Powered by Deep Web Technologies
Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Mitigation Action Implementation Network (MAIN) | Open Energy Information  

Open Energy Info (EERE)

Mitigation Action Implementation Network (MAIN) Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Mitigation Action Implementation Network (MAIN) Year founded 2011 Website http://www.ccap.org/index.php? References MAIN[1] LinkedIn Connections "CCAP is working in collaboration with the World Bank Institute (WBI) and INCAE Business School to support the design and implementation of Nationally Appropriate Mitigation Actions (NAMAs) and Low-Carbon Development (LCD) strategies in developing countries through regionally based dialogues, web-based exchanges, and practitioner networks. Recent UNFCCC negotiations have made it clear that climate protection will depend on actions on the ground in both developing and developed countries. In recent years, developing countries have shown a significant commitment to

2

Mitigation Action Implementation Network (MAIN) Feed | Open Energy  

Open Energy Info (EERE)

Mitigation Action Implementation Network (MAIN) Feed Mitigation Action Implementation Network (MAIN) Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ)

3

Thailand-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Thailand-The Mitigation Action Implementation Network (MAIN) Thailand-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Thailand-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

4

Uruguay-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Uruguay-The Mitigation Action Implementation Network (MAIN) Uruguay-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Uruguay-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

5

Dominican Republic-The Mitigation Action Implementation Network (MAIN) |  

Open Energy Info (EERE)

Dominican Republic-The Mitigation Action Implementation Network (MAIN) Dominican Republic-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Dominican Republic-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

6

Costa Rica-The Mitigation Action Implementation Network (MAIN) | Open  

Open Energy Info (EERE)

Costa Rica-The Mitigation Action Implementation Network (MAIN) Costa Rica-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Costa Rica-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

7

Pakistan-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Pakistan-The Mitigation Action Implementation Network (MAIN) Pakistan-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Pakistan-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

8

Mexico-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Mexico-The Mitigation Action Implementation Network (MAIN) Mexico-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Mexico-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

9

Colombia-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Colombia-The Mitigation Action Implementation Network (MAIN) Colombia-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Colombia-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

10

Philippines-The Mitigation Action Implementation Network (MAIN) | Open  

Open Energy Info (EERE)

Philippines-The Mitigation Action Implementation Network (MAIN) Philippines-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Philippines-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

11

China-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

China-The Mitigation Action Implementation Network (MAIN) China-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name China-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

12

The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Mitigation Action Implementation Network (MAIN) Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

13

Panama-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Panama-The Mitigation Action Implementation Network (MAIN) Panama-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Panama-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

14

Malaysia-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Malaysia-The Mitigation Action Implementation Network (MAIN) Malaysia-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Malaysia-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

15

Peru-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Peru-The Mitigation Action Implementation Network (MAIN) Peru-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Peru-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

16

Vietnam-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Vietnam-The Mitigation Action Implementation Network (MAIN) Vietnam-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Vietnam-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

17

Brazil-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Brazil-The Mitigation Action Implementation Network (MAIN) Brazil-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Brazil-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

18

Chile-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Chile-The Mitigation Action Implementation Network (MAIN) Chile-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Chile-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

19

India-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

India-The Mitigation Action Implementation Network (MAIN) India-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name India-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

20

Indonesia-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

Indonesia-The Mitigation Action Implementation Network (MAIN) Indonesia-The Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Indonesia-The Mitigation Action Implementation Network (MAIN) Agency/Company /Organization Center for Clean Air Policy (CCAP) Partner ICI, Environment Canada, BP, World Bank Institute, Thailand, Ministry of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and Environment Philippines, Climate Change Commission Philippines, Department of Environment and Natural Resources Vietnam, Ministry of Planning and Investment Vietnam, Sub-Institute of Hydrometeorology and Environment of South Vietnam, Ministry of Industry and Trade Vietnam, Ministry of Finance Indonesia, Ministry of Public Works Indonesia, Ministry of Transport Indonesia, Dept. of Clean & Efficient Energy Technology Implementation Indonesia, National Council on Climate Change Malaysia, Ministry of Natural Resources and Environment Malaysia, Dept. of Economic Planning Malaysia, Ministry of Green Technology, Energy and Water Malaysia, Land Public Transport Commission India, Central Electricity Regulatory Commission Pakistan, Dept. of Planning & Development Pakistan, Ministry of Finance Pakistan, Ministry of Foreign Affairs Pakistan, Ministry of Water and Power Germany, Federal Environment Ministry Argentina, Ministry of Energy Argentina, Ministry of Industry Chile, Ministry of Environment Chile, Ministry of Energy Chile, Ministry of Transport Chile, Ministry of Finance Colombia, Ministry of Environment Colombia, Ministry of Transport Colombia, Department of National Planning Colombia, Ministry of Housing Costa Rica, Climate Change Direction Costa Rica, Ministry of Agriculture Costa Rica, Ministry of Housing Costa Rica, Ministry of Energy Dominican Republic, National Climate Change Commission Dominican Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican Republic, Technical Office for Land Transport (OTTT) Panama Canal Authority Panama Maritime Authority Peru, Ministry of Environment Peru, Ministry of Energy and Mines Peru, Ministry of Transport and Communications Peru, Ministry of Energy and Mines Uruguay, Ministry of the Environment Uruguay, National Transport Directorate Uruguay, Ministry of Industry, Energy and Minerals Uruguay, Ministry of Agriculture Canada, Ministry of the Environment Norway, Ministry of the Environment Sweden, Department of the Environment UK, Department for Energy and Climate Change (DECC), Danish Government

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM  

SciTech Connect

Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. A prototype system was built for low-pressure cast-iron mains and tested in a spider- and serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The prototype unit combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-slave architecture to collect data from a distributed spider-arrangement, and in a master-repeater-slave configuration in serial or ladder-network arrangements. It was found that the system was capable of performing all data-sampling and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and valuable data was collected in order to determine how to improve on range and data-quality in the future.

Hagen Schempf, Ph.D.

2003-02-27T23:59:59.000Z

22

GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM  

Science Conference Proceedings (OSTI)

Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. In Phase II of this three-phase program, an improved prototype system was built for low-pressure cast-iron and high-pressure steel (including a no-blow installation system) mains and tested in a serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The experiment was carried out in several open-hole excavations over a multi-day period. The prototype units (3 total) combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-repeater-slave configuration in serial or ladder-network arrangements. It was verified that the system was capable of performing all data-sampling, data-storage and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and the system was demonstrated to run off in-ground battery- and above-ground solar power. The remote datalogger access and storage-card features were demonstrated and used to log and post-process system data. Real-time data-display on an updated Phase-I GUI was used for in-field demonstration and troubleshooting.

Hagen Schempf

2004-09-30T23:59:59.000Z

23

Energy efficient sensor network implementations  

Science Conference Proceedings (OSTI)

In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study. We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.

Frigo, Janette R [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Kulathumani, Vinod [WEST VIRGINIA UNIV.; Rosten, Ed [CAMBRIDGE UNIV.; Wolinski, Christophe [IRISA; Wagner, Charles [IRISA; Charot, Francois [IRISA

2009-01-01T23:59:59.000Z

24

A User Driven Dynamic Circuit Network Implementation  

Science Conference Proceedings (OSTI)

The requirements for network predictability are becoming increasingly critical to the DoE science community where resources are widely distributed and collaborations are world-wide. To accommodate these emerging requirements, the Energy Sciences Network has established a Science Data Network to provide user driven guaranteed bandwidth allocations. In this paper we outline the design, implementation, and secure coordinated use of such a network, as well as some lessons learned.

Guok, Chin; Robertson, David; Chaniotakis, Evangelos; Thompson, Mary; Johnston, William; Tierney, Brian

2008-10-01T23:59:59.000Z

25

E-print Network : Main View : Deep Federated Search  

Office of Scientific and Technical Information (OSTI)

E-print Network E-print Network Search Powered By Deep Web Technologies New Search Preferences E-print Network E-print Network Skip to main content FAQ * HELP * SITE MAP * CONTACT US Home * About * Advanced Search * Browse by Discipline * Scientific Societies * E-print Alerts * Add E-prints Powered by Deep Web Technologies E-print Network E-print Network Skip to main content FAQ * HELP * SITE MAP * CONTACT US Home * About * Advanced Search * Browse by Discipline * Scientific Societies * E-print Alerts * Add E-prints Main View This view is used for searching all possible sources. Due to the varied configuration and diversity of web pages and databases searched by E-prints, Full Record will search whatever data is searchable at each site. Multiple arXiv sites under one general heading are combined

26

On analog implementations of discrete neural networks  

Science Conference Proceedings (OSTI)

The paper will show that in order to obtain minimum size neural networks (i.e., size-optimal) for implementing any Boolean function, the nonlinear activation function of the neutrons has to be the identity function. The authors shall shortly present many results dealing with the approximation capabilities of neural networks, and detail several bounds on the size of threshold gate circuits. Based on a constructive solution for Kolmogorov`s superpositions they will show that implementing Boolean functions can be done using neurons having an identity nonlinear function. It follows that size-optimal solutions can be obtained only using analog circuitry. Conclusions, and several comments on the required precision are ending the paper.

Beiu, V.; Moore, K.R.

1998-12-01T23:59:59.000Z

27

Implementation of a cluster based routing protocol for mobile networks  

Science Conference Proceedings (OSTI)

We show the implementation and the simulation results of a hierarchical, cluster based routing protocol for mobile ad hoc networks using Parallel Virtual Machine (PVM). The network represented by a graph is partitioned into clusters by a graph ...

Geoffrey Marshall; Kayhan Erciyes

2005-05-01T23:59:59.000Z

28

A User Driven Dynamic Circuit Network Implementation  

E-Print Network (OSTI)

LCG-EGEE- 20080426.pdf ESnet (2008) [Online]. Available:the DOE Energy Science Network (ESnet) [5] has designed andIP core network. The ESnet IP core network is architected

Guok, Chin

2009-01-01T23:59:59.000Z

29

An Underwater Network Testbed: Design, Implementation and Measurement  

E-Print Network (OSTI)

An Underwater Network Testbed: Design, Implementation and Measurement Zheng Peng, Jun-Hong Cui-Lab, an underwater acoustic sensor network lab testbed. Aqua-Lab consists of a water tank, a set of acoustic algorithms and protocols designed for underwater sensor networks. Categories and Subject Descriptors C.2.m

Wang, Bing

30

Joint Implementation Network Feed | Open Energy Information  

Open Energy Info (EERE)

Network Feed Network Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP)

31

TDM MAC protocol design and implementation for wireless mesh networks  

Science Conference Proceedings (OSTI)

We present the design, implementation, and evaluation of a Time Division Multiplex (TDM) MAC protocol for multi-hop wireless mesh networks using a programmable wireless platform. Extensive research has been devoted to optimal scheduling algorithms for ...

Dimitrios Koutsonikolas; Theodoros Salonidis; Henrik Lundgren; Pascal LeGuyadec; Y. Charlie Hu; Irfan Sheriff

2008-12-01T23:59:59.000Z

32

Implementation Guideline for Wireless Networks and Wireless Equipment Condition Monitoring  

Science Conference Proceedings (OSTI)

The use of wireless technology in industrial settings has undergone significant development. The benefits for its use in the nuclear power industry have motivated several member utilities to undertake significant implementation efforts. This report includes guidance for the implementation of a wireless network within a nuclear power plant, with a secondary emphasis on the use of wireless sensors for asset condition monitoring.

2009-12-23T23:59:59.000Z

33

An Operational Real-Time Ocean Sensor Network in the Gulf of Maine  

Science Conference Proceedings (OSTI)

The Gulf of Maine Ocean Observing System (GoMOOS) was established in the summer of 2001 as a prototype real-time observing system that now includes eleven solar-powered buoys with physical and optical sensors, four shore-based long-range HF radar surface ... Keywords: CODAR, GoMOOS, Gulf of Maine, Ocean Observing Systems, Sensor networks, neural networks, ocean optics, real-time

Neal R. Pettigrew; Collin S. Roesler; Francois Neville; Heather E. Deese

2008-03-01T23:59:59.000Z

34

Implementing Network File System Protocol for Highly Available Clustered Applications on Network Attached Storage  

Science Conference Proceedings (OSTI)

This paper introduces method for implementing NFS protocol for larger block/network packets transfer over to NAS [Network Attached Storage] from Highly Available clients. NAS storage scalability is habitually inadequate to the volume of the appliance. ... Keywords: NAS, NFS, RPC, RAID

K. J. Latesh Kumar

2013-09-01T23:59:59.000Z

35

Design and implementation of P2P multimedia system on Taiwan Advance Research and Education Network  

Science Conference Proceedings (OSTI)

This study designs and implements a cross-platform, cross-domain P2P multimedia sharing system in the Taiwan Advance Research and Education Network. The system allows users to easily access the multimedia resources of the entire network from any network ... Keywords: OSGi, P2P network, multimedia system

Sung-Yen Chang; Chin-Feng Lai; Yueh-Min Huang; Te-Lung Liu; Jen-Wei Hu; Chia-Cheng Hu

2010-06-01T23:59:59.000Z

36

Implementation of end-to-end abstractions in a network service architecture  

Science Conference Proceedings (OSTI)

To support the increasing diversity of systems and protocols in the Internet, modern routers offer a variety of data path processing functions. Such "network services" are easy to implement on a single node, but a network-wide deployment is difficult. ... Keywords: data path service, network architecture, network socket, next-generation internet

Shashank Shanbhag; Tilman Wolf

2008-12-01T23:59:59.000Z

37

A holistic framework for the implementation of a next generation network  

Science Conference Proceedings (OSTI)

As the potential of a next generation network (NGN) is recognised, telecommunication companies consider switching to it. Although the implementation of an NGN seems to be merely a modification of the network infrastructure, it may trigger or require ...

Christian Czarnecki; Myra Spiliopoulou

2012-04-01T23:59:59.000Z

38

Aqua-Net: An Underwater Sensor Network Architecture --Design and Implementation  

E-Print Network (OSTI)

Aqua-Net: An Underwater Sensor Network Architecture -- Design and Implementation Zheng Peng, Zhong Department, University of Connecticut, Storrs, CT 06269 Abstract Underwater sensor network (UWSN) has emerged architecture for underwater sensor network. This paper proposes AQUA-NET, an architecture for underwater sensor

Cui, Jun-Hong

39

New No-Cost ANTFARM Tool Maps Control System Networks to Help Implement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New No-Cost ANTFARM Tool Maps Control System Networks to Help New No-Cost ANTFARM Tool Maps Control System Networks to Help Implement Cyber Security Standards New No-Cost ANTFARM Tool Maps Control System Networks to Help Implement Cyber Security Standards Funded under the Department of Energy's National SCADA Test Bed Program, Sandia National Laboratories recently released a new software tool that will aid energy utility owners in mapping and visualizing their control system networks-a critical first step in meeting the North American Electric Reliability Corporation's Critical Infrastructure Protection (NERC CIP) standards. New No-Cost ANTFARM Tool Maps Control System Networks to Help Implement Cyber Security Standards More Documents & Publications Advanced Network Toolkit for Assessments and Remote Mapping (ANTFARM)

40

INVENTORY DYNAMICS IMPLEMENTATION TO A NETWORK DESIGN MODEL Format Review.  

E-Print Network (OSTI)

??This research presents an inventory dynamics model that is implemented into an already existing supply chain footprint model for a multinational manufacturing company. The model (more)

Better Romero, Miguel

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Optoelectronic implementations of Pulse-Coupled Neural Networks : challenges and limitations  

E-Print Network (OSTI)

This thesis examines Pulse Coupled Neural Networks (PCNNs) and their applications, and the feasibility of a compact, rugged, cost-efficient optoelectronic implementation. Simulation results are presented. Proposed optical ...

Wise, Raydiance (Raydiance Raychele)

2007-01-01T23:59:59.000Z

42

The design and implementation of real-time environment monitoring systems based on wireless sensor networks  

Science Conference Proceedings (OSTI)

This research focuses on the implementation of a real-time environment monitoring system for environment detection using wireless sensor networks. The purpose of our research is to construct the system on the real-time environment with the technology ...

Kyung-Hoon Jung; Seok-Cheol Lee; Hyun-Suk Hwang; Chang-Soo Kim

2006-05-01T23:59:59.000Z

43

A survey on real-world implementations of mobile ad-hoc networks  

Science Conference Proceedings (OSTI)

Simulation and emulation are valuable techniques for the evaluation of algorithms and protocols used in mobile ad-hoc networks. However, these techniques always require the simplification of real-world properties such as radio characteristics or node ... Keywords: Emulation, Experiment, Implementation, Mobile ad-hoc networks, Real-world, Routing, Testbed

Wolfgang Kiess; Martin Mauve

2007-04-01T23:59:59.000Z

44

Challenges for large-scale implementations of spiking neural networks on FPGAs  

Science Conference Proceedings (OSTI)

The last 50 years has witnessed considerable research in the area of neural networks resulting in a range of architectures, learning algorithms and demonstrative applications. A more recent research trend has focused on the biological plausibility of ... Keywords: Field programmable gate arrays (FPGAs), Hardware implementation, Spiking neural network (SNN)

L. P. Maguire; T. M. McGinnity; B. Glackin; A. Ghani; A. Belatreche; J. Harkin

2007-12-01T23:59:59.000Z

45

Design and Implementation of a Multi-purpose Cluster System Network Interface Unit  

E-Print Network (OSTI)

Design and Implementation of a Multi-purpose Cluster System Network Interface Unit by Boon Seong of a Multi-purpose Cluster System Network Interface Unit by Boon Seong Ang Submitted to the Department. These shortcomings unnecessarily constrain the performance of cluster systems. Our thesis is that a cluster system

46

Efficient mapping of an image processing application for a network-on-chip based implementation  

Science Conference Proceedings (OSTI)

Network-on-chip (NoC) is considered the next generation of communication infrastructure, which will be omnipresent in different environments. In the platform-based methodology, an application is implemented by a set of collaborating ... Keywords: NoC, chip, digital image processing, mapping, network-on-

Marcus Vinicius Carvalho Da Silva; Nadia Nedjah; Luiza de Macedo Mourelle

2009-12-01T23:59:59.000Z

47

Group Knowledge Networks: A Framework and an Implementation  

Science Conference Proceedings (OSTI)

Recent strides in computing and telecommunications have provided managers with access to ever increasing amounts of data through higher speed computers and extensive connectivity. However, these advances have not solved the problems of getting the right ... Keywords: concurrent engineering, knowledge networks, new product development

Ramesh Sharda; Gary L. Frankwick; Ozgur Turetken

1999-10-01T23:59:59.000Z

48

Quantifying the Main Battle Tank's architectural trade space using Bayesian Belief Network  

E-Print Network (OSTI)

The design and development of a Main Battle Tank can be characterized as a technically challenging and organizationally complex project. These projects are driven not only by the essential engineering and logistic tasks; ...

