T23:59:59.000Z

22

Improve Indoor Air Quality, Energy Consumption and Building Performance: Leveraging Technology to Improve All Three  

E-Print Network (OSTI)

Building owners and occupants expect more from their buildings today- both better IEQ and less energy consumption. Many facilities strive to design and commission a =smart building' - one that is healthy, environmentally conscious and operating...

Wiser, D.

2011-01-01T23:59:59.000Z

23

Building America Webinar: High Performance Building Enclosures...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

used to improve energy performance of building envelopes while dealing with issues like ice damming during exterior "overcoat" insulation retrofits? How can deep energy retrofits...

24

Interoperability of Computer Aided Design and Energy Performance Simulation to Improve Building Energy Efficiency and Performance  

E-Print Network (OSTI)

The paper describes very significant novel interoperability and data modeling technology for existing building that maps a building information parametric model with an energy simulation model, establishing a seamless link between Computer Aided...

Chaisuparasmikul, P.

2006-01-01T23:59:59.000Z

25

Buildings Performance Database Overview  

Energy.gov (U.S. Department of Energy (DOE))

Buildings Performance Database Overview, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

26

Visualizing information to improve building performance: a study of expert users  

E-Print Network (OSTI)

drivers. Owners of green buildings want to exhibit theirpublic scrutiny of green building results, combined withcommissioning agents, green building consultants, and

Lehrer, David; Vasudev, Janani

2010-01-01T23:59:59.000Z

27

Buildings Performance Database  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Buildings Performance DOE Buildings Performance Database Paul Mathew Lawrence Berkeley National Laboratory pamathew@lbl.gov (510) 486 5116 April 3, 2013 Standard Data Spec API 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Large-scale high-quality empirical data on building energy performance is critical to support decision- making and increase confidence in energy efficiency investments. * While there are a many potential sources for such data,

28

NREL Evaluates the Thermal Performance of Uninsulated Walls to Improve the Accuracy of Building Energy Simulation Tools (Fact Sheet)  

SciTech Connect

This technical highlight describes NREL research to develop models of uninsulated wall assemblies that help to improve the accuracy of building energy simulation tools when modeling potential energy savings in older homes. Researchers at the National Renewable Energy Laboratory (NREL) have developed models for evaluating the thermal performance of walls in existing homes that will improve the accuracy of building energy simulation tools when predicting potential energy savings of existing homes. Uninsulated walls are typical in older homes where the wall cavities were not insulated during construction or where the insulating material has settled. Accurate calculation of heat transfer through building enclosures will help determine the benefit of energy efficiency upgrades in order to reduce energy consumption in older American homes. NREL performed detailed computational fluid dynamics (CFD) analysis to quantify the energy loss/gain through the walls and to visualize different airflow regimes within the uninsulated cavities. The effects of ambient outdoor temperature, radiative properties of building materials, and insulation level were investigated. The study showed that multi-dimensional airflows occur in walls with uninsulated cavities and that the thermal resistance is a function of the outdoor temperature - an effect not accounted for in existing building energy simulation tools. The study quantified the difference between CFD prediction and the approach currently used in building energy simulation tools over a wide range of conditions. For example, researchers found that CFD predicted lower heating loads and slightly higher cooling loads. Implementation of CFD results into building energy simulation tools such as DOE2 and EnergyPlus will likely reduce the predicted heating load of homes. Researchers also determined that a small air gap in a partially insulated cavity can lead to a significant reduction in thermal resistance. For instance, a 4-in. tall air gap (Figure 1a) led to a 15% reduction in resistance. Similarly, a 2-ft tall air gap (Figure 1c) led to 54% reduction in thermal resistance. NREL researchers plan to extend this study to include additional wall configurations, and also to evaluate the performance of attic spaces with different insulation levels. NREL's objective is to address each potential issue that leads to inaccuracies in building energy simulation tools to improve the predictions.

Not Available

2012-01-01T23:59:59.000Z

29

Buildings Performance Database | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings » Buildings Performance Database Buildings » Buildings Performance Database Buildings Performance Database The Buildings Performance Database (BPD) unlocks the power of building energy performance data. The platform enables users to perform statistical analysis on an anonymous dataset of tens of thousands of commercial and residential buildings from across the country. Users can compare performance trends among similar buildings to identify and prioritize cost-saving energy efficiency improvements and assess the range of likely savings from these improvements. Access BPD Contact Us Key Features The BPD contains actual data on tens of thousands of existing buildings -- not modeled data or anecdotal evidence. The BPD enables statistical analysis without revealing information about individual buildings.

30

Communicating Building Energy Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Communicating Building Energy Performance Communicating Building Energy Performance Speaker(s): William Bordass Date: August 26, 2008 - 12:00pm Location: 90-3075 Seminar Host/Point of Contact: Paul Mathew The heightened interest in building energy performance has exposed problems with reporting and benchmarking. Established conventions may no longer suit current needs, and new complications are emerging as national and corporate reporting (e.g. for carbon accounting and trading) begin to impact on the certification and labelling of building energy performance. If we are to achieve genuinely low-energy and carbon buildings, we need to get much better at reporting and benchmarking our intentions and outcomes, and particularly making performance visible and communicating it to all the people concerned. In design, this could help us to reduce the persistent

31

Buildings Performance Metrics Terminology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy's Commercial Building Initiative Page 1 Energy's Commercial Building Initiative Page 1 January 2009 Buildings Performance Metrics Terminology To clarify how the terms are used in the Department of Energy's Performance Metrics Research Project, a list of terms related to performance metrics are defined and include examples and comments. Visit www.commercialbuildings.energy.gov/performance_metrics.html to learn more. Baseline - a standard reference case used as a basis for comparison Examples: a simulation model of an ASHRAE 90.1 compliant building, control building, measurement of energy consumption prior to application of an energy conservation measure Comments: Establishing a clearly defined baseline very important and is often the most difficult task. Defining a repeatable baseline is essential if the work is to be compared to results of other

32

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Field Performance the Field Performance of Natural Gas Furnaces Chicago, Illinois PROJECT INFORMATION Project Name: Improving Gas Furnace Performance-A Field and Lab Study at End of Life Location: Chicago, IL Partnership for Advanced Residential Retrofit www.gastechnology.org Building Component: Natural Gas Furnaces Application: New and/or retrofit; Single and/or multifamily Year Tested: 2012/2013 Applicable Climate Zone(s): All or specify which ones PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $250 for adjustments Projected Energy Savings: 6.4% heating savings Projected Energy Cost Savings: $100/year climate-dependent Gas furnaces can successfully operate in the field for 20 years or longer with

33

Improved Building Energy Performance Modelling through Comparison of Measured Data with Simulated Results  

E-Print Network (OSTI)

-Institute for Solar Energy Systems Freiburg, Germany Dirk Jacob Fraunhofer-Institute for Solar Energy Systems Freiburg, Germany ABSTRACT This work forms part of the ModBen project conducted by Fraunhofer ISE. This paper aims to compare actual... is a complex building. The complexity comes from the architectural design that ESL-IC-08-10-70 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 Page 2 of paper submitted...

Bambrook, S.; Jacob, D.

34

High Performance Buildings Database  

DOE Data Explorer (OSTI)

The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

35

High Performance and Sustainable Buildings Guidance | Department...  

Energy Savers (EERE)

High Performance and Sustainable Buildings Guidance High Performance and Sustainable Buildings Guidance High Performance and Sustainable Buildings Guidance More Documents &...

36

Wall Design Redundancy for Improving the Moisture Performance of Building Cladding Systems in Hot-Humid Climates  

E-Print Network (OSTI)

by the NAHB Research Center. Instead, these inspections were performed with field observations and photographic recordings. Review of the Literature An extensive review of the literature on moisture problems in building envelopes was also conducted... by the NAHB Research Center. Instead, these inspections were performed with field observations and photographic recordings. Review of the Literature An extensive review of the literature on moisture problems in building envelopes was also conducted...

Graham, C. W.

2000-01-01T23:59:59.000Z

37

Building Performance Simulation  

E-Print Network (OSTI)

of  Three  Building  Energy  Modeling  Programs: and D.  Zhu.  Building energy modeling programs comparison: Comparison  of  building  energy  modeling  programs:  HVAC 

Hong, Tianzhen

2014-01-01T23:59:59.000Z

38

Building Performance Simulation  

E-Print Network (OSTI)

technologies, integrated design, building operation andperformance,  integrated  building design and operation, Integrated  Design  and  Operation  for  Very  Low  Energy  Buildings

Hong, Tianzhen

2014-01-01T23:59:59.000Z

39

Building Performance Simulation  

E-Print Network (OSTI)

Y (2008). DeST—An integrated building simulation toolkit,Part ? : Fundamentals. Building Simulation, 1: 95 ? 110.Y (2008). DeST—An integrated building simulation toolkit,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

40

Building Technologies Office: Buildings Performance Database Analysis Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Buildings Performance Database Analysis Tools to someone by E-mail Share Building Technologies Office: Buildings Performance Database Analysis Tools on Facebook Tweet about Building Technologies Office: Buildings Performance Database Analysis Tools on Twitter Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Google Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Delicious Rank Building Technologies Office: Buildings Performance Database Analysis Tools on Digg Find More places to share Building Technologies Office: Buildings Performance Database Analysis Tools on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Building Performance Simulation  

E-Print Network (OSTI)

low  energy  buildings,  with  site  EUI  of  40  or  lower buildings  in  the  US  (EUI  of  90  kBtu/ft²).   This the  bubble  represents  the  EUI.   These  buildings  were 

Hong, Tianzhen

2014-01-01T23:59:59.000Z

42

Energy Performance Certification of Buildings: A Policy Tool...  

Open Energy Info (EERE)

Buildings: A Policy Tool to Improve Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Performance Certification of Buildings: A Policy Tool to...

43

Building Performance Simulation  

E-Print Network (OSTI)

LEED­NC Certified Buildings                                              (courtesy New Building Institute)  Figure 3 – Measured Energy Use Intensities of Big?Box Retails in US and Canada (

Hong, Tianzhen

2014-01-01T23:59:59.000Z

44

Building Performance Database Analysis Tools  

Energy.gov (U.S. Department of Energy (DOE))

The BPD statistically analyzes the energy performance and physical and operational characteristics of real commercial and residential buildings. The Buildings Performance Database offers two primary methods to analyze building performance data. These are “Explore”, which allows users to browse a single dataset within the BPD, and “Compare”, which allowed users to compare multiple datasets within the BPD side-by-side.

45

Nanolubricants to Improve Chiller Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nanolubricants to Improve Chiller Nanolubricants to Improve Chiller Performance Mark Kedzierski NIST MAK@NIST.GOV 301 975 5282 April 3, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Enabling technology for improving the efficiency of chillers that cool large buildings with nanolubricants. (Nanolubricants are not currently used in chillers.) Develop fundamental understanding of how nanolubricants enhance refrigerant/nanolubricant. What nanoparticle size,

46

Improve energy use in commercial buildings | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Improve energy use in commercial buildings Improve energy use in commercial buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Improve energy use in commercial buildings Find guidance for energy-efficient design projects Manage energy use in manufacturing Develop programs and policies

47

Decision-Making Aid Tool for the Evaluation and Improvement of the Energy Performance of Stock of Buildings  

E-Print Network (OSTI)

, the simulation of buildings stock is possible starting from the definition of some standard buildings. SIMBAD (SIMulator of Building And Devices) is the first HVAC toolbox developed under the MATLAB/SIMULINK environment. This toolbox provides a large..., the simulation of buildings stock is possible starting from the definition of some standard buildings. SIMBAD (SIMulator of Building And Devices) is the first HVAC toolbox developed under the MATLAB/SIMULINK environment. This toolbox provides a large...

Joutey, H. A.; Vaezi-Nejad, H.; Lahrech, R.

2005-01-01T23:59:59.000Z

48

Commercial Building Performance Monitoring and Evaluation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Projects » Commercial Building Research Projects » Commercial Building Performance Monitoring and Evaluation Commercial Building Performance Monitoring and Evaluation The Building Technologies Office (BTO) uses performance metrics to standardize the measurement and characterization of energy performance in commercial buildings. These metrics help inform the effectiveness of energy efficiency measures in existing buildings and highlight opportunities to improve performance. Various tiers of metrics are available for different users. Performance Metrics Objectives Performance metrics deal with building energy consumption and on-site energy production. To be useful, industry must agree on standard definitions for these metrics and share consistent procedures for collecting and reporting data as well as ensuring data quality.

49

About the Building Performance Database  

Energy.gov (U.S. Department of Energy (DOE))

Recent technology, market and policy drivers - smart meters, energy performance disclosure laws, etc. - are resulting in a rapid increase in generation of data about buildings and their energy performance. But this data is still hard to access, and analyze because it is being housed in many decentralized and often proprietary databases. The DOE Building Performance Database (BPD) aims to bridge this gap by compiling and cleansing a large dataset required to assess the likely performance of energy efficiency retrofit measures and services. By making the data available anonymously and in aggregate, the BPD enables the public to gain value from the data while addressing the privacy needs of contributors.

50

Benchmarking Building Performance & the Australian Building Greenhouse  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking Building Performance & the Australian Building Greenhouse Benchmarking Building Performance & the Australian Building Greenhouse Rating Scheme Speaker(s): Paul Bannister Date: August 21, 2006 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Stephen Selkowitz (Two topics): Benchmarking Building Performance: In a variety of voluntary and regulatory initiatives around the globe, including the introduction of the European Building Performance Directive, the question of how to assess the performance of commercial buildings has become a critical issue. There are presently a number of initiatives for the assessment of actual building performance internationally, including in particular US Energy Star Buildings rating tools and the Australian Building Greenhouse Rating scheme. These schemes seek to assess building energy performance on the

51

Building Technologies Office: Performance Metrics Tiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Metrics Performance Metrics Tiers to someone by E-mail Share Building Technologies Office: Performance Metrics Tiers on Facebook Tweet about Building Technologies Office: Performance Metrics Tiers on Twitter Bookmark Building Technologies Office: Performance Metrics Tiers on Google Bookmark Building Technologies Office: Performance Metrics Tiers on Delicious Rank Building Technologies Office: Performance Metrics Tiers on Digg Find More places to share Building Technologies Office: Performance Metrics Tiers on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software

52

Building Energy Software Tools Directory: Building Performance Compass  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Performance Compass Building Performance Compass Building Performance Compass logo Building Performance Compass analyzes commercial and multi-family building energy use patterns in a simple, easy-to-use Web-based interface. Using building details and energy data from the building’s utility bills, it is unique in its ability to benchmark and compare all buildings, whether residential or commercial. Recent enhancements to Building Performance Compass include new multi-family support, the ability to track non-energy quantities such as water and waste, and features such as its fast-feedback report, which enables reporting energy savings as early as one month after work is completed. Building Performance Compass also provides extensive tracking of building data and usage, as well as the ability to upload and track

53

ESPC 2.0: How New Twists on Energy Savings Performance Contracting are Improving Energy Efficiency in U.S. Buildings  

Energy.gov (U.S. Department of Energy (DOE))

Join Better Buildings Challenge Partners and Allies to learn how Energy Savings Performance Contracting (ESPC) is moving beyond the traditional education and hospital sector markets.

54

High-Performance Building Requirements for State Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » High-Performance Building Requirements for State Buildings High-Performance Building Requirements for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State South Dakota Program Type Energy Standards for Public Buildings Provider Office of the State Engineer In March 2008, South Dakota enacted legislation mandating the use of high-performance building standards in new state construction and renovations. This policy requires that new and renovated state buildings

55

Buildings Performance Database - Datasets - OpenEI Datasets  

Open Energy Info (EERE)

Buildings Performance Database Dataset Activity Stream Buildings Performance Database The Buildings Performance Database (BPD) unlocks the power of building energy performance...

56

Revisit of Energy Use and Technologies of High Performance Buildings  

E-Print Network (OSTI)

Energy performance of LEED for new construction buildings:New Buildings Institute.New Buildings Institute. 2013. Buildings database, http://

Li Ph.D., Cheng

2014-01-01T23:59:59.000Z

57

Building Technologies Office: Global Superior Energy Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Superior Energy Performance Partnership Global Superior Energy Performance Partnership Graphic of Global Superior Energy Performance working groups, including energy management led by the United States, power led by Japan, combined heat and power led by Finland, steel led by Japan, cool roofs led by the United states, and cement led by Japan. GSEP, a multi-country effort to create and coordinate nationally accredited energy performance certification programs, comprises a number of working groups. Credit: DOE The U.S. Department of Energy (DOE) supports the Superior Energy Performance (SEP) program, which provides industrial facilities and commercial buildings a framework for achieving continual improvement in energy efficiency while maintaining market competitiveness. SEP aims to provide a transparent, globally accepted system for energy management and continuous energy performance improvement.

58

Building Technologies Office: Global Superior Energy Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Superior Energy Global Superior Energy Performance Partnership to someone by E-mail Share Building Technologies Office: Global Superior Energy Performance Partnership on Facebook Tweet about Building Technologies Office: Global Superior Energy Performance Partnership on Twitter Bookmark Building Technologies Office: Global Superior Energy Performance Partnership on Google Bookmark Building Technologies Office: Global Superior Energy Performance Partnership on Delicious Rank Building Technologies Office: Global Superior Energy Performance Partnership on Digg Find More places to share Building Technologies Office: Global Superior Energy Performance Partnership on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

59

Linking occupant complaints to building performance  

E-Print Network (OSTI)

and A. -C. E. , U.S. Green Building Council. , & CharteredD.C. 28. United States Green Building Council. “Certifiedfor performance in green buildings are a good basis for

Goins, John; Moezzi, Mithra

2012-01-01T23:59:59.000Z

60

DOE Buildings Performance Database, sample Residential data | OpenEI  

Open Energy Info (EERE)

Buildings Performance Database, sample Residential data Buildings Performance Database, sample Residential data Dataset Summary Description This is a non-proprietary subset of DOE's Buildings Performance Database. Buildings from the cities of Dayton, OH and Gainesville, FL areas are provided as an example of the data in full database. Sample data here is formatted as CSV The Buildings Performance Database will have an API that allows access to the statistics about the data without exposing private information about individual buildings. The data available in this sample is limited due to the nature of the original datasets; the Buildings Performance database combines data from multiple sources to improve overall robustness. Data fields stored in the database can be seen in the BPD taxonomy: http://www1.eere.energy.gov/buildings/buildingsperformance/taxonomy.html

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

High Performance Building Standards in State Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Building Standards in State Buildings High Performance Building Standards in State Buildings High Performance Building Standards in State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Oklahoma Program Type Energy Standards for Public Buildings Provider Oklahoma Department of Central Services In June 2008, the governor of Oklahoma signed [http://webserver1.lsb.state.ok.us/2007-08bills/HB/hb3394_enr.rtf HB 3394] requiring the state to develop a high-performance building certification program for state construction and renovation projects. The standard, which

62

Rating the energy performance of buildings  

SciTech Connect

In order to succeed in developing a more sustainable society, buildings will need to be continuously improved. This paper discusses how to rate the energy performance of buildings. A brief review of recent approaches to energy rating is presented. It illustrates that there is no single correct or wrong concept, but one needs to be aware of the relative impact of the strategies. Different strategies of setting energy efficiency standards are discussed and the advantages of the minimum life cycle cost are shown. Indicators for building energy rating based on simulations, aggregated statistics and expert knowledge are discussed and illustrated in order to demonstrate strengths and weaknesses of each approach. In addition, the importance of considering the level of amenities offered is presented. Attributes of a rating procedure based on three elements, flexible enough for recognizing different strategies to achieve energy conservation, is proposed.

Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

2004-12-01T23:59:59.000Z

63

Building America Webinar: High Performance Space Conditioning...  

Energy Savers (EERE)

Strategies for Affordable Housing Building America Webinar: High Performance Space Conditioning Systems, Part II - Air Distribution Retrofit Strategies for Affordable...

64

Whole Building Performance-Based Procurement Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole Building Performance-Based Whole Building Performance-Based Procurement Training TDM - Shalon Brown (BTO) Shanti Pless National Renewable Energy Laboratory Shanti.Pless@nrel.gov 303-384-6365 April 4, 2013 2 | Building Technologies Office eere.energy.gov Project Definition Replicating NREL/DOE procurement process successes in reaching 50% building energy savings at typical construction costs, by: - Creating a how-to guide that outlines the entire acquisition process, including: setting a building energy requirement, project

65

High Performance Sustainable Building - DOE Directives, Delegations...  

NLE Websites -- All DOE Office Websites (Extended Search)

6A, High Performance Sustainable Building by Adam Pugh Functional areas: Program Management, Project Management This Guide provides approaches for implementing the High Performance...

66

Building America Webinar: High Performance Enclosure Strategies...  

Energy Savers (EERE)

II, New Construction - August 13, 2014 - Next Gen Advanced Framing for High Performance Homes Integrated System Solutions Building America Webinar: High Performance Enclosure...

67

A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings  

SciTech Connect

Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

2013-06-06T23:59:59.000Z

68

[ HIGH PERFORMANCE BUILDING STANDARD] STATE OF MONTANA HIGH PERFORMANCE BUILDING STANDARDS  

E-Print Network (OSTI)

[ HIGH PERFORMANCE BUILDING STANDARD] PART 2 HPBS STATE OF MONTANA HIGH PERFORMANCE BUILDING. These High Performance Building Standards are promulgated to implement the directives established in SB 49 which amended Section 17-7-201, MCA. B. These High Performance Building Standards were adopted on June 1

Dyer, Bill

69

A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings  

E-Print Network (OSTI)

For Energy Efficiency of Public Building -- GB 50189.communication on building energy efficiency policy in China.Improving energy efficiency in existing buildings. ASHRAE

Levine, Mark

2014-01-01T23:59:59.000Z

70

Best Practices Guide for High-Performance Indian Office Buildings  

E-Print Network (OSTI)

targets  during  building  modeling  (design  phase)   and  both  for  building  modeling  (design  phase)  and  performing  building  energy   simulation  and  modeling  

Singh, Reshma

2014-01-01T23:59:59.000Z

71

Buildings Performance Database | OpenEI  

Open Energy Info (EERE)

Buildings Performance Database Buildings Performance Database Dataset Summary Description This is a non-proprietary subset of DOE's Buildings Performance Database. Buildings from the cities of Dayton, OH and Gainesville, FL areas are provided as an example of the data in full database. Sample data here is formatted as CSV Source Department of Energy's Buildings Performance Database Date Released July 09th, 2012 (2 years ago) Date Updated Unknown Keywords Buildings Performance Database Dayton Electricity Gainesville Natural Gas open data Residential Data application/zip icon BPD Dayton and Gainesville Residential csv files in a zip file (zip, 2.8 MiB) text/csv icon BPD Dayton and Gainesville Residential Building Characteristics data (csv, 1.4 MiB) text/csv icon BPD Dayton and Gainesville Residential data headers (csv, 5.8 KiB)

72

Energy Savings Through Improved Mechanical Systems and Building...  

Office of Environmental Management (EM)

Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies (DE-FOA-0000621) Energy Savings Through Improved Mechanical Systems and Building Envelope...

73

Preliminary investigation of the use of Sankey diagrams to enhance building performance simulation-supported design  

Science Journals Connector (OSTI)

Building performance simulation (BPS) is a powerful tool for assessing the performance of unbuilt buildings to improve their design. However, numerous obstacles resulting from limited resources of designers and poor presentation of results reduce the ... Keywords: Sankey diagrams, building performance simulation, design tools, high-performance building design, user interface

William (Liam) O'Brien

2012-03-01T23:59:59.000Z

74

Better Buildings Alliance Equipment Performance Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

75

Better Buildings Alliance Equipment Performance Specifications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

76

High Performance Buildings Database | Open Energy Information  

Open Energy Info (EERE)

High Performance Buildings Database High Performance Buildings Database Jump to: navigation, search The High Performance Buildings Database (HPBD), developed by the United States Department of Energy and the National Renewable Energy Laboratory, is "a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad."[1] Map of HPBD entries Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":1000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"-","intro":"","outro":"","searchlabel":"\u2026

77

Buildings Performance Database Recommended Data Fields  

Energy.gov (U.S. Department of Energy (DOE))

Buildings Performance Database Recommended Data Fields, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

78

Building America Webinar: High Performance Space Conditioning...  

Energy Savers (EERE)

Kohta Ueno, Building Science Corporation. Kohta will discuss BSC's research on ductless heat pumps versus mini-splits being used in high performance (high R value enclosurelow...

79

High-Performance Sustainable Building Design for New Construction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sustainable Buildings & Campuses High-Performance Sustainable Building Design for New Construction and Major Renovations High-Performance Sustainable Building Design for New...

80

Building America Roadmap to High Performance Homes | Department...  

Office of Environmental Management (EM)

Building America Roadmap to High Performance Homes Building America Roadmap to High Performance Homes This presentation was delivered at the U.S. Department of Energy Building...

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy saving performance of green vegetation on LEED certified buildings  

Science Journals Connector (OSTI)

Abstract Sustainable building practices can considerably reduce building's environmental impact in energy consumption. Covering a building envelope with green vegetation, such as green roof and green wall, is considered a sustainable construction practice, as green vegetation has a positive performance in energy savings. It reduces heat flux and solar reflectivity, generates evaporative cooling, increases thermal performance of the building envelope, and blocks the wind effect on the building. This paper analyses the energy performance of green vegetation in a high occupancy LEED Gold standard building in Canada. DesignBuilder software was used to model the energy consumption for heating and cooling, and EnergyPlus software was used to perform the detailed energy simulations. The developed simulation model was validated with the actual energy consumptions of the selected building. Three different scenarios of green vegetation were simulated and the results show that green vegetation could considerably reduce the negative heat transfer through the building façade in summer and winter months. However, the analysis demonstrated that the green vegetation is not cost-effective in winter months or cold climatic regions due to the low energy savings performance. The paper concludes with recommendations to improve the overall energy performance in green buildings.

H. Feng; K. Hewage

2014-01-01T23:59:59.000Z

82

High Performance and Sustainable Buildings Guidance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HIGH PERFORMANCE and SUSTAINABLE BUILDINGS GUIDANCE Final (12/1/08) PURPOSE The Interagency Sustainability Working Group (ISWG), as a subcommittee of the Steering Committee established by Executive Order (E.O.) 13423, initiated development of the following guidance to assist agencies in meeting the high performance and sustainable buildings goals of E.O. 13423, section 2(f). 1 E.O. 13423, sec. 2(f) states "In implementing the policy set forth in section 1 of this order, the head of each agency shall: ensure that (i) new construction and major renovations of agency buildings comply with the Guiding Principles for Federal Leadership in High Performance and Sustainable Buildings set forth in the Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding (2006)

83

Using Dashboards to Improve Energy and Comfort in Federal Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Dashboards to Improve Energy and Comfort in Federal Buildings Using Dashboards to Improve Energy and Comfort in Federal Buildings Title Using Dashboards to Improve Energy and Comfort in Federal Buildings Publication Type Report LBNL Report Number LBNL-4283E Year of Publication 2011 Authors Marini, Kyle, Girish Ghatikar, and Richard C. Diamond Call Number LBNL-4283E Keywords commercial buildings, dashboards, energy, feedback, monitoring Abstract Federal agencies are taking many steps to improve the sustainability of their operations, including improving the energy efficiency of their buildings, promoting recycling and reuse of materials, encouraging carpooling and alternative transit schemes, and installing low flow water fixture units are just a few of the common examples. However, an often overlooked means of energy savings is to provide feedback to building users about their energy use through information dashboards connected to a building's energy information system.An Energy Information System (EIS), broadly defined, is a package of performance monitoring software, data acquisition hardware, and communication systems that is used to collect, store, analyze, and display energy information. At a minimum, the EIS provides the whole-building energy-use information (Granderson 2009a). We define a "dashboard" as a display and visualization tool that utilizes the EIS data and technology to provide critical information to users. This information can lead to actions resulting in energy savings, comfort improvements, efficient operations, and more. The tools to report analyzed information have existed in the information technology as business intelligence (Few 2006). The dashboard is distinguished from the EIS as a whole, which includes additional hardware and software components to collect and storage data, and analysis for resources and energy management (Granderson 2009b). EIS can be used for a variety of uses, including benchmarking, base-lining, anomaly detection, off-hours energy use evaluation, load shape optimization, energy rate analysis, retrofit and retro-commissioning savings (Granderson 2009a). The use of these EIS features depends on the specific users. For example, federal and other building managers may use anomaly detection to identify energy waste in a specific building, or to benchmark energy use in similar buildings to identify energy saving potential and reduce operational cost. There are several vendors of EIS technology that provide information on energy and other environmental variables in buildings.

84

Commercial Building Partners Catalyze High Performance Buildings Across the Nation  

SciTech Connect

In 2008 the US Department of Energy (DOE) launched the Commercial Buildings Partnership (CBP) project to accelerate market adoption of commercially available energy saving technologies into the design process for new and upgraded commercial buildings. The CBP represents a unique collaboration between industry leaders and DOE to develop high performance buildings as a model for future construction and renovation. CBP was implemented in two stages. This paper focuses on lessons learned at Pacific Northwest National Laboratory (PNNL) in the first stage and discusses some partner insights from the second stage. In the first stage, PNNL and the National Renewable Energy Laboratory recruited CBP partners that own large portfolios of buildings. The labs provide assistance to the partners' design teams and make a business case for energy investments.

Baechler, Michael C.; Dillon, Heather E.; Bartlett, Rosemarie

2012-08-01T23:59:59.000Z

85

Enhancing the performance of building integrated photovoltaics  

Science Journals Connector (OSTI)

Recent research in Building Integrated Photovoltaics (BIPV) is reviewed with the emphases on a range of key systems whose improvement would be likely to lead to improved solar energy conversion efficiency and/or economic viability. These include invertors, concentrators and thermal management systems. Advances in techniques for specific aspects of systems design, installation and operation are also discussed.

Brian Norton; Philip C. Eames; Tapas K. Mallick; Ming Jun Huang; Sarah J. McCormack; Jayanta D. Mondol; Yigzaw G. Yohanis

2011-01-01T23:59:59.000Z

86

High Performance Sustainable Building Design RM  

Energy.gov (U.S. Department of Energy (DOE))

The High Performance Sustainable Building Design (HPSBD) Review Module (RM) is a tool that assists the DOE federal project review teams in evaluating the technical sufficiency for projects that may...

87

High Performance Green Building Partnership Consortia | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are groups from the public and private sectors recognized by the U.S. Department of Energy (DOE) for their commitment to high-performance green buildings. Groups that met...

88

Improving Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)  

SciTech Connect

New test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team developed the Building Energy Simulation Test for Existing Homes (BESTEST-EX), a method for diagnosing and correcting errors in building energy audit software and calibration procedures. BESTEST-EX consists of building physics and utility bill calibration test cases, which software developers can use to compare their tools simulation findings to reference results generated with state-of-the-art simulation tools. Overall, the BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX is helping software developers identify and correct bugs in their software, as well as develop and test utility bill calibration procedures.

Not Available

2012-02-01T23:59:59.000Z

89

Improving Deaerator Performance  

E-Print Network (OSTI)

The objectives of deaeration of feedwater are reviewed. A discussion of appropriate test data and methods for assessing deaerator performance are given. Analysis procedures are developed to analyze the test data. Typical problems such as over...

Dyer, D. F.; Maples, G.

90

Florida Solar Energy Center (Building America Partnership for Improved  

Open Energy Info (EERE)

(Building America Partnership for Improved (Building America Partnership for Improved Residential Construction Jump to: navigation, search Name Florida Solar Energy Center (Building America Partnership for Improved Residential Construction Place Orlando, FL Website http://www.floridasolarenergyc References Florida Solar Energy Center (Building America Partnership for Improved Residential Construction[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Florida Solar Energy Center (Building America Partnership for Improved Residential Construction is a company located in Orlando, FL. References

91

Building America Roadmap to High Performance Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Name or Ancillary Text Program Name or Ancillary Text eere.energy.gov Building America Technical Update Meeting - April 29, 2013 Building America Roadmap to High Performance Homes Eric Werling Building America Coordinator Denver, CO April 29, 2013 Building Technology Office U.S. Department of Energy EERE's National Mission Mission: To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 2 | Building Technologies Office eere.energy.gov Why It Matters to America * Winning the most important global economic development race of the 21 st century * Creating jobs through American innovation

92

Better Buildings Challenge is Expanding, Improving Energy Efficiency...  

Energy Savers (EERE)

is Expanding, Improving Energy Efficiency Throughout America Better Buildings Challenge is Expanding, Improving Energy Efficiency Throughout America December 5, 2013 - 4:36pm...

