Powered by Deep Web Technologies
Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

American coal imports 2015  

SciTech Connect

As 2007 ends, the US coal industry passes two major milestones - the ending of the Synfuel tax break, affecting over 100M st annually, and the imposition of tighter and much more expensive safety measures, particularly in deep mines. Both of these issues, arriving at a time of wretched steam coal price levels, promise to result in a major shake up in the Central Appalachian mining sector. The report utilizes a microeconomic regional approach to determine whether either of these two schools of thought have any validity. Transport, infrastructure, competing fuels and regional issues are examined in detail and this forecasts estimates coal demand and imports on a region by region basis for the years 2010 and 2015. Some of the major highlights of the forecast are: Import growth will be driven by steam coal demand in the eastern and southern US; Transport will continue to be the key driver - we believe that inland rail rates will deter imports from being railed far inland and that the great majority of imports will be delivered directly by vessel, barge or truck to end users; Colombian coal will be the overwhelmingly dominant supply source and possesses a costs structure to enable it to compete with US-produced coal in any market conditions; Most of the growth will come from existing power plants - increasing capacity utilization at existing import facilities and other plants making investments to add imports to the supply portfolio - the growth is not dependent upon a lot of new coal fired capacity being built. Contents of the report are: Key US market dynamics; International supply dynamics; Structure of the US coal import market; and Geographic analysis.

Frank Kolojeski [TransGlobal Ventures Corp. (United States)

2007-09-15T23:59:59.000Z

2

Steam Coal Import Costs - EIA  

Gasoline and Diesel Fuel Update (EIA)

Steam Coal Import Costs for Selected Countries Steam Coal Import Costs for Selected Countries U.S. Dollars per Metric Ton1 (Average Unit Value, CIF2) Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Belgium 46.96 39.34 39.76 66.29 70.83 70.95 82.81 150.58 NA Denmark 40.78 31.65 50.27 56.29 61.84 59.15 75.20 113.34 NA Finland 40.83 37.08 39.99 58.45 62.80 67.65 72.64 134.21 NA France 45.36 42.59 42.63 64.08 75.23 72.92 84.49 135.53 NA Germany 41.46 36.80 39.00 61.22 72.48 70.12 81.49 138.84 NA Ireland3 45.25 47.88 50.08 80.90 74.91 101.78 125.15 143.08 NA Italy 44.83 41.25 42.45 63.54 73.20 69.16 86.00 143.68 NA Japan 37.95 36.95 34.93 51.48 62.73 63.33 70.92 125.42 NA Netherlands 40.09 35.81 37.27 55.09 68.86 68.57 79.12 133.50 NA

3

Table F17: Coal Consumption Estimates and Imports and Exports ...  

U.S. Energy Information Administration (EIA)

Table F17: Coal Consumption Estimates and Imports and Exports of Coal Coke, 2011 State Coal Coal Coke Residential a Commercial Industrial Electric ...

4

Table F18: Coal Price and Expenditure Estimates and Imports ...  

U.S. Energy Information Administration (EIA)

Table F18: Coal Price and Expenditure Estimates and Imports and Exports of Coal Coke, 2011 State Coal Coal Coke Prices Expenditures Prices ...

5

Small boiler uses waste coal  

SciTech Connect

Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

Virr, M.J. [Spinheat Ltd. (United States)

2009-07-15T23:59:59.000Z

6

Coking Coal Import Costs - EIA  

Gasoline and Diesel Fuel Update (EIA)

Import Costs for Selected Countries Import Costs for Selected Countries U.S. Dollars per Metric Ton1 (Average Unit Value, CIF2) Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Belgium 48.67 46.59 49.25 78.98 108.68 126.85 120.51 163.26 NA France 52.47 60.26 62.05 75.46 109.69 133.48 124.63 212.51 NA Germany 51.30 59.53 64.00 74.74 113.48 135.72 133.45 182.72 NA Italy 55.48 57.67 60.39 77.24 103.02 112.05 118.05 118.97 NA Japan 41.13 42.14 41.73 61.40 88.80 93.10 88.43 184.13 NA Netherlands 55.37 55.55 63.00 78.99 104.06 125.70 125.84 187.06 NA Spain 52.32 57.10 60.44 79.30 116.50 134.81 124.87 211.23 NA United Kingdom 53.14 56.81 57.34 77.73 116.05 128.51 120.24 187.79 NA 1To convert U.S. dollars per metric ton to U.S. dollars per short ton

7

Table 20. Coal Imports by Customs District  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Imports by Customs District Coal Imports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 20. Coal Imports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Customs District April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change Eastern Total 469,878 331,008 156,004 800,886 350,124 128.7 Baltimore, MD - - 106,118 - 154,318 - Boston, MA 373,985 154,438 - 528,423 51,185 NM Buffalo, NY 44 - - 44 - - New York City, NY 1,373 1,402 487 2,775 507 447.3 Norfolk, VA - 68,891 - 68,891 35,856 92.1 Ogdensburg, NY - 1 12 1 12 -91.7 Portland, ME 42,428 44,547 - 86,975 - - Providence, RI 52,028 61,729 49,387 113,757 108,226 5.1 St. Albans, VT 20

8

GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS  

Science Conference Proceedings (OSTI)

Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require ultimate disposal when it is put to use. Each task three waste was evaluated for utilization potential based on its physical properties, bulk chemical composition, and mineral composition. Only one of the thirteen materials studied might be suitable for use as a pozzolanic concrete additive. However, many wastes appeared to be suitable for other high-volume uses such as blasting grit, fine aggregate for asphalt concrete, road deicer, structural fill material, soil stabilization additives, waste stabilization additives, landfill cover material, and pavement base course construction.

Edwin S. Olson; Charles J. Moretti

1999-11-01T23:59:59.000Z

9

Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same  

DOE Patents (OSTI)

A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.

Burnet, George (Ames, IA); Gokhale, Ashok J. (College Station, TX)

1990-07-10T23:59:59.000Z

10

Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same  

DOE Patents (OSTI)

A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste and method for producing the same are disclosed, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces. 3 figs.

Burnet, G.; Gokhale, A.J.

1990-07-10T23:59:59.000Z

11

Estimating coal production peak and trends of coal imports in China  

SciTech Connect

More than 20 countries in the world have already reached a maximum capacity in their coal production (peak coal production) such as Japan, the United Kingdom and Germany. China, home to the third largest coal reserves in the world, is the world's largest coal producer and consumer, making it part of the Big Six. At present, however, China's coal production has not yet reached its peak. In this article, logistic curves and Gaussian curves are used to predict China's coal peak and the results show that it will be between the late 2020s and the early 2030s. Based on the predictions of coal production and consumption, China's net coal import could be estimated for coming years. This article also analyzes the impact of China's net coal import on the international coal market, especially the Asian market, and on China's economic development and energy security. 16 refs., 5 figs., 6 tabs.

Bo-qiang Lin; Jiang-hua Liu [Xiamen University, Xiamen (China). China Center for Energy Economics Research (CCEER)

2010-01-15T23:59:59.000Z

12

Co-firing coal and municipal solid waste  

SciTech Connect

The aim of this study was to experimentally investigate how different the organic fraction of municipal solid waste (OFMSW) or municipal solid waste (MSW) utilizing strategies affects the gas emission in simple fluidized bed combustion (FBC) of biomass. In this study, ground OFMSW and pulverized coal (PC) were used for co-firing tests. The tests were carried out in a bench-scale bubbling FBC. Coal and bio-waste fuels are quite different in composition. Ash composition of the bio-waste fuels is fundamentally different from ash composition of the coal. Chlorine (Cl) in the MSW may affect operation by corrosion. Ash deposits reduce heat transfer and also may result in severe corrosion at high temperatures. Nitrogen (N) and carbon ) assessments can play an important role in a strategy to control carbon dioxide (CO{sub 2}) and nitrogen oxide (NOx) emissions while raising revenue. Regulations such as subsidies for oil, liquid petroleum gas (LPG) for natural gas powered vehicles, and renewables, especially biomass lines, to reduce emissions may be more cost-effective than assessments. Research and development (RD) resources are driven by energy policy goals and can change the competitiveness of renewables, especially solid waste. The future supply of co-firing depends on energy prices and technical progress, both of which are driven by energy policy priorities.

Demirbas, A. [Sila Science, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

13

AEO2011: World Metallurgical Coal Flows By Importing Regions...  

Open Energy Info (EERE)

World Metallurgical Coal Flows By Importing Regions and Exporting Countries

14

Co-conversion of coal/waste plastic mixtures under various pyrolysis and liquefaction conditions  

Science Conference Proceedings (OSTI)

For strategic and economic reasons the conversion of coal to liquid fuels has been a constant goal of the coal science community. Although the economics of coal liquefaction are primarily governed by the price of crude oil, other factors such as the need for large quantities of hydrogen gas, play an important role. If methods could be found that reduce the amount of hydrogen gas required for liquefaction, considerable benefits would be realized. To explore this possibility the use of waste plastics as materials capable of upgrading coal into liquid fuel products has been investigated. The use of waste plastics for this purpose could become possible because over 30 million tons of synthetic polymer material is produced in the United States every year. In this study, several pyrolysis and liquefaction experiment were performed on an Illinois No. 6 coal and coal/plastic blends.

Palmer, S.R.; Hippo, E.J.; Tandon, D.; Blankenship, M. [Southern Illinois Univ., Carbondale, IL (United States)

1995-12-31T23:59:59.000Z

15

Waste Coal Fines Reburn for NOx and Mercury Emission Reduction  

SciTech Connect

Injection of coal-water slurries (CWS) made with both waste coal and bituminous coal was tested for enhanced reduction of NO{sub x} and Hg emissions at the AES Beaver Valley plant near Monaca, PA. Under this project, Breen Energy Solutions (BES) conducted field experiments on the these emission reduction technologies by mixing coal fines and/or pulverized coal, urea and water to form slurry, then injecting the slurry in the upper furnace region of a coal-fired boiler. The main focus of this project was use of waste coal fines as the carbon source; however, testing was also conducted using pulverized coal in conjunction with or instead of waste coal fines for conversion efficiency and economic comparisons. The host site for this research and development project was Unit No.2 at AES Beaver Valley cogeneration station. Unit No.2 is a 35 MW Babcock & Wilcox (B&W) front-wall fired boiler that burns eastern bituminous coal. It has low NO{sub x} burners, overfire air ports and a urea-based selective non-catalytic reduction (SNCR) system for NO{sub x} control. The back-end clean-up system includes a rotating mechanical ash particulate removal and electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. Coal slurry injection was expected to help reduce NOx emissions in two ways: (1) Via fuel-lean reburning when the slurry is injected above the combustion zone. (2) Via enhanced SNCR reduction when urea is incorporated into the slurry. The mercury control process under research uses carbon/water slurry injection to produce reactive carbon in-situ in the upper furnace, promoting the oxidation of elemental mercury in flue gas from coal-fired power boilers. By controlling the water content of the slurry below the stoichiometric requirement for complete gasification, water activated carbon (WAC) can be generated in-situ in the upper furnace. As little as 1-2% coal/water slurry (heat input basis) can be injected and generate sufficient WAC for mercury capture. During July, August, and September 2007, BES designed, procured, installed, and tested the slurry injection system at Beaver Valley. Slurry production was performed by Penn State University using equipment that was moved from campus to the Beaver Valley site. Waste coal fines were procured from Headwaters Inc. and transported to the site in Super Sacks. In addition, bituminous coal was pulverized at Penn State and trucked to the site in 55-gallon drums. This system was operated for three weeks during August and September 2007. NO{sub x} emission data were obtained using the plant CEM system. Hg measurements were taken using EPA Method 30B (Sorbent Trap method) both downstream of the electrostatic precipitator and in the stack. Ohio Lumex Company was on site to provide rapid Hg analysis on the sorbent traps during the tests. Key results from these tests are: (1) Coal Fines reburn alone reduced NO{sub x} emissions by 0-10% with up to 4% heat input from the CWS. However, the NO{sub x} reduction was accompanied by higher CO emissions. The higher CO limited our ability to try higher reburn rates for further NO{sub x} reduction. (2) Coal Fines reburn with Urea (Carbon enhanced SNCR) decreased NO{sub x} emissions by an additional 30% compared to Urea injection only. (3) Coal slurry injection did not change Hg capture across the ESP at full load with an inlet temperature of 400-430 F. The Hg capture in the ESP averaged 40%, with or without slurry injection; low mercury particulate capture is normally expected across a higher temperature ESP because any oxidized mercury is thought to desorb from the particulate at ESP temperatures above 250 F. (4) Coal slurry injection with halogen salts added to the mixing tank increased the Hg capture in the ESP to 60%. This significant incremental mercury reduction is important to improved mercury capture with hot-side ESP operation and wherever hindrance from sulfur oxides limit mercury reduction, because the higher temperature is above sulfur oxide dew point interference.

Stephen Johnson; Chetan Chothani; Bernard Breen

2008-04-30T23:59:59.000Z

16

Table 19. Average Price of U.S. Coal Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Price of U.S. Coal Imports Price of U.S. Coal Imports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 19. Average Price of U.S. Coal Imports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Origin April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 147.86 138.39 191.01 144.86 197.96 -26.8 Canada 147.86 138.39 191.00 144.86 197.95 -26.8 Mexico - - 286.23 - 286.23 - South America Total 75.29 80.74 86.52 77.20 87.17 -11.4 Argentina - - 504.70 - 504.70 - Colombia 74.87 80.74 83.03 76.96 85.25 -9.7 Peru 87.09 - - 87.09 - - Venezuela 91.81 - 122.01 91.81 112.61 -18.5 Europe Total - 136.50 137.33 136.50 146.31 -6.7

17

NETL: News Release - Converting Coal Wastes to Clean Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

November 28, 2000 November 28, 2000 Converting Coal Wastes to Clean Energy DOE to Scale Up 3 Projects That Upgrade Coal Fines, Wastes PITTSBURGH, PA - Three new technologies that can help the nation's coal industry turn waste into energy are now ready for scale up, the U.S. Department of Energy said today. MORE INFO Solid Fuels & Feedstocks Program Each of the three recover carbon-rich materials that in the past have been discarded during coal mining and cleaning operations. Using innovative approaches, the technologies remove unwanted water and other impurities and upgrade the waste materials into clean-burning fuels for power plants. The three were first selected for smaller-scale research in August 1998 as part of the Energy Department's Fossil Energy "solid fuels and feedstocks"

18

Co-processing of agricultural and biomass waste with coal  

Science Conference Proceedings (OSTI)

A major thrust of our research program is the use of waste materials as co-liquefaction agents for the first-stage conversion of coal to liquid fuels. By fulfilling one or more of the roles of an expensive solvent in the direct coal liquefaction (DCL) process, the waste material is disposed off ex-landfill, and may improve the overall economics of DCL. Work in our group has concentrated on co-liquefaction with waste rubber tires, some results from which are presented elsewhere in these Preprints. In this paper, we report on preliminary results with agricultural and biomass-type waste as co-liquefaction agents.

Stiller, A.H.; Dadyburjor, D.B.; Wann, Ji-Perng [West Virginia Univ., Morgantown, WV (United States)] [and others

1995-12-31T23:59:59.000Z

19

The Coal-Waste Artificial Reef Program (C-WARP): A New Resource  

E-Print Network (OSTI)

The Coal-Waste Artificial Reef Program (C-WARP): A New Resource Potential for Fishing Reef ABSTRACT-Thefeasibility ofusing solid blocks of waste materialfrom coal:firedpower plantslor underwater (scrubber) sludge from coal-burning power stations. was constructed in the Atlantic Ocean offLong Island. N

20

Temperature programmed combustion studies of the co-processing of coal and waste materials  

E-Print Network (OSTI)

Temperature programmed combustion studies of the co-processing of coal and waste materials F) to study the interaction between coal, polyethylene, and dried sewage sludge which are possible components in coal/ waste materials co-processing combustion systems. The TPC studies were carried out on the raw

Thomas, Mark

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Elevated Trace Element Concentrations in Southern Toads, Bufo terrestris, Exposed to Coal Combustion Waste  

E-Print Network (OSTI)

Elevated Trace Element Concentrations in Southern Toads, Bufo terrestris, Exposed to Coal, and behavioral abnormalities in amphibians to coal combustion wastes (coal ash). Few studies, however, have determined trace element concentrations in amphibians exposed to coal ash. In the current study we compare

Hopkins, William A.

22

Underground Backfilling Technology for Waste Dump Disposal in Coal Mining District  

Science Conference Proceedings (OSTI)

China is one of the few countries over the world which uses coal as the main energy, and its coal production has become more than one third of the world. To cope with the serious problems caused by the coal exploitation such as waste discharge, environment ... Keywords: Coal mining district, Waste dumps, Environment destruction, Deep vertical feeding system, Fully mechanized longwall solid material backfilling mining, Backfilling equipment

Huang Yanli; Zhang Jixiong; Liu Zhan; Zhang Qiang

2010-12-01T23:59:59.000Z

23

Coal waste seen as valuable resource Published: March. 29, 2011 at 8:09 PM  

E-Print Network (OSTI)

Coal waste seen as valuable resource Published: March. 29, 2011 at 8:09 PM ANAHEIM, Calif., March 29 (UPI) -- Fly ash, a byproduct of coal-burning electric power plants, could save billions. More than 450 coal-burning electric power plants in the United States produce about 130 million tons

Belogay, Eugene A.

24

AEO2011: World Steam Coal Flows By Importing Regions and Exporting  

Open Energy Info (EERE)

Steam Coal Flows By Importing Regions and Exporting Steam Coal Flows By Importing Regions and Exporting Countries Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 142, and contains only the reference case. The dataset uses million short tons. The data is broken down into steam coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal flows countries EIA exporting importing Data application/vnd.ms-excel icon AEO2011: World Steam Coal Flows By Importing Regions and Exporting Countries- Reference Case (xls, 103.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

25

Tell President Obama About Coal River Mountain Coal River Mountain and the Heathrow Airport runway remind me how important it is to  

E-Print Network (OSTI)

Tell President Obama About Coal River Mountain Coal River Mountain and the Heathrow Airport runway remind me how important it is to keep our eye on the ball. Coal River Mountain is the site of an absurdity. I learned about Coal River Mountain from students at Virginia Tech last fall. They were concerned

Hansen, James E.

26

The use of FBC wastes in the reclamation of coal slurry solids  

SciTech Connect

Fluidized bed combustion (FBC) is a relatively new technology that is used commercially for the combustion of coal. In Illinois, this technology is valuable because it allows the combustion of Illinois high sulfur coal without pollution of the atmosphere with vast quantities of sulfur oxides. In FBC, coal is mixed with limestone or dolomite either before injection into the combustion chamber or in the combustion chamber. As the coal burns, sulfur in the coal is oxidized to SO{sub 2} and this is trapped by reaction with the limestone or dolomite to form gypsum (CaSO{sub 4}{center dot}2H{sub 2}O). Solid by-products from FBC are generally a mixture of calcium oxide, gypsum, coal ash, and unburned coal. The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in the Illinois are mixed with coal slurry solids from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids. These data will be used in future research into the ability of such mixtures to support seed germination and plant growth. The ultimate of this and future research is to determine whether mixed FBC waste and coal slurry solids can be slurry pond reclamation.

Dreher, G.B.

1991-01-01T23:59:59.000Z

27

AEO2011: World Metallurgical Coal Flows By Importing Regions and Exporting  

Open Energy Info (EERE)

Metallurgical Coal Flows By Importing Regions and Exporting Metallurgical Coal Flows By Importing Regions and Exporting Countries Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 143, and contains only the reference case. The dataset uses million short tons. The data is broken down into Metallurgical coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal EIA Data application/vnd.ms-excel icon AEO2011: World Metallurgical Coal Flows By Importing Regions and Exporting Countries- Reference Case (xls, 103.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

28

AEO2011: World Total Coal Flows By Importing Regions and Exporting  

Open Energy Info (EERE)

Total Coal Flows By Importing Regions and Exporting Total Coal Flows By Importing Regions and Exporting Countries Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 144, and contains only the reference case. The dataset uses million short tons. The data is broken down into total coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal EIA Data application/vnd.ms-excel icon AEO2011: World Total Coal Flows By Importing Regions and Exporting Countries - Reference Case (xls, 104 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

29

Coal-sand attrition system and its` importance in fine coal cleaning. Eighth quarterly report, June 1, 1992--August 31, 1993  

SciTech Connect

The research efforts on the importance of a coal-sand attrition continued with work in four categories: Continuous grinding tests using steel media; fracture tests on coal samples compacted at different pressure; SEM-Image analysis of feed and ground product coal samples; zeta potential measurements of coal samples ground by different media, and flotation test of coal samples ground by different media. Results are described.

Mehta, R.K.; Schultz, C.W.

1993-08-26T23:59:59.000Z

30

AEO2011: World Total Coal Flows By Importing Regions and Exporting  

Open Energy Info (EERE)

Total Coal Flows By Importing Regions and Exporting Countries

31

AEO2011: World Steam Coal Flows By Importing Regions and Exporting  

Open Energy Info (EERE)

Steam Coal Flows By Importing Regions and Exporting Countries

32

NEW SOLID FUELS FROM COAL AND BIOMASS WASTE  

DOE Green Energy (OSTI)

Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable fuel. These fuels will be converted to energy while reducing CO{sub 2} emissions from power generating boilers and mitigating global warming concerns. This report describes the sludge analysis, solid fuel preparation and production, combustion performance, environmental emissions and required equipment.

Hamid Farzan

2001-09-24T23:59:59.000Z

33

Organic and Inorganic Hazardous Waste Stabilization Using Coal Combustion By-Product Materials  

Science Conference Proceedings (OSTI)

This report describes a laboratory investigation of four clean-coal by-products to stabilize organic and inorganic constituents of hazardous waste stream materials. The wastes included API separator sludge, metal oxide-hydroxide waste, metal plating sludge, and creosote-contaminated soil. Overall, the investigation showed that the high alkalinity of the by-products may cost-effectively stabilize the acidic components of hazardous waste.

1994-10-08T23:59:59.000Z

34

Use of the GranuFlow Process in Coal Preparation Plants to Improve Energy Recovery and Reduce Coal Processing Wastes  

Science Conference Proceedings (OSTI)

With the increasing use of screen-bowl centrifuges in today's fine coal cleaning circuits, a significant amount of low-ash, high-Btu coal can be lost during the dewatering step due to the difficulty in capturing coal of this size consist (< 100 mesh or 0.15mm). The GranuFlow{trademark} technology, developed and patented by an in-house research group at DOE-NETL, involves the addition of an emulsified mixture of high-molecular-weight hydrocarbons to a slurry of finesized coal before cleaning and/or mechanical dewatering. The binder selectively agglomerates the coal, but not the clays or other mineral matter. In practice, the binder is applied so as to contact the finest possible size fraction first (for example, froth flotation product) as agglomeration of this fraction produces the best result for a given concentration of binder. Increasing the size consist of the fine-sized coal stream reduces the loss of coal solids to the waste effluent streams from the screen bowl centrifuge circuit. In addition, the agglomerated coal dewaters better and is less dusty. The binder can also serve as a flotation conditioner and may provide freeze protection. The overall objective of the project is to generate all necessary information and data required to commercialize the GranuFlow{trademark} Technology. The technology was evaluated under full-scale operating conditions at three commercial coal preparation plants to determine operating performance and economics. The handling, storage, and combustion properties of the coal produced by this process were compared to untreated coal during a power plant combustion test.

Glenn A. Shirey; David J. Akers

2005-12-31T23:59:59.000Z

35

INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION  

DOE Green Energy (OSTI)

An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

Peet M. Soot; Dale R. Jesse; Michael E. Smith

2005-08-01T23:59:59.000Z

36

A kinetic model for co-processing of coal and waste tire  

Science Conference Proceedings (OSTI)

Liquefaction of waste (recycled) tire and coal was studied both separately and using mixtures with different tire-to-coal ratios. Temperatures from 350-425{degrees}C were used. The data were analyzed using a model with a second-order consecutive reaction scheme (liquefaction to asphaltenes to oil and gas) for coal; a second-order conversion of tire to oil and gas; and an additional synergism reaction forming asphaltenes, first order in both coal and tire, when both are present. The agreement between the model and experiment was good.

Dadyburjor, D.B.; Sharma, R.K.; Yang, J.; Zondlo, J.W. [West Virginia Univ., Morgantown, WV (United States)

1996-12-31T23:59:59.000Z

37

Phytostabilization of a landfill containing coal combustion waste.  

SciTech Connect

The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three subsurface treatments (blocks) and five surface amendments (treatments) was implemented. The three blocks included (1) ripping and compost amended, (2) ripping only, and (3) control. Surface treatments included (1) topsoil, (2) fly ash, (3) compost, (4) apatite, and (5) control. Inoculated loblolly (Pinus taeda) and Virginia (Pinus virginiana) pine trees were planted on each plot. After three growing seasons, certain treatments were shown to be favorable for the establishment of vegetation on the basin. Seedlings located on block A developed a rooting system that penetrated into the basin media without significant adverse effects to the plant. However, seedlings on blocks B and C displayed poor rooting conditions and high mortality, regardless of surface treatment. Pore-water samples from lysimeters in block C were characterized by high acidity, Fe, Mn, Al, sulfate, and traceelement concentrations. Water-quality characteristics of the topsoil plots in block A, however, conformed to regulatory protocols. A decrease in soil-moisture content was observed in the rooting zone of plots that were successfully revegetated, which suggests that the trees, in combination with the surface treatments, influenced the water balance by facilitating water loss through transpiration and thereby reducing the likelihood of unwanted surface runoff and/or drainage effluent.

Barton, Christopher; Marx, Donald; Adriano, Domy; Koo, Bon Jun; Newman, Lee; Czapka, Stephen; Blake, John

2005-12-01T23:59:59.000Z

38

1. INTRODUCTION Unmineable coal is an important resource because of its  

E-Print Network (OSTI)

coalbed methane (CBM). CBM has grown to supply approximately 10% of US natural gas production important coal properties with different gas adsorption. These properties, including adsorption 2009. U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves Report 30, 38 41. 2) Ross, H

Stanford University

39

The use of FBC wastes in the reclamation of coal slurry solids. Technical report, September 1--November 30, 1991  

SciTech Connect

Fluidized bed combustion (FBC) is a relatively new technology that is used commercially for the combustion of coal. In Illinois, this technology is valuable because it allows the combustion of Illinois high sulfur coal without pollution of the atmosphere with vast quantities of sulfur oxides. In FBC, coal is mixed with limestone or dolomite either before injection into the combustion chamber or in the combustion chamber. As the coal burns, sulfur in the coal is oxidized to SO{sub 2} and this is trapped by reaction with the limestone or dolomite to form gypsum (CaSO{sub 4}{center_dot}2H{sub 2}O). Solid by-products from FBC are generally a mixture of calcium oxide, gypsum, coal ash, and unburned coal. The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in the Illinois are mixed with coal slurry solids from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids. These data will be used in future research into the ability of such mixtures to support seed germination and plant growth. The ultimate of this and future research is to determine whether mixed FBC waste and coal slurry solids can be slurry pond reclamation.

Dreher, G.B.

1991-12-31T23:59:59.000Z

40

Comanagement of Coal Combustion By-Products and Low-Volume Wastes: A Midwestern Site  

Science Conference Proceedings (OSTI)

An insufficient database on the environmental effects of comanagement of power plant by-products and wastes could hamper regulatory decisions regarding this practice. This report presents an environmental assessment of comanagement of high-volume coal combustion by-products with low-volume wastes at a steam electric power plant in the midwestern United States. It complements a similar assessment at a southeastern site.

1992-09-03T23:59:59.000Z

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated April 28, 2004) Spot coal prices in the East rose steadily since Labor Day 2003, with rapid escalations ...

42

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated September 26) The average spot prices for reported coal purchases rose once again ...

43

Coal....  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated August 12) According to Platts Coal Outlook’s Weekly Price Survey (August 11), the ...

44

Coal....  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated September 2) The average spot prices for coal traded last week were relatively ...

45

Additive effect of waste tire on the hydrogenolysis reaction of coal liquefaction residue  

Science Conference Proceedings (OSTI)

A numerous amount of waste tire is landfilled or dumped all over the world, which causes environmental problems, such as destruction of natural places and the risk of fires. On the other hand, the coal liquefaction residue (CLR) is produced in 30% yield through the process supporting unit (PSU) of the NEDOL coal liquefaction process. Therefore, the investigation on an effective method for utilization of waste tire and CLR is required. In this study, the simultaneous hydrogenolysis of CLR and pulverized waste tire was carried out by using tetralin. The yields in the simultaneous hydrogenolysis were compared with algebraic sum of the yields of the individual hydrogenolyses of waste tire alone and coal alone. In the simultaneous hydrogenolysis, the synergistic effects to upgrading, such as an increase in the yield of the oil constituent and a decrease in the yield of the asphaltene constituent, occurred because of the stabilization of asphaltenic radicals from CLR with aliphatic radicals from tire. The decrease in asphaltene yield in the simultaneous hydrogenolysis was pronounced with the increase in the tire:CLR ratio because the solvent effects of liquefied tire, such as stabilization of radicals, hydrogen shuttling, and heat transfer, were enhanced. Accordingly, it is estimated that the simultaneous hydrogenolysis of CLR and waste tire is an effective method for processing both materials. 15 refs., 3 figs., 2 tabs.