Lee, Keen Sing, 1972-

2004-01-01T23:59:59.000Z

49

Design, implementation, and evaluation of EnviroMic: A storage-centric audio sensor network  

Science Conference Proceedings (OSTI)

This article presents the design, implementation, and evaluation of EnviroMic, a low-cost experimental prototype of a novel distributed acoustic monitoring, storage, and trace retrieval system designed for disconnected operation. Our intended ... Keywords: Sensor networks, acoustics, applications, distributed storage, group management

Liqian Luo; Qing Cao; Chengdu Huang; Lili Wang; Tarek F. Abdelzaher; John A. Stankovic; Michael Ward

2009-05-01T23:59:59.000Z

50

Networking vendor strategy and competition and their impact on enterprise network design and implementation  

E-Print Network (OSTI)

While a significant amount of literature exists that discuss platform strategies used by general IT vendors, less of it has to do with corporate networking technology vendors specifically. However, many of the same strategic ...

Fung, Ray

2006-01-01T23:59:59.000Z

51

Parallel implementation of a steady state thermal and hydraulic analysis of pipe networks in OpenMP  

Science Conference Proceedings (OSTI)

The considerable computation time of a practical application of sequential algorithms for simulating thermal and flow distribution in pipe networks is the motivating factor to study their parallel implementation. The mathematical model formulated and ... Keywords: OpenMP, flow and thermal analysis, parallel implementation, pipe networks, steady state

Mykhaylo Fedorov

2009-09-01T23:59:59.000Z

52

Maine Rivers Policy (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as outstanding...

53

Implementing integrated services of networked home appliances using service oriented architecture  

E-Print Network (OSTI)

This paper presents a method to implement integrated services of networked home electric appliances, which provide more convenient and comfortable living for home users. The conventional methods generally employ a home server to achieve the integrated services. The server controls all the networked appliances in a centralized manner. However, as the number of sophisticated appliances increases, the centralized server suffers from the concentration of load, as well as a decline in the reliability and interoperability. To cope with this problem, we adopt the service-oriented architecture (SOA) for the implementation of the integrated services. In the proposed framework, the appliances export own features as services, and autonomously execute the exported services one another. Thus, the appliances are loosely coupled via the exported services without any centralized home server, which enables more flexible, balanced and reliable integrated services. We first present a framework to design and implement the integrated services based on SOA, and then illustrate a prototype system developed with Web services. We also define three kinds of metrics (i.e., reliability, workload, and coupling), and conduct a comparative evaluation between the proposed and the previous systems.

Masahide Nakamura; Hiroshi Igaki; Haruaki Tamada; Ken-ichi Matsumoto

2004-01-01T23:59:59.000Z

54

A parallel implementation of Strassen's matrix multiplication algorithm for wormhole-routed all-port 2D torus networks  

Science Conference Proceedings (OSTI)

A new parallel implementation of Strassen's matrix multiplication algorithm is proposed for massively parallel supercomputers with 2D, all-port torus interconnection networks. The proposed algorithm employs a special conflict-free routing pattern for ... Keywords: 2D torus, Fast Matrix Multiplication, Parallel processing, Strassen's matrix multiplication, Torus interconnection networks

Cesur Baransel; Kayhan M. ?mre

2012-10-01T23:59:59.000Z

55

Design, implementation and performance evaluation of security services for Underwater Acoustic Networks.  

E-Print Network (OSTI)

??Underwater Acoustic Networks (UANs), composed by Autonomous Underwater Vehicles (AUVs) are part of a new network paradigm that is being proposed for different uses like (more)

MASSANTI, GIULIANO

2011-01-01T23:59:59.000Z

56

Further development of the pneumatic method to harness hydropower and its experimental implementation in the State of Maine. Final report, [February 15, 1990--February 14, 1993  

DOE Green Energy (OSTI)

This report contains conclusive results of the research project entitled ``Further Development of the Pneumatic Method to Harness Hydropower and its Experimental Implementation in the State of Maine`` sponsored by the US Department of Energy (Contract DE-FG02-91ER12113). The results obtained by this research are considerably beyond the original goals anticipated by the contract which were a theoretical study of the method only and its possible applications. In fact, the success of the analytical research program has allowed us to move on to development, construction and testing of a physical model of the hydro-air power converter and, subsequently, to development of a well equipped hydro-pneumatic power laboratory at Northeastern University. Photographs la and 2a show both the laboratory and the model. Good performance of the model proves that the hydro-pneumatic concept holds much promise for development of an ecologically safe and commercially attractive novel approach to harnessing ultra low-head hydropower. As a result, private companies have started to support this new technology, and to invest money in its further development and construction of demonstration power plants (Appendix 1). Visitors at the Northeastern University laboratory often praise this new technique, as is attested by the articles in the Wall Street Journal (Appendix 2) and the Technology Review (Appendix 3).

Gorlov, A.M.

1994-03-01T23:59:59.000Z

57

Implementing Multi-Vendor Home Network System with Vendor-Neutral Services and Dynamic Service Binding  

Science Conference Proceedings (OSTI)

The home network system (HNS) consists of networked household appliances, intended to provide value-added services. The conventional HNS has been built on the single-vendor system, which severely limits potential of the HNS. To overcome the problem, ...

Masahide Nakamura; Yusuke Fukuoka; Hiroshi Igaki; Ken-ichi Matsumoto

2008-07-01T23:59:59.000Z

58

Design and implementation of a socket-level bandwidth aggregation mechanism for wireless networks  

Science Conference Proceedings (OSTI)

This paper proposes a mechanism to aggregate bandwidth of multiple network interfaces on a computer. Recently one single computer entails multiple different wireless network interfaces, such as IEEE 802.11a/b/g/n, Bluetooth, WiMAX, and so on. They can ... Keywords: bandwidth aggregation, heterogeneous wireless networks, multi-homed mobile host

Hiroshi Sakakibara; Masato Saito; Hideyuki Tokuda

2006-08-01T23:59:59.000Z

59

Design and implementation of a Linux SCSI target for storage area networks  

Science Conference Proceedings (OSTI)

This paper describes the architecture of a set of kernel components for developing and testing storage area network transport protocols under Linux. This software is intended for several uses: as a general prototype for network transport protocol development; ... Keywords: SCSI, iSCSI, storage area networks

Ashish Palekar; Narendran Ganapathy; Anshul Chadda; Robert D. Russell

2001-11-01T23:59:59.000Z

60

Design and implementation of a framework for persistent identification and communication in emerging networks  

Science Conference Proceedings (OSTI)

The Internet Protocol (IP) is currently used to provide inter-networking among heterogeneous access networks. However, the evolution of and the innovation within these networks is greatly hindered by the geographical and topological rigidness of the ... Keywords: mobility, persistent identification, testbed

Joud S. Khoury; Henry Jerez; Luca De Cicco

2008-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A survey of MAC based QoS implementations for WiMAX networks  

Science Conference Proceedings (OSTI)

We present a comprehensive survey of proposed Quality of Service (QoS) mechanisms in the Media Access Control (MAC) sublayer of WiMAX based wireless networks. QoS support in WiMAX is a fundamental design requirement, and is considerably more difficult ... Keywords: MAC, Media Access Control, QoS, Quality of Service, WiMAX, Wireless networks

Y. Ahmet ?ekercio?lu; Milosh Ivanovich; Alper Ye?in

2009-09-01T23:59:59.000Z

62

A Comprehensive Approach for Computation and Implementation of Efficient Electricity Transmission Network Charges  

E-Print Network (OSTI)

This paper presents a comprehensive design of electricity transmission charges that are meant to recover regulated network costs. In addition, these charges must be able to meet a set of inter-related objectives. Most ...

Prez-Arriaga, Ignacio J.

63

Enhancing the Authentication of Bank Cheque Signatures by Implementing Automated System Using Recurrent Neural Network  

E-Print Network (OSTI)

The associatie memory feature of the Hopfield type recurrent neural network is used for the pattern storage and pattern authentication.This paper outlines an optimization relaxation approach for signature verification based on the Hopfield neural network (HNN)which is a recurrent network.The standard sample signature of the customer is cross matched with the one supplied on the Cheque.The difference percentage is obtained by calculating the different pixels in both the images.The network topology is built so that each pixel in the difference image is a neuron in the network.Each neuron is categorized by its states,which in turn signifies that if the particular pixel is changed.The network converges to unwavering condition based on the energy function which is derived in experiments.The Hopfield's model allows each node to take on two binary state values (changed/unchanged)for each pixel.The performance of the proposed technique is evaluated by applying it in various binary and gray scale images.This paper con...

Rao, Mukta; Dhaka, Vijaypal Singh

2010-01-01T23:59:59.000Z

64

Spike transmission on diverging/converging neural network and its implementation on a multilevel modeling platform  

Science Conference Proceedings (OSTI)

A multiple layers neural network characterized by diverging/converging projections between successive layers activated by an external spatio-temporal input pattern in presence of stochastic background activities was considered. In the previous studies ... Keywords: multilevel modeling, spatio-temporal firing patterns, synfire chain

Yoshiyuki Asai; Alessandro E. P. Villa

2012-09-01T23:59:59.000Z

65

Distributed control of hexapod wall climbing robot implementing Controller Area Network (CAN)  

Science Conference Proceedings (OSTI)

Service robots have been used in tasks that require navigation of horizontal or near horizontal surfaces. Some applications require service robots that are capable of moving along a vertical plane e.g., wall painting, window washing, non-destructive ... Keywords: CAN, biomechatronics, controller area networks, distributed control, hexapod robots, mechatronics, robot actuators, robot design, robot safety, robot sensors, service robots, wall climbing robots

Nkgatho Sylvester Tale; Glen Bright; W. L. Xu

2005-07-01T23:59:59.000Z

66

Design and Implementation of Remote-Controlled Smart Home Network for Energy Saving and Carbon Reduction  

Science Conference Proceedings (OSTI)

Due to the lack of energy and greenhouse effect, how to building a smart home network for energy saving and carbon reduction is an important issue in the world. This paper presents a remote-control smart home energy conservation system with infrared ... Keywords: Energy saving, Smart Grid, Smart power controller, Energy Management

Ying-Chang Hsiao; Wen-Ping Chen; Jen-Chih Hsu; Yuan-Hsu Chang Chien

2012-10-01T23:59:59.000Z

67

Design and implementation of an intelligent end-to-end network QoS system  

Science Conference Proceedings (OSTI)

End-to-End guaranteed network QoS is a requirement for predictable data transfers between geographically distant end-hosts. Existing QoS systems, however, do not have the capability/intelligence to decide what resources to reserve and which paths to ...

Sushant Sharma; Dimitrios Katramatos; Dantong Yu; Li Shi

2012-11-01T23:59:59.000Z

68

Implementing the concept of Product-Driven Control using Wireless Sensor Networks: some experiments and issues  

E-Print Network (OSTI)

-distributing inventory and self-manufacturing inventory) in addition to communicating its status, i.e. it is decision-customization of products, new manufacturing control architectures, based on the consideration of highly distributed role of the product in its own manufacturing. This paper focuses on the possibilities to implement

Paris-Sud XI, Université de

69

Main Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Lattice Definitions Up: APS Storage Ring Parameters Previous: APS Storage Ring Parameters Main Parameters Storage Ring Parameters Notation Model Value General Parameters Nominal...

70

Maine Profile  

U.S. Energy Information Administration (EIA)

Alternative Fueled Vehicles in Use : 3,111 vehicles 0.3% 2011 find more: Ethanol Plants ... Electric Power Industry Emissions: Maine: Share of U.S. Period: find more:

71

Network  

NLE Websites -- All DOE Office Websites (Extended Search)

network - launched in November 2012. The network was built in collaboration with Internet2, an advanced network, which connects the nation's research universities. Leveraging...

72

Review: Bayesian networks in environmental modelling  

Science Conference Proceedings (OSTI)

Bayesian networks (BNs), also known as Bayesian belief networks or Bayes nets, are a kind of probabilistic graphical model that has become very popular to practitioners mainly due to the powerful probability theory involved, which makes them able to ... Keywords: Bayesian networks, Environment, Model implementation, Review, Software

P. A. Aguilera; A. Fernndez; R. Fernndez; R. Rum; A. Salmern

2011-12-01T23:59:59.000Z

73

Rapsodia - Main  

NLE Websites -- All DOE Office Websites (Extended Search)

Rapsodia tool is the result of a collaboration between Rapsodia tool is the result of a collaboration between Isabelle Charpentier at Laboratoire d'Étude des Microstructures et de Mécanique des Matériaux (LEM3) , Université de Metz and Jean Utke at the Mathematics and Computer Science Division of Argonne National Laboratory. It is intended for the computation of higher order derivative information of numerical models written in Fortran, C or C++ by automatic differentiation. Rapsodia consists of two parts: A Python-based code generator that produces a C++ or Fortran library for the propagation of univariate Taylor polynomials for a given derivative order and number of directions. The code generator relies on inlining and loop unrolling to aid subsequent compiler optimization. Implementations of the algorithm that interpolates derivative tensor

74

Fault diagnosis of steam turbine-generator sets using CMAC neural network approach and portable diagnosis apparatus implementation  

Science Conference Proceedings (OSTI)

Based on the vibration spectrum analysis, this paper proposed a CMAC (Cerebellar Model Articulation Controller) neural network diagnosis technique to diagnose the fault type of turbine-generator sets. This novel fault diagnosis methodology contains an ... Keywords: CMAC, PIC, fault diagnosis, microcontroller, neural network, turbine-generator sets

Chin-Pao Hung; Wei-Ging Liu; Hong-Zhe Su

2009-09-01T23:59:59.000Z

75

What middleware for network centric operations?  

Science Conference Proceedings (OSTI)

The main intent of this paper is to address the issue of middleware in network centric operations. To this end, we characterize a set of Information Technology capabilities that such a middleware should implement. Afterwards, we will discuss the design ... Keywords: Analysis, Data and service integration, Decision support, Display, Information technology, Middleware, Monitoring, Network centric operations, Optimization

Ali Benssam; Jean Berger; Abdeslem Boukhtouta; Mourad Debbabi; Sujoy Ray; Abderrazak Sahi

2007-04-01T23:59:59.000Z

76

Design and implementation of a sector-based airspace model for the MIT Extensible Air Network Simulation  

E-Print Network (OSTI)

The MIT Extensible Air Network Simulation (MEANS) is a tool that has been designed to assist airline schedulers and air traffic managers in predicting flight delays for given air traffic scenarios. One aspect of the ...

Whittaker, Colin J

2006-01-01T23:59:59.000Z

77

Chalcogels : porous metal-chalcogenide networks from main-group metal ions. Effect of surface polarizability on selectivity in gas separation.  

Science Conference Proceedings (OSTI)

We report the synthesis of metal-chalcogenide gels and aerogels from anionic chalcogenide clusters and linking metal ions. Metal ions such as Sb{sup 3+} and Sn{sup 2+}, respectively chelated with tartrate and acetate ligands, react in solution with the chalcogenide clusters to form extended polymeric networks that exhibit gelation phenomena. Chalcogenide cluster anions with different charge densities, such as [Sn{sub 2}S{sub 6}]{sup 4-} and [SnS{sub 4}]{sup 4-}, were employed. In situ rheological measurements during gelation showed that a higher charge density on the chalcogenide cluster favors formation of a rigid gel network. Aerogels obtained from the gels after supercritical drying have BET surface areas from 114 to 368 m{sup 2}/g. Electron microscopy images coupled with nitrogen adsorption measurements showed the pores are micro (below 2 nm), meso (2-50 nm), and macro (above 50 nm) regions. These chalcogels possess band gaps in the range of 1.00-2.00 eV and selectively adsorb polarizable gases. A 2-fold increase in selectivity toward CO{sub 2}/C{sub 2}H{sub 6} over H{sub 2} was observed for the Pt/Sb/Ge{sub 4}Se{sub 10}-containing aerogel compared to aerogel containing Pt{sub 2}Ge{sub 4}S{sub 10}. The experimental results suggest that high selectivity in gas adsorption is achievable with high-surface-area chalcogenide materials containing heavy polarizable elements.

Bag, S.; Kanatzidis, M. G.; Materials Science Division; Northwestern Univ.

2010-10-06T23:59:59.000Z

78

Securing group communication in dynamic, disadvantaged networks : implementation of an elliptic-curve pairing-based cryptography library  

E-Print Network (OSTI)

This thesis considers the problem of securing communication among dynamic groups of participants without relying on an online group keying service. As a solution, we offer the design and implementation of the Public Key ...

Figueiredo, Rob

2006-01-01T23:59:59.000Z

79

Efficiency Maine Residential Lighting Program (Maine) | Open...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Efficiency Maine Residential Lighting Program (Maine) This is the approved revision of this page, as well as being the most...