93

Improving the Energy Efficiency of Residential Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings Residential Buildings Improving the Energy Efficiency of Residential Buildings Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. Learn More Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. Learn More The Building Technologies Office (BTO) collaborates with the residential building industry to improve the energy efficiency of both new and existing homes. By developing, demonstrating, and deploying cost-effective solutions, BTO strives to reduce energy consumption across the residential building sector by at least 50%. Research and Development Conduct research that focuses on engineering solutions to design, test, and

94

Innovative Facility Kicks Off First Experiment to Transform Building Energy Performance  

Office of Energy Efficiency and Renewable Energy (EERE)

Find out how the Energy Department is working to improve the energy efficiency, design, construction and operation of high-performance commercial buildings through research at Lawrence Berkeley National Laboratory's new FLEXLAB, Facility for Low Energy Experiments in Buildings.

95

NREL Improves Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Improves Improves Building Energy Simulation Programs Through Diagnostic Testing Researchers at the National Renewable Energy Laboratory (NREL) have developed a new test procedure to increase the quality and accuracy of energy analysis tools for the building retrofit market. The Building Energy Simulation Test for Existing Homes (BESTEST-EX) is a test procedure that enables software developers to evaluate the performance of their audit tools in modeling energy use and savings in existing homes when utility bills are available for model cali- bration. Similar to NREL's previous energy analysis tests, such as HERS BESTEST and other BESTEST suites included in ANSI/ASHRAE Standard 140, BESTEST-EX compares soft- ware simulation findings to reference results generated with state-of-the-art

96

Federal Leadership in High Performance and Sustainable Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leadership in High Performance and Sustainable Buildings Memorandum of Understanding Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding...

97

Tankless Gas Water Heater Performance - Building America Top...  

Energy Savers (EERE)

Tankless Gas Water Heater Performance - Building America Top Innovation Tankless Gas Water Heater Performance - Building America Top Innovation This photo shows a hot water heater...

98

Groundbreaking High-Performance Building Districts  

E-Print Network (OSTI)

Groundbreaking High-Performance Building Districts ESL-KT-14-11-28 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 ? The Centre for Building Performance is a Registered Provider with The American Institute...-11-28 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 ? This program is registered with AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval...

Jordan, J.

2014-01-01T23:59:59.000Z

99

Building America Webinar: High Performance Space Conditioning...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Part I The webinar on Oct. 23, 2014, focused on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits. Presenters and specific...

100

Building America Webinar: High Performance Space Conditioning...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3:00PM to 4:30PM EDT The webinar will focus on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits. Presenters and specific...

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Improving Conditions for Green Building Construction in North  

E-Print Network (OSTI)

green building a standard practice throughout North America. · In 2011, the CEC formed the TrilateralImproving Conditions for Green Building Construction in North America QUEST 2012 INTERNATIONAL Green Building Task Force, comprising North American leaders from the green building industry

102

Better Buildings Alliance Equipment Performance Specifications  

Energy.gov (U.S. Department of Energy (DOE))

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

103

Improving Building Envelope and Duct Airtightness of US Dwellings The  

E-Print Network (OSTI)

the building envelope and duct system airtightness of US single-family detached homes, manufactured homes, and multi-family homes, before and after energy retrofits. These data are part of the Residential Improving Building Envelope

104

Confortable Performance: Retro-Commissioning Building Operations  

E-Print Network (OSTI)

troubleshooting ? New controls strategies ? Equipment schedule optimization ? Comfort improvements 7 ESL-IC-13-10-07 Proceedings of the 13th International Conference for Enhanced Building Operations, Montreal, Quebec, October 8-11, 2013 Tools ? Actuator... Operations, Montreal, Quebec, October 8-11, 2013 Example 1 ? Problem ? Monday morning ?too cold? complaints ? Solution ? Heating system start-up on Sunday at 2:00pm ? RCx Investigation ? Tenant MAU running 24x7 with no heat (space temperature...

Botan, L.

2013-01-01T23:59:59.000Z

105

Federal Energy Management Program: High-Performance Sustainable Building  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Performance Sustainable Building Design for New Construction and Major Renovations High-Performance Sustainable Building Design for New Construction and Major Renovations New construction and major renovations to existing buildings offer Federal agencies opportunities to create sustainable high-performance buildings. High-performance buildings can incorporate energy-efficient designs, sustainable siting and materials, and renewable energy technologies along with other innovative strategies. Also see Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings. Performance-Based Design Build Typically, architects, engineers, and project managers consider the potential to build a high-performance building to be limited by the initial cost. A different approach-performance-based design build-makes high performance the priority, from start to finish. Contracts are developed that focus on both limiting construction costs and meeting performance targets. The approach is not a source of funding, but rather a strategy to make the most out of limited, appropriated, funds.

106

Improving the Energy Efficiency of Commercial Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings Commercial Buildings Improving the Energy Efficiency of Commercial Buildings Engaging Industry Leaders to Deploy Energy Saving Tools, Technologies and Best Practices Learn More Engaging Industry Leaders to Deploy Energy Saving Tools, Technologies and Best Practices Learn More The Building Technologies Office (BTO) works with the commercial building industry to accelerate the uptake of energy efficiency technologies and techniques in both existing and new commercial buildings. By developing, demonstrating, and deploying cost-effective solutions, BTO strives to reduce energy consumption across the commercial building sector by at least 1,600 TBtu. Key Tools and Resources Use the guides, case studies, and other tools developed by the DOE

107

Better Buildings Challenge is Expanding, Improving Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Challenge is Expanding, Improving Energy Better Buildings Challenge is Expanding, Improving Energy Efficiency Throughout America Better Buildings Challenge is Expanding, Improving Energy Efficiency Throughout America December 5, 2013 - 4:36pm Addthis Industry and government officials discuss the Better Buildings Challenge expansion at the White House earlier this week. | Photo courtesy of Department of Housing and Urban Development Industry and government officials discuss the Better Buildings Challenge expansion at the White House earlier this week. | Photo courtesy of Department of Housing and Urban Development Maria Tikoff Vargas Director, Department of Energy Better Buildings Challenge MORE RESOURCES Read the press release about the Better Buildings expansion Learn more about Better Buildings Accelerators

108

Africa Adaptation Programme: Capacity Building Experiences-Improving...  

Open Energy Info (EERE)

Data and Information Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa Adaptation Programme: Capacity Building Experiences-Improving Access, Understanding...

109

Data Preparation Process for the Buildings Performance Database  

E-Print Network (OSTI)

Fuel Type of fuel used in the building record. Units Unit ofRequirements a) Each building needs to have a continuousPreparation Process for the Buildings Performance Database

Walter, Travis

2014-01-01T23:59:59.000Z

110

Buildings Performance Database Analysis Tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Buildings Performance Database » Buildings Commercial Buildings » Buildings Performance Database » Buildings Performance Database Analysis Tools Buildings Performance Database Analysis Tools The Buildings Performance Database will offer four analysis tools for exploring building data and forecasting financial and energy savings: a Peer Group Tool, a Retrofit Analysis Tool, a Data Table Tool, and a Financial Forecasting Tool. Available now: Peer Group Tool The Peer Group Tool allows users to peruse the BPD, define peer groups, and analyze their performance. Users can create Peer Groups by filtering the dataset based on parameters such as building type, location, floor area, age, occupancy, and system characteristics such as lighting and HVAC type. The graphs show the energy performance distribution of those

111

Building Energy Performance Analysis of an Academic Building Using IFC BIM-Based Methodology  

E-Print Network (OSTI)

This paper discusses the potential to use an Industry Foundation Classes (IFC)/Building Information Modelling (BIM) based method to undertake Building Energy Performance analysis of an academic building. BIM/IFC based methodology provides a...

Aziz, Z.; Arayici, Y.; Shivachev, D.

2012-01-01T23:59:59.000Z

112

Thermal Performance Evaluation of Innovative Metal Building Roof Assemblies  

SciTech Connect

In order to meet the coming energy codes, multiple layers of various insulation types will be required. The demand for greater efficiency has pushed insulation levels beyond the cavity depth. These experiments show the potential for improving metal building roof thermal performance. Additional work is currently being done by several stakeholders, so the data is expanding. These experiments are for research and development purposes, and may not be viable for immediate use.

Walker, Daniel James [ORNL; Zaltash, Abdolreza [ORNL; Atchley, Jerald Allen [ORNL

2011-01-01T23:59:59.000Z

113

Building America Technlogy Solutions for New and Existing Homes: Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

In this project, the PARR research team examined the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE.

114

High Performance Sustainable Building Design RM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Sustainable High Performance Sustainable Building Design Review Module March 2010 CD-0 O High 0 This Re Les OFFICE OF h Perform CD-1 eview Module ssons learned f F ENVIRON Standard R mance Su Revi Critical D CD-2 M has been pilot from the pilot h NMENTAL Review Plan ustainabl iew Module Decision (CD C March 2010 ted at the SRS have been incor L MANAGE n (SRP) le Buildin e D) Applicabili D-3 SWPF and MO rporated in Rev EMENT ng Design ity CD-4 OX FFF projec view Module n Post Ope cts. eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The

115

About the Buildings Performance Database | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Buildings Performance Database » About the Commercial Buildings » Buildings Performance Database » About the Buildings Performance Database About the Buildings Performance Database "Upgrading the energy efficiency of America's buildings is one of the fastest, easiest, and cheapest ways to save money, cut down on harmful pollution, and create good jobs right now." -President Obama Open data has fueled entrepreneurship and transformed fields such as weather, GPS and health. Yet in the energy efficiency market, one of the primary challenges is the lack of empirical data demonstrating the relationship between building characteristics and energy performance. Rigorous performance risk assessments of potential energy efficiency measures could support better decision-making among building owners and

116

Frequently Asked Questions About the Buildings Performance Database |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Buildings Performance Database » Commercial Buildings » Buildings Performance Database » Frequently Asked Questions About the Buildings Performance Database Frequently Asked Questions About the Buildings Performance Database On this page you will find answers to frequently asked questions pertaining to the DOE Buildings Performance Database (BPD). General What is the purpose of the BPD? What building energy performance data is included in the BPD? Access Information How can I access the database? How can I contribute data to the BPD? Database and Analysis Information What kinds of buildings does the BPD have? What are the data sources that populate the BPD? Does the BPD have time series data? How do you ensure that the data from these multiple sources is consistent and valid? What data format does the BPD utilize?

117

An energy performance index for historic buildings.  

E-Print Network (OSTI)

??This thesis reports studies conducted on historic buildings from the 1880 to 1900 era. These buildings were recently renovated and many more years of service… (more)

Campbell, Scott

2012-01-01T23:59:59.000Z

118

Frequently Asked Questions About the Building Performance Database  

Energy.gov (U.S. Department of Energy (DOE))

On this page you will find answers to frequently asked questions pertaining to the DOE Buildings Performance Database (BPD).

119

Durham County - High-Performance Building Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Durham County - High-Performance Building Policy Durham County - High-Performance Building Policy Durham County - High-Performance Building Policy < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State North Carolina Program Type Energy Standards for Public Buildings Provider Durham City and County Durham County adopted a resolution in October 2008 that requires new non-school public buildings and facilities to meet high-performance standards. New construction of public buildings and facilities greater than

120

Building America Webinar: High Performance Building Enclosures: Part I, Existing Homes  

Energy.gov (U.S. Department of Energy (DOE))

This webinar, presented on May 21, 2014, focused on specific Building America projects that have implemented technical solutions to retrofit building enclosures to reduce energy use and improve durability.

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Building America Best Practices Series, Volume 13 - Energy Performance...  

Energy Savers (EERE)

Series, Volume 13 - Energy Performance Techniques and Technologies: Perserving Historic Homes Building America Best Practices Series, Volume 13 - Energy Performance Techniques and...

122

Increase energy efficiency in systems and buildings and improve indoor  

NLE Websites -- All DOE Office Websites (Extended Search)

Increase energy efficiency in systems and buildings and improve indoor Increase energy efficiency in systems and buildings and improve indoor environment: How to validate comfort and energy reduction Speaker(s): Wouter Borsboom Date: December 8, 2009 - 12:00pm Location: 90-3122 TNO is a research institute which is active in the energy saving and indoor environment. We like to present our research, our goals and discuss the challenges and the opportunities for cooperation. Therefore we like to give a presentation about the following topic and we are also interested in a presentation of LBL and UC Berkeley. An important topic in the building industry is near zero energy buildings. Most countries in Europe implemented programs to advance this goal in one way or another. In near-zero energy buildings, the interaction between building and systems

123

Building America's Top Innovations Advance High Performance Homes |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America's Top America's Top Innovations Advance High Performance Homes Building America's Top Innovations Advance High Performance Homes Building America Top Innovations. Recognizing top innovations in building science. Innovations sponsored by the U.S. Department of Energy's (DOE) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. Building America researchers have worked directly with more than 300 U.S. production home builders and have boosted the performance of more than 42,000 new homes. Learn more about Building America Top Innovations. 2013 Top Innovations New Top Innovations are awarded annually for outstanding Building America research achievements. Learn more about the 2013 Top Innovations recently

124

BigHorn Home Improvement Center: Proof that a Retail Building Can Be a Low Energy Building: Preprint  

SciTech Connect

The BigHorn Home Improvement Center in Silverthorne, Colorado was one of the first commercial buildings in the United States to integrate extensive high-performance design into a retail space. After monitoring and evaluation by NREL, the BigHorn Center was found to consume 54% less source energy and have 53% lower energy costs than typical retail buildings of similar size. The extensive use of daylighting to replace electric lighting reduced lighting energy requirements by 80% and significantly contributed to the reduced energy loads in the building.

Deru, M.; Torcellini, P.; Judkoff, R.

2004-07-01T23:59:59.000Z

125

Team Middlebury On How to Create Buildings That Improve Communities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Team Middlebury On How to Create Buildings That Improve Communities Team Middlebury On How to Create Buildings That Improve Communities Socially, Economically, and Environmentally Team Middlebury On How to Create Buildings That Improve Communities Socially, Economically, and Environmentally July 8, 2013 - 4:36pm Addthis Team Middlebury at their Spring Build of the InSite, a 954 sq. ft. solar-powered home that's set to compete in the 2013 Solar Decathlon. Cordelia, Team Manager, is pictured sixth from the right. Team Middlebury at their Spring Build of the InSite, a 954 sq. ft. solar-powered home that's set to compete in the 2013 Solar Decathlon. Cordelia, Team Manager, is pictured sixth from the right. Cordelia Newbury Team Manager, InSite: Team Middlebury Solar Decathlon Looking back on my experience with the Solar Decathlon, I am a firm

126

Team Middlebury On How to Create Buildings That Improve Communities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Team Middlebury On How to Create Buildings That Improve Communities Team Middlebury On How to Create Buildings That Improve Communities Socially, Economically, and Environmentally Team Middlebury On How to Create Buildings That Improve Communities Socially, Economically, and Environmentally July 8, 2013 - 4:36pm Addthis Team Middlebury at their Spring Build of the InSite, a 954 sq. ft. solar-powered home that's set to compete in the 2013 Solar Decathlon. Cordelia, Team Manager, is pictured sixth from the right. Team Middlebury at their Spring Build of the InSite, a 954 sq. ft. solar-powered home that's set to compete in the 2013 Solar Decathlon. Cordelia, Team Manager, is pictured sixth from the right. Cordelia Newbury Team Manager, InSite: Team Middlebury Solar Decathlon Looking back on my experience with the Solar Decathlon, I am a firm

127

High Performance Commercial Buildings Technology Roadmap | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » High Performance Commercial Buildings Technology Roadmap Jump to: navigation, search Tool Summary Name: High Performance Commercial Buildings Technology Roadmap Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Technology characterizations Resource Type: Dataset Website: www.nrel.gov/docs/fy01osti/30171.pdf References: High Performance Commercial Buildings Technology Roadmap[1] Overview "This technology roadmap describes the vision and strategies for addressing these challenges developed by representatives of the buildings industry. Collaborative research, development, and deployment of new technologies, coupled with an integrated "whole-buildings" approach, can shape future

128

Using Dashboard to Improve Energy and Comfort in Federal Buildings  

E-Print Network (OSTI)

LBNL-4283E Using Dashboard to Improve Energy and Comfort in Federal Buildings Kyle Marini Secretary of Energy Efficiency and Renewable Energy, Federal Energy Management Program, of the U of the Building 90 monitoring team, including, Jose (Arturo) Ayala-Navarro, Geoffrey Bell, Nicholas Goodell

129

Africa Adaptation Programme: Capacity Building Experiences-Improving  

Open Energy Info (EERE)

Africa Adaptation Programme: Capacity Building Experiences-Improving Africa Adaptation Programme: Capacity Building Experiences-Improving Access, Understanding and Application of Climate Data and Information Jump to: navigation, search Tool Summary Name: Africa Adaptation Programme: Capacity Building Experiences-Improving Access, Understanding and Application of Climate Data and Information Agency/Company /Organization: United Nations Development Programme (UNDP) Sector: Climate, Energy Topics: Adaptation, Co-benefits assessment, - Energy Access Resource Type: Dataset, Lessons learned/best practices Website: www.undp.org/environment/library.shtml Cost: Free UN Region: Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa Language: English Africa Adaptation Programme: Capacity Building Experiences-Improving Access, Understanding and Application of Climate Data and Information Screenshot

130

The Challenge: Improving the Energy Efficiency of Buildings Across the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Challenge: Improving the Energy Efficiency of Buildings Across The Challenge: Improving the Energy Efficiency of Buildings Across the Nation The Challenge: Improving the Energy Efficiency of Buildings Across the Nation June 20, 2012 - 1:49pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy On the Energy Savers Blog, we talk a lot about what people can do at home to save money on their energy bills so they can use it on other things that enrich their lives. But businesses across the country are also taking steps to improve their energy efficiency -- steps that reduce costs for American companies, saving millions of dollars and making the U.S. economy more competitive. The Energy Department announced last week that six new major companies have joined the Better Buildings Challenge, which encourages leaders across the

131

The Challenge: Improving the Energy Efficiency of Buildings Across the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Challenge: Improving the Energy Efficiency of Buildings Across The Challenge: Improving the Energy Efficiency of Buildings Across the Nation The Challenge: Improving the Energy Efficiency of Buildings Across the Nation June 20, 2012 - 1:49pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy On the Energy Savers Blog, we talk a lot about what people can do at home to save money on their energy bills so they can use it on other things that enrich their lives. But businesses across the country are also taking steps to improve their energy efficiency -- steps that reduce costs for American companies, saving millions of dollars and making the U.S. economy more competitive. The Energy Department announced last week that six new major companies have joined the Better Buildings Challenge, which encourages leaders across the

132

Furnace Blower Performance Improvements - Building America Top...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in preparation for cold weather, they may be unaware of how furnace blowers can impact HVAC efficiency. In fact, studies show that the most common blowers have efficiencies of...

133

Buildings Performance Database (BPD)- 2014 BTO Peer Review  

Energy.gov (U.S. Department of Energy (DOE))

The overall goal of the Buildings Performance Database (BPD) is to provide public access to high-quality building characteristics and energy consumption data to incentivize, analyze, and validate energy efficiency investments.

134

High Performance Building Standards in New State Construction  

Energy.gov (U.S. Department of Energy (DOE))

In January 2008, New Jersey enacted legislation mandating the use of high performance green building standards in new state construction. The standard requires that new buildings larger than 15...

135

Procedure for Measuring and Reporting Commercial Building Energy Performance  

SciTech Connect

This procedure is intended to provide a standard method for measuring and characterizing the energy performance of commercial buildings. The procedure determines the energy consumption, electrical energy demand, and on-site energy production in existing commercial buildings of all types. The performance metrics determined here may be compared against benchmarks to evaluate performance and verify that performance targets have been achieved.

Barley, D.; Deru, M.; Pless, S.; Torcellini, P.

2005-10-01T23:59:59.000Z

136

Howard County - High Performance and Green Building Property Tax Credits |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Howard County - High Performance and Green Building Property Tax Howard County - High Performance and Green Building Property Tax Credits Howard County - High Performance and Green Building Property Tax Credits < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Maximum Rebate High Performance Buildings: none specified High Performance R-2, R-3 Buildings: $5,000 per building or owner-occupied unit Green Buildings (w/energy conservation devices): limited to assessed property taxes on the structure Program Info Start Date 07/01/2008 State Maryland

137

Benchmarking and Performance Based Rating System for Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking and Performance Based Rating System for Commercial Buildings Benchmarking and Performance Based Rating System for Commercial Buildings in India Speaker(s): Saket Sarraf Date: May 4, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Girish Ghatikar The Indian building sector has witnessed huge surge in interest in energy performance in the last decade. The 'intention' based codes like the national Energy Conservation Building Code (ECBC) and green building rating systems such as Leadership in Energy and Environment Design (LEED-India) and Green Rating for Integrated Habitat Assessment (GRIHA) have been the prime mechanisms to design and assess energy efficient buildings. However, they do not rate the 'achieved' energy performance of buildings over time or reward their performance through a continuous evaluation process.

138

Federal Energy Management Program: High-Performance Sustainable Building  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Performance High-Performance Sustainable Building Design for New Construction and Major Renovations to someone by E-mail Share Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Facebook Tweet about Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Twitter Bookmark Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Google Bookmark Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Delicious Rank Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Digg

139

U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan  

Energy.gov (U.S. Department of Energy (DOE))

Plan outlining DOE's commitment to designing, building, operating, and maintaining high performance and sustainable buildings (HPSB).

140

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

2 2 Case Study, The Cambria Department of Environmental Protection Office Building, Ebensburg, Pennsylvania (Office) Building Design Floor Area: Floors: 2 Open office space (1) File storage area Two small labratories Conference rooms Break room Storage areas Two mechanical rooms Telecom room Shell Windows Material: Triple Pane, low-e with Aluminum Frames and Wood Frames Triple Pane Triple Pane Aluminum Frames Wood Frames U-Factor 0.24 U-Factor 0.26 Wall/Roof Primary Material R-Value Wall : Insulating Concrete Forms 27.0 Roof: Decking and Insulation 33.0 HVAC Total Capacities(thousand Btu/hr) 12 Ground Source Heat Pumps 644 (2) 12 Auxiliary Electric Resistance Heaters 382 (3) Lighting Power Densities(W/SF) Open Office Area: 0.75 Office Area Task Lighting(4): 0.5 Energy/Power PV System: 18.2 kW grid-tie system (5)

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Building America Webinar: High Performance Enclosure Strategies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

water intrusion, capillary action from concrete to wood connections, and through wetted building materials such as siding from rain splash back. Results of WUFI modeling and...

142

Memorandum of American High-Performance Buildings Coalition DOE Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Memorandum of American High-Performance Buildings Coalition DOE Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 This memorandum is intended to provide a summary of a meeting between the American HighPerformance Buildings Coalition (AHBPC), a coalition of industry organizations committed to promoting performance-based energy efficiency and sustainable building standards developed through true, consensus-bases processes, and the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) that took place on Monday, August 19, 2013. Memorandum of AHPBC DOE Meeting_8_19_2013_FINAL_SIGNED More Documents & Publications Federal Leadership in High Performance and Sustainable Buildings Memorandum

143

Sustaining Performance Improvements in Energy Intensive Industries  

E-Print Network (OSTI)

Experience has shown that significant opportunity for performance improvements exists in energy intensive operations. Often, efforts to improve efficiency focus on vendor-led initiatives to improve operations of particular equipment. This approach...

Moore, D. A.

2005-01-01T23:59:59.000Z

144

Improving pulverized coal plant performance  

SciTech Connect

A major deliverable of the U.S. Department of Energy (DOE) project ``Engineering Development of Advanced Coal-Fired Low-Emissions Boiler Systems`` (LEBS) is the design of a large, in this case 400 MWe, commercial generating unit (CGU) which will meet the Project objectives. The overall objective of the LEBS Project is to dramatically improve environmental performance of future pulverized coal fired power plants without adversely impacting efficiency or the cost of electricity. The DOE specified the use of near-term technologies, i.e., advanced technologies that partially developed, to reduce NO{sub x}, SO{sub 2} and particulate emissions to be substantially less than current NSPS limits. In addition, air toxics must be in compliance and waste must be reduced and made more disposable. The design being developed by the ABB Team is projected to meet all the contract objectives and to reduce emission of NO{sub x}, SO{sub 2} and particulates to one-fifth to one-tenth NSPS limits while increasing net station efficiency significantly and reducing the cost of electricity. This design and future work are described in the paper.

Regan, J.W.; Borio, R.W.; Palkes, M.; Mirolli, M. [ABB Combustion Engineering, Inc., Windsor, CT (United States); Wesnor, J.D. [ABB Environmental Systems, Birmingham, AL (United States); Bender, D.J. [Raytheon Engineers and Constructors, Inc., New York, NY (United States)

1995-12-31T23:59:59.000Z

145

"Performance and Optimization of Building Evacuation Models" Andrea Weiss  

E-Print Network (OSTI)

"Performance and Optimization of Building Evacuation Models" Andrea Weiss Faculty Mentor: Dr. James in ensuring safety of individuals inside a building. In order to determine the most efficient paths, models that can be made when representing a building. By breaking the rooms and hallways into smaller sections

Mountziaris, T. J.

146

Performance and Optimization of Network Building Evacuation Models  

E-Print Network (OSTI)

Performance and Optimization of Network Building Evacuation Models Andrea Weiss, Dr. Jim Mac/G/C/C queues, a simulation program was used to model two buildings on the Umass Amherst campus: Machmer Hall expedient paths are taken. Research Objectives · Create a realistic model of buildings with large

Mountziaris, T. J.

147

Memorandum of American High-Performance Buildings Coalition DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

organizations committed to promoting performance-based energy efficiency and sustainable building standards developed through true, consensus-bases processes, and the U.S....

148

Data Preparation Process for the Buildings Performance Database  

Energy.gov (U.S. Department of Energy (DOE))

Data Preparation Process for the Buildings Performance Database, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, and Lawrence Berkeley Laboratory.

149

Developing Performance-Based Policies for Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The State & Local Energy Efficiency Action Network (SEE Action) recently released a report, Greater Energy Savings through Building Energy Performance Policy: Four Leading Policy and Program...

150

WM2014 Conference - Building the Community of Practice for Performance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WM2014 Conference - Building the Community of Practice for Performance and Risk Assessment in Support of Risk-Informed Environmental Management Decisions WM2014 Conference -...

151

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

1 1 Case Study, The Adam Joseph Lewis Center for Environmental Studies, Oberlin College, Oberlin, Ohio (Education) Building Design Floor Area: Floors: 2 Footprint: 3 Classrooms (1) 1 Conference Room 1 Adminstration Office Auditorium, 100 seats 6 Small Offices Atrium Wastewater Treatment Facility Shell Windows Material: Green Tint Triple Pane Argon Fill Insulating Glass Grey Tint Double Pane Argon Fill Insulating Glass Fenestration(square feet) Window Wall (2) window/wall l Atrium, Triple Pane (3) Building, Double Pane North 1,675 4,372 38% l U-Factor 0.34 U-Factor 0.46 South 2,553 4,498 58% l SHGC 0.26 SHGC 0.46 East 1,084 2,371 46% l West 350 2,512 14% l Overall 6,063 43% l Wall/Roof Main Material R-Value Wall : Face Brink 19 Roof: Steel/Stone Ballast 30 HVAC COP(4) Offices/Classrooms: Individual GSHPs (5) 3.9-4.6

152

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

6 6 Case Study, The Solaire, New York, New York (Apartments/Multi-Family) Building Design Floor Area: 357,000 SF Units: 293 Maximum Occupancy: 700 Floors: 27 Site Size: 0.38 Acres Typical Occupancy(1): 578 Black-Water Treatment Facility (2) Shell Windows Material: Double Glazed, Low-e, Thermal Breaks with Insulated Spacers Operable Windows Fixed Windows Visual Transminttance 0.68 0.68 Solar Heat Gain Coefficient 0.35 0.35 U-Factor 0.47 0.41 Wall/Roof Material R-Value Exterior Walls: Insulated brick and concrete block 8.4 Roof: Roof top garden(green roof) 22.7 HVAC Two direct-fired natural gas absorption chillers 4-Pipe fan-coil units in individual aparments Power/Energy(3) PV System(4): 1,300 SF (76 custom panels) of west facing PV rated for 11 kW . These panels are integrated into the building facade.

153

Empowering the Market: How Building Energy Performance Rating and  

NLE Websites -- All DOE Office Websites (Extended Search)

Empowering the Market: How Building Energy Performance Rating and Empowering the Market: How Building Energy Performance Rating and Disclosure Policies Encourage U.S. Energy Efficiency Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition

154

Data and Analytics to Inform Energy Retrofit of High Performance Buildings  

SciTech Connect

Buildings consume more than one-third of the world?s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energy audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis ? energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high performance building in California to analyze its energy use and identify retrofit opportunities, including: (1) analyzing patterns of major energy end-use categories at various time scales, (2) benchmarking the whole building total energy use as well as major end-uses against its peers, (3) benchmarking the power usage effectiveness for the data center, which is the largest electricity consumer in this building, and (4) diagnosing HVAC equipment using detailed time-series operating data. Finally, a few energy efficiency measures were identified for retrofit, and their energy savings were estimated to be 20percent of the whole-building electricity consumption. Based on the analyses, the building manager took a few steps to improve the operation of fans, chillers, and data centers, which will lead to actual energy savings. This study demonstrated that there are energy retrofit opportunities for high performance buildings and detailed measured building performance data and analytics can help identify and estimate energy savings and to inform the decision making during the retrofit process. Challenges of data collection and analytics were also discussed to shape best practice of retrofitting high performance buildings.

Hong , Tianzhen; Yang, Le; Hill, David; Feng , Wei

2014-01-25T23:59:59.000Z

155

A building life-cycle information system for tracking building performance metrics  

SciTech Connect

Buildings often do not perform as well in practice as expected during pre-design planning, nor as intended at the design stage. While this statement is generally considered to be true, it is difficult to quantify the impacts and long-term economic implications of a building in which performance does not meet expectations. This leads to a building process that is devoid of quantitative feedback that could be used to detect and correct problems both in an individual building and in the building process itself. One key element in this situation is the lack of a standardized method for documenting and communicating information about the intended performance of a building. This paper describes the Building Life-cycle Information System (BLISS); designed to manage a wide range of building related information across the life cycle of a building project. BLISS is based on the Industry Foundation Classes (IFC) developed by the International Alliance for Interoperability. A BLISS extension to th e IFC that adds classes for building performance metrics is described. Metracker, a prototype tool for tracking performance metrics across the building life cycle, is presented.

Hitchcock, R.J.; Piette, M.A.; Selkowitz, S.E.

1999-04-01T23:59:59.000Z

156

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

4 4 Case Study, The Philip Merrill Environmental Center, Annapolis, Maryland (Office) Building Design Floor Area: 31,000 SF Floors: 2 Footprint: 220 ft. x (1) 2 Floors of open office space Attached pavilion containing: Meeting space Kitchen Staff dining Conference room Shell Windows U-Factor SHGC (2) Type: Double Pane, Low-e, Argon Filled Insulating Glass 0.244 0.41 Wall/Roof Material Effective R-Value Interior Wall plywood, gypsum, SIP foam, and sheathing 28.0 Exterior Wall gypsum and insulated metal framing 9.3 Roof plywood, gypsum, SIP foam, and sheathing 38.0 HVAC 18 ground source heat pumps fin and tube radiators connected to a propane boiler 1 air condtioning unit Lighting Power Densities (W/SF) First Floor: 1.2 Second Floor: 1.6 Conference Room: 1.4 Energy/Power PV System: 4.2 kW thin-film system

157

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

3 3 Case Study, The Visitor Center at Zion National Park, Utah (Service/Retail/Office) Building Design Vistors Center (1): 8,800 SF Comfort Station (2): 2,756 SF Fee Station: 170 SF Shell Windows Type U-Factor SHGC (3) South/East Glass Double Pane Insulating Glass, Low-e, Aluminum Frames, Thermally Broken 0.44 0.44 North/West Glass Double Pane Insulating Glass, Heat Mirror, Aluminum Frames, Thermally Broken 0.37 0.37 Window/Wall Ratio: 28% Wall/Roof Materials Effective R-Value Trombe Walls: Low-iron Patterned Trombe Wall, CMU (4) 2.3 Vistor Center Walls: Wood Siding, Rigid Insulation Board, Gypsum 16.5 Comfort Station Walls: Wood Siding, Rigid Insulation Board, CMU (4) 6.6 Roof: Wood Shingles; Sheathing; Insulated Roof Panels 30.9 HVAC Heating Cooling Trombe Walls Operable Windows Electric Radiant Ceiling Panels

158

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

5 5 Case Study, The Thermal Test Facility, National Renewable Energy Laboratory, Golden, Colorado (Office/Laboratory) Building Design Floor Area: 10,000 SF Floors(1): 2 Aspect Ratio: 1.75 Offices Laboratories Conference Room Mechanical Level Shell Windows Material U-factor SHGC(2) Viewing Windows: Double Pane, Grey Tint, Low-e 0.42 0.44 Clerestory Windows: Double Pane, Clear, Low-e 0.45 0.65 Window Area(SF) North 38 South(3) 1,134 East 56 West 56 Wall/Roof Material Effective R-Value North Wall Concrete Slab/Rigid Polystyrene 5.0 South/East/West Steel Studs/Batt Insulation/Concrete 23.0 Roof: Built-up/Polyisocianurate Covering/Steel Supports 23.0 HVAC VAV air handling unit Hot water supply paralell VAV boxes Direct and Indirect evaporative cooling system Single zone roof top unit(4) Hot Water Coil(4)

159

Building Performance Database | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

in the peer group that fall within consistent intervals of energy use intensity (EUI) i.e. the annual energy use per gross square foot of the building. Scatter Plot. The...