Motoyuki Sugano; Daigorou Onda; Kiyoshi Mashimo [Nihon University, Tokyo (Japan). Department of Materials and Applied Chemistry, College of Science and Technology

2006-12-15T23:59:59.000Z

46

Evaluation of AFBC co-firing of coal and hospital wastes  

Science Conference Proceedings (OSTI)

The purpose of this program is to expand the use of coal by utilizing CFB (circulating fluidized bed) technology to provide an environmentally safe method for disposing of waste materials. Hospitals are currently experiencing a waste management crisis. In many instances, they are no longer permitted to burn pathological and infectious wastes in incinerators. Older hospital incinerators are not capable of maintaining the stable temperatures and residence times necessary in order to completely destroy toxic substances before release into the atmosphere. In addition, the number of available landfills which can safely handle these substances is decreasing each year. The purpose of this project is to conduct necessary research investigating whether the combustion of the hospital wastes in a coal-fired circulating fluidized bed boiler will effectively destroy dioxins and other hazardous substances before release into the atmosphere. If this is proven feasible, in light of the quantity of hospital wastes generated each year, it would create a new market for coal -- possibly 50 million tons/year.

Not Available

1991-02-01T23:59:59.000Z

47

Synergistic Utilization of Coal Fines and Municipal Solid Waste in Coal-Fired Boilers. Phase I Final Report  

DOE Green Energy (OSTI)

A feasibility study was performed on a novel concept: to synergistically utilize a blend of waste coal fines with so-called E-fuel for cofiring and reburning in utility and industrial boilers. The E-fuel is produced from MSW by the patented EnerTech's slurry carbonization process. The slurry carbonization technology economically converts MSW to a uniform, low-ash, low-sulfur, and essentially chlorine-free fuel with energy content of about 14,800 Btu/lb.

V. Zamansky; P. Maly; M. Klosky

1998-06-12T23:59:59.000Z

48

Energy recovery from waste incineration: Assessing the importance of district heating networks  

SciTech Connect

Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO{sub 2} accounts showed significantly different results: waste incineration in one network caused a CO{sub 2} saving of 48 kg CO{sub 2}/GJ energy input while in the other network a load of 43 kg CO{sub 2}/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

Fruergaard, T.; Christensen, T.H. [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark); Astrup, T., E-mail: tha@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark)

2010-07-15T23:59:59.000Z

49

Selected radionuclides important to low-level radioactive waste management  

Science Conference Proceedings (OSTI)

The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). This report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.

NONE

1996-11-01T23:59:59.000Z

50

Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, April--June 1992  

Science Conference Proceedings (OSTI)

The Department of Energy/Morgantown Energy Technology Center (DOE/METC) has initiated research on the disposal of solid wastes from advanced coal processes. The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Environmental Research Center (EERC) to design, construct, and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. There has been considerable research on the characteristics and laboratory leaching behavior of coal wastes -- a lesser amount on wastes from advanced coal processes. However, very little information exists on the field disposal behavior of these wastes. Information on field disposal behavior is needed (a) as input to predictive models being developed, (b) as input to the development of rule of thumb design guidelines for the disposal of these wastes, and (c) as evidence of the behavior of these wastes in the natural environment.

Not Available

1992-12-31T23:59:59.000Z

51

DWPF COAL-CARBON WASTE ACCEPTANCE CRITERIA LIMIT EVALUATION BASED ON EXPERIMENTAL WORK (TANK 48 IMPACT STUDY)  

DOE Green Energy (OSTI)

This report summarizes the results of both experimental and modeling studies performed using Sludge Batch 10 (SB10) simulants and FBSR product from Tank 48 simulant testing in order to develop higher levels of coal-carbon that can be managed by DWPF. Once the Fluidized Bed Steam Reforming (FBSR) process starts up for treatment of Tank 48 legacy waste, the FBSR product stream will contribute higher levels of coal-carbon in the sludge batch for processing at DWPF. Coal-carbon is added into the FBSR process as a reductant and some of it will be present in the FBSR product as unreacted coal. The FBSR product will be slurried in water, transferred to Tank Farm and will be combined with sludge and washed to produce the sludge batch that DWPF will process. The FBSR product is high in both water soluble sodium carbonate and unreacted coal-carbon. Most of the sodium carbonate is removed during washing but all of the coal-carbon will remain and become part of the DWPF sludge batch. A paper study was performed earlier to assess the impact of FBSR coal-carbon on the DWPF Chemical Processing Cell (CPC) operation and melter off-gas flammability by combining it with SB10-SB13. The results of the paper study are documented in Ref. 7 and the key findings included that SB10 would be the most difficult batch to process with the FBSR coal present and up to 5,000 mg/kg of coal-carbon could be fed to the melter without exceeding the off-gas flammability safety basis limits. In the present study, a bench-scale demonstration of the DWPF CPC processing was performed using SB10 simulants spiked with varying amounts of coal, and the resulting seven CPC products were fed to the DWPF melter cold cap and off-gas dynamics models to determine the maximum coal that can be processed through the melter without exceeding the off-gas flammability safety basis limits. Based on the results of these experimental and modeling studies, the presence of coal-carbon in the sludge feed to DWPF is found to have both positive (+) and negative (-) impact as summarized below: (-) Coal-carbon is a melter reductant. If excess coal-carbon is present, the resulting melter feed may be too reducing, potentially shortening the melter life. During this study, the Reduction/Oxidation Potential (REDOX) of the melter could be controlled by varying the ratio of nitric and formic acid. (-) The addition of coal-carbon increases the amount of nitric acid added and decreases the amount of formic acid added to control melter REDOX. This means that the CPC with the FBSR product is much more oxidizing than current CPC processing. In this study, adequate formic acid was present in all experiments to reduce mercury and manganese, two of the main goals of CPC processing. (-) Coal-carbon will be oxidized to carbon dioxide or carbon monoxide in the melter. The addition of coal-carbon to the FBSR product will lead to approximately 55% higher offgas production from formate, nitrate and carbon due to the decomposition of the carbon at the maximum levels in this testing. Higher offgas production could lead to higher cold cap coverage or melter foaming which could decrease melt rate. No testing was performed to evaluate the impact of the higher melter offgas flow. (+) The hydrogen production is greatly reduced in testing with coal as less formic acid is added in CPC processing. In the high acid run without coal, the peak hydrogen generation was 15 times higher than in the high acid run with added coal-carbon. (+) Coal-carbon is a less problematic reducing agent than formic acid, since the content of both carbon and hydrogen are important in evaluating the flammability of the melter offgas. Processing with coal-carbon decreases the amount of formic acid added in the CPC, leading to a lower flammability risk in processing with coal-carbon compared to the current DWPF flowsheet. (+) The seven SB10 formulations which were tested during the bench-scale CPC demonstration were all determined to be within the off-gas flammability safety basis limits during the 9X/5X off-gas surge for normal bubbled melter

Lambert, D.; Choi, A.

2010-10-15T23:59:59.000Z

52

DWPF COAL-CARBON WASTE ACCEPTANCE CRITERIA LIMIT EVALUATION BASED ON EXPERIMENTAL WORK (TANK 48 IMPACT STUDY)  

Science Conference Proceedings (OSTI)

This report summarizes the results of both experimental and modeling studies performed using Sludge Batch 10 (SB10) simulants and FBSR product from Tank 48 simulant testing in order to develop higher levels of coal-carbon that can be managed by DWPF. Once the Fluidized Bed Steam Reforming (FBSR) process starts up for treatment of Tank 48 legacy waste, the FBSR product stream will contribute higher levels of coal-carbon in the sludge batch for processing at DWPF. Coal-carbon is added into the FBSR process as a reductant and some of it will be present in the FBSR product as unreacted coal. The FBSR product will be slurried in water, transferred to Tank Farm and will be combined with sludge and washed to produce the sludge batch that DWPF will process. The FBSR product is high in both water soluble sodium carbonate and unreacted coal-carbon. Most of the sodium carbonate is removed during washing but all of the coal-carbon will remain and become part of the DWPF sludge batch. A paper study was performed earlier to assess the impact of FBSR coal-carbon on the DWPF Chemical Processing Cell (CPC) operation and melter off-gas flammability by combining it with SB10-SB13. The results of the paper study are documented in Ref. 7 and the key findings included that SB10 would be the most difficult batch to process with the FBSR coal present and up to 5,000 mg/kg of coal-carbon could be fed to the melter without exceeding the off-gas flammability safety basis limits. In the present study, a bench-scale demonstration of the DWPF CPC processing was performed using SB10 simulants spiked with varying amounts of coal, and the resulting seven CPC products were fed to the DWPF melter cold cap and off-gas dynamics models to determine the maximum coal that can be processed through the melter without exceeding the off-gas flammability safety basis limits. Based on the results of these experimental and modeling studies, the presence of coal-carbon in the sludge feed to DWPF is found to have both positive (+) and negative (-) impact as summarized below: (-) Coal-carbon is a melter reductant. If excess coal-carbon is present, the resulting melter feed may be too reducing, potentially shortening the melter life. During this study, the Reduction/Oxidation Potential (REDOX) of the melter could be controlled by varying the ratio of nitric and formic acid. (-) The addition of coal-carbon increases the amount of nitric acid added and decreases the amount of formic acid added to control melter REDOX. This means that the CPC with the FBSR product is much more oxidizing than current CPC processing. In this study, adequate formic acid was present in all experiments to reduce mercury and manganese, two of the main goals of CPC processing. (-) Coal-carbon will be oxidized to carbon dioxide or carbon monoxide in the melter. The addition of coal-carbon to the FBSR product will lead to approximately 55% higher offgas production from formate, nitrate and carbon due to the decomposition of the carbon at the maximum levels in this testing. Higher offgas production could lead to higher cold cap coverage or melter foaming which could decrease melt rate. No testing was performed to evaluate the impact of the higher melter offgas flow. (+) The hydrogen production is greatly reduced in testing with coal as less formic acid is added in CPC processing. In the high acid run without coal, the peak hydrogen generation was 15 times higher than in the high acid run with added coal-carbon. (+) Coal-carbon is a less problematic reducing agent than formic acid, since the content of both carbon and hydrogen are important in evaluating the flammability of the melter offgas. Processing with coal-carbon decreases the amount of formic acid added in the CPC, leading to a lower flammability risk in processing with coal-carbon compared to the current DWPF flowsheet. (+) The seven SB10 formulations which were tested during the bench-scale CPC demonstration were all determined to be within the off-gas flammability safety basis limits during the 9X/5X off-gas surge for normal bubbled melter

Lambert, D.; Choi, A.

2010-10-15T23:59:59.000Z

53

NETL: Coal Utilization By-Products (CUB)  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Coal Utilization Byproducts Innovations for Existing Plants Solid Waste (Coal Utilization...

54

Quarterly Coal Report April - June 2012 - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Production1 Imports Waste Coal Supplied ... 1 Includes refuse recovery. ... "Power Plant Report," Form EIA-920, "Combined Heat and Power Plant ...

55

Digital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel  

E-Print Network (OSTI)

Digital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel Digital upside in view of the power generation growth potential in Asia and the environmental friendly, cost's energy and farming centers in North America as an alternative to coal-fired power plants and a solution

Columbia University

56

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated July 7, 2004) In the trading week ended July 2, the average spot coal prices tracked by EIA were mixed.

57

Water recovery using waste heat from coal fired power plants.  

Science Conference Proceedings (OSTI)

The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

2011-01-01T23:59:59.000Z

58

AFBC co-firing of coal and hospital waste. Fourth quarterly report, 1997  

DOE Green Energy (OSTI)

The project objective is to design, construct, install, provide operator training and start-up a circulating fluidized bed combustion system at the Lebanon Pennsylvania Veteran`s Affairs Medical Center. This unit will co-fire coal and hospital waste providing lower cost steam for heating and possibly cooling (absorption chiller) and operation of a steam turbine-generator for limited power generation while providing efficient destruction of both general and infectious hospital waste. The steam generated is as follows: Steam =20,000 lb/hr; Temperature = 353 F (saturated); Pressure= 125 psig; Steam quality = 98.5%

NONE

1997-07-01T23:59:59.000Z

59

Potential effects of clean coal technologies on acid precipitation, greenhouse gases, and solid waste disposal  

SciTech Connect

The US Department of Energy`s (DOE`s) Clean Coal Technology Demonstration Program (CCTDP) was initially funded by Congress to demonstrate more efficient, economically feasible, and environmentally acceptable coal technologies. Although the environmental focus at first was on sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) because their relationship to acid precipitation, the CCTDP may also lead to reductions in carbon dioxide (CO{sub 2}) emissions and in the volume of solid waste produced, compared with conventional technologies. The environmental effects of clean coal technologies (CCTs) depend upon which (if any) specific technologies eventually achieve high acceptance in the marketplace. In general, the repowering technologies and a small group of retrofit technologies show the most promise for reducing C0{sub 2} emissions and solid waste. These technologies also compare favorably with other CCTs in terms of SO{sub 2} and NO{sub x} reductions. The upper bound for CO{sup 2} reductions in the year 2010 is only enough to reduce global ``greenhouse`` warming potential by about 1%. However, CO{sub 2} emissions come from such variety of sources around the globe that no single technological innovation or national policy change could realistically be expected to reduce these emissions by more than a few percent. Particular CCTs can lead to either increases or decreases in the amount of solid waste produced. However, even if decreases are not achieved, much of the solid waste from clean coal technologies would be dry and therefore easier to dispose of than scrubber sludge.

Blasing, T.J.; Miller, R.L.; McCold, L.N.

1993-11-01T23:59:59.000Z

60

Low-Volume Wastes With High-Volume Coal Combustion By-Products: P4 Site  

Science Conference Proceedings (OSTI)

Historically, utilities have comanaged some or all of their low-volume wastes with their high-volume by-products in disposal facilities. This report presents the results of a field study of comanagement of coal combustion by-products at a utility-owned dry landfill in the midwestern United States. The findings from this research provide technical information for use in an ongoing study of comanagement by the U.S. Environmental Protection Agency (EPA).

1998-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Use of resin-bearing wastes from coke and coal chemicals production at the Novokuznetsk Metallurgical Combine  

SciTech Connect

The coke and coal chemicals plant at the Novokuznetsk Metallurgical Combine is making trial use of a technology that recycles waste products in 'tar ponds.' Specialists from the Ekomash company have installed a recycling unit in one area of the plant's dump, the unit including an inclined conveyor with a steam heater and a receiving hopper The coal preparation shop receives the wastes in a heated bin, where a screw mixes the wastes with pail of the charge for the coking ovens. The mixture subsequently travels along a moving conveyor belt together with the rest of the charge materials. The addition of up to 2% resin-bearing waste materials to the coal charge has not had any significant effect on the strength properties of the coke.

Kul'kova, T.N.; Yablochkin, N.V.; Gal'chenko, A.I.; Karyakina, E.A.; Litvinova, V.A.; Gorbach, D.A.

2007-03-15T23:59:59.000Z

62

From what country does the U.S. import the most coal? - FAQ - U.S ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, ... Other FAQs about Coal. Does EIA have county-level energy production data?

63

Detoxification and generation of useful products from coal combustion wastes  

Science Conference Proceedings (OSTI)

Electric utilities are on the brink of a new era in waste disposal problems. This research project addresses the issue of how to effectively dispose of flyash, bottom ash, desulfurization sludge through the generation of chemically-hardened material that could potentially be used as a cement or as a synthetic aggregate. The specific goals of this study were: (1) to study the hardness of mixtures of flyash, bottom ash, and DSG treated with lime and other hardening agents; (2) to determine the optimum solids content, setting time, moisture content, and post setting treatments that will yield the greatest strength and hardness out of these mixtures; and (3) to determine the leachability of the synthetic material as a measure of its ability to retain absorbed and/or entrained toxic metals. 50 refs., 15 figs., 8 tabs.

Not Available

1990-11-21T23:59:59.000Z

64

O A L Section 2. Coal  

U.S. Energy Information Administration (EIA)

Section 2. Coal Coal prices are developed for the following three categories: coking coal; steam coal (all noncoking coal); and coal coke imports and exports.

65

Coal combustion waste management at landfills and surface impoundments 1994-2004.  

SciTech Connect

On May 22, 2000, as required by Congress in its 1980 Amendments to the Resource Conservation and Recovery Act (RCRA), the U.S. Environmental Protection Agency (EPA) issued a Regulatory Determination on Wastes from the Combustion of Fossil Fuels. On the basis of information contained in its 1999 Report to Congress: Wastes from the Combustion of Fossil Fuels, the EPA concluded that coal combustion wastes (CCWs), also known as coal combustion by-products (CCBs), did not warrant regulation under Subtitle C of RCRA, and it retained the existing hazardous waste exemption for these materials under RCRA Section 3001(b)(3)(C). However, the EPA also determined that national regulations under Subtitle D of RCRA were warranted for CCWs that are disposed of in landfills or surface impoundments. The EPA made this determination in part on the basis of its findings that 'present disposal practices are such that, in 1995, these wastes were being managed in 40 percent to 70 percent of landfills and surface impoundments without reasonable controls in place, particularly in the area of groundwater monitoring; and while there have been substantive improvements in state regulatory programs, we have also identified gaps in State oversight' (EPA 2000). The 1999 Report to Congress (RTC), however, may not have reflected the changes in CCW disposal practices that occurred since the cutoff date (1995) of its database and subsequent developments. The U.S. Department of Energy (DOE) and the EPA discussed this issue and decided to conduct a joint DOE/EPA study to collect new information on the recent CCW management practices by the power industry. It was agreed that such information would provide a perspective on the chronological adoption of control measures in CCW units based on State regulations. A team of experts from the EPA, industry, and DOE (with support from Argonne National Laboratory) was established to develop a mutually acceptable approach for collecting and analyzing data on CCW disposal practices and State regulatory requirements at landfills and surface impoundments that were permitted, built, or laterally expanded between January 1, 1994, and December 31, 2004. The scope of the study excluded waste units that manage CCWs in active or abandoned coal mines. The EPA identified the following three areas of interest: (1) Recent and current CCW industry surface disposal management practices, (2) State regulatory requirements for CCW management, and (3) Implementation of State requirements (i.e., the extent to which States grant or deny operator requests to waive or vary regulatory requirements and the rationales for doing so). DOE and the EPA obtained data on recent and current disposal practices from a questionnaire that the Utility Solid Waste Activities Group (USWAG) distributed to its members that own or operate coal-fired power plants. USWAG, formed in 1978, is responsible for addressing solid and hazardous waste issues on behalf of the utility industry. It is an informal consortium of approximately 80 utility operating companies, the Edison Electric Institute (EEI), the National Rural Electric Cooperative Association (NRECA), the American Public Power Association (APPA), and the American Gas Association (AGA). EEI is the principal national association of investor-owned electric power and light companies. NRECA is the national association of rural electric cooperatives. APPA is the national association of publicly owned electric utilities. AGA is the national association of natural gas utilities. Together, USWAG member companies and trade associations represent more than 85% of the total electric generating capacity of the United States and service more than 95% of the nation's consumers of electricity. To verify the survey findings, the EPA also asked State regulators from nine selected States that are leading consumers of coal for electricity generation for information on disposal units that may not have been covered in the USWAG survey. The selected States were Georgia, Illinois, Indiana, Michigan, Missouri, North Carolina, North Da

Elcock, D.; Ranek, N. L.; Environmental Science Division

2006-09-08T23:59:59.000Z

66

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

Science Conference Proceedings (OSTI)

Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

James T. Cobb, Jr.

2003-09-12T23:59:59.000Z

67

Monitoring of landscape change for waste land rehabilitation in Haizhou opencast coal mine  

Science Conference Proceedings (OSTI)

Land rehabilitation is being carried out throughout the whole country. But in many areas, the main purpose of land rehabilitation is to increase the overall cultivated land area which neglects the eco-construction. Important tasks of modern landscape ... Keywords: land rehabilitation, landscape ecology, monitoring, opencast coal mine

Yingyi Chen; Daoliang Li

2009-03-01T23:59:59.000Z

68

Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization  

SciTech Connect

Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

Henghu Sun; Yuan Yao

2012-06-29T23:59:59.000Z

69

Evaluation of electricity generation from underground coal fires and waste banks  

Science Conference Proceedings (OSTI)

A temperature response factors model of vertical thermal energy extraction boreholes is presented to evaluate electricity generation from underground coal fires and waste banks. Sensitivity and life-cycle cost analyses are conducted to assess the impact of system parameters on the production of 1 MW of electrical power using a theoretical binary-cycle power plant. Sensitivity analyses indicate that the average underground temperature has the greatest impact on the exiting fluid temperatures from the ground followed by fluid flow rate and ground thermal conductivity. System simulations show that a binary-cycle power plant may be economically feasible at ground temperatures as low as 190 {sup o}C.

Chiasson, A.D.; Yavuzturk, C.; Walrath, D.E. [Oregon Institute of Technology, Klamath Falls, OR (United States)

2007-06-15T23:59:59.000Z

70

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

Science Conference Proceedings (OSTI)

This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-06-01T23:59:59.000Z

71

Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products  

SciTech Connect

This eleventh quarterly report describes work done during the eleventh three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to two outside contacts.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini; Wiles Elder

1999-04-05T23:59:59.000Z

72

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

Science Conference Proceedings (OSTI)

This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-01-01T23:59:59.000Z

73

The competition between coal and natural gas : the importance of sunk costs  

E-Print Network (OSTI)

This paper explores the seeming paradox between the predominant choice of natural gas for capacity additions to generate electricity in the United States and the continuing large share of coal in meeting incremental ...

Ellerman, A. Denny

1996-01-01T23:59:59.000Z

74

AFBC co-firing of coal and hospital waste. Quarterly progress report, November 1, 1994--January 31, 1995  

DOE Green Energy (OSTI)

The project objective is to design, construct, install, and start-up a circulating fluidized bed combustion system at the Lebanon, Pennsylvania Veteran`s Affairs Medical Center. The unit will co-fire coal and hospital waste providing inexpensive and efficient destruction of both general and infectious medical waste and steam generation. Progress to date on several tasks is described. These are: Task 1.A-1.D, Design; Equipment purchase and fabrication; Installation; and Shredder system verification. Other tasks to be undertaken are: Start-up; Obtaining permits; Procuring coal, limestone and ash disposal contracts; and Conducting on-year test program. Project costs are enumerated.

Stuart, J.M.

1995-10-01T23:59:59.000Z

75

Ma,BonzongoandGao/UniversityofFlorida Characterization and Leachability of Coal Combustion Residues  

E-Print Network (OSTI)

Ma,BonzongoandGao/UniversityofFlorida Characterization and Leachability of Coal Combustion Residues an important solid waste in Florida, i.e., coal combustion residues (CCR) detailed in #2-4 of the current

Ma, Lena

76

Evaluation of AFBC co-firing of coal and hospital wastes. Technical report, January 1989--August 1990  

Science Conference Proceedings (OSTI)

The purpose of this program is to expand the use of coal by utilizing CFB (circulating fluidized bed) technology to provide an environmentally safe method for disposing of waste materials. Hospitals are currently experiencing a waste management crisis. In many instances, they are no longer permitted to burn pathological and infectious wastes in incinerators. Older hospital incinerators are not capable of maintaining the stable temperatures and residence times necessary in order to completely destroy toxic substances before release into the atmosphere. In addition, the number of available landfills which can safely handle these substances is decreasing each year. The purpose of this project is to conduct necessary research investigating whether the combustion of the hospital wastes in a coal-fired circulating fluidized bed boiler will effectively destroy dioxins and other hazardous substances before release into the atmosphere. If this is proven feasible, in light of the quantity of hospital wastes generated each year, it would create a new market for coal -- possibly 50 million tons/year.

Not Available

1991-02-01T23:59:59.000Z

77

Feasibility study of burning waste paper in coal-fired boilers on Air Force installations. Master's thesis  

Science Conference Proceedings (OSTI)

This thesis examined the feasibility of using waste paper derived fuel in coal-fired boilers on Air Force installations in an attempt to help solve air pollution and solid waste disposal problems. The implementation of waste paper derived fuel was examined from both a technical acceptability and an economic feasibility viewpoint. The majority of data for this study was obtained through literature reviews and personal interviews. Waste paper was found to be technically acceptable for use as fuel. However, waste paper has certain characteristics that may create problems during combustion and therefore further research is required. These problems included the possibility of increased nitrous oxide emissions, increased volatile emissions, dioxin and furan emissions, formation of hydrochloric acid, and the presence of heavy metals in emissions and ash.

Smith, K.P.

1993-09-01T23:59:59.000Z

78

Toxicity of coal gasifier solid waste to the aquatic plants Selenastrum capricornutum and Spirodela oligorhiza  

Science Conference Proceedings (OSTI)

Classical assessment of aquatic toxicity has focused on fish and invertebrates primarily due to their economic importance. However, increased awareness of the role of aquatic vegetation as primary producers in aquatic systems has stimulated their use in aquatic hazards evaluations. This paper presents the results of solid waste leaching tests using a procedure which was designed to mimic landfilling of solid waste. Results are reported for leachate analysis of the ash agglomerate and the relative toxicity of this leachate to Selenastrum capricornutum (a unicellular green alga) and Spirodela oligorhiza (a floating aquatic vascular plant).

Klaine, S.J.

1985-10-01T23:59:59.000Z

79

AFBC co-firing of coal and hospital waste. Quarterly report, August--October 1995  

SciTech Connect

The project objective is to design, construct, install provide operator training and start-up a circulating fluidized bed combustion system at the Lebanon Pennsylvania Veteran`s Affairs Medical Center. This unit will co-fire coal and hospital waste providing lower cost steam for heating and possibly cooling (absorption chiller) and operation of a steam turbine-generator for limited power generation. This would permit full capacity operation of the FBC year round in spite of the VA laundry that was shut down as well as efficient destruction of both general and infectious hospital waste and steam generation. The State permitting process required for construction will be completed in early November to allow installation and construction to be completed. Operating permits will be obtained after construction has been completed. A request for proposal for stack sampling and biospore tests was released to four (4) vendors in mid-October. The proposals shall be reviewed during November and the stack sampler will be selected. Funding was approved as of August 1, 1995. Construction and installation resumed on August 21, 1995 at the LVAMC. Construction and installation continues and will be completed by late December 1995.

Stuart, J.M.

1996-03-01T23:59:59.000Z

80

Development and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO2 Removal from Coal-Fired Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

and Demonstration of and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO 2 Removal from Coal-Fired Flue Gas Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions, & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Dover Textiles - A Case History on Retrofitting Factories with a Boiler System Fueled on Coal, Wood and Waste  

E-Print Network (OSTI)

The shortage of affordable gas and oil boiler fuels and the recent Iran/Iraq war underscores the urgent need for the American industrial system to convert to domestically controlled fuels and particularly coal, wood, and waste. More talk than action has been present. However, Dover Textiles, Shelby, North Carolina, is a major textile concern which has aggressively addressed the high cost and vulnerability of oil, as well as the increasing cost of natural gas, for their boiler system by purchasing a coal, wood, and waste fired boiler system to serve two plants. This case history will document payback periods of less than three years; return on investments of 20% plus; benefits of North Carolina and federal investment tax credits; EPA considerations, which in this case required no additional capital investment; fuel supply; material handling; ash removal; and other design considerations.

Pincelli, R. D.

1981-01-01T23:59:59.000Z

82

AFBC co-firing of coal and hospital waste. Quarterly progress report, August 1--October 31, 1996  

SciTech Connect

The project objective is to design, construct, install, provide operator training and start-up a circulating fluidized bed combustion system at the Lebanon Pennsylvania Veteran`s Affairs Medical Center. This unit will co-fire coal and hospital waste providing lower cost steam for heating and possibly cooling (absorption chiller) and operation of a steam turbine-generator for limited power generation while providing efficient destruction of both general and infectious hospital waste. The steam generated as follows: (1) Steam = 20,000 lb/hr, (2) Temperature = 353 F (saturated), (3) Pressure = 125 psig, and (4) Steam quality = {approximately}98.5%.

NONE

1997-06-01T23:59:59.000Z

83

Performance and economics of co-firing a coal/waste slurry in advanced fluidized-bed combustion  

DOE Green Energy (OSTI)

This study`s objective was to investigate co-firing a pressurized fluidized-bed combustor with coal and refuse-derived fuel for the production of electricity and the efficient disposal of waste. Performance evaluation of the pressurized fluidized-bed combustor (PFBC) power plant co-fired with refuse-derived fuel showed only slightly lower overall thermal efficiency than similar sized plants without waste co-firing. Capital costs and costs of electricity are within 4.2 percent and 3.2 percent, respectively, of waste-free operation. The results also indicate that there are no technology barriers to the co-firing of waste materials with coal in a PFBC power plant. The potential to produce cost-competitive electrical power and support environmentally acceptable waste disposal exists with this approach. However, as part of technology development, there remain several design and operational areas requiring data and verification before this concept can realize commercial acceptance. 3 refs., 3 figs., 4 tabs.

DeLallo, M.R.; Zaharchuk, R. [Parsons Power Group, Inc., Reading, PA (United States); Reuther, R.B.; Bonk, D.L. [USDOE Morgantown Energy Technology Center, WV (United States)

1996-09-01T23:59:59.000Z

84

Important?  