80

Northern Maine Independent System Administrator (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Northern Maine Independent System Administrator (NMISA) is a non-profit entity responsible for the administration of the northern Maine transmission system and electric power markets in...

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Efficiency Maine Multifamily Efficiency Program (Maine) | Open...  

Open Energy Info (EERE)

MeasuresWhole Building Active Incentive Yes Implementing Sector StateTerritory Energy Category Energy Efficiency Incentive Programs Amount Upon approval of Energy Reduction...

82

Health monitoring of civil infrastructures using wireless sensor networks  

Science Conference Proceedings (OSTI)

A Wireless Sensor Network (WSN) for Structural Health Monitoring (SHM) is designed, implemented, deployed and tested on the 4200ft long main span and the south tower of the Golden Gate Bridge (GGB). Ambient structural vibrations are reliably measured ... Keywords: deployment, large-scale, structural health monitoring, wireless sensor networks

Sukun Kim; Shamim Pakzad; David Culler; James Demmel; Gregory Fenves; Steven Glaser; Martin Turon

2007-04-01T23:59:59.000Z

83

Efficiency Maine - Replacement Heating Equipment Program (Maine...  

Open Energy Info (EERE)

announced its closure November 2011. According to Efficiency Maine, almost 2,600 homeowners participated in the program trading in older, less-efficient space andor water...

84

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

solar thermal rebate program maintains a list of Efficiency Maine registered vendorsinstallers. July 12, 2013 Solar Easements Maine allows for the creation of easements to...

85

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine May 27, 2011 EA-1792: DOE...

86

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine September 26, 2011 EA-1792:...

87

Securing network access in wireless sensor networks  

Science Conference Proceedings (OSTI)

In wireless sensor networks, it is critical to restrict the network access only to eligible sensor nodes, while messages from outsiders will not be forwarded in the networks. In this paper, we present the design, implementation, and evaluation of a secure ... Keywords: elliptic curve cryptography, security, sensor networks

Kun Sun; An Liu; Roger Xu; Peng Ning; Douglas Maughan

2009-03-01T23:59:59.000Z

88

YNPS main coolant system decontamination  

SciTech Connect

The Yankee Nuclear Power Station (YNPS) located in Rowe, Massachusetts, is a four-loop pressurized water reactor that permanently ceased power operation on February 26, 1992. Decommissioning activities, including steam generator removal, reactor internals removal, and system dismantlement, have been in progress since the shutdown. One of the most significant challenges for YNPS in 1996 was the performance of the main coolant system chemical decontamination. This paper describes the objectives, challenges, and achievements involved in the planning and implementation of the chemical decontamination.

Metcalf, E.T. [Yankee Atomic Electric Co., Bolton, MA (United States)

1996-12-31T23:59:59.000Z

89

Maine Natural Gas Summary  

Annual Energy Outlook 2012 (EIA)

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

90

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Heat Pump Program (Maine) Bangor Hydro Electric Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps...

91

,"Maine Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

92

Better Buildings Neighborhood Program: Maine - SEP  

NLE Websites -- All DOE Office Websites (Extended Search)

- SEP to - SEP to someone by E-mail Share Better Buildings Neighborhood Program: Maine - SEP on Facebook Tweet about Better Buildings Neighborhood Program: Maine - SEP on Twitter Bookmark Better Buildings Neighborhood Program: Maine - SEP on Google Bookmark Better Buildings Neighborhood Program: Maine - SEP on Delicious Rank Better Buildings Neighborhood Program: Maine - SEP on Digg Find More places to share Better Buildings Neighborhood Program: Maine - SEP on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC TN | TX | VT | VI | VA WA | WI Maine - SEP Maine Makes Multifamily Units Energy-Efficient and Cost-Effective

93

Network Simulation  

SciTech Connect

A detailed introduction to the design, implementation and use of network simulation tools is presented. The requirements and issues faced in the design of simulators for wired and wireless networks are discussed. Abstractions such as packet- and fluid-level network models are covered. Several existing simulations are given as examples, with details and rationales regarding design decisions presented. Issues regarding performance and scalability are discussed in detail, describing how one can utilize distributed simulation methods to increase the scale and performance of a simulation environment. Finally, a case study of two simulation tools is presented that have been developed using distributed simulation techniques. This text is essential to any student, researcher or network architect desiring a detailed understanding of how network simulation tools are designed, implemented, and used.

Fujimoto, Richard [ORNL; Perumalla, Kalyan S [ORNL; Riley, George F. [Georgia Institute of Technology

2006-01-01T23:59:59.000Z

94

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2010 CX-001188: Categorical Exclusion Determination Deep C Wind Consortium National Research Program CX(s) Applied: B3.1 Date: 03212010 Location(s): Maine Office(s): Energy...

95

Climate Action Plan (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

In June 2003, the Maine State Legislature passed a bill charging the Department of Environmental Protection (DEP) with developing an action plan with the goal of reducing greenhouse gas (GHG)...

96

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Golden Field Office May 18, 2010 CX-002374: Categorical Exclusion Determination Maine Tidal Power Initiative CX(s) Applied: B3.1, B3.3, B3.6, A9 Date: 05182010 Location(s):...

97

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

projects. May 31, 2013 Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. Energy Department-Supported Project Deploys First of its Kind...

98

Maine Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional...

99

High-speed hardware implementations of Elliptic Curve Cryptography: A survey  

Science Conference Proceedings (OSTI)

For the last decade, Elliptic Curve Cryptography (ECC) has gained increasing acceptance in the industry and the academic community and has been the subject of several standards. This interest is mainly due to the high level of security with relatively ... Keywords: Efficiency-flexibility tradeoffs, Elliptic Curve Cryptography, High-speed hardware implementation, Network applications, Public-key cryptography

Guerric Meurice de Dormale; Jean-Jacques Quisquater

2007-02-01T23:59:59.000Z

100

Main Generator Rotor Maintenance  

Science Conference Proceedings (OSTI)

Main generator rotors are constructed and designed to provide decades of reliable and trouble-free operation. However, a number of incidences have occurred over the years that can adversely impact reliable operation of generator rotors and, ultimately, production of electrical power. This report is a guide for power plant personnel responsible for reliable operation and maintenance of main generators. As a guide, this report provides knowledge and experience from generator experts working at power plants...

2006-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Maine.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Maine www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

102

Legacy - Neural Networks  

Science Conference Proceedings (OSTI)

... "Massively Parallel Implementation of Neural Network Architectures," In Proceedings of the SPIE, volume 1452, pages 532-543, Feb. 25 - Mar. ...

2011-05-12T23:59:59.000Z

103

Main Page - NWChem  

NLE Websites -- All DOE Office Websites (Extended Search)

Log in / create account Log in / create account Search Go Search Navigation Main page Science Benchmarks Download Code Documentation News Community Developers SEARCH TOOLBOX LANGUAGES Forum Menu Page Discussion View source History modified on 17 May 2013 at 21:51 *** 6,254,554 views Main Page From NWChem Jump to: navigation, search NWChem: Delivering High-Performance Computational Chemistry caption NWChem aims to provide its users with computational chemistry tools that are scalable both in their ability to treat large scientific computational chemistry problems efficiently, and in their use of available parallel computing resources from high-performance parallel supercomputers to conventional workstation clusters. NWChem software can handle Biomolecules, nanostructures, and solid-state From quantum to classical, and all combinations

104

Maine coast winds  

DOE Green Energy (OSTI)

The Maine Coast Winds Project was proposed for four possible turbine locations. Significant progress has been made at the prime location, with a lease-power purchase contract for ten years for the installation of turbine equipment having been obtained. Most of the site planning and permitting have been completed. It is expect that the turbine will be installed in early May. The other three locations are less suitable for the project, and new locations are being considered.

Avery, Richard

2000-01-28T23:59:59.000Z

105

REACTOR MAIN COOLANT LOOP  

SciTech Connect

A parametric study was made for the POPR with temperature gradients of 610 to 670 deg F and 6l0 to 684.5 deg F at organic flow rates of 17.8 x l0/sup 6/ and l4.4 x l0/sup 6/ lbs/hr, respectively; and steam turbine conditions at the throttle of 600 and 650 deg F at 800 to l200 psig. The study was made to obtain the most economical layout of the main heat transfer loop system. (B.O.G.)

Terpe, G.R.; Katz, B.

1961-08-01T23:59:59.000Z

106

Better Buildings Neighborhood Program: Maine  

NLE Websites -- All DOE Office Websites (Extended Search)

Program: Maine on Twitter Bookmark Better Buildings Neighborhood Program: Maine on Google Bookmark Better Buildings Neighborhood Program: Maine on Delicious Rank Better...

107

CPRA Implementation  

U.S. Energy Information Administration (EIA)

CPRA IMPLEMENTATION. Since the 1930s Louisiana has lost over 1,829 square miles of land. Between 1990 and 2001 wetland loss was approximately 13 ...

108

Implementing the National Broadband  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DAKOTA ELECTRIC ASSOCIATION DAKOTA ELECTRIC ASSOCIATION I. Introduction a. Identification/description of our company Dakota Electric Association (DEA) is an Incorporated Cooperative Association which distributes electricity to more than 100,000 members in Dakota County and surrounding areas. DEA is the second largest electric cooperative in the state of Minnesota, and is a member cooperative of Great River Energy (GRE). II. Executive Summary DEA has deployed a fully integrated IP network to 26 substation sites. An IP based network transports data information for Supervisory Control and Data Acquisition (SCADA) and Load Management systems. A private Wide Area Network (WAN) was implemented by DEA in 2001 due to lack of comprehensive coverage by major carriers. In addition to the WAN, DEA relies on commercial services to communicate with load

109

Event:MAIN Latin America Dialogue | Open Energy Information  

Open Energy Info (EERE)

networks. Event Details Name MAIN Latin America Dialogue Date 20120401 Location Peru Organizer CCAP Tags CLEAN, LEDS, Training Ret LikeLike UnlikeLike You like this.Sign Up...

110

Efficiency Maine Residential Appliance Program (Maine) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance Program (Maine) Appliance Program (Maine) Efficiency Maine Residential Appliance Program (Maine) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Water Heating Program Info Funding Source Efficiency Maine Start Date 10/01/2012 Expiration Date 06/30/2014 State Maine Program Type State Rebate Program Rebate Amount Ductless Heat Pumps: $500 Heat pump water heaters: $300 Provider Efficiency Maine Efficiency Maine offers rebates for the purchase of Energy Star certified water heaters, and ductless heat pumps. Purchases must be made between September 1, 2013 and June 30, 2014. See the program web site for the mail-in rebate forms and to locate a participating retailer. In addition, in partnership with Maine Libraries, Efficiency Maine has made

111

An Emulated Digital CNN Implementation  

Science Conference Proceedings (OSTI)

A new emulated digital CNN Universal Machine chip architecture is introduced and the main steps of the design process are shown in this paper. One core processor can be implemented on 2 2 mm^2 silicon ...

Pter Keresztes; kos Zarndy; Tams Roska; Pter Szolgay; Tams Bezk; Timt Hidvgi; Pter Jns; Attila Katona

1999-11-01T23:59:59.000Z

112

The ATM Forums private network/network interface  

Science Conference Proceedings (OSTI)

The ATM Forum completed the first version of its private network/network interface (PNNI) in March 1996 and many ATM switch manufacturers are now offering early implementations. PNNI offers a different type of internetwork or internodal interface from ...

J. M. Scott; I. G. Jones

1998-04-01T23:59:59.000Z

113

Efficiency Maine Renewable Energy Program (Maine) | Open Energy...  

Open Energy Info (EERE)

Utilities Commission (PUC) developed rules to implement the program. Rebates for PV and solar-thermal installations were unavailable for 2009. However, the governor signed...

114

Virtual urban traffic network simulator  

E-Print Network (OSTI)

In this project, I designed and implemented a virtual urban traffic network simulator. The simulator serves as a testbed for human-subject experiments to determine driver behavior in road networks and also as a platform ...

Uh, Jason (Jason J.)

2011-01-01T23:59:59.000Z

115

On the privacy risks of publishing anonymized IP network traces  

Science Conference Proceedings (OSTI)

Networking researchers and engineers rely on network packet traces for understanding network behavior, developing models, and evaluating network performance. Although the bulk of published packet traces implement a form of address anonymization to hide ...

D. Koukis; S. Antonatos; K. G. Anagnostakis

2006-10-01T23:59:59.000Z

116

Main  

NLE Websites -- All DOE Office Websites (Extended Search)

Way, Berkeley, CA Reception (SSL Addition Lobby and Conference Room) THEMIS Spacecraft Tour Saturday, June 3, 2006 8:30 AM Pers Hall; 50A-5132; 50B-4205; Pers Hall Annex; 2-100B...

117

Wireless System Considerations When Implementing NERC Critical  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wireless System Considerations When Implementing NERC Critical Wireless System Considerations When Implementing NERC Critical Infrastructure Protection Standards Wireless System Considerations When Implementing NERC Critical Infrastructure Protection Standards Energy asset owners are facing a monumental challenge as they address compliance with the North American Electric Reliability Corporation (NERC) Critical Infrastructure Protection (CIP) Standards (CIP-002 through CIP-009). The increased use of wireless technologies and their introduction into control center networks and field devices compound this challenge, as ambiguity exists regarding the applicability of the CIP requirements to wireless networking technologies. Wireless System Considerations When Implementing NERC Critical Infrastructure Protection Standards More Documents & Publications

118

Attacking Automatic Wireless Network Selection  

E-Print Network (OSTI)

Wireless 802.11 networking is becoming so prevalent that many users have become accustomed to having available wireless networks in their workplace, home, and many public places such as airports and coffee shops. Modern client operating systems implement automatic wireless network discovery and known network identification to facilitate wireless networking for the end-user. In order to implement known network discovery, client operating systems remember past wireless networks that have been joined and automatically look for these networks (referred to as Preferred or Trusted Networks) whenever the wireless network adapter is enabled. By examining these implementations in detail, we have discovered previously undisclosed vulnerabilities in the implementation of these algorithms under the two most prevalent client operating systems, Windows XP and MacOS X. With custom base station software, an attacker may cause clients within wireless radio range to associate to the attackers wireless network without user interaction or notification. This will occur even if the user has never connected to a wireless network before or they have an empty Preferred/Trusted Networks List. We describe these vulnerabilities as well as their implementation and impact. 1

Dino A. Dai Zovi; Shane A. Macaulay

2005-01-01T23:59:59.000Z

119

IPv6 Advanced Protocols Implementation  

Science Conference Proceedings (OSTI)

This book is the second installment of a two-volume series on IPv6 and the KAME implementation. This book discusses those protocols that are found in more capable IPv6 devices, are commonly deployed in more complex IPv6 network environments, or are not ...

Qing Li; Jinmei Tatuya; Keiichi Shima

2007-04-01T23:59:59.000Z

120

Fusion Implementation  

SciTech Connect

If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans.

J.A. Schmidt

2002-02-20T23:59:59.000Z

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Indoor robot gardening: design and implementation  

E-Print Network (OSTI)

This paper describes the architecture and implementation of a distributed autonomous gardening system with applications in urban/indoor precision agriculture. The garden is a mesh network of robots and plants. The gardening ...

Correll, Nikolaus

122

Maine | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Maine Last updated on 2013-11-04 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information As of September 28, 2011, municipalities over 4,000 in population were required to enforce the new code if they had a building code in place by August 2008. Municipalities under 4,000 are not required to enforce it unless they wish to do so and have the following options: 1. Adopt and enforce the Maine Uniform Building and Energy Code 2. Adopt and enforce the Maine Uniform Building Code (the building code without energy) 3. Adopt and enforce the Maine Uniform Energy Code (energy code only) 4. Have no code Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Maine (BECP Report, Sept. 2009)

123

Implementing the National Broadband  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TACOMA PUBLIC UTILITIES TACOMA PUBLIC UTILITIES 3628 S. 35 TH ST. TACOMA WASHINGTON 98419 I. Introduction a. Identification/description of your company. Tacoma Public Utilities (TPU) is owned by the City of Tacoma. TPU management reports to a separate Public Utility Board that is accountable to the Tacoma City Council. The Utility comprises three main operating divisions: Water, Power and Rail. b. Overview of communications networks i. Tacoma Public Utilities (TPU), operates several Private radio networks. Tacoma Power (TPWR), uses an extensive private Microwave system, a private wide-area VHF land mobile radio system at all Hydro facilities with VHF paging, and a private trunked-900 MHz voice radio system. Tacoma Rail operates a wide-area VHF radio system on licensed Rail frequencies. Tacoma

124

Trends in the development of communication networks: Cognitive networks  

Science Conference Proceedings (OSTI)

One of the main challenges already faced by communication networks is the efficient management of increasing complexity. The recently proposed concept of cognitive network appears as a candidate that can address this issue. In this paper, we survey the ... Keywords: Autonomic networks, Cognition loop, Cognitive networks, Cross-layer, Knowledge representation, Learning, OSI, Protocol stack, Reasoning, Self-aware

Carolina Fortuna; Mihael Mohorcic

2009-06-01T23:59:59.000Z

125

Attacking the Kad network  

Science Conference Proceedings (OSTI)

The Kad network, an implementation of the Kademlia DHT protocol, supports the popular eDonkey peer-to-peer file sharing network and has over 1 million concurrent nodes. We describe several attacks that exploit critical design weaknesses in Kad to allow ... Keywords: Kad, P2P, attack, security

Peng Wang; James Tyra; Eric Chan-Tin; Tyson Malchow; Denis Foo Kune; Nicholas Hopper; Yongdae Kim

2008-09-01T23:59:59.000Z

126

Neural Networks  

SciTech Connect

Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing information [2]. Each one of these cells acts as a simple processor. When individual cells interact with one another, the complex abilities of the brain are made possible. In neural networks, the input or data are processed by a propagation function that adds up the values of all the incoming data. The ending value is then compared with a threshold or specific value. The resulting value must exceed the activation function value in order to become output. The activation function is a mathematical function that a neuron uses to produce an output referring to its input value. [8] Figure 1 depicts this process. Neural networks usually have three components an input, a hidden, and an output. These layers create the end result of the neural network. A real world example is a child associating the word dog with a picture. The child says dog and simultaneously looks a picture of a dog. The input is the spoken word ''dog'', the hidden is the brain processing, and the output will be the category of the word dog based on the picture. This illustration describes how a neural network functions.