160

Revisit of Energy Use and Technologies of High Performance Buildings  

SciTech Connect

Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfolio analysis based on a database of 51 high performance office buildings across the world. Analyses showed that the actual site Energy Use Intensity (EUI) of the 51 buildings varied by a factor of up to 11, indicating a large scale of variation of the actual energy performance of the current HPBs. Further analysis of the correlation between EUI and climate elucidated ubiquitous phenomenon of EUI scatter throughout all climate zones, implying that the weather is not a decisive factor, although important, for the actual energy consumption of an individual building. On the building size via EUI, analysis disclosed that smaller buildings have a tendency to achieving lower energy use. Even so, the correlation is not absolute since some large buildings demonstrated low energy use while some small buildings performed opposite. Concerning the technologies, statistics indicated that the application of some technologies had correlations with some specific building size and climate characteristic. However, it was still hard to pinpoint a set of technologies which was directly correlative with a group of low EUI buildings. It is concluded that no a single factor essentially determines the actual energy performance of HPBs. To deliver energy-efficient buildings, an integrated design taking account of climate, technology, occupant behavior as well as operation and maintenance should be implemented.

Li , Cheng; Hong , Tianzhen

2014-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

High-Performance Sustainable Building Design for New Construction and Major Renovations  

Energy.gov (U.S. Department of Energy (DOE))

New construction and major renovations to existing buildings offer Federal agencies opportunities to create sustainable high-performance buildings. High-performance buildings can incorporate energy...

162

High Performance Building Façade Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Sponsors Sponsors High Performance Building Façade Solutions High Performance Building Façade Solutions Buildings Technology Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory Sponsors California Energy Commission Public Interest Energy Research (PIER) Buildings End-Use Energy Efficiency Program Michael Seaman, California Energy Commission Contract Manager http://www.energy.ca.gov/research/index.html U.S. Department of Energy Assistant Secretary for Energy Efficiency and Renewable Energy Office of Building Technology, State and Community Programs Office of Building Research and Standards Marc LaFrance, Program Manager http://www.eere.energy.gov/buildings/ In-kind Cost-share Advanced Glazings Ltd. Hunter Douglas Köster Lichplanung

163

Performance Contracting for Public Sector Improvement Projects  

E-Print Network (OSTI)

Johnson Controls Building Efficiency | Solutions A.Denise Malloy Solutions Account Executive December 18, 2013 Alternative Financing for Energy Efficiency Performance Contracting ESL-KT-13-12-41 CATEE 2013: Clean Air Through Energy Efficiency... Conference, San Antonio, Texas Dec. 16-18 2 Johnson Controls Confidential Overview ? What is Performance Contracting? ? What is the Performance Contracting Process? ? When does Performance Contracting Work Best? ? Government Entity ? ESCO ? 3rd Party...

Mallory, A. D.

2013-01-01T23:59:59.000Z

164

Building Technologies Office: Advanced Insulation for High Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Insulation for Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project to someone by E-mail Share Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Facebook Tweet about Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Twitter Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Google Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Delicious Rank Building Technologies Office: Advanced Insulation for High

165

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network (OSTI)

and Renewable Energy, Office of Building Technology,and Renewable Energy, Office of Building Technology,and renewable energy improvements to the building. One of

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

166

Re-Assessing Green Building Performance: A Post Occupancy Evaluation of 22 GSA Buildings  

SciTech Connect

2nd report on the performance of GSA's sustainably designed buildings. The purpose of this study was to provide an overview of measured whole building performance as it compares to GSA and industry baselines. The PNNL research team found the data analysis illuminated strengths and weaknesses of individual buildings as well as the portfolio of buildings. This section includes summary data, observations that cross multiple performance metrics, discussion of lessons learned from this research, and opportunities for future research. The summary of annual data for each of the performance metrics is provided in Table 25. The data represent 1 year of measurements and are not associated with any specific design features or strategies. Where available, multiple years of data were examined and there were minimal significant differences between the years. Individually focused post occupancy evaluation (POEs) would allow for more detailed analysis of the buildings. Examining building performance over multiple years could potentially offer a useful diagnostic tool for identifying building operations that are in need of operational changes. Investigating what the connection is between the building performance and the design intent would offer potential design guidance and possible insight into building operation strategies. The 'aggregate operating cost' metric used in this study represents the costs that were available for developing a comparative industry baseline for office buildings. The costs include water utilities, energy utilities, general maintenance, grounds maintenance, waste and recycling, and janitorial costs. Three of the buildings that cost more than the baseline in Figure 45 have higher maintenance costs than the baseline, and one has higher energy costs. Given the volume of data collected and analyzed for this study, the inevitable request is for a simple answer with respect to sustainably designed building performance. As previously stated, compiling the individual building values into single metrics is not statistically valid given the small number of buildings, but it has been done to provide a cursory view of this portfolio of sustainably designed buildings. For all metrics except recycling cost per rentable square foot and CBE survey response rate, the averaged building performance was better than the baseline for the GSA buildings in this study.

Fowler, Kimberly M.; Rauch, Emily M.; Henderson, Jordan W.; Kora, Angela R.

2010-06-01T23:59:59.000Z

167

THERMAL BUILDING PERFORMANCE OPTIMIZATION USING SPATIAL ARCHETYPES  

E-Print Network (OSTI)

is spent for heating and cooling systems, see Figure 1.2. Figure 1.1 Primary energy consumption by sector, 1970-2020 in quadrillion Btu (EIA, 2001) Figure 1.2 Residential Primary Energy Consumption by end use encouragement, love and support #12;1 CHAPTER 1 INTRODUCTION 1.1. Energy Consumption Energy conscious building

Papalambros, Panos

168

Audit Procedures for Improving Residential Building Energy Efficiency  

E-Print Network (OSTI)

Audit Procedures for Improving Residential Building Energy Efficiency This report analyses Sustainability Program Subtask 3.5.1: Residential Energy Efficiency Deliverable 1 Prepared by The University Delivery and Energy Reliability As part of Cooperative Agreement No. DE-EE0003507 Under Task 3.5: Energy

169

Assuring the Performance of Buildings and Infrastructures: Report of Discussions  

SciTech Connect

How to ensure the appropriate performance of our built environment in the face of normal conditions, natural hazards, and malevolent threats is an issue of emerging national and international importance. As the world population increases, new construction must be increasingly cost effective and at the same time increasingly secure, safe, and durable. As the existing infrastructure ages, materials and techniques for retrofitting must be developed in parallel with improvements in design, engineering, and building codes for new construction. Both new and renovated structures are more often being subjected to the scrutiny of risk analysis. An international conference, "Assuring the Performance of Buildings and Infrastructures," was held in May 1997 to address some of these issues. The conference was co-sponsored by the Architectural Engineering Division of the American Society of Civil Engineers (ASCE), the American Institute of Architects, and Sandia National Laboratories and convened in Albuquerque, NM. Many of the papers presented at the conference are found within this issue of Techno20~. This paper presents some of the major conference themes and summarizes discussions not found in the other papers.

Hunter, Regina L.

1999-05-28T23:59:59.000Z

170

High Performance Building Façade Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Building Façade Solutions High Performance Building Façade Solutions High Performance Building Façade Solutions Buildings Technology Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory Glazing and façade systems have very large impacts on all aspects of commercial building performance. They directly influence peak heating and cooling loads, and indirectly influence lighting loads when daylighting is considered. In addition to being a major determinant of annual energy use, they can have significant impacts on peak cooling system sizing, electric load shape, and peak electric demand. Because they are prominent architectural and design elements and because they influence occupant preference, satisfaction and comfort, the design optimization challenge is

171

Guide for High-Performance Buildings Available  

SciTech Connect

This article is an overview of the new "Sustainable, High-Performance Operations and Maintenance" guidelines.

Bartlett, Rosemarie

2012-10-01T23:59:59.000Z

172

Paint robotics—improving automotive painting performance  

Science Journals Connector (OSTI)

Robotic painting has achieved increased popularity in recent years, due to the flexibility and enhanced performance with such systems. There is a clear trend among major automobile makers to change from hard to flexible automation, and, in that respect, paint robotics is becoming increasingly more important for future paint shop design. New programming tools offer operators and paint engineers better possibility to program and maintain robot systems. With the introduction of the laser, a powerful tool is now available for real-time, in-line control of film build and the related paint process. With the additional advances in robotic-based quality inspection systems, such as a robot-mounted quality inspection camera systems, automotive manufacturers now have the possibility to document and store literally all paint quality data for a multitude of purposes related to process control. Combining these technologies offers a glimpse of a future where true closed-loop process control and quality monitoring can be used to diminish significantly the variation in paint application systems, improve flexibility, quality, and reduce operational costs, while at the same time reduce the complexity of robotic painting systems.

Einar A. Endregaard

2002-01-01T23:59:59.000Z

173

High Performance Building Facade Solutions: PIER Final Project Report  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Building Facade Solutions: PIER Final Project Report High Performance Building Facade Solutions: PIER Final Project Report Title High Performance Building Facade Solutions: PIER Final Project Report Publication Type Report LBNL Report Number LBNL-4583E Year of Publication 2009 Authors Lee, Eleanor S., Stephen E. Selkowitz, Dennis L. DiBartolomeo, Joseph H. Klems, Robert D. Clear, Kyle Konis, Robert J. Hitchcock, Mehry Yazdanian, Robin Mitchell, and Maria Konstantoglou Date Published 12/2009 Abstract Building façades directly influence heating and cooling loads and indirectly influence lighting loads when daylighting is considered, and are therefore a major determinant of annual energy use and peak electric demand. façades also significantly influence occupant comfort and satisfaction, making the design optimization challenge more complex than many other building systems.

174

High Performance Commercial Building Systems William L. Carroll  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Building Technologies Program of the U.S. Department of Energy underHigh Performance Commercial Building Systems William L. Carroll Ernest Orlando Lawrence Berkeley.2 ­ Retrofit Tools Task 2 HPBCS E2P2.2T3 LBNL - 57775 California Energy Commission Public Interest Energy

175

EIS-0061: Energy Performance Standards for New Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy Office of Conservation and Solar Energy prepared this statement to assess the environmental and socioeconomic implications of implementing the Energy Performance Standard for new buildings, as mandated by Congress in Section 305 of the Energy Conservation Standards for New Buildings Ac t of 1976.

176

Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint  

SciTech Connect

NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy use requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.

Scheib, J.; Pless, S.; Torcellini, P.

2014-08-01T23:59:59.000Z

177

Sample ENERGY STAR performance documents | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Existing buildings Existing buildings » Use Portfolio Manager » Verify and document your savings » Sample ENERGY STAR performance documents Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager The new ENERGY STAR Portfolio Manager How Portfolio Manager helps you save The benchmarking starter kit

178

Assessing and Improving the Accuracy of Energy Analysis for Residential Buildings  

SciTech Connect

This report describes the National Renewable Energy Laboratory's (NREL) methodology to assess and improve the accuracy of whole-building energy analysis for residential buildings.

Polly, B.; Kruis, N.; Roberts, D.

2011-07-01T23:59:59.000Z

179

Building America Webinar: High Performance Space Conditioning Systems, Part II  

Energy.gov (U.S. Department of Energy (DOE))

The webinar on Nov. 18, 2014, continued the series on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits.

180

Building America Webinar: High Performance Space Conditioning Systems, Part I  

Energy.gov (U.S. Department of Energy (DOE))

The webinar on Oct. 23, 2014 focused on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits.

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Real Performance for Real Buildings- 2014 BTO Peer Review  

Energy.gov (U.S. Department of Energy (DOE))

Presenter: Shanti Pless, National Renewable Energy Laboratory This project aims to develop deployable resources to assist building decision makers in understanding and replicating the benefits of using measureable energy performance targets to better connect design and operations.

182

Gauging Improvements in Urban Building Energy Policy in India  

NLE Websites -- All DOE Office Websites (Extended Search)

Gauging Improvements in Urban Gauging Improvements in Urban Building Energy Policy in India Christopher Williams and Mark Levine China Energy Group Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Preprint version of paper for conference proceedings, ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, California, August 12-17, 2012. June 2012 This work was supported by the U.S. Department of Energy under Contract No. DE- AC02-05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL-5577E Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any

183

Assessing Plant Performance for Energy Savings | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing Plant Performance for Energy Savings Assessing Plant Performance for Energy Savings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

184

Building Distributed Energy Performance Optimization for China - a Regional  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Performance Optimization for China - a Regional Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Title Building Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Publication Type Conference Proceedings Refereed Designation Refereed LBNL Report Number LBNL-81770 Year of Publication 2012 Authors Feng, Wei, Nan Zhou, Chris Marnay, Michael Stadler, and Judy Lai Conference Name 2012 ACEEE Summer Study on Energy Efficiency in Buildings, August 12-17, 2012 Date Published 08/2012 Conference Location Pacific Grove, California ISBN Number 0-918249-XX-X Notes LBNL - XXXXX Refereed Designation Refereed Attachment Size PDF 5 MB Google Scholar BibTex RIS RTF XML Alternate URL: http://eetd.lbl.gov/node/52998

185

Rebuilding It Better: Greensburg, Kansas, High Performance Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greensburg, Kansas, High Performance Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) (Revised), Energy Efficiency & Renewable Energy (EERE) Rebuilding It Better: Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) (Revised), Energy Efficiency & Renewable Energy (EERE) This fact sheet provides a summary of how NREL's technical assistance in Greensburg, Kansas, helped the town rebuild green after recovering from a tornado in May 2007. 53539.pdf More Documents & Publications From Tragedy to Triumph: Rebuilding Greensburg, Kansas To Be a 100% Renewable Energy City: Preprint Rebuilding It Better; BTI-Greensburg, John Deere Dealership (Brochure) (Revised) Rebuilding Greensburg, Kansas, as a Model Green Community: A Case Study;

186

Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

In this project, researchers from the Consortium for Advanced Residential Buildings team worked with industry partners to develop hydronic system designs that would address performance issues and result in higher overall system efficiencies and improved response times.

187

High-Performance Sustainable Building Design for New Construction and Major  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Buildings & Campuses » Sustainable Buildings & Campuses » High-Performance Sustainable Building Design for New Construction and Major Renovations High-Performance Sustainable Building Design for New Construction and Major Renovations October 4, 2013 - 4:52pm Addthis New construction and major renovations to existing buildings offer Federal agencies opportunities to create sustainable high-performance buildings. High-performance buildings can incorporate energy-efficient designs, sustainable siting and materials, and renewable energy technologies along with other innovative strategies. Also see Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings. Performance-Based Design Build Typically, architects, engineers, and project managers consider the

188

European Union Energy Performance of Building Directive and the Impact of Building Automation on Energy Efficiency  

E-Print Network (OSTI)

consumption. The European Union's 2002 Energy Performance of Buildings Directive takes this fact into account and formulates savings goals. A resulting European standard, and uniform certification, applicable throughout Europe, form the foundation since... to standardized utilization of the building?. The energy consumers concerned are heating, water heating, cooling, ventilating and lighting; also included is the auxiliary electric power require to operate these systems. One of the basic requirements of the EPBD...

Wirth, U.

2008-01-01T23:59:59.000Z

189

Building America Webinar: High Performance Space Conditioning Systems, Part I  

Energy.gov (U.S. Department of Energy (DOE))

The webinar will focus on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits. Presenters and specific topics for this webinar will be:

190

Building America Webinar: High Performance Space Conditioning Systems, Part II  

Energy.gov (U.S. Department of Energy (DOE))

The webinar will continue our series on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits. Presenters and specific topics for this webinar...

191

Best Practices Guide for High-Performance Indian Office Buildings  

E-Print Network (OSTI)

energy  efficiency  in  commercial  office  buildings.  energy  efficiency  in  commercial   office  buildings.  energy  efficiency  in  commercial  office  buildings.  

Singh, Reshma

2014-01-01T23:59:59.000Z

192

Energy consumption characterization as an input to building management and performance benchmarking - a case study PPT  

E-Print Network (OSTI)

performance characterization of each of its buildings, looking specifically at the typology of canteen. Developing building energy performance benchmarking systems enables the comparison of actual consumption of individual buildings against others of the same...

Bernardo, H.; Neves, L.; Oliveira, F.; Quintal, E.

2012-01-01T23:59:59.000Z

193

Gauging Improvements in Urban Building Energy Policy in India  

E-Print Network (OSTI)

Summer Study on Energy Efficiency in Buildings, 4:351–366.Summer Study on Energy Efficiency in Buildings, 8:209–224.Summer Study on Energy Efficiency in Buildings, 10-196– 212.

Williams, Christopher

2013-01-01T23:59:59.000Z

194

NREL Develops Diagnostic Test Cases To Improve Building Energy Simulation Programs (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Develops Develops Diagnostic Test Cases To Improve Building Energy Simulation Programs The National Renewable Energy Laboratory (NREL) Residential and Commercial Buildings research groups developed a set of diagnostic test cases for building energy simulations. Eight test cases were developed to test surface conduction heat transfer algorithms of building envelopes in building energy simulation programs. These algorithms are used to predict energy flow through external opaque surfaces such as walls, ceilings, and floors. The test cases consist of analyti- cal and vetted numerical heat transfer solutions that have been available for decades, which increases confidence in test results. NREL researchers adapted these solutions for comparisons with building energy simulation results.

195

Performance of building cladding in urban environments under extreme winds  

E-Print Network (OSTI)

Performance of building cladding in urban environments under extreme winds By Tiphaine Williamsa ABSTRACT: When tropical storms, hurricanes, typhoons and other extreme wind events make landfall-rise construction in these regions, as well as other areas impacted by extreme wind events, generally reveal

Kareem, Ahsan

196

Building Technologies Office: Home Performance with ENERGY STAR®  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance with ENERGY STAR® Performance with ENERGY STAR® Homeowners across the United States can find trusted contractors who follow a comprehensive approach, recommended by ENERGY STAR®, to save money on energy bills while improving home comfort. The Home Performance with ENERGY STAR (HPwES) program provides homeowners with resources to identify trusted contractors that can help them understand their home's energy use, as well as identify home improvements that increase energy performance and improve comfort. Participating contractors can recommend and perform energy improvements, such as air sealing, insulation that can fix drafty and uncomfortable rooms, and install high efficiency heating and cooling equipment. These improvements can lower utility bills. Contractors that participate in HPwES are qualified by local sponsors such as utilities, state energy offices, and other organizations to ensure that they can offer high-quality, comprehensive energy assessments (also known as "energy audits") using sophisticated equipment to diagnose a home's energy, health, and safety issues.

197

Buildings Energy Data Book: 2.6 Residential Home Improvement  

Buildings Energy Data Book (EERE)

1 1 Value of Residential Building Improvements and Repairs, by Sector ($2010 Billion) (1) Total 1980 72.2 35.2 107.4 1985 82.3 65.3 147.6 1990 91.4 85.5 176.9 1995 105.8 63.8 169.6 2000 138.2 52.7 191.0 2003 156.2 51.9 208.0 2004 169.2 57.9 227.1 2005 179.0 59.7 238.6 2006 187.4 57.2 244.6 2007 (2) 178.7 57.0 235.7 Note(s): Source(s): Improvements Maintenance and Repairs 1) Improvements includes additions, alterations, reconstruction, and major replacements. Repairs include maintenance. 2) The US Census Bureau discontinued the Survey of Residential Alterations and Repairs (SORAR) after 2007. DOC, Historic Expenditures for Residential Properties by Property Type: Quarterly 1962-2003 (Old structural purposes) for 1980-2000; DOC, Historic Expenditures for Residential Proerties by Property Type: Quarterly 2003-2007 (New structural purposes) for 1995-2007; and EIA, Annual Energy Review

198

Performance of thermal distribution systems in large commercial buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance of thermal distribution systems in large commercial buildings Performance of thermal distribution systems in large commercial buildings Title Performance of thermal distribution systems in large commercial buildings Publication Type Journal Article LBNL Report Number LBNL-44331 Year of Publication 2002 Authors Xu, Tengfang T., François Rémi Carrié, Darryl J. Dickerhoff, William J. Fisk, Jennifer A. McWilliams, Duo Wang, and Mark P. Modera Journal Energy and Buildings Volume 34 Start Page Chapter Pagination 215-226 Abstract This paper presents major findings of a field study on the performance of five thermal distribution systems in four large commercial buildings. The five systems studied are typical single-duct or dual-duct constant air volume (CAV) systems and variable air volume (VAV) systems, each of which serves an office building or a retail building with floor area over 2,000 m2. The air leakage from ducts are reported in terms of effective leakage area (ELA) at 25 Pa reference pressure, the ASHRAE-defined duct leakage class, and air leakage ratios. The specific ELAs ranged from 0.7 to 12.9 cm2 per m2 of duct surface area, and from 0.1 to 7.7 cm2 per square meter of floor area served. The leakage classes ranged from 34 to 757 for the five systems and systems sections tested. The air leakage ratios are estimated to be up to one-third of the fan- supplied airflow in the constant-air-volume systems. The specific ELAs and leakage classes indicate that air leakage in large commercial duct systems varies significantly from system to system, and from system section to system section even within the same thermal distribution system. The duct systems measured are much leakier than the ductwork specified as "unsealed ducts" by ASHRAE. Energy losses from supply ducts by conduction (including convection and radiation) are found to be significant, on the scale similar to the losses induced by air leakage in the duct systems. The energy losses induced by leakage and conduction suggest that there are significant energy-savings potentials from duct-sealing and insulation practice in large commercial buildings

199

Building Technologies Office: High Performance Windows Volume Purchase  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Windows Volume Purchase High Performance Windows Volume Purchase DOE's Building Technologies Office (BTO) is coordinating a volume purchase of high performance windows, and low-e storm windows, to expand the market of these high efficiency products. Price is the principal barrier to more widespread market commercialization. The aim of this volume purchase initiative is to work with industry and potential buyers to make highly insulated windows more affordable. Announcement EPA Most Efficient Program for window technology to launched in January 2013. Program Highlights Features Image of person signing document. Volume Purchase RFP Arrow Image of a question mark. Frequently Asked Questions Arrow Image of low-e storm window with two orange-yellow arrows hitting the window and reflecting back inside. Building Envelope and Windows R&D Program Blog Arrow

200

Possible correlation between acoustic and thermal performances of building structures  

Science Journals Connector (OSTI)

Most European standards required high performance values for sound and thermal insulation in building structures according to Directive EEC 89/106. Sound transmission and heat transfer in structures have different physical and analytical approach and specific parameters of performance (i.e. sound transmission loss or thermal transmittance) are not directly correlated each others; many kind of structures have also different behaviour depending on mechanical properties of materials numbers of layers of materials etc. The aim of this work is to analyse possible correlation between sound transmission performances and thermal properties values in order to evaluated common trends related to physical properties of the various building components like for example density or surface mass.

Giovanni Semprini; Alessandro Cocchi; Cosimo Marinosci

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Data Preparation Process for the Buildings Performance Database  

SciTech Connect

The Buildings Performance Database (BPD) includes empirically measured data from a variety of data sources with varying degrees of data quality and data availability. The purpose of the data preparation process is to maintain data quality within the database and to ensure that all database entries have sufficient data for meaningful analysis and for the database API. Data preparation is a systematic process of mapping data into the Building Energy Data Exchange Specification (BEDES), cleansing data using a set of criteria and rules of thumb, and deriving values such as energy totals and dominant asset types. The data preparation process takes the most amount of effort and time therefore most of the cleansing process has been automated. The process also needs to adapt as more data is contributed to the BPD and as building technologies over time. The data preparation process is an essential step between data contributed by providers and data published to the public in the BPD.

Walter, Travis; Dunn, Laurel; Mercado, Andrea; Brown, Richard E.; Mathew, Paul

2014-06-30T23:59:59.000Z

202

Superalloy Surface Treatment for Improved Metal Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Superalloy Surface Treatment Superalloy Surface Treatment for Improved Metal Performance Opportunity Research is active on the patent pending technology, titled "Method to Improve Superalloy Resistance by Surface Treatment." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Overview To produce power more efficiently and cleanly, the next generation of power and aero turbines along with other essential components will have to operate at extreme temperatures and pressures. Currently advanced single crystal nickel-based superalloys are used in such extreme environments. Even though these components are coated with a bond

203

Improved plant performance through evaporative steam condensing  

SciTech Connect

Combining an open cooling tower and a steam condenser into one common unit is a proven technology with many advantages in power generation application, including reduced first cost of equipment, reduced parasitic energy consumption, simplified design, reduced maintenance, and simplified water treatment, Performance of the steam turbine benefits from the direct approach to wet bulb temperature, and operating flexibility and reliability improve compared to a system with a cooling tower and surface condenser. System comparisons and case histories will be presented to substantiate improved systems economies.

Hutton, D.

1998-07-01T23:59:59.000Z

204

Advancing Solutions to Improve the Energy Efficiency of Commercial Buildings FOA Webinar (Text Version)  

Energy.gov (U.S. Department of Energy (DOE))

Below is the text version of the webinar, Advancing Solutions to Improve the Energy Efficiency of Commercial Buildings FOA, presented by Kristen Taddonio of the Commercial Buildings program in...

205

Whole Building Performance-Based Procurement Training | Department...  

Energy Savers (EERE)

Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review commlbldgs12pless040413.pdf More Documents & Publications Building America...

206

Buildings Performance Database - 2013 BTO Peer Review | Department...  

Energy Savers (EERE)

More Documents & Publications Building America System Research Better Buildings Alliance Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review Buildings Home About Emerging...

207

Smart Grid Projects Are Improving Performance and Helping Consumers...  

Office of Environmental Management (EM)

Smart Grid Projects Are Improving Performance and Helping Consumers Better Manage their Energy Use Smart Grid Projects Are Improving Performance and Helping Consumers Better Manage...

208

Improvement of Urea SCR Performance Using Wiremesh Thermolysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Improvement of Urea SCR Performance Using Wiremesh Thermolysis Mixer Improvement of Urea SCR Performance Using Wiremesh Thermolysis Mixer Wiremesh mixer development should bring...

209

Improved System Performance and Reduced Cost of a Fuel Reformer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement Improved System Performance and...

210

Training Framework to Improve the DOE Performance-Based Culture...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training Framework to Improve the DOE Performance-Based Culture Training Framework to Improve the DOE Performance-Based Culture Guidance Memorandum for implementing the Secretaries...

211

Fuel Additivies for Improved Performance of Diesel Aftertreatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Additivies for Improved Performance of Diesel Aftertreatment Systems Fuel Additivies for Improved Performance of Diesel Aftertreatment Systems 2002 DEER Conference Presentation:...

212

Electrospray characteristic curves: in pursuit of improved performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrospray characteristic curves: in pursuit of improved performance in the nano-flow regime. Electrospray characteristic curves: in pursuit of improved performance in the...

213

Achieving Higher Performance with Cost Neutrality through Building America  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieving Higher Performance Achieving Higher Performance with Cost Neutrality through Building America Residential Energy Efficiency Stakeholder Meeting March 1, 2012 Residential Energy Efficiency Stakeholder Meeting Agenda * Imagine Homes - An Overview * 2010 Occupied Test House - Objectives - From Modeling through Monitoring * 2012 Occupied Test House - Objectives - What's Next * Closing Remarks Residential Energy Efficiency Stakeholder Meeting Overview: * San Antonio, TX * 68 Homes in 2011 * $140k - $425k * 1,300 - 4,500 ft 2 Imagine Homes Residential Energy Efficiency Stakeholder Meeting Environment: * Hot-Humid * 2,996 CDD * 1,546 HDD * 31" Rainfall Imagine Homes Residential Energy Efficiency Stakeholder Meeting Imagine Homes History: * Established 2006 * Partnership with Beazer Homes * Builders Challenge * Building America

214

Agent Technology to Improve Building Energy Efficiency and Occupant Comfort  

E-Print Network (OSTI)

become central to building services control strategies. Achieving synergy between end users and buildings is the ultimate in intelligent comfort control. This new comfort control technology, based on use of the latest ICT development in agent technology...

Zeiler, W.; van Houten, R.; Kamphuis, R.; Hommelberg, M.

2006-01-01T23:59:59.000Z

215

Improved Building Energy Consumption with the Help of Modern ICT  

E-Print Network (OSTI)

Kyoto process and the global combat against climate change will require more intensive energy saving efforts especially in all developed countries. Key for the success in building sector is the energy efficiency of the existing building stock...

Pietilainen, J.

2003-01-01T23:59:59.000Z

216

Terry Sharp, P.E. Building Performance Benchmarking  

E-Print Network (OSTI)

source energy use in trillion Btu) R2 = 0.7816 0 1 2 3 4 5 6 0 5 10 15 20 25 Gross Square Feet (millionsTerry Sharp, P.E. Building Performance Benchmarking 3rd U.S. Army Energy Workshop January 25-26, 2007 EPA Energy Star Program and Energy Data Normalization Oak Ridge National Laboratory #12;Why You

Oak Ridge National Laboratory

217

Improving the feasibility of building deconstruction and adaptability  

E-Print Network (OSTI)

Design for Adaptability and Deconstruction (DfAD) is an emerging trend in the construction industry that focuses on the end-of-life aspect of buildings. It is based on the concept that the life of a building or building ...

Quinn, Karen E. (Karen Elizabeth)

2010-01-01T23:59:59.000Z

218

Performance of thermal distribution systems in large commercial buildings  

E-Print Network (OSTI)

Energy Efficiency and Renewable Energy, Office of BuildingEnergy Efficiency and Renewable Energy, Office of Building

Xu, T.

2011-01-01T23:59:59.000Z

219

Improving Access to Foundational Energy Performance Data  

SciTech Connect

Access to foundational energy performance data is key to improving the efficiency of the built environment. However, stakeholders often lack access to what they perceive as credible energy performance data. Therefore, even if a stakeholder determines that a product would increase efficiency, they often have difficulty convincing their management to move forward. Even when credible data do exist, such data are not always sufficient to support detailed energy performance analyses, or the development of robust business cases. One reason for this is that the data parameters that are provided are generally based on the respective industry norms. Thus, for mature industries with extensive testing standards, the data made available are often quite detailed. But for emerging technologies, or for industries with less well-developed testing standards, available data are generally insufficient to support robust analysis. However, even for mature technologies, there is no guarantee that the data being supplied are the same data needed to accurately evaluate a product?s energy performance. To address these challenges, the U.S. Department of Energy funded development of a free, publically accessible Web-based portal, the Technology Performance Exchange(TM), to facilitate the transparent identification, storage, and sharing of foundational energy performance data. The Technology Performance Exchange identifies the intrinsic, technology-specific parameters necessary for a user to perform a credible energy analysis and includes a robust database to store these data. End users can leverage stored data to evaluate the site-specific performance of various technologies, support financial analyses with greater confidence, and make better informed procurement decisions.

Studer, D.; Livingood, W.; Torcellini, P.

2014-08-01T23:59:59.000Z

220

Building Technologies Office: Building America: Bringing Building  

NLE Websites -- All DOE Office Websites (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Improved plasma performance on Large Helical Device  

Science Journals Connector (OSTI)

Since the start of the Large Helical Device(LHD) experiment various attempts have been made to achieve improved plasma performance in LHD [A. Iiyoshi et al. Nucl. Fusion39 1245 (1999)]. Recently an inward-shifted configuration with a magnetic axis position R ax of 3.6 m has been found to exhibit much better plasma performance than the standard configuration with R ax of 3.75 m. A factor of 1.6 enhancement of energy confinement time was achieved over the International Stellarator Scaling 95. This configuration has been predicted to have unfavorable magnetohydrodynamic(MHD)properties based on linear theory even though it has significantly better particle-orbit properties and hence lower neoclassical transport loss. However no serious confinement degradation due to the MHD activities was observed resolving favorably the potential conflict between stability and confinement at least up to the realized volume-averaged beta ??? of 2.4%. An improved radial profile of electron temperature was also achieved in the configuration with magnetic islands minimized by an external perturbation coil system for the Local IslandDivertor (LID). The LID has been proposed for remarkable improvement of plasma confinement like the high (H) mode in tokamaks and the LID function was suggested in limiter experiments.