NLE Websites -- All DOE Office Websites (Extended Search)

What are Neutrons, What are Neutrons, and Why are They Important? Before we can understand neutrons, we need to understand atoms. Everything in the world is made up of atoms: the air, trees, cars- even your body is made up of atoms. Atoms are so small that you need a very powerful magnifying glass to see them. There are 100,000,000,000,000,000,000 atoms in a single drop of water! Even though atoms are very small, they are made up

85

Removal of pyrite and trace elements from waste coal by dissolved-CO{sub 2} flotation and chelating agents. [Quarterly] technical report, December 1, 1993--February 28, 1994  

SciTech Connect

In dissolved-CO{sub 2} flotation, ultrafine -bubbles are generated by CO{sub 2} dissolved in water. The ultrafine bubbles have the potential to improve the separation efficiency in fine coal cleaning. Chemicals will be used prior to or during dissolved-CO{sub 2} flotation to improve the separation efficiency-CO{sub 2} of pyrite and other minerals including trace metals from coal. Chelating agent will be applied to clean coal to further reduce the trace metals from coal. During this period, a 3 in. diameter packed column has been purchased and installed. This column was then modified for use in dissolved-CO{sub 2} flotation. Coal samples of Illinois No. 6 coal are being prepared for flotation. Preliminary flotation tests were performed on Illinois No. 6 waste coal.

Shiao, S.Y. [Babcock and Wilcox Company (United States)

1994-08-01T23:59:59.000Z

86

Removal of pyrite and trace elements from waste coal by dissolved- CO{sub 2} flotation and chelating agents. Technical report, September 1, 1993--November 30, 1993  

SciTech Connect

In dissolved-CO{sub 2} flotation, ultrafine bubbles are generated by CO{sub 2} dissolved in water. The ultrafine bubbles have the potential to improve the separation efficiency in fine coal cleaning. Chemicals will be used prior to or during dissolved-CO{sub 2} flotation to improve the separation efficiency of pyrite and other minerals including trace metals from coal. Chelating agents will be applied to clean coal to further reduce the trace metals from coal. During this period, the project planning has begun. A 3in.-diameter packed column has been ordered. This column will be modified for use in dissolved-CO{sub 2} flotation. Clean and waste coal samples of Illinois No. 6 coal have been scheduled to be picked up from Ohio Coal Testing and Development (OCTAD) facility.

Shiao, S.Y. [Babcock and Wilcox Co., Alliance, OH (United States)

1993-12-31T23:59:59.000Z

87

Plant growth response in experimental soilless mixes prepared from coal combustion products and organic waste materials  

Science Conference Proceedings (OSTI)

Large quantities of organic materials such as animal manures, yard trimmings, and biosolids are produced each year. Beneficial use options for them are often limited, and composting has been proposed as a way to better manage these organic materials. Similarly, burning of coal created 125 million tons of coal combustion products (CCP) in the United States in 2006. An estimated 53 million tons of CCP were reused, whereas the remainder was deposited in landfills. By combining CCP and composted organic materials (COM), we were able to create soilless plant growth mixes with physicochemical conditions that can support excellent plant growth. An additional benefit is the conservation of natural raw materials, such as peat, which is generally used for making soilless mixes. Experimental mixes were formulated by combining CCP and COM at ratios ranging from 2:8 to 8:2 (vol/vol), respectively. Water content at saturation for the created mixes was 63% to 72%, whereas for the commercial control, it was 77%. pH values for the best performing mixes ranged between 5.9 and 6.8. Electrical conductivity and concentrations of required plant nutrient were also within plant growth recommendations for container media. Significantly (P < 0.0001) higher plant biomass growth (7%-130%) was observed in the experimental mixes compared with a commercial mix. No additional fertilizers were provided during the experiment, and reduced fertilization costs can thus accrue as an added benefit to the grower. In summary, combining CCP and COM, derived from source materials often viewed as wastes, can create highly productive plant growth mixes.

Bardhan, S.; Watson, M.; Dick, W.A. [Ohio State University, Wooster, OH (United States)

2008-07-15T23:59:59.000Z

88

Mixtures of a Coal Combustion By-Product and Composted Yard Wastes for Use as Soil Substitutes and Amendments  

Science Conference Proceedings (OSTI)

Under certain conditions, the physical and chemical properties of coal combustion by-products (CCBPs) can be conducive to plant growth. As one means of increasing use rates, EPRI and several utilities have studied CCBP applications as a soil amendment and soil substitute when mixed with varying proportions of yard waste compost, sand, and soil. This report presents the results of green-house studies on the use of CCBP mixtures in growing shrubs, trees, and ground cover plants.

1996-10-26T23:59:59.000Z

89

Coal and bituminous reserves  

SciTech Connect

Chapter 5 of this book contains sections entitled: other coal processes; underground processing of coal; and other important energy sources.

NONE

2008-02-15T23:59:59.000Z

90

Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. Black-Right-Pointing-Pointer Means of stabilizing the incinerator ash for use in construction applications. Black-Right-Pointing-Pointer Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. Black-Right-Pointing-Pointer Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5.00 mg/L, respectively.

Ivan Diaz-Loya, E. [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States); Allouche, Erez N., E-mail: allouche@latech.edu [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States); Eklund, Sven; Joshi, Anupam R. [Department of Chemistry, Louisiana Tech University, Ruston, LA 71272 (United States); Kupwade-Patil, Kunal [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States)

2012-08-15T23:59:59.000Z

91

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, March 30, 1996--June 30, 1996  

SciTech Connect

Progress is described on the use of by-products form clean coal technologies for the treatment of hazardous wastes. During the third quarter of Phase 2, work continued on evaluating Phase 1 samples (including evaluation of a seventh waste), conducting scholarly work, preparing for field work, preparing and delivering presentations, and making additional outside contacts.

Cobb, J.T. Jr.; Neufeld, R.D.; Blachere, J.R. [and others

1998-04-01T23:59:59.000Z

92

Atlas of coal/minerals and important resource problem areas for fish and wildlife in the conterminous United States  

DOE Green Energy (OSTI)

The atlas highlights areas in the conterminous US of potential concern involving coal and minerals development activities and fish and wildlife resources, in particular the Important Resource Problem Areas (IRPs) designated in 1980 by the US Fish and Wildlife Service as areas of emphasis in policymaking. The atlas serves as an initial screening tool for national and regional planners and administrators to help define areas that may require additional analysis prior to development in order to minimize disturbances and adverse impacts on fish and wildlife resources and to protect and enhance these resources where practicable. The publication contains maps of selected mineral resources (coal, copper, geothermal resources, gold, iron, molybdenum, nickel, oil shale/tar sands, peat, phosphate, silver, uranium), IRPs, and Federal Endangered and Threatened Animal Species. An overlay of the IRP map is provided: by placing this on a mineral map, counties containing both mineral and wildlife resources will be highlighted. Background information on IRPs, the mineral commodities, and environmental impacts of mineral mining is provided, as well as appendices which tabulate the data displayed in the maps. The document can also be used with a series of 1:7,500,000-scale reproductions of the maps.

Honig, R.A.; Olson, R.J.; Mason, W.T. Jr.

1981-07-01T23:59:59.000Z

93

Regulatory requirements important to Hanford single-shell tank waste management decisions  

SciTech Connect

This report provides an initial analysis of the regulations that may be pertinent to SST management activities (e.g., characterization, disposal, retrieval, processing, etc.) and the interrelationships among those regulations. Waste disposal decisions regarding SST waste must consider the regulatory requirements against which technical solutions will be evaluated. Regulatory requirements can also be used as guidelines for management and disposal of waste in a manner that protects human health and safety and the environment. Also, in cases where waste management regulations do not specifically address a waste form, such as radioactive mixed waste, the SST waste may come under the purview of a number of regulations related to radioactive waste management, hazardous waste management, and water and air quality protection. This report provides a comprehensive review of the environmental pollution control and radioactive waste management statutes and regulations that are relevant to SST waste characterization and management. Also, other statutes and regulations that contain technical standards that may be used in the absence of directly applicable regulations are analyzed. 8 refs., 4 figs.

Keller, J.F.; Woodruff, M.G.; Schmidt, A.J.; Hendrickson, P.L.; Selby, K.B.

1989-06-01T23:59:59.000Z

94

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

DOE Green Energy (OSTI)

The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal or coal refuse, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Corporation, Foster Wheeler Development Corporation, and Cofiring Alternatives. The major emphasis of work during this reporting period was to assess the types and quantities of potential feedstocks and collect samples of them for analysis. Approximately twenty different biomass, animal waste, and other wastes were collected and analyzed.

Bruce G. Miller; Curtis Jawdy

2000-10-09T23:59:59.000Z

95

Contaminants in coals and coal residues. [10 refs  

SciTech Connect

Most of the major enviromental pollutants from coals originate as impurities in the coal structure. These include various organic compounds, minerals, and trace elements that are released into the air and water when coal is mined, processed and utilized. The use of coal preparation to produce cleaner burning fuels involves an environmental compromise, wherein reduced emissions and solid wastes from coal burning sources are achieved at the expense of greater environmental degradation from coal cleaning wastes.

Wewerka, E.M.; Williams, J.M.; Vanderborgh, N.E.

1976-01-01T23:59:59.000Z

96

NETL: News Release - DOE-Sponsored Project Turns Coal Waste Into...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the 28 million tons is reused from so-called "wet scrubbers." Currently, 21 U.S. coal-fired power plants use spray dryer systems to reduce the emission of sulfur...

97

Investigation of feasibility of injecting power plant waste gases for enhanced coalbed methane recovery from low rank coals in Texas  

E-Print Network (OSTI)

Greenhouse gases such as carbon dioxide (CO2) may be to blame for a gradual rise in the average global temperature. The state of Texas emits more CO2 than any other state in the U.S., and a large fraction of emissions are from point sources such as power plants. CO2 emissions can be offset by sequestration of produced CO2 in natural reservoirs such as coal seams, which may initially contain methane. Production of coalbed methane can be enhanced through CO2 injection, providing an opportunity to offset the rather high cost of sequestration. Texas has large coal resources. Although they have been studied there is not enough information available on these coals to reliably predict coalbed methane production and CO2 sequestration potential. The goal of the work was to determine if sequestration of CO2 in low rank coals is an economically feasible option for CO2 emissions reduction. Additionally, reasonable CO2 injection and methane production rates were to be estimated, and the importance of different reservoir parameters investigated. A data set was compiled for use in simulating the injection of CO2 for enhanced coalbed methane production from Texas coals. Simulation showed that Texas coals could potentially produce commercial volumes of methane if production is enhanced by CO2 injection. The efficiency of the CO2 in sweeping the methane from the reservoir is very high, resulting in high recovery factors and CO2 storage. The simulation work also showed that certain reservoir parameters, such as Langmuir volumes for CO2 and methane, coal seam permeability, and Langmuir pressure, need to be determined more accurately. An economic model of Texas coalbed methane operations was built. Production and injection activities were consistent with simulation results. The economic model showed that CO2 sequestration for enhanced coalbed methane recovery is not commercially feasible at this time because of the extremely high cost of separating, capturing, and compressing the CO2. However, should government mandated carbon sequestration credits or a CO2 emissions tax on the order of $10/ton become a reality, CO2 sequestration projects could become economic at gas prices of $4/Mscf.

Saugier, Luke Duncan

2003-08-01T23:59:59.000Z

98

The importance of thermal loading conditions to waste package performance at Yucca Mountain  

SciTech Connect

Temperature and relative humidity are primary environmental factors affecting waste package corrosion rates for the potential repository in the unsaturated zone at Yucca Mountain, Nevada. Under ambient conditions, the repository environment is quite humid. If relative humidity is low enough (<70%), corrosion will be minimal. Under humid conditions, corrosion is reduced if the temperature is low (<60 C). Using the V-TOUGH code, the authors model thermo-hydrological flow to investigate the effect of repository heat on temperature and relative humidity in the repository for a wide range of thermal loads. These calculations indicate that repository heat may substantially reduce relative humidity on the waste package, over hundreds of years for low thermal loads and over tens of thousands of year for high thermal loads. Temperatures associated with a given relative humidity decrease with increasing thermal load. Thermal load distributions can be optimized to yield a more uniform reduction in relative humidity during the boiling period.

Buscheck, T.A.; Nitao, J.J.

1994-10-01T23:59:59.000Z

99

Coal News and Markets - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Mohave Station receives all its coal from the Black Mesa coal mine in northeastern Arizona, ... Energy said on November 14 that ... waste in its fuel mix ...

100

AFBC co-firing of coal and hospital waste. Quarterly progress report, May 1--July 31, 1995  

SciTech Connect

The project objective is to design, construct, install, provide operator training and start-up a circulating fluidized bed combustion system at the Lebanon, Pennsylvania Veteran`s Affairs Medical Center. This unit will co-fire coal and hospital waste providing lower cost steam for heating and possibly cooling (absorption chiller) and operation of a steam turbine-generator for limited power generation. This would permit full capacity operation of the FBC year round in spite of the VA laundry that was shut down as well as efficient destruction of both general and infectious hospital waste and steam generation. On February 3, 1995 Donlee notified Lebanon VA and DOE-METC that additional funding would be required to complete the project. This funding, in the amount of $1,140,127, is needed to complete the facility, start-up and shakedown the facility, perform the test program and write the final report. After review DOE-METC approved funding in the amount of $1,246,019 to be available August 1, 1995. This report describes each task of the project and its status.

Stuart, J.M.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Disposal Site Economic Model for Coal Combustion Residuals Under Proposed Federal Non-Hazardous Waste Regulations  

Science Conference Proceedings (OSTI)

Proposed federal coal combustion residual (CCR) disposal rules, along with anticipated regulations governing steam electric effluent guidelines, are expected to result in closure of many existing wet disposal facilities and construction of new landfills. Although each CCR project and each project site is unique, many of the major cost items associated with these projects should be reasonably consistent. This report provides baseline costs for four major CCR projects: existing impoundment closure, existin...

2012-08-06T23:59:59.000Z

102

Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Import Statement, Richland, Washington - Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Link to Main Report Link to Main Report RESPONSIBLE AGENCY: COVER SHEET 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 U.S. Department of Energy, Richland Operations Office TITLE: Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Benton County, Washington (DOE/EIS-0286D2) CONTACT: For further information on this document, write or call: Mr. Michael S. Collins HSW EIS Document Manager Richland Operations Office U.S. Department of Energy, A6-38 P.O. Box 550 Richland, Washington 99352-0550 Telephone: (800) 426-4914 Fax: (509) 372-1926 Email: hsweis@rl.gov For further information on the Department's National Environmental Policy Act process,

103

Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Import Statement, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COVER SHEET 1 COVER SHEET 1 U.S. Department of Energy, Richland Operations Office 2 3 TITLE: 4 Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, Richland, Benton County, Washington (DOE/EIS-0286D2) 6 7 CONTACT: 8 For further information on this document, write or call: Mr. Michael S. Collins HSW EIS Document Manager Richland Operations Office U.S. Department of Energy, A6-38 P.O. Box 550 Richland, Washington 99352-0550 Telephone: (800) 426-4914 Fax: (509) 372-1926 Email: hsweis@rl.gov For further information on the Department's National Environmental Policy Act process, contact: Ms. Carol M. Borgstrom, Director Office of NEPA Policy and Compliance, EH-42 U.S. Department of Energy 1000 Independence Avenue, S.W.

104

Acetylene from the co-pyrolysis of biomass and waste tires or coal in the H{sub 2}/Ar plasma  

Science Conference Proceedings (OSTI)

Acetylene from carbon-containing materials via plasma pyrolysis is not only simple but also environmentally friendly. In this article, the acetylene produced from co-pyrolyzing biomass with waste tire or coal under the conditions of H{sub 2}/Ar DC arc plasma jet was investigated. The experimental results showed that the co-pyrolysis of mixture with biomass and waste tire or coal can improve largely the acetylene relative volume fraction (RVF) in gaseous products and the corresponding yield of acetylene. The change trends for the acetylene yield of plasma pyrolysis from mixture with raw sample properties were the same as relevant RVF. But the yield change trend with feeding rate is different from its RVF. The effects of the feeding rate of raw materials and the electric current of plasmatron on acetylene formation are also discussed.

Bao, W.; Cao, Q.; Lv, Y.; Chang, L. [Taiyuan University of Technology, Taiyuan (China)

2008-07-01T23:59:59.000Z

105

The importance of climatological variability and the rate at which waste is added to modeling water budget of landfills  

SciTech Connect

A transient one-dimensional wetting front model was developed to predict water budgets for landfills. The model simulates the moisture profile by a series of blocks, each of which has a uniform soil moisture content. The model can simulate the continual stacking of waste by adding blocks, which represent new waste layers. The model can be programmed to build up a landfill at a given rate and to cap the landfill with a liner once a specific height has been reached. The wetting front model has been compared with models that solve the Richards Equation directly. In past studies the results between the two types of models compared well,but the wetting front model solved problems with a fraction of the computer time. Because of its efficient algorithms, the wetting front model is well suited for Monte Carlo simulation of different meteorological conditions in order to produce probability density functions for runoff, evapotranspiration, and leachate generation. In order to simulate different meteorological conditions, the TVA developed RGEN, which generates hourly rainfall, and EGEN which generates daily potential evaporation rates. The results of the numerous runs with the wetting front model were used to determine the potential importance of climatological variability and the effects of the rate at which new waste is added on the water budget of dry-stack fly ash landfills. 13 refs., 12 figs., 3 tabs.

Young, S.C.; Clapp, R.B.

1989-01-01T23:59:59.000Z

106

Field Evaluation of the Comanagement of Utility Low-Volume Wastes With High-Volume Coal Combustion By-Products: LS Site  

Science Conference Proceedings (OSTI)

The electric power industry has historically comanaged low-volume wastes with high-volume by-products as a cost-effective means of disposal. This report documents an investigation into the effects of comanagement of low-volume wastes with high-volume coal combustion by-products at the LS site. This is one of 14 sites investigated by EPRI to provide background information to the Environmental Protection Agency (EPA) for the 2000 Regulatory Determination on comanagement under the Resource Conservation and ...

2007-06-18T23:59:59.000Z

107

Field Evaluation of the Comanagement of Utility Low-Volume Wastes with High-Volume Coal Combustion By-Products: HA Site  

Science Conference Proceedings (OSTI)

Typically, utilities comanage some or all of their low-volume wastes with their high-volume by-products in disposal facilities. This report presents the results of a field study of comanagement of coal combustion by-products at a utility-owned impoundment in the midwestern United States (HA site). The findings from this research provided technical information for use in a study of comanagement practices by the U.S. Environmental Protection Agency (EPA).

2000-10-30T23:59:59.000Z

108

Field Evaluation of the Comanagement of Utility Low-Volume Wastes With High-Volume Coal Combustion By-Products: CL Site  

Science Conference Proceedings (OSTI)

This report presents the results of a field study of comanagement of coal combustion by-products at a utility disposal impoundment in the southeastern United States. The study was part of a multiyear effort by the Electric Power Research Institute (EPRI), in cooperation with the Utility Solid Waste Activities Group (USWAG) and individual utility companies, to characterize utility comanagement practices and collect and analyze a comprehensive set of data pertinent to the environmental effects of those pra...

1997-12-09T23:59:59.000Z

109

Field Evaluation of the Comanagement of Utility Low-Volume Wastes with High-Volume Coal Combustion By-Products: MO Site  

Science Conference Proceedings (OSTI)

This report documents an investigation into the effects of comanagement of low-volume wastes with high-volume coal combustion by-products at the MO site. The MO site is one of 14 investigated by EPRI to provide background information to the United States Environmental Protection Agency (EPA) for the 2000 Regulatory Determination on comanagement under the Resource Conservation and Recovery Act (RCRA).

2003-09-29T23:59:59.000Z

110

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

DOE Green Energy (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels.

Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

2001-10-12T23:59:59.000Z

111

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

DOE Green Energy (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives.

Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

2002-07-12T23:59:59.000Z

112

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

DOE Green Energy (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives.

Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

2001-03-31T23:59:59.000Z

113

Quarterly Coal Report April - June 2011  

U.S. Energy Information Administration (EIA)

The Quarterly Coal Report (QCR) presents U.S. coal production, exports, imports, receipts, prices, consumption, coal quality, and stocks data.

114

Leaching and toxicity behavior of coal-biomass waste cocombustion ashes  

Science Conference Proceedings (OSTI)

Land disposal of ash residues, obtained from the cocombustion of Greek lignite with biomass wastes, is known to create problems due to the harmful constituents present. In this regard, the leachability of trace elements from lignite, biomass, and blends cocombustion ashes was investigated by using the Toxicity Characteristic Leaching Procedure (TCLP) of the US Environmental Protection Agency (US EPA). In this work, the toxicity of the aqueous leachates and the concentrations of the metals obtained from the leaching procedure were measured using the Microtox test (Vibrio fischen) and inductive coupled plasma-atomic emission spectrometer (ICP-AES), respectively. The toxic effects of most leachates on Vibrio fischeri were found to be significantly low in both 45% and 82% screening test protocols. However, the liquid sample originating from olive kernels fly ash (FA4) caused the highest toxic effect in both protocols, which can be attributed to its relatively high concentrations of As, Cd, Co, Cu, Mn, Ni, and Zn.

Skodras, G.; Prokopidou, M.; Sakellaropoulos, G.P. [Aristotle University in Thessaloniki, Thessaloniki (Greece). Dept. for Chemical Engineering

2006-08-15T23:59:59.000Z

115

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

SciTech Connect

The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences, Foster Wheeler Energy Services, Inc., Parsons Energy and Chemicals Group, Inc., and Cofiring Alternatives. During this reporting period, work focused on completing the biofuel characterization and the design of the conceptual fluidized bed system.

Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

2001-07-13T23:59:59.000Z

116

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

SciTech Connect

The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences, Foster Wheeler Energy Services, Inc., Parsons Energy and Chemicals Group, Inc., and Cofiring Alternatives. During this reporting period, work focused on completing the biofuel characterization and the design of the conceptual fluidized bed system.

Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

2001-07-13T23:59:59.000Z

117

Remaining Sites Verification Package for the 126-B-3, 184-B Coal Pit Dumping Area, Waste Site Reclassification Form 2005-028  

Science Conference Proceedings (OSTI)

The 126-B-3 waste site is the former coal storage pit for the 184-B Powerhouse. During demolition operations in the 1970s, the site was used for disposal of demolition debris from 100-B/C Area facilities. The site has been remediated by removing debris and contaminated soils. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-08-07T23:59:59.000Z

118

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, September 1995--December 1995  

SciTech Connect

This fifth quarterly report describes work done during the fifth three-month period of the University of Pittsburgh`s project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with the university on this project is Mill Service, Inc. This report describes the activities of the project team during the reporting period. The principal work has focussed upon completing laboratory evaluation of samples produced during Phase 1, preparing reports and presentations, and seeking environmental approvals and variances to permits that will allow the field work to proceed. The compressive strength of prepared concretes is described.

1996-03-01T23:59:59.000Z

119

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 153 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2011, DOE/EIA-M060(2011) (Washington, DC, 2011). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

120

Coal Market Module This  

Gasoline and Diesel Fuel Update (EIA)

51 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2012, DOE/EIA-M060(2012) (Washington, DC, 2012). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Clean coal technologies market potential  

SciTech Connect

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

122

Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer We model the environmental impact of recycling and incineration of household waste. Black-Right-Pointing-Pointer Recycling of paper, glass, steel and aluminium is better than incineration. Black-Right-Pointing-Pointer Recycling and incineration of cardboard and plastic can be equally good alternatives. Black-Right-Pointing-Pointer Recyclables can be transported long distances and still have environmental benefits. Black-Right-Pointing-Pointer Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

Merrild, Hanna [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Larsen, Anna W., E-mail: awla@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark)

2012-05-15T23:59:59.000Z

123

Biomass Lignin Binder for Coal Fines  

Science Conference Proceedings (OSTI)

This report describes the production of a waste stream consisting of lignin from a dilute acid hydrolysis process for making ethanol fuel from cellulosic biomass. The lignin waste stream was then evaluated as a possible binder to hold coal fines in a useable form for fuel in a coal-fired power plant. The production and use of a lignin-rich waste stream is of interest because it would enable a biomass energy content in the fuel for the coal-fired power plant, while using waste coal and waste biomass. The ...

2002-10-02T23:59:59.000Z

124

Coal data: A reference  

SciTech Connect

This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

Not Available

1995-02-01T23:59:59.000Z

125

Field study for disposal of solid wastes from Advanced Coal Processes: Ohio LIMB Site Assessment. Final report, April 1986--November 1994  

Science Conference Proceedings (OSTI)

New air pollution regulations will require cleaner, more efficient processes for converting coal to electricity, producing solid byproducts or wastes that differ from conventional pulverized-coal combustion ash. Large scale landfill test cells containing byproducts were built at 3 sites and are to be monitored over at least 3 years. This report presents results of a 3-y field test at an ash disposal site in northern Ohio; the field test used ash from a combined lime injection-multistage burner (LIMB) retrofit at the Ohio Edison Edgewater plant. The landfill test cells used LIMB ash wetted only to control dusting in one cell, and LIMB ash wetted to optimize compaction density in the other cell. Both test cells had adequate load-bearing strength for landfill stability but had continuing dimensional instability. Heaving and expansion did not affect the landfill stability but probably contributed to greater permeability to infiltrating water. Leachate migration occurred from the base, but effects on downgradient groundwater were limited to increased chloride concentration in one well. Compressive strength of landfilled ash was adequate to support equipment, although permeability was higher and strength was lower than anticipated. Average moisture content has increased to about 90% (dry weight basis). Significant water infiltration has occurred; the model suggests that as much as 20% of the incident rainfall will pass through and exit as leachate. However, impacts on shallow ground water is minimal. Results of this field study suggest that LIMB ash from combustion of moderate to high sulfur coals will perform acceptably if engineering controls are used to condition and compact the materials, reduce water influx to the landfill, and minimize leachate production. Handling of the ash did not pose serious problems during cell construction; steaming and heat buildup were moderate.

Weinberg, A.; Coel, B.J.; Butler, R.D.

1994-10-01T23:59:59.000Z

126

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

DOE Green Energy (OSTI)

The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

2003-03-26T23:59:59.000Z

127

Coal market momentum converts skeptics  

SciTech Connect

Tight supplies, soaring natural gas prices and an improving economy bode well for coal. Coal Age presents it 'Forecast 2006' a survey of 200 US coal industry executives. Questions asked included predicted production levels, attitudes, expenditure on coal mining, and rating of factors of importance. 7 figs.

Fiscor, S.

2006-01-15T23:59:59.000Z

128

Quarterly Coal Report January - March 2003  

Gasoline and Diesel Fuel Update (EIA)

The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide...

129

Quarterly Coal Report April-June 2000  

Gasoline and Diesel Fuel Update (EIA)

The Quarterly Coal Report (QCR) provides compre- hensive information about U.S. coal production, dis- tribution, exports, imports, receipts, prices, consumption, and stocks to a...

130

Scheduling coal handling processes using metaheuristics.  

E-Print Network (OSTI)

??The operational scheduling at coal handling facilities is of the utmost importance to ensure that the coal consuming processes are supplied with a constant feed… (more)

Conradie, David Gideon

2008-01-01T23:59:59.000Z

131

Quarterly Coal Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Quarterly Coal Report (QCR) provides detailed quarterly data on U.S. coal production, exports, imports, receipts, prices, consumption, quality, stocks, and ...

132

Table 7.1 Coal Overview, 1949-2011 (Million Short Tons)  

U.S. Energy Information Administration (EIA)

Table 7.1 Coal Overview, 1949-2011 (Million Short Tons) Year: Production 1: Waste Coal Supplied 2: Trade: Stock Change 4,5: Losses and

133

Low-rank coal research  

DOE Green Energy (OSTI)

This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

Not Available

1989-01-01T23:59:59.000Z

134

Investigations into coal coprocessing and coal liquefaction  

DOE Green Energy (OSTI)

The conversion of coal to liquid suitable as feedstock to a petroleum refinery is dependent upon several process variables. These variables include temperature, pressure, coal rank, catalyst type, nature of the feed to the reactor, type of process, etc. Western Research Institute (WRI) has initiated a research program in the area of coal liquefaction to address the impact of some of these variables upon the yield and quality of the coal-derived liquid. The principal goal of this research is to improve the efficiency of the coal liquefaction process. Two different approaches are currently being investigated. These include the coprocessing of a heavy liquid, such as crude oil, and coal using a dispersed catalyst and the direct liquefaction of coal using a supported catalyst. Another important consideration in coal liquefaction is the utilization of hydrogen, including both externally- and internally-supplied hydrogen. Because the incorporation of externally-supplied hydrogen during conversion of this very aromatic fossil fuel to, for example, transportation fuels is very expensive, improved utilization of internally-supplied hydrogen can lead to reducing processing costs. The objectives of this investigation, which is Task 3.3.4, Coal Coprocessing, of the 1991--1992 Annual Research Plan, are: (1) to evaluate coal/oil pretreatment conditions that are expected to improve the liquid yield through more efficient dispersion of an oil-soluble, iron-based catalyst, (2) to characterize the coke deposits on novel, supported catalysts after coal liquefaction experiments and to correlate the carbon skeletal structure parameters of the coke deposit with catalyst performance as measured by coal liquefaction product yield, and (3) to determine the modes of hydrogen utilization during coal liquefaction and coprocessing. Experimental results are discussed in this report.