Smith, Patrick I.

2003-09-23T23:59:59.000Z

127

E-print Network : Main View : Deep Federated Search  

Office of Scientific and Technical Information (OSTI)

of - Computer Science Expand Category Energy Storage, Conversion and Utilization Energy Storage, Conversion and Utilization Websites Expand Category Engineering...

128

Microsoft Word - maine.doc  

Gasoline and Diesel Fuel Update (EIA)

Maine Maine NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 4,430 42 Electric Utilities ...................................................................................................... 19 49 Independent Power Producers & Combined Heat and Power ................................ 4,410 25 Net Generation (megawatthours) ........................................................................... 17,018,660 43 Electric Utilities ...................................................................................................... 1,759 49

129

Microsoft Word - maine.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Maine NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 4,430 42 Electric Utilities ...................................................................................................... 19 49 Independent Power Producers & Combined Heat and Power ................................ 4,410 25 Net Generation (megawatthours) ........................................................................... 17,018,660 43 Electric Utilities ...................................................................................................... 1,759 49

130

Maine Waterway Development and Conservation Act (MWDCA) (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Maine Waterway Development and Conservation Act requires a permit to be obtained prior to starting any hydropower project that may alter water levels or water flow. The Act functions as a...

131

Joint Implementation Network (JIN) | Open Energy Information  

Open Energy Info (EERE)

with other EU-funded projects in programmes such as SYNERGY, Pro-Eco Asia, and EU-Thailand Small Project Facility to help potential CDM host countries establish their capacity...

132

Body Area Networks: A Survey  

Science Conference Proceedings (OSTI)

Advances in wireless communication technologies, such as wearable and implantable biosensors, along with recent developments in the embedded computing area are enabling the design, development, and implementation of body area networks. This class of ... Keywords: body area networks, survey, wireless sensor networks

Min Chen; Sergio Gonzalez; Athanasios Vasilakos; Huasong Cao; Victor C. Leung

2011-04-01T23:59:59.000Z

133

Main Results of Grossversuch IV  

Science Conference Proceedings (OSTI)

The main results of a randomized hail suppression experiment, Grossversuch IV, are presented in this paper. Grossversuch IV tested the Soviet hail prevention method during five years (197781). The field experiment took place in central ...

B. Federer; A. Waldvogel; W. Schmid; H. H. Schiesser; F. Hampel; Marianne Schweingruber; W. Stahel; J. Bader; J. F. Mezeix; Nadie Doras; G. D'Aubigny; G. DerMegreditchian; D. Vento

1986-07-01T23:59:59.000Z

134

Recovery Act State Memos Maine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Maine For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

135

Green Power Network: News Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

to main content U.S. Department of Energy Energy Efficiency and Renewable Energy Green Power Network About the GPN Green Power Markets Buying Green Power Onsite Renewable...

136

QOMB: A wireless network emulation testbed  

Science Conference Proceedings (OSTI)

In this paper we present QOMB, a testbed we designed and implemented for the evaluation of wireless network systems, protocols and applications. The testbed uses the wireless network emulation set of tools QOMET so as to reproduce in a wired network, ... Keywords: emulation, real-time, testbed, wireless networks

Razvan Beuran; Lan Tien Nguyen; Toshiyuki Miyachi; Junya Nakata; Ken-ichi Chinen; Yasuo Tan; Yoichi Shinoda

2009-11-01T23:59:59.000Z

137

Transportation Policies and Quality of Life: An Analysis of the Socioeconomic Effects of Implementing Ramp Metering, High Occupancy Vehicle (HOV) Lanes and High Occupancy (HOT) Lanes within an Urban Transportation Network .  

E-Print Network (OSTI)

??Transportation policies affect a diverse group of stakeholders who depend on decision makers to provide a network within which they can achieve their travel objectives. (more)

Jefferson, Katherine D.

2009-01-01T23:59:59.000Z

138

Energy Crossroads: Utility Energy Efficiency Programs Maine ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Central Maine Power...

139

The expandable network disk  

E-Print Network (OSTI)

This thesis presents a virtual disk cluster called END, the Expandable Network Disk. END aggregates storage on a cluster of servers into a single virtual disk. END's main goals are to offer good performance during normal ...

Muthitacharoen, Athicha, 1976-

2008-01-01T23:59:59.000Z

140

Comparative analysis of collaboration networks  

SciTech Connect

In this paper we carry out a comparative analysis of the word network as the collaboration network based on the novel by M. Bulgakov 'Master and Margarita', the synonym network of the Russian language as well as the Russian movie actor network. We have constructed one-mode projections of these networks, defined degree distributions for them and have calculated main characteristics. In the paper a generation algorithm of collaboration networks has been offered which allows one to generate networks statistically equivalent to the studied ones. It lets us reveal a structural correlation between word network, synonym network and movie actor network. We show that the degree distributions of all analyzable networks are described by the distribution of q-type.

Progulova, Tatiana; Gadjiev, Bahruz [International University for Nature, Society and Man, 19 Universitetskaya Street, Dubna, 141980 (Russian Federation)

2011-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ultra-lightweight nanorelief networks : photopatterned microframes  

E-Print Network (OSTI)

Lightweight nano-network structures in polymers have been fabricated and investigated for their mechanical properties. Fabrication techniques via holographic interference lithography and phase mask lithography were implemented ...

Choi, Taeyi

2007-01-01T23:59:59.000Z

142

An Energy-efficient Clock Synchronization Protocol for Wireless Sensor Networks  

E-Print Network (OSTI)

The behavior of Wireless Sensor Networks (WSN) is nowadays widely analyzed. One of the most important issues is related to their energy consumption, as this has a major impact on the network lifetime. Another important application requirement is to ensure data sensing synchronization, which leads to additional energy consumption as a high number of messages is sent and received at each node. Our proposal consists in implementing a combined synchronization protocol based on the IEEE 1588 standard that was designed for wired networks and the PBS (Pairwise Broadcast Synchronization) protocol that was designed for sensor networks, as none of them is able to provide the needed synchronization accuracy for our application on its own. The main goals of our new synchronization protocol are: to ensure the accuracy of local clocks up to a tenth of a microsecond and to provide an important energy saving. Our results obtained using NS-2 (Network Simulator) show that the performance of our solution (IEEE 1588-PBS) matches...

Albu, Roxana; Thierry, Gayraud; Pascal, Berthou

2010-01-01T23:59:59.000Z

143

Implementing the National Broadband  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CROW WING POWER CROW WING POWER I. Introduction a. Identification/description of our company Crow Wing Power is a not-for-profit electric distribution cooperative which provides retail electricity to over 41,500 consumers in central Minnesota. Crow Wing Power owns and operates approximately 2,500 miles of overhead distribution lines and 2,700 miles of underground distribution lines. Our service territory cover approximately 4000 sq. miles and consists of flat farm fields in the south and to the north there are rolling hills, many lakes and heavy tree cover. Our main power supplier is Great River Energy. We also buy power from Basin Electric. b. Overview of communications networks 1. User of Great River Energy 700 MHz system. 2. Fiber 3. VHF Land Mobile Radios

144

Implementing for Implementing Executive Order 13423  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IMPLEMENTING EXECUTIVE IMPLEMENTING EXECUTIVE ORDER 13423 "Strengthening Federal Environmental, Energy, and Transportation Management" March 29, 2007 0 Contents I. Introduction ......................................................................................................................1 A. Purpose..................................................................................................................1 B. Authority ...............................................................................................................1 C. Organization and Oversight ..................................................................................1 D. Overarching Policy and Directives .......................................................................4

145

Life Cycle Management Planning Sourcebooks, Volume 5: Main Generator  

Science Conference Proceedings (OSTI)

EPRI is producing a series of "Life Cycle Management Planning Sourcebooks," each containing a compilation of industry experience and data on aging degradation and historical performance for a specific type of system, structure, or component (SSC). This sourcebook provides information and guidance for implementing cost-effective life cycle management (LCM) planning for main generators.

2003-07-28T23:59:59.000Z

146

Bayesian networks  

E-Print Network (OSTI)

g causal independence in Bayesian network inference. Journalworld ap- plications of Bayesian networks. Communications ofJensen. An Introduction to Bayesian Networks. Springer, New

Judea Pearl

2011-01-01T23:59:59.000Z

147

An Information Systems Design Framework for Facilitating TQM Implementation  

Science Conference Proceedings (OSTI)

This paper provides a framework for information systems IS design for TQM implementation. The framework consists of three main phases. In the first, TQM implementation tasks are established. These tasks include identifying customer satisfaction variables ...

Nazim U. Ahmed; Ramarathnam Ravichandran

1999-10-01T23:59:59.000Z

148

A survey on wireless sensor network infrastructure for agriculture  

Science Conference Proceedings (OSTI)

The hybrid wireless sensor network is a promising application of wireless sensor networking techniques. The main difference between a hybrid WSN and a terrestrial wireless sensor network is the wireless underground sensor network, which communicates ... Keywords: Agriculture, Hybrid wireless sensor network, Information collection, Monitoring, Wireless underground sensor network

Xiaoqing Yu; Pute Wu; Wenting Han; Zenglin Zhang

2013-01-01T23:59:59.000Z

149

Maine/Incentives | Open Energy Information  

Open Energy Info (EERE)

Maine/Incentives Maine/Incentives < Maine Jump to: navigation, search Contents 1 Financial Incentive Programs for Maine 2 Rules, Regulations and Policies for Maine Download All Financial Incentives and Policies for Maine CSV (rows 1 - 91) Financial Incentive Programs for Maine Download Financial Incentives for Maine CSV (rows 1 - 25) Incentive Incentive Type Active Bangor Hydro Electric Company - Residential and Small Commercial Heat Pump Program (Maine) Utility Rebate Program Yes Community Based Renewable Energy Production Incentive (Pilot Program) (Maine) Performance-Based Incentive Yes Efficiency Maine - Home Appliance Rebate Program (Maine) State Rebate Program No Efficiency Maine - Home Energy Savings Program (Maine) State Rebate Program No Efficiency Maine - Replacement Heating Equipment Program (Maine) State Rebate Program No

150

How to Implement a Protocol for Babel RMI  

Science Conference Proceedings (OSTI)

RMI support in Babel has two main goals: transparency & flexibility. Transparency meaning that the new RMI features are entirely transparent to existing Babelized code; flexibility meaning the RMI capability should also be flexible enough to support a variety of RMI transport implementations. Babel RMI is a big success in both areas. Babel RMI is completely transparent to already Babelized implementation code, allowing painless upgrade, and only very minor setup changes are required in client code to take advantage of RMI. The Babel RMI transport mechanism is also extremely flexible. Any protocol that implements Babel's minimal, but complete, interface may be used as a Babel RMI protocol. The Babel RMI API allows users to select the best protocol and connection model for their application, whether that means a WebServices-like client-server model for use over a WAP, or a faster binary peer-to-peer protocol for use on different nodes in a leadership-class supercomputer. Users can even change protocols without recompiling their code. The goal of this paper is to give network researchers and protocol implementors the information they need to develop new protocols for Babel RMI. This paper will cover both the high-level interfaces in the Babel RMI API, and the low level details about how Babel RMI handles RMI objects.

Kumfert, G; Leek, J

2006-03-30T23:59:59.000Z

151

Packet-Switched Optical Networks  

Science Conference Proceedings (OSTI)

In this article, we present a platform design for packet-switched OTDM networks operating at ultrafast bit-rates for modern multiprocessor interconnects. The design is implemented in a prototype 8-node transparent shuffle network. The flow control in ... Keywords: Communication system interfaces, signalling, synchronization, clock and data recovery, PLLs

Ben Y. Yu; Paul Toliver; Robert J. Runser; Kung-Li Deng; Deyu Zhou; Ivan Glesk; Paul R. Prucnal

1998-01-01T23:59:59.000Z

152

QSG - Categorize Implementation  

Science Conference Proceedings (OSTI)

... IMPLEMENT A DECOMMISSIONING STRATEGY When an information system is removed from operation, the information ...

2009-05-13T23:59:59.000Z

153

Maine DOE/EPSCoR: 5-year planning grant  

SciTech Connect

Maine EPSCoR has developed a five year plan to further improve Maine`s research and education capacity in the field of Energy. The initiatives of this Energy Education and Research Plan are integrated with other major science policy initiatives in the state, specifically the state`s Science and Technology Strategic Plan (1992), the NSF Statewide Systemic Initiative (1992), and the Report of the Maine Commission on Comprehensive Energy Planning. The plan was developed with the support of US Department of Energy and State of Maine funds. The planning process was led by the Maine DOE EPSCoR planning committee of Maine EPSCoR. Researchers, educators, and business people assisted the committee in the development of the plan. This plan draws from priorities established by focus groups, the strengths and weaknesses revealed by the resource assessment, and the suggestions offered in the solicited research and education briefs. The plan outlines strategies for the improvement of energy education, communication networks, support of individual research, and the formation of collaborative research groups in targeted areas. Five energy-related areas have been targeted for possible development of collaborative research groups: Energy Technology Research, Energy and the Environment, the Gulf of Maine and Its Watershed, the Human Genome, and Renewable Energy. The targeted areas are not boundaries limiting the extent of collaborations to be pursued but represent research themes through which the state`s resources can be combined and improved.

Hawk, B.

1992-09-28T23:59:59.000Z

154

An Implementation of Intellignt Energy Saving System  

Science Conference Proceedings (OSTI)

This study was constructed an intelligent energy saving system that based on the components of Zigbee. We proposed a modular design to adapt various utilized environments, such as the lighting, air condition, office automation devices etc. We also implemented ... Keywords: Wireless Sensor Network, Energy-Saving, Context-Aware, Intelligent Control

Dong-liang Lee; Chung-liang Hsu

2011-08-01T23:59:59.000Z

155

Maine Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

MaineGasPrices.com (Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Maine Gas Prices (Ciudades Selectas) - GasBuddy.com Maine Gas Prices (Organizado por Condado) -...

156

Underwater Sensor Networks: Applications, Advances, and Challenges  

E-Print Network (OSTI)

Underwater Sensor Networks: Applications, Advances, and Challenges By John Heidemann1 , Milica- mentation of underwater wireless sensor networks. We summarize key applications and the main phenomena hardware, testbeds, and simulation tools available to the research community. Keywords: underwater

Heidemann, John

157

Reliable and efficient reprogramming in sensor networks  

Science Conference Proceedings (OSTI)

Retasking and remote programming of sensor networks is an essential functionality to make these networks practical and effective. As the availability of more capable sensor nodes increases and new functional implementations continue to be proposed, these ... Keywords: Broadcast, energy efficiency, minimum energy broadcast, reliable distribution, reprogramming, retasking, sensor networks

Chris Miller; Christian Poellabauer

2010-08-01T23:59:59.000Z

158

Audit of energy research telecommunications data networks  

Science Conference Proceedings (OSTI)

The Department of Energy's (DOE) Office of Energy Research is implementing a new telecommunications data network called the Energy Sciences Network (ESNET). The purpose of our audit was to determine if ESNET will be a cost-effective means of upgrading networking support for Energy Research programs.

Not Available

1989-07-20T23:59:59.000Z

159

LUSTER: wireless sensor network for environmental research  

Science Conference Proceedings (OSTI)

Environmental wireless sensor network (EWSN) systems are deployed in potentially harsh and remote environments where inevitable node and communication failures must be tolerated. LUSTER---Light Under Shrub Thicket for Environmental Research---is a system ... Keywords: LiteTDMA, architecture, environmental science, implementation, mote, network protocol, storage, validation, wireless sensor network

L. Selavo; A. Wood; Q. Cao; T. Sookoor; H. Liu; A. Srinivasan; Y. Wu; W. Kang; J. Stankovic; D. Young; J. Porter

2007-11-01T23:59:59.000Z

160

UNEP-Global Network on Energy for Sustainable Development (GNESD) | Open  

Open Energy Info (EERE)

on Energy for Sustainable Development (GNESD) on Energy for Sustainable Development (GNESD) Jump to: navigation, search Name UNEP-Global Network on Energy for Sustainable Development (GNESD) Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency Topics Implementation, Low emission development planning Website http://www.gnesd.org/ References GNESD[1] "The Global Network on Energy for Sustainable Development (GNESD) is a UNEP facilitated knowledge network of Member Centres and Associates and network partners worldwide, renowned for their work on energy, development, and environment issues. The main objective of GNESD is to work for reaching the Millennium Development Goals (MDG) by: Strengthening the Members Centres' ability to acquire, assimilate,

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

New No-Cost ANTFARM Tool Maps Control System Networks to Help...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

No-Cost ANTFARM Tool Maps Control System Networks to Help Implement Cyber Security Standards New No-Cost ANTFARM Tool Maps Control System Networks to Help Implement Cyber Security...

162

Maine/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maine/Geothermal Maine/Geothermal < Maine Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maine Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maine No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maine No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maine No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maine Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

163

The ToyChem Package: A Computational Toolkit Implementing a  

E-Print Network (OSTI)

. Applications We have used this method as a part of a chemical reaction network sim- ulation. An implementation of chemical reactions and kinetics was added. Using the Klopman-Salem equation 22, 23, the reactivities of the chemical reaction network in order to study its kinetic properties. Thus we were able to generate chemical

Stadler, Peter F.