A. Komori; N. Ohyabu; H. Yamada; O. Kaneko; K. Kawahata; N. Ashikawa; P. deVaries; M. Emoto; H. Funaba; M. Goto; K. Ida; H. Idei; K. Ikeda; N. Inoue; M. Isobe; S. Kado; K. Khlopenkov; T. Kobuchi; S. Kubo; R. Kumazawa; Y. Liang; S. Masuzaki; Y. Matsumoto; T. Minami; J. Miyazawa; T. Morisaki; S. Morita; S. Murakami; S. Muto; T. Mutoh; Y. Nagayama; Y. Nakamura; H. Nakanishi; K. Narihara; Y. Narushima; K. Nishimura; N. Noda; T. Notake; S. Ohdachi; Y. Oka; M. Okamoto; M. Osakabe; T. Ozaki; R. O. Pavlichenko; B. J. Peterson; A. Sagara; K. Saito; S. Sakakibara; R. Sakamoto; H. Sasao; M. Sasao; M. Sato; T. Seki; T. Shimozuma; M. Shoji; H. Suzuki; Y. Takeiri; N. Tamura; K. Tanaka; K. Toi; T. Tokuzawa; Y. Torii; K. Tsumori; I. Yamada; S. Yamaguchi; S. Yamamoto; M. Yokoyama; Y. Yoshimura; K. Y. Watanabe; T. Watanabe; T. Watari; Y. Hamada; K. Itoh; K. Matsuoka; K. Ohkubo; T. Satow; S. Sudo; K. Yamazaki; O. Motojima; M. Fujiwara

2001-01-01T23:59:59.000Z

222

Apply: Funding Opportunity- Advancing Solutions to Improve Energy Efficiency of Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE))

Closed Application Deadline: January 20, 2015 The Building Technologies Office (BTO) Commercial Buildings Integration Program has announced the availability of nearly $9 million for Funding Opportunity Announcement (FOA) DE-FOA-0001168, “Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings

223

Improving Map Generalisation of Buildings by Introduction of Urban Context Rules  

E-Print Network (OSTI)

Improving Map Generalisation of Buildings by Introduction of Urban Context Rules S. Steiniger1 , P examine the knowledge used for the generalisation of individual buildings for the scale transition from 1:10,000 to 1:25,000. 2. The Current Approach to Generalise Buildings Map generalisation systems can be said

Paris-Sud XI, Université de

224

Improving Repository Performance by Using a Fill  

NLE Websites -- All DOE Office Websites (Extended Search)

a Fill a Fill Improving Repository Performance by Using a Fill The use of fills, semi-independent of the specific fill material, can improve package performance. The first barrier to prevent releases from the spent nuclear fuel is the waste package itself. The longer the waste package remains intact, the lower the ultimate releases from the spent nuclear fuel. In a typical waste package over half of the interior space is empty space. There are coolant channels in the spent fuel and square fuel assemblies can not fully fill a round waste package. After the package is buried, it will begin to corrode and the walls will thin. Rock falls may cause early failure of the waste package. However, if the package is full, it is more difficult to crush a full package and fail the exterior wall. The behavior of a waste package over time is similar to a soda can. Empty cans are easy to crush. Full, sealed cans are difficult to crush because the fluid inside supports the can.

225

Review of California and National Methods for Energy PerformanceBenchmarking of Commercial Buildings  

SciTech Connect

This benchmarking review has been developed to support benchmarking planning and tool development under discussion by the California Energy Commission (CEC), Lawrence Berkeley National Laboratory (LBNL) and others in response to the Governor's Executive Order S-20-04 (2004). The Executive Order sets a goal of benchmarking and improving the energy efficiency of California's existing commercial building stock. The Executive Order requires the CEC to propose ''a simple building efficiency benchmarking system for all commercial buildings in the state''. This report summarizes and compares two currently available commercial building energy-benchmarking tools. One tool is the U.S. Environmental Protection Agency's Energy Star National Energy Performance Rating System, which is a national regression-based benchmarking model (referred to in this report as Energy Star). The second is Lawrence Berkeley National Laboratory's Cal-Arch, which is a California-based distributional model (referred to as Cal-Arch). Prior to the time Cal-Arch was developed in 2002, there were several other benchmarking tools available to California consumers but none that were based solely on California data. The Energy Star and Cal-Arch benchmarking tools both provide California with unique and useful methods to benchmark the energy performance of California's buildings. Rather than determine which model is ''better'', the purpose of this report is to understand and compare the underlying data, information systems, assumptions, and outcomes of each model.

Matson, Nance E.; Piette, Mary Ann

2005-09-05T23:59:59.000Z

226

High Performance Building Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incentive Program Incentive Program High Performance Building Incentive Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Maximum Rebate Residential loans/loan guarantees: 100,000 Commercial loans/loan guarantees: 2 million Grants: Lesser of 10% of project costs or 500,000 Program Info Start Date April 2009 State Pennsylvania Program Type State Loan Program Rebate Amount Vary by project, but program generally requires matching funds at least equivalent to DCED funding Provider Department of Community and Economic Development

227

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network (OSTI)

integrated,” and “green” design 11 Figure 2.1 Environmental control functions performed by the buildingbuilding as a model of “high performance,” “integrated,” and “green” design.Design and Evaluation of integrated envelope and lighting control strategies for commercial buildings.

Konis, Kyle Stas

2012-01-01T23:59:59.000Z

228

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network (OSTI)

integrated,” and “green” design 11 Figure 2.1 Environmental control functions performed by the buildingbuilding as a model of “high performance,” “integrated,” and “green” design.Design and Evaluation of integrated envelope and lighting control strategies for commercial buildings.

Konis, Kyle Stas

2011-01-01T23:59:59.000Z

229

Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding  

Energy.gov (U.S. Department of Energy (DOE))

Document details the Memorandum of Understanding that committed Federal agencies to designing, constructing, and operating high-performance, sustainable buildings.

230

Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy" Performance Goals in Commercial Buildings  

E-Print Network (OSTI)

available from authors. DOE EERE. High Performance BuildingsProgram: Building Database. DOE EERE; August Available from:buildings/database/. DOE EERE. State Energy Alternatives:

Selkowitz, Stephen

2008-01-01T23:59:59.000Z

231

Ventilation performance prediction for buildings: Model Assessment Qingyan Chena,b,*  

E-Print Network (OSTI)

1 Ventilation performance prediction for buildings: Model Assessment Qingyan Chena,b,* , Kisup Leeb building, but cannot provide detailed flow information in a room. The zonal model can be useful when a user ventilation systems for buildings requires a suitable model to assess system performance. The performance can

Chen, Qingyan "Yan"

232

Internet-based Building Performance Analysis Provided as a Low-Cost Commercial Service  

E-Print Network (OSTI)

Internet-based monitoring services can play a very important role in reducing the energy consumed in commercial buildings. They can provide the information needed to identify improvements that should be made in the operation of particular buildings...

Heinemeier, K.; Koran, W.

2001-01-01T23:59:59.000Z

233

Performance assessment of low-energy buildings in central Argentina  

Science Journals Connector (OSTI)

This paper summarizes the results obtained from the energy and thermal performance assessment of residential and non-residential low-energy buildings that were designed to minimize fossil energy use. They are located in the province of La Pampa, central Argentina, in a temperate continental climate that shows extreme hot and cold records during the summer and winter seasons, respectively. The common applied technologies for saving energy were passive solar heating, natural ventilation for cooling and daylighting. The glazing area in the principal functional spaces facing to the North oscillates between 11 and 17% of the building useful areas. All the studied buildings are massive, with the exception of an auditorium that was designed with a lightweight insulated technology. The mean thermal transmittance of the envelope is 0.45 W/(m2 K). Double glazing and hermetic carpentry were used to reduce thermal losses (U-value = 2.8 W/(m2 K)). The volumetric heat loss coefficient (G-value) oscillates between 0.90 and 1.00 W/(m3 K). During the design and thermal simulation convective-radiative heat transfer coefficients were estimated through a dimensional equation (h = 5.7 + 3.8 ws, wind speed). On internal surfaces, convective-radiative heat transfer coefficients of 8 and 6 W/(m2 °C) (for surfaces with and without solar gain, respectively) were applied. The monitoring process provided information on the energy and thermal behaviour under use and non-use conditions. The measured value of energy consumption was similar to the expected value that was used during the pre-design stage. Building technologies work well during the winter season, allowing 50–80% of energy savings. However, overheating is still an unresolved problem during the summer. Interviews with occupants revealed that they need both, information about functional details, and good-practice guidance to manage thermal issues of the building. In most cases, the annual consumption of energy was lower than those established by the Low Energy Housing German Standards and the Minirgie Switzerland Certificate. Despite their relative cost increase during the last years, the use of insulation technology and the application of passive solar devices involved an extra cost of only 3% in our works. Provided the expected depletion of natural gas production in the coming decade, the importance of applying energy-efficiency guidelines will increase very soon in Argentina in order to match the requirements of a new national energy matrix.

C. Filippín; A. Beascochea

2007-01-01T23:59:59.000Z

234

REDESIGN OF HVAC SYSTEM TO IMPROVE ENERGY EFFICIENCY OF EDUCATIONAL BUILDING.  

E-Print Network (OSTI)

??An energy modeling software was used to analyze the current building configuration and simulations were performed in an attempt to redesign the current HVAC system… (more)

Hagene, Brian Matthew

2012-01-01T23:59:59.000Z

235

Improving Indoor Air Quality Improves the Performance of Office Work and School Work  

E-Print Network (OSTI)

-10-15a Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 Definitions #0;? Performance: ability of an individual to perform different mentally and/or physically demanding tasks... Building Operations, Berlin, Germany, October 20-22, 2008 Performance vs productivity #0;? #0;? Effect on individual performance of reading: reduced by 10% Effect on overall productivity: reduced by only 5% if reading speed critical for 50...

Wargocki, P.

236

Improving Process Heating System Performance: A Sourcebook for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process Heating System Performance: A Sourcebook for Industry, Second Edition Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition This...

237

Methodology for Modeling Building Energy Performance across the Commercial Sector  

SciTech Connect

This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

2008-03-01T23:59:59.000Z

238

Procedure for Measuring and Reporting the Performance of Photovoltaic Systems in Buildings  

SciTech Connect

This procedure provides a standard method for measuring and characterizing the long-term energy performance of photovoltaic (PV) systems in buildings and the resulting implications to the building's energy use. The performance metrics determined here may be compared against benchmarks for evaluating system performance and verifying that performance targets have been achieved. Uses may include comparison of performance with the design intent; comparison with other PV systems in buildings; economic analysis of PV systems in buildings; and the establishment of long-term performance records that enable maintenance staff to monitor trends in energy performance.

Pless, S.; Deru, M.; Torcellini, P.; Hayter, S.

2005-10-01T23:59:59.000Z

239

National Best Practices Manual for Building High Performance Schools  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Practices Manual Best Practices Manual For Building High Performance Schools Acknowledgements The U.S. Department of Energy would like to acknowledge the help and assistance of the EnergySmart Schools team and the many authors and reviewers that provided input and feedback during the process of developing the report. Those include: US Department of Energy: David Hansen, Daniel Sze; EnergySmart Schools Team: Larry Schoff; US Environmental Protection Agency: Melissa Payne, Bob Thompson; Lawrence Berkeley National Laboratory: Rick Diamond; National Renewable Energy Laboratory: Ren Anderson, Zahra Chaudhry, Jeff Clarke, Kyra Epstein, Tony Jimenez, Patty Kappaz, Patricia Plympton, Byron Stafford, Marcy Stone, John Thornton, Paul Torcellini; Oak Ridge National Laboratory: Andre Desjarlais,

240

Improving Operational Strategies of an Institutional Building in Kuwait  

E-Print Network (OSTI)

operation strategies. The study focused on the major end user systems of the building main source of energy that is electricity, namely the air-conditioning, and lighting systems. It was estimated that for the base year, which was selected to be year 1999...

Al-Ragom, F.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Co-simulation for performance prediction of integrated building and HVAC systems -An analysis of solution  

E-Print Network (OSTI)

Co-simulation for performance prediction of integrated building and HVAC systems - An analysis performance simulation of buildings and heating, ventilation and air- conditioning (HVAC) systems can help, heating, ventilation and air-conditioning (HVAC) systems are responsible for 10%-60% of the total building

242

ASHRAE's New Performance Measurement Protocols for Commercial Buildings  

E-Print Network (OSTI)

Services Administration. 10 IEA is the International Energy Agency. ESL-IC-08-10-11 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 2 The resultant protocols are intended to provide... Building Operations, Berlin, Germany, October 20-22, 2008 3 Chapter 1: Energy (Authors: MacDonald, Haberl). In Chapter 1 the protocols for measuring the building?s energy useare presented. These protocols begin with acollection of facility information...

Haberl, J.; Davies, H.; Owens, B.; Hunn, B.

243

Whole Building Cost and Performance Measurement: Data Collection Protocol Revision 2  

SciTech Connect

This protocol was written for the Department of Energy’s Federal Energy Management Program (FEMP) to be used by the public as a tool for assessing building cost and performance measurement. The primary audiences are sustainable design professionals, asset owners, building managers, and research professionals within the Federal sector. The protocol was developed based on the need for measured performance and cost data on sustainable design projects. Historically there has not been a significant driver in the public or private sector to quantify whole building performance in comparable terms. The deployment of sustainable design into the building sector has initiated many questions on the performance and operational cost of these buildings.

Fowler, Kimberly M.; Spees, Kathleen L.; Kora, Angela R.; Rauch, Emily M.; Hathaway, John E.; Solana, Amy E.

2009-03-27T23:59:59.000Z

244

Evaluating the energy performance of the first generation of LEED-certified commercial buildings  

E-Print Network (OSTI)

one element of sustainable building design, and we hope thatDesign (LEED) rating system for sustainable commercial buildingsdesign expectations for energy performance is just one step towards moving the existing commercial building market towards a more sustainable

Diamond, Rick

2011-01-01T23:59:59.000Z

245

Energy Performance and Comfort Level in High Rise and Highly Glazed Office Buildings  

E-Print Network (OSTI)

Thermal and visual comfort in buildings play a significant role on occupants' performance but on the other hand achieving energy savings and high comfort levels can be a quite difficult task especially in high rise buildings with highly glazed...

Bayraktar, M.; Perino, M.; Yilmaz, A. Z.

2010-01-01T23:59:59.000Z

246

Better Indoor Climate With Less Energy: European Energy Performance of Building Directive (EPBD)  

E-Print Network (OSTI)

The European Commission's Action Plan on Energy Efficiency (2000) indicated the need for specific measures in the building sector. In response, the European Commission (EC) published the proposed Directive on the Energy Performance of Buildings...

Magyar, Z.; Leitner, A.

2006-01-01T23:59:59.000Z

247

Origins of Analysis Methods in Energy Simulation Programs Used for High Performance Commercial Buildings  

E-Print Network (OSTI)

Current designs of high performance buildings utilize hourly building energy simulations of complex, interacting systems. Such simulations need to quantify the benefits of numerous features including: thermal mass, HVAC systems and, in some cases...

Oh, Sukjoon

2013-08-19T23:59:59.000Z

248

Getting a Better Performing Building: Commissioning and Real Time Data Analysis  

E-Print Network (OSTI)

based on real time system operational data. Because of the dynamic nature and complexity of commercial building HVAC systems, they are the perfect target for periodic performance assessments, or recommissioning. Today's buildings are expected to supply...

Barba, M.

2002-01-01T23:59:59.000Z

249

Green Building Performance Evaluation in the United States: Measured Results from LEED- New Construction Buildings  

E-Print Network (OSTI)

participating in Bonneville Power?s Energy Edge program, and a 2003 New Buildings Institute study of 157 California commercial buildings show as-constructed savings (compared to code) ranging from -100% to +50%. It is time to narrow this variability... participating in Bonneville Power?s Energy Edge program, and a 2003 New Buildings Institute study of 157 California commercial buildings show as-constructed savings (compared to code) ranging from -100% to +50%. It is time to narrow this variability...

Hewitt, D.; Turner, C.; Frankel, M.

250

Funding Opportunity Webinar- Advancing Solutions To Improve the Energy Efficiency of US Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE))

This webinar provides an overview of the DOE Funding Opportunity Announcement DE-FOA-0001168, "Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings," which seeks to fund the scale-up of promising solutions to the market barriers that hinder the growth of energy efficiency in the commercial building sector.

251

Commercial Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Integration Program Arah Schuur Program Manager arah.schuur@ee.doe.gov April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and transacted with energy performance in mind and net zero ready commercial buildings are common and cost-effective. Commercial Buildings Integration Program Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings. 3 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce

252

Improvements to building energy usage modeling during early design stages and retrofits  

E-Print Network (OSTI)

A variety of improvements to the MIT Design Advisor, a whole-building energy usage modeling tool intended for use during early design stages, are investigated. These include changes to the thermal mass temperature distribution ...

Mandelbaum, Andrew (Andrew Joseph)

2014-01-01T23:59:59.000Z

253

Building America Top Innovations Hall of Fame Profile … Tankless Gas Water Heater Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incorporating tankless water heaters was one Incorporating tankless water heaters was one of many energy-efficiency recommendations Building America's research team IBACOS had for San Antonio builder Imagine Homes. Although tankless gas water heaters should save approximately 33% on hot water heating compared to a conventional storage water heater, actual energy savings vary significantly based on individual draw volume. Above 10 gallons per draw, the efficiency approaches the rated energy factor. The greatest savings occur at a daily use quantity of about 50 gallons. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.2 Energy Efficient Components Tankless Gas Water Heater Performance As improved thermal enclosures dramatically reduce heating and cooling loads,

254

A Sensitivity Study of Building Performance Using 30-Year Actual Weather  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensitivity Study of Building Performance Using 30-Year Actual Weather Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Title A Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Publication Type Conference Paper Year of Publication 2013 Authors Hong, Tianzhen, Wen-Kuei Chang, and Hung-Wen Lin Date Published 05/2013 Keywords Actual meteorological year, Building simulation, Energy use, Peak electricity demand, Typical meteorological year, Weather data Abstract Traditional energy performance calculated using building simulation with the typical meteorological year (TMY) weather data represents the energy performance in a typical year but not necessarily the average or typical energy performance of a building in long term. Furthermore, the simulated results do not provide the range of variations due to the change of weather, which is important in building energy management and risk assessment of energy efficiency investment. This study analyzes the weather impact on peak electric demand and energy use by building simulation using 30-year actual meteorological year (AMY) weather data for three types of office buildings at two design efficiency levels across all 17 climate zones. The simulated results from the AMY are compared to those from TMY3 to determine and analyze the differences. It was found that yearly weather variation has significant impact on building performance especially peak electric demand. Energy savings of building technologies should be evaluated using simulations with multi-decade actual weather data to fully consider investment risk and the long term performance.

255

Sootblowing optimization for improved boiler performance  

DOE Patents (OSTI)

A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

2013-07-30T23:59:59.000Z

256

Progress on Enabling an Interactive Conversation Between Commercial Building Occupants and Their Building To Improve Comfort and Energy Efficiency: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress on Enabling an Progress on Enabling an Interactive Conversation Between Commercial Building Occupants and Their Building To Improve Comfort and Energy Efficiency Preprint M. Schott, N. Long, J. Scheib, K. Fleming, K. Benne, and L. Brackney National Renewable Energy Laboratory To be presented at ACEEE Summer Study on Energy Efficiency in Buildings Pacific Grove, California August 12-17, 2012 Conference Paper NREL/CP-5500-55197 June 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

257

SPP sales flyer for home improvement | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

home improvement home improvement Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

258

Revisit of Energy Use and Technologies of High Performance Buildings  

E-Print Network (OSTI)

site Energy Use Intensity (EUI) of the 51 buildings variedof the correlation between EUI and climate elucidatedubiquitous phenomenon of EUI scatter throughout all climate

Li Ph.D., Cheng

2014-01-01T23:59:59.000Z

259

High Performance Building Facade Solutions PIER Final Project Report  

E-Print Network (OSTI)

integrated design and collaborating with utilities, large buildingintegrated design and collaborating with utilities, large buildingissues with integrated façade design. 2) For building owners

Lee, Eleanor

2011-01-01T23:59:59.000Z

260

High-Performance and Sustainable Buildings Guidance (Final, 2008...  

Office of Environmental Management (EM)

Existing Buildings, clarifies reporting guidelines for entering information on Sustainability Data Element 25 in the Federal Real Property Profile database, and explains how...

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Building America Whole-House Solutions for Existing Homes: Performance...  

Energy Savers (EERE)

of a Hot-Dry Climate Whole-House Retrofit, Stockton, California (Fact Sheet) The Alliance for Residential Building Innovation (ARBI) team conducted a deep retrofit project...

262

Tackling the Improved Control of Mixed-Mode Buildings: A Research Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Tackling the Improved Control of Mixed-Mode Buildings: A Research Update Tackling the Improved Control of Mixed-Mode Buildings: A Research Update Speaker(s): Peter May-Ostendorp Date: March 29, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: William Fisk (This presentation by Peter May-Ostendorp will begin with an introduction to building energy research at UC Boulder, by Prof. Gregor Henze.) Mixed-mode (MM) cooling is a promising building design strategy for low-energy cooling that incorporates natural ventilation alongside other forms of space conditioning. A properly designed system will intelligently switch between modes of cooling to maximize energy savings, while preserving occupant comfort. The near-optimal operation of MM buildings is explored through a model-predictive control (MPC) study using a purpose-built optimization environment coupled to EnergyPlus. Preliminary

263

A framework for simulation-based real-time whole building performance  

NLE Websites -- All DOE Office Websites (Extended Search)

A framework for simulation-based real-time whole building performance A framework for simulation-based real-time whole building performance assessment Title A framework for simulation-based real-time whole building performance assessment Publication Type Journal Article Refereed Designation Unknown LBNL Report Number 0360-1323 Year of Publication 2012 Authors Pang, Xiufeng, Michael Wetter, Prajesh Bhattacharya, and Philip Haves Journal Building and Environment Volume 54 Start Page 100 Pagination 100-108 Date Published 08/2012 ISSN 0360-1323 Keywords building controls virtual test bed, building performance, energy modeling, energyplus, real-time building simulation Abstract Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures. One approach to addressing this problems is to compare the predictions of an energy simulation model of the building to the measured performance and analyze significant differences to infer the presence and location of faults. This paper presents a framework that allows a comparison of building actual performance and expected performance in real time. The realization of the framework utilized the EnergyPlus, the Building Controls Virtual Test Bed (BCVTB) and the Energy Management and Control System (EMCS) was developed. An EnergyPlus model that represents expected performance of a building runs in real time and reports the predicted building performance at each time step. The BCVTB is used as the software platform to acquire relevant inputs from the EMCS through a BACnet interface and send them to the EnergyPlus and to a database for archiving. A proof-of-concept demonstration is also presented.

264

Improving Steam System Performance: A Sourcebook for Industry, Second Edition  

Energy.gov (U.S. Department of Energy (DOE))

This sourcebook is designed to provide steam system users with a reference that describes the basic steam system components, outlines opportunities for energy and performance improvements, and discusses the benefits of a systems approach in identifying and implementing these improvement opportunities. The sourcebook is divided into three main sections: steam system basics, performance improvement opportunities, and where to find help.

265

Improving Fan System Performance: A Sourcebook for Industry  

Energy.gov (U.S. Department of Energy (DOE))

This sourcebook is designed to provide fan system users with a reference outlining opportunities to improve system performance. It is not intended to be a comprehensive technical text on improving fan systems, but rather a document that makes users aware of potential performance improvements, provides some practical guidelines, and details where the user can find more help.

266

U-Launch Winner Secures $2.4M Investment for Building Energy Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U-Launch Winner Secures $2.4M Investment for Building Energy U-Launch Winner Secures $2.4M Investment for Building Energy Performance Software U-Launch Winner Secures $2.4M Investment for Building Energy Performance Software December 14, 2011 - 3:00pm Addthis This screenshot from cleantech start-up company FirstFuel's building energy efficiency performance software shows users a building's response to all forms of weather, operational schedules, key energy metrics, daily consumption patterns, seasonal analysis, peak loading, and shell integrity. | Photo courtesy of FirstFuel. This screenshot from cleantech start-up company FirstFuel's building energy efficiency performance software shows users a building's response to all forms of weather, operational schedules, key energy metrics, daily consumption patterns, seasonal analysis, peak loading, and shell integrity.

267

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

hospitals have variable frequency drives (VFDs) on largeo o o o o Use of variable frequency drives, efficient motorscooling coils; with variable frequency drives the fans may

Singer, Brett C.

2010-01-01T23:59:59.000Z

268

Advanced Metering - Using advanced Metering to Improve Building...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

bills *Tenant energy use (sub metering) *Identifying best rates *Participating in demand response programs OptimizeReview performance *Diagnose equipment & systems operations...

269

Analyzing and Improving MPI Communication Performance in Overcommitted Virtualized Systems  

Science Journals Connector (OSTI)

Nowadays, it is an important trend in the system domain to use the software-based virtualization technology to build the execution environments (e.g., Clouds) and serve high performance computing (HPC) applications. However, with the extra virtualization ... Keywords: virtualization, cloud, MPI, performance

Zhiyuan Shao; Qiang Wang; Xuejiao Xie; Hai Jin; Ligang He

2011-07-01T23:59:59.000Z

270

Building Energy Software Tools Directory: Tools by Subject - Whole Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability Sustainability A B E G K L S U Tool Applications Free Recently Updated Athena Model life cycle assessment, environment, building materials, buildings Free software. BEES environmental performance, green buildings, life cycle assessment, life cycle costing, sustainable development Free software. Software has been updated. Building Greenhouse Rating operational energy, greenhouse performance, national benchmark Free software. Building Performance Compass Commercial Buildings, Multi-family Residence, Benchmarking, Energy Tracking, Improvement Tracking, Weather Normalization BuildingAdvice Whole building analysis, energy simulation, renewable energy, retrofit analysis, sustainability/green buildings Software has been updated. ECO-BAT environmental performance, life cycle assessment, sustainable development Software has been updated.

271

Report on High Performance Building's Energy Modeling, Physical Building Information Modeling for Solar Building Design and Simulation  

E-Print Network (OSTI)

This report was created for the National Science Foundation-Physical Building Information Modeling (NSF-PBIM) project. This report describes the analysis of a solar office building using the following software: the legacy tools (DOE 2.1e, the F...

Alcocer, J.; Haberl, J. S.

2012-01-01T23:59:59.000Z

272

Buildings Energy Data Book: 2.6 Residential Home Improvement  

Buildings Energy Data Book (EERE)

4 4 2007 and 2009 Do-It-Yourself Home Improvements, by Project ($2010) Total Mean Total Mean Projects Expenditures Expenditures Projects Expenditures Expenditures Repair/Improvement (thousand) ($million) ($) (thousand) ($million) ($) Room Additions, Alterations, and Remodelings Kitchen Bathroom Bedroom Other Systems and Equipment Plumbing (Pipes and Fixtures) Electrical System HVAC Appliance/Major Equipment Exterior Additions and Replacements Roof Siding Windows/Doors Interior Additions and Replacements Insulation Flooring/Paneling/Ceiling Other Interior Disaster Repair Other Additions and Replacements (1) Total Note(s): Source(s): 1) Other additions and replacements include porches, carports, swimming pools and other major improvements or repairs to lot or yard. Joint Center for Housing Studies of Harvard University, The Remodeling market in Transition, 2009, Table A.2, p. 30 for 2007; Joint Center for Housing

273

Buildings Energy Data Book: 2.6 Residential Home Improvement  

Buildings Energy Data Book (EERE)

3 3 2007 and 2009 Professional Home Improvements, by Project ($2010) Total Mean Total Mean Projects Expenditures Expenditures Projects Expenditures Expenditures Repair/Improvement (thousand) ($million) ($) (thousand) ($million) ($) Room Additions, Alterations, and Remodelings Kitchen Bathroom Bedroom Other Systems and Equipment Plumbing (Pipes and Fixtures) Electrical System HVAC Appliance/Major Equipment Exterior Additions and Replacements Roof Siding Windows/Doors Interior Additions and Replacements Insulation Flooring/Paneling/Ceiling Other Interior Disaster Repair Other Additions and Replacements (1) Total Note(s): Source(s): 1) Other additions and replacements include porches, carports, swimming pools and other major improvements or repairs to lot or yard. Joint Center for Housing Studies of Harvard University, The Remodeling Market in Transition, 2009, Table A.2, p. 30 for 2007; Joint Center for Housing

274

Buildings Energy Data Book: 2.6 Residential Home Improvement  

Buildings Energy Data Book (EERE)

2 2 2007 Professional and Do-It-Yourself Improvements, by Project ($2010) Total Mean Total Mean Projects Expenditures Expenditures Projects Expenditures Expenditures Repair/Improvement (thousand) ($million) ($) (thousand) ($million) ($) Room Additions, Alterations, and Remodelings Kitchen Bathroom Bedroom Other Systems and Equipment Plumbing (Pipes and Fixtures) Electrical System HVAC Appliance/Major Equipment Exterior Additions and Replacements Roof Siding Windows/Doors Interior Additions and Replacements Insulation Flooring/Paneling/Ceiling Other Interior Disaster Repair Other Additions and Replacements (1) Total (2) Note(s): Source(s): 1) Other additions and replacements include porches, carports, swimming pools and other major improvements or repairs to lot or yard. 2)Total expenditures (professional installation plus do-it-yourself installation) are $1.8 billion higher compared to Table 2.6.1. This

275

Risk Perception in Performance-Based Building Design and Applications to Terrorism-Resistant Design  

E-Print Network (OSTI)

Risk Perception in Performance-Based Building Design and Applications to Terrorism-Resistant Design-offs in "acceptable" risk versus cost must be made. As terrorism represents a constantly changing design challenge; Terrorism. Introduction Risks have always been associated with buildings. However, as buildings become

Bank, Lawrence C.

276

Apply: Funding Opportunity- Building America Industry Partnerships for High Performance Housing Innovation  

Energy.gov (U.S. Department of Energy (DOE))

Application Deadline: February 4, 2015 The Building Technologies Office (BTO)’s Residential Buildings Integration Program has announced the availability of up to $4 million in 2015 for the Building America Industry Partnerships for High Performance Housing Innovation Funding Opportunity Announcement (FOA) DE-FOA-0001117.

277

High Performance Without Increased Cost: Urbane Homes, Louisville, KY- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes work with Urbane Homes of Louisville, Kentucky, to build a high-performance home that cost $36 per ft2 (not counting the lot).Between 2005 and 2010, Building America research partners worked with 34 builders to construct nearly 3,000 HERS

278

SPECIFICATION AND IMPLEMENTATION OF IFC BASED PERFORMANCE METRICS TO SUPPORT BUILDING LIFE CYCLE ASSESSMENT OF HYBRID  

E-Print Network (OSTI)

with the introduction of tighter building codes have done little to stem the poor energy performance in commercial on owners to quantify the energy usage of their buildings against benchmarks set by government energy (LBNL), Berkeley, CA, USA ABSTRACT Minimising building life cycle energy consumption is becoming

279

The effect of side-restraint bearings on the performance of base-isolated buildings  

E-Print Network (OSTI)

1 The effect of side-restraint bearings on the performance of base- isolated buildings J P Talbot * Corresponding author. Email: jpt1000@eng.cam.ac.uk Abstract: Base-isolation of buildings is a common solution vibration isolation bearings between a building and its foundation, aligned in the vertical direction so

Talbot, James P.

280

Building America Whole-House Solutions for New Homes: The Performance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Old Greenwich, Connecticut (Fact Sheet) Building America Whole-House Solutions for New Homes: The Performance House: A Cold Climate Challenge Home, Old Greenwich, Connecticut...

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Funding Opportunity Webinar – Building America Industry Partnerships for High Performance Housing Innovations  

Energy.gov (U.S. Department of Energy (DOE))

This webinar provides an overview of the “Building America Industry Partnerships for High Performance Housing Innovations” Funding Opportunity Announcement, DE-FOA-0001117.

282

Funding Opportunity Webinar – Building America Industry Partnerships for High Performance Housing Innovations (Text Version)  

Energy.gov (U.S. Department of Energy (DOE))

Below is the text version of the Funding Opportunity Webinar, Building America Industry Partnerships for High Performance Housing Innovations, presented in November 2014.