Guffey, F.D.; Netzel, D.A.; Miknis, F.P.; Thomas, K.P. [Western Research Inst., Laramie, WY (United States); Zhang, Tiejun; Haynes, H.W. Jr. [Wyoming Univ., Laramie, WY (United States). Dept. of Chemical Engineering

1994-06-01T23:59:59.000Z

135

A commitment to coal  

SciTech Connect

Quin Shea explores the need for power generated with coal and the advanced technologies that will generate that power more efficiently and cleanly in the future. The article considers the air and waste challenges of using coal, including progress toward reducing emissions of SO{sub 2}, NOx, and mercury; efforts to address CO{sub 2}, including voluntary programs like the Climate Challenge, Power Partners, and the Asia-Pacific Partnership on Clean Development and Climate; and the regulation and beneficial use of coal-combustion byproducts (e.g., fly ash, bottom ash, flue gas desulfurization materials, boiler slag). 17 refs.

Shea, Q. [Edison Electric Institute, Washington, DC (United States)

2006-07-15T23:59:59.000Z

136

U.S. Coal Supply and Demand: 2006 Review  

Reports and Publications (EIA)

This article provides and overview of the year 2006 in the coal industry and covers coal production, consumption, exports, imports, stocks, and delivered coal prices. It provides a detailed regional and State level coal production and national coal consumption along with industry developments that occurred in 2006. A brief discussion of coal-synfuel plants is included

Fred Freme

2007-04-17T23:59:59.000Z

137

U.S. Coal Supply and Demand: 2007 Review  

Reports and Publications (EIA)

This article provides and overview of the year 2007 in the coal industry and covers coal production, consumption, exports, imports, stocks, and delivered coal prices. It provides a detailed regional and State level coal production and national coal consumption along with industry developments that occurred in 2007. A brief discussion of coal-synfuel plants is included

Fred Freme

2008-04-16T23:59:59.000Z

138

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Glossary FAQS Overview Data Summary Prices Reserves Consumption Production Stocks Imports, Exports & Distribution Coal Transportation Rates International All Coal Data...

139

1 INTRODUCTION Appalachian coal recovered during mining fre-  

E-Print Network (OSTI)

1 INTRODUCTION Appalachian coal recovered during mining fre- quently contains diluting material be re- moved in order to produce a marketable product. This is compounded by the fact that current coal- ground room-and-pillar or longwall coal production do not allow for the separation of waste during coal

140

Role of coal in the world and Asia  

SciTech Connect

This paper examines the changing role of coal in the world and in Asia. Particular attention is given to the rapidly growing demand for coal in electricity generation, the importance of China as a producer and consumer of coal, and the growing environmental challenge to coal. Attention is given to the increasing importance of low sulfur coal and Clean Coal Technologies in reducing the environmental impacts of coal burning.

Johnson, C.J.; Li, B.

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Importance of denitrification to the efficiency of waste-water treatment in forested wetlands. Project completion report  

SciTech Connect

Wastewater, even after secondary treatment, typically contains high concentrations of nutrients that can cause eutrophication of receiving waters and deterioration of water quality. Therefore, there has been much interest in the use of natural wetlands as a simple and energy-efficient means of removing nutrients from wastewater and improving water quality. The utilization of a wetland for tertiary treatment of wastewater is based on the ability of the wetland to act as a nutrient sink. One of the most important processes in wetland ecosystems that influences their capacity as a nitrogen sink is the gaseous exchange of nitrogen with the atmosphere known as denitrification. Since denitrification represents a loss of nitrogen to the atmosphere, the mechanism tends to be most favorable for the removal of nitrogen. The objectives of the research project were to (1) determine the temporal and spatial ambient rates of denitrification and compare these rates to those of sediments amended with increased concentrations of nitrate comparable to concentrations of total nitrogen in the sewage effluent to be discharged; and (2) determine the proportion of total denitrification that can be attributed to direct utilization of nitrate loaded into the wetland, as compared to nitrate produced via nitrification within the wetland. Although nitrate is readily denitrified, short-term incubation rates are relatively low which is attributed to the presently low nitrate concentrations and subsequent reduced denitrifying microbial population in the wetland sediments. Nitrate concentrations varied seasonally associated with increased flooding during spring. Rates of nitrification coupled with denitrification were investigated with nitrogen-15 isotopes. Nitrification is limited in the wetland sedments; therefore, controls the rate of total nitrogen loss from the system.

Twilley, R.R.; Boustany, R.G.

1990-09-01T23:59:59.000Z

142

Trace-element geochemistry of coal resource development related to environmental quality and health  

Science Conference Proceedings (OSTI)

This report assesses for decision makers and those involved in coal resource development the environmental and health impacts of trace-element effects arising from significant increases in the use of coal, unless unusual precautions are invoked. Increasing demands for energy and the pressing need for decreased dependence of the United States on imported oil require greater use of coal to meet the nation's energy needs during the next decade. If coal production and consumption are increased at a greatly accelerated rate, concern arises over the release, mobilization, transportation, distribution, and assimilation of certain trace elements, with possible adverse effects on the environment and human health. It is, therefore, important to understand their geochemical pathways from coal and rocks via air, water, and soil to plants, animals, and ultimately humans, and their relation to health and disease. To address this problem, the Panel on Trace Element Geochemistry of Coal Resource Development Related to Health (PECH) was established. Certain assumptions were made by the Panel to highlight the central issues of trace elements and health and to avoid unwarranted duplication of other studies. Based on the charge to the Panel and these assumptions, this report describes the amounts and distribution of trace elements related to the coal source; the various methods of coal extraction, preparation, transportation, and use; and the disposal or recycling of the remaining residues or wastes. The known or projected health effects are discussed at the end of each section.

Not Available

1980-01-01T23:59:59.000Z

143

The most important thing you can do is be conscious of your energy usage, particularly with your AC and heating. Every added degree wastes gobs of  

E-Print Network (OSTI)

and heating. Every added degree wastes gobs of energy, which can go unnoticed since you pay a flat utilities you whether an action, such as leaving your computer on, will waste energy. For more information with the lights on. Tuition going towards this energy waste could be spent more productively if we use lights only

Dobbins, Ian G.

144

FE Clean Coal News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program DOE has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and use and will help propel technologies for future advanced coal power systems. January 4, 2011 DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration A novel technology that could help release some of the currently unusable energy in an estimated 2 billion tons of U.S. coal waste has been successfully demonstrated by a Department of Energy supported project. December 16, 2010 Prestigious Coal-Fired Project of the Year Award Goes to Plant Demonstrating Innovative DOE-Funded Technology

145

Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993  

Science Conference Proceedings (OSTI)

The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of the processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.

Not Available

1993-12-01T23:59:59.000Z

146

Combustion characterization of coal-water slurry fuel  

SciTech Connect

As a result of coal cleaning operations, a substantial amount of coal is disposed as waste into the ponds, effecting and endangering the environment. This study includes a technique to recover and utilize the waste coal fines from the preparation plant effluent streams and tailing ponds. Due to the large moisture content of the recovered coal fines, this investigation is focused on the utilization of coal fines in the coal-water slurry fuel. It is our belief that a blend of plant coal and waste coal fines can be used to produce a coal-water slurry fuel with the desired combustion characteristics required by the industry. The coal blend is composed of 85% clean coal and 15% recovered coal fines. The coal-water slurry is prepared at 60% solids with a viscosity less than 500 centipose and 80-90% of solid particles passing through 200 mesh. This paper contains analysis of clean coal, recovered coal fines, and coal-water slurry fuel as well as combustion characteristics.

Masudi, Houshang; Samudrala, S.

1996-12-31T23:59:59.000Z

147

A study of coal formation  

SciTech Connect

Coal is a solid, brittle, more or less distinctly stratified, combustible, carbonaceous rock. It is being rediscovered as a reliable energy source, which, historically provided the resource base for the industrialization of the United States economy. A firm understanding of growth in coal development is important to the national energy scene so that the implications of factors influencing coal growth upon the industry`s ability to realize national energy objectives may be determined. As a result, the future of coal development will be facilitated by compiling basic facts on coal reserves, production, and utilization. In view of this, a review and assessment of facts pertaining to the nature and origin of coal is presented. The various properties and uses of coal are then described, followed by a discussion of the process of coal formation.

Jubert, K.; Stevens, G.; Masudi, H.

1995-03-01T23:59:59.000Z

148

The Study of Coal Gasification by Molten Blast Furnace Slag  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium , Waste Heat Recovery. Presentation Title, The Study of Coal Gasification by ...

149

Coal combustion products (CCPs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

combustion products (CCPs) combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an important contribution in this regard. Fossil Energy Research Benefits Coal Combustion Products Fossil Energy Research Benefits

150

importing | OpenEI  

Open Energy Info (EERE)

6 6 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281466 Varnish cache server importing Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 142, and contains only the reference case. The dataset uses million short tons. The data is broken down into steam coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal flows countries EIA exporting importing Data application/vnd.ms-excel icon AEO2011: World Steam Coal Flows By Importing Regions and Exporting Countries- Reference Case (xls, 103.7 KiB)

151

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Distribution Category UC-950 Quarterly Coal Report April-June 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed to Paulette Young at (202) 426-1150, email

152

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Distribution Category UC-950 Quarterly Coal Report January-March 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed

153

Coal competition: prospects for the 1980s  

SciTech Connect

This report consists of 10 chapters which present an historical overview of coal and the part it has played as an energy source in the economic growth of the United States from prior to World War II through 1978. Chapter titles are: definition of coals, coal mining; types of coal mines; mining methods; mining work force; development of coal; mine ownership; production; consumption; prices; exports; and imports. (DMC)

1981-03-01T23:59:59.000Z

154

Developing Engineered Fuel (Briquettes) Using Fly Ash from the Aquila Coal-Fired Power Plant in Canon City and Locally Available Biomass Waste  

DOE Green Energy (OSTI)

The objective of this research is to explore the feasibility of producing engineered fuels from a combination of renewable and non renewable energy sources. The components are flyash (containing coal fines) and locally available biomass waste. The constraints were such that no other binder additives were to be added. Listed below are the main accomplishments of the project: (1) Determination of the carbon content of the flyash sample from the Aquila plant. It was found to be around 43%. (2) Experiments were carried out using a model which simulates the press process of a wood pellet machine, i.e. a bench press machine with a close chamber, to find out the ideal ratio of wood and fly ash to be mixed to get the desired briquette. The ideal ratio was found to have 60% wood and 40% flyash. (3) The moisture content required to produce the briquettes was found to be anything below 5.8%. (4) The most suitable pressure required to extract the lignin form the wood and cause the binding of the mixture was determined to be 3000psi. At this pressure, the briquettes withstood an average of 150psi on its lateral side. (5) An energy content analysis was performed and the BTU content was determined to be approximately 8912 BTU/lb. (6) The environmental analysis was carried out and no abnormalities were noted. (7) Industrial visits were made to pellet manufacturing plants to investigate the most suitable manufacturing process for the briquettes. (8) A simulation model of extrusion process was developed to explore the possibility of using a cattle feed plant operating on extrusion process to produce briquettes. (9) Attempt to produce 2 tons of briquettes was not successful. The research team conducted a trial production run at a Feed Mill in La Junta, CO to produce two (2) tons of briquettes using the extrusion process in place. The goal was to, immediately after producing the briquettes; send them through Aquila's current system to test the ability of the briquettes to flow through the system without requiring any equipment or process changes. (10) Although the above attempt failed, the plant is still interested in producing briquettes. (11) An economic analysis of investing in a production facility manufacturing such briquettes was conducted to determine the economic viability of the project. Such a project is estimated to have an internal rate of return of 14% and net present value of about $400,000. (12) An engineering independent study class (4 students) is now working on selecting a site near the power plant and determining the layout of the future plant that will produce briquettes.

H. Carrasco; H. Sarper

2006-06-30T23:59:59.000Z

155

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal 101 Lesson 1: Cleaning Up Coal Clean Coal COAL is our most abundant fossil fuel. The United States has more coal than the rest of the world has oil. There is still...

156

Catalytic Coal Gasification Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Coal Gasification Process Catalytic Coal Gasification Process for the Production of Methane-Rich Syngas Opportunity Research is active on the patent pending technology, titled "Production of Methane-Rich Syngas from Fuels Using Multi-functional Catalyst/Capture Agent." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Reducing pollution emitted by coal and waste power plants in an economically viable manner and building power plants that co-generate fuels and chemicals during times of low electricity demand are pressing goals for the energy industry. One way to achieve these goals in an economically viable manner is through the use of a catalytic gasifier that

157

Coal seam natural gas producing areas (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is...

158

Coal Ash Contaminants in Wetlands | SREL Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracey Tuberville, and Bill Hopkins The ash plume wetland (APW). The APW received coal combustion wastes from a breach in a receiving basin in the 1970s. Several trace metals...

159

Coal pump  

DOE Patents (OSTI)

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

160

Comparing the greenhouse gas emissions from three alternative waste combustion concepts  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Tsupari, Eemeli; Sipilae, Kai [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FIN 20500 Turku (Finland)

2012-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Coal - Analysis & Projections - U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Most Requested Most Requested Change category... Most Requested Consumption Environment Imports & Exports Industry Characteristics Prices Production Projections Reserves Stocks All Reports Filter by: All Data Analysis Projections Weekly Reports Today in Energy - Coal Short, timely articles with graphs about recent coal issues and trends Coal News & Markets Summarizes spot coal prices by coal commodity regions (i.e., Central Appalachia (CAP), Northern Appalachia (NAP), Illinois Basin (ILB), Power River Basin (PRB), and Uinta Basin (UIB)) in the United States. Weekly Coal Production Estimates of U.S. coal production by State based on railroad car loadings data. (archived versions) Archived Versions Weekly Coal Production - Archive Weekly NYMEX Coal Futures

162

International Coal Market Analysis  

Science Conference Proceedings (OSTI)

As this report is being finalized in November 2007, international steam coal freight-on-board (FOB) prices are at levels not seen since 1980-1982, shipping rates are at unprecedented high levels, and currency fluctuations are altering the degree to which major individual countries are impacted. This report systematically examines the history of the international coal trade, the major exporting and importing countries, and the drivers behind how trade functions. In addition, the report examines in depth t...

2007-12-14T23:59:59.000Z

163

CoalFleet IGCC Permitting Guidelines  

Science Conference Proceedings (OSTI)

This report provides guidance to owners of planned Integrated Gasification Combined Cycle (IGCC) power plants in order to assist them in permitting these advanced coal power generation facilities. The CoalFleet IGCC Permitting Guidelines summarize U.S. federal requirements for obtaining air, water, and solid waste permits for a generic IGCC facility, as described in EPRI report 1012227, the CoalFleet User Design Basis Specification (UDBS). The Guidelines present characteristics of IGCC emissions that mus...

2006-11-16T23:59:59.000Z

164

U.S. coal outlook in Asia  

SciTech Connect

Coal exports from the US to Asia are declining over time as a result of (1) increased competition from coal suppliers within the Asia-Pacific region, (2) changing steel making technologies, (3) decreased emphasis on security of coal supplies, and (4) deregulation of the energy industry--particularly electric utilities. There are no major changes on the horizon that are likely to alter the role of the US as a modest coal supplier to the Asia-Pacific region. The downward trend in US coal exports to Asia is expected to continue over the 1997--2010 period. But economic and policy changes underway in Asia are likely to result in periodic coal shortages, lasting a few months to a year, and short term increased export opportunities for US coal. US coal exports to Asia are projected to fluctuate within the following ranges over the 2000--2010 period: 10--17 million tons in total exports, 6--12 million tons in thermal coal exports, and 4--9 million tons in coking coal exports. The most important role for US coal, from the perspective of Asian coal importing countries, is to ensure a major alternative source of coal supplies that can be turned to in the event of unforeseen disruptions in coal supplies from the Asia-Pacific region or South Africa. However, the willingness of consumers to pay a premium to ensure US export capacity is declining, with increased emphasis on obtaining the lowest cost coal supplies.

Johnson, C.J.

1997-02-01T23:59:59.000Z

165

IN HARM'S WAY: Lack Of Federal Coal Ash  

E-Print Network (OSTI)

IN HARM'S WAY: Lack Of Federal Coal Ash Regulations Endangers Americans And Their Environment 2010 Thirty-nine New Damage Cases of Contamination from Improperly Disposed Coal Combustion Waste, Editor and Contributing Author #12;IN HARM'S WAY: Lack of Federal Coal Ash Regulations Endangers

Short, Daniel

166

EIA - Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal...

167

Heat Recovery from Coal Gasifiers  

E-Print Network (OSTI)

This paper deals with heat recovery from pressurized entrained and fixed bed coal gasifiers for steam generation. High temperature waste heat, from slagging entrained flow coal gasifier, can be recovered effectively in a series of radiant and convection waste heat boilers. Medium level waste heat leaving fixed bed type gasifiers can be recovered more economically by convection type boilers or shell and tube heat exchangers. An economic analysis for the steam generation and process heat exchanger is presented. Steam generated from the waste heat boiler is used to drive steam turbines for power generation or air compressors for the oxygen plant. Low level heat recovered by process heat exchangers is used to heat product gas or support the energy requirement of the gasification plant. The mechanical design for pressure vessel shell and boiler tubes is discussed. The design considers metallurgical requirements associated with hydrogen rich, high temperature, and high pressure atmosphere.

Wen, H.; Lou, S. C.

1981-01-01T23:59:59.000Z

168

COMBINATION OF MSWC AND COAL FIRED POWER PLANT Jiirgen Vehlow, Hans Hunsinger, Siegfried Kreisz, Helmut Seifert  

E-Print Network (OSTI)

COMBINATION OF MSWC AND COAL FIRED POWER PLANT Jiirgen Vehlow, Hans Hunsinger, Siegfried Kreisz for the combination of a municipal solid waste combustion plant and a coal fired power plant in such a way that the dedusted and pre cleaned offgas of the waste combustion serves as carrier gas for the pulverized coal

Columbia University

169

Coal: Energy for the future  

SciTech Connect

This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

1995-05-01T23:59:59.000Z

170

Quarterly coal report, October--December 1996  

SciTech Connect

The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.

NONE

1997-05-01T23:59:59.000Z

171

NYMEX Coal Futures - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

NYMEX Coal Futures Near-Month Contract Final Settlement Price 2013 NYMEX Coal Futures Near-Month Contract Final Settlement Price 2013 Data as of: December 13, 2013 | Release Date: December 16, 2013 | Next Release Date: December 30, 2013 U.S. coal exports, chiefly Central Appalachian bituminous, make up a significant percentage of the world export market and are a relevant factor in world coal prices. Because coal is a bulk commodity, transportation is an important aspect of its price and availability. In response to dramatic changes in both electric and coal industry practices, the New York Mercantile Exchange (NYMEX) after conferring with coal producers and consumers, sought and received regulatory approval to offer coal futures and options contracts. On July 12, 2001, NYMEX began trading Central Appalachian Coal futures under the QL symbol.

172

Table 18. U.S. Coal Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Kingdom - 115 10 115 10 NM Asia Total 337,715 127,022 70,962 464,737 136,534 240.4 China 19,536 8,692 20,964 28,228 27,697 1.9 India - 849 611 849 611 39.0 Indonesia 318,179...

173

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleanest Coal Technology Clean Coal 101 Lesson 5: The Cleanest Coal Technology-A Real Gas Don't think of coal as a solid black rock. Think of it as a mass of atoms. Most of the...

174

Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Guide: WHAT IS COAL? Coal looks like a shiny black rock. Coal has lots of energy in it. When it is burned, coal makes heat and light energy. Th e cave men used coal for...

175

Table 3.7 Value of Fossil Fuel Imports, 1949-2011 (Billion Dollars)  

U.S. Energy Information Administration (EIA)

Table 3.7 Value of Fossil Fuel Imports, 1949-2011 (Billion Dollars) Year: Coal: Coal Coke: Natural Gas: Crude Oil 1: Petroleum ... Office of Fossil Energy.

176

Zero emission coal  

DOE Green Energy (OSTI)

We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

Ziock, H.; Lackner, K.

2000-08-01T23:59:59.000Z

177

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Open Energy Info (EERE)

Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Pennsylvania Name Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Program Administrator Pennsylvania Department of Environmental Protection

178

Clean Coal Technology and the Clean Coal Power Initiative | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Technology and the Clean Coal Power Initiative Clean Coal Technology and the Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy...

179

Engineering and Cost Assessment of Listed Special Waste Designation of Coal Combustion Residuals Under Subtitle C of the Resource Co nservation and Recovery Act  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) undertook this project to identify engineering cost estimates for the changes at power plants needed to comply with the Subtitle C option in proposed federal rules regarding the management of coal combustion residuals. The analysis represents a high level evaluation of various plant operations before such federal rules are finalized. It relies on best engineering judgment interpretations of applying the proposed regulations on current practices for generating...

2010-11-16T23:59:59.000Z

180

Proceedings of the eighteenth mid-Atlantic industrial waste conference on toxic and hazardous wastes  

SciTech Connect

This book presents the papers given at a conference on the management of hazardous materials. Topics considered at the conference included underground storage tanks, underground industrial waste tank releases, regulations, cost estimation, metal leaching, spent oil shales, siting power plant ash disposal areas, phosphorous removal by a coal media filter, and waste water characterization and treatment for the coal slurry pipeline industry.

Boardman, G.D.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Evaluation of coal minerals and metal residues as coal-liquefaction catalysts. Final report  

DOE Green Energy (OSTI)

The catalytic activity of various minerals, metallic wastes, and transition metals was investigated in the liquefaction of various coals. The effects of coal type, process variables, coal cleaning, catalyst addition mode, solvent quality, and solvent modification on coal conversion and oil production were also studied. Coal conversion and oil production improved significantly by the addition of pyrite, reduced pyrite, speculite, red mud, flue dust, zinc sulfide, and various transition metal compounds. Impregnation and molecular dispersion of iron gave higher oil production than particulate incorporation of iron. However, the mode of molybdenum addition was inconsequential. Oil production increased considerably both by adding a stoichiometric mixture of iron oxide and pyrite and by simultaneous impregnation of coal with iron and molybdenum. Hydrogenation activity of disposable catalysts decreased sharply in the presence of nitrogen compounds. The removal of heteroatoms from process solvent improved thermal as well as catalytic coal liquefaction. The improvement in oil production was very dramatic with a catalyst.

Garg, D.; Givens, E. N.; Schweighardt, F. K.; Tarrer, A. R.; Guin, J. A.; Curtis, C. W.; Huang, W. J.; Shridharani, K.; Clinton, J. H.

1982-02-01T23:59:59.000Z

182

USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS  

SciTech Connect

This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also given for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.

Edward Levy; Nenad Sarunac; Harun Bilirgen; Wei Zhang

2005-04-01T23:59:59.000Z

183

Coal flows | OpenEI  

Open Energy Info (EERE)

Coal flows Coal flows Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 142, and contains only the reference case. The dataset uses million short tons. The data is broken down into steam coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal flows countries EIA exporting importing Data application/vnd.ms-excel icon AEO2011: World Steam Coal Flows By Importing Regions and Exporting Countries- Reference Case (xls, 103.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License

184

The Key Coal Producers ONLINE SUPPORTING MATERIALS to  

E-Print Network (OSTI)

The Key Coal Producers ONLINE SUPPORTING MATERIALS to A Global Coal Production Forecast with Multi's most important coal-producing area is North-Central China. The provinces of Inner Mongolia, Ningxia, Shaanxi and Shanxi together accounted for 83 percent of China's proven coal reserves in 2000, and Shanxi

Patzek, Tadeusz W.

185

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

186

USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS  

SciTech Connect

This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energy extracted from boiler flue gas.

Edward Levy; Harun Bilirgen; Ursla Levy; John Sale; Nenad Sarunac

2006-01-01T23:59:59.000Z

187

Environmental data energy technology characterizations: coal  

SciTech Connect

This document describes the activities leading to the conversion of coal to electricity. Specifically, the activities consist of coal mining and beneficiation, coal transport, electric power generation, and power transmission. To enhance the usefulness of the material presented, resource requirements, energy products, and residuals for each activity area are normalized in terms of 10/sup 12/ Btus of energy produced. Thus, the total effect of producing electricity from coal can be determined by combining the residuals associated with the appropriate activity areas. Emissions from the coal cycle are highly dependent upon the type of coal consumed as well as the control technology assigned to the activity area. Each area is assumed to be equipped with currently available control technologies that meet environmental regulations. The conventional boiler, for example, has an electrostatic precipitator and a flue gas desulfurization scrubber. While this results in the removal of most of the particulate matter and sulfur dioxide in the flue gas stream, it creates other new environmental residuals -- solid waste, sludge, and ash. There are many different types of mined coal. For informational purposes, two types from two major producing regions, the East and the West, are characterized here. The eastern coal is typical of the Northern Appalachian coal district with a high sulfur and heat content. The western coal, from the Powder River Basin, has much less sulfur, but also has a substantially lower heating value.

Not Available

1980-04-01T23:59:59.000Z

188

The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, September 28, 1992--March 27, 1993  

Science Conference Proceedings (OSTI)

The US Department of Defense (DOD), through an Interagency Agreement with the US Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first phase of the program is underway. Phase I activities are focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water mixtures (MCWMs) and dry, micronized coal (MC) in fuel oil-designed industrial boilers. Phase II research and development activities will continue to focus on industrial boiler retrofit technologies by addressing emissions control and pre-combustion (i.e., slagging combustion and/or gasification) strategies for the utilization of high ash and high sulfur coals. Phase III activities will examine coal-based fuel combustion systems that cofire wastes. Each phase includes an engineering cost analysis and technology assessment. The activities and status of Phase I are described below. The objective in Phase I is to deliver fully engineered retrofit options for a fuel oil- designed watertube boiler located on a DOD installation to fire either MCWM or MC. This will be achieved through a program consisting of the following five tasks: (1) Coal Beneficiation and Preparation; (2) Combustion Performance Evaluation; (3) Engineering Design; (4) Engineering and Economic Analysis; (5) Final Report/Submission of Design Package.

Miller, B.G.; Scaroni, A.W.; Hogg, R. [and others

1993-05-13T23:59:59.000Z

189

Electricity from coal and utilization of coal combustion by-products  

Science Conference Proceedings (OSTI)

Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

Demirbas, A. [Sila Science, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

190

EIA Energy Kids - Coal  

U.S. Energy Information Administration (EIA)

Sometimes, coal-fired electric power plants are built near coal mines to lower ... industries and businesses with their own power plants use coal to generate ...

191

Coal industry annual 1994  

SciTech Connect

This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

NONE

1995-10-01T23:59:59.000Z

192

Outlook and Challenges for Chinese Coal  

Science Conference Proceedings (OSTI)

China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If China follows Japan, steel production would peak by 2015; cement is likely to follow a similar trajectory. A fourth wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. New demand from coal-to-liquids and coal-to-chemicals may add 450 million tonnes of coal demand by 2025. Efficient growth among these drivers indicates that China's annual coal demand will reach 4.2 to 4.7 billion tonnes by 2025. Central government support for nuclear and renewable energy has not been able to reduce China's growing dependence on coal for primary energy. Few substitution options exist: offsetting one year of recent coal demand growth would require over 107 billion cubic meters of natural gas, 48 GW of nuclear, or 86 GW of hydropower capacity. While these alternatives will continue to grow, the scale of development using existing technologies will be insufficient to substitute significant coal demand before 2025. The central role of heavy industry in GDP growth and the difficulty of substituting other fuels suggest that coal consumption is inextricably entwined with China's economy in its current mode of growth. Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on its current growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Broadening awareness of the environmental costs of coal mining, transport, and combustion is raising the pressure on Chinese policy makers to find alternative energy sources. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China is short of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport. Transporting coal to users has overloaded the train system and dramatically increased truck use, raising transport oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 mt by 2025, significantly impacting regional markets. The looming coal gap threatens to derail China's growth path, possibly undermining political, economic, and social stability. High coal prices and domestic shortages will have regional and global effects. Regarding China's role as a global manufacturing center, a domestic coal gap will increase prices and constrain growth. Within the Asia-Pacific region, China's coal gap is likely to bring about increased competition with other coal-importing countries including Japan, South Korea, Taiwan, and India. As with petroleum, China may respond with a government-supported 'going-out' strategy of resource acquisition and vertical integration. Given its population and growing resource constraints, China may favor energy security, competitiveness, and local environmental protection over global climate change mitigation. The possibility of a large coal gap suggests that Chinese and international policy makers should maximize institutional and financial support

Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

2008-06-20T23:59:59.000Z

193

Quarterly Coal Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Quarterly Coal Report Quarterly Coal Report Release Date: October 02, 2013 | Next Release Date: December 2013 | full report Previous Quarterly Coal Data historical data (PDF): 1st quarter 2013 4th quarter 2012 3rd quarter 2012 2nd quarter 2012 1st quarter 2012 4th quarter 2011 3rd quarter 2011 2nd quarter 2011 1st quarter 2011 prior to 2011 Go The Quarterly Coal Report (QCR) provides detailed quarterly data on U.S. coal production, exports, imports, receipts, prices, consumption, quality, stocks, and refined coal. Data on U.S. coke production, consumption, stocks, imports, and exports are also provided. All data for 2011 and prior years are final. All data for 2012 and 2013 are preliminary. Highlights for second quarter 2013: U.S. coal production during second quarter 2013 totaled 243.1

194

NETL: News Release - DOE-Supported Coal Cleaning Technology Succeeds in  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2011 4, 2011 DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration Novel Centrifuge Paves Way to Recover Tons of Waste Coal for Energy Use Washington, DC -- A novel technology that could help release some of the currently unusable energy in an estimated 2 billion tons of U.S. coal waste has been successfully demonstrated by a Department of Energy (DOE) supported project. The full-scale test of the advanced hyperbaric centrifuge technology at a Jim Walter Resources Inc. coal-cleaning plant in Alabama resulted in the successful reduction of moisture from ultrafine coal waste. The test builds on an eight-year cooperative effort between the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) and the Virginia Polytechnic Institute and State University (Virginia Tech) to use the patented process to effectively remove water from very fine coal "slurries," or mixture of waste coal "fines" and water.