164

IEEE 1588 Products & Implementations  

Science Conference Proceedings (OSTI)

... Facsimile. 100 Bureau Drive, M/S 8220 Gaithersburg, MD 20899-8220. IEEE 1588 Products & Implementations. This page ...

2012-11-06T23:59:59.000Z

165

Efficiency Maine Trust | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Maine Trust Efficiency Maine Trust Efficiency Maine Trust < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Public Benefits Fund Maine's public benefits fund for energy efficiency was authorized originally in 1997 by the state's electric-industry restructuring legislation. Under the initial arrangement, the administration of certain efficiency programs was divided among the State Planning Office (SPO), the state's electric utilities and the Maine Public Utilities Commission (PUC). However, general dissatisfaction by the Maine Legislature (and many other stakeholders) with the administration of the fund prompted revisions in

166

Forestry Policies (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine) Maine) Forestry Policies (Maine) < Back Eligibility Commercial Agricultural Program Info State Maine Program Type Environmental Regulations Provider Maine Forest Service Maine has diverse forest lands which support a diverse and strong forest products industry. The vast majority of forest lands in the state are privately owned. The Maine Forest Service completed its State Forest Assessment and Strategy in 2010, a plan that includes the goal of enhanced benefit from the production of renewable energy using wood and wood wastes. The combination of markets including a growing biomass energy industry and increased wood heating have created significant demand for wood material in Maine. The Maine Forest Service together with the University of Maine issued its "Woody Biomass Retention Guidelines" in 2010. This document

167

Alternative Fuels Data Center: Maine Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maine Information to Maine Information to someone by E-mail Share Alternative Fuels Data Center: Maine Information on Facebook Tweet about Alternative Fuels Data Center: Maine Information on Twitter Bookmark Alternative Fuels Data Center: Maine Information on Google Bookmark Alternative Fuels Data Center: Maine Information on Delicious Rank Alternative Fuels Data Center: Maine Information on Digg Find More places to share Alternative Fuels Data Center: Maine Information on AddThis.com... Maine Information This state page compiles information related to alternative fuels and advanced vehicles in Maine and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

168

Environmental Protection Implementation Plan  

SciTech Connect

This Environmental Protection Implementation Plan is intended to ensure that the environmental program objectives of Department of Energy Order 5400.1 are achieved at SNL/California. The Environmental Protection Implementation Plan serves as an aid to management and staff to implement new environmental programs in a timely manner.

Brekke, D.D.

1994-01-01T23:59:59.000Z

169

Green Power Offer (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

requirements, standards and procedures and a competitive bidding process to implement the green power offer program. The program is designed to make renewable energy credits...

170

Dynamical regimes and learning properties of evolved Boolean networks  

Science Conference Proceedings (OSTI)

Boolean networks (BNs) have been mainly considered as genetic regulatory network models and are the subject of notable works in complex systems biology literature. Nevertheless, in spite of their similarities with neural networks, their potential as ... Keywords: Boolean networks, Density classification problem, Machine learning, Metaheuristics, State-controlled Boolean network

Stefano Benedettini; Marco Villani; Andrea Roli; Roberto Serra; Mattia Manfroni; Antonio Gagliardi; Carlo Pinciroli; Mauro Birattari

2013-01-01T23:59:59.000Z

171

Green Power Network: More Search Options  

NLE Websites -- All DOE Office Websites (Extended Search)

to main content U.S. Department of Energy Energy Efficiency and Renewable Energy Green Power Network About the GPN Green Power Markets Buying Green Power Onsite Renewable...

172

Green Power Network: Green Power Marketing  

NLE Websites -- All DOE Office Websites (Extended Search)

to main content U.S. Department of Energy Energy Efficiency and Renewable Energy Green Power Network About the GPN Green Power Markets Buying Green Power Onsite Renewable...

173

Green Power Network: Publications: Alphabetical Listing  

NLE Websites -- All DOE Office Websites (Extended Search)

to main content U.S. Department of Energy Energy Efficiency and Renewable Energy Green Power Network About the GPN Green Power Markets Buying Green Power Onsite Renewable...

174

Categorical Exclusion Determinations: Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Maine Categorical Exclusion Determinations: Maine Location Categorical Exclusion Determinations issued for actions in Maine. DOCUMENTS AVAILABLE FOR DOWNLOAD February 4, 2013 CX-010231: Categorical Exclusion Determination Hywind Maine CX(s) Applied: A9, B3.1, B3.6 Date: 02/04/2013 Location(s): Maine Offices(s): Golden Field Office January 17, 2013 CX-009915: Categorical Exclusion Determination The University of Maine's "New England Aqua Ventus I" Program CX(s) Applied: A9, B3.6 Date: 01/17/2013 Location(s): Maine Offices(s): Golden Field Office November 5, 2012 CX-009425: Categorical Exclusion Determination Partial Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: B3.3, B3.16, B5.18 Date: 11/05/2012 Location(s): Maine

175

Natural Gas Utility Conservation Programs (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Natural Gas Utility Conservation Programs (Maine) Natural Gas Utility Conservation Programs (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Mandatory Utility Green Power Option Provider Public Utilities Commission This Chapter describes how natural gas utilities serving more than 5,000 residential customers must implement natural gas energy conservation programs. The regulations describe

176

Maine PACE Loans | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine PACE Loans Maine PACE Loans Maine PACE Loans < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Other Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Bioenergy Solar Buying & Making Electricity Wind Program Info Funding Source American Recovery and Reinvestment Act (ARRA) Start Date 04/04/2011 State Maine Program Type PACE Financing Provider Efficiency Maine Note: Maine's PACE program is accepting applications from homeowners in participating municipalities. Applications are submitted online. Property-Assessed Clean Energy (PACE) financing allows property owners to

177

Efficiency Maine Business Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Maine Business Program Efficiency Maine Business Program Efficiency Maine Business Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $50,000 Program Info State Maine Program Type State Rebate Program Rebate Amount Retrofits: up to 35% of total project cost New construction/Major renovations/Failed equipment replacement: 75% of incremental cost Custom: $0.14/kWh Provider Efficiency Maine The Efficiency Maine Business Program provides cash incentives and free, independent technical advice to help non-residential electric customers

178

An Act to Implement the Recommendations of the Governor's Ocean Energy Task Force (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

This law was enacted to overcome economic, technical and regulatory obstacles and to provide economic incentives for vigorous and efficient development of promising indigenous, renewable ocean...

179

Applying physical-layer network coding in wireless networks  

Science Conference Proceedings (OSTI)

A main distinguishing feature of a wireless network compared with a wired network is its broadcast nature, in which the signal transmitted by a node may reach several other nodes, and a node may receive signals from several other nodes, simultaneously. ...

Shengli Zhang; Soung Chang Liew

2010-01-01T23:59:59.000Z

180

Advanced Network Toolkit for Assessments and Remote Mapping ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tool Maps Control System Networks to Help Implement Cyber Security Standards National SCADA Test Bed Enhancing control systems security in the energy sector TOP 10...

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DOE Sustainability Assistance Network (SAN) Notes Thursday, February...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 2 DOE Sustainability Assistance Network (SAN) Notes Thursday, February 21, 2013 1. Oak Ridge National Laboratory Water Resource Management Dan OConnor, ORNL Implementing...

182

Comments of Tendril Networks, Inc. on DOE Request for Information...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy on Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy Comments of Tendril Networks, Inc....

183

Dynamic control of grid power flow using controllable network transformers .  

E-Print Network (OSTI)

??The objective of the research is to develop a cost-effective, dynamic grid controller called the controllable network transformer (CNT) that can be implemented by augmenting (more)

Das, Debrup

2011-01-01T23:59:59.000Z

184

Spatial Networks  

E-Print Network (OSTI)

Complex systems are very often organized under the form of networks where nodes and edges are embedded in space. Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks, neural networks, are all examples where space is relevant and where topology alone does not contain all the information. Characterizing and understanding the structure and the evolution of spatial networks is thus crucial for many different fields ranging from urbanism to epidemiology. An important consequence of space on networks is that there is a cost associated to the length of edges which in turn has dramatic effects on the topological structure of these networks. We will expose thoroughly the current state of our understanding of how the spatial constraints affect the structure and properties of these networks. We will review the most recent empirical observations and the most important models of spatial networks. We will also discuss various processes which take place on these spa...

Barthelemy, Marc

2010-01-01T23:59:59.000Z

185

Alabama Compliance Implementation  

NLE Websites -- All DOE Office Websites (Extended Search)

Alabama Alabama Compliance Implementation and Evaluation (CIE) Guide BUILDING TECHNOLOGIES PROGRAM COMPLIANCE IMPLEMENTATION AND EVALUATION (CIE) GUIDE 2 This Guide is designed to assist state and local code jurisdictions in achieving statewide compliance with the 2009 International Energy Conservation Code (IECC) for residential buildings and ANSI/ASHRAE/IESNA Standard 90.1-2007 for commercial buildings. COMPLIANCE IMPLEMENTATION AND EVALUATION (CIE) GUIDE 3 Alabama WHAT'S INSIDE CIE Guide Overview-Flow Diagram ........................................................................................................................... 5 PART 1: Guide Overview .................................................................................................................................................

186

Climate Action Plan (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine) Maine) Climate Action Plan (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Climate Policies Provider Department of Environmental Protection In June 2003, the Maine State Legislature passed a bill charging the Department of Environmental Protection (DEP) with developing an action plan

187

Design and Implementation  

Science Conference Proceedings (OSTI)

... The application for database administration and the web interface for generating reports are implemented using the Tcl/Tk[OUST] scripting ...

188

Mitigations for Security Vulnerabilities Found in Control System Networks |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mitigations for Security Vulnerabilities Found in Control System Mitigations for Security Vulnerabilities Found in Control System Networks Mitigations for Security Vulnerabilities Found in Control System Networks Industry is aware of the need for Control System (CS) security, but in on-site assessments, Idaho National Laboratory (INL) has observed that security procedures and devices are not consistently and effectively implemented. The Department of Homeland Security (DHS), National Cyber Security Division (NCSD), established the Control Systems Security Center (CSSC) at INL to help industry and government improve the security of the CSs used in the nation's critical infrastructures. One of the main CSSC objectives is to identify control system vulnerabilities and develop effective mitigations for them. This paper discusses common problems and vulnerabilities seen in

189

Maine's Weatherization Milestones | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine's Weatherization Milestones Maine's Weatherization Milestones Maine's Weatherization Milestones August 24, 2010 - 5:44pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Thanks to $41.9 million in funding from the Recovery Act, the state of Maine expects to weatherize more than 4,400 homes Maine's state motto - "dirigo," Latin for "I lead," - is very fitting, especially when it comes to weatherization. With the help of nearly $41.9 million in funding from the Recovery Act, the state expects to weatherize more than 4,400 homes - creating jobs, reducing carbon emissions, and saving money for Maine's low-income families. Cathy Zoi, DOE's Assistant Secretary for Energy Efficiency and Renewable Energy and Maine's Governor John Baldacci spoke on a conference call last

190

Energy Incentive Programs, Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Maine Energy Incentive Programs, Maine October 29, 2013 - 11:29am Addthis Updated December 2012 What public purpose-funded energy efficiency programs are available in my state? Maine's restructuring law provides for energy efficiency programs through a statewide charge of up to 1.5 mills per kWh. These costs are included in the rates of the local electric distribution utilities. Almost $25 million was spent in 2011 on electric and gas energy efficiency programs. These funds were augmented, starting in 2009, by Maine's portion of proceeds from the northeastern states' Regional Greenhouse Gas Initiative (RGGI). Efficiency Maine , a state-chartered corporation under direction from the Efficiency Maine Trust, administers efficiency programs for businesses and

191

Central Maine Power Co | Open Energy Information  

Open Energy Info (EERE)

Central Maine Power Co Central Maine Power Co (Redirected from Central Maine Power Company) Jump to: navigation, search Name Central Maine Power Co Place Augusta, Maine Service Territory Maine Website www.cmpco.com/ Green Button Reference Page www.whitehouse.gov/sites/ Green Button Committed Yes Utility Id 3266 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Central Maine Power Company Smart Grid Project was awarded $95,858,307

192

Maine's Weatherization Milestones | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine's Weatherization Milestones Maine's Weatherization Milestones Maine's Weatherization Milestones August 24, 2010 - 5:44pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Thanks to $41.9 million in funding from the Recovery Act, the state of Maine expects to weatherize more than 4,400 homes Maine's state motto - "dirigo," Latin for "I lead," - is very fitting, especially when it comes to weatherization. With the help of nearly $41.9 million in funding from the Recovery Act, the state expects to weatherize more than 4,400 homes - creating jobs, reducing carbon emissions, and saving money for Maine's low-income families. Cathy Zoi, DOE's Assistant Secretary for Energy Efficiency and Renewable Energy and Maine's Governor John Baldacci spoke on a conference call last

193

On the availability of networks  

E-Print Network (OSTI)

In all networks that provide a service to the consumer, one of the main performance indicators is availability. The consumer, the user of the service, wants to be able to use the service for at least X % of the time. In order to be able to make such guarantees and commit to them in Service Level Agreements, network operators need to know their network availability. In this paper, we discuss how network availability can be algorithmically computed and we derive analytical expressions for several different network topologies. Finally we show how these results can be used to compute availability of real-life networks, such as SURFnet a high-speed Dutch national network.

Wenzhu Zou; Milena Janic; Robert Kooij; O Kuipers

2007-01-01T23:59:59.000Z

194

Quantum network coding for quantum repeaters  

E-Print Network (OSTI)

This paper considers quantum network coding, which is a recent technique that enables quantum information to be sent on complex networks at higher rates than by using straightforward routing strategies. Kobayashi et al. have recently showed the potential of this technique by demonstrating how any classical network coding protocol gives rise to a quantum network coding protocol. They nevertheless primarily focused on an abstract model, in which quantum resource such as quantum registers can be freely introduced at each node. In this work, we present a protocol for quantum network coding under weaker (and more practical) assumptions: our new protocol works even for quantum networks where adjacent nodes initially share one EPR-pair but cannot add any quantum registers or send any quantum information. A typically example of networks satisfying this assumption is {\\emph{quantum repeater networks}}, which are promising candidates for the implementation of large scale quantum networks. Our results thus show, for the...

Satoh, Takahiko; Imai, Hiroshi

2012-01-01T23:59:59.000Z

195

Small Generator Aggregation (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generator Aggregation (Maine) Generator Aggregation (Maine) Small Generator Aggregation (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Green Power Purchasing Provider Public Utilities Commission This section establishes requirements for electricity providers to purchase

196

Wastewater Discharge Program (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wastewater Discharge Program (Maine) Wastewater Discharge Program (Maine) Wastewater Discharge Program (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The wastewater discharge regulations require that a license be obtained for the discharge of wastewater to a stream, river, wetland, or lake of the

197

Maine Number of Natural Gas Consumers  

Annual Energy Outlook 2012 (EIA)

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

198

Green Power Purchasing (Maine) | Open Energy Information  

Open Energy Info (EERE)

Maine Name Green Power Purchasing Incentive Type Green Power Purchasing Applicable Sector State Government Eligible Technologies Biomass, Fuel Cells, Fuel Cells using Renewable...

199

TREC 2007 Legal Track: Main Task Glossary  

Science Conference Proceedings (OSTI)

TREC 2007 Legal Track: Main Task Glossary. Revision History. 2007 Oct 2: st: first draft. qrelsL07.normal. The qrelsL07.normal ...

200

Haiti-Regional Implementation Plan for CARICOM's Climate Change  

Open Energy Info (EERE)

Haiti-Regional Implementation Plan for CARICOM's Climate Change Haiti-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Jump to: navigation, search Name Haiti-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development, Caribbean Community Climate Change Centre (CCCCC) Partner Caribbean Community Climate Change Centre (CCCCC), Caribbean Community Heads of State (CARICOM) Sector Climate, Energy, Land Topics Adaptation, Background analysis, Low emission development planning, -LEDS, Market analysis, Pathways analysis Program Start 2009 Program End 2015 Country Haiti Caribbean References CDKN-CARICOM-A Regional Implementation Plan for CARICOM's Regional Climate Change Resilience Framework[1]

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Montserrat-Regional Implementation Plan for CARICOM's Climate Change  

Open Energy Info (EERE)

Montserrat-Regional Implementation Plan for CARICOM's Climate Change Montserrat-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Jump to: navigation, search Name Montserrat-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development, Caribbean Community Climate Change Centre (CCCCC) Partner Caribbean Community Climate Change Centre (CCCCC), Caribbean Community Heads of State (CARICOM) Sector Climate, Energy, Land Topics Adaptation, Background analysis, Low emission development planning, -LEDS, Market analysis, Pathways analysis Program Start 2009 Program End 2015 Country Montserrat Caribbean References CDKN-CARICOM-A Regional Implementation Plan for CARICOM's Regional Climate Change Resilience Framework[1]

202

Network assisted file system consistency checking  

E-Print Network (OSTI)

This thesis reports on the design and implementation of Network Assisted NFSCK (or NAN), an extension to NFSCK, a research project about checking file system consistency at NetApp. NFSCK requires disk space to store temporary ...

Zehender, Nicholas (Nicholas G.)

2011-01-01T23:59:59.000Z

203

Netgauge: a network performance measurement framework  

Science Conference Proceedings (OSTI)

This paper introduces Netgauge, an extensible open-source framework for implementing network benchmarks. The structure of Netgauge abstracts and explicitly separates communication patterns from communication modules. As a result of this separation of ...