283

U.S. Department of Energy High Performance and Sustainable Buildings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department of Energy High Performance and Sustainable Buildings Implementation Plan More Documents & Publications Three Year Rolling Timeline Slide 1 Three-year Rolling Timeline...

284

Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Management Program provides guidance to help agencies comply with the Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings.

285

Energy Performance Benchmarking and Disclosure Policies for Public and Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE))

This presentation is part of the SEE Action Series and provides information on Energy Performance Benchmarking and Disclosure Policies for Public and Commercial Buildings

286

Building America Webinar: High Performance Enclosure Strategies: Part II, New Construction  

Energy.gov (U.S. Department of Energy (DOE))

The webinar is the second in the series on designing and constructing high performance building enclosures, and will focus on effective strategies to address moisture and thermal needs.

287

Building America Webinar: High Performance Enclosure Strategies: Part II, New Construction- August 13, 2014- Introduction  

Energy.gov (U.S. Department of Energy (DOE))

This presentation is the Introduction to the Building America webinar, High Performance Enclosure Strategies, Part II, held on August 13, 2014.

288

Development of discrete event system specification (DEVS) building performance models for building energy design  

Science Journals Connector (OSTI)

The discrete event system specification (DEVS) is a formalism for describing simulation models in a modular fashion. In this study, it is exploited by forming submodels that allow different professions involved in the building design process to work ... Keywords: DEVS, energy simulation in building design, modular BPS, stochastic occupant models

Huseyin Burak Gunay; Liam O'Brien; Rhys Goldstein; Simon Breslav; Azam Khan

2013-04-01T23:59:59.000Z

289

Incorporating traffic patterns to improve delivery performance  

E-Print Network (OSTI)

Traffic, construction and other road hazards impact the on-time performance of companies that operate delivery fleets. This study examines how incorporating traffic patterns in vehicle route development compares with ...

Dickinson, Melody J

2010-01-01T23:59:59.000Z

291

Buildings Energy Data Book: 2.6 Residential Home Improvement  

Buildings Energy Data Book (EERE)

7 7 2009 Home Improvement Spending by Household Income ($2010) Income Under $40,000 $40-79,999 $80-119,999 120,000 and Over Note(s): Source(s): 13,005 4,097 16,531 67,731 Home improvements include room additions, remodeling, replacements of household systems and appliances, porches and garages, additions and replacements of roofing, siding, window/doors, insulation, flooring/paneling/ceiling, and disaster repairs. Joint Center for Housing Studies of Harvard University, A New Decade of Growth for Remodeling, 2011, Table A-3, pg. 29; EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for GDP and price deflators. 23,178 6,545 6,841 44,772 14,051 4,299 9,189 39,505 (thousand) (thousand) ($) ($million) 24,675 6,113 5,697 34,825 Number of Homeowners Average Total Homeowners

292

The potential and challenges of monitoring-supported energy efficiency improvement strategies in existing buildings  

E-Print Network (OSTI)

The ongoing EU-supported CAMPUS 21 explores the energy efficiency potential of integrated security, control, and building management software. The main objective of the project is to compare the energy and indoor-environmental performance...

Schub, M.; Mahdavi, A.; Simonis, H.; Menzel, K.; Browne, D.

2012-01-01T23:59:59.000Z

293

Improved System Performance and Reduced Cost of a Fuel Reformer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement Damodara Poojary, Jacques Nicole,...

294

U. S. Government purposes. DEVICES TO IMPROVE THE PERFORMANCE...  

Office of Scientific and Technical Information (OSTI)

an optimized design was developed in the final phase to achieve improved performance. Test results indicate that with an optimized two-stroke SI engine, the maximum percentage...

295

Request for Information on Improving Performance of Federal Permitting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Infrastructure Projects: Federal Register Notice Volume 78, No. 168 - August 29, 2013 Request for Information on Improving Performance of Federal Permitting and Review of...

296

Improving Indoor Environmental Quality and Energy Performance of Modular  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor Environmental Quality and Energy Performance of Modular Indoor Environmental Quality and Energy Performance of Modular Classroom HVAC Systems Title Improving Indoor Environmental Quality and Energy Performance of Modular Classroom HVAC Systems Publication Type Conference Proceedings Year of Publication 2005 Authors Apte, Michael G., Michael Spears, Chi-Ming Lai, and Derek G. Shendell Conference Name Proceedings of Sustainable Buildings 2005 Conference Pagination 1432-1437 Conference Location Tokyo, Japan, September 27-29, 2005 Abstract The factory-built relocatable classroom (RC) is a dominant force in the school facility construction industry in the United States (U.S.) and elsewhere. It is estimated that there are approximately 650,000 RCs currently occupied in the U.S., housing about 16 million students. RCs receive public attention due to complaints about poor indoor environmental quality (IEQ). Both measured data and anecdotal evidence in California have suggested excessive acoustical noise from heating, ventilation, and air conditioning (HVAC) equipment as a central factor leading to degraded IEQ. In the U.S., RCs are typically equipped with unitary exterior wall-mount HVAC systems, and interior acoustical noise due to structural and airborne transmission can reach levels of about 58dB(A) with compressor cycling, under unoccupied conditions. Due to these noise levels teachers often simply choose to turn off the HVAC, leading to inadequate ventilation, as well as poor thermal conditioning, and thus to poor indoor air quality. Elevated levels of carbon dioxide and volatile organic compounds including formaldehyde are common. We discuss the acoustic component of our efforts to develop and test energy efficient HVAC systems that address the ventilation, controls, and acoustic requirements necessary to ensure high quality indoor environments in RCs

297

Building Technologies Office Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Roland Risser Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to Overcome Challenges Information Access * Develop building performance tools, techniques, and success stories, such as case studies * Form market partnerships and programs to share best practices * Solution Centers * Certify the workforce to ensure quality work

298

Building America Top Innovations Hall of Fame Profile … Building Americas Top Innovations Propel the Home Building Industry toward Higher Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sponsored by the U.S. Department of Energy's (DOE's) sponsored by the U.S. Department of Energy's (DOE's) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. The U.S. home building industry represents a significant opportunity for energy savings, accounting for nearly one-fourth of U.S. energy consumption, but the industry as a whole has been slow to adopt new energy-saving technologies. This is largely due to the industry's unique disaggregation, with thousands of small business owners lacking adequate resources and capabilities to invest in research and development. DOE established the Building America program in 1995 to address both the huge energy-saving opportunity and the critical research gap

299

Building America Webinar: High-Performance Enclosure Strategies...  

Energy Savers (EERE)

and Innovative Advanced Framing Strategies February 12, 2015 3:00PM to 4:30PM EST This free webinar will focus on on methods to design and build roof and wall systems for high...

300

Hybrid Model for Building Performance Diagnosis and Optimal Control  

E-Print Network (OSTI)

and two capacitances, is used to simulate building envelope whose parameters are determined in frequency domain using the theoretical frequency characteristics of the envelope. Internal mass is represented by a 2R2C thermal network model, which consists...

Wang, S.; Xu, X.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Improving Dynamic Load and Generator Response Performance Tools  

E-Print Network (OSTI)

induction motors that Improving Dynamic Load and Generatorand Generator Response Performance Tools Another important example reported in the literature, also involving inductionand Generator Response Performance Tools As partial answers to these questions we note that the 20% induction

Lesieutre, Bernard C.

2005-01-01T23:59:59.000Z

302

Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding  

NLE Websites -- All DOE Office Websites (Extended Search)

FEDERAL LEADERSHIP IN HIGH PERFORMANCE and SUSTAINABLE FEDERAL LEADERSHIP IN HIGH PERFORMANCE and SUSTAINABLE BUILDINGS MEMORANDUM OF UNDERSTANDING PURPOSE: With this Memorandum of Understanding (MOU), signatory agencies commit to federal leadership in the design, construction, and operation of High- Performance and Sustainable Buildings. A major element of this strategy is the implementation of common strategies for planning, acquiring, siting, designing, building, operating, and maintaining High Performance and Sustainable Buildings. The signatory agencies will also coordinate with complementary efforts in the private and public sectors. BACKGROUND AND FEDERAL POLICY: The Federal government owns approximately 445,000 buildings with total floor space of over 3.0 billion square feet, in addition to leasing an additional 57,000 buildings comprising 374 million square feet of

303

Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEDERAL LEADERSHIP IN HIGH PERFORMANCE and SUSTAINABLE FEDERAL LEADERSHIP IN HIGH PERFORMANCE and SUSTAINABLE BUILDINGS MEMORANDUM OF UNDERSTANDING PURPOSE: With this Memorandum of Understanding (MOU), signatory agencies commit to federal leadership in the design, construction, and operation of High- Performance and Sustainable Buildings. A major element of this strategy is the implementation of common strategies for planning, acquiring, siting, designing, building, operating, and maintaining High Performance and Sustainable Buildings. The signatory agencies will also coordinate with complementary efforts in the private and public sectors. BACKGROUND AND FEDERAL POLICY: The Federal government owns approximately 445,000 buildings with total floor space of over 3.0 billion square feet, in addition to leasing an additional 57,000 buildings comprising 374 million square feet of

304

Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEDERAL LEADERSHIP IN HIGH PERFORMANCE and SUSTAINABLE FEDERAL LEADERSHIP IN HIGH PERFORMANCE and SUSTAINABLE BUILDINGS MEMORANDUM OF UNDERSTANDING PURPOSE: With this Memorandum of Understanding (MOU), signatory agencies commit to federal leadership in the design, construction, and operation of High- Performance and Sustainable Buildings. A major element of this strategy is the implementation of common strategies for planning, acquiring, siting, designing, building, operating, and maintaining High Performance and Sustainable Buildings. The signatory agencies will also coordinate with complementary efforts in the private and public sectors. BACKGROUND AND FEDERAL POLICY: The Federal government owns approximately 445,000 buildings with total floor space of over 3.0 billion square feet, in addition to leasing an additional 57,000 buildings comprising 374 million square feet of

305

Improving the Energy Performance of Data Centers  

E-Print Network (OSTI)

to most data centers. The second uses air-side economizers (air-side economizer scenario (ASE) requires a different type of air delivery than typically found in a data centerdata centers. The performance ratios for the ASE and WSE scenarios show that air-side economizers

Horvath, A; Shehabi, Arman

2008-01-01T23:59:59.000Z

306

U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Energy High Performance and Sustainable Buildings Implementation Plan August 15, 2008 U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan TABLE OF CONTENTS ACRONYMS................................................................................................................................. iii 1 DOE COMMITMENT TO HPSB .......................................................................................... 1 1.1 Federal HPSB Drivers and Commitments ........................................................................... 1 1.2 DOE-Specific HPSB Commitments .................................................................................... 2 2 DOE HPSB DIRECTIVES..................................................................................................... 3

307

Development of an Online Toolkit for Measuring Commercial Building Energy Efficiency Performance -- Scoping Study  

SciTech Connect

This study analyzes the market needs for building performance evaluation tools. It identifies the existing gaps and provides a roadmap for the U.S. Department of Energy (DOE) to develop a toolkit with which to optimize energy performance of a commercial building over its life cycle.

Wang, Na

2013-03-13T23:59:59.000Z

308

Development of whole-building energy performance models as benchmarks for retrofit projects  

Science Journals Connector (OSTI)

This paper presents a systematic development process of whole-building energy models as performance benchmarks for retrofit projects. Statistical regression-based models and computational performance models are being used for retrofit projects in industry ...

Omer Tugrul Karaguzel; Khee Poh Lam

2011-12-01T23:59:59.000Z

309

Improving Pumping System Performance: A Sourcebook for Industry- Second Edition  

Energy.gov (U.S. Department of Energy (DOE))

This sourcebook is designed to provide pump system users with a reference that outlines opportunities for improving system performance. It is not meant to be a comprehensive technical text on pumping systems; rather, it provides practical guidelines and information to make users aware of potential performance improvements. Guidance on how to find more information and assistance is also included.

310

Automation Performance Index.  

E-Print Network (OSTI)

??Automation is intended to improve overall building performance. Building Automation Systems (BAS) are attractive and popular due to their promise of increased operational effectiveness. BAS… (more)

Makarechi, Shariar

2006-01-01T23:59:59.000Z

311

Improving Compressed Air System Performance: A Sourcebook for Industry  

Energy.gov (U.S. Department of Energy (DOE))

This sourcebook is designed to provide compressed air system users with a reference that outlines opportunities for system performance improvements. It is not intended to be a comprehensive technical text on improving compressed air systems, but rather a document that makes compressed air system users aware of the performance improvement potential, details some of the significant opportunities, and directs users to additional sources of assistance.

312

NREL Develops Diagnostic Test Cases to Improve Building Energy Simulation Programs (Fact Sheet)  

SciTech Connect

This technical highlight describes NREL research to develop a set of diagnostic test cases for building energy simulations in order to achieve more accurate energy use and savings predictions. The National Renewable Energy Laboratory (NREL) Residential and Commercial Buildings research groups developed a set of diagnostic test cases for building energy simulations. Eight test cases were developed to test surface conduction heat transfer algorithms of building envelopes in building energy simulation programs. These algorithms are used to predict energy flow through external opaque surfaces such as walls, ceilings, and floors. The test cases consist of analytical and vetted numerical heat transfer solutions that have been available for decades, which increases confidence in test results. NREL researchers adapted these solutions for comparisons with building energy simulation results. Testing the new cases with EnergyPlus identified issues with the conduction finite difference (CondFD) heat transfer algorithm in versions 5 and 6. NREL researchers resolved these issues for EnergyPlus version 7. The new test cases will help users and developers of EnergyPlus and other building energy tools to identify and fix problems associated with solid conduction heat transfer algorithms of building envelopes and their boundary conditions. In the long term, improvements to software algorithms will result in more accurate energy use and savings predictions. NREL researchers plan to document the set of test cases and make them available for future consideration by validation standards such as ASHRAE Standard 140: Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. EnergyPlus users will also have access to the improved CondFD model in version 7 after its next scheduled release.

Not Available

2011-12-01T23:59:59.000Z

313

Benchmarking and performance improvement at Rocky Flats Technology Site  

SciTech Connect

The Rocky Flats Environmental Technology Site has initiated a major work process improvement campaign using the tools of formalized benchmarking and streamlining. This paper provides insights into some of the process improvement activities performed at Rocky Flats from November 1995 through December 1996. It reviews the background, motivation, methodology, results, and lessons learned from this ongoing effort. The paper also presents important gains realized through process analysis and improvement including significant cost savings, productivity improvements, and an enhanced understanding of site work processes.

Elliott, C. [Kaiser-Hill Co., (United States); Doyle, G. [EG and G Rocky Flats, Inc., Golden, CO (United States); Featherman, W.L. [Project Performance Corp. (United States)

1997-03-01T23:59:59.000Z

314

Superior Energy Performance: A Roadmap for Achieving Continual Improvements in Energy Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Superior Energy Performance: Superior Energy Performance: A Roadmap for Achieving Continual Improvements in Energy Performance March 4, 2010 Joe Almaguer Dow Chemical Paul Scheihing U.S. Department of Energy Agenda: * Superior Energy Performance Overview * Program Design * Program Status and Moving Forward Superior Energy Performance What is Superior Energy Performance? A market-based, ANSI-accredited plant certification program that provides industrial facilities with a roadmap for achieving continual improvement in energy efficiency while boosting competitiveness. Goals: * Drive continual improvement in energy intensity * Develop a transparent system to validate energy intensity improvements and management practices * Encourage broad participation

315

Duct Thermal Performance Models for Large Commercial Buildings  

E-Print Network (OSTI)

Energy Technologies Division Indoor Environment Department Lawrence Berkeley National Laboratory Berkeley Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the U.S. Department) for his assistance in defining the duct surface heat transfer models described in the body of this report

316

Synergization of air handling units for high energy efficiency in office buildings: Implementation methodology and performance evaluation  

Science Journals Connector (OSTI)

An integrating air-handling unit (IAHU) control theory has been proposed to improve the energy efficiency in office buildings by utilizing the regional and operation differences among multiple AHUs. Unlike the conventional AHU operation, where the units are controlled as independent systems without interaction, IAHU coordinates the \\{AHUs\\} based on the dynamic outside air conditions and system operation modes to achieve synergized energy performance and maintain the indoor air quality. The synergization strategy allows the outside air intake and the airflows to be orderly re-allocated among the \\{AHUs\\} when conditions are appropriate. This paper presents the implementation methodology and performance evaluation of IAHU in an open-plan office building with multiple AHUs. The allocation of airflows among the \\{AHUs\\} is described first to illustrate how IAHU deals with multiple \\{AHUs\\} in a building. The supervisory level control algorithm is then detailed and easy-to-follow flowcharts are provided based on the decision-making schema. A two-step hourly evaluation method and the energy simulation model are introduced. An office building with multiple \\{AHUs\\} is selected to assess the performance of IAHU. The study concludes that the innovative IAHU with the easy-to-implement strategy can be readily implemented to achieve high energy efficiency in open space office buildings.

Yuebin Yu; Mingsheng Liu; Haorong Li; Daihong Yu; Vivian Loftness

2012-01-01T23:59:59.000Z

317

Revisit of Energy Use and Technologies of High Performance Buildings  

E-Print Network (OSTI)

Revisit of Energy Use and Technologies of High PerformanceEnvironmental Energy Technologies Division May 2014 ThisRevisit of Energy Use and Technologies of High Performance

Li Ph.D., Cheng

2014-01-01T23:59:59.000Z

318

Development of a Model Specification for Performance MonitoringSystems for Commercial Buildings  

SciTech Connect

The paper describes the development of a model specification for performance monitoring systems for commercial buildings. The specification focuses on four key aspects of performance monitoring: (1) performance metrics; (2) measurement system requirements; (3) data acquisition and archiving; and (4) data visualization and reporting. The aim is to assist building owners in specifying the extensions to their control systems that are required to provide building operators with the information needed to operate their buildings more efficiently and to provide automated diagnostic tools with the information required to detect and diagnose faults and problems that degrade energy performance. The paper reviews the potential benefits of performance monitoring, describes the specification guide and discusses briefly the ways in which it could be implemented. A prototype advanced visualization tool is also described, along with its application to performance monitoring. The paper concludes with a description of the ways in which the specification and the visualization tool are being disseminated and deployed.

Haves, Philip; Hitchcock, Robert J.; Gillespie, Kenneth L.; Brook, Martha; Shockman, Christine; Deringer, Joseph J.; Kinney,Kristopher L.

2006-08-01T23:59:59.000Z

319

Towards measurement and verification of energy performance under the framework of the European directive for energy performance of buildings  

Science Journals Connector (OSTI)

Abstract Directive 2002/91/EC of the European Parliament and Council on the Energy Performance of Buildings has led to major developments in energy policies followed by the EU Member States. The national energy performance targets for the built environment are mostly rooted in the Building Regulations that are shaped by this Directive. Article 3 of this Directive requires a methodology to calculate energy performance of buildings under standardised operating conditions. Overwhelming evidence suggests that actual energy performance is often significantly higher than this standardised and theoretical performance. The risk is national energy saving targets may not be achieved in practice. The UK evidence for the education and office sectors is presented in this paper. A measurement and verification plan is proposed to compare actual energy performance of a building with its theoretical performance using calibrated thermal modelling. Consequently, the intended vs. actual energy performance can be established under identical operating conditions. This can help identify the shortcomings of construction process and building procurement. Once energy performance gap is determined with reasonable accuracy and root causes identified, effective measures could be adopted to remedy or offset this gap.

Esfand Burman; Dejan Mumovic; Judit Kimpian

2014-01-01T23:59:59.000Z

320

Improving building life-cycle information management through documentation and communication of project objectives  

SciTech Connect

Most currently available computer tools for the building industry proffer little more than productivity improvement in the transmission of graphical drawings and textual specifications, without addressing more fundamental changes in building life-cycle information management. This paper describes preliminary research into the development of a framework for the documentation and communication of the project objectives of a building project. When implemented in an interactive networked environment, this framework is intended to promote multiple participant involvement in the establishment and use of a common set of explicit goals, from the earliest phase of a project throughout its life cycle. A number of potential applications for this framework are identified. The requirements for integrating this life-cycle information with a product model of the physical design of a building, in an attempt to document and communicate design intent, are also discussed.

Hitchcock, R.J.

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Building performance evaluation and certification in the UK  

E-Print Network (OSTI)

targeted analysis. ? A large database containing information about each specific dwelling thus makes it possible to target whole boroughs, communities and streets for simultaneous improvement. Targeting the best improvements on a street-by- street... methods for the calculation of boiler and heat pump efficiencies; improved calculation of thermal bridging; and updated weather data tables and CO2 emission factors. Despite widespread use, there is still much confusion about what BREDEM, SAP and Rd...

Kelly, Scott; Pollitt, Michael G.; Crawford Brown, Doug

2012-10-04T23:59:59.000Z

322

Hybrid Model of Existing Buildings for Transient Thermal Performance Estimation  

E-Print Network (OSTI)

. The model parameters, Cim,1, Rim,1, Cim,2, Rim,2, of the building internal mass can be optimized by minimizing the difference between the measured cooling energy consumption and the model predicted ICEBO2006, Shenzhen, China Control Systems... parameters (Cim,1, Rim,1, Cim,2, Rim,2) constitute the chromosome of an individual, the assumed ranges of these parameters are the search space for these parameters. Initializing the four parameters produces the initial population to start a GA run...

Xu, X.; Wang, S.

2006-01-01T23:59:59.000Z

323

Scale Matters: An Action Plan for Realizing Sector-Wide"Zero-Energy" Performance Goals in Commercial Buildings  

SciTech Connect

It is widely accepted that if the United States is to reduce greenhouse gas emissions it must aggressively address energy end use in the building sector. While there have been some notable but modest successes with mandatory and voluntary programs, there have also been puzzling failures to achieve expected savings. Collectively, these programs have not yet reached the majority of the building stock, nor have they yet routinely produced very large savings in individual buildings. Several trends that have the potential to change this are noteworthy: (1) the growing market interest in 'green buildings' and 'sustainable design', (2) the major professional societies (e.g. AIA, ASHRAE) have more aggressively adopted significant improvements in energy efficiency as strategic goals, e.g. targeting 'zero energy', carbon-neutral buildings by 2030. While this vision is widely accepted as desirable, unless there are significant changes to the way buildings are routinely designed, delivered and operated, zero energy buildings will remain a niche phenomenon rather than a sector-wide reality. Toward that end, a public/private coalition including the Alliance to Save Energy, LBNL, AIA, ASHRAE, USGBC and the World Business Council for Sustainable Development (WBCSD) are developing an 'action plan' for moving the U.S. commercial building sector towards zero energy performance. It addresses regional action in a national framework; integrated deployment, demonstration and R&D threads; and would focus on measurable, visible performance indicators. This paper outlines this action plan, focusing on the challenge, the key themes, and the strategies and actions leading to substantial reductions in GHG emissions by 2030.

Selkowitz, Stephen; Selkowitz, Stephen; Granderson, Jessica; Haves, Philip; Mathew, Paul; Harris, Jeff

2008-06-16T23:59:59.000Z

324

A Study on Energy Efficiency Improvement Opportunities for Plug Loads in Buildings in the Equatorial Region  

Science Journals Connector (OSTI)

Abstract The small plug loads in the tropical buildings are among the fastest growing sources of energy use. Yet, there are comparatively fewer studies that were focused on the energy efficiency improvement potentials of the office equipment due to its elusive, more diversified and sophisticated nature. This objective of this study is to identify the opportunity for energy efficiency improvement of the frequently used office equipment in a commercial building in Malaysia, by focusing on the occupant behaviour and software power management features. The outcomes show that about 19% of the total energy demand can be reduced if the office equipment not in use are turned off, unplugged or disconnected. This also led to a significant reduction in greenhouse gases emission. This finding is particularly important for good energy demand management, as more and more modern electric appliances are introduced into the local commercial buildings which are contributing to the increase in energy consumption and subsequently, the electric bill.

Qi Jie Kwong; Sind Hoi Goh; Nor Mariah Adam; Vijay R. Raghavan

2014-01-01T23:59:59.000Z

325

Opportunities to Save Energy and Improve Comfort by Using Wireless Sensor Networks in Buildings  

E-Print Network (OSTI)

OPPORTUNITIES TO SAVE ENERGY AND IMPROVE COMFORT BY USING WIRELESS SENSOR NETWORKS IN BUILDINGS Cliff Federspiel Research Specialist Edward Arens Director Danni Wang Graduate Student Center for Environmental Design Research.... They showed that by increasing the number of sensors they could optimize comfort or energy consumption individually, or improve both comfort and energy saving whenever some rooms require heating and others simultaneously require cooling. Wang et al (2002...

Wang, D.; Arens, E.; Federspiel, C.

2003-01-01T23:59:59.000Z

326

Building indicator groups based on species characteristics can improve conservation planning  

E-Print Network (OSTI)

is in identifying important areas for the conservation of biodiversity. As networks of areas encompassing biodiversity to select networks of areas for conservation? In the literature, reliable indicator groupsBuilding indicator groups based on species characteristics can improve conservation planning

Manne, Lisa

327

Improved Power Grid Stability and Efficiency with a Building-Energy Cyber-Physical System  

E-Print Network (OSTI)

, or for sporadic reasons, for example a power plant goes offline unexpectedly (e.g., due to an earthquake or stagnant winds to propel wind turbines). Dur- ing an episode, the power grid operators must contend1 Improved Power Grid Stability and Efficiency with a Building-Energy Cyber-Physical System Mary

328

Model building codes and acoustical performance: Where are we in 2003?  

Science Journals Connector (OSTI)

The proper acoustical design for multi?family dwellings is an important factor in occupant comfort. Key acoustical design practices are often not mandated by the builder or architect but by the applicable building codes. In early 2003 the three regional/national building codes agreed to join into a single unified national building code for residential and commercial construction. The scope and governance of these three codes: the Uniform Building Code (ICBO) the National Building Code (BOCA) the Southern Building Code (SBCCI) are reflected in the International Residential Code (IRC) and the International Building Code (IBC) which was developed by the International Code Council (ICC). With the move to a single code body those concerned with building acoustical performance welcome the benefit of a single minimum standard. Unfortunately this new minimum performance requirement does not reflect the state of the science for occupant satisfaction. The acoustical requirements of each of these building codes the timeline of their development and an overview of the state of the science will be presented. Suggestions for revised performance minimums will also be offered for discussion.

2003-01-01T23:59:59.000Z

329

DOE RFP Seeks Projects for Improving Environmental Performance of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE RFP Seeks Projects for Improving Environmental Performance of DOE RFP Seeks Projects for Improving Environmental Performance of Unconventional Natural Gas Technologies DOE RFP Seeks Projects for Improving Environmental Performance of Unconventional Natural Gas Technologies December 21, 2011 - 12:00pm Addthis Washington, DC - Research projects to study ways for improving the environmental performance of unconventional gas development are being sought by the National Energy Technology Laboratory (NETL), a facility of the U.S. Department of Energy's (DOE) Office of Fossil Energy. The research opportunity was released in a request for proposals (RFP) issued by NETL's contractor, the Research Partnership to Secure Energy for America (RPSEA), with a deadline of March 6, 2012. A second RFP, focusing on the needs of small oil and natural gas producers, was released

330

Improving consumer value through enhanced performance around the world  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving consumer value through enhanced performance around the Improving consumer value through enhanced performance around the world Improving consumer value through enhanced performance around the world LANL statistical tools have helped create Reliability Technology (RT), which increases the overall fraction of productive manufacturing time, or "uptime," for its internal manufacturing lines. April 3, 2012 Improving consumer value through enhanced performance around the world Reliability Technology (RT) is a comprehensive reliability engineering system developed by P&G to increase the overall fraction of productive manufacturing time, or "uptime" for its internal manufacturing lines. The genesis for the system came from the large amount of runtime data collected on P&G's manufacturing lines, coupled with the Laboratory's

331

Extension of Comment Period on Improving Performance of Federal Permitting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extension of Comment Period on Improving Performance of Federal Extension of Comment Period on Improving Performance of Federal Permitting and Review of Infrastructure Projects: Federal Register Notice Volume 78, No. 186 - September 25, 2013 Extension of Comment Period on Improving Performance of Federal Permitting and Review of Infrastructure Projects: Federal Register Notice Volume 78, No. 186 - September 25, 2013 On August 29, 2013, the U.S. Department of Energy (DOE) published a Request for Information seeking information on a draft Integrated, Interagency Pre-Application (IIP) Process for significant onshore electric transmission projects requiring Federal authorizations. This notice announces an extension of the public comment period for submitting comments regarding the IIP Process to October 31, 2013. Extension of Comment Period on Improving Performance of Federal Permitting

332

Extension of Comment Period on Improving Performance of Federal Permitting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extension of Comment Period on Improving Performance of Federal Extension of Comment Period on Improving Performance of Federal Permitting and Review of Infrastructure Projects: Federal Register Notice Volume 78, No. 186 - September 25, 2013 Extension of Comment Period on Improving Performance of Federal Permitting and Review of Infrastructure Projects: Federal Register Notice Volume 78, No. 186 - September 25, 2013 On August 29, 2013, the U.S. Department of Energy (DOE) published a Request for Information seeking information on a draft Integrated, Interagency Pre-Application (IIP) Process for significant onshore electric transmission projects requiring Federal authorizations. This notice announces an extension of the public comment period for submitting comments regarding the IIP Process to October 31, 2013. Extension of Comment Period on Improving Performance of Federal Permitting

333

Improving Face Recognition Performance Using a Hierarchical Bayesian Model  

E-Print Network (OSTI)

which can result in an improved recognition performance over already existing baseline approaches. We use Kernelized Fisher Discriminant Analysis (KFLD) as our baseline as it is superior to PCA in a way that it produces well separated classes even under...

Shikaripur Nadig, Ashwini

2010-04-27T23:59:59.000Z

334

Improving Motor and Drive System Performance – A Sourcebook for Industry  

Energy.gov (U.S. Department of Energy (DOE))

This sourcebook outlines opportunities to improve motor and drive systems performance, including practical guidelines, energy efficiency assessment instructions, and referrals to other information and assistance such as software, videos, and training opportunities.

335

Thermal simulation of batteries for improving E-powertrain performance  

Science Journals Connector (OSTI)

The electrical energy is stored, for example, in battery systems with voltages of between 12 V ... a simulation tool, 3D-Electrical / 3D-Thermal Co-Simulation for improving electric powertrain performance.

Dipl.-Ing. Michael Clauss; Jakob Hennig; Dr. Carolus Grünig…

2014-10-01T23:59:59.000Z

336

NASA's Marshall Space Flight Center Improves Cooling System Performance  

Energy.gov (U.S. Department of Energy (DOE))

Case study details Marshall Space Flight Center's innovative technologies to improve water efficiency and cooling performance for one of its problematic cooling systems. The program saved the facility more than 800,000 gallons of water in eight months.

337

Metal buildings study: performance of materials and field validation  

SciTech Connect

A 5000 square-foot metal building located at Brookhaven National Laboratory has been monitored over a winter season. Energy flows through wall sections were monitored using portable calorimeters. Air infiltration was measured using perfluorocarbon tracers, and the associated heat losses were calculated. Slab losses were assessed through a comparison of measured temperature gradients with results obtained through the use of heat-flow meters. The effect of thermal bridges and compressed insulation in locations where support beams are joined to the exterior skin was found to increase heat losses significantly. A retrofit strategy including spray insulation of beams is projected to save 30% on heating energy.

Loss, W.

1987-12-01T23:59:59.000Z

338

Enhancing Building Performance Through More Responsive Maintenance System  

E-Print Network (OSTI)

Electric Company (SCECO) are modeled in Extend+BPR® to be an experimental tool for evaluating the benefits of multi-skilled technicians. The simulation models of this study showed significant improvement in both preventive and corrective maintenance...

Alsudairi, A. A.

2012-01-01T23:59:59.000Z

339

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network (OSTI)

metrics for sustainable building design. National ResearchJ. 2007. Sustainable Construction: Green Building Design anddesign strategies implemented in buildings promoted as “green,” “sustainable,”

Konis, Kyle Stas

2011-01-01T23:59:59.000Z

340

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network (OSTI)

metrics for sustainable building design. National ResearchJ. 2007. Sustainable Construction: Green Building Design anddesign strategies implemented in buildings promoted as “green,” “sustainable,”

Konis, Kyle Stas

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building TechnologiesBuilding Stock. Golden, Colorado: National Renewable Energy

Feng, Wei

2013-01-01T23:59:59.000Z

342

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Summer Study on Energy Efficiency in Buildings August 12,Standard for Energy Efficiency of Public Buildings. Energyfor Energy Efficiency of Residential Buildings in Hot Summer

Feng, Wei

2013-01-01T23:59:59.000Z

343

Federal High Performance and Sustainable Buildings: Guiding Principles for the Laboratory Support Building (LSB)  

SciTech Connect

This report documents the federal Guiding Principles conformance effort for LSB at PNNL. The effort is part of continued progress toward a campus building inventory that is 100% compliant with the Guiding Principles. The report documentation provides a narrative of how the LSB complies with each of the Guiding Principles requirements. These narratives draw from the many sources that are explained in the text and rely on extensive data collection. The descriptions point to each of these sources, providing the reader with specific policies, procedures, and data points.