195

coal supply | OpenEI  

Open Energy Info (EERE)

coal supply coal supply Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 15, and contains only the reference case. The dataset uses gigawatts. The data is broken down into production, net imports, consumption by sector and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal coal supply disposition. prices EIA Data application/vnd.ms-excel icon AEO2011: Coal Supply, Disposition, and Prices- Reference Case (xls, 91.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

196

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction  

SciTech Connect

A study of high-temperature soaking has been continued. Two high-volatile bituminous coals and three coal liquids were used. Large pyridine extractabilities of more than 70 wt% were obtained for aR cases. A better understanding Of the mechanism is important for the development of coal preconversion using the high-temperature soaking. To investigate the mechanism of the change in coal solubilization by high-temperature soaking, a simple soaking experiment was conducted. The extract from the Illinois No. 6 coal was treated in toluene at three different temperatures, and the treated samples were analyzed by coal swelling using the recently developed method. Furthermore, effects of soaking time, soaking temperature, soluble portions, and coal rank were examined by using actual coal liquids. Although a cross-linked, three-dimensional macromoleculer model has been widely accepted for the structure of coat it has previously been reported that significant portions (far more generally believed) of coal molecules are physically associated. It is known, as reviewed in that paper, that most portions of bituminous coal can be disintegrated in coal derived liquids and polycyclic aromatic hydrocarbons at 300--400{degrees}C (high-temperature soaking). It was proposed that electron donors and acceptors of low molecular mass contained in these materials substitute coal-coal complexes with charge-transfer interactions. This is physical dissociation of associated coal molecules. However, chemical reactions may occur at these temperatures.

1992-08-01T23:59:59.000Z

197

Assessment of Research Needs for Coal Utilization  

SciTech Connect

The Coal Combustion and Applications Working Group (CCAWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on coal combustion and utilization. The important topical areas of coal gasification and coal liquefaction have been deliberately excluded because R and D needs for these technologies were reviewed previously by the DOE Fossil Energy Research Working Group. The CCAWG studies were performed in order to provide an independent assessment of research areas that affect prospects for augmented coal utilization. In this report, we summarize the findings and research recommendations of CCAWG.

Penner, S.S.

1983-08-01T23:59:59.000Z

198

New coal dewatering technology turns sludge to powder  

SciTech Connect

Virginian Tech's College of Engineering's Roe-Hoan Yoon and his group have developed a hyperbaric centrifuge that can dewater coal as fine as talcum powder. Such coal fines presently must be discarded by even the most advanced coal cleaning plants because of their high moisture content. The new technology can be used with the Microcel technology to remove ash, to re-mine the fine coal discarded to impoundments and to help minimize waste generation. Virginia Tech has received $1 million in funding from the US Department of State to also help the Indian coal industry produce a cleaner product. 1 photo.

NONE

2009-03-15T23:59:59.000Z

199

China's Coal: Demand, Constraints, and Externalities  

Science Conference Proceedings (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

200

Field Evaluation of the Comanagement of Utility Low-Volume Wastes with High-Volume Coal Combustion By-Products: FC Site  

Science Conference Proceedings (OSTI)

Utilities typically comanage some or all of their low-volume wastes with high-volume by-products in disposal facilities. This report presents the results of a field study of comanagement practices at an impoundment at a power plant located in the south-central United States. The findings from this research provided technical information for use in a study of comanagement practices by the U.S. Environmental Protection Agency (EPA).

2002-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Field Evaluation of the Comanagement of Utility Low-Volume Wastes with High Volume Coal Combustion By-Products: AP Site  

Science Conference Proceedings (OSTI)

Power companies typically comanage some or all of their low-volume wastes with high-volume by-products in disposal facilities. This report presents the results of a field study of comanagement practices at an impoundment at a power plant located in the southwestern United States. The findings from this research provided technical information for use in a study of comanagement practices by the U.S. Environmental Protection Agency (EPA).

2001-12-06T23:59:59.000Z

202

Municipal Solid Waste:  

U.S. Energy Information Administration (EIA) Indexed Site

Methodology for Allocating Municipal Solid Waste Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy May 2007 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. Contact This report was prepared by staff of the Renewable Information Team, Coal, Nuclear, and Renewables Division, Office of Coal, Nuclear, Electric and Alternate Fuels.

203

Clean coal technologies in Asia  

Science Conference Proceedings (OSTI)

Asia`s growing need for cleaner coal technology will likely translate into increased opportunities for independent developers and equipment suppliers. Coal is projected to play a central role in meeting Asia`s rapidly growing electric power demand. In order to minimize the negative effects of coal comsumption, the application of clean coal technologies (CCTs) will be increasingly important for the viability of coal-fired plants developed by independent power producers. The environmental impact of coal consumption has created a growing market for clean coal technologies in Asia. A study commissioned by the US DOE estimates the market for new and retrofit installation of coal facilities in Asia to be between $410 billion and $560 billion between 1993 and 2010. Actual expenditures for CCTs during the same period are likely to be much less, but still significant. Cost continues to be a factor limiting the more wide spread application of these technologies. In most cases, the application of CCTs leads to a 15 percent to 20 percent increase in capital costs and 10 to 20 percent in operating costs.

Evans, P.

1995-04-01T23:59:59.000Z

204

ASSEMBLAGES ON WASTE ROCK  

E-Print Network (OSTI)

Abstract: Natural regeneration on waste rock was investigated at the old Wangaloa coal mine, south-east Otago. A 450-m long waste rock stack had been created 40–50 years ago, and has had little anthropogenic intervention since. The stack is made up of a gradient of three main waste rock types, defined as ‘silt-rich’, ‘mixed’, and ‘quartz-rich’, which reflect different proportions of loess siltstone and quartz gravel conglomerate. Plant species assemblages were quantified in four 5-m 2 quadrats in each waste rock type. Invertebrates were heat extracted from substrate cores (7 cm diameter; depth 5 cm) collected from quadrats over an eight-week period in spring 2003. Ordination analysis showed statistically distinct plant and invertebrate assemblages had arisen on each waste rock type. Revegetation patterns were dominated by native, woody individuals on all waste rock types, particularly manuka (Leptospermum scoparium) and kanuka (Kunzea ericoides). Plant cover on ‘silt-rich ’ waste rock was four-fold that on ‘quartz-rich ’ waste rock. Total numbers of invertebrates were highest on ‘quartz-rich’ waste rock, but richness greatest on ‘silt-rich ’ waste rock. Collembola dominated the fauna but their numbers were proportionally greatest in poorly vegetated areas. Further work is required to explain the absence of plants and invertebrates from local areas of waste rock. ___________________________________________________________________________________________________________________________________

C. G. Rufaut; S. Hammit; D. Craw; S. G. Clearwater

2006-01-01T23:59:59.000Z

205

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Knocking the NOx Out of Coal Clean Coal 101 Lesson 3: Knocking the NOx Out of Coal How NOx Forms NOx Formation Air is mostly nitrogen molecules (green in the above diagram) and...

206

DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supported Coal Cleaning Technology Succeeds in Commercial Supported Coal Cleaning Technology Succeeds in Commercial Demonstration DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration January 4, 2011 - 12:00pm Addthis Washington, DC - A novel technology that could help release some of the currently unusable energy in an estimated 2 billion tons of U.S. coal waste has been successfully demonstrated by a Department of Energy (DOE) supported project. The full-scale test of the advanced hyperbaric centrifuge technology at a Jim Walter Resources Inc. coal-cleaning plant in Alabama resulted in the successful reduction of moisture from ultrafine coal waste. The test builds on an eight-year cooperative effort between the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) and the Virginia

207

Health effects of coal technologies: research needs  

Science Conference Proceedings (OSTI)

In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

Not Available

1980-09-01T23:59:59.000Z

208

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

209

U.S. Energy Information Administration | Quarterly Coal Report...  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Imports by Origin, 2007 - 2013 (thousand short tons and dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 6....

210

Coal Fleet Integrated Gasification Combined Cycle (IGCC Permitting) Guidelines  

Science Conference Proceedings (OSTI)

This report provides guidance to owners of planned Integrated Gasification Combined Cycle (IGCC) power plants in order to assist them in permitting these advanced coal power generation facilities. The CoalFleet IGCC Permitting Guidelines summarize U.S. federal requirements for obtaining air, water, and solid waste permits for a generic IGCC facility, as described in the CoalFleet User Design Basis Specification (UDBS). The report presents characteristics of IGCC emissions that must be considered in the p...

2006-03-14T23:59:59.000Z

211

University Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Clean Coal Crosscutting Research University Coal Research University Coal Research Clean Coal Turbines Gasification Fuel Cells Hydrogen from Coal Coal...

212

Boiler Room Coal Drying Heat Exchanger Numerical Computational Simulation and Analysis  

Science Conference Proceedings (OSTI)

Northeast area city district heating boiler room of coal with high moisture content, have caused a large number of waste of coal resources. Boiler coal drying heat exchanger is a long design cycle, testing workload and investment is more equipment. In ... Keywords: District heating boiler room, Dry heat exchanger, Numerical simulation, Heat transfer calculation

Zhao Xuefeng, Xiong Wen-zhuo

2012-07-01T23:59:59.000Z

213

Coal: America's energy future. Volume I  

SciTech Connect

Secretary of Energy Samuel W. Bodman requested the National Coal Council in April 2005 a report identifying the challenges and opportunities of more fully exploring the USA's domestic coal resources to meet the nations' future energy needs. This resultant report addresses the Secretary's request in the context of the President's focus, with eight findings and recommendations that would use technology to leverage the USA's extensive coal assets and reduce dependence on imported energy. Volume I outlines these findings and recommendations. Volume II provides technical data and case histories to support the findings and recommendations. Chapter headings of Volume I are: Coal-to-Liquids to Produce 2.6 MMbbl/d; Coal-to-Natural Gas to Produce 4.0 Tcf Per Year; Coal-to-Clean Electricity; Coal to Produce Ethanol; Coal-to-Hydrogen; Enhanced Oil and Gas (Coalbed Methane); Recovery as Carbon Management Strategies; Delineate U.S. Coal Reserves and Transportation Constraints as Part of an Effort to Maximize U.S. Coal Production; and Penn State Study, 'Economic Benefits of Coal Conversion Investments'.

NONE

2006-03-15T23:59:59.000Z

214

Biomass Energy - Focus on Wood Waste  

NLE Websites -- All DOE Office Websites (Extended Search)

application for wood waste as a fuel is in the co-firing of conventional coal-fired boilers, which means using biomass as a supplementary energy source in high- efficiency...

215

Cooperative research in coal liquefaction. Technical progress report, May 1, 1993--April 30, 1994  

DOE Green Energy (OSTI)

Accomplishments for the past year are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts some of the highlights are: very promising results have been obtained from the liquefaction of plastics, rubber tires, paper and other wastes, and the coliquefaction of wastes with coal; a number of water soluble coal liquefaction catalysts, iron, cobalt, nickel and molybdenum, have been comparatively tested; mossbauer spectroscopy, XAFS spectroscopy, TEM and XPS have been used to characterize a variety of catalysts and other samples from numerous consortium and DOE liquefaction projects and in situ ESR measurements of the free radical density have been conducted at temperatures from 100 to 600{degrees}C and H{sub 2} pressures up to 600 psi.

Huffman, G.P. [ed.

1994-10-01T23:59:59.000Z

216

The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal  

SciTech Connect

This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

Zauderer, B.; Fleming, E.S.

1991-08-30T23:59:59.000Z

217

European coal mining technology  

SciTech Connect

Most new developments in mechanized longwall coal technology have been pioneered by European mines and equipment manufacturers. But ironically, the most successful adaptations of European-inspired longwalling systems have occurred in North America, Australia, South Africa and elsewhere, enabling those mines to achieve even greater productivity and cost-effective utilization than the Europeans enjoy. This anomaly has little to do with mining talents, but arises instead from a pair of factors: 1) the extremely difficult mining and geological conditions of European coal basins; and 2) the profound differences between the management style and operating routines of the largely state-owned mines of Europe and the privately-owned, profit oriented mining companies abroad. Nevertheless, Europe continues to lead the way in new developments, driven by the chemistry of tough mining conditions and the commitments of its national mining industries to invest in new technology. As a third ingredient, the supra-national European Economic Community (EEC) plays an important role in promoting and funding new developments through its various agencies. A recent EEC information symposium on new methods of coal winning at Luxembourg focused on state-of-the-art longwall technology. Thus a look at current Euopean RandD programs yields pointers as to what the international coal industry may expect in the future.

Wyllie, B.

1986-06-01T23:59:59.000Z

218

Mechanism of instantaneous coal outbursts  

Science Conference Proceedings (OSTI)

Thousands of mine workers die every year from mining accidents, and instantaneous coal outbursts in underground coal mines are one of the major killers. Various models for these outbursts have been proposed, but the precise mechanism is still unknown. We hypothesize that the mechanism of coal outbursts is similar to magma fragmentation during explosive volcanic eruptions; i.e., it is caused by high gas pressure inside coal but low ambient pressure on it, breaking coal into pieces and releasing the high-pressure gas in a shock wave. Hence, coal outbursts may be regarded as another type of gas-driven eruption, in addition to explosive volcanic, lake, and possible ocean eruptions. We verify the hypothesis by experiments using a shock-tube apparatus. Knowing the mechanism of coal outbursts is the first step in developing prediction and mitigation measures. The new concept of gas-driven solid eruption is also important to a better understanding of salt-gas outbursts, rock-gas outbursts, and mud volcano eruptions.

Guan, P.; Wang, H.Y.; Zhang, Y.X. [Peking University, Beijing (China). School of Earth & Space Science

2009-10-15T23:59:59.000Z

219

Exploration for deep coal  

Science Conference Proceedings (OSTI)

The most important factor in safe mining is the quality of the roof. The article explains how the Rosebud Mining Co. conducts drilling and exploration in 11 deep coal mine throughout Pennsylvania and Ohio. Rosebud uses two Atlas Copco CS10 core drilling rigs mounted on 4-wheel drive trucks. The article first appeared in Atlas Copco's in-house magazine, Deep Hole Driller. 3 photos.

NONE

2008-12-15T23:59:59.000Z

220

Coal gasification  

Science Conference Proceedings (OSTI)

A standard series of two staged gas generators (GG) has been developed in the United States for producing gas with a combustion heat from 4,700 to 7,600 kilojoules per cubic meter from coal (U). The diameter of the gas generators is from 1.4 to 3.65 meters and the thermal capacity based on purified cold gas is from 12.5 to 89 million kilojoules per hour. Certain standard sized gas generators have undergone experimental industrial tests which showed that it is most expedient to feed the coal into the gas generators pneumatically. This reduces the dimensions of the charging device, makes it possible to use more common grades of structural steels and reduces the cost of the gas. A double valve reliably prevents ejections of the gasification product and promotes the best distribution of the coal in the gas generator. The gas generators may successfully operate on high moisture (up to 36 percent) brown coal. Blasting with oxygen enriched to 38 percent made it possible to produce a gas with a combustion heat of 9,350 kilojoules per cubic meter. This supports a combustion temperature of 1,700C.

Rainey, D.L.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Surface Coal Mining Regulations (Mississippi) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Coal Mining Regulations (Mississippi) Surface Coal Mining Regulations (Mississippi) Surface Coal Mining Regulations (Mississippi) < Back Eligibility Commercial Construction Developer Industrial Utility Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Mississippi Department of Environmental Quality The Surface Coal Mining Regulations are a combination of permitting requirements and environmental regulations that limit how, where and when coal can be mined. It protects lands that are under special regulation due to their nature, and applies only to state lands. When applied to Coal with Carbon Capture and Storage projects the rules that would apply to a normal coal-mining project still apply. In addition to these measures, a CCS plant would need to adhere to all waste disposal requirements, water usage

222

Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration  

SciTech Connect

Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.

Damgaard, Anders, E-mail: and@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Riber, Christian [Ramboll, Consulting Engineers, Teknikerbyen 31, DK-2830 Virum (Denmark); Fruergaard, Thilde [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Hulgaard, Tore [Ramboll, Consulting Engineers, Teknikerbyen 31, DK-2830 Virum (Denmark); Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark)

2010-07-15T23:59:59.000Z

223

Coal - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Coal Glossary › FAQS › Overview Data Summary Prices Reserves Consumption Production Stocks Imports, Exports & Distribution Coal Transportation Rates International All Coal Data Reports Analysis & Projections Most Requested Consumption Environment Imports & Exports Industry Characteristics Prices Production Projections Reserves Stocks All Reports EIA's latest Short-Term Energy Outlook for coal › image chart of U.S. Natural Gas Production and Imports projections as described in linked Short-Term Energy Outlook Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly. U.S. coal production by quarter › Source: U.S. Energy Information Administration, Quarterly Coal Report. Quarterly data for coal shipments between states ›

224

Hazards from radioactive waste in perspective  

SciTech Connect

This paper compares the hazards from wastes from a 1000-MW(e) nuclear power plant to these from wastes from a 1000-MW(e) coal fueled power plant. The latter hazard is much greater than the former. The toxicity and carcinogenity of the chemicals prodcued in coal burning is emphasized. Comparisions are also made with other toxic chemicals and with natural radioactivity. (DLC)

Cohen, B.L.

1979-02-27T23:59:59.000Z

225

NETL: IEP - Coal Utilization By-Products : Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Drivers Regulatory Drivers Since 1993, Federal Regulations have treated the four major large-volume CUB's -- fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) byproducts -- as solid wastes that do not warrant regulation as hazardous wastes under Subtitle C of RCRA, as long as these CUBÂ’s were not co-managed with other waste materials. On May 22, 2000, EPA published a final Regulatory Determination [PDF-320KB] that retained the hazardous waste exemption for coal utilization by-products. EPA has concluded that fossil fuel combustion wastes do not warrant regulation as hazardous under Subtitle C of RCRA and is retaining the hazardous waste exemption for these wastes. However, the Agency has determined that national non-hazardous waste regulations under RCRA Subtitle D are needed for coal combustion wastes disposed in surface impoundments and landfills and used as minefilling. EPA also concluded beneficial uses of these wastes, other than for minefilling, pose no significant risk and no additional national regulations are needed. This determination affects more than 110 million tons of fossil fuel combustion wastes that are generated each year, virtually all from burning coal.

226

Coal industry annual 1997  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

227

Coal industry annual 1996  

Science Conference Proceedings (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

NONE

1997-11-01T23:59:59.000Z

228

Coal Industry Annual 1995  

SciTech Connect

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

1996-10-01T23:59:59.000Z

229

Conceptual flow sheets development for coal conversion plant coal handling-preparation and ash/slag removal operations  

SciTech Connect

This report presents 14 conceptual flow sheets and major equipment lists for coal handling and preparation operations that could be required for future, commercial coal conversion plants. These flow sheets are based on converting 50,000 tons per day of clean coal representative of the Pittsburgh and Kentucky No. 9 coal seams. Flow sheets were used by Union Carbide Corporation, Oak Ridge National Laboratory, in a survey of coal handling/preparation equipment requirements for future coal conversion plants. Operations covered in this report include run-of-mine coal breaking, coarse coal cleaning, fine coal cleaning, live storage and blending, fine crushing (crushing to top sizes ranging from 1/4-inch to 20 mesh), drying, and grinding (70 percent minus 200 mesh). Two conceptual flow sheets and major equipment lists are also presented for handling ash or granulated slag and other solid wastes produced by nine leading coal conversion processes. These flow sheets provide for solid wastes transport to an environmentally acceptable disposal site as either dry solids or as a water slurry.

1979-07-01T23:59:59.000Z

230

Microbial solubilization of coal  

DOE Patents (OSTI)

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

231

Byproducts can make coal plants green  

Science Conference Proceedings (OSTI)

Co-locating ethanol plants at coal-burning sites, along with the use of biomass gasification to boost coal-fired plant output, can have positive economic and environmental benefits. Adding a biomass gasifier to an older coal-fired plant would inject gas with up to 10% of the fuel value in the coal and increase steam generation by the same amount. Sawdust can be injected as a reburn fuel without the need for gasification. A pre-scrubber would be added before the existing SO{sub 2} scrubber and waste heat from the boiler in the form of low-pressure steam would be sent to a co-located ethanol plant. This would lead to a decrease in emissions of NOx, mercury and SO{sub 2}, less mercury in the gypsum, a large greenhouse gas reduction, reduced net fuel cost, and revenue from hydrochloric acid by- product and from selling low-pressure steam to the ethanol plant. The Blue Flint Ethanol facility uses waste heat from Grand River Energy's 1,100 MW Coal Creek Station in South Jordan, Utah. The new generation of US ethanol plants is likely to use switchgrass and other cellulosic materials as feedstock. Straw and other forms of biomass have high chlorine content. PVC waste can be added to optimise the chlorine content of the scrubber. A chlorine pre-scrubber before the SO{sub 2} scrubber would capture HCl. 1 fig., 1 photo.

McIlvaine, B. [McIlvaine Co. (United States)

2007-07-15T23:59:59.000Z

232

National Coal Council Meeting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Coal Council Meeting National Coal Council Meeting National Coal Council Meeting June 7, 2007 - 1:40pm Addthis Remarks As Prepared By Deputy Energy Secretary Clay Sell Thank you, Georgia [Nelson, Chair of the NCC]. I am grateful for the opportunity to be here this morning. Before I begin my remarks, I'd like to take a moment to honor the late Senator Craig Thomas. As everyone in this room knows, Senator Thomas was an important voice in the shaping of this nation's energy policy for more than a decade. He was a dedicated and distinguished statesman and a champion for the enduring importance of coal in our nation's energy future. He was a friend to us all and I, personally, will sorely miss him. The Department of Energy values the input and insights we get from the National Coal Council. And you all have been an important part of our

233

Quarterly coal report, October--December 1997  

Science Conference Proceedings (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities. This report presents detailed quarterly data for october through December 1997 and aggregated quarterly historical data for 1991 through the third quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data, as specified in Section 202 of the energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

NONE

1998-05-01T23:59:59.000Z

234

Coal liquefaction and hydrogenation  

DOE Patents (OSTI)

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

235

Coal industry annual 1993  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

236

Underground Coal Mine Monitoring with Wireless Sensor Networks  

E-Print Network (OSTI)

10 Underground Coal Mine Monitoring with Wireless Sensor Networks MO LI and YUNHAO LIU Hong Kong University of Science and Technology Environment monitoring in coal mines is an important application queries under instable circumstances. A prototype is deployed with 27 mica2 motes in a real coal mine. We

Liu, Yunhao

237

COAL TRANSPORTATION - Volume 2: EASTERN RAIL/RIVER NETWORK  

Science Conference Proceedings (OSTI)

The quality and cost of coal transportation services are an important part of utility coal switching costs under acid rain legislation. This report addresses the capabilities of the major eastern rail carriers to handle increasing volumes of Central Appalachian low-sulfur coal.

1992-02-01T23:59:59.000Z

238

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report

239

2014 Coal Form Proposals  

U.S. Energy Information Administration (EIA)

Coal Survey Form Changes Proposed for 2014. The U.S. Energy Information Administration (EIA) has begun the process of re-clearing the coal survey ...

240

Coal Mining (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Coal News and Markets  

U.S. Energy Information Administration (EIA)

Coal Prices (updated December 27, 2006) This report summarizes spot coal prices for the business weeks ended December 1, 8, and 15.

242

Annual Coal Report 2001  

U.S. Energy Information Administration (EIA)

DOE/EIA-0584 (2001) Annual Coal Report 2001 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy

243

Coal News and Markets  

U.S. Energy Information Administration (EIA)

Metallurgical coal markets became volatile when the thriving Chinese steel industry in late 2003 and 2004 made outsized demands for coking coal and met coke, ...

244

Annual Coal Distribution Report  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report Release Date: December 19, 2013 | Next Release Date: November 2014 | full report | RevisionCorrection Revision to the Annual Coal Distribution...

245

Assumptions to the Annual Energy Outlook - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumption to the Annual Energy Outlook Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2004, DOE/EIA-M060(2004) (Washington, DC, 2004). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of capacity utilization of mines, mining capacity, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

246

Model documentation of the Short-Term Coal Analysis System  

Science Conference Proceedings (OSTI)

The short-term coal analysis system (SCOAL) is used by the Data Analysis and Forecasting Branch (DAFB) as an analytic aid to support preparation of short-term projections of bituminous coal and lignite production at the state level, and anthracite production, domestic imports of coal, and domestic and export demand for US coal at the national level. A description of SCOAL is presented which includes a general overview of the model and its analytical capabilities. (DMC)

Not Available

1983-04-01T23:59:59.000Z

247

Capturing carbon and saving coal  

SciTech Connect

Electric utilities face a tangle of choices when figuring how to pull CO{sub 2} from coal-fired plants. The article explains the three basic approaches to capturing CO{sub 2} - post-combustion, oxyfuel combustion and pre-combustion. Researchers at US DOE labs and utilities are investigating new solvents that capture CO{sub 2} more efficiently than amines and take less energy. Ammonium carbonate has been identified by EPRI as one suitable solvent. Field research projects on this are underway in the USA. Oxyfuel combustion trials are also being planned. Pre-combustion, or gasification is a completely different way of pulling energy from coal and, for electricity generation, this means IGCC systems. AEP, Southern Cinergy and Xcel are considering IGCC plants but none will capture CO{sub 2}. Rio Tinto and BP are planning a 500 MW facility to gasify coke waste from petroleum refining and collect and sequester CO{sub 2}. However, TECO recently dropped a project to build a 789 MW IGCC coal fired plant even though it was to receive a tax credit to encourage advanced coal technologies. The plant would not have captured CO{sub 2}. The company said that 'with uncertainty of carbon capture and sequestration regulations being discussed at the federal and state levels, the timing was not right'. 4 figs.

Johnson, J.

2007-10-15T23:59:59.000Z

248

Coal-fired diesel generator  

SciTech Connect

The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

1997-05-01T23:59:59.000Z

249

Coal technology program. Progress report, May 1977  

DOE Green Energy (OSTI)

Two successful operability tests with sustained operation of the bench-scale hydrocarbonizer were achieved with Illinois No. 6 coal diluted with char. Several activities in the area of nondestructive testing of coatings are reviewed. Failure analysis activities included examination of several components from the solvent refined coal plants at Wilsonville, Alabama, and Tacoma, Washington. In the gas-fired potassium boiler project, all of the design work were completed except for several of the instrument and control drawings. In the design studies of a coal-fired alkali metal vapor topping cycle, the first phase of a cycle analysis and the design and analysis of a metal vapor turbine were completed. A report entitled ''Critical Component Test Facility--Advance Planning for Test Modules'' presents the planning study for the conceptual design of component test modules on a nonsite-specific basis. Engineering studies, project evaluation and process and program analysis of coal conversion processes were continued. A report on the landfill storage of solid wastes from coal conversion is being finalized. In the coal-fueled MIUS project, a series of successful tests of the coal feeding system and a report on the analysis of 500-hr fire-side corrosion tests in a fluidized bed combustor were completed.

None

1977-07-01T23:59:59.000Z

250

Low-rank coal research. Quarterly report, January--March 1990  

SciTech Connect

This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

Not Available

1990-08-01T23:59:59.000Z

251

Marketing coal ash, slag, and sludge  

Science Conference Proceedings (OSTI)

The increase in coal-fired power plants and tighter environmental problems have put utilities in the position of marketing coal ash, slag, and sludge by turning waste products into a resource. Many utilities are looking beyond road and structural fill uses in their marketing efforts. Slag can be made into sandblasting grit, aggregate, and roofing granules, or used for soil stabilization or the chemical fixation of municipal wastes. Composition and collection variations discourage many utilities from marketing their by-products, while availability can be a problem for customers if the power plant should shut down. Other problems include storage and transportation, competition, and institutional barriers. Documentation of the fly ash, bottom ash, boiler slag, and scrubber waste markets by the Electric Power Research Institute considers these factors and develops a marketing method to help utilities evaluate and promote their product. (DCK)

Lihach, N.; Golden, D.; Komai, R.; Maulbetsch, J.

1982-12-01T23:59:59.000Z

252

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy...  

Annual Energy Outlook 2012 (EIA)

8. U.S. coal export and imports, 2000-2010 (million short tons) Figure 8. U.S. Coal Export and Imports, 2000-2009 Sources: U.S. Department of Commerce, Bureau of the Census,...