Torsten Hoefler; Torsten Mehlan; Andrew Lumsdaine; Wolfgang Rehm

2007-09-01T23:59:59.000Z

204

Fermilab Main Injector Collimation Systems: Design, Commissioning and Operation  

Science Conference Proceedings (OSTI)

The Fermilab Main Injector is moving toward providing 400 kW of 120 GeV proton beams using slip stacking injection of eleven Booster batches. Loss of 5% of the beam at or near injection energy results in 1.5 kW of beam loss. A collimation system has been implemented to localize this loss with the design emphasis on beam not captured in the accelerating RF buckets. More than 95% of these losses are captured in the collimation region. We will report on the construction, commissioning and operation of this collimation system. Commissioning studies and loss measurement tools will be discussed. Residual radiation monitoring of the Main Injector machine components will be used to demonstrate the effectiveness of these efforts.

Brown, Bruce; Adamson, Philip; Capista, David; Drozhdin, A.I.; Johnson, David E.; Kourbanis, Ioanis; Mokhov, Nikolai V.; Morris, Denton K.; Rakhno, Igor; Seiya, Kiyomi; Sidorov, Vladimir; /Fermilab

2009-05-01T23:59:59.000Z

205

Area and power-efficient innovative congestion-aware Network-on-Chip architecture  

Science Conference Proceedings (OSTI)

This paper proposes a novel Network-on-Chip architecture that not only enhances network transmission performance while maintaining a feasible implementation cost, but also provides a power-efficient solution for interconnection network scenarios. Diagonally-linked ... Keywords: Area-efficient, Congestion-aware, Interconnection network, Network-on-Chip (NoC), Power-efficient

Chifeng Wang; Wen-Hsiang Hu; Seung Eun Lee; Nader Bagherzadeh

2011-01-01T23:59:59.000Z

206

A peer-to-peer overlay approach for emergency mobile ad hoc network based multimedia communications  

Science Conference Proceedings (OSTI)

Overlay networks are located on top of the physical network and are generally favored for the implementation of peer-to-peer (P2P) networks providing services such as voice over IP (VoIP) communications. The operation of the overlay network results in ... Keywords: ad hoc networking, emergency, overlays, peer-to-peer

Grant P. Millar; Tipu A. Ramrekha; Christos Politis

2009-09-01T23:59:59.000Z

207

A Re-Engineering, Methodology for CooperativeManagement of Enterprise Networks  

Science Conference Proceedings (OSTI)

With the increasing implementation by networked mission-critical applications, an enterprise network is becoming the lifeline of an organization. Massive investments are being made in the modernization of enterprise networks of diverse service organizations, ... Keywords: CSCW, ENTERPRISE NETWORKS, MANAGEMENT PROCESSES, NETWORK AND SYSTEMS MANAGEMENT, REENGINEERING

Pradeep Ray; Michael Fry; Bhumip Khasnabish

1999-03-01T23:59:59.000Z

208

Bayesian Networks  

E-Print Network (OSTI)

season. do X X X X Thus, Bayesian networks are particularly1990 G.F. Cooper and E. Herskovits. A Bayesian method forcon- structing Bayesian belief networks from databases.

Judea Pearl

2011-01-01T23:59:59.000Z

209

Implementation Proposal for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Implementation Proposal for Implementation Proposal for The National Action Plan on Demand Response Report to Congress Prepared by staff of the Federal Energy Regulatory Commission and the U.S. Department of Energy The opinions and views expressed in this staff report do not necessarily represent those of the Federal Energy Regulatory Commission, its Chairman, or individual Commissioners, and are not binding on the Commission. Implementation Proposal for The National Action Plan on Demand Response July 2011 TABLE OF CONTENTS Executive Summary ............................................................................................... iii I. Introduction ......................................................................................................1

210

Wind Energy Act (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Act (Maine) Wind Energy Act (Maine) Wind Energy Act (Maine) < Back Eligibility Developer Utility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Solar/Wind Access Policy Siting and Permitting The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the regulatory process for

211

Central Maine Power Co | Open Energy Information  

Open Energy Info (EERE)

Central Maine Power Co Central Maine Power Co Place Augusta, Maine Service Territory Maine Website www.cmpco.com/ Green Button Reference Page www.whitehouse.gov/sites/ Green Button Committed Yes Utility Id 3266 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Central Maine Power Company Smart Grid Project was awarded $95,858,307 Recovery Act Funding with a total project value of $191,716,614. Utility Rate Schedules

212

Clean Cities: Maine Clean Communities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maine Clean Communities Coalition Maine Clean Communities Coalition The Maine Clean Communities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Maine Clean Communities coalition Contact Information Steven Linnell 207-774-9891 slinnell@gpcog.org Coalition Website Clean Cities Coordinator Steven Linnell Photo of Steven Linnell Steven Linnell has been the coordinator of the statewide Maine Clean Communities coalition since its designation in 1997. The coalition's greatest achievement so far has been helping the Greater Portland METRO build the first fast-fill compressed natural gas (CNG) fueling infrastructure in the state, which currently serves 13 CNG transit buses and four CNG school buses. The coalition has also played a role in shaping

213

Wireless Networking  

Science Conference Proceedings (OSTI)

Over the past decade, the world has witnessed an explosion in the development and deployment of new wireless network technologies. From cellular mobile telephony to the ubiquitous "WiFi" networks in coffee-shops and airports, to the emerging WiMAX wireless ... Keywords: Networking

Anurag Kumar; D. Manjunath; Joy Kuri

2008-03-01T23:59:59.000Z

214

Organizations and Networks | Open Energy Information  

Open Energy Info (EERE)

Organizations and Networks Organizations and Networks (Redirected from Gateway:International/Networks) Jump to: navigation, search Registered Technical and Research Organizations Networks Climate Eval "The website promotes active debate on areas relevant to evaluation of climate change and development evaluation by bringing relevant topics to a peer to peer discussion forum." Coordinated Low Emissions Assistance Network (CLEAN) CLEAN aims to improve communication and coordination by bringing together national and international organizations that are assisting developing countries with preparation and implementation of low greenhouse gas emission plans and strategies. This includes support for technology needs assessments, for low carbon and clean energy development plans, and

215

Unveiling the Implementation Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge National Laboratory www.ornl.gov Oak Ridge National Laboratory www.ornl.gov Unveiling the Implementation Guide October 11, 2011 Michaela Martin Program Manager Residential, Commercial, and Industrial Energy Efficiency Oak Ridge National Laboratory 2 | Oak Ridge National Laboratory www.ornl.gov Guiding Principles for Successfully Implementing Industrial Energy Assessment Recommendations * New resource for industry * Identifies key principles and actions that lead to successful implementation of energy assessment recommendations * Connects readers with a variety of trusted resources * Simple tools for supporting energy management programs and continuous energy performance improvement efforts * Available in hard copy and on the web Implementation Guide Overview 3 | Oak Ridge National Laboratory www.ornl.gov

216

INSTRUCTIONS FOR IMPLEMENTING EXECUTIVE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 29, 2007 INSTRUCTIONS FOR IMPLEMENTING EXECUTIVE ORDER 13423 "Strengthening Federal Environmental, Energy, and Transportation Management" i Contents I. Introduction ......................................................................................................................1 A. Purpose..................................................................................................................1 B. Authority ...............................................................................................................1 C. Organization and Oversight ..................................................................................1 D. Overarching Policy and Directives .......................................................................4

217

Bluetooth/WLAN receiver design methodology and IC implementations  

E-Print Network (OSTI)

Emerging technologies such as Bluetooth and 802.11b (Wi-Fi) have fuelled the growth of the short-range communication industry. Bluetooth, the leading WPAN (wireless personal area network) technology, was designed primarily for cable replacement applications. The first generation Bluetooth products are focused on providing low-cost radio connections among personal electronic devices. In the WLAN (wireless local area network) arena, Wi-Fi appears to be the superior product. Wi-Fi is designed for high speed internet access, with higher radio power and longer distances. Both technologies use the same 2.4GHz ISM band. The differences between Bluetooth and Wi-Fi standard features lead to a natural partitioning of applications. Nowadays, many electronics devices such as laptops and PDAs, support both Bluetooth and Wi-Fi standards to cover a wider range of applications. The cost of supporting both standards, however, is a major concern. Therefore, a dual-mode transceiver is essential to keep the size and cost of such system transceivers at a minimum. A fully integrated low-IF Bluetooth receiver is designed and implemented in a low cost, main stream 0.35um CMOS technology. The system includes the RF front end, frequency synthesizer and baseband blocks. It has -82dBm sensitivity and draws 65mA current. This project involved 6 Ph.D. students and I was in charge of the design of the channel selection complex filter is designed. In the Bluetooth transmitter, a frequency modulator with fine frequency steps is needed to generate the GFSK signal that has +/-160kHz frequency deviation. A low power ROM-less direct digital frequency synthesizer (DDFS) is designed to implement the frequency modulation. The DDFS can be used for any frequency or phase modulation communication systems that require fast frequency switching with fine frequency steps. Another contribution is the implementation of a dual-mode 802.11b/Bluetooth receiver in IBM 0.25um BiCMOS process. Direct-conversion architecture was used for both standards to achieve maximum level of integration and block sharing. I was honored to lead the efforts of 7 Ph.D. students in this project. I was responsible for system level design as well as the design of the variable gain amplifier. The receiver chip consumes 45.6/41.3mA and the sensitivity is -86/-91dBm.

Emira, Ahmed Ahmed Eladawy

2003-12-01T23:59:59.000Z

218

Environmental protection Implementation Plan  

SciTech Connect

This ``Environmental Protection Implementation Plan'' is intended to ensure that the environmental program objectives of Department of Energy Order 5400.1 are achieved at SNL/California. This document states SNL/California's commitment to conduct its operations in an environmentally safe and responsible manner. The ``Environmental Protection Implementation Plan'' helps management and staff comply with applicable environmental responsibilities.

R. C. Holland

1999-12-01T23:59:59.000Z

219

Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.253783,"lon":-69.4454689,"alt":0,"address":"Maine","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

Similarity management in phonebookcentric social networks  

E-Print Network (OSTI)

In the past years many social network implementations have come to existence. There is not one network but many, and the user-base of these networks is different. Connecting the users of the separate networks is currently unsolved and seducing new users to existing systems becomes harder and harder as the users are not willing to join too many systems and build up their contact base from scratch each time. In this paper we propose a solution for the problem of finding existing contacts in a new system. An implementation of the described algorithm is also illustrated. Utilizing the algorithm in existing or new social networks can efficiently reduce the time needed for the users to find their friends in a newly joined network. 1.

Pter Ekler; Zoltn Ivnfi; Kristf Aczl

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

High Capacity Network Link Emulation Using Network Processors  

E-Print Network (OSTI)

Network link emulation constitutes an important part of network emulation, wherein links in the topology are emulated to subject the network tra#c to di#erent bandwidths, latencies, packet loss distributions, and queuing models. Increasingly, experimenters are creating topologies with substantial emulation bandwidths; contributed both by a large number of low-speed links and a small number of high-speed links. It is a significant challenge for a link emulator to meet this requirement in real time. Existing solutions for link emulation use general-purpose PC-class machines; the well-understood hardware and software PC platform make it attractive for quick implementation and easy deployment. A PC architecture is largely optimized for compute bound applications with large amounts of exploitable instruction-level parallelism (ILP) and good memory reference locality. Networking applications, on the other hand, have little ILP and instead exhibit a coarser packet-level parallelism. In this thesis, we propose using network processors for building high capacity link emulators. Network processors are programmable processors that employ a multithreaded, multiprocessor architecture to exploit packet-level parallelism, and have instruction sets and hardware support geared towards e#cient implementation of common networking tasks. To evaluate our proposal, we have designed and implemented a link emulator, LinkEM, on the IXP1200 network processor. We present the design and a mapping of LinkEM's tasks across the multiple microengines and hardware threads of the IXP1200. We also give a detailed evaluation of LinkEM, which includes validating its emulation accuracy, and measuring its emulation throughput and link multiplexing capacity. Our evaluation shows that LinkEM has a factor of be...

Abhijeet A. Joglekar; Abhijeet A. Joglekar; Abhijeet A. Joglekar; John Carter; John Regehr; Date Jay Lepreau; David S. Chapman

2004-01-01T23:59:59.000Z

222

Maine Mountain Power | Open Energy Information  

Open Energy Info (EERE)

Maine Mountain Power Maine Mountain Power Place Yarmouth, Maine Zip 4096 Sector Wind energy Product Wind farm development company focused on projects in Maine. It is a subsidiary of Endless Energy Corporation. Coordinates 41.663318°, -70.198987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.663318,"lon":-70.198987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

Gas Utilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Utilities (Maine) Gas Utilities (Maine) Gas Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Siting and Permitting Provider Public Utilities Commission Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one customer when any portion

224

Direct Energy Services (Maine) | Open Energy Information  

Open Energy Info (EERE)

Maine) Maine) Jump to: navigation, search Name Direct Energy Services Place Maine Utility Id 54820 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.1070/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=Direct_Energy_Services_(Maine)&oldid=412516" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

225

Main Street Loan Program (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The Main Street Loan Program loans of up to $24,999 through the Certified Development Corporation (CDC) in participation with local lenders or economic development organizations for small...

226

CECG Maine, LLC | Open Energy Information  

Open Energy Info (EERE)

search Name CECG Maine, LLC Place Maryland Utility Id 4166 Utility Location Yes Ownership R NERC Location RFC NERC RFC Yes Activity Retail Marketing Yes References EIA Form EIA-861...

227

Linked Investment Program for Commercial Enterprises (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Linked Investment Program for Commercial Enterprises reduces a borrowers interest rate. The Maine State Treasurer makes a certificate of deposit at up to 2% less than the prevailing rate on...

228

Architectural and Markovian factors of echo state networks  

Science Conference Proceedings (OSTI)

Echo State Networks (ESNs) constitute an emerging approach for efficiently modeling Recurrent Neural Networks (RNNs). In this paper we investigate some of the main aspects that can be accounted for the success and limitations of this class of models. ... Keywords: Architectural design analysis, Echo state networks, Markovianity, Recurrent neural networks, Sequence processing

Claudio Gallicchio; Alessio Micheli

2011-06-01T23:59:59.000Z

229

Model-based compression in wireless ad hoc networks  

Science Conference Proceedings (OSTI)

We present a technique for compression of shortest paths routing tables for wireless ad hoc networks. The main characteristic of such networks is that geographic location of nodes determines network topology. As opposed to encoding individual node locations, ... Keywords: compression, modeling, routing protocols, routing tables, sensor networks, trajectory

Milenko Drinic; Darko Kirovski; Miodrag Potkonjak

2003-11-01T23:59:59.000Z

230

Mitigating multi-path fading in a mobile mesh network  

Science Conference Proceedings (OSTI)

By using robots as routers, a team of networked robots can provide a communication substrate to establish a wireless mesh network. The mobile mesh network can autonomously optimize its configuration, increasing performance. One of the main sources of ... Keywords: Complex environments, Distributed optimization, Experimental and prototype results, Mobile and wireless ad-hoc networks, Multi-path fading

Marcos A. M. Vieira, Matthew E. Taylor, Prateek Tandon, Manish Jain, Ramesh Govindan, Gaurav S. Sukhatme, Milind Tambe

2013-06-01T23:59:59.000Z

231

Flexible Network Attached Storage using Remote DMA  

E-Print Network (OSTI)

We propose to make nodes in a cluster double as compute nodes and network attached storage (NAS) nodes. This allows for a flexible and customizable storage system as the NAS control software is handled by regular workstations. The nodes can still be efficient compute nodes if networks with remote DMA capabilities are used, as such networks remove the processor from the data forwarding loop. We demonstrate this through measurements of a prototype implementation.

Jrgen S. Hansen

2001-01-01T23:59:59.000Z

232

Design Technology for Networked Reconfigurable FPGA Platforms  

E-Print Network (OSTI)

Future networked appliances should be able to download new services or upgrades from the network and execute them locally. This flexibility is typically achieved by processors that can download new software over the network, using JAVA technology. This paper demonstrates that FPGAs are a realistic implementation platform for thin server or client applications. FPGAs can offer the same end-user experience as software based systems, combined with more computational power and lower cost.

S. Guccione; D. Verkest; I. Bolsens

2002-01-01T23:59:59.000Z

233

Implementing temporal logics: tools for execution and proof  

Science Conference Proceedings (OSTI)

In this article I will present an overview of a selection of tools for execution and proof based on temporal logic, and outline both the general techniques used and problems encountered in implementing them. This selection is quite subjective, mainly ...

Michael Fisher

2005-06-01T23:59:59.000Z

234

Main Generator Excitation System Upgrade/Retrofit  

Science Conference Proceedings (OSTI)

Upgrading or replacing even a portion of the excitation system of a generator can provide increased reliability and availability while simultaneously decreasing operational and maintenance costs. However, the upgrade or retrofit of an excitation system is a major cost involving some degree of implementation, installation, or performance risk. This report provides lessons learned, experiences, practices and solutions from plants that have installed excitation system retrofits and upgrades. This informatio...

2005-11-07T23:59:59.000Z

235

Implementing the National Broadband  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Type text] Type text] Response to Request for Information from the Department of Energy: Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy [FR Doc. 2010-11127] July 12, 2010 EnerNOC Page 2 of 8 EnerNOC, Inc. ("EnerNOC") is pleased to provide these comments to the Department of Energy in response to the Request for Information "Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy." EnerNOC is a provider of demand response and energy efficiency solutions to utilities, Independent

236

Permanent Markers Implementation Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP 04-3302 WIPP 04-3302 Permanent Markers Implementation Plan August 19, 2004 United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico DOE/WIPP 04-3302 ii Permanent Markers Implementation Plan Waste Isolation Pilot Plant Carlsbad, New Mexico August 19, 2004 Prepared for: Washington Regulatory and Environmental Services an affiliate of Washington TRU Solutions, LLC P.O. Box 2078 Carlsbad, New Mexico 88221 Prepared by: John Hart and Associates, P.A. 2815 Candelaria Road, N.W. Albuquerque, New Mexico 87107 (505) 344-7868 DOE/WIPP 04-3302 iii Table of Contents Table of Contents.................................................................................................