Pope, Jason E.

2014-09-01T23:59:59.000Z

344

High Performance Building Facade Solutions PIER Final Project Report  

E-Print Network (OSTI)

compare systems and understand energy trade- offs for façadecompare systems and understand energy trade- offs for façadeoptimize energy-demand-daylight-comfort performance trade-

Lee, Eleanor

2011-01-01T23:59:59.000Z

345

High Performance Building Facade Solutions PIER Final Project Report  

E-Print Network (OSTI)

Subject responses to electrochromic windows. Energy andhttp://windows.lbl.gov/comm_perf/Electrochromic/refs/LBNL_energy performance of electrochromic windows controlled for

Lee, Eleanor

2011-01-01T23:59:59.000Z

346

RSF Workshop Session II: Performance-Based Design-Build Process  

NLE Websites -- All DOE Office Websites (Extended Search)

II: Performance-Based Design-Build II: Performance-Based Design-Build Process Moderator: Drew Detamore Panelists: Jeff Baker Karen Leitner Byron Haselden Achieving Superior Energy Performance at Competitive Cost RSF Workshop, Golden, Colorado July 27-28, 2011 Energy Efficiency & Renewable Energy *Moderator: *Drew Detamore Director, Infrastructure and Campus Development Office National Renewable Energy Laboratory *Panelists: *Karen Leitner Senior Supervisor, Contract and Business Services National Renewable Energy Laboratory *Byron J. Haselden President, Haselden Construction *Jeffrey M. Baker Director, Office of Laboratory Operations U.S. Department of Energy Golden Field Office * Performance based design-build process * Incentives * Shared Values * Owner's perspective * Design-Builder's perspective * Has anyone ever utilized one design-build team to

347

Building America Expert Meeting: Summary for Diagnostic and Performance Feedback for Residential Space Conditioning System Equipment  

Energy.gov (U.S. Department of Energy (DOE))

The Building Science Consortium held an Expert Meeting on Diagnostic and Performance Feedback for Residential Space Conditioning System Equipment on April 26,l 2010 on the NIST campus in Gaithersburg, Maryland.

348

Seismic Performance Assessment and Probabilistic Repair Cost Analysis of Precast Concrete Cladding Systems for Multistory Buildings  

E-Print Network (OSTI)

Nov. 8- 9. Arnold, C. 2008. Seismic Safety of the BuildingTab Connections for Gravity and Seismic Loads. Steel Tips,and Brown, A.T. 1995a. Seismic Performance of Architectural

Hunt, Jeffrey Patrick

2010-01-01T23:59:59.000Z

349

Building America Webinar: Standardized Retrofit Packages — What Works to Meet Consistent Levels of Performance?  

Energy.gov (U.S. Department of Energy (DOE))

This webinar will focus on specific Building America projects that have examined methods to consistently meet high levels of energy performance in existing homes, with a focus on retrofit packages that can be replicated across many homes.

350

Building America Research Teams: BSC and CARB—20 Years of Advancing High Performance Homes  

Energy.gov (U.S. Department of Energy (DOE))

In this article, we continue our series of profiles on the Building America research teams—multidisciplinary industry partnerships who work to make high performance homes a reality for all Americans.

351

Webinar: Impacts of Energy Efficiency on the Financial Performance of Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy conducted a review of existing market research on the impact of Energy Efficiency and Green Labels on building financial performance. This webinar will review the results...

352

Building America Webinar: High Performance Enclosure Strategies: Part II, New Construction  

Energy.gov (U.S. Department of Energy (DOE))

Date/Time:  August 13, 2014; 3:00-4:30 PM EDTDescription: The webinar is the second in the series on designing and constructing high performance building enclosures, and will focus on effective...

353

Improving Performance of Federal Permitting and Review of Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Performance of Federal Permitting and Review of Infrastructure Improving Performance of Federal Permitting and Review of Infrastructure Projects Improving Performance of Federal Permitting and Review of Infrastructure Projects The Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability, in collaboration with the Member Agencies of the Steering Committee (Member Agencies) created under Executive Order 13604 of March 22, 2012, and pursuant to the June 7, 2013 Transmission Presidential Memorandum, is seeking public input on a draft Integrated, Interagency Pre-Application (IIP) Process. The proposed IIP Process is intended to improve interagency and intergovernmental coordination focused on ensuring that project proponents develop and submit accurate and complete information early in the project planning process to facilitate efficient

354

Monitoring building energy consumption, thermal performance, and indoor air quality in a cold climate region  

Science Journals Connector (OSTI)

Abstract Buildings are major consumers of the world's energy. Optimizing energy consumption of buildings during operation can significantly reduce their impact on the global environment. Monitoring the energy usage and performance is expected to aid in reducing the energy consumption of occupants. In this regard, this paper describes a framework for sensor-based monitoring of energy performance of buildings under occupancy. Different types of sensors are installed at different locations in 12 apartment units in a building in Fort McMurray, Alberta, Canada to assess occupant energy usage, thermal performance of the building envelope, and indoor air quality (IAQ). The relationship between heating energy consumption and the thermal performance of building envelope and occupant comfort level is investigated by analyzing the monitoring data. The results show that the extent of heat loss, occupant comfort level, and appliance usage patterns have significant impacts on heating energy and electricity consumption. This study also identifies the factors influencing the poor IAQ observed in some case-study units. In the long term, it is expected that the extracted information acquired from the monitoring system can be used to support intelligent decisions to save energy, and can be implemented by the building management system to achieve financial, environmental, and health benefits.

Tanzia Sharmin; Mustafa Gül; Xinming Li; Veselin Ganev; Ioanis Nikolaidis; Mohamed Al-Hussein

2014-01-01T23:59:59.000Z

355

Building Energy-Efficiency Best Practice Policies and Policy Packages  

E-Print Network (OSTI)

the Building Energy Efficiency Market in India - Lessonson the high-energy-performance market, most constructionand Market-based Mechanisms to Improve Building Energy

Levine, Mark

2014-01-01T23:59:59.000Z

356

Window Replacement, Rehabilitation, & Repair Guides- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

Building America team Building Science Corporation guides contractors through several options for repairing or replacing old windows to improve air sealing and thermal performance.

357

High Performance Building Facade Solutions PIER Final Project Report  

E-Print Network (OSTI)

to attain the ambitious net zero energy goals defined bywere found to yield net zero energy levels of performance inA/ E teams to reach net zero energy goals by enabling use of

Lee, Eleanor

2011-01-01T23:59:59.000Z

358

Impact of the U.S. National Building Information Model Standard (NBIMS) on Building Energy Performance Simulation  

E-Print Network (OSTI)

data base and building modeling that will enable comparativeApplying Information Modeling to Buildings,” in A. Dikba?

Bazjanac, Vladimir

2008-01-01T23:59:59.000Z

359

Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: Preprint  

SciTech Connect

This paper will review a procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners developed and implemented an energy performance based design-build process to procure a 220,000 ft2 office building with contractual requirements to meet demand side energy and LEED goals. We will outline the key procurement steps needed to ensure achievement of our energy efficiency and ZEB goals. The development of a clear and comprehensive Request for Proposals (RFP) that includes specific and measurable energy use intensity goals is critical to ensure energy goals are met in a cost effective manner. The RFP includes a contractual requirement to meet an absolute demand side energy use requirement of 25 kBtu/ft2, with specific calculation methods on what loads are included, how to normalize the energy goal based on increased space efficiency and data center allocation, specific plug loads and schedules, and calculation details on how to account for energy used from the campus hot and chilled water supply. Additional advantages of integrating energy requirements into this procurement process include leveraging the voluntary incentive program, which is a financial incentive based on how well the owner feels the design-build team is meeting the RFP goals.

Pless, S.; Torcellini, P.; Shelton, D.

2011-05-01T23:59:59.000Z

360

High Performance Home Cost Performance Trade-Offs: Production Builders- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes Building America research showing how some energy-efficiency measure cost increases can balance again measures that reduce up-front costs: Advanced framing cuts lumber costs, right sizing can mean downsizing the HVAC, moving HVAC into conditioned space cuts installation costs, designing on a 2-foot grid reduces materials waste, etc.

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The effect of simplifying the building description on the numerical modeling of its thermal performance  

SciTech Connect

A thermal building simulation program is a numerical model that calculates the response of the building envelopes to weather and human activity, simulates dynamic heating and cooling loads, and heating and cooling distribution systems, and models building equipment operation. The scope of the research is to supply the users of such programs with information about the dangers and benefits of simplifying the input to their models. The Introduction describes the advantages of modeling the heat transfer mechanisms in a building. The programs that perform this type of modeling have, however, limitations. The user is therefore often put in the situation of simplifying the floor plans of the building under study, but not being able to check the effects that this approximation introduces in the results of the simulation. Chapter 1 is a description of methods. It also introduces the floor plans for the office building under study and the ``reasonable`` floor plans simplifications. Chapter 2 presents DOE-2, the thermal building simulation program used in the sensitivity study. The evaluation of the accuracy of the DOE-2 program itself is also presented. Chapter 3 contains the sensitivity study. The complicated nature of the process of interpreting the temperature profile inside a space leads to the necessity of defining different building modes. The study compares the results from the model of the detailed building description with the results from the models of the same building having simplified floor plans. The conclusion is reached that a study of the effects of simplifying the floor plans of a building is important mainly for defining the cases in which this approximation is acceptable. Different results are obtained for different air conditioning/load regimes of the building. 9 refs., 24 figs.

Stetiu, C.

1993-07-01T23:59:59.000Z

362

Analysis of the impacts of building energy efficiency policies and technical improvements on China's future energy demand  

Science Journals Connector (OSTI)

In this paper, the LEAP (Long-range Energy Alternatives Planning system) 2000 model and scenario analysis were utilised to study the impact of implementing building energy efficiency policies and promoting related technical improvements on China's future building energy demand up to 2020. In the coming 20 years, China's building energy consumption is expected to increase and will be the main contributor to the growth in China's future energy demand. Without the rational induction of energy efficiency and environmental policies, China's building energy consumption may reach 860 Mtce in 2020 from 197 Mtce in 2000. On the other hand, China possesses huge energy saving potential in the building area. With the enforcement and adoption of related building energy efficiency policies and technical improvement measures, energy consumption in the building sector might decrease to 480 Mtce by 2020; and the energy saving potential might reach 380 Mtce.

Kang Yanbing; Wei Qingpeng

2005-01-01T23:59:59.000Z

363

Request for Information on Improving Performance of Federal Permitting and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information on Improving Performance of Federal Information on Improving Performance of Federal Permitting and Review of Infrastructure Projects: Federal Register Notice Volume 78, No. 168 - August 29, 2013 Request for Information on Improving Performance of Federal Permitting and Review of Infrastructure Projects: Federal Register Notice Volume 78, No. 168 - August 29, 2013 The Department of Energy's Office of Electricity Delivery and Energy Reliability, in collaboration with the Member Agencies of the Steering Committee (Member Agencies) created under Executive Order 13604 of March 22, 2012, and pursuant to the June 7, 2013 Transmission Presidential Memorandum, is seeking information on a draft Integrated, Interagency Pre-Application (IIP) Process for significant onshore electric transmission projects requiring Federal Authorization(s).

364

The performance of UVGI Systems and its Limitation in Building Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

The performance of UVGI Systems and its Limitation in Building Applications The performance of UVGI Systems and its Limitation in Building Applications Speaker(s): Minki Sung Date: August 20, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: William Fisk One of the main concerns for healthcare building design is how to prevent the dispersion of airborne infectious diseases such as tuberculosis. Moreover, it is suspected that fungi and bacteria growing in air handling units (AHUs) can also cause respiratory diseases in building occupants. Ultraviolet germicidal irradiation (UVGI) systems have been known to have an apparent germicidal effect on infectious microbes and have been considered as a possible countermeasure. In this presentation, some results achieved from a series of laboratory and field experiments and numerical

365

Building America Best Practices Series, Volume 13 - Energy Performance Techniques and Technologies: Perserving Historic Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BUILDING TECHNOLOGIES PROGRAM BUILDING TECHNOLOGIES PROGRAM Energy Performance Techniques and Technologies: Preserving Historic Homes BUILDING AMERICA BEST PRACTICES SERIES VOLUME 13. PREPARED BY Pacific Northwest National Laboratory & Kaufman Heritage Conservation February 28, 2011 R February 28, 2011 * PNNL-20185 BUILDING AMERICA BEST PRACTICES SERIES Energy Performance Techniques and Technologies: Preserving Historic Homes PREPARED BY Pacific Northwest National Laboratory Michelle Britt, Michael C. Baechler, Theresa Gilbride, Marye Hefty, Erin Makela, and Elaine Schneider and Kaufman Heritage Conservation Ned Kaufman, Ph.D. February 28, 2011 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RLO 1830 PNNL-20185 This report was prepared as an account of work sponsored by an agency of the

366

Better Buildings Residential Network: Using Loan Performance Data to Inform Program Implementation  

Energy.gov (U.S. Department of Energy (DOE))

Please join the Better Buildings Residential Network for the Financing & Revenue/Data & Evaluation co-series peer exchange call: “Using Loan Performance Data to Inform Program Implementation.” What is the relationship, if any, between loan performance and completed energy efficiency measures? How are home affordability, loan default rates, and decreasing energy costs related?

367

Quantitative assessment of socio-economic performance measures measures accounting for seismic damage to buildings  

E-Print Network (OSTI)

SUMMARY: This paper presents a model to evaluate systemic performance metrics, such as casualties the buildings damage state, the combined residual service level in the utility networks, as well as the weather conditions, all together play a role in the evaluation of the performance metrics. This novel feature

Paris-Sud XI, Université de

368

Energy Modeling of a High Performance Building in the U.A.E. for Sustainability Certification  

E-Print Network (OSTI)

voluntary LEED program. BUILDING CONCEPT AND MODELING Modeling The simulation tool used to analyze the energy per- formance of the Sheikh Zayed Desert Learning Centre is TRNSYS version 16.01 (Solar Energy Laboratory, Univ. of Wisconsin-Madison 2004...). TRNSYS is a dynamic simulation platform for simulating systems over time pe- riods from days to years at time-steps of seconds to hours. TRNSYS meets the requirements for LEED certification of energy performance through the whole building simu...

Jones, M.; Ledinger, S.

2010-01-01T23:59:59.000Z

369

How ambient intelligence will improve habitability and energy efficiency in buildings  

E-Print Network (OSTI)

Habitability and Energy Efficiency in Buildings. ” PublishedHabitability and Energy Efficiency in Buildings. ” PublishedHabitability and Energy Efficiency in Buildings. ” Published

Arens, Edward A; Federspiel, C.; Wang, D.; Huizenga, C.

2005-01-01T23:59:59.000Z

370

Potential improvements in SiGe radioisotope thermoelectric generator performance  

SciTech Connect

In accordance with NASA{close_quote}s slogan: {open_quotes}Better, Cheaper, Faster,{close_quotes} this paper will address potential improvements to SiGe RTG technology to make them Better. RTGs are doubtless cheaper than {open_quotes}paper designs{close_quotes} which are better and cheaper until development, performance and safety test costs are considered. RTGs have the advantage of being fully developed and tested in the rigors of space for over twenty years. Further, unless a new system can be accelerated tested, as were the RTGs, they cannot be deployed reliably unless a number of systems have succeeded for test periods exceeding the mission lifetime. Two potential developments are discussed that can improve the basic RTG performance by 10 to 40{sup +}{percent} depending on the mission profile. These improvements could be demonstrated in years. Accelerated testing could also be performed in this period to preserve existing RTG reliability. Data from a qualification tested RTG will be displayed, while not definitive, to support the conclusions. Finally, it is anticipated that other investigators will be encouraged to suggest further modifications to the basic RTG design to improve its performance. {copyright} {ital 1999 American Institute of Physics.}

Mowery, A.L. [4 Myrtle Bank Lane, Hilton Head Island, South Carolina, 29926-2650 (United States)

1999-01-01T23:59:59.000Z

371

Improving the performance of floating solar pool covers  

SciTech Connect

Experimental and analytical analyses are presented for the evaluation of heat transfer through floating solar swimming pool covers. Two improved floating solar swimming pool cover designs are proposed and investigated in this paper. The results conclusively show that both new cover designs should have significantly better performance than conventional floating solar swimming pool covers.

Cole, M.A.; Lowrey, P. (San Diego State Univ., CA (United States). Dept. of Mechanical Engineering)

1992-11-01T23:59:59.000Z

372

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Analysis of Building Energy Costs and CO 2 Emissions WeiAnalysis of Building Energy Costs and CO 2 Emissions Weiwhich minimizes building energy cost or CO 2 emissions, or a

Feng, Wei

2013-01-01T23:59:59.000Z

373

Building America Webinar: High Performance Space Conditioning Systems, Part I: Heating and Cooling with Mini-Splits in the Northeast  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was delivered at the U.S. Department of Energy Building America webinar, High Performance Space Conditioning Systems, Part I, conducted on October 23, 2014, by Kohta Ueno of Building Science Corporation.

374

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

3 Commercial and Residential Building Site Energy Usagecommercial and residential prototype buildings discussed in the previous section is simulated in EnergyPlus (DOE, 2011). The energy usage

Feng, Wei

2013-01-01T23:59:59.000Z

375

Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction for Lithium-Ion Battery Application Title Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction for Lithium-Ion Battery Application Publication Type Journal Article Year of Publication 2011 Authors Xun, Shidi, Xiangyun Song, Michael E. Grass, Daniel K. Roseguo, Z. Liu, Vincent S. Battaglia, and Gao Li Journal Electrochemical Solid-State Letters Volume 14 Start Page A61 Issue 5 Pagination A61-A63 Date Published 02/2001 Keywords Electrochemistry, elemental semiconductors, etching, lithium, nanoparticles, secondary cells, silicon, thermal analysis, transmission electron microscopy, X-ray photoelectron spectra Abstract This study characterizes the native oxide layer of Si nanoparticles and evaluates its effect on their performance for Li-ion batteries. x-ray photoelectron spectroscopy and transmission electron microscopy were applied to identify the chemical state and morphology of the native oxide layer. Elemental and thermogravimetric analysis were used to estimate the oxide content for the Si samples. Hydrofluoric acid was used to reduce the oxide layer. A correlation between etching time and oxide content was established. The initial electrochemical performances indicate that the reversible capacity of etched Si nanoparticles was enhanced significantly compared with that of the as-received Si sample.

376

Evaluating the energy performance of the first generation of LEED-certified commercial buildings  

SciTech Connect

Over three hundred buildings have been certified under the Leadership in Energy and Environmental Design (LEED) rating system for sustainable commercial buildings as of January 2006. This paper explores the modeled and actual energy performance of a sample of 21 of these buildings that certified under LEED between December 2001 and August 2005, including how extensively the design teams pursued LEED energy-efficiency credits, the modeled design and baseline energy performance, and the actual energy use during the first few years of operation. We collected utility billing data from 2003-2005 and compared the billed energy consumption with the modeled energy use. We also calculated Energy Star ratings for the buildings and compared them to peer groups where possible. The mean savings modeled for the sample was 27% compared to their modeled baseline values. For the group of 18 buildings for which we have both modeled and billed energy use, the mean value for actual consumption was 1% lower than modeled energy use, with a wide variation around the mean. The mean Energy Star score was 71 out of a total of 100 points, higher than the average score of 50 but slightly below the Energy Star award threshold of 75 points. The paper discusses the limitations inherent to this type of analysis, such as the small sample size of disparate buildings, the uncertainties in actual floor area, and the discrepancies between metered sections of the buildings. Despite these limitations, the value of the work is that it presents an early view of the actual energy performance for a set of 21 LEED-certified buildings.

Diamond, Rick; Opitz, Mike; Hicks, Tom; Von Neida, Bill; Herrera, Shawn

2006-05-01T23:59:59.000Z

377

New Jersey SmartStart Buildings - Pay for Performance Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Jersey SmartStart Buildings - Pay for Performance Program New Jersey SmartStart Buildings - Pay for Performance Program New Jersey SmartStart Buildings - Pay for Performance Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Varies for each program milestone $1 M per utility account (gas and electric) per year $2 M per project $4 M per entity per year Program Info State New Jersey Program Type State Rebate Program Rebate Amount $/kWh, $/therm, and $/sq. ft. incentives, vary based on expected energy

378

Assessment of Cost-optimal Energy Performance Requirements for the Italian Residential Building Stock  

Science Journals Connector (OSTI)

Abstract Directive 2010/31/EU establishes that Member States must ensure that minimum energy performance requirements for buildings are set with a view to achieve cost-optimal levels. The paper presents a methodology for identifying the cost-optimal levels for the Italian residential building stock, following the Guidelines accompanying the Commission Delegated Regulation No. 244/2012. The methodology is applied to a reference building of the IEE-TABULA project and considering different energy efficiency measures. The energy performance and the global cost calculations are performed according to UNI/TS 11300 and UNI EN 15459, respectively. A new cost optimisation procedure based on a sequential search-optimisation technique considering discrete options is applied.

Vincenzo Corrado; Ilaria Ballarini; Simona Paduos

2014-01-01T23:59:59.000Z

379

TCP HACK: a mechanism to improve performance over lossy links  

Science Journals Connector (OSTI)

In recent years, wireless networks have become increasingly common and an increasing number of devices are communicating with each other over lossy links. Unfortunately, TCP performs poorly over lossy links as it is unable to differentiate the loss due to packet corruption from that due to congestion. In this paper, we present an extension to TCP which enables TCP to distinguish packet corruption from congestion in lossy environments resulting in improved performance. We refer to this extension as the HeAder ChecKsum option (HACK). We implemented our algorithm in the Linux kernel and performed various tests to determine its effectiveness. Our results have shown that HACK performs substantially better than both selective acknowledgement (SACK) and NewReno in cases where burst corruptions are frequent. We also found that HACK can co-exist very nicely with SACK and performs even better with SACK enabled.

R.K. Balan; B.P. Lee; K.R.R. Kumar; L. Jacob; W.K.G. Seah; A.L. Ananda

2002-01-01T23:59:59.000Z

380

Optical properties across the solar spectrum and indoor thermal performance of cool white coatings for building energy efficiency  

Science Journals Connector (OSTI)

Abstract Two single-layer, waterborne cool white coatings for building envelopes were recently developed for use in improving building energy efficiency. After the coatings were manufactured, their optical properties over the solar spectrum and their indoor temperature reduction effect were systematically investigated using appropriate tools, and the advantages/disadvantages of single layer cool white coatings over multilayer ones were discussed in detail. The preparation process enables these two coatings to integrate multiple cooling principles and thereby exhibit high solar heat reflectance and good indoor temperature reduction. The predicted industrial limit of solar heat reflectance for practical reflective cool white coatings is 0.91. Use of cool white coatings significantly reduces radiant heat flux. The temperature reduction effects evaluated by a self-developed device cannot describe adequately the indoor cooling performance of cool coatings.

Zhongnan Song; Weidong Zhang; Yunxing Shi; Jianrong Song; Jian Qu; Jie Qin; Tao Zhang; Yanwen Li; Hongqiang Zhang; Rongpu Zhang

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Improving Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

test procedure evaluates quality and accuracy of energy test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team developed the Building Energy Simulation Test for Existing Homes (BESTEST-EX), a method for diagnosing and correcting errors in building energy audit software and calibration procedures. BESTEST-EX consists of building physics and utility bill calibration test cases, which soft-

382

Behavioral Change and Building Performance: Strategies for Significant, Persistent, and Measurable Institutional Change  

SciTech Connect

The people who use Federal buildings — Federal employees, operations and maintenance staff, and the general public — can significantly impact a building’s environmental performance and the consumption of energy, water, and materials. Many factors influence building occupants’ use of resources (use behaviors) including work process requirements, ability to fulfill agency missions, new and possibly unfamiliar high-efficiency/high-performance building technologies; a lack of understanding, education, and training; inaccessible information or ineffective feedback mechanisms; and cultural norms and institutional rules and requirements, among others. While many strategies have been used to introduce new occupant use behaviors that promote sustainability and reduced resource consumption, few have been verified in the scientific literature or have properly documented case study results. This paper documents validated strategies that have been shown to encourage new use behaviors that can result in significant, persistent, and measureable reductions in resource consumption. From the peer-reviewed literature, the paper identifies relevant strategies for Federal facilities and commercial buildings that focus on the individual, groups of individuals (e.g., work groups), and institutions — their policies, requirements, and culture. The paper documents methods with evidence of success in changing use behaviors and enabling occupants to effectively interact with new technologies/designs. It also provides a case study of the strategies used at a Federal facility — Fort Carson, Colorado. The paper documents gaps in the current literature and approaches, and provides topics for future research.

Wolfe, Amy K.; Malone, Elizabeth L.; Heerwagen, Judith H.; Dion, Jerome P.

2014-04-01T23:59:59.000Z

383

Satisfaction and self-estimated performance in relation to indoor environmental parameters and building features  

E-Print Network (OSTI)

Conference on Healthy Buildings, Brisbane, Queensland.Conference on Healthy Buildings, Brisbane, Queensland.Conference on Healthy Buildings, Brisbane, Queensland.

Wargocki, Pawel; Frontczak, Monika; Schiavon, Stefano; Goins, John; Arens, Ed; Zhang, Hui

2012-01-01T23:59:59.000Z

384

Data and Analytics to Inform Energy Retrofit of High Performance Buildings  

E-Print Network (OSTI)

commissioning new and existing commercial buildings: Lessonsfrom 224 buildings. ProceedingsNational Conference on Building Commissioning. [5]. CABA.

Hong Ph.D., Tianzhen

2014-01-01T23:59:59.000Z

385

New MEA Materials for Improved DMFC Performance, Durability and Cost  

SciTech Connect

Abstract Project Title: New MEA Materials for Improved DMFC Performance, Durability and Cost The University of North Florida (UNF)--with project partners the University of Florida, Northeastern University, and Johnson Matthey--has recently completed the Department of Energy (DOE) project entitled “New MEA Materials for Improved DMFC Performance, Durability and Cost”. The primary objective of the project was to advance portable fuel cell MEA technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a passive water recovery MEA (membrane electrode assembly). Developers at the University of North Florida identified water management components as an insurmountable barrier to achieving the required system size and weight necessary to achieve the energy density requirements of small portable power applications. UNF developed an innovative “passive water recovery” MEA for direct methanol fuel cells (DMFC) which provides a path to system simplification and optimization. The passive water recovery MEA incorporates a hydrophobic, porous, barrier layer within the cathode electrode, so that capillary pressure forces the water produced at the cathode through holes in the membrane and back to the anode. By directly transferring the water from the cathode to the anode, the balance of plant is very much simplified and the need for heavy, bulky water recovery components is eliminated. At the heart of the passive water recovery MEA is the UNF DM-1 membrane that utilizes a hydrocarbon structure to optimize performance in a DMFC system. The membrane has inherent performance advantages, such as a low methanol crossover (high overall efficiency), while maintaining a high proton conductivity (good electrochemical efficiency) when compared to perfluorinated sulfonic acid membranes such as Nafion. Critically, the membrane provides an extremely low electro-osmotic drag coefficient of approximately one water molecule per proton (versus the 2-3 for Nafion) that minimizes flooding issues at the cathode, which often fatally limit open cathode MEA performance. During this successfully completed DOE program the project team met all of the project goals. The team built and tested over 1,500 MEAs with a wide range of different manufacturing chemistries and process conditions. This project demonstrated that the UNF MEA design could be fabricated with a high degree of reproducibility and repeatability. Some specific achievements include: • Durability - The UNF MEA has demonstrated over 11,000 hours continuous operation in a short stack configuration. The root cause of an off-state degradation issue was successfully mitigated by modifying the manufacturing process by changing the wetting agents used in the catalyst printing. The stability of the anode electrode was increased by replacing the anode electrodes with a stabilized PtRu/C catalyst. The overall degradation rate was significantly reduced through optimization of the MEA operating conditions. • Performance - The project team optimized the performance of the critical MEA sub-components. By increasing the membrane thickness, the methanol crossover was reduced, thereby increasing the fuel utilization efficiency without sacrificing any electrochemical performance. The reduction in methanol crossover increased the fuel utilization efficiency from 78% to over 90%. The liquid barrier layer was optimized to provide improved reproducibility, thereby improving stack voltage uniformity and reliability. Additionally the barrier layer water permeability was lowered without sacrificing any power density, thereby enabling increased operating temperature. Improvements in the cathode catalyst selection and coating provided an additional 10% to 20% improvement in the MEA performance at the target operating range. • Cost - Commercially scalable processes were developed for all of the critical MEA components which led to improved yields and lower overall manufacturing costs. Furthermore, significant steps have been made in improving the process control, which increases MEA

Fletcher, James H. [University of North Florida; Campbell, Joseph L. [University of North Florida; Cox, Philip [University of North Florida; Harrington, William J. [University of North Florida

2013-09-16T23:59:59.000Z

386

Building America Top Innovations Hall of Fame Profile – Building America’s Top Innovations Propel the Home Building Industry toward Higher Performance  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes the concept for the U.S. Department of Energy Building America’s Top Innovations.

387

ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANT (EECBG) - BETTER BUILDINGS NEIGHBORHOOD PROGRAM AT GREATER CINCINNATI ENERGY ALLIANCE Project Title: Home Performance with Energy Star® and Better Buildings Performance  

SciTech Connect

The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operation in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance Training Center, a program that was developed and funded by the Energy Alliance and housed at Cincinnati State Technical and Community College. Nearly 100 residential and commercial contractors currently participate in the Energy Alliance’s two major programs, which have together served over 2,800 residential and 100 commercial customers. Additionally, the Energy Alliance established loan programs for homeowners, nonprofits and commercial businesses. The GC-HELP program was established to provide up to ten year low interest, unsecured loans to homeowners to cover the energy efficiency products they purchased through the Energy Alliance approved contractor base. To date the Energy Alliance has financed over $1 million in energy efficiency loans for homeowners, without any loans written off. The nonprofit business community is offered five year, fixed-interest rate loans through the Building Communities Loan Fund of $250,000. Additionally, the Energy Alliance has developed GC-PACE, a commercial financing tool that enables buildings owners to finance their energy upgrades through voluntary property assessments deploying low-interest extended-term capital from the bond market. The Energy Alliance and its partners are actively evaluating additional market-based financing solutions.

Holzhauser, Andy; Jones, Chris; Faust, Jeremy; Meyer, Chris; Van Divender, Lisa

2013-12-30T23:59:59.000Z

388

Agriculture model development to improve performance of the Community Land  

NLE Websites -- All DOE Office Websites (Extended Search)

Agriculture model development to improve performance of the Community Land Agriculture model development to improve performance of the Community Land Model April 3, 2013 The important relationships between climate change and agriculture are uncertain, particularly the feedbacks related to the carbon cycle. Nevertheless, vegetation models have not yet considered the full impacts of management practices and nitrogen feedbacks on the carbon cycle. We are working to meet this need. We have integrated three crop types (corn, soybean, and spring wheat) into the Community Land Model (CLM). In developing the agriculture version of CLM, we added plant processes related to management practices and nitrogen cycling. A manuscript documenting our changes to CLM has been accepted for publication in Geoscientific Model Development Discussions ("Modeling

389

Improving Repository Performance by Using DU Dioxide Fill  

NLE Websites -- All DOE Office Websites (Extended Search)

DU Dioxide Fill DU Dioxide Fill Improving Repository Performance by Using DU Dioxide Fill Fills may improve repository performance by acting as sacrificial materials, which delay the degradation of SNF uranium dioxide. Because fill and SNF have the same chemical form of uranium (uranium dioxide), the DU dioxide in a repository is the only fill which has the same behavior as that of the SNF. In the natural environment, some uranium ore deposits have remained intact for very long periods of time. The outer parts of the ore deposit degrade while the inner parts of the deposit are protected. The same approach is proposed herein for protecting SNF. The application could use half or more of the DU inventory in the United States. Behavior of Uranium and Potential Behavior of a Waste Package with SNF and Fill

390

Performance improvement plan use in implementing conduct of operations  

SciTech Connect

The Nuclear Materials Processing and Waste Management and Environmental Restoration Divisions (NMPD/WMER) of the Westinghouse Savannah River Company (WSRC) operate nineteen individual facilities at Savannah River Site (SRS). These facilities produce the fuel and target assemblies for the SRS Reactors: extract Tritium, Plutonium, Uranium and other isotopes from the irradiated fuel and targets; safely store the radioactive waste from ongoing operations; and encapsulate the waste in a final waste form for long term disposal. Continuous improvement in the operation of all facilities and in the conduct of business at SRS is the goal embodied in the NMPD/WMER Performance Improvement Plan (PIP) discussed in this document. The NMPD/WMER PIP is the mechanism used to establish a basis for operations that will lead to achievement of a performance level that will meet or exceed the standards developed and used in the commercial nuclear power industry.