253

American Coal Council 2004 Spring Coal Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

American Coal Council American Coal Council 2004 Spring Coal Forum Dallas, Texas May 17-19, 2004 Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory ACC Spring Coal Forum, 2004 Presentation Outline * Background * Power plant-water issues * DOE/NETL R&D program * Conclusion/future plans ACC Spring Coal Forum, 2004 Global Water Availability Ocean 97% Fresh Water 2.5% 0 20 40 60 80 100 Ice Groundwater Lakes and Rivers ACC Spring Coal Forum, 2004 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water ACC Spring Coal Forum, 2004 Freshwater Withdrawals and Consumption Mgal / Day Irrigation 81,300 Irrigation 81,300 Thermoelectric 3,310 Consumption Sources: "Estimated Use of Water in the United States in 1995," USGS Circular 1200, 1998

254

NETL: Coal & Coal Biomass to Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Biomass to Liquids Hydrogen-from-Coal RD&D ENERGY ANALYSIS About Us Search Products Contacts SMART GRID ANALYSIS BASELINE STUDIES QUALITY GUIDELINES NETL-RUA About NETL-RUA...

255

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Clean Coal 101 Lesson 2: The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada decided that something had to be done about the "acid rain" that was believed to be damaging rivers, lakes, forests, and buildings in both countries. Since many of the pollutants that formed "acid rain" were coming from big coal-burning power plants in the United States, the U.S. Government took the lead in finding a solution. One of the steps taken by the U.S. Department of Energy was to create a partnership program between the Government, several States, and private companies to test new methods developed by scientists to make coal burning much cleaner. This became the "Clean Coal Technology Program."

256

USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS  

SciTech Connect

Low rank fuels such as subbituminous coals and lignites contain significant amounts of moisture compared to higher rank coals. Typically, the moisture content of subbituminous coals ranges from 15 to 30 percent, while that for lignites is between 25 and 40 percent, where both are expressed on a wet coal basis. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit. High fuel moisture results in fuel handling problems, and it affects heat rate, mass rate (tonnage) of emissions, and the consumption of water needed for evaporative cooling. This project deals with lignite and subbituminous coal-fired pulverized coal power plants, which are cooled by evaporative cooling towers. In particular, the project involves use of power plant waste heat to partially dry the coal before it is fed to the pulverizers. Done in a proper way, coal drying will reduce cooling tower makeup water requirements and also provide heat rate and emissions benefits. The technology addressed in this project makes use of the hot circulating cooling water leaving the condenser to heat the air used for drying the coal (Figure 1). The temperature of the circulating water leaving the condenser is usually about 49 C (120 F), and this can be used to produce an air stream at approximately 43 C (110 F). Figure 2 shows a variation of this approach, in which coal drying would be accomplished by both warm air, passing through the dryer, and a flow of hot circulating cooling water, passing through a heat exchanger located in the dryer. Higher temperature drying can be accomplished if hot flue gas from the boiler or extracted steam from the turbine cycle is used to supplement the thermal energy obtained from the circulating cooling water. Various options such as these are being examined in this investigation. This is the eleventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report.

Edward Levy

2005-10-01T23:59:59.000Z

257

An integrated approach to the utilization of low rank coals and biofuel  

Science Conference Proceedings (OSTI)

While suggesting an integrated approach for utilization of inferior low rank coals for power in India, the importance of low temperature carbonization followed by retrieval of all value-based products has been stressed. It is further suggested that tar, obtained in the process, could be hydrogenated and fractionated in a central plant for conversion to hydrocarbons. High ash char, the principal product of pyrolysis, has been experimentally found to be amenable to beneficiation, yielding suitable fractions for power generation, briquetting, or blending. Experimental studies have shown that forest litters and agricultural wastes, containing significant proportions of spore, cuticle, and exine--considered as precursors of hydrocarbon-generating coal macerals--also yield large quantities of tar, ammonical liquor, and the principal product, char, which can be respectively utilized for the production of petroleum substitutes, value-based chemicals, and source material for blending, briquette making, and char-water slurries, opening up new avenues for fuel utilization and conservation.

Sen, S.; Sen, M. [Central Fuel Research Inst., Nagpur (India); Moitra, N. [Nagpur Univ. (India)

1999-08-01T23:59:59.000Z

258

Coal Combustion Products | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

259

Clean Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Research Clean Coal Research Clean Coal Turbines Gasification Fuel Cells Hydrogen from Coal Coal to Liquids Major Demonstrations Crosscutting Research Carbon Capture and...

260

Relationship between Coal Reservoir Permeability and Fractal Dimension and Its Significance  

Science Conference Proceedings (OSTI)

Permeability of coal reservoir is one of important parameters for coal bed methane (CBM) development. Because of strong heterogeneity of coal reservoir, ascertaining permeability distribution is critical to productivity prediction of CBM. Based on Darcy's ... Keywords: coalbed methane, coal reservoir, permeability, fractal dimension, correlation degree

Hongyu Guo; Xianbo Su; Daping Xia

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Combinatorial Optimization of Pulverizers for Blended-Coal-Fired Power Plant  

Science Conference Proceedings (OSTI)

Coal blending has become an important way to ease the tension of coal purchase for many Chinese power plants. Mixed by pulverizers which has been widely used, is considered the most reasonable and convenient approach of coal blending. The implementation ... Keywords: power plant, coal blending, combinatorial optimization, pulverizer, NSGA-II

Xia Ji; Peng Peng; Hua Zhigang; Lu Pan; Chen Gang

2011-02-01T23:59:59.000Z

262

Coal liquefaction  

DOE Patents (OSTI)

In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

Schindler, Harvey D. (Fairlawn, NJ)

1985-01-01T23:59:59.000Z

263

Development of an Ultra-fine Coal Dewatering Technology and an Integrated Flotation-Dewatering System for Coal Preparation Plants  

SciTech Connect

The project proposal was approved for only the phase I period. The goal for this Phase I project was to develop an industrial model that can perform continuous and efficient dewatering of fine coal slurries of the previous flotation process to fine coal cake of {approx}15% water content from 50-70%. The feasibility of this model should be demonstrated experimentally using a lab scale setup. The Phase I project was originally for one year, from May 2005 to May 2006. With DOE approval, the project was extended to Dec. 2006 without additional cost from DOE to accomplish the work. Water has been used in mining for a number of purposes such as a carrier, washing liquid, dust-catching media, fire-retardation media, temperature-control media, and solvent. When coal is cleaned in wet-processing circuits, waste streams containing water, fine coal, and noncombustible particles (ash-forming minerals) are produced. In many coal preparation plants, the fine waste stream is fed into a series of selection processes where fine coal particles are recovered from the mixture to form diluted coal fine slurries. A dewatering process is then needed to reduce the water content to about 15%-20% so that the product is marketable. However, in the dewatering process currently used in coal preparation plants, coal fines smaller than 45 micrometers are lost, and in many other plants, coal fines up to 100 micrometers are also wasted. These not-recovered coal fines are mixed with water and mineral particles of the similar particle size range and discharged to impoundment. The wasted water from coal preparation plants containing unrecoverable coal fine and mineral particles are called tailings. With time the amount of wastewater accumulates occupying vast land space while it appears as threat to the environment. This project developed a special extruder and demonstrated its application in solid-liquid separation of coal slurry, tailings containing coal fines mostly less than 50 micron. The extruder is special because all of its auger surface and the internal barrier surface are covered with the membranes allowing water to drain and solid particles retained. It is believed that there are four mechanisms working together in the dewatering process. They are hydrophilic diffusion flow, pressure flow, agitation and air purging. Hydrophilic diffusion flow is effective with hydrophilic membrane. Pressure flow is due to the difference of hydraulic pressure between the two sides of the membrane. Agitation is provided by the rotation of the auger. Purging is achieved with the air blow from the near bottom of the extruder, which is in vertical direction.

Wu Zhang; David Yang; Amar Amarnath; Iftikhar Huq; Scott O'Brien; Jim Williams

2006-12-22T23:59:59.000Z

264

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Natural Gas. Exploration and reserves, storage, imports and exports, ... Regional totals do not include refuse recovery: Sections. Introduction; Coal Prices ...

265

Europe and Asia are the leading destinations for U.S. coal exports ...  

U.S. Energy Information Administration (EIA)

High natural gas prices in Europe have contributed to increased imports of U.S. steam coal. Source: ...

266

Coal Bed Methane Primer  

SciTech Connect

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

267

Comparison of biomass and coal char reactivities  

SciTech Connect

Char combustion is typically the rate limiting step during the combustion of solid fuels. The magnitude and variation of char reactivity during combustion are, therefore, of primary concern when comparing solid fuels such as coal and biomass. In an effort to evaluate biomass` potential as a sustainable and renewable energy source, the reactivities of both biomass and coal chars were compared using Sandia`s Captive Particle Imaging (CPI) apparatus. This paper summarizes the experimental approach used to determine biomass and coal reactivities and presents results from CPT experiments. The reactivity of six types of char particles, two high-rank coal chars, two low-rank coal chars, and two biomass chars, were investigated using the CPT apparatus. Results indicate that both of the high-rank coal chars have relatively low reactivities when compared with the higher reactivities measured for the low-rank coal and the biomass chars. In addition, extinction behavior of the chars support related investigations that suggest carbonaceous structural ordering is an important consideration in understanding particle reactivity as a function of extent of burnout. High-rank coal chars were found to have highly ordered carbon structures, where as, both low-rank coal and biomass chars were found to have highly disordered carbon structures.

Huey, S.P. [Sandia National Labs., Livermore, CA (United States); Davis, K.A. [Reaction Engineering International, Salt Lake City, UT (United States); Hurt, R.H. [Brown Univ., Providence, RI (United States). Div. of Engineering

1995-08-01T23:59:59.000Z

268

A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES  

SciTech Connect

Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was found that the ground pellets could be used as an effective NOx control agent for pulverized-coal-fired systems. NOx emissions reductions up to 63% were recorded, when using AFP as a NOx control agent. In addition to performance benefits, economic analyses showed the good economic benefits of AFP fuel. Using equipment manufacturer inputs, and reasonable values for biomass, biosolids and coal fines costs, it was determined that an AFP plant would have good profitability. For cases where biosolids contents were in the range of 50%, the after tax Internal Rates of Return were in the range of 40% to 50%. These are very attractive returns. Besides the baseline analysis for the various AFP formulations tested at pilot scale, sensitivity analysis showed the impact of important parameters on return. From results, it was clear that returns are excellent for a range of parameters that could be expected in practice. Importantly, these good returns are achieved even without incentives related to the emissions control benefits of biomass.

John T. Kelly; George Miller; Mehdi Namazian

2001-07-01T23:59:59.000Z

269

Calcium spray dryer waste management: Design guidelines: Final report  

SciTech Connect

Calcium spray drying is a commercially available and applied technology used to control SO/sub 2/ emissions. This process is rapidly gaining utility acceptance. Because physical and chemical properties of wastes generated by calcium spray drying differ from those of conventional coal combustion by-products (fly ash and scrubber sludge) typical waste management practices may need to be altered. This report presents technical guidelines for designing and operating a calcium spray drying waste management system. Waste transfer, storage, pretreatment/conditioning, transport and disposal are addressed. The report briefly describes eighteen existing or planned calcium spray drying waste management systems. Results of waste property tests conducted as part of this study, and test data from other studies are reported and compared. Conceptual designs of both new and retrofit calcium spray drying waste management systems also are presented to demonstrate the economic impact of spray drying on waste management. Parametric cost sensitivity analyses illustrate the impact of significant design parameters on waste management costs. Existing calcium spray drying waste management experiences, as well as spray drying waste property data provided the basis for guideline development. Because existing calcium spray drying facilities burn low sulfur coal, this report is considered applicable only to calcium spray drying wastes produced from low sulfur coal. At this time, calcium spray drying is not expected to be feasible for high sulfur coal applications.

1987-09-01T23:59:59.000Z

270

Prod. of Oil, Gas & Coal - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Production of oil, gas, and coal. Projected supply and disposition of crude oil. The model now uses the EIA’s projections of production, imports, and consumption of ...

271

South Korean energy outlook: Coal and electricity focus  

Science Conference Proceedings (OSTI)

This paper concisely outlines the capacity for Korea to generate electricity by using coal. Resources (native and imported) as well as facilities are reviewed.

Young, E.M. [ed.; Johnson, C.J.; Li, B.

1995-03-01T23:59:59.000Z

272

Coal Tar and Bedrock  

Science Conference Proceedings (OSTI)

The characterization of bedrock groundwater and coal tar impacts is one of the most complicated tasks associated with managing manufactured gas plant (MGP) sites. This report provides an overview of the fate and transport of coal tar in bedrock and the methods available to investigate coal tar at particular sites and discusses how to develop a decision-making framework for coal tar investigations.

2007-02-22T23:59:59.000Z

273

Fossil energy waste management. Technology status report  

SciTech Connect

This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

Bossart, S.J.; Newman, D.A.

1995-02-01T23:59:59.000Z

274

Subbituminous and bituminous coal dominate U.S. coal ...  

U.S. Energy Information Administration (EIA)

While almost all coal consumed in the United States is used to generate electricity (90% in 2010), coal is not entirely homogeneous. Coal is ...

275

NETL: Coal & Coal Biomass to Liquids - Alternate Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal and CoalBiomass to Liquids Alternate Hydrogen Production In the Alternate Production technology pathway, clean syngas from coal is converted to high-hydrogen-content liquid...

276

The Effect of Circulating Coal Slurry Water Hardness on Coal ...  

Science Conference Proceedings (OSTI)

In order to investigate the effect of gypsum on flotation and coal slurry settling during coal slurry recirculation, the water hardness and proton conductivity of coal ...

277

The potential of biological sludge amended combustion coal ash residues as artificial plant growth media : a laboratory column study to assess the influence of weathering on elemental release.  

E-Print Network (OSTI)

??Sasol biological sludge, coal fine and gasification ash were the three waste streams involved in this study. The main concern is that on their own… (more)

Sukati, Bonokwakhe Hezekiel

2012-01-01T23:59:59.000Z

278

Vibration mills in the manufacturing technology of slurry fuel from unbeneficiated coal sludge  

Science Conference Proceedings (OSTI)

Coal-water slurry fuel (CWSF) is economically viable provided that its ash content does not exceed 30% and the amount water in the fuel is at most 45%. Two impoundments were revealed that have considerable reserves of waste coal useful for commercial manufacture of CWSF without the beneficiation step. One of the CWSF manufacture steps is the comminution of coal sludge to have a particle size required by the combustion conditions. Vibration mills, which are more compact and energy-intensive that drum mills, can be used in the CWSG manufacture process. The rheological characteristics of CWSF obtained from unbeneficiated waste coal were determined.

E.G. Gorlov; A.I. Seregin; G.S. Khodakov [Institute for Fossil Fuels, Moscow (Russia)

2008-08-15T23:59:59.000Z

279

Biological upgrading of coal liquids. Final report  

SciTech Connect

A large number of bacterial enrichments have been developed for their ability to utilize nitrogen and sulfur in coal liquids and the model compound naphtha. These bacteria include the original aerobic bacteria isolated from natural sources which utilize heteroatom compounds in the presence of rich media, aerobic nitrogen-utilizing bacteria and denitrifying bacteria. The most promising isolates include Mix M, a mixture of aerobic bacteria; ER15, a pyridine-utilizing isolate; ERI6, an aniline-utilizing isolate and a sewage sludge isolate. Culture optimization experiments have led to these bacteria being able to remove up to 40 percent of the sulfur and nitrogen in naphtha and coal liquids in batch culture. Continuous culture experiments showed that the coal liquid is too toxic to the bacteria to be fed without dilution or extraction. Thus either semi-batch operation must be employed with continuous gas sparging into a batch of liquid, or acid extracted coal liquid must be employed in continuous reactor studies with continuous liquid flow. Isolate EN-1, a chemical waste isolate, removed 27 percent of the sulfur and 19 percent of the nitrogen in fed batch experiments. Isolate ERI5 removed 28 percent of the nitrogen in coal liquid in 10 days in fed batch culture. The sewage sludge isolate removed 22.5 percent of the sulfur and 6.5 percent of the nitrogen from extracted coal liquid in continuous culture, and Mix M removed 17.5 percent of the nitrogen from medium containing extracted coal liquid. An economic evaluation has been prepared for the removal of nitrogen heteroatom compounds from Wilsonville coal liquid using acid extraction followed by fermentation. Similar technology can be developed for sulfur removal. The evaluation indicates that the nitrogen heteroatom compounds can be removed for $0.09/lb of coal liquid treated.

NONE

1995-02-01T23:59:59.000Z

280

EIA -Quarterly Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Distribution Coal Distribution Home > Coal> Quarterly Coal Distribution Back Issues Quarterly Coal Distribution Archives Release Date: June 27, 2013 Next Release Date: September 2013 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf October-December pdf xls pdf 2010 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf xls

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

A "Bed" for Burning Coal A "Bed" for Burning Coal Clean Coal 101 Lesson 4: A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with government and college officials on the campus of Georgetown University to celebrate the completion of one of the world's most advanced coal combustors. It was a small coal burner by today's standards, but large enough to provide heat and steam for much of the university campus. But the new boiler built beside the campus tennis courts was unlike most other boilers in the world. A Fluidized Bed Boiler A Fluidized Bed Boiler In a fluidized bed boiler, upward blowing jets of air suspend burning coal, allowing it to mix with limestone that absorbs sulfur pollutants.

282

Prebaked Anode from Coal Extract  

Science Conference Proceedings (OSTI)

We previously reported that the coal extract prepared from non-hydrogenative extraction of thermal coals using two-ring-aromatic solvent (Hyper-coal) is suitable ...

283

Coal desulfurization with sodium hypochlorite.  

E-Print Network (OSTI)

??Wet desulfurization of Pittsburgh No. 8 coal and Illinois No. 6 coal were conducted with sodium hypochlorite in the laboratory. Pittsburgh No. 8 coal was… (more)

Li, Wei, M.S.

2004-01-01T23:59:59.000Z

284

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction  

SciTech Connect

Improved coal liquefaction was reinvestigated for the current two-stage process on the basis of the associated molecular nature of coal. Since a significant portion of coal molecules are physically associated as pointed in our recent paper, physical dissolution should be considered. The step-wise, high-temperature soaking is a simple and effective method for coal dissolution. Larger dissolution makes liquefaction severity lower. Broad molecular mass distribution in the associated coal was another important factor. The selective reaction of fractions with high molecular weight isolated after the high-temperature soaking makes gas yield lower. Tests using an autoclave by the concept shown in Figure 5 enabled to more oil and 15-20% less gas yields. It is expected that the procedure will result in great cost reduction in coal liquefaction.

1993-01-01T23:59:59.000Z

285

Environmental and economic challenges to coal`s future in China  

SciTech Connect

Coal accounts for approximately 75% of China`s total primary energy consumption, and is by far the largest contributor to air pollution. The highest growth sector for coal consumption is the power sector, accounting for about 36 percent of total coal consumption in 1993. Over the 1994--2010 period most new, large power plants are expected to be coal-fired. Therefore, the availability and price of coal, as well as environmental constraints will be critical to foreign investors evaluating coal and power projects in China. The purpose of this paper is to provide useful technical, economic and environmental information and analysis on coal and the power sectors of China. The target audiences are potential investors and government energy and environmental policy people. This paper suggests a number of important energy and environmental policy issues that need to be addressed in a timely fashion in order to promote adequate levels of investment in coal and power developments in China. Although this paper highlights problems faced by foreign investors in coal and power, it is important to balance these problems against the large investment opportunities developing in these sectors.

Johnson, C.J.; Li, B.

1994-11-01T23:59:59.000Z

286

Coal - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Find statistics on coal production, consumption, exports, imports, stocks, Find statistics on coal production, consumption, exports, imports, stocks, mining, and prices. + EXPAND ALL Summary Additional formats Coal overview: PDF CSV XLS Monthly PDF XLS Annual Coke overview PDF XLS Coal-fired power plants Existing generating units in the U.S. by state, company and plant 2011 2010 2009 2008 2007 2006 2005 2004 2003 Go Prices Additional formats Weekly spot prices (Coal News and Markets) Coal futures near-month contract final settlement price (weekly NYMEX) Average sales price: PDF XLSBy state and mine type PDF XLSBy state and disposition PDF XLSBy state and underground mining method PDF XLSBy state, county, and number of mines PDF XLSBy state and coal rank PDF XLSBy mine production range and mine type Average consumer prices by end use sector, Census division, and state,

287

Revised market guide for coal exports from the United States  

SciTech Connect

The world market for steam coal is assessed. In recent years, much has changed in the world coal markets and in the expected opportunities for coal exports from the US. As an example, the overseas steam coal exports climbed from about 2 million tons in 1979 to about 35 million tons in 1981. Since then the overseas steam coal exports have fallen to 27 million tons in 1982 and to 17 million tons in 1983. In addition, metallurgical coal exports to overseas customers dropped from 60 million tons in 1982 to 43 million tons in 1983. This market guide is divided into four sections: Section one contains a review of the most frequently asked questions by individuals interested in the overseas coal markets and the role of US producers in this market; Section two contains an overview of the market for US steam and metallurgical coal exports, including forecasts of import demands, potential US market share, and the factors affecting this market share; Section three contains an outline of the current structure of the steam coal export trade in the US and the potential developments that will influence its future, and Section four contains a review of the important data on the nature of the energy-using industries, utilities and power plants, cement plants, coal quality requirements, and ports of the major steam and metallurgical coal importing countries. 14 figures, 45 tables.

1984-06-01T23:59:59.000Z

288

Clean Coal Program Research Activities  

Science Conference Proceedings (OSTI)

Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

2009-03-31T23:59:59.000Z

289

APPLICATION OF CONDITIONAL SIMULATION MODEL TO RUN-OF-MINE COAL SAMPLING FREQUENCY DETERMINATION AND COAL QUALITY CONTROL AT THE POWER PLANT (BLENDING, GOAL PROGRAMMING, MICROCOMPUTER).  

E-Print Network (OSTI)

??Run-of-mine (ROM) coal sampling is one of the most important factors in determining the disposition of ROM coal for an overall emission control strategy. Determination… (more)

BARUA, SUKHENDU LAL.

1985-01-01T23:59:59.000Z

290

Coal Power Plant Database | Open Energy Information  

Open Energy Info (EERE)

Power Plant Database Power Plant Database Jump to: navigation, search Name Coal Power Plant Database Data Format Excel Spreadsheet, Excel Pivot Table, Access Database Geographic Scope United States TODO: Import actual dataset contents into OpenEI The Coal Power Plant Database (CPPDB) is a dataset which "consolidates large quantities of information on coal-fired power plants in a single location."[1] It is produced by the National Energy Technology Laboratory (NETL). External links 2007 Edition Excel Spreadsheet Excel Pivot Table Access Database User's Manual (PDF) References ↑ "User's Manual: Coal Power Plant Database" Retrieved from "http://en.openei.org/w/index.php?title=Coal_Power_Plant_Database&oldid=273301" Categories: Datasets Articles with outstanding TODO tasks

291

Quarterly Coal Report October-December 2000  

Gasoline and Diesel Fuel Update (EIA)

4Q) 4Q) Distribution Category UC-950 Quarterly Coal Report October-December 2000 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of Betsy O'Brien, Director, Coal, Electric and Renewables Division, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section

292

Quarterly coal report, January--March 1994  

SciTech Connect

The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1994 and aggregated quarterly historical data for 1986 through the fourth quarter of 1993. Appendix A displays, from 1986 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

Not Available

1994-08-24T23:59:59.000Z

293

NETL: Coal & Power Systems - Brief History of Coal Use  

NLE Websites -- All DOE Office Websites (Extended Search)

History of Coal Coal & Power Systems Brief History of Coal Use Steam Locomotive In the 1800s, one of the primary uses of coal was to fuel steam engines used to power locomotives....

294

NETL: Coal & Coal Biomass to Liquids - Closely Aligned Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > C&CBTL > Closely Aligned Programs Coal and CoalBiomass to Liquids Closely Aligned Programs The Department of Energy's (DOE) Coal & CoalBiomass to Liquids...

295

Opportunities for coal to methanol conversion  

DOE Green Energy (OSTI)

The accumulations of mining residues in the anthracite coal regions of Pennsylvania offer a unique opportunity to convert the coal content into methanol that could be utilized in that area as an alternative to gasoline or to extend the supplies through blending. Additional demand may develop through the requirements of public utility gas turbines located in that region. The cost to run this refuse through coal preparation plants may result in a clean coal at about $17.00 per ton. After gasification and synthesis in a 5000 ton per day facility, a cost of methanol of approximately $3.84 per million Btu is obtained using utility financing. If the coal is to be brought in by truck or rail from a distance of approximately 60 miles, the cost of methanol would range between $4.64 and $5.50 per million Btu depending upon the mode of transportation. The distribution costs to move the methanol from the synthesis plant to the pump could add, at a minimum, $2.36 per million Btu to the cost. In total, the delivered cost at the pump for methanol produced from coal mining wastes could range between $6.20 and $7.86 per million Btu.

Not Available

1980-04-01T23:59:59.000Z

296

International Energy Outlook - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2004 Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate fuel markets in developing Asia. Figure 52. World Coal Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 53. Coal Share of World Energy Consumption by Sector, 2001 and 2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 54. Coal Share of Regional Energy Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World coal consumption has been in a period of generally slow growth since

297

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Origin State, Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys

298

Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

299

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

commercial (point sources) Coal Oil Other Area sourcesSource Stationary fuel combugtion Electric utilities Coal Oil

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

300

The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, September 28, 1993--March 27, 1994  

Science Conference Proceedings (OSTI)

The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first two phases of the program are underway. To achieve the objectives of the program, a team of researchers was assembled. Phase I activities are focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water slurry fuels (MCWSFS) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. Phase II research and development activities will continue to focus on industrial boiler retrofit technologies by addressing emissions control and precombustion (i.e., slagging combustion and/or gasification) strategies for the utilization of high ash, high sulfur coals. Phase III activities will examine coal-based fuel combustion systems that cofire wastes. Each phase includes an engineering cost analysis and technology assessment. The activities and status of Phases I and II are described below. The objective in Phase I is to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWSF or DMC. This will be achieved through a program consisting of the following five tasks: (1) Coal Beneficiation and Preparation; (2) Combustion Performance Evaluation; (3) Engineering Design; (4) Engineering and Economic Analysis; and (5) Final Report/Submission of Design Package.

Miller, B.G.; Morrison, J.L.; Sharifi, R.; Shepard, J.F.; Scaroni, A.W.; Hogg, R.; Chander, S.; Cho, H.; Ityokumbul, M.T.; Klima, M.S. [and others

1994-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Coal-ash spills highlight ongoing risk to ecosystems  

SciTech Connect

Two recent large-scale spills of coal combustion waste have highlighted the old problem of handling the enormous quantity of solid waste produced by coal. Both spills happened at power plants run by the Tennessee Valley Authority (TVA). In December 2008 a holding pond for coal ash collapsed at a power plant in Kingstom, Tenn., releasing coal-ash sludge onto farmland and into rivers: in January 2009 a break in a pipe removing water from a holding pond for gypsum caused a spill at Widows Creek Fossil Plant in Stevenson, Ala. The article discusses the toxic outcome of such disasters on ecosystems, quoting work by Willaim Hopkins at Virginia Polytechnic Institute and State University and recommendations and reports of the US EPA. 2 photos.

Chatterjee, R.

2009-05-01T23:59:59.000Z

302

Coal Pile Basin Project (4595), 5/31/2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Pile Basin Project (4595) Coal Pile Basin Project (4595) Program or Field Office: Y-12 Site Office Location(s) (City/County/State): Oak Ridge, Anderson County, Tennessee Proposed Action Description: Submit by E-mail The proposed action is provide demolish and deactivate the coal pile basin to grade where practical and backfill below grade portion of basin; the remaining underground portion of the stock out conveyor structure, both entrances and backfill pit; and remove universal waste, conveyor belt, asbestos; and, miscellaneous shed type structure at the south entrance to the coal pile. Categorical Exclusion(s) Applied: 81.29- Disposal facilities for construction and demolition waste For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, including the full text of each

303

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally-acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national perspective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan

2002-04-15T23:59:59.000Z

304

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2003-01-20T23:59:59.000Z

305

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-07-15T23:59:59.000Z

306

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-10-15T23:59:59.000Z

307

Coal Severance Tax (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...

308

Coal char fragmentation during pulverized coal combustion  

Science Conference Proceedings (OSTI)

A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

Baxter, L.L.

1995-07-01T23:59:59.000Z

309

Upgraded Coal Interest Group  

Science Conference Proceedings (OSTI)

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

310

Coal feed lock  

DOE Patents (OSTI)

A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

Pinkel, I. Irving (Fairview Park, OH)

1978-01-01T23:59:59.000Z

311

The reduction of packaging waste  

Science Conference Proceedings (OSTI)

Nationwide, packaging waste comprises approximately one third of the waste being sent to our solid waste landfills. These wastes range from product and shipping containers made from plastic, glass, wood, and corrugated cardboard to packaging fillers and wraps made from a variety of plastic materials such as shrink wrap and polystyrene peanuts. The amount of packaging waste generated is becoming an important issue for manufacturers, retailers, and consumers. Elimination of packaging not only conserves precious landfill space, it also reduces consumption of raw materials and energy, all of which result in important economic and environmental benefits. At the US Department of Energy-Richland Field Office's (DOE-RL) Hanford Site as well as other DOE sites the generation of packaging waste has added importance. By reducing the amount of packaging waste, DOE also reduces the costs and liabilities associated with waste handling, treatment, storage, and disposal.