237

Environmental Protection Implementation Plan  

SciTech Connect

This Environmental Protection Implementation Plan is intended to ensure that the environmental program objectives of Department of Energy Order 5400.1 are achieved at SNL/California. This document states SNL/California`s commitment to conduct its operations in an environmentally safe and responsible manner. The Environmental Protection Implementation Plan helps management and staff comply with applicable environmental responsibilities. This report focuses on the following: notification of environmental occurrences; general planning and reporting; special programs and plans; environmental monitoring program; and quality assurance and data verification.

Brekke, D.D.

1995-11-01T23:59:59.000Z

238

Environmental protection implementation plan  

SciTech Connect

This Environmental Protection Implementation Plan is intended to ensure that the environmental program objectives of Department of Energy Order 5400.1 are achieved at SNL/California. This document states SNL/California`s commitment to conduct its operations in an environmentally safe and responsible manner. The Environmental Protection Implementation Plan helps management and staff comply with applicable environmental responsibilities. SNL is committed to operating in full compliance with the letter and spirit of applicable environmental laws, regulations, and standards. Furthermore, SNL/California strives to go beyond compliance with legal requirements by making every effort practical to reduce impacts to the environment to levels as low as reasonably achievable.

Holland, R.C.

1998-03-01T23:59:59.000Z

239

PICs Implementation Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP 04-2301 WIPP 04-2301 Passive Institutional Controls Implementation Plan August 19, 2004 United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico DOE/WIPP 04-2301 Passive Institutional Controls Implementation Plan Waste Isolation Pilot Plant Carlsbad, New Mexico August 19, 2004 Prepared for: Washington Regulatory and Environmental Services an affiliate of Washington TRU Solutions, LLC P.O. Box 2078 Carlsbad, New Mexico 88221 Prepared by: John Hart and Associates, P.A. 2815 Candelaria Road, N.W. Albuquerque, New Mexico 87107 (505) 344-7868 DOE/WIPP 04-2301 i Table of Contents List of Tables .....................................................................................................................ii

240

E-Print Network 3.0 - User Login  

Office of Scientific and Technical Information (OSTI)

Home About Advanced Search Browse by Discipline Scientific Societies E-print Alerts Add E-prints E-print Network E-print Network Skip to main content FAQ * HELP * SITE MAP *...

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A File Location, Replication, and Distribution System for Network Information to Aid Network Management  

E-Print Network (OSTI)

This thesis demonstrates and evaluates the design, architecture, and implementation of a file location, replication, and distribution system built with the objective of managing information in an Internet network. The ...

Cheng, Tiffany

2010-09-22T23:59:59.000Z

242

A file location, replication, and distribution system for network information to aid network management  

E-Print Network (OSTI)

This thesis demonstrates and evaluates the design, architecture, and implementation of a file location, replication, and distribution system built with the objective of managing information in an Internet network. The ...

Cheng, Tiffany (Tiffany R.)

2010-01-01T23:59:59.000Z

243

Maine/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Maine/Wind Resources < Maine Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Maine Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

244

Main Coast Winds - Final Scientific Report  

DOE Green Energy (OSTI)

The Maine Coast Wind Project was developed to investigate the cost-effectiveness of small, distributed wind systems on coastal sites in Maine. The restructuring of Maine's electric grid to support net metering allowed for the installation of small wind installations across the state (up to 100kW). The study performed adds insight to the difficulties of developing cost-effective distributed systems in coastal environments. The technical hurdles encountered with the chosen wind turbine, combined with the lower than expected wind speeds, did not provide a cost-effective return to make a distributed wind program economically feasible. While the turbine was accepted within the community, the low availability has been a negative.

Jason Huckaby; Harley Lee

2006-03-15T23:59:59.000Z

245

Communication network modeling for simulation of wide area monitoring and control applications in power systems.  

E-Print Network (OSTI)

??This thesis has mainly focused on investigating the effect of communication network on the power system operation. The main objective of this research has been (more)

MUDIYANSELAGE, SARANGA D. EDIRISINGHE DISSANAYAKE TENNAKOON

2013-01-01T23:59:59.000Z

246

Categorical Exclusion Determinations: Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 9, 2010 September 9, 2010 CX-003770: Categorical Exclusion Determination Maine-County-York CX(s) Applied: A1, A9, A11, B2.5, B5.1 Date: 09/09/2010 Location(s): York County, Maine Office(s): Energy Efficiency and Renewable Energy September 9, 2010 CX-003713: Categorical Exclusion Determination Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: A9, B3.1, B3.3, B3.6 Date: 09/09/2010 Location(s): Maine Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 23, 2010 CX-003544: Categorical Exclusion Determination Environmental Impact Protocols for Tidal Power CX(s) Applied: A9, B3.1, B3.3, B3.6 Date: 08/23/2010 Location(s): Cobscook Bay, Maine Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

247

Waste: main source of sustainable energy  

E-Print Network (OSTI)

Waste: main source of sustainable energy Dr. K.D. van der Linde President of Afval Energie Bedrijf ­ Waste and Energy Company City of Amsterdam Institute of Physics, London, 16th March 2005 #12;March, 16th 2005 Afval Energie Bedrijf 2 Afval Energie Bedrijf (AEB)Afval Energie Bedrijf (AEB) for wastefor waste

Columbia University

248

Lawrence Livermore National Laboratory Main Site FFA Under CERCLA Section 120, November 1, 1988 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Laboratory (Main Site) Lawrence Livermore National Laboratory (Main Site) Federal Facility Agreement Under CERCLA Section 120, November 1, 1988 State California Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the Site Parties DOE; USEPA; California Department of Health Services; California Regional Water Quality Control Board Date 11/1/1988 SCOPE * Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the Site. * Establish a basis for a determination that the DOE has completed remedial action and corrective measures to satisfaction. ESTABLISHING MILESTONES

249

Network Automata: Coupling structure and function in real-world networks  

E-Print Network (OSTI)

We introduce Network Automata, a framework which couples the topological evolution of a network to its structure. It is useful for dealing with networks in which the topology evolves according to some specified microscopic rules and, simultaneously, there is a dynamic process taking place on the network that both depends on its structure but is also capable of modifying it. It is a generic framework for modeling systems in which network structure, dynamics, and function are interrelated. At the practical level, this framework allows for easy implementation of the microscopic rules involved in such systems. To demonstrate the approach, we develop a class of simple biologically inspired models of fungal growth.

David M. D. Smith; Jukka-Pekka Onnela; Chiu Fan Lee; Mark Fricker; Neil F. Johnson

2007-01-26T23:59:59.000Z

250

Saint Vincent and the Grenadines-Regional Implementation Plan for  

Open Energy Info (EERE)

Saint Vincent and the Grenadines-Regional Implementation Plan for Saint Vincent and the Grenadines-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Jump to: navigation, search Name Saint Vincent and the Grenadines-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development, Caribbean Community Climate Change Centre (CCCCC) Partner Caribbean Community Climate Change Centre (CCCCC), Caribbean Community Heads of State (CARICOM) Sector Climate, Energy, Land Topics Adaptation, Background analysis, Low emission development planning, -LEDS, Market analysis, Pathways analysis Website http://cdkn.org/project/planni Program Start 2009 Program End 2015

251

Antigua and Barbuda-Regional Implementation Plan for CARICOM's Climate  

Open Energy Info (EERE)

Antigua and Barbuda-Regional Implementation Plan for CARICOM's Climate Antigua and Barbuda-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Jump to: navigation, search Name Antigua and Barbuda-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development, Caribbean Community Climate Change Centre (CCCCC) Partner Caribbean Community Climate Change Centre (CCCCC), Caribbean Community Heads of State (CARICOM) Sector Climate, Energy, Land Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Economic Development, Food Supply, Forestry, Water Conservation Topics Adaptation, Background analysis, - Health, Low emission development planning, -LEDS, Market analysis, Pathways analysis

252

Trinidad and Tobago-Regional Implementation Plan for CARICOM's Climate  

Open Energy Info (EERE)

Trinidad and Tobago-Regional Implementation Plan for CARICOM's Climate Trinidad and Tobago-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Jump to: navigation, search Name Trinidad and Tobago-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development, Caribbean Community Climate Change Centre (CCCCC) Partner Caribbean Community Climate Change Centre (CCCCC), Caribbean Community Heads of State (CARICOM) Sector Climate, Energy, Land Topics Adaptation, Background analysis, Low emission development planning, -LEDS, Market analysis, Pathways analysis Website http://cdkn.org/project/planni Program Start 2009 Program End 2015 Country Trinidad and Tobago

253

Network Hopes  

Science Conference Proceedings (OSTI)

In this work, the authors examine four cases of municipalities that have attempted to create municipal-sponsored wireless broadband networks. In each of these cases, one of the reasons given for establishing the network was to engage the citizens in ... Keywords: civic engagement, municipalities, social capital, wireless broadband Internet

Andrea H. Tapia; Julio Angel Ortiz

2010-02-01T23:59:59.000Z

254

Design and Implementation of the Electrical Power System for the CubeSTAR Satellite.  

E-Print Network (OSTI)

??This thesis describes the design and implementation of an electronic power system for the CubeSTAR satellite. The main task of the power system is to (more)

Skyttemyr, Knut Olav

2013-01-01T23:59:59.000Z

255

Design and Implementation of an Underlay Control Channel for Cognitive Radios  

Science Conference Proceedings (OSTI)

Implementation of any cognitive radio network requires an effective control channel that can operate under various modes of activity from the primary users. This paper reports the design and implementation of a filter bank multicarrier spread spectrum (FBMC-SS) system for use as the control channel in cognitive radio networks. The proposed design is based on a filtered multitone (FMT) implementation. Carrier and timing acquisition and tracking methods as well as a blind channel estimation method are developed for the proposed control channel. We also report an implementation of the proposed FBMC-SS system on a hardware platform; a FlexRIO FPGA module from National Instruments.

Daryl Wasden; Hussein Moradi; Behrouz Farhang-Boroujeny

2012-11-01T23:59:59.000Z

256

Executive Order 13423 Implementing Instructions  

Energy.gov (U.S. Department of Energy (DOE))

INSTRUCTIONS FOR IMPLEMENTING EXECUTIVE ORDER 13423Strengthening Federal Environmental, Energy, and Transportation Management

257

Abbot, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Abbot, Maine: Energy Resources Abbot, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1976844°, -69.458819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1976844,"lon":-69.458819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Standish, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Standish, Maine: Energy Resources Standish, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7359114°, -70.5519993° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7359114,"lon":-70.5519993,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Warren, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Warren, Maine: Energy Resources Warren, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1203577°, -69.2400452° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1203577,"lon":-69.2400452,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Eddington, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Eddington, Maine: Energy Resources Eddington, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8261817°, -68.6933667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8261817,"lon":-68.6933667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Harpswell, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Harpswell, Maine: Energy Resources Harpswell, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7560618°, -69.9645482° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7560618,"lon":-69.9645482,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Stetson, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Stetson, Maine: Energy Resources Stetson, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8917325°, -69.1428215° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8917325,"lon":-69.1428215,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Twombly, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Twombly, Maine: Energy Resources Twombly, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2748647°, -68.237681° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.2748647,"lon":-68.237681,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Corinth, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Corinth, Maine: Energy Resources Corinth, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0002251°, -69.0340404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0002251,"lon":-69.0340404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

265

Kenduskeag, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kenduskeag, Maine: Energy Resources Kenduskeag, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9195128°, -68.9317049° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9195128,"lon":-68.9317049,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Kingman, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kingman, Maine: Energy Resources Kingman, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5495057°, -68.1994627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5495057,"lon":-68.1994627,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

Maxfield, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maxfield, Maine: Energy Resources Maxfield, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3076853°, -68.7532578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3076853,"lon":-68.7532578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Mattawamkeag, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mattawamkeag, Maine: Energy Resources Mattawamkeag, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5136701°, -68.3544669° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5136701,"lon":-68.3544669,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Casco, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Casco, Maine: Energy Resources Casco, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0067388°, -70.5228358° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0067388,"lon":-70.5228358,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

Criehaven, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Criehaven, Maine: Energy Resources Criehaven, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8339726°, -68.889201° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8339726,"lon":-68.889201,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Charleston, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Charleston, Maine: Energy Resources Charleston, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0850615°, -69.0405949° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0850615,"lon":-69.0405949,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Brownville, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brownville, Maine: Energy Resources Brownville, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3069957°, -69.0333737° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3069957,"lon":-69.0333737,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

273

Parkman, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Parkman, Maine: Energy Resources Parkman, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1336651°, -69.4331038° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1336651,"lon":-69.4331038,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Drew, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Drew, Maine: Energy Resources Drew, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.6013167°, -68.0942848° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.6013167,"lon":-68.0942848,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

University of Maine Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamics Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Maine Address 208 Boardman Hall Place Orono, Maine Zip 04469 Sector Hydro Phone number (207) 581-2129 Website http://gradcatalog.umaine.edu/ Coordinates 44.9024546°, -68.6638413° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9024546,"lon":-68.6638413,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Scarborough, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Scarborough, Maine: Energy Resources Scarborough, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.597774°, -70.331846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.597774,"lon":-70.331846,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

Maine Maritime Academy | Open Energy Information  

Open Energy Info (EERE)

Academy Academy Jump to: navigation, search Name Maine Maritime Academy Address Engineering Department Pleasant Street Place Castine Zip 4420 Sector Marine and Hydrokinetic Phone number 207-326-2365 Website http://http://www.mainemaritim Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Castine Harbor Badaduce Narrows Tidal Energy Device Evaluation Center TIDEC This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Maine_Maritime_Academy&oldid=678366" Categories: Clean Energy Organizations Companies Organizations Stubs

278

Pownal, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pownal, Maine: Energy Resources Pownal, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9087662°, -70.1821738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9087662,"lon":-70.1821738,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Hermon, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hermon, Maine: Energy Resources Hermon, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.81007°, -68.9133724° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.81007,"lon":-68.9133724,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Holden, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Holden, Maine: Energy Resources Holden, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7528499°, -68.6789218° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7528499,"lon":-68.6789218,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Castine, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Castine, Maine: Energy Resources Castine, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.3878547°, -68.7997522° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3878547,"lon":-68.7997522,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

Greenbush, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Greenbush, Maine: Energy Resources Greenbush, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0803409°, -68.6508635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0803409,"lon":-68.6508635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

Lubec, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lubec, Maine: Energy Resources Lubec, Maine: Energy Resources (Redirected from Lubec, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8606355°, -66.9841453° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8606355,"lon":-66.9841453,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Vinalhaven, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vinalhaven, Maine: Energy Resources Vinalhaven, Maine: Energy Resources (Redirected from Vinalhaven, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0481374°, -68.8316985° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0481374,"lon":-68.8316985,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Edinburg, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Edinburg, Maine: Energy Resources Edinburg, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1650821°, -68.6751748° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1650821,"lon":-68.6751748,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Winn, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Winn, Maine: Energy Resources Winn, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.4856144°, -68.372245° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.4856144,"lon":-68.372245,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Lagrange, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lagrange, Maine: Energy Resources Lagrange, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1667248°, -68.844479° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1667248,"lon":-68.844479,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Maine Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

289

Eastern Maine Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Coop Coop Jump to: navigation, search Name Eastern Maine Electric Coop Place Maine Utility Id 5609 Utility Location Yes Ownership C NERC Location NPCC NERC NPCC Yes ISO Other Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Industrial Service Industrial Large Commercial Commercial Residential Residential Seasonal Residential Residential Average Rates Residential: $0.0909/kWh Commercial: $0.0771/kWh Industrial: $0.0620/kWh

290

Sebago, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sebago, Maine: Energy Resources Sebago, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8917267°, -70.6709435° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8917267,"lon":-70.6709435,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

291

Bradley, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bradley, Maine: Energy Resources Bradley, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9209017°, -68.6280864° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9209017,"lon":-68.6280864,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Naples, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Naples, Maine: Energy Resources Naples, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.971739°, -70.6092258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.971739,"lon":-70.6092258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Camden, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2098011°, -69.0647593° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2098011,"lon":-69.0647593,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Stacyville, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Stacyville, Maine: Energy Resources Stacyville, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.8636618°, -68.5053088° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.8636618,"lon":-68.5053088,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

Kingsbury, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kingsbury, Maine: Energy Resources Kingsbury, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1194988°, -69.6492194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1194988,"lon":-69.6492194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

Prentiss, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Prentiss, Maine: Energy Resources Prentiss, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.4917309°, -68.081681° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.4917309,"lon":-68.081681,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Brewer, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brewer, Maine: Energy Resources Brewer, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7967378°, -68.7614246° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7967378,"lon":-68.7614246,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

Lee, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3600615°, -68.2864076° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3600615,"lon":-68.2864076,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Hampden, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hampden, Maine: Energy Resources Hampden, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7445159°, -68.836982° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7445159,"lon":-68.836982,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

Guilford, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Guilford, Maine: Energy Resources Guilford, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1689426°, -69.3844921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1689426,"lon":-69.3844921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Maine Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Tow Tank Tow Tank Jump to: navigation, search Basic Specifications Facility Name Maine Tow Tank Overseeing Organization University of Maine Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 30.5 Beam(m) 2.4 Depth(m) 1.2 Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 3 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.0 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Simulated beach is framed with PVC/mesh. Has a 4:9 slope. Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition

302

Newport, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Newport, Maine: Energy Resources Newport, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8353424°, -69.2739365° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8353424,"lon":-69.2739365,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

Categorical Exclusion Determinations: Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2, 2010 March 2, 2010 CX-001043: Categorical Exclusion Determination Verso Paper Corporation Waste Energy Recovery (Jay) CX(s) Applied: B1.24, B5.1 Date: 03/02/2010 Location(s): Jay, Maine Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 2, 2010 CX-001042: Categorical Exclusion Determination Verso Paper Corporation Waste Energy Recovery (Bucksport) CX(s) Applied: B1.24, B5.1 Date: 03/02/2010 Location(s): Bucksport, Maine Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 21, 2010 CX-002154: Categorical Exclusion Determination Recovery Act: DeepCwind Consortium National Research Program: Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: B3.1, B3.3, B3.6, A9