Baumhardt, R.J.

1992-06-01T23:59:59.000Z

391

Performance improvement plan use in implementing conduct of operations  

SciTech Connect

The Nuclear Materials Processing and Waste Management and Environmental Restoration Divisions (NMPD/WMER) of the Westinghouse Savannah River Company (WSRC) operate nineteen individual facilities at Savannah River Site (SRS). These facilities produce the fuel and target assemblies for the SRS Reactors: extract Tritium, Plutonium, Uranium and other isotopes from the irradiated fuel and targets; safely store the radioactive waste from ongoing operations; and encapsulate the waste in a final waste form for long term disposal. Continuous improvement in the operation of all facilities and in the conduct of business at SRS is the goal embodied in the NMPD/WMER Performance Improvement Plan (PIP) discussed in this document. The NMPD/WMER PIP is the mechanism used to establish a basis for operations that will lead to achievement of a performance level that will meet or exceed the standards developed and used in the commercial nuclear power industry.

Baumhardt, R.J.

1992-01-01T23:59:59.000Z

392

Building America Top Innovations 2013 Profile … High-Performance Furnace Blowers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Fuel Utilization Annual Fuel Utilization Efficiency [AFUE] and Seasonal Energy Efficiency Ratio [SEER] and at real installed conditions. A testing program was undertaken at two laboratories to compare the performance of furnace blowers over a range of static pressure differences that included standard rating points and measured field test pressures. Three different combinations of blowers and residential furnaces were tested. The laboratory test results for blower power and airflow were combined with DOE2 models of building loads, models of air conditioner performance, standby power, and igniter, and combustion air blower power to determine potential energy and peak demand impacts. BUILDING TECHNOLOGIES OFFICE Recognizing Top Innovations in Building Science - The U.S. Department of Energy's

393

Building America Top Innovations 2013 Profile … High-Performance Furnace Blowers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

annual fuel utilization annual fuel utilization efficiency (AFUE) and seasonal energy efficiency ratio (SEER) and at real installed conditions. A testing program was undertaken at two laboratories to compare the performance of furnace blowers over a range of static pressure differences that included standard rating points and measured field test pressures. Three different combinations of blowers and residential furnaces were tested. The laboratory test results for blower power and airflow were combined with DOE2 models of building loads, models of air conditioner performance, standby power, and igniter and combustion air blower power to determine potential energy and peak demand impacts. BUILDING TECHNOLOGIES OFFICE Recognizing Top Innovations in Building Science - The U.S. Department of Energy's

394

Performance improvement of direct- and indirect-fired heaters  

SciTech Connect

The operating performance of direct and indirect heaters is discussed, and principles and guidelines that can be applied to effect improvements in efficiency are presented. This paper also discusses the associated heater efficiencies and several useful operating techniques to approach the maximum, steady-state heater efficiency. The techniques presented apply to all types of direct-and indirect-fired heaters: salt bath heaters, propane vaporizers, heater/treaters, production heaters, and glycol and amine regenerators.

Sams, G.W.; Hunter, J.D.

1988-08-01T23:59:59.000Z

395

Assessing and Improving the Accuracy of Energy Analysis for Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing and Improving the Assessing and Improving the Accuracy of Energy Analysis for Residential Buildings B. Polly, N. Kruis, and D. Roberts July 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,

396

Introduction to Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Fact Sheet)  

SciTech Connect

Momentum behind zero energy building design and construction is increasing, presenting a tremendous opportunity for advancing energy performance in the commercial building industry. At the same time, there is a lingering perception that zero energy buildings must be cost prohibitive or limited to showcase projects. Fortunately, an increasing number of projects are demonstrating that high performance can be achieved within typical budgets. This factsheet highlights replicable, recommended strategies for achieving high performance on a budget, based on experiences from past projects.

Not Available

2014-09-01T23:59:59.000Z

397

Seismic fragility estimates for reinforced concrete framed buildings  

E-Print Network (OSTI)

of the GLD RC frame buildings, the columns of the 2 and 3 story buildings are retrofitted by column strengthening. Fragility estimates developed for the retrofitted buildings show the effectiveness of the retrofit technique by the improved seismic performance...

Ramamoorthy, Sathish Kumar

2007-04-25T23:59:59.000Z

398

How to evaluate performance of net zero energy building – A literature research  

Science Journals Connector (OSTI)

Abstract NZEB (Net zero energy building) is regarded as an integrated solution to address problems of energy-saving, environmental protection, and CO2 emission reduction in the building section. NZEB could be even possible with electricity production if enough renewable energy could be used. Moreover, various building-service systems with renewable energy sources have been widely considered for potential applications in NZEB. All of these new features extend the technical boundary of the conventional energy-efficient buildings, attach a more profound implication to the sustainable development of building technology, and therefore pose a challenge to evaluation works on NZEB performance. This paper presents a guided tour on NZEB evaluation through literature-research. An overview about definitions and energy-efficient measures of NZEB is presented so that the research object and technology boundary can be clarified for NZEB evaluation. Then, a summary of widely-used research method, tool and performance indicator in evaluation is provided for the methodology part. This part also includes a discussion on the application of LCA (life cycle assessment) in NZEB evaluation and LCA's role in promoting a well-defined NZEB. Finally, potential progress in NZEB evaluation with possible development trends is highlighted in terms of energy storage, load match and smart grid.

S. Deng; R.Z. Wang; Y.J. Dai

2014-01-01T23:59:59.000Z

399

Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings  

SciTech Connect

California is a leader in automating demand response (DR) to promote low-cost, consistent, and predictable electric grid management tools. Over 250 commercial and industrial facilities in California participate in fully-automated programs providing over 60 MW of peak DR savings. This paper presents a summary of Open Automated DR (OpenADR) implementation by each of the investor-owned utilities in California. It provides a summary of participation, DR strategies and incentives. Commercial buildings can reduce peak demand from 5 to 15percent with an average of 13percent. Industrial facilities shed much higher loads. For buildings with multi-year savings we evaluate their load variability and shed variability. We provide a summary of control strategies deployed, along with costs to install automation. We report on how the electric DR control strategies perform over many years of events. We benchmark the peak demand of this sample of buildings against their past baselines to understand the differences in building performance over the years. This is done with peak demand intensities and load factors. The paper also describes the importance of these data in helping to understand possible techniques to reach net zero energy using peak day dynamic control capabilities in commercial buildings. We present an example in which the electric load shape changed as a result of a lighting retrofit.

Kiliccote, Sila; Piette, Mary Ann; Mathieu, Johanna; Parrish, Kristen

2010-05-14T23:59:59.000Z

400

Building America Webinar: High Performance Space Conditioning Systems, Part I: Simplified Space Conditioning in Low Load Homes  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was delivered at the U.S. Department of Energy Building America webinar, High Performance Space Conditioning Systems, Part I, on October 23, 2014.

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Text-Alternative Version: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification  

Energy.gov (U.S. Department of Energy (DOE))

Below is the text-alternative version of the LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification webcast.

402

Manage energy use in manufacturing | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Improve building and plant performance Improve building and plant performance » Manage energy use in manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Improve energy use in commercial buildings Find guidance for energy-efficient design projects Manage energy use in manufacturing

403

Identifying Sources of Volatile Organic Compounds and Aldehydes in a High Performance Building  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Building Technologiesand Renewable Energy, Office of Building Technology, State,

Ortiz, Anna C.

2010-01-01T23:59:59.000Z

404

SOME ANALYTIC MODELS OF PASSIVE SOLAR BUILDING PERFORMANCE: A THEORETICAL APPROACH TO THE DESIGN OF ENERGY-CONSERVING BUILDINGS  

E-Print Network (OSTI)

CONSERVATION IN BUILDINGS AND ANALYTIC MODELING Footnotes tobuilding -- and so are inaccurate for passive solar modeling.modeling described above for only one specific hour and one specific building

Goldstein, David Baird

2011-01-01T23:59:59.000Z

405

Development of a High-Performance Office Building Simulation Model for a Hot and Humid Climate  

E-Print Network (OSTI)

to the field measured data and was presented in the previous publication (Cho and Haberl, 2008a). The calibrated simulation model was further extended to an ASHRAE 90.1 code-compliant model, which was used as the baseline model for the development of a... high-performance (energy-efficient) model. However, the code-compliant model did not use the as-built building geometry of the JBC building; rather, it used a simplified geometry. The simplified- geometry, code-compliant simulation model...

Cho, S.; Haberl, J.

406

An R&D guide and multiyear plan for improving energy use in existing commercial buildings  

E-Print Network (OSTI)

necessary to achieve a healthy building stock? The “MedicalThe model for achieving a healthy building stock is similar.Case studies • Training Healthy Buildings 4. Follow- up (T •

Diamond, Rick C.

2004-01-01T23:59:59.000Z

407

ENERGY STAR Using On-site Renewable Energy as the Next Step to Improving Energy Performance and Reducing Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

ON-SITE RENEWABLE ENERGY AS THE NEXT STEP ON-SITE RENEWABLE ENERGY AS THE NEXT STEP TO IMPROVING ENERGY PERFORMANCE AND REDUCING EMISSIONS jcpenney has a corporate energy management strategy that includes using energy efficient technologies in its stores and encouraging energy conservation. As part of this strategy, the company also investigated generating electricity through on-site renewable energy. jcpenney is a partner in the U.S. Environmental Protection Agency (EPA) ENERGY STAR Commercial Buildings Program, and has been tracking building energy use since 2006 using EPA's free benchmarking tool, Portfolio Manager. Portfolio Manager provides a 1-100 energy performance score similar to a "miles-per-gallon" metric for vehicle fuel efficiency. Those buildings that achieve an ENERGY STAR score

408

Building America Technlogy Solutions for New and Existing Homes...  

Energy Savers (EERE)

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet) Building America Technlogy Solutions for New and Existing Homes: Improving the Field...

409

A Survey of High Performance Office Buildings in the United States  

E-Print Network (OSTI)

Insulation, PV providing 28% of total energy use 2 Deru et al. (2005) BigHorn Home Improvement Center Cool & Dry Silverthorne, CO Commercial office, Industrial, Retail 2000 1 44,400 ASHRAE 90.1 - 2001 DOE-2 Simulation 40 35 Wall Insulation, Solar... control and improved Indoor Air Quality (IAQ); therefore, it should be a good choice for hot and humid climates. However, there is still a need for additional demonstrations for its application to the office buildings in hot and humid climates...

Cho, S.; Haberl, J. S.

2006-01-01T23:59:59.000Z

410

Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings  

SciTech Connect

The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

2011-07-31T23:59:59.000Z

411

Improving Dynamic Load and Generator Response PerformanceTools  

SciTech Connect

This report is a scoping study to examine research opportunities to improve the accuracy of the system dynamic load and generator models, data and performance assessment tools used by CAISO operations engineers and planning engineers, as well as those used by their counterparts at the California utilities, to establish safe operating margins. Model-based simulations are commonly used to assess the impact of credible contingencies in order to determine system operating limits (path ratings, etc.) to ensure compliance with NERC and WECC reliability requirements. Improved models and a better understanding of the impact of uncertainties in these models will increase the reliability of grid operations by allowing operators to more accurately study system voltage problems and the dynamic stability response of the system to disturbances.

Lesieutre, Bernard C.

2005-11-01T23:59:59.000Z

412

Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance  

Energy.gov (U.S. Department of Energy (DOE))

Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance

413

Feed-Pump Hydraulic Performance and Design Improvement, Phase I:  

Office of Scientific and Technical Information (OSTI)

Feed-Pump Hydraulic Performance Feed-Pump Hydraulic Performance and Design Improvement, Phase I: J2esearch Program Design Volume 2 EPRI EPRI CS-2323 Volume 2 Project 1884-6 Final Report March 1982 Keywords: Feed Pumps Feed Pump Reliability Feed Pump Hydraulics Feed Pump Design Feed Pump Research Feed Pump Specifications Prepared by Borg-Warner Corporation (Byron Jackson Pump Division and Borg-Warner Research Center) Carson, California and Massa^ f Technology Cambri__ . s ,-T. a a *a_^"nt.- ji^, w « ' jm.m ^j.^M\MMMim^mjii'mmmjmiiiimm\i- " I E CT R I C P 0 W E R R E S E A R C H I N ST ITO T E DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees,

414

Improvements in EMC performance of inverter-fed motor drives  

SciTech Connect

An experimental investigation of conducted radio-noise emission from a conventional pulse width modulated (PWM) inverter of medium power feeding an induction motor is described. It is determined that the inverter system generates considerable impulse currents through the power leads feeding the system resulting in serious conducted electromagnetic interference (EMI) problems and significant voltage waveform distortion in the power system. The dominant emission sources in the system are identified. A proposed model of the drive system for the purpose of evaluation of EMI are developed. Several low-cost strategies for improvement in EMC performance of the PWM inverter are then proposed. Experimental results demonstrate that disturbance from the modified system can be dramatically reduced and that the EMC performance of the system has come very close to meeting the IEC CISPR and FCC limits on conducted emissions for digital devices.

Zhong, E.; Lipo, T.A. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Electrical and Computer Engineering

1995-11-01T23:59:59.000Z

415

Agent-based modeling of commercial building stocks for energy policy and demand response analysis.  

E-Print Network (OSTI)

??Managing a sustainable built environment with a large number of buildings rests on the ability to assess and improve the performance of the building stock… (more)

Zhao, Fei

2012-01-01T23:59:59.000Z

416

Improving Emergency Response and Human-Robotic Performance  

SciTech Connect

Preparedness for chemical, biological, and radiological/nuclear incidents at nuclear power plants (NPPs) includes the deployment of well trained emergency response teams. While teams are expected to do well, data from other domains suggests that the timeliness and accuracy associated with incident response can be improved through collaborative human-robotic interaction. Many incident response scenarios call for multiple, complex procedure-based activities performed by personnel wearing cumbersome personal protective equipment (PPE) and operating under high levels of stress and workload. While robotic assistance is postulated to reduce workload and exposure, limitations associated with communications and the robot’s ability to act independently have served to limit reliability and reduce our potential to exploit human –robotic interaction and efficacy of response. Recent work at the Idaho National Laboratory (INL) on expanding robot capability has the potential to improve human-system response during disaster management and recovery. Specifically, increasing the range of higher level robot behaviors such as autonomous navigation and mapping, evolving new abstractions for sensor and control data, and developing metaphors for operator control have the potential to improve state-of-the-art in incident response. This paper discusses these issues and reports on experiments underway intelligence residing on the robot to enhance emergency response.

David I. Gertman; David J. Bruemmer; R. Scott Hartley

2007-08-01T23:59:59.000Z

417

Continuous improvement of the MHTGR safety and competitive performance  

SciTech Connect

An increase in reactor module power from 350 to 450 MW(t) would markedly improve the economics of the Modular High Temperature Gas-Cooled Reactor (MHTGR). The higher power level was recommended as the result of an in-depth cost reduction study undertaken to compete with the declining price of fossil fuel. The safety assessment confirms that the high level of safety, which relies on inherent characteristics and passive features, is maintained at the elevated power level. Preliminary systems, nuclear, and safety performance results are discussed for the recommended 450 MW(t) design. Optimization of plant parameters and design modifications accommodated the operation of the steam generator and circulator at the higher power level. Events in which forced cooling is lost, designated as conduction cooldowns are described in detail. For the depressurized conduction cooldown, without full helium inventory, peak fuel temperatures are significantly lowered. A more negative temperature coefficient of reactivity was achieved while maintaining an adequate fuel cycle and reactivity control. Continual improvement of the MHTGR delivers competitive performance without relinquishing the high safety margins demanded of the next generation of power plants.

Eichenberg, T.W.; Etzel, K.T.; Mascaro, L.L.; Rucker, R.A.

1992-05-01T23:59:59.000Z

418

Building America Best Practices Series, Volume 7.1 - High-Performance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

baclimateguide71.pdf More Documents & Publications Building Science-Based Climate Maps - Building America Top Innovation Vol. 9: Building America Best Practices Series -...

419

Seismic Performance, Modeling, and Failure Assessment of Reinforced Concrete Shear Wall Buildings  

E-Print Network (OSTI)

22 Modeling of Building23 Modeling of Building1.0 GA g 2.2.7. Modeling of Building 2A The 3-D nonlinear

Tuna, Zeynep

2012-01-01T23:59:59.000Z

420

Review of California and National Methods for Energy Performance Benchmarking of Commercial Buildings  

E-Print Network (OSTI)

Buildings with Higher Whole Building EUIs Whole Building EUIs energy use intensity (EUI) within the distribution ofbuilding energy use intensity (EUI) as a common basis. For

Matson, Nance E.; Piette, Mary Ann

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Consumption Analyses of Frequently-used HVAC System Types in High Performance Office Buildings.  

E-Print Network (OSTI)

??The high energy consumption of heating, ventilation and air-conditioning (HVAC) systems in commercial buildings is a hot topic. Office buildings, a typical building set of… (more)

Yan, Liusheng

2014-01-01T23:59:59.000Z

422

Human comfort and self-estimated performance in relation to indoor environmental parameters and building features  

E-Print Network (OSTI)

In: Proceedings of Healthy Buildings Conference, Syracuse,In: Proceedings of Healthy Buildings Conference, Budapest,International Conference Healthy Buildings, Syracuse, NY USA

Frontczak, Monika

2012-01-01T23:59:59.000Z

423

Performance improvement options for the supercritical carbon dioxide brayton cycle.  

SciTech Connect

The supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle is under development at Argonne National Laboratory as an advanced power conversion technology for Sodium-Cooled Fast Reactors (SFRs) as well as other Generation IV advanced reactors as an alternative to the traditional Rankine steam cycle. For SFRs, the S-CO{sub 2} Brayton cycle eliminates the need to consider sodium-water reactions in the licensing and safety evaluation, reduces the capital cost of the SFR plant, and increases the SFR plant efficiency. Even though the S-CO{sub 2} cycle has been under development for some time and optimal sets of operating parameters have been determined, those earlier development and optimization studies have largely been directed at applications to other systems such as gas-cooled reactors which have higher operating temperatures than SFRs. In addition, little analysis has been carried out to investigate cycle configurations deviating from the selected 'recompression' S-CO{sub 2} cycle configuration. In this work, several possible ways to improve S-CO{sub 2} cycle performance for SFR applications have been identified and analyzed. One set of options incorporates optimization approaches investigated previously, such as variations in the maximum and minimum cycle pressure and minimum cycle temperature, as well as a tradeoff between the component sizes and the cycle performance. In addition, the present investigation also covers options which have received little or no attention in the previous studies. Specific options include a 'multiple-recompression' cycle configuration, intercooling and reheating, as well as liquid-phase CO{sub 2} compression (pumping) either by CO{sub 2} condensation or by a direct transition from the supercritical to the liquid phase. Some of the options considered did not improve the cycle efficiency as could be anticipated beforehand. Those options include: a double recompression cycle, intercooling between the compressor stages, and reheating between the turbine stages. Analyses carried out as part of the current investigation confirm the possibilities of improving the cycle efficiency that have been identified in previous investigations. The options in this group include: increasing the heat exchanger and turbomachinery sizes, raising of the cycle high end pressure (although the improvement potential of this option is very limited), and optimization of the low end temperature and/or pressure to operate as close to the (pseudo) critical point as possible. Analyses carried out for the present investigation show that significant cycle performance improvement can sometimes be realized if the cycle operates below the critical temperature at its low end. Such operation, however, requires the availability of a heat sink with a temperature lower than 30 C for which applicability of this configuration is dependent upon the climate conditions where the plant is constructed (i.e., potential performance improvements are site specific). Overall, it is shown that the S-CO{sub 2} Brayton cycle efficiency can potentially be increased to 45 %, if a low temperature heat sink is available and incorporation of larger components (e.g.., heat exchangers or turbomachinery) having greater component efficiencies does not significantly increase the overall plant cost.

Moisseytsev, A.; Sienicki, J. J.; Nuclear Engineering Division

2008-07-17T23:59:59.000Z

424

A metrological large range atomic force microscope with improved performance  

Science Journals Connector (OSTI)

A metrological large range atomic force microscope (Met. LR-AFM) has been set up and improved over the past years at Physikalisch-Technische Bundesanstalt (PTB). Being designed as a scanning sample type instrument the sample is moved in three dimensions by a mechanical ball bearing stage in combination with a compact z -piezostage. Its topography is detected by a position-stationary AFM head. The sample displacement is measured by three embedded miniature homodyneinterferometers in the x y and z directions. The AFM head is aligned in such a way that its cantilever tip is positioned on the sample surface at the intersection point of the three interferometer measurement beams for satisfying the Abbe measurement principle. In this paper further improvements of the Met. LR-AFM are reported. A new AFM head using the beam deflection principle has been developed to reduce the influence of parasitic optical interference phenomena. Furthermore an off-line Heydemann correction method has been applied to reduce the inherent interferometer nonlinearities to less than 0.3 nm ( p - v ) . Versatile scanning functions for example radial scanning or local AFM measurement functions have been implemented to optimize the measurement process. The measurement software is also improved and allows comfortable operations of the instrument via graphical user interface or script-based command sets. The improved Met. LR-AFM is capable of measuring for instance the step height lateral pitch line width nanoroughness and other geometrical parameters of nanostructures.Calibration results of a one-dimensional grating and a set of film thickness standards are demonstrated showing the excellent metrological performance of the instrument.

Gaoliang Dai; Helmut Wolff; Frank Pohlenz; Hans-Ulrich Danzebrink

2009-01-01T23:59:59.000Z

425

Practical Experiences with the Implementation of the Energy Performance Buildings Directive in Central Europe  

E-Print Network (OSTI)

Page 1 of 16 Practical experiences with the implementation of the Energy Performance Buildings Directive in Central Europe A project in behalf of Government of the Federal Republic of Germany Ingo Therburg ARGE Energieausweise...-conditioning systems are carried out in an independent manner by qualified and/or accredited experts, whether operating as sole traders or employed by public or private enterprise bodies INITIAL SITUATION GERMANY Like in other European countries in Germany...

Therburg, I.

426

Development of a housing performance evaluation model for multi-family residential buildings in Korea  

Science Journals Connector (OSTI)

This paper presents the development and application of a housing performance evaluation model for multi-family residential buildings in Korea. This model is intended to encourage initiatives toward achieving better housing performance and to support a homebuyer's decision-making on housing comparison and selection. Forty-one objective and feasible housing performance indicators, which were selected from the review of existing evaluation models and interviews with experts, are classified into a series of categories. The weights of each category and indicator are calculated by using the analytic hierarchy process (AHP) analysis, and a weight is converted into credit. Next, the performance grades are divided into four levels, and evaluation criteria are suggested based on statutory performance value or the one frequently met in practice. Finally, the evaluation program and the application procedure are established through the field case study. This model can be used for objective and practical evaluation and comparison of residential housing alternatives.

Sun-Sook Kim; In-Ho Yang; Myoung-Souk Yeo; Kwang-Woo Kim

2005-01-01T23:59:59.000Z

427

An implementation of co-simulation for performance prediction of innovative integrated HVAC systems in buildings  

E-Print Network (OSTI)

Developing an Integrated Building Design Tool by Couplingdesign energy efficient building systems in this complex setting, integrated

Trcka, Marija

2010-01-01T23:59:59.000Z

428

Building Energy Software Tools Directory: Star Perfomer  

NLE Websites -- All DOE Office Websites (Extended Search)

Star Perfomer Star Perfomer Star Perfomer logo. Outlines simple steps to help office building owners, managers and tenants improve their greenhouse and energy efficiency performance, simply by asking some straightforward questions about the size, operating hours, current performance and equipment standards of the building. Star Performer is a diagnostic tool that uses the current operational energy performance of the building measured against a national benchmark, obtained through the Australian Building Greenhouse Rating scheme (see links below), as a basis for making recommendations. The tool covers all areas of the building which affect operational energy performance, including building fabric, equipment and operational practices. Star Perfomer will point you in the right direction and give

429

Performance of High-Performance Glazing in IECC Compliant Building Simulation Model  

E-Print Network (OSTI)

windows with evacuated or low-conductance gas-filled gaps (Carmody et al. 2004), and aerogel windows to reduce the heat loss (V-factor) of windows (Hartman et al. 1987). Technologies to reduce solar heat gain include improvements to existing low.../12-04, [CDROM]. College Station, TX: Energy Systems Laboratory, Texas A&M University. Hartman, J., M.Rubin, and D. Arasteh. 1987. Thermal and solar-optical properties of silica aerogel for use in insulated windows. Proceedings of the 12th - 138 ? ESL-PA-06...

Mukhopadhyay, J.; Haberl, J. S.

430

Retrofit Existing Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Existing Buildings Retrofit Existing Buildings Retrofit Existing Buildings Renovation, retrofit and refurbishment of existing buildings represent an opportunity to upgrade the energy performance of commercial building assets for their ongoing life. Often retrofit involves modifications to existing commercial buildings that may improve energy efficiency or decrease energy demand. In addition, retrofits are often used as opportune time to install distributed generation to a building. Energy efficiency retrofits can reduce the operational costs, particularly in older buildings, as well as help to attract tenants and gain a market edge. The Building Technologies Office provides resources that allow planners, designers, and owners to focus on energy-use goals from the first planning

431

Energy Savings Performance Contracting | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Savings Performance Contracting Energy Savings Performance Contracting Energy Savings Performance Contracting (ESPC) is a budget-neutral approach to make building improvements that...

432

Improving the performance of algorithms to find communities in networks  

Science Journals Connector (OSTI)

Most algorithms to detect communities in networks typically work without any information on the cluster structure to be found, as one has no a priori knowledge of it, in general. Not surprisingly, knowing some features of the unknown partition could help its identification, yielding an improvement of the performance of the method. Here we show that, if the number of clusters was known beforehand, standard methods, like modularity optimization, would considerably gain in accuracy, mitigating the severe resolution bias that undermines the reliability of the results of the original unconstrained version. The number of clusters can be inferred from the spectra of the recently introduced nonbacktracking and flow matrices, even in benchmark graphs with realistic community structure. The limit of such a two-step procedure is the overhead of the computation of the spectra.

Richard K. Darst; Zohar Nussinov; Santo Fortunato

2014-03-20T23:59:59.000Z

433

Development of improved performance refractory liner materials for slagging gasifiers  

SciTech Connect

Refractory liners for slagging gasifiers used in power generation, chemical production, or as a possible future source of hydrogen for a hydrogen based economy, suffer from a short service life. These liner materials are made of high Cr2O3 and lower levels of Al2O3 and/or ZrO2. As a working face lining in the gasifier, refractories are exposed to molten slags at elevated temperature that originate from ash in the carbon feedstock, including coal and/or petroleum coke. The molten slag causes refractory failure by corrosion dissolution and by spalling. The Albany Research Center is working to improve the performance of Cr2O3 refractories and to develop refractories without Cr2O3 or with Cr2O3 content under 30 wt pct. Research on high Cr2O3 materials has resulted in an improved refractory with phosphate additions that is undergoing field testing. Results to date of field trials, along with research direction on refractories with no or low Cr2O3, will be discussed.

Kwong, Kyei-Sing; Bennett, James P.; Powell, Cynthia; Thomas, Hugh; Krabbe, Rick

2005-01-01T23:59:59.000Z

434

Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance  

SciTech Connect

The performance of air-handling systems in buildings needs to be improved. Many of the deficiencies result from myths and lore and a lack of understanding about the non-linear physical principles embedded in the associated technologies. By incorporating these principles, a few important efforts related to diagnostics and controls have already begun to solve some of the problems. This paper illustrates three novel solutions: one rapidly assesses duct leakage, the second configures ad hoc duct-static-pressure reset strategies, and the third identifies useful intermittent ventilation strategies. By highlighting these efforts, this paper seeks to stimulate new research and technology developments that could further improve air-handling systems.

Wray, Craig; Wray, Craig P.; Sherman, Max H.; Walker, I.S.; Dickerhoff, D.J.; Federspiel, C.C.

2008-02-01T23:59:59.000Z

435

Experimental Study of Thermal Performance and the Contribution of Plant-Covered Walls to the Thermal Behavior of Building  

Science Journals Connector (OSTI)

Abstract This paper presented on experimental investigation of the influence of plant-covered wall on the thermal behavior of buildings in the semi-arid regions during the summer period. Thermal performance of a green walls system on facade walls has been experimentally investigated in a test room. The test cell dimensions are 1x1.2x0.8 m. In this study the thermal analysis concerns two test cells that incorporate non-covered and covered with two types of plants (Jasmine and Aristolochia). A Light source is used to simulate solar radiation. The results showed that plant cover improved indoor thermal comfort in both summer, and reduced heat gains and losses through the wall structure. It is verified that a microclimate between the wall of the test cell and the green wall is created, and it is characterized by slightly lower temperatures and higher relative humidity.

Saifi Nadia; Settou Noureddine; Necib Hichem; Damene Djamila

2013-01-01T23:59:59.000Z

436

Improved LWR Cladding Performance by EPD Surface Modification Technique  

SciTech Connect

This project will utilize the electro-phoretic deposition technique (EPD) in conjunction with nanofluids to deposit oxide coatings on prototypic zirconium alloy cladding surfaces. After demonstrating that this surface modification is reproducible and robust, the team will subject the modified surface to boiling and corrosion tests to characterize the improved nucleate boiling behavior and superior corrosion performance. The scope of work consists of the following three tasks: The first task will employ the EPD surface modification technique to coat the surface of a prototypic set of zirconium alloy cladding tube materials (e.g. Zircaloy and advanced alloys such as M5) with a micron-thick layer of zirconium oxide nanoparticles. The team will characterize the modified surface for uniformity using optical microscopy and scanning-electron microscopy, and for robustness using standard hardness measurements. After zirconium alloy cladding samples have been prepared and characterized using the EPD technique, the team will begin a set of boiling experiments to measure the heat transfer coefficient and critical heat flux (CHF) limit for each prepared sample and its control sample. This work will provide a relative comparison of the heat transfer performance for each alloy and the surface modification technique employed. As the boiling heat transfer experiments begin, the team will also begin corrosion tests for these zirconium alloy samples using a water corrosion test loop that can mimic light water reactor (LWR) operational environments. They will perform extended corrosion tests on the surface-modified zirconium alloy samples and control samples to examine the robustness of the modified surface, as well as the effect on surface oxidation

Michael Corradini; Kumar Sridharan

2012-11-26T23:59:59.000Z

437

Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

3E 3E Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings S. Kiliccote, M.A. Piette, J. Mathieu, K. Parrish Environmental Energy Technologies Division May 2010 Presented at the 2010 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, August 15-20, 2010, and published in the Proceedings DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information,

438

SOME ANALYTIC MODELS OF PASSIVE SOLAR BUILDING PERFORMANCE: A THEORETICAL APPROACH TO THE DESIGN OF ENERGY-CONSERVING BUILDINGS  

E-Print Network (OSTI)

building itself. 4b. A Trombe wall is a south-facing heavywall. The inventor of the Trombe wall discusses some of itsOther windows illuminate Trombe walls of l~ foot concrete. (

Goldstein, David Baird

2011-01-01T23:59:59.000Z

439

Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The webinar focused on improving the performance of central space conditioning systems in multifamily buildings, including hydronic heating strategies and the evaluation of thermostatically controlled radiator valves (TRVs).

440

Webinar: High Performance Enclosure Strategies: Part I. Existing Homes  

Energy.gov (U.S. Department of Energy (DOE))

The webinar will focus on specific Building America projects that have studied technical solutions to retrofit building enclosures to improve energy and durability performance. Presenters will...

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Build an energy management program | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Build an energy management program Build an energy management program Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Advance your energy program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition Market impacts: Improvements in the industrial sector

442

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

443

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

444

NERSC and HDF Group Optimize HDF5 Library to Improve I/O Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC and HDF Group Optimize HDF5 Library to Improve IO Performance NERSC and HDF Group Optimize HDF5 Library to Improve IO Performance June 28, 2010 A common complaint among air...