Raney, E.A.; McCollom, M.; Hogan, J.

1993-04-01T23:59:59.000Z

312

The reduction of packaging waste  

Science Conference Proceedings (OSTI)

Nationwide, packaging waste comprises approximately one third of the waste being sent to our solid waste landfills. These wastes range from product and shipping containers made from plastic, glass, wood, and corrugated cardboard to packaging fillers and wraps made from a variety of plastic materials such as shrink wrap and polystyrene peanuts. The amount of packaging waste generated is becoming an important issue for manufacturers, retailers, and consumers. Elimination of packaging not only conserves precious landfill space, it also reduces consumption of raw materials and energy, all of which result in important economic and environmental benefits. At the US Department of Energy-Richland Field Office`s (DOE-RL) Hanford Site as well as other DOE sites the generation of packaging waste has added importance. By reducing the amount of packaging waste, DOE also reduces the costs and liabilities associated with waste handling, treatment, storage, and disposal.

Raney, E.A.; McCollom, M.; Hogan, J.

1993-04-01T23:59:59.000Z

313

Studies on the production of ultra-clean coal by alkali-acid leaching of low-grade coals  

Science Conference Proceedings (OSTI)

The use of low-grade coal in thermal power stations is leading to environmental pollution due to the generation of large amounts of fly ash, bottom ash, and CO{sub 2} besides other pollutants. It is therefore important to clean the coal before using it in thermal power stations, steel plants, or cement industries etc. Physical beneficiation of coal results in only limited cleaning of coal. The increasing environmental pollution problems from the use of coal have led to the development of clean coal technologies. In fact, the clean use of coal requires the cleaning of coal to ultra low ash contents, keeping environmental norms and problems in view and the ever-growing need to increase the efficiency of coal-based power generation. Therefore this requires the adaptation of chemical cleaning techniques for cleaning the coal to obtain ultra clean coal having ultra low ash contents. Presently the reaction conditions for chemical demineralization of low-grade coal using 20% aq NaOH treatment followed by 10% H{sub 2}SO{sub 4} leaching under reflux conditions have been optimized. In order to reduce the concentration of alkali and acid used in this process of chemical demineralization of low-grade coals, stepwise, i.e., three step process of chemical demineralization of coal using 1% or 5% aq NaOH treatment followed by 1% or 5% H{sub 2}SO{sub 4} leaching has been developed, which has shown good results in demineralization of low-grade coals. In order to conserve energy, the alkali-acid leaching of coal was also carried out at room temperature, which gave good results.

Nabeel, A.; Khan, T.A.; Sharma, D.K. [Jamia Millia Islamia, New Delhi (India). Dept. of Chemistry

2009-07-01T23:59:59.000Z

314

Pelletization of fine coals  

SciTech Connect

The present research project attempts to provide a basis to determine the pelletizability of fine coals, to ascertain the role of additives and binders and to establish a basis for binder selection. Currently, there are no established techniques for determining the quality of coal pellets. Our research is intended to develop a series of tests on coal pellets to measure their storage characteristics, transportability, ease of gasification and rate of combustion. Information developed from this research should be valuable for making knowledgeable decisions for on-time plant design, occasional binder selection and frequent process control during the pelletization of coal fines. During the last quarter, we continued the batch pelletization studies on Upper Freeport coal. The results as presented in that last quarterly report (April 1991) indicated that the surface conditions on the coal particle influenced the pelletizing growth rates. For example, a fresh (run of mine) sample of coal will display different pelletizing growth kinetics than a weathered sample of the same coal. Since coal is a heterogeneous material, the oxidized product of coal is equally variable. We found it to be logistically difficult to consistently produce large quantities of artificially oxidized coal for experimental purposes and as such we have used a naturally weathered coal. We have plans to oxidize coals under controlled oxidizing conditions and be able to establish their pelletizing behavior. The next phase of experiments were directed to study the effect of surface modification, introduced during the coal cleaning steps, on pelletizing kinetics. Accordingly, we initiated studies with two additives commonly used during the flotation of coal: dextrin (coal depressant) and dodecane (coal collector).

Sastry, K.V.S.

1991-09-01T23:59:59.000Z

315

Coal Combustion Science  

SciTech Connect

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

316

International perspectives on coal preparation  

SciTech Connect

The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

1997-12-31T23:59:59.000Z

317

Modules for estimating solid waste from fossil-fuel technologies  

SciTech Connect

Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.

Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

1980-10-01T23:59:59.000Z

318

EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - Gilberton Coal-to-Clean Fuels and Power Project in 7 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA Summary This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project was selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale. PUBLIC COMMENT OPPORTUNITIES

319

Coal seam natural gas producing areas (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting Provider Louisiana Department of Natural Resources In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is authorized, as provided in this law, to establish a single unit to be served by one or more wells for a coal seam natural gas producing area. Without in any way modifying the authority granted to the commissioner to establish a drilling unit or

320

Innovative Drying Technology Extracts More Energy from High Moisture Coal |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Drying Technology Extracts More Energy from High Innovative Drying Technology Extracts More Energy from High Moisture Coal Innovative Drying Technology Extracts More Energy from High Moisture Coal March 11, 2010 - 12:00pm Addthis Washington, DC - An innovative coal-drying technology that will extract more energy from high moisture coal at less cost and simultaneously reduce potentially harmful emissions is ready for commercial use after successful testing at a Minnesota electric utility. The DryFining(TM) technology was developed with funding from the first round of the U.S. Department of Energy's Clean Coal Power Initiative (CCPI). Great River Energy of Maple Grove, Minn., has selected the WorleyParsons Group to exclusively distribute licenses for the technology, which essentially uses waste heat from a power plant to reduce moisture content

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Processing of the foots from the low-temperature carbonization of Cheremkhovo coals  

SciTech Connect

A technological scheme is proposed for the complex processing of the foots from the low-temperature carbonization of Cheremkhovo coals which ensures the maximum extraction of liquid fractions from them and the creation of a waste-free technology.

Gorlov, E.G.; Zayurskaya, L.M.; Zotova, O.V.

1983-01-01T23:59:59.000Z

322

The First Coal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

323

Indonesian coal mining  

Science Conference Proceedings (OSTI)

The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

NONE

2008-11-15T23:59:59.000Z

324

Stacker speeds coal recovery  

SciTech Connect

The Spring Creek Coal Co., near Decker, Montana, features the only stacker/reclaimer in the U.S. to stockpile and reclaim coal produced by a dragline/truck-shovel operation.

Jackson, D.

1981-08-01T23:59:59.000Z

325

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

March 2011 DOEEIA-0121 (201004Q) Revised: July 2012 Quarterly Coal Report October - December 2010 March 2011 U.S. Energy Information Administration Office of Oil, Gas, and Coal...

326

Coal Market Module  

Annual Energy Outlook 2012 (EIA)

6, DOEEIA-M060(2006) (Washington, DC, 2006). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for...

327

Microbial solubilization of coal  

DOE Patents (OSTI)

This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

1990-01-01T23:59:59.000Z

328

Overview of coal conversion  

SciTech Connect

The structure of coal and the processes of coal gasification and coal liquefaction are reviewed. While coal conversion technology is not likely to provide a significant amount of synthetic fuel within the next several years, there is a clear interest both in government and private sectors in the development of this technology to hedge against ever-diminishing petroleum supplies, especially from foreign sources. It is evident from this rather cursory survey that there is some old technology that is highly reliable; new technology is being developed but is not ready for commercialization at the present state of development. The area of coal conversion is ripe for exploration both on the applied and basic research levels. A great deal more must be understood about the reactions of coal, the reactions of coal products, and the physics and chemistry involved in the various stages of coal conversion processes in order to make this technology economically viable.

Clark, B.R.

1981-03-27T23:59:59.000Z

329

Coal Production 1992  

SciTech Connect

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

1993-10-29T23:59:59.000Z

330

Chemicals from coal  

Science Conference Proceedings (OSTI)

This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

2004-12-01T23:59:59.000Z

331

Coal News and Markets  

U.S. Energy Information Administration (EIA)

Over the past month and a half, NAP spot coal prices have been flat or declining (graph above). ... (the walls of coal left in place to support the roof), ...

332

NETL: Coal-Fired Power Plants (CFPPs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Sources Coal-Fired Power Plants (CFPPs) Where is the coal in the United States? Coal Across the U.S. The U.S. contains coal resources in various places. The coal occurs...

333

Assessment of coal liquids as refinery feedstocks  

Science Conference Proceedings (OSTI)

The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

Zhou, P.

1992-02-01T23:59:59.000Z

334

Assessment of coal liquids as refinery feedstocks  

Science Conference Proceedings (OSTI)

The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

Zhou, P.

1992-02-01T23:59:59.000Z

335

Coal gasification apparatus  

DOE Patents (OSTI)

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, Charles K. (Monaca, PA)

1982-01-01T23:59:59.000Z

336

Method for fluorinating coal  

DOE Patents (OSTI)

Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.

Huston, John L. (Skokie, IL); Scott, Robert G. (Westmont, IL); Studier, Martin H. (Downers Grove, IL)

1978-01-01T23:59:59.000Z

337

Ore components in coal  

Science Conference Proceedings (OSTI)

The dependence of the mineral content in coal and concentrates on the degree of metamorphism is analyzed.

Kh.A. Ishhakov [Russian Academy of Sciences, Kemerovo (Russian Federation). Institute of Coal and Coal Chemistry, Siberian Branch

2009-05-15T23:59:59.000Z

338

Coal Industry Annual, 1996  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1998-04-01T23:59:59.000Z

339

Coal Industry Annual, 1997  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1998-11-23T23:59:59.000Z

340

Coal Industry Annual, 1995  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1996-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Coal Industry Annual, 1998  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

2000-07-07T23:59:59.000Z

342

Coal Industry Annual, 1994  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1996-04-18T23:59:59.000Z

343

Coal Industry Annual, 1999  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Information Center

344

Coal Industry Annual, 2000  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Information Center

345

Coal News and Markets  

U.S. Energy Information Administration (EIA)

... (Energy Publishing, Coal & Energy Price Report, Bulletin, ... Although, the soaring demands of the Chinese steel industry are still with us, ...

346

Advanced CO2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems Background Gasification of coal or other solid feedstocks (wood waste, petroleum coke, etc.) is a clean way to produce electricity and produce or co-produce a variety of commercial products. The major challenge is cost reduction; current integrated gasification combined cycle (IGCC) technology is estimated to produce power at a cost higher than that of pulverized coal combustion. However, the Gasification

347

Flash hydrogenation of coal  

DOE Patents (OSTI)

A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

Manowitz, Bernard (Brightwaters, NY); Steinberg, Meyer (Huntington Station, NY); Sheehan, Thomas V. (Hampton Bays, NY); Winsche, Warren E. (Bellport, NY); Raseman, Chad J. (Setauket, NY)

1976-01-01T23:59:59.000Z

348

Proceedings: Coal Combustion Workshop  

Science Conference Proceedings (OSTI)

The primary objective of the 2007 Coal Combustion workshop was to present a holistic view of the various combustion processes required for minimal emissions, peak performance, and maximum reliability in a coal-fired power plant. The workshop also defined needs for future RD in coal combustion technology.

2008-01-09T23:59:59.000Z

349

Coal production 1989  

SciTech Connect

Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

1990-11-29T23:59:59.000Z

350

Coal Market Module  

Reports and Publications (EIA)

Documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System's (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 2013 (AEO2013). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM's two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS).

Michael Mellish

2013-07-17T23:59:59.000Z

351

Study of the Optimum Extraction of Coal Resources Based on the Rate of Comprehensive Extraction  

Science Conference Proceedings (OSTI)

Low efficiency and waste are the main problems in the process of coal resources extraction in China. Taking the utilization and recovery rate into account, the article has analyzed the factors influencing the utilization and recovery rate and given some ... Keywords: Coal Resources, Utilization Rate, Recovery Rate, Resource Taxes, Dynamic Optimization

Sun Dachao; Wei Xiaoping; Lu Nan

2010-05-01T23:59:59.000Z

352

Coal Combustion Products | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

353

Quarterly Coal Distribution Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of ...

354

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

Prices in 2007 real $ Coal Prices Coal prices have been farprices. Factors like coal prices and EOR revenues affect theCoal Prices..

Phadke, Amol

2008-01-01T23:59:59.000Z

355

Quarterly Coal Distribution Report - Energy Information ...  

U.S. Energy Information Administration (EIA)

The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of ...

356

INTERNATIONAL CONSULTANTS REQUIRED FOR DEVELOPMENT OF COAL PORT/TERMINAL  

E-Print Network (OSTI)

PIDC intends to develop complete infrastructure facilities (Coal Port/Terminal) for the handling & transportation of imported coal at a greenfield site in the coastal area of Pakistan to facilitate setting up coal based industries in an adjoining industrial zone and supply to other users. International consultants, having experience and expertise of developing coal handling facilities of international standard for off-loading, storage and transportation of imported coal in bulk volume are invited to apply preferably in association with reputed local consultants for preparation of Feasibility Study of the project covering all relevant aspects including: 1. Market study to ascertain potential local demand for imported coal by power, cement and steel plants and other major users for the next 15 years. 2. Develop master plan and design of the infrastructure facilities (Coal Port/Terminal) for handling imported coal in bulk quantity at the location to be identified in the study. 3. Development of industrial zone for coal based industry. 4. Financial and technical aspects / viability of the project. 5. Implementation plan and strategy to develop and operate the project. Interested parties may collect the TOR for the feasibility study from the under mentioned office during working hours or download it from Ministry of Industries, Production & Special Initiatives, Government of Pakistan’s web site www.moip.gov.pk. Detailed proposal for carrying out the feasibility study alongwith financial bid and the background information of the consultants, should be submitted latest by May 17, 2007 at the address given below. PIDC

For Imported; Coal In Pakistan

2007-01-01T23:59:59.000Z

357

LANL reaches waste shipment milestone  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL reaches waste shipment milestone LANL reaches waste shipment milestone LANL reaches waste shipment milestone The Lab surpassed 100,000 plutonium-equivalent curies of TRU waste shipped to WIPP, about one-third of the Lab's total. May 31, 2011 A shipment of transuranic waste on its way to the WIPP repository A shipment of transuranic waste on its way to the WIPP repository. Contact Fred deSousa Communicatons Office (505) 665-3430 Email LOS ALAMOS, New Mexico, May 31, 2011 - Los Alamos National Laboratory has reached an important milestone in its campaign to ship transuranic (TRU) waste from Cold War-era nuclear operations to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This month, the Lab surpassed 100,000 plutonium-equivalent curies of TRU waste shipped to WIPP, about one-third of the Lab's total.

358

Coal recovery process  

DOE Patents (OSTI)

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01T23:59:59.000Z

359

Economics of gas from coal  

SciTech Connect

This study deals with three questions: What does gas from coal cost and what affects this cost; How do different approaches and processes compare; and How near to competitive cost-levels is present-day technology. Discussion covers production of both substitute natural gas (SNG) and medium calorific gas (MCG: 10-16 MJ/Nm3 or 250-400 Btu/SCF). Conclusions are that SNG from low-cost U.S. coal and West German brown coal are, on the basis of mature technology and Government rates-of-return, roughly competitive with gas imports into the U.S. and Europe respectively. Similarly MCG from second-generation gasifiers is competitive with gas-oil or No. 2 heating oil in Europe, North America and Japan. However, capital costs form about half total gas costs at 10 percent rate-of-return, so that the competitiveness of gas from coal is sensitive to capital costs: this is the area of greatest uncertainty.

Teper, M.; Hemming, D.F.; Ulrich, W.C.

1983-01-01T23:59:59.000Z

360

ZERO WASTE.  

E-Print Network (OSTI)

??The aim of the thesis was to develop a clear vision on better waste management system. The thesis introduced the sustainable waste management along with… (more)

Upadhyaya, Luv

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Coal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Coal Coal Coal is the largest domestically produced source of energy in America and is used to generate a significant chunk of our nation's electricity. The Energy Department is working to develop technologies that make coal cleaner, so we can ensure it plays a part in our clean energy future. The Department is also investing in development of carbon capture, utilization and storage (CCUS) technologies, also referred to as carbon capture, utilization and sequestration. Featured Energy Secretary Moniz Visits Clean Coal Facility in Mississippi On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. A small Mississippi town is making history with the largest carbon capture

362

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Trends, 2001 - 2010 Trends, 2001 - 2010 Transportation infrastructure overview In 2010, railroads transported over 70 percent of coal delivered to electric power plants which are generally concentrated east of the Mississippi River and in Texas. The U.S. railroad market is dominated by four major rail companies that account for 99 percent of U.S. coal rail shipments by volume. Deliveries from major coal basins to power plants by mode Rail Barge Truck Figure 2. Deliveries from major coal basins to power plants by rail, 2010 figure data Figure 3. Deliveries from major coal basins to power plants by barge, 2010 figure data Figure 4. Deliveries from major coal basins to power plants by truck, 2010 figure data The Powder River Basin of Wyoming and Montana, where coal is extracted in

363

Coal production: 1980  

Science Conference Proceedings (OSTI)

US coal production and related data are reported for the year 1980, with similar data for 1979 given for comparison. The data here collected on Form EIA-7A, coal production report, from 3969 US mines that produced, processed, or prepared 10,000 or more short tons of coal in 1980. Among the items covered are production, prices, employment, productivity, stocks, and recoverable reserves. Data are reported by state, county, coal producing district, type of mining, and by type of coal (anthracite, bituminous, subbituminous, and lignite). Also included are a glossary of coal terms used, a map of the coal producing disricts, and form EIA-7A with instructions. 14 figures, 63 tables.

Not Available

1982-05-01T23:59:59.000Z

364

Coal: the new black  

SciTech Connect

Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

Tullo, A.H.; Tremblay, J.-F.

2008-03-15T23:59:59.000Z

365

Inconsistent pathways of household waste  

Science Conference Proceedings (OSTI)

The aim of this study was to provide policy-makers and waste management planners with information about how recycling programs affect the quantities of specific materials recycled and disposed of. Two questions were addressed: which factors influence household waste generation and pathways? and how reliable are official waste data? Household waste flows were studied in 35 Swedish municipalities, and a wide variation in the amount of waste per capita was observed. When evaluating the effect of different waste collection policies, it was found to be important to identify site-specific factors influencing waste generation. Eleven municipal variables were investigated in an attempt to explain the variation. The amount of household waste per resident was higher in populous municipalities and when net commuting was positive. Property-close collection of dry recyclables led to increased delivery of sorted metal, plastic and paper packaging. No difference was seen in the amount of separated recyclables per capita when weight-based billing for the collection of residual waste was applied, but the amount of residual waste was lower. Sixteen sources of error in official waste statistics were identified and the results of the study emphasize the importance of reliable waste generation and composition data to underpin waste management policies.

Dahlen, Lisa [Division of Waste Science and Technology, Lulea University of Technology, SE, 971 87 Lulea (Sweden)], E-mail: lisa.dahlen@ltu.se; Aberg, Helena [Department of Food, Health and Environment, University of Gothenburg, P.O. Box 12204, SE, 402 42 Gothenburg (Sweden); Lagerkvist, Anders [Division of Waste Science and Technology, Lulea University of Technology, SE, 971 87 Lulea (Sweden); Berg, Per E.O. [HB Anttilator, Stagnellsgatan 3, SE, 652 23, Karlstad (Sweden)

2009-06-15T23:59:59.000Z

366

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. Quarterly report, April 1, 1992--June 30, 1992  

SciTech Connect

A study of high-temperature soaking has been continued. Two high-volatile bituminous coals and three coal liquids were used. Large pyridine extractabilities of more than 70 wt% were obtained for aR cases. A better understanding Of the mechanism is important for the development of coal preconversion using the high-temperature soaking. To investigate the mechanism of the change in coal solubilization by high-temperature soaking, a simple soaking experiment was conducted. The extract from the Illinois No. 6 coal was treated in toluene at three different temperatures, and the treated samples were analyzed by coal swelling using the recently developed method. Furthermore, effects of soaking time, soaking temperature, soluble portions, and coal rank were examined by using actual coal liquids. Although a cross-linked, three-dimensional macromoleculer model has been widely accepted for the structure of coat it has previously been reported that significant portions (far more generally believed) of coal molecules are physically associated. It is known, as reviewed in that paper, that most portions of bituminous coal can be disintegrated in coal derived liquids and polycyclic aromatic hydrocarbons at 300--400{degrees}C (high-temperature soaking). It was proposed that electron donors and acceptors of low molecular mass contained in these materials substitute coal-coal complexes with charge-transfer interactions. This is physical dissociation of associated coal molecules. However, chemical reactions may occur at these temperatures.

1992-08-01T23:59:59.000Z

367

Process for hydrogenating coal and coal solvents  

SciTech Connect

A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

Tarrer, Arthur R. (Auburn, AL); Shridharani, Ketan G. (Auburn, AL)

1983-01-01T23:59:59.000Z

368

Density equation of bio-coal briquettes and quantity of maize cob in Phitsanulok, Thailand  

SciTech Connect

One of the most important crops in Phitsanulok, a province in Northern Thailand, is maize. BaseD on the calculation, the quantity of maize cob produced in this region was approximately 220 kton year{sup -1}. The net heating value of maize cob was found to be 14.2 MJ kg{sup -1}. Therefore, the total energy over 874 TJ year-1 can be obtained from this agricultural waste. In the experiments, maize cob was utilized as the major ingredient for producing biomass-coal briquettes. The maize cob was treated with sodium hydroxide solution before mixing with coal fine. The ratios of coal:maize were 1:2 and 1:3, respectively. The range of briquetting pressures was from 4-8 MPa. The result showed that the density was strongly affected by both parameters. Finally, the relationship between biomass ratio, briquetting pressures and briquette density was developed and validated by using regression technique. 13 refs., 2 figs.

Patomsok Wilaipon [Naresuan University, Phitsanulok (Thailand). Department of Mechanical Engineering

2008-07-01T23:59:59.000Z

369

COAL/POLYMER COPROCESSING WITH EFFICIENT USE OF HYDROGEN  

DOE Green Energy (OSTI)

Environmental and economical concerns over diminishing landfill space and the growing abundance of mixed plastic waste mandate development of viable strategies for recovering high-valued resources from waste polymers. Co-processing of waste polymer mixtures with coal allows for the simultaneous conversion of coal and plastics into high-valued fuels. However, there is limited information about the underlying reaction pathways, kinetics, and mechanisms controlling coal liquefaction in the presence of polymeric materials. A series of model compound experiments has been conducted, providing a starting point for unraveling the complex, underlying chemistry. Neat pyrolysis studies of model compounds of polyethylene and coal were conducted in batch reactors. Tetradecane (C{sub 14} H{sub 30} ) was used as a polyethylene mimic, and 4-(naphthylmethyl)bibenzyl (NBBM) was used as a coal model compound. Reaction temperatures were 420 and 500 C, and batch reaction times ranged from 5--150 minutes. Detailed product analysis using gas chromatography and mass spectrometry enabled the reactant conversion and product selectivities to be determined. Reaction of single components and binary mixtures allowed the kinetic coupling between feedstocks to be examined.

DR. LINDA J. BROADBELT; MATTHEW J. DE WITT

1997-03-20T23:59:59.000Z

370

Coal sector profile  

SciTech Connect

Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

1990-06-05T23:59:59.000Z

371

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

McCollum, David L

2007-01-01T23:59:59.000Z

372

Coal Direct Chemical Looping Retrofit for Pulverized Coal-Fired...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Direct Chemical Looping Retrofit for Pulverized Coal-Fired Power Plants with In-Situ CO 2 Capture Background Pulverized coal (PC)-fired power plants provide nearly 50% of...

373

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

the costs have on the price of coal delivered by railroadsindicate that the price of coal delivered by railroads ismake up the delivered price of coal that electric plants are

McCollum, David L

2007-01-01T23:59:59.000Z

374

Coal air turbine {open_quotes}CAT{close_quotes} program invention 604. Fourth quarter project report, July 1995--September 1995  

SciTech Connect

A coal air turbine `CAT` generates electric power and heat from coal combustion. The purpose of this project is the conceptual design of a `CAT` plant, and to make a comparison of the capital cost and and cost of power and steam from the `CAT` plant with power produced by alternate plants at the same site. Three configurations investigated include: condensing plant utilizing coal fuel and a condenser tower, or river, for cooling; a cogeneration plant utilizing coal and a steam turbine; and a cogeneration plant utilizing steam export and injection with waste coal fuel.

Foster-Pegg, R.W.

1995-10-31T23:59:59.000Z

375

Potential growth of nuclear and coal electricity generation in the US  

SciTech Connect

Electricity demand should continue to grow at about the same rate as GNP, creating a need for large amounts of new generating capacity over the next fifty years. Only coal and nuclear at this time have the abundant domestic resources and assured technology to meet this need. However, large increase in both coal and nuclear usage will require solutions to many of the problems that now deter their increased usage. For coal, the problems center around the safety and environmental impacts of increased coal mining and coal combustion. For nuclear, the problems center around reactor safety, radioactive waste disposal, financial risk, and nuclear materials safeguards. This report assesses the impacts associated with a range of projected growth rates in electricity demand over the next 50 years. The resource requirements and waste generation resulting from pursuing the coal and nuclear fuel options to meet the projected growth rates are estimated. The fuel requirements and waste generation for coal plants are orders of magnitude greater than for nuclear. Improvements in technology and waste management practices must be pursued to mitigate environmental and safety concerns about electricity generation from both options. 34 refs., 18 figs., 14 tabs.

Bloomster, C.H.; Merrill, E.T.

1989-08-01T23:59:59.000Z

376

Outlook and challenges to coal in Asia: 1994--2015  

SciTech Connect

The two key threats to coal`s long term dominance in Asia are: (1) its uneven distribution of reserves and lack of adequate rail transportation infrastructure, and (2) growing environmental concerns about coal-related pollution. Even with increased attention to emissions control for coal, continued growth in coal consumption is expected to result in further deterioration of the environment in Asia for another one to two decades. China will remain the largest polluter in Asia, but it`s believed it will become Asia`s largest user of emissions control technology by 2015. The authors have subjectively weighed the above constraints to increased coal use in preparing the projections of the future role of coal in the Asian region. This paper shows past trends in coal production and consumption, plus projections of coal production, consumption and trade over the 1994--2015 period. The projections in this paper are useful as a general indicator of long term patterns in Asia. However, there are too many uncertainties about economic growth rates and energy and environmental policies to suggest that the projections will be accurate for every economy. This paper concludes with the preliminary results of research under way, which suggests that increasing economic wealth in China is the most important factor in solving China`s coal-related pollution problems.

Johnson, C.J.; Li, B.

1996-02-01T23:59:59.000Z

377

U.S. Coal Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Data - U.S. Energy Information Administration (EIA) Data - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol.

378

PressurePressure Indiana Coal Characteristics  

E-Print Network (OSTI)

TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · CoalTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL · Indiana Coal Forecasting · Under-Ground Coal Gasification · Benefits of Oxyfuel Combustion · Economic

Fernández-Juricic, Esteban

379

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

4Q 2009 4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by transportation mode. The data sources beginning with the 2008 Coal Distribution Report

380

WCI Case for Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal The role of as an energy source The role of coal as an energy source Key Messages * Energy demand has grown strongly and will continue to increase, particularly in developing countries where energy is needed for economic growth and poverty alleviation. * All energy sources will be needed to satisfy that demand by providing a diverse and balanced supply mix. * Coal is vital for global energy security. It is abundantly available, affordable, reliable and easy and safe to transport. * In an energy hungry world the challenge for coal, as for other fossil fuels, is to further substantially reduce its greenhouse gas and other emissions, while continuing to make a major contribution to economic and social development and energy security. * Coal is part way down a technology pathway that has already delivered major

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Chemical and physical aspects of refining coal liquids  

Science Conference Proceedings (OSTI)

Increasing costs and declining reserves of petroleum are forcing oil importing countries to develop alternate energy sources. The direct liquefaction of coal is currently being investigated as a viable means of producing substitute liquid fuels. The coal liquids derived from such processes are typically high in nitrogen

Y. T. Shah; G. J. Stiegel; S. Krishnamurthy

1981-01-01T23:59:59.000Z

382

Coal Mine Safety Investment Prediction Based on Support Vector Machine  

Science Conference Proceedings (OSTI)

Presently, coal mine safety situation in China is still severe. One of the most important reasons is safety investment insufficient. Safety investment prediction can provide decision basis for efficient controlling and guiding safety investment. The ... Keywords: coal mine safety investment, SVM, index system, prediction

Chen Xiang; Cai Weihua; Chen Na

2009-08-01T23:59:59.000Z

383

Upgraded Coal Interest Group. Technical progress report, January 1, 1995--March 31, 1995  

SciTech Connect

This report presents information from the coal interest group. Topics of discussion at the meeting included the current political views concerning the Department of Energy and programs contained therein. The group met on January 10 and 11, in Nashville, TN. The status of various coal upgrading technologies was also reviewed. Four new technology opportunities were given reviews, Coal/Waste pellets, Custom Coals advanced technology, CSRC sulfur removing bacteria and a Mag-Mill which is a magnetic separation done within the pulverizer. Coal Waste pellets is a technology for making pellets of coal and fiber waste from recycling plants. The incentives are low cost and low sulfur and nitrogen. Lebowitz made a field trip to the pilot unit in Canton Ohio. The Mag Mill takes advantage of the natural concentration of pyrite in the pulverizer recycle stream (due to its hardness). Special magnets are installed in the mill to remove pyrite from this stream. Custom Coals reported on an advanced two step process for removal of organic sulfur from coal. Consolidated Sulfur Reduction Co. reported on a two step microbial desulfurization process.

Weber, W. [Electric Power Research Institute, Chattanooga, TN (United States); Lebowitz, H.E. [Fossil Fuel Sciences, Palo Alto, CA (United States)

1995-08-01T23:59:59.000Z

384

Capture and Use of Coal Mine Ventilation-Air Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture and use of Coal Mine Capture and use of Coal Mine Ventilation - air Methane Background Methane emissions from coal mines represent about 10 percent of the U.S. anthropogenic methane released to the atmosphere. Methane-the second most important non-water greenhouse gas-is 21 times as powerful as carbon dioxide (CO 2 ) in its global warming potential. Ventilation-air methane (VAM)-the exhaust air from underground coal mines-is the largest source of coal mine methane, accounting for about half of the methane emitted from coal mines in the United States. Unfortunately, because of the low methane concentration (0.3-1.5 percent) in ventilation air, its beneficial use is difficult. However, oxidizing the methane to CO 2 and water reduces its global warming potential by 87 percent. A thermal

385

NETL: Coal & Coal Biomass to Liquids - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Coal and CoalBiomass to Liquids Reference Shelf Documents Papers Presentations DOCUMENTS 2012 Technology Readiness Assessment-Analysis of Active Research Portfolio...

386

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

McCollum, David L

2007-01-01T23:59:59.000Z

387

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Credit Extra Fuel Oil Coal to gasifier Na cost· Na processoiL Replace res. with coal as gasifier feed. 543 ton/day @$

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

388

Annul Coal Consumption by Country (1980 -2009) Total annual coal  

Open Energy Info (EERE)

Annul Coal Consumption by Country (1980 -2009) Total annual coal consumption by country, 1980 to 2009 (available as Quadrillion Btu). Compiled by Energy Information Administration...

389

NETL: Coal & Coal Biomass to Liquids - Project Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Information CoalBiomass Feed and Gasification Development of Biomass-Infused Coal Briquettes for Co-Gasification FE0005293 Development of Kinetics and Mathematical...

390

Illinois Coal Revival Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

391

Coal Mining Tax Credit (Arkansas)  

Energy.gov (U.S. Department of Energy (DOE))

The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

392

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network (OSTI)

Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

Wrathall, J.

2013-01-01T23:59:59.000Z

393

Does proximity to coal-fired power plants influence fish tissue mercury?  

E-Print Network (OSTI)

Does proximity to coal-fired power plants influence fish tissue mercury? Dana K. Sackett · D. Derek+Business Media, LLC 2010 Abstract Much of the mercury contamination in aquatic biota originates from coal of contaminated fish. In this study, we quantified the relative importance of proximity to coal-fired power plants

394

The Iron Age & Coal-based Coke: A Neglected Case of Fossil-fuel Dependence  

E-Print Network (OSTI)

The Iron Age & Coal-based Coke: A Neglected Case of Fossil-fuel Dependence by Vaclav Smil September share of their primary energies from renewable sources. Steel & Coal-Derived Coke Here is another important: steel's fundamental dependence on coal-derived coke with no practical substitutes on any rational

Smil, Vaclav

395

Influence of coal on coke properties and blast-furnace operation  

SciTech Connect

With unstable coal supplies and properties and a fluctuating content of coking coal in the batch at OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (ZSMK) and of bituminous coal at Kuznetskaya enrichment facility, it is important to optimize the rank composition of the batch for coke production.

G.R. Gainieva; L.D. Nikitin [OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (Russian Federation)

2007-07-01T23:59:59.000Z

396

Pulverized coal fuel injector  

DOE Patents (OSTI)

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

1992-01-01T23:59:59.000Z

397

Integrated coal liquefaction process  

DOE Patents (OSTI)

In a process for the liquefaction of coal in which coal liquids containing phenols and other oxygenated compounds are produced during the liquefaction step and later hydrogenated, oxygenated compounds are removed from at least part of the coal liquids in the naphtha and gas oil boiling range prior to the hydrogenation step and employed as a feed stream for the manufacture of a synthesis gas or for other purposes.

Effron, Edward (Springfield, NJ)

1978-01-01T23:59:59.000Z

398

Gasification of Lignite Coal  

Science Conference Proceedings (OSTI)

This report on the gasification of lignite coal is presented in two parts. The first includes research into technology options for preparing low-rank fuels for gasification, gasifiers for converting the coal into synthesis gas, and technologies that may be used to convert synthesis gas into valuable chemical products. The second part focuses on performance and cost screening analyses for either Greenfield or retrofit gasification options fueled by low-rank lignite coal. The work was funded through Tailor...

2009-01-23T23:59:59.000Z

399

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Analysis & Projections Analysis & Projections ‹ See all Coal Reports U.S. Coal Supply and Demand: 2010 Year in Review Release Date: June 1, 2011 | Next Release Date: Periodically | full report Exports and Imports Exports Total U.S. coal exports for 2010 increased by 38.3 percent to 81.7 million short tons (Figure 8). Figure Data This increase was largely due to two factors. First, heavy rains and flooding in Australia, Indonesia, and Colombia reduced world coal supply and forced many coal importing nations to look elsewhere, primarily to the United States, to fulfill their coal needs. In addition, the shortage of their own domestic coal in relation to growing needs, namely for China and India, provided ample opportunities for U.S. coal producers to export to these markets.

400

Estimating Waste Inventory and Waste Tank Characterization |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue...

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Important issues in energy research and development  

DOE Green Energy (OSTI)

This paper identifies and briefly examines a number of important issues in energy research and development which warrant special attention by the Energy Research and Development Office (ERDO). The following six matters are identified as being of sufficient weight to be labeled important issues: nuclear reactor siting policy: nuclear energy centers; the development of solar electric power; exploitation of western oil shale; improvements in mining technology for coal; assuring uranium fuel supplies; and automotive energy systems.

Not Available

1974-07-01T23:59:59.000Z

402

Coal liquefaction quenching process  

DOE Patents (OSTI)

There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

1983-01-01T23:59:59.000Z

403

Quarterly Coal Report  

Annual Energy Outlook 2012 (EIA)

December 2010 DOEEIA-0121 (201003Q) Revised: July 2012 Quarterly Coal Report July - September 2010 December 2010 U.S. Energy Information Administration Office of Oil, Gas, and...

404

Coal Combustion Products: Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

Products: Challenges and Opportunities American Coal Ash Association Conference St. Petersburg, FL January 27-30, 2003 Carl O. Bauer National Energy Technology Laboratory...

405

Initiators of coal hydrogenation  

Science Conference Proceedings (OSTI)

The results are given of an investigation of the influence of additions of certain organosilicon compounds of cyclic and linear nature on the coal hydrogenation process.

Krichko, A.A.; Dembovskaya, E.A.; Gorlov, E.G.

1983-01-01T23:59:59.000Z

406

Clean Coal Projects (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

407

Coal Development (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This section provides for the development of newly-discovered coal veins in the state, and county aid for such development.

408

Direct Coal Liquefaction  

NLE Websites -- All DOE Office Websites (Extended Search)

solvent. * The coal fragments are further hydrocracked to produce a synthetic crude oil. * This synthetic crude must then undergo refinery upgrading and hydrotreating to...

409

Weekly NYMEX Coal Futures  

Reports and Publications (EIA)

The New York Mercantile Exchange (NYMEX) Report provides settlement price data for Central Appalachian (CAPP), Western Powder River Basin (PRB), and Eastern CSX Transportation (CSX) coal futures.

Information Center

410

Rail Coal Transportation Rates  

U.S. Energy Information Administration (EIA)

figure data Figure 7 shows the percent change in average real rates for those state-to-state ... Estimated transportation rates for coal delivered to electric ...

411

Coal News and Markets  

U.S. Energy Information Administration (EIA)

Speaking about Consol Energy’s 1Q05 earnings, J. Brett Harvey, president and CEO, noted that the “pricing environment for our coal is excellent, ...

412

Handbook of coal analysis  

SciTech Connect

The Handbook deals with the various aspects of coal analysis and provides a detailed explanation of the necessary standard tests and procedures that are applicable to coal in order to help define usage and behavior relative to environmental issues. It provides details of the meaning of various test results and how they might be applied to predict coal behavior during use. Emphasis is on ASTM standards and test methods but ISO and BSI standards methods are included. Chapter headings are: Coal analysis; Sampling and sample preparation; Proximate analysis; Ultimate analysis; Mineral matter; Physical and electrical properties; Thermal properties; Mechanical properties; Spectroscopic properties; Solvent properties; and Glossary.

James G. Speight

2005-05-01T23:59:59.000Z

413

Back Issues of the Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

coal > Quarterly Coal Report > Quarterly Coal Report Back Issues Quarterly Coal Report Back Issues of the Quarterly Coal Report Year 4thquarter 3rdquarter 2ndquarter 1stquarter QCR...

414

ZERO EMISSION COAL POWER, A NEW CONCEPT  

DOE Green Energy (OSTI)

The Zero Emission Coal Alliance (ZECA) is developing an integrated zero emission process that generates clean energy carriers (electricity or hydrogen) from coal. The process exothermically gasifies coal using hydrogen to produce a methane rich intermediate state. The methane is subsequently reformed using water and a CaO based sorbent. The sorbent supplies the energy needed to drive the reforming reaction and simultaneously removes the generated CO{sub 2} by producing CaCO{sub 3}. The resulting hydrogen product stream is split, approximately 1/2 going to gasify the next unit of coal, and the other half being the product. This product stream could then be split a second time, part being cleaned up with a high temperature hydrogen separation membrane to produce pure hydrogen, and the remainder used to generate electricity via a solid oxide fuel cell (SOFC). The inevitable high temperature waste heat produced by the SOFC would in turn be used to regenerate the CaO by calcining the CaCO{sub 3} product of the reforming stage thereby generating a pure stream of CO{sub 2}. The CO{sub 2} will be dealt with a mineral sequestration process discussed in other papers presented at this conference. The SOFC has the added advantage of doubling as an oxygen separation membrane, thereby keeping its exhaust stream, which is predominantly steam, free of any air. This exhaust stream is largely recycled back to the reforming stage to generate more hydrogen, with a slipstream being extracted and condensed. The slipstream carries with it the other initial contaminants present in the starting coal. Overall the process is effectively closed loop with zero gaseous emissions to the atmosphere. The process also achieves very high conversion efficiency from coal energy to electrical energy ({approximately} 70%) and naturally generates a pure stream of CO{sub 2} ready for disposal via the mineral sequestration process.

H. -J. ZIOCK; K. S. LACKNER; D. P. HARRISON

2001-04-01T23:59:59.000Z

415

Fuel blending with PRB coal  

Science Conference Proceedings (OSTI)

Many methods exist to accomplish coal blending at a new or existing power plant. These range from a basic use of the secondary (emergency) stockout/reclaim system to totally automated coal handling facilities with segregated areas for two or more coals. Suitable choices for different sized coal plant are discussed, along with the major components of the coal handling facility affected by Powder River Basin coal. 2 figs.

McCartney, R.H.; Williams, R.L. Jr. [Roberts and Schaefer, Chicago, IL (United States)

2009-03-15T23:59:59.000Z

416

STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION  

SciTech Connect

Major objectives of the present project are to develop a better understanding of the roles of the catalyst and the liquefaction solvent in the coal liquefaction process. An open question concerning the role of the catalyst is whether intimate contact between the catalyst and the coal particles is important or required. To answer this question, it had been planned to coat an active catalyst with a porous silica coating which was found to retain catalyst activity while preventing actual contact between catalyst and coal. Consultation with people in DuPont who coat catalysts for increasing abrasion resistance have indicated that only portions of the catalyst are coated by their process (spray drying) and that sections of uncoated catalyst remain. For that reason, it was decided to suspend the catalyst in a basket separated from the coal in the reactor. The basket walls were to be permeable to the liquefaction solvent but not to the coal particles. Several such baskets were constructed of stainless steel with holes which would not permit passage of coal particles larger than 30 mesh. Liquefactions run with the coal of greater than 30 mesh size gave normal conversion of coal to liquid in the absence of catalyst in the basket, but substantially increased conversion when Ni/Mo on alumina catalyst was in the basket. While this result is interesting and suggestive of some kind of mass transfer of soluble material occurring between the catalyst and the coal, it does not eliminate the possibility of breakdown of the coal particle into particle sizes permeable to the basket. Indeed, a small amount of fine coal has been found inside the basket. To determine whether fine coal from breakdown of the coal particles is responsible for the conversion, a new basket is being prepared with 0.5{micro}m pore size.

Michael T. Klein

1998-10-01T23:59:59.000Z

417

ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY  

DOE Green Energy (OSTI)

This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NMR methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methane groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of coals, and their suitability for possible correlations with the oil sourcing potential of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples. In this report period we have focused our work on 1 segment of the program. Our last report outlined progress in using our NMR editing methods with higher field operation where higher magic angle spinning rates are required. Significant difficulties were identified, and these have been the main subject of study during the most recent granting period.

NONE

1997-03-01T23:59:59.000Z

418

Coal combustion science. Quarterly progress report, April 1993--June 1993  

Science Conference Proceedings (OSTI)

This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories. The information reported is for Apr-Jun 1993. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the PETC Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. The objective of the kinetics and mechanisms of pulverized coal char combustion task is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: kinetics of heterogeneous fuel particle populations; char combustion kinetics at high carbon conversion; the role of particle structure and the char formation process in combustion and; unification of the Sandia char combustion data base. This data base on the high temperature reactivities of chars from strategic US coals will permit identification of important fuel-specific trends and development of predictive capabilities for advanced coal combustion systems. The objective of the fate of inorganic material during coal combustion task is the establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of inorganic material during coal combustion as a function of coal type, particle size and temperature, the initial forms and distribution of inorganic species in the unreacted coal, and the local gas temperature and composition. In addition, optical diagnostic capabilities are being developed for in situ, real-time detection of inorganic vapor species and surface species during ash deposition. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Hardesty, D.R. [ed.

1994-05-01T23:59:59.000Z

419

Problems associated with solid wastes from energy systems  

Science Conference Proceedings (OSTI)

Waste streams from many energy-related technologies including coal, oil shale, tar sands, geothermal, oil and gas extraction, and nuclear power generation are reviewed with an emphasis on waste streams from coal and oil shale technologies. This study has two objectives. The first objective is to outline the available information on energy-related solid wastes. Data on chemical composition and hazardous biological characteristics are included, supplemented by regulatory reviews and data on legally designated hazardous waste streams. The second objective is to provide disposal and utilization options. Solid waste disposal and recovery requirements specified under the RCRA are emphasized. Information presented herein should be useful for policy, environmental control, and research and development decision making regarding solid and hazardous wastes from energy production.

Chiu, S.Y.; Fradkin, L.; Barisas, S.; Surles, T.; Morris, S.; Crowther, A.; DeCarlo, V.

1980-09-01T23:59:59.000Z

420

Coal technology program. Progress report, October 1977  

DOE Green Energy (OSTI)

Two blocks of Pittsburgh seam bituminous coal were pyrolyzed under reducing gas in the project in support of in situ gasification. Higher heating rates appear to reduce swelling of the block during pyrolysis, and higher final pyrolysis temperature results in lower boiling tars. Three pressurized residue carbonization tests were completed at 1100/sup 0/F and 400 psi of methane with three feed materials. Work is in progress on the fracture toughness of thick sections of steels for piping and pressure vessels in coal conversion plants. Modifications to experimental techniques have been made to allow the heat treatment of tension specimens and simulated heat treatment of thick plate sections. Exposure of heat exchanger tubes in the Fluidyne Corporation atmospheric fluidized bed has reached a maximum of 1500 hr. Tube samples have been recovered and are being characterized. In the gas-fired potassium boiler project, three preliminary runs of short duration were made in which the boiler was filled with potassium and heated up to or near the boiling temperature with the main burner. Operating problems that were encountered in these runs have been resolved. ORNL has been requested by DOE-FE to develop a program for testing coal feeders currently under development. In the project for landfill storage of solid wastes, samples of solid wastes from all pilot plants are being obtained. (LTN)

None

1977-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CFBC evaluation of fuels processed from Illinois coals  

SciTech Connect

The overall objectives for this one-year project are: (1) to demonstrate that new fuels derived from Illinois high sulfur coal, namely (a) coal-sorbent pellets and (b) coal-water slurry produced from froth flotation feed can be effectively utilized in a circulating fluidized bed combustor, (2) to compare the carbon conversion efficiencies, SO{sub 2} and NO{sub x} emission levels and Ca/S ratios needed to meet EPA regulations from the above fuels with those measured under similar operating conditions with a standard IBCSP coal, and (3) to analyze ash and spent limestone residues with a view to proposing waste disposal strategies for the combustion residues resulting from these new fuel forms.

Rajan, S.

1991-01-01T23:59:59.000Z

422

Pressure coal gasification experience in Czechoslovakia  

SciTech Connect

Czechoslovakia's large deposits of brown coal supply the country's three operating pressure gasification plants. The gas produced is suitable for further treatment to provide fuel for household and industrial consumers. Coal gasification is not new to the energy planners in Czechoslovakia. Since 1948, 56 gasifiers have been installed in the three pressure gasification plants currently in operation. The newest and biggest of these plants is at Vresova. The plant processes 5,000 tons of brown coal per day. The locally mined coal used for feed at the Vresova plant has a calorific value of 12 to 14 megajoules per kilogram (52 to 60 Btu's per pound). The gasifiers produce up to 13,000 cubic meters (459,000 cubic feet) per hour of crude gas per gasifier. Gasification technology has been under development in Czechoslovakia since 1945. The country has virtually no oil or natural gas reserves, a fact that emphasizes the importance of coal-based energy. Production of gas from coal in Czechoslovak gasifiers is based on gasification in the fixed bed of a gasifier.

Not Available

1981-03-01T23:59:59.000Z

423

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOENETL-20051217 U.S. Department of Energy Office of Fossil Energy National Energy...

424

EIA - Assumptions to the Annual Energy Outlook 2008 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2008 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2008, DOE/EIA-M060(2008) (Washington, DC, 2008). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, and the cost of factor inputs (labor and fuel).

425

EIA-Assumptions to the Annual Energy Outlook - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2007 Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2007, DOE/EIA-M060(2007) (Washington, DC, 2007). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, and the cost of factor inputs (labor and fuel).

426

EIA - Assumptions to the Annual Energy Outlook 2010 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2010 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2010, DOE/EIA-M060(2010) (Washington, DC, 2010). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, the cost of factor inputs (labor and fuel), and other mine supply costs.

427

NETL: Clean Coal Demonstrations - Clean Coal Today Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Today Newsletter Clean Coal Today Newsletter Clean Coal Demonstrations Clean Coal Today Newsletter Clean Coal Today is a quarterly newsletter of the U.S. Department of Energy, Office of Fossil Energy (FE), Office of Clean Coal. Among other things, Clean Coal Today highlights progress under the Clean Coal Power Initiative, the Power Plant Improvement Initiative, and the few remaining projects of the original Clean Coal Technology Demonstration Program. Reporting on coal R&D performed at government laboratories, as well as in conjunction with stakeholders, it provides key information on FE's coal-related activities, most of which are directed toward near-zero emissions, ultra-efficient technologies of the future. Subscriptions are free – to have your name placed on the mailing list, contact the Editor at Phoebe.Hamill@hq.doe.gov.

428

Radioactive waste storage issues  

SciTech Connect

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

429

A fresh look at coal-derived liquid fuels  

Science Conference Proceedings (OSTI)

35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

Paul, A.D. [Benham Companies LLC (USA)

2009-01-15T23:59:59.000Z

430

Petrographic, mineralogical, and chemical characterization of certain Alaskan coals and washability products. Final report, July 11, 1978-October 11, 1980  

DOE Green Energy (OSTI)

Petrological, mineralogical and chemical characterization provides basic information needed for proper utilization of coals. Since many of these coals are likely to be beneficiated to reduce ash, the influence of coal washing on the characteristics of the washed product is important. Twenty samples of Alaskan coal seams were used for this study. The coals studied ranged in rank from lignite to high volatile A bituminous with vitrinite/ulminite reflectance ranging from 0.25 to 1.04. Fifteen raw coals were characterized for proximate and ultimate analysis reflectance rank, petrology, composition of mineral matter, major oxides and trace elements in coal ash. Washability products of three coals from Nenana, Beluga and Matanuska coal fields were used for characterization of petrology, mineral matter and ash composition. Petrological analysis of raw coals and float-sink products showed that humodetrinite was highest in top seam in a stratigraphic sequence

Rao, P.D.; Wolff, E.N.

1981-05-01T23:59:59.000Z

431

STEO November 2012 - coal supplies  

U.S. Energy Information Administration (EIA) Indexed Site

Despite drop in domestic coal production, U.S. coal exports to reach Despite drop in domestic coal production, U.S. coal exports to reach record high in 2012. While U.S. coal production is down 7 percent this year due in part to utilities switching to low-priced natural gas to generate electricity, American coal is still finding plenty of buyers in overseas markets. U.S. coal exports are expected to hit a record 125 million tons in 2012, the U.S. Energy Information Administration says in its new monthly short-term energy outlook. Coal exports are expected to decline in 2013, primarily because of continuing economic weakness in Europe, lower international coal prices, and higher coal production in Asia. However, U.S. coal exports next year are still expected to top 100 million tons for the third year in a row

432

HS_Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Fossil Energy Study Guide: Coal Coal is the most plentiful fuel in the fossil family. The United States has more coal reserves than any other country in the world. In fact, one-fourth of all known coal in the world is in the United States, with large deposits located in 38 states. The United States has almost as much energ y in coal that can be mined as the rest of the world has in oil that can be pumped from the ground. TYPES OF COAL Coal is a black rock made up of large amounts of carbon. Like all fossil fuels, coal can be burned to release energy. Coal contains elements such as hydrogen, oxygen, and nitrogen; has various amounts of minerals; and is itself considered to be a mineral of organic origin. Due to the variety of materials buried over time in the

433

Liquid Tin Anode Direct Coal Fuel Cell Final Program Report  

SciTech Connect

This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

Tao, Thomas

2012-01-26T23:59:59.000Z

434

Coal liquefaction process  

DOE Patents (OSTI)

A C.sub.5 -900.degree. F. (C.sub.5 -482.degree. C.) liquid yield greater than 50 weight percent MAF feed coal is obtained in a coal liquefaction process wherein a selected combination of higher hydrogen partial pressure, longer slurry residence time and increased recycle ash content of the feed slurry are controlled within defined ranges.

Carr, Norman L. (Allison Park, PA); Moon, William G. (Cheswick, PA); Prudich, Michael E. (Pittsburgh, PA)

1983-01-01T23:59:59.000Z

435

Dry piston coal feeder  

SciTech Connect

This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

Hathaway, Thomas J. (Belle Meade, NJ); Bell, Jr., Harold S. (Madison, NJ)

1979-01-01T23:59:59.000Z

436

Method for coal liquefaction  

SciTech Connect

A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400.degree. C. at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1.

Wiser, Wendell H. (Kaysville, UT); Oblad, Alex G. (Salt Lake City, UT); Shabtai, Joseph S. (Salt Lake City, UT)

1994-01-01T23:59:59.000Z

437

Mechanochemical hydrogenation of coal  

DOE Patents (OSTI)

Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

Yang, Ralph T. (Tonawanda, NY); Smol, Robert (East Patchogue, NY); Farber, Gerald (Elmont, NY); Naphtali, Leonard M. (Washington, DC)

1981-01-01T23:59:59.000Z

438

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Btu per Short Ton) Year Coal Coal Coke Production 1 Waste Coal Supplied 2 Consumption Imports Exports Imports and Exports Residential and Commercial Sectors Industrial...

439

State coal profiles, January 1994  

SciTech Connect

The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

1994-02-02T23:59:59.000Z

440

Apparatus and method for feeding coal into a coal gasifier  

DOE Patents (OSTI)

This invention is directed to a system for feeding coal into a gasifier operating at high pressures. A coal-water slurry is pumped to the desired pressure and then the coal is "dried" prior to feeding the coal into the gasifier by contacting the slurry with superheated steam in an entrained bed dryer for vaporizing the water in the slurry.

Bissett, Larry A. (Morgantown, WV); Friggens, Gary R. (Morgantown, WV); McGee, James P. (Morgantown, WV)

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "imports waste coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Destination State, Destination State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

442

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Origin State, Origin State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

443

By Coal Destination State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Colorado Total 2,113 - - - 2,113 Colorado Railroad 2,113 - - - 2,113 Illinois Total 336 - - - 336 Illinois River 336 - - - 336 Indiana Total 1,076

444

By Coal Origin State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Florida Total - - 15 - 15 Florida Railroad - - 11 - 11 Florida Truck - - 3 - 3 Georgia Total 196 - 15 - 211 Georgia Railroad 189 - 1 - 190 Georgia Truck

445

CO2 Sequestration in Unmineable Coal Seams: Potential Environmental Impacts  

Science Conference Proceedings (OSTI)

An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production using a CO2 injection process (CO2-ECBM). Two coals have been used in this study, the medium volatile bituminous Upper Freeport coal (APCS 1) of the Argonne Premium Coal Samples series, and an as-mined Pittsburgh #8 coal, which is a high volatile bituminous coal. Coal samples were reacted with either synthetic produced water or field collected produced water and gaseous carbon dioxide at 40 ?C and 50 bar to evaluate the potential for mobilizing toxic metals during CO2-ECBM/sequestration. Microscopic and x-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction, and chemical analysis of the produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilizing toxic trace elements from coalbeds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

Hedges, S.W.; Soong, Yee; McCarthy Jones, J.R.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; Pique, P.J.; Brown, T.D

2005-09-01T23:59:59.000Z

446

The release of iron during coal combustion. Milestone report  

Science Conference Proceedings (OSTI)

Iron plays an important role in the formation of both fly ash and deposits in many pulverized-coal-fired boilers. Several authors indicate that iron content is a significant indicator of the slagging propensity of a majority of US bituminous coals, in particular eastern bituminous coals. The pyritic iron content of these coals is shown to be a particularly relevant consideration. A series of investigations of iron release during combustion is reported for a suite of coals ranging in rank from lignite to low-volatile bituminous coal under combustion conditions ranging from oxidizing to inert. Experimental measurements are described in which, under selected conditions, major fractions of the iron in the coal are released within a 25 ms period immediately following coal devolatilization. Mechanistic interpretation of the data suggest that the iron is released as a consequence of oxygen attack on porous pyrrhotite particles. Experimental testing of the proposed mechanism reveals that the release is dependent on the presence of both pyrite in the raw coal and oxygen in the gas phase, that slow preoxidation (weathering) of the pyrite significantly inhibits the iron release, and that iron loss increases as oxygen penetration of the particle increases. Each observation is consistent with the postulated mechanism.

Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility

1995-06-01T23:59:59.000Z

447

Hazardous Waste  

Science Conference Proceedings (OSTI)

Table 6   General refractory disposal options...D landfill (b) Characterized hazardous waste by TCLP

448

Geomechanical and weathering properties of weak roof shales in coal mines.  

E-Print Network (OSTI)

??Many coal seams have weak shale immediate roofs that cause ground control problems. Therefore, it is important to know the properties of these shales so… (more)

Gurgenli, Hakan.

2006-01-01T23:59:59.000Z

449

OXY-COAL COMBUSTION: SUBMICROMETER PARTICLE FORMATION, MERCURY SPECIATION, AND THEIR CAPTURE.  

E-Print Network (OSTI)

??Energy is the issue of great importance at the present. Coal, the cheapest and the most abundant reserve fossil fuel, is currently one of the… (more)

Suriyawong, Achariya

2009-01-01T23:59:59.000Z

450

Uncovering Coal's Secrets Through the University Coal Research Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uncovering Coal's Secrets Through the University Coal Research Uncovering Coal's Secrets Through the University Coal Research Program Uncovering Coal's Secrets Through the University Coal Research Program December 18, 2013 - 10:38am Addthis Uncovering Coal’s Secrets Through the University Coal Research Program The challenges confronting the environmentally sound use of our country's fossil energy resources are best addressed through collaborative research and development. That's why this approach, which stretches federal dollars, is at the heart of the Office of Fossil Energy's University Coal Research (UCR) Program. Managed by the National Energy Technology Laboratory (NETL), the UCR program funds university research to improve understanding of the chemical and physical properties of coal, one of our nation's most abundant

451

COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER  

E-Print Network (OSTI)

P.J. and Wells, J.H. , Coal, Coke and Coal Chemicals, 108, (of coal, carbon, char. coke, and other coal derived o