304

Maine Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

305

Orono, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8831249°, -68.671977° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8831249,"lon":-68.671977,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

Patten, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Patten, Maine: Energy Resources Patten, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.9964392°, -68.4461424° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.9964392,"lon":-68.4461424,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

307

Levant, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Levant, Maine: Energy Resources Levant, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8692358°, -68.9347611° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8692358,"lon":-68.9347611,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

308

Woolwich, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Woolwich, Maine: Energy Resources Woolwich, Maine: Energy Resources (Redirected from Woolwich, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9186904°, -69.8011576° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9186904,"lon":-69.8011576,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

Sangerville, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sangerville, Maine: Energy Resources Sangerville, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1647763°, -69.356436° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1647763,"lon":-69.356436,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

Orrington, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Orrington, Maine: Energy Resources Orrington, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7311829°, -68.8264258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7311829,"lon":-68.8264258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

311

Passadumkeag, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Passadumkeag, Maine: Energy Resources Passadumkeag, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1853362°, -68.6166937° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1853362,"lon":-68.6166937,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

312

Bridgton, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bridgton, Maine: Energy Resources Bridgton, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0547926°, -70.7128399° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0547926,"lon":-70.7128399,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

313

Milford, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.946179°, -68.6439202° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.946179,"lon":-68.6439202,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Sebec, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sebec, Maine: Energy Resources Sebec, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2714408°, -69.1167087° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.2714408,"lon":-69.1167087,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Corinna, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Corinna, Maine: Energy Resources Corinna, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.921174°, -69.2617131° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.921174,"lon":-69.2617131,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

Veazie, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Veazie, Maine: Energy Resources Veazie, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8386814°, -68.7053114° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8386814,"lon":-68.7053114,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

Westbrook, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6770252°, -70.3711617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6770252,"lon":-70.3711617,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

318

Eastport, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Eastport, Maine: Energy Resources Eastport, Maine: Energy Resources (Redirected from Eastport, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9061906°, -66.9899785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9061906,"lon":-66.9899785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Newburgh, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Newburgh, Maine: Energy Resources Newburgh, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7249508°, -69.0157987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7249508,"lon":-69.0157987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

Gorham, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gorham, Maine: Energy Resources Gorham, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6795245°, -70.4442186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6795245,"lon":-70.4442186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Brunswick, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brunswick, Maine: Energy Resources Brunswick, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9145244°, -69.9653278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9145244,"lon":-69.9653278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

Howland, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Howland, Maine: Energy Resources Howland, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2386668°, -68.6636391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.2386668,"lon":-68.6636391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Main dimensions of human practical directives system  

SciTech Connect

A hypothesis is made that due to the uncertainty and complexity of the practical inference schemes, the acting subject exerts his/her own system of beliefs about efficient ways of attaining the given goals. These beliefs are termed here: Practical Directives, and their system: Practical Attitude. An attempt was made to reconstruct such a system and its main dimensions. To this end, an instrument was constructed: the Questionnaire of Practical Directives (QPD), which is meant as an operational definition of Practical Attitude. A group of 218 subjects was tested with the aid of QPD and the factor analysis of the results revealed nine factors interpreted as main dimensions of the system of Practical Directives. 19 refs.

Lewicka-Strzalecka, A.

1992-12-31T23:59:59.000Z

324

Dixmont, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Dixmont, Maine: Energy Resources Dixmont, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.6803471°, -69.1628221° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6803471,"lon":-69.1628221,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Lowell, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lowell, Maine: Energy Resources Lowell, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1878373°, -68.4677999° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1878373,"lon":-68.4677999,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

WIPP SEIS-II - Main Menu  

NLE Websites -- All DOE Office Websites (Extended Search)

Start Here Start Here Volume III Comment Response Document Summary Supplement Volume I Volume I Chapters Supplement Volume II Volume II Appendices MAIN MENU To view a particular volume of the Waste Isolation Pilot Plant Disposal Phase Supplemental Environmental Impact Statement, click on the corresponding box. NOTE Volume III, the Comment Response Document, contains links to original comments and to DOE responses. Tips for using those links are contained in a note represented by the following icon: When you see this icon, double-click on it to read the tips. To return to this menu at any time, click on the first bookmark called "Main Menu" in every volume. To return to the "Start Here" file, which contains instructions for navigating through Acrobat Reader, click here

327

Gray, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gray, Maine: Energy Resources Gray, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.885632°, -70.3317195° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.885632,"lon":-70.3317195,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

Glenburn, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glenburn, Maine: Energy Resources Glenburn, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9168455°, -68.8536313° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9168455,"lon":-68.8536313,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

Seboeis, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Seboeis, Maine: Energy Resources Seboeis, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3631091°, -68.7111424° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3631091,"lon":-68.7111424,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

Rockport, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rockport, Maine: Energy Resources Rockport, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1845236°, -69.0761491° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1845236,"lon":-69.0761491,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Milo, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Milo, Maine: Energy Resources Milo, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2536633°, -68.9858713° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.2536633,"lon":-68.9858713,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

Maine Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Volumes Delivered to Consumers

333

Blackout Final Implementation Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Report on the Implementation of the Task Force Recommendations U.S.-Canada Power System Outage Task Force Natural Resources Canada U.S. Department of Energy September 2006 Final Report on the Implementation of the Task Force Recommendations U.S.-Canada Power System Outage Task Force September 2006 Natural Resources Canada U.S. Department of Energy Acknowledgments This document was prepared by staff of Natural Resources Canada and the U.S. Department of Energy. The principal contributors are listed in Annex 1. The staff wish to acknowledge the contributions of the U.S. Federal Energy Regulatory Commission and the Ontario Ministry of Energy. The staff also wish to acknowl- edge the support and cooperation of the North American Electric Reliability Council and, in particular, of Mr. David Nevius, Senior Vice President and Direc- tor of Reliability Assessment & Performance

334

How to efficiently implement dynamic circuit specialization systems  

Science Conference Proceedings (OSTI)

Dynamic circuit specialization (DCS) is a technique used to implement FPGA applications where some of the input data, called parameters, change slowly compared to other inputs. Each time the parameter values change, the FPGA is reconfigured by a configuration ... Keywords: Boolean Network evaluation, FPGA, dynamic circuit specialization, runtime reconfiguration

Fatma Abouelella; Tom Davidson; Wim Meeus; Karel Bruneel; Dirk Stroobandt

2013-07-01T23:59:59.000Z

335

Software application implement in java for electrical lines dimensioning  

Science Conference Proceedings (OSTI)

In this paper it was present a software package implemented in java useful for dimensioning of low voltage lines mono phase and three phases (AC and DC). The modeled networks are tree type. This software with graphical user interface allows the estimation ... Keywords: computer software, electrical lines, java, optimal dimensioning

Cristian Abrudean; Manuela Panoiu

2008-11-01T23:59:59.000Z

336

Using Echo State Networks for Anomaly Detection in Underground Coal Mines  

Science Conference Proceedings (OSTI)

We investigate the problem of identifying anomalies in monitoring critical gas concentrations using a sensor network in an underground coal mine. In this domain, one of the main problems is a provision of mine specific anomaly detection, with cyclical ... Keywords: sensor networks, anomaly detection, recurrent neural networks, echo state networks, bayesian networks, coal mines

Oliver Obst; X. Rosalind Wang; Mikhail Prokopenko

2008-04-01T23:59:59.000Z

337

The use of mobile agents for clustering in mobile ad hoc networks  

Science Conference Proceedings (OSTI)

A mobile ad hoc network is a dynamic mobile wireless network that can be formed without the need for any pre-existing wired or wireless infrastructure. One of the main challenges in an ad hoc network is the design of robust routing algorithms that adapt ... Keywords: ad hoc networks, algorithms, clustering, design, management, mobile agents, routing, wireless networks

Mieso K. Denko

2003-09-01T23:59:59.000Z

338

Protection and Control of Active Distribution Networks and Microgrids.  

E-Print Network (OSTI)

??This thesis is mainly focused on (i) modeling and control of Electronically Coupled Distributed Energy Resources (EC-DERs) under severe network imbalances and transient incidents, and (more)

Zamani, Mohammad Amin

2012-01-01T23:59:59.000Z

339

Green Power Network: DOE/EPA Green Tags Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

to main content U.S. Department of Energy Energy Efficiency and Renewable Energy Green Power Network About the GPN Green Power Markets Buying Green Power Onsite Renewable...

340

Planning of distribution networks for medium voltage and low voltage.  

E-Print Network (OSTI)

??Determination of the placement and rating of transformers and feeders are the main objective of the basic distribution network planning. The bus voltage and the (more)

Ziari, Iman

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Phoebus: Network Middleware for Next-Generation Network Computing  

SciTech Connect

The Phoebus project investigated algorithms, protocols, and middleware infrastructure to improve end-to-end performance in high speed, dynamic networks. The Phoebus system essentially serves as an adaptation point for networks with disparate capabilities or provisioning. This adaptation can take a variety of forms including acting as a provisioning agent across multiple signaling domains, providing transport protocol adaptation points, and mapping between distributed resource reservation paradigms and the optical network control plane. We have successfully developed the system and demonstrated benefits. The Phoebus system was deployed in Internet2 and in ESnet, as well as in GEANT2, RNP in Brazil and over international links to Korea and Japan. Phoebus is a system that implements a new protocol and associated forwarding infrastructure for improving throughput in high-speed dynamic networks. It was developed to serve the needs of large DOE applications on high-performance networks. The idea underlying the Phoebus model is to embed Phoebus Gateways (PGs) in the network as on-ramps to dynamic circuit networks. The gateways act as protocol translators that allow legacy applications to use dedicated paths with high performance.

Martin Swany

2012-06-16T23:59:59.000Z

342

Implementing image processing applications on a real-time architecture  

E-Print Network (OSTI)

Abstract This paper presents three examples of realtime image processing applications that were implemented on a data- ow architecture developed at the ETCA. Low-level image processing is performed on a regular three-dimensional network of 1024 custom data- ow processors. Image features previously extracted in the low-level step are handled by a two-dimensional network of 12 general purpose processors. Fast prototyping of real-time image processing applications is achieved through a programming environment including a complete stream from functional programming speci cation to network con guration. A large class of algorithms can be implemented. Among them we describe a non-linear lter, a connected component labeling and a colored object tracking. Figure 1: The Functional Computer I.

G. Quenot; C. Coutelle; J. Serot; B. Zavidovique

1993-01-01T23:59:59.000Z

343

Enabling fuzzy technologies in high performance networking via an open FPGA-based development platform  

Science Conference Proceedings (OSTI)

Soft computing techniques and particularly fuzzy inference systems are gaining momentum as tools for network traffic modeling, analysis and control. Efficient hardware implementations of these techniques that can achieve real-time operation in high-speed ... Keywords: Computer networks, Congestion control, Field programmable gate arrays, Fuzzy inference, Network performance, Network traffic control, Queuing control

Federico Montesino Pouzols; Angel Barriga Barros; Diego R. Lopez; Santiago Snchez-Solano

2012-04-01T23:59:59.000Z

344

Implementation of a voice activity detection and comfort noise generation algorithm.  

E-Print Network (OSTI)

??This thesis is devoted to the investigation of effective implementations of a modified version of a well-established fixed-point data-dependent VAD-CNG algorithm of Nortel Networks. In (more)

Liang, Jing

2004-01-01T23:59:59.000Z

345

The APS control system network  

SciTech Connect

The APS accelerator control system is a distributed system consisting of operator interfaces, a network, and computer-controlled interfaces to hardware. This implementation of a control system has come to be called the {open_quotes}Standard Model.{close_quotes} The operator interface is a UNDC-based workstation with an X-windows graphical user interface. The workstation may be located at any point on the facility network and maintain full functionality. The function of the network is to provide a generalized communication path between the host computers, operator workstations, input/output crates, and other hardware that comprise the control system. The crate or input/output controller (IOC) provides direct control and input/output interfaces for each accelerator subsystem. The network is an integral part of all modem control systems and network performance will determine many characteristics of a control system. This paper will describe the overall APS network and examine the APS control system network in detail. Metrics are provided on the performance of the system under various conditions.

Sidorowicz, K.V.; McDowell, W.P.

1995-12-31T23:59:59.000Z

346

Optimal implementation of energy storage systems in power distribution networks.  

E-Print Network (OSTI)

??University of Minnesota M.S. thesis. June 2012. Major: Electrical Engineering. Advisors: S. Massoud Amin, Bruce F. Wollenberg. 1 computer file (PDF); xi, 107 pages, appendices (more)

Gantz, Jesse Martin

2012-01-01T23:59:59.000Z

347

IPv6 Implementation at a Network Service Provider  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy | Office of Science ESnet4 Backbone Topology Router node 10G link Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science...

348

Slip stacking experiments at Fermilab main injector  

SciTech Connect

In order to achieve an increase in proton intensity, Fermilab Main Injector will use a stacking process called ''slip stacking''. The intensity will be doubled by injecting one train of bunches at a slightly lower energy, another at a slightly higher energy, then bringing them together for the final capture. Beam studies have started for this process and we have already verified that, at least for a low beam intensity, the stacking procedure works as expected. For high intensity operation, development work of the feedback and feedforward systems is under way.

Kiyomi Koba et al.

2003-06-02T23:59:59.000Z

349

Addressing Policy and Logistical Challenges to smart grid Implementation:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

smart grid smart grid Implementation: eMeter Response to Department of Energy RFI Addressing Policy and Logistical Challenges to smart grid Implementation: eMeter Response to Department of Energy RFI eMeter is a smart grid software company that provides smart network application platform (SNAP) software to integrate smart meters and smart grid communications networks and devices with utility IT systems. eMeter also provides smart grid application software such as meter data management (MDM) and consumer engagement software. Being vendor-neutral toward all meter, hardware, and legacy utility software systems (e.g. CIS and Billing), eMeter has a unique, unbiased and global perspective on smart grid IT issues. Addressing Policy and Logistical Challenges to smart grid Implementation:

350

Social Networks Applied  

Science Conference Proceedings (OSTI)

Social networks have interesting properties. Building computational models of these networks can help us understand and exploit them. This issue's essays examine applications of these networks' properties. Keywords: social networks, ontology, Semantic Web, network topology, friend of a friend

Steffen Staab; Pedro Domingos; Peter Mika; Jennifer Golbeck; Li Ding; Tim Finin; Anupam Joshi; Andrzej Nowak; Robin R. Vallacher

2005-01-01T23:59:59.000Z

351

RadNet: Open network protocol for radiation data  

SciTech Connect

Safeguards instrumentation is increasingly being incorporated into remote monitoring applications. In the past, vendors of radiation monitoring instruments typically provided the tools for uploading the monitoring data to a host. However, the proprietary nature of communication protocols lends itself to increased computer support needs and increased installation expenses. As a result, a working group of suppliers and customers of radiation monitoring instruments defined an open network protocol for transferring packets on a local area network from radiation monitoring equipment to network hosts. The protocol was termed RadNet. While it is now primarily used for health physics instruments, RadNet`s flexibility and strength make it ideal for remote monitoring of nuclear materials. The incorporation of standard, open protocols ensures that future work will not render present work obsolete; because RadNet utilizes standard Internet protocols, and is itself a non-proprietary standard. The use of industry standards also simplifies the development and implementation of ancillary services, e.g. E-main generation or even pager systems.

Rees, B.; Olson, K. [Los Alamos National Lab., NM (United States); Beckes-Talcott, J.; Kadner, S.; Wenderlich, T.; Hoy, M.; Doyle, W. [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Koskelo, M. [Canberra Industries, Meriden, CT (United States)

1998-12-31T23:59:59.000Z

352

The cacheand-forward network architecture for efficient mobile content delivery services in the future internet  

E-Print Network (OSTI)

This paper presents a novel cache-and-forward (CNF) protocol architecture for mobile content delivery services in the future Internet. The CNF architecture can be implemented as an overlay on top of the Internet Protocol (IP), or as a clean slate protocol for next-generation networks. CNF is based on the concept of store-and-forward routers with large storage, providing for opportunistic delivery to occasionally disconnected mobile users and for in-network caching of content. The proposed CNF protocol uses reliable hop-by-hop transfer of large data files between CNF routers in place of an end-to-end transport protocol like TCP. This approach makes it possible to serve mobile users with intermittent connectivity, while also mitigating selfinterference problems which arise in multi-hop wireless scenarios. Hop-by-hop transport is similarly useful in wired networks where router storage can help to smooth out link congestion bottlenecks which arise in TCP/IP networks. A second key feature of the CNF protocol is the integration of addressbased and content-based routing to support various content delivery modes that take advantage of in-network storage. An overview of the CNF architecture and major protocol components is given, and preliminary performance evaluation results are summarized to validate the main design principles.

Sanjoy Paul; Roy Yates; Dipankar Raychaudhuri; Jim Kurose

2008-01-01T23:59:59.000Z

353

Life Cycle Management Sourcebooks Volume 9: Main Turbine Electro-Hydraulic Controls  

Science Conference Proceedings (OSTI)

EPRI is producing a series of Life Cycle Management Planning Sourcebooks, each compiling industry experience and data on aging degradation and historical performance for a specific type of system, structure, or component (SSC). This sourcebook provides information and guidance for implementing cost-effective life cycle management (LCM) planning for main turbine electro-hydraulic control (EHC) and overspeed protection systems.

2003-12-04T23:59:59.000Z

354

On Stability of Cellular Neural Networks  

Science Conference Proceedings (OSTI)

The main results about stability of cellular neural networks (