445

Optical performance of vertical heliostat fields integrated in building façades for concentrating solar energy uses  

Science Journals Connector (OSTI)

Abstract One way for integrating concentrating solar energy systems based on central receiver technology in metropolitan areas consists of using building façades as frame for installing a heliostat reflector field that reflects radiation coming from the sun towards a common area where receiver is located. This work analyzes the optical performance of vertical solar field concept. It provides the effect of several geometric parameters such as receiver height, separation between heliostat edges, and different building typologies on the hourly and annual optical efficiency along the year including the contribution of different optical efficiency factors such as shadowing, blocking, cosine, and spillage. The optical efficiency of a vertical heliostat field was found to be mainly controlled by shadowing, cosine and spillage factors. The field reaches the maximum overall optical efficiency during spring and winter at noon time and the minimum ones during the summer season mainly due to shadowing factor. Results obtained for best configurations are comparable to those ones reached by traditional horizontal field arrangements, what supports the feasibility of the vertical heliostats field concept as a CSP building integrated facility.

Aurelio González-Pardo; Sara Cesar Chapa; José Gonzalez-Aguilar; Manuel Romero

2013-01-01T23:59:59.000Z

446

Review of California and National Methods for Energy Performance Benchmarking of Commercial Buildings  

E-Print Network (OSTI)

Energy Star Ratings Using Building Occupancy CharacteristicsDefaults and Whole Building Energy Use Intensity andCalifornia CEUS Office Buildings (n=109) C-6 % of Cal-Arch

Matson, Nance E.; Piette, Mary Ann

2005-01-01T23:59:59.000Z

447

Seismic Performance, Modeling, and Failure Assessment of Reinforced Concrete Shear Wall Buildings  

E-Print Network (OSTI)

Post- Tensioned Concrete Buildings,” PEER Report 2011/104,RC shear walls in high-rise buildings,” The Young ResearcherExtended 3D Analysis of Building Structures, Computers and

Tuna, Zeynep

2012-01-01T23:59:59.000Z

448

Improving the renewable energy mix in a building toward the nearly zero energy status  

Science Journals Connector (OSTI)

Abstract Developing Nearly Zero Energy Buildings (NyZEB) represents a path toward sustainable communities and is required by international regulations, starting with 2018. Combined measures for reducing the energy demand and increasing the share of renewable energy systems in buildings are very much investigated for different types of buildings. One specific case is represented by the buildings where – as result of the green energy policies – renewables are already installed, but the NyZEB status is not reached yet. These buildings are main candidates in getting this status as the initial investment required is significantly lower. A novel methodology is presented for this type of buildings aiming at identifying the optimal combination of actions to be taken for reducing the energy demand and developing optimized renewable energy mixes, integrating the existing ones, up to the (Ny)ZEB status. Following this methodology, a cases study is presented – the Solar House (low energy building with geothermal system and solar energy convertors) and the steps followed for reaching the Zero Energy Building standards are presented. Considering the current energy status of the building, the renewable energy potential and the costs, a tracked PV string array is proposed to be added and the steps in design optimization are outlined.

Ion Visa; Macedon D. Moldovan; Mihai Comsit; Anca Duta

2014-01-01T23:59:59.000Z

449

Building a Community Infrastructure for Scalable On-Line Performance Analysis Tools around Open|Speedshop  

SciTech Connect

Peta-scale computing environments pose significant challenges for both system and application developers and addressing them required more than simply scaling up existing tera-scale solutions. Performance analysis tools play an important role in gaining this understanding, but previous monolithic tools with fixed feature sets have not sufficed. Instead, this project worked on the design, implementation, and evaluation of a general, flexible tool infrastructure supporting the construction of performance tools as “pipelines” of high-quality tool building blocks. These tool building blocks provide common performance tool functionality, and are designed for scalability, lightweight data acquisition and analysis, and interoperability. For this project, we built on Open|SpeedShop, a modular and extensible open source performance analysis tool set. The design and implementation of such a general and reusable infrastructure targeted for petascale systems required us to address several challenging research issues. All components needed to be designed for scale, a task made more difficult by the need to provide general modules. The infrastructure needed to support online data aggregation to cope with the large amounts of performance and debugging data. We needed to be able to map any combination of tool components to each target architecture. And we needed to design interoperable tool APIs and workflows that were concrete enough to support the required functionality, yet provide the necessary flexibility to address a wide range of tools. A major result of this project is the ability to use this scalable infrastructure to quickly create tools that match with a machine architecture and a performance problem that needs to be understood. Another benefit is the ability for application engineers to use the highly scalable, interoperable version of Open|SpeedShop, which are reassembled from the tool building blocks into a flexible, multi-user interface set of tools. This set of tools targeted at Office of Science Leadership Class computer systems and selected Office of Science application codes. We describe the contributions made by the team at the University of Wisconsin. The project built on the efforts in Open|SpeedShop funded by DOE/NNSA and the DOE/NNSA Tri-Lab community, extended Open|Speedshop to the Office of Science Leadership Class Computing Facilities, and addressed new challenges found on these cutting edge systems. Work done under this project at Wisconsin can be divided into two categories, new algorithms and techniques for debugging, and foundation infrastructure work on our Dyninst binary analysis and instrumentation toolkits and MRNet scalability infrastructure.

Miller, Barton

2014-06-30T23:59:59.000Z

450

Data and Analytics to Inform Energy Retrofit of High Performance Buildings  

E-Print Network (OSTI)

DOE-2: a whole building energy modeling program. http://Modeling and simulation of HVAC faults in EnergyPlus, Building

Hong Ph.D., Tianzhen

2014-01-01T23:59:59.000Z

451

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network (OSTI)

Whole building electricity consumption for the first eightbuildings. Measured electricity consumption Figure 3 showsthe measured total electricity consumption of the building

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

452

Building America Top Innovations Hall of Fame Profile … High-Performance Home Cost Performance Trade-Offs Production Builders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

projects with production builders have demonstrated projects with production builders have demonstrated that high-performance homes experience significant cost trade-offs that offset other cost increases. This proved transformational, gaining builder traction with related market-based programs like ENERGY STAR for Homes and DOE Challenge Home. "Break points" or cost trade-offs that are identified during the engineering analysis of the residential construction process can yield two types of business savings: 1) reductions in costs of warranty and call-back service; and 2) offsets or "credits" attributed to reductions in other construction costs. The tables below show examples of cost and savings trade-offs experienced by Building America projects in hot-dry and cold climates. Energy-Efficiency

453

Theoretical and Experimental Thermal Performance Analysis of Building Shell Components Containing Blown Fiber Glass Insulation Enhanced with Phase Change Material (PCM)  

SciTech Connect

Different types of Phase Change Materials (PCMs) have been tested as dynamic components in buildings during the last 4 decades. Most historical studies have found that PCMs enhance building energy performance. Some PCM-enhanced building materials, like PCM-gypsum boards or PCM-impregnated concretes have already found their limited applications in different countries. Today, continued improvements in building envelope technologies suggest that throughout Southern and Central US climates, residences may soon be routinely constructed with PCM in order to maximize insulation effectiveness and maintain low heating and cooling loads. The proposed paper presents experimental and numerical results from thermal performance studies. These studies focus on blown fiber glass insulation modified with a novel spray-applied microencapsulated PCM. Experimental results are reported for both laboratory-scale and full-size building elements tested in the field. In order to confirm theoretical predictions, PCM enhanced fiber glass insulation was evaluated in a guarded hot box facility to demonstrate heat flow reductions when one side of a test wall is subjected to a temperature increase. The laboratory work showed reductions in heat flow of 30% due to the presence of approximately 20 wt % PCM in the insulation. Field testing of residential attics insulated with blown fiber glass and PCM was completed in Oak Ridge, Tennessee. Experimental work was followed by detailed whole building EnergyPlus simulations in order to generate energy performance data for different US climates. In addition, a series of numerical simulations and field experiments demonstrated a potential for application of a novel PCM fiber glass insulation as enabling technology to be utilized during the attic thermal renovations.

Miller, William A [ORNL] [ORNL; Kosny, Jan [ORNL] [ORNL; Yarbrough, David W [ORNL] [ORNL; Childs, Phillip W [ORNL] [ORNL; Shrestha, Som S [ORNL] [ORNL; Atchley, Jerald Allen [ORNL] [ORNL; Bianchi, Marcus V [ORNL] [ORNL; Smith, John B [ORNL] [ORNL; Fellinger, Thomas [ORNL] [ORNL; Kossecka, Elizabeth [Institute of Fundamental Technological Research, Polish Academy of Sciences] [Institute of Fundamental Technological Research, Polish Academy of Sciences; Lee, Edwin S [ORNL] [ORNL

2010-01-01T23:59:59.000Z

454

Performance investigation of two geothermal district heating systems for building applications: Energy analysis  

Science Journals Connector (OSTI)

The energetic performance of Balcova geothermal district heating system (BGDHS) and Salihli geothermal district heating system (SGDHS) installed in Turkey is investigated for building applications in this study. The essential components (e.g., pumps, heat exchangers) of these geothermal district heating systems are also included in the modeling. The present model is employed for system analysis and energetic performance evaluation of the geothermal district heating systems. Energy flow diagrams are drawn to exhibit the input and output energies and losses to the surroundings by using the 2003 and 2004 heating season actual data. In addition, energy efficiencies are studied for comparison purposes, and are found to be 39.36% for BGDHS and 59.31% for SGDHS, respectively.

Leyla Ozgener; Arif Hepbasli; Ibrahim Dincer

2006-01-01T23:59:59.000Z

455

USE OF BESTEST PROCEDURE TO IMPROVE A BUILDING THERMAL SIMULATION PROGRAM  

E-Print Network (OSTI)

. KEYWORDS Building energy simulation; validation; BESTEST; inter program comparison DESCRIPTION BESTEST Validation of building energy simulation programs is of major interest to both users and modellers simulation software called CODYRUN (Boyer et al., 1998). Indeed, one of the most interesting aspects

Paris-Sud XI, Université de

456

Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications, Ithaca, New York (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

In this project, researchers from Building America team Consortium for Advanced Residential Buildings worked with industry partners to develop hydronic system designs that would address barriers and result in higher overall system efficiencies and improved response times.

457

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

458

Ventilation in Multifamily Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies

459

Building Data Visualization  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Building Data Visualization contour plot Figure 1: Contour plot showing the various operating stages of occupancy sensors described in the case study. Data visualization for buildings is the display of a rich set of variables and parameters that managers can use to verify the energy savings of energy- efficient technology and identify malfunctions in building equipment or problems with operating strategies. Effective data visualization depends on having graphic presentation formats that reveal the phenomena relevant to the building's performance. A research project at the Center for Building Science is aimed at developing data visualization techniques for improved building management. Buildings with energy management control systems as well as dedicated monitoring equipment in the

460

Improving Pumping System Performance: A Sourcebook for Industry, Second Edition  

SciTech Connect

Prepared for the DOE Industrial Technologies Program, this sourcebook contains the practical guidelines and information manufacturers need to improve the efficiency of their pumping systems.

Not Available

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Smart Grid Projects Are Improving Performance and Helping Consumers...  

Energy Savers (EERE)

losses, peak demand, and customer bills by adjusting voltage levels along local power lines. Remotely accessible smart meters reduce operating costs, improve outage management...

462

On Variations of Space-heating Energy Use in Office Buildings  

E-Print Network (OSTI)

A methodology for building energy modeling and calibrationamong different building energy modeling programs, and themodeling framework for energy systems to improve energy efficiency and environmental performance of commercial buildings,

Lin, Hung-Wen

2014-01-01T23:59:59.000Z

463

HPCBSHigh Performance Commercial Building Systems Amanda Potter, Hannah Friedman and Tudi Haasl,  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Office of Building Technology, Building Technology Programs of the U 2002 Summer Study on Energy Efficiency in Buildings, August 18-23, 2002, Asilomar Conference Center.S. Department of Energy under Contract No. DE-AC03-76SF00098. Investigation of the Persistence of New Building

464

The Cost-Effectiveness of Investments to Meet the Guiding Principles for High-Performance Sustainable Buildings on the PNNL Campus  

SciTech Connect

As part its campus sustainability efforts, Pacific Northwest National Laboratory (PNNL) has invested in eight new and existing buildings to ensure they meet the U.S. Department of Energy’s requirements for high performance sustainable buildings (HPSB) at DOE sites. These investments are expected to benefit PNNL by reducing the total life-cycle cost of facilities, improving energy efficiency and water conservation, and making buildings safer and healthier for the occupants. This study examines the cost-effectiveness of the implementing measures that meet the criteria for HPSBs in 3 different types of buildings on the PNNL campus: offices, scientific laboratories, and data centers. In each of the three case studies examined the investments made to achieve HPSB status demonstrated a high return on the HPSB investments that have taken place in these varied environments. Simple paybacks for total investments in the three case study buildings ranged from just 2 to 5 years; savings-to-investment ratios all exceeded the desirable threshold of 1; and the net present values associated with these investments were all positive.

Cort, Katherine A.; Judd, Kathleen S.

2014-08-29T23:59:59.000Z

465

New fluorinated acrylic polymers for improving weatherability of building stone materials  

Science Journals Connector (OSTI)

Acrylic polymers are widely used for their suitability to be shaped in different molecular structures. However, while very appropriate for many applications, these materials are characterized by a limited outdoor stability. In order to improve this last characteristic while maintaining the simple and flexible synthetic route, a study was performed based on the preparation of fluorinated polymers from acrylic monomers where several H-atoms in different positions were replaced with F-atoms. The structure design was aimed to optimize (e.g. minimize) the fluorine content of the final material while obtaining improved chemical and photochemical stability, good filmability and limited permeability to condensed water. The preparation of polymers of methacrylates derived from partially fluorinated alcohol by free radical mechanism is described. The fluorine content and distribution in the macromolecules is modulated by selecting different monomers and by copolymerization with nonfluorinated acrylates or vinylethers. The selection of the comonomers and their relative content in the polymer allows to control the glass transition temperature and the filmability as well as the protection efficiency of the coating. Polymers derived from more complex monomers such as ?-trifluoromethyl-methylacrylate are also described. The suitability of these new materials for protective coating of stones is tested by evaluating their stability to different chemical and physical agents and their selective permeability to water vapour vs. condensed water.

F Ciardelli; M Aglietto; L Montagnini di Mirabello; E Passaglia; S Giancristoforo; V Castelvetro; G Ruggeri

1997-01-01T23:59:59.000Z

466

Building Technologies Office: Renovate and Retrofit Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Renovate and Retrofit Commercial Buildings for Energy Efficiency Renovate and Retrofit Commercial Buildings for Energy Efficiency Photo of the Denver skyline with Wells Fargo Center building in the center of the image and the Rocky Mountains in the background. A local law firm upgraded one floor of their offices in the Wells Fargo Center (center) in Denver as part of Commercial Building Partnerships. Renovation, retrofit and refurbishment of existing buildings represent an opportunity to upgrade the energy performance of commercial building assets for their ongoing life. Often retrofit involves modifications to existing commercial buildings that may improve energy efficiency or decrease energy demand. In addition, retrofits are often used as opportune time to install distributed generation to a building. Energy efficiency retrofits can reduce the operational costs, particularly in older buildings, as well as help to attract tenants and gain a market edge.

467

Analysis of improved fenestration for code-compliant residential buildings in hot and humid climates  

E-Print Network (OSTI)

glazing technologies were developed, tested and subsequently adopted by the building industry. The underlying goal that has been carried through to present day research has been to develop the potential of windows as net energy suppliers (Arasteh 1994...

Mukhopadhyay, Jaya

2006-10-30T23:59:59.000Z

468

Evaluating a Social Media Application for Conserving Energy and Improving Operations in Commercial Buildings  

E-Print Network (OSTI)

partners are meeting net-zero energy goals. Centerline,from meeting net-zero or ultra-low energy targets (for net-zero goals, the percentage of building energy

Lehrer, David R.; Vasudev, Janani; Kaam, Soazig

2012-01-01T23:59:59.000Z

469

Experimental and Numerical Study of a Usual Brick Filled with PCM to Improve the Thermal Inertia of Buildings  

Science Journals Connector (OSTI)

Abstract The integration of a PCM layer into an external building wall diminished the amplitude of the instantaneous heat flux through the wall. The types of PCM, its location in the wall and its amount, have been studied in this paper. A two-dimensional transient heat transfer model has been developed and solved numerically using the commercial Computational Fluid Dynamics (CFD) package Fluent. The numerical results have been verified and validated with an experimental model. The considered model consists of usual brick with square holes used as construction materials for residential buildings in Algeria, some of these square holes are filled with PCM. The results showed that the PCM introduced in square holes can improves considerably the thermal inertia of brick and a combination of the types of PCM, its location in the wall and its amount, is very important for improve reduction of heat gain before it reaches the indoor space.

Necib Hichem; Settou Noureddine; Saifi Nadia; Damene Djamila

2013-01-01T23:59:59.000Z

470

Improved performance of railcar/rail truck interface components  

E-Print Network (OSTI)

turning moments around curved track, wear of truck components, and increased detrimental dynamic effects. The recommended improvement of the rail truck interface is a set of two steel inserts, one concave and one convex, that can be retrofit to center...

Story, Brett Alan

2009-05-15T23:59:59.000Z

471

J.R. Simplot: Burner Upgrade Project Improves Performance and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho. J.R. Simplot: Burner Upgrade Project Improves...

472

Early prediction of the performance of green building projects using pre-project planning variables: data mining approaches  

Science Journals Connector (OSTI)

Abstract Early prediction of the success of green building projects is an important and challenging issue. The aim of this study was to develop a model to predict the cost and schedule performance of green building projects based on the level of definition during the pre-project planning phase. To this end, a three-step process was proposed: pre-processing, variable selection, and prediction model construction. Data from 53 certified green buildings were used to develop the models. After balancing the data set with respect to the proportion of cases in each of the outcome categories by pre-processing, the number of input variables was reduced from 64 to 13 and 7 for cost and schedule performance prediction respectively, using the ReliefF-W variable selection method. Then, cost and schedule performance prediction models were constructed using the selected variables and four different classifiers: a support vector machine (SVM), a back-propagation neural network (BPNN), a C4.5 decision tree algorithm (C4.5), and a logistic regression (LR). The classification performance of the four models was compared to assess their applicability. The SVM models exhibited the highest accuracy, sensitivity, and specificity in predicting both the cost and schedule performance of green building projects. The results of this study empirically validated that the cost and schedule performance of green building projects is highly dependent on the quality of definition in the pre-project planning phase.

Hyojoo Son; Changwan Kim

2014-01-01T23:59:59.000Z

473

A Total Quality Management (TQM) Approach for Energy Savings Through Employee Awareness and Building Upgrades to Improve Energy Efficiency  

E-Print Network (OSTI)

A TOTAL QUALIn' MANAGEMENT (TQM) APPROACH FOR ENERGY SAVINGS THROUGH EMPLOYEE AWARENESS AND BUILDING UPGRADES TO IMPROVE ENERGY EFFICIENCY Daniel H. Stewart, Principal Engineer, Facilities Department, Rh6oe-Poulenc. Inc., Cranbury, NJ...) approach depends on the input from the end-users, clients, employees, power companies, various consultants and site operation management. This paper discusses the energy efficiency projects that are currently in progress at Rhone Poulenc's Corporate...

Stewart, D. H.

474

Energy-Smart Building Choices: How School Administrators and Board Members Are Improving Learning and Saving Money  

SciTech Connect

Most K-12 schools could save 25% of their energy costs by being smart about energy. Nationwide, the savings potential is $6 billion. While improving energy use in buildings and busses, schools are likely to create better places for teaching and learning, with better lighting, temperature control, acoustics, and air quality. This brochure, targeted to school administrators and board members, describes how schools can become more energy efficient.

Energy Smart Schools Team

2001-08-06T23:59:59.000Z

475

Building America Expert Meeting: Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

Water heating represents a major residential energy end use, especially in highly efficient homes where space conditioning loads and energy use has been significantly reduced. Future efforts to reduce water heating energy use requires the development of an improved understanding of equipment performance, as well as recognizing system interactions related to the distribution system and the fixture use characteristics. By bringing together a group of water heating experts, we hope to advance the shared knowledge on key water heating performance issues and identify additional data needs that will further this critical research area.

476

Building America Top Innovations Hall of Fame Profile … Affordable High Performance in Production Homes: Artistic Homes, Albuquerque, NM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

help from Building America, Artistic help from Building America, Artistic Homes built affordable, high-performance homes in New Mexico and Colorado with HERS scores of 0 to 60. Many builders remain resistant to adopting high-performance innovations based on misconceptions about high cost and design challenges. Thus, Building America projects such as Artistic Homes have had an extraordinary impact, demonstrating the mainstream builder's business case for adopting proven innovations such as efficient thermal enclosures and ducts inside the conditioned space, even in entry-level homes. The U.S. Department of Energy's Building America program has helped develop best practices for creating efficient thermal enclosures and locating HVAC ducts inside the conditioned space. These measures cost-effectively reduce heating and

477

Building America Top Innovations Hall of Fame Profile … Reduced Call-Backs with High-Performance Production Builders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

When Grupe of Stockton, California, worked When Grupe of Stockton, California, worked with Building America to build 144 energy- efficient homes in its Carsten Crossings development, the site superintendent said he had the lowest call-back rate of any community he had worked on. He credited the third-party HERS inspections and testing for keeping the quality of work high and catching problems before move-in (Dakin et al. 2008). BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 2. House-as-a-System Solutions 2.1 New Homes with Whole-House Packages Reduced Call-Backs with High-Performance Production Builders It is essential to engage production builders to successfully transform the market to high-performance homes. Building America has effectively addressed this

478

Performance Predictions and Topology Improvements for Optical Serrodyne Comb Generators  

Science Journals Connector (OSTI)

Detailed simulations identify which optical components affect the performance of a radio frequency (RF) and optical comb generator based on an optical loop with a phase modulator. The...

Lowery, Arthur

2005-01-01T23:59:59.000Z

479

Evaluation on energy and thermal performance for office building envelope in different climate zones of China  

Science Journals Connector (OSTI)

Abstract Effective evaluation on the thermal performance of envelope plays an important role towards the reduction of energy consumption for space cooling and heating. In order to calculate the energy consumption for cooling and heating and assess the whole energy efficiency of envelop designs, a new evaluation index on energy and thermal performance for office building envelop (EETPO) is put forward. Three cities of Shenyang, Wuhan and Guangzhou in China are selected for EETPO analysis, which represent the cold zone, hot summer cold winter zone and hot summer warm winter zone, respectively. The regression equations between EETPO and energy use for cooling/heating are studied in three cities, illustrations indicate that the regression lines fit extremely well and the algorithm is accurate and simple. According to the compulsory indices stipulated by standard (GB50189-2005), the maximum allowable values of EETPO are determined in three cities, the maximum \\{EETPOc\\} in cooling period is 1.750 W/m3 K in Wuhan and 1.733 W/m3 K in Guangzhou, the maximum \\{EETPOh\\} in heating period is 0.200 W/m3 K in Shenyang and 0.414 W/m3 K in Wuhan. This index and energy use calculation method can help designers to evaluate the whole energy and thermal performance of the proposed envelopes and analyze energy saving effects for different energy conservation measures.

Jinghua Yu; Liwei Tian; Xinhua Xu; Jinbo Wang

2015-01-01T23:59:59.000Z

480

High-Performance Affordable Housing with Habitat for Humanity- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes Building America support of Habitat for Humanity including researchers who wrote Habitat construction guides and teams that have worked with affiliates on numerous field projects.

Note: This page contains sample records for the topic "improve building performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Optimizing Hydronic System Performance in Residential Applications, Ithaca, New York (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Optimizing Hydronic Optimizing Hydronic System Performance in Residential Applications Ithaca, New York PROJECT INFORMATION Project Name: Condensing Boiler Optimization Location: Ithaca, NY Partners: Ithaca Neighborhood Housing Services, www.ithacanhs.org; Appropriate Designs, www.hydronicpros.com; HTP, www.htproducts.com; Peerless, www.peerlessboilers.com; Grundfos, us.grundfos.com; Bell & Gossett, www.bell-gossett.com; Emerson Swan, www.emersonswan.com. Consortium for Advanced Residential Buildings, www.carb-swa.com Building Component: Space heating, water heating Application: New; single and multifamily Year Tested: 2012-2013 Applicable Climate Zone(s): 4,5,6,7 PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $6,100-$8,200 Projected Energy Savings:

482

The Post-occupancy Performance of Green Office Buildings: Evidence for the Fiekd  

E-Print Network (OSTI)

. conven ona o ce u ngs = ? Matched pairs ? Across Canada and northern US public and private sector , ? Size: 1300 to 38500 m2 ? Age: 1956 to 2009 ? Green: mostly LEED at some level http://nparc.cisti-icist...-certified buildings, matched with 100 conventional buildings: ? On average, LEED buildings used 25% less energy than conventional counterparts ? But, about one-third of buildings used more ? And, little correlation between energy credits and actual energy...

Newsham, G.

2013-01-01T23:59:59.000Z

483

Continuous Commissioning Based on the European Energy Performance of Buildings Directive and Intelligent Monitoring  

E-Print Network (OSTI)

H, Stuttgart/Kornwestheim Germany Christian Neumann Operating agent Building EQ Fraunhofer-Institute for Solar Energy Systems Freiburg, Germany ABSTRACT The Save Project BuildingEQ ?Tools and methods for linking EPBD and continuous commissioning... behaviour of the building available at this state. ESL-IC-08-10-08 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 Page 2 of paper submitted to ICEBO 2008 Berlin Figure 1...

Schmidt, F.; Neumann, C.

484

Integrated Hygrothermal Performance of Building Envelopes and Systems in Hot and Humid Climates  

E-Print Network (OSTI)

Technology Center VTT Building Technology, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Espoo, Finland Building Technology Center, Oak Ridge, Tennessee, US Oak Ridge, Tennessee, US ABSTRACT In hot and humid climates the interior... retarders reduce risk of moisture damage, Proceedings of the 4th Symposium, Building Physics in the Nordic Countries, Espoo, Finland, Sept. 9-10, pp.447-454. Karagiozis, A. and Hadjisophocleous G. "Wind- Driven Rain on High-Rise Buildings", Thermal...

Karagiozis, A. N.; Desjarlais, A.; Salonvaara, M.

2000-01-01T23:59:59.000Z

485

Building America Webinar: High Performance Space Conditioning Systems, Part II- Compact Buried Ducts  

Energy.gov (U.S. Department of Energy (DOE))

This presentation is part of the U.S. Department of Energy Building America webinar held on November 18, 2014.

486

A New Approach in Urea Dosing to Improve Performance and Durability...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approach in Urea Dosing to Improve Performance and Durability of SCR Systems for the Use in Off-Road Applications to Fulfill Tier 4 Final A New Approach in Urea Dosing to Improve...

487

Performance of Coupled Building Energy and CFD Simulations Zhiqiang (John) Zhai  

E-Print Network (OSTI)

and CFD. This investigation implemented these concepts and developed an integrated building design tool, E, West Lafayette, IN 47907-2088, USA Abstract The integration of building energy simulation (ES of the integrated building simulation over the separated energy simulation and computational

Chen, Qingyan "Yan"

488

Performance Engineering: Understanding and Improving the Performance of Large-Scale Codes  

E-Print Network (OSTI)

Journal of High Performance Computing Applications, vol.component of the high-performance computing world. This isJournal of High Performance Computing Applications, vol.

2008-01-01T23:59:59.000Z

489

SOME ANALYTIC MODELS OF PASSIVE SOLAR BUILDING PERFORMANCE: A THEORETICAL APPROACH TO THE DESIGN OF ENERGY-CONSERVING BUILDINGS  

E-Print Network (OSTI)

during construction. many passive houses have performed muchif it occurred, the optimwll passive house would likely havephotographs of a passive solar house at First Village in

Goldstein, David Baird

2011-01-01T23:59:59.000Z

490

Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition  

Energy.gov (U.S. Department of Energy (DOE))

This sourcebook describes basic process heating applications and equipment, and outlines opportunities for energy and performance improvements. It also discusses the merits of using a systems approach in identifying and implementing these improvement opportunities. It is not intended to be a comprehensive technical text on improving process heating systems, but serves to raise awareness of potential performance improvement opportunities, provides practical guidelines, and offers suggestions on where to find additional help.

491

Free Flow Power Partners to Improve Hydrokinetic Turbine Performance...  

Office of Environmental Management (EM)

as the device performed as expected, with no discernible harm to river-dwelling fish. Free Flow has also completed preliminary designs of utility-scale installations at a...

492

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Activities Building Activities The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building sector by at least 50%. The U.S. DOE Solar Decathlon is a biennial contest which challenges college teams to design and build energy efficient houses powered by the sun. Each team competes in 10 contests designed to gauge the performance, livability and affordability of their house. The Building America program develops market-ready energy solutions that improve the efficiency of new and existing homes while increasing comfort, safety, and durability. Guidelines for Home Energy Professionals foster the growth of a high quality residential energy upgrade industry and a skilled and credentialed workforce.

493

Building America Best Practices Series Volume 13: Energy Performance Techniques and Technologies: Preserving Historic Homes  

SciTech Connect

This guide is a resource to help contractors renovate historic houses, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. The best practices described in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. The guide is available for download from the DOE Building America website www.buildingamerica.gov.

Britt, Michelle L.; Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Makela, Erin KB; Schneider, Elaine C.; Kaufman, Ned

2011-03-01T23:59:59.000Z

494

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Asset Score Energy Asset Score Photo of a laptop with energy asset score image on the screen The free online Asset Scoring Tool will generate a score based on inputs about the building envelope and buildling systems (heating, ventilation, cooling, lighting, and service hot water). Launch Energy Asset Score The U.S. Department of Energy (DOE) is developing a Commercial Building Energy Asset Score (Asset Score) program to allow building owners and managers to more accurately assess building energy performance. The Asset Score program will act as a national standard and will include the Commercial Building Energy Asset Scoring Tool (Asset Scoring Tool) to evaluate the physical characteristics and as-built energy efficiency of buildings. The Asset Scoring Tool will identify cost-effective energy efficient improvements that, if implemented, can reduce energy bills and potentially improve building asset value. View the Asset Score fact sheet for a brief overview of the program.

495

The Navy Saves Energy in its Buildings With EERE Expertise |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy savings performance contract (ESPC) partnership, the NUWC installed geothermal heat pumps, high-efficiency HVAC and building systems; improved energy management...

496

Building America Research Teams: Spotlight on Alliance for Residential...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

explore specific technology areas that can radically improve home performance. BARA communication projects include Building America outreach products and activities (see...

497

Instructional Improvement: Building Capacity for the Professional Development of Librarians as Teachers  

E-Print Network (OSTI)

The purpose of this article is to review the state of instructional improvement programs in libraries and to draw on the broader literature of instructional improvement in higher education to identify issues to which the ...

Walter, Scott

2006-01-01T23:59:59.000Z

498

The performance check between whole building thermal performance criteria and exterior wall measured clear wall R-value, thermal bridging, thermal mass, and airtightness  

SciTech Connect

At the last IEA Annex 32 meeting it was proposed that the annex develop the links between level 1 (the whole building performance) and level 2 (the envelope system). This paper provides a case study of just that type of connection. An exterior wall mockup is hot box tested and modeled in the laboratory. Measurements of the steady state and dynamic behavior of this mockup are used as the basis to define the thermal bridging, thermal mass benefit and air tightness of the whole wall system. These level two performance characteristics are related to the whole building performance. They can be analyzed by a finite difference modeling of the wall assembly. An equivalent wall theory is used to convert three dimensional heat flow to one dimensional terms that capture thermal mass effects, which in turn are used in a common whole building simulation model. This paper illustrates a performance check between the thermal performance of a Massive ICF (Insulating Concrete Form) wall system mocked up (level 2) and Whole Building Performance criteria (level 1) such as total space heating and cooling loads (thermal comfort).

Kosny, J.; Christian, J.E.; Desjarlais, A.O. [Oak Ridge National Lab., TN (United States). Buildings Technology Center; Kossecka, E. [Polish Academy of Sciences (Poland); Berrenberg, L. [American Polysteel Forms (United States)

1998-06-01T23:59:59.000Z

499

Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program  

SciTech Connect

The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi, to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.

Langner, R.; Hendron, B.; Bonnema, E.

2014-08-01T23:59:59.000Z

500

The Emergence of Trade Associations as Agents of Environmental Performance Improvement  

E-Print Network (OSTI)

This paper explores a surprising phenomenon: the emergence of trade associations as agents of environmental performance improvement. Trade associations in the United States have historically fought environmental regulation, ...

Nash, Jennifer

2002-08-26T23:59:59.000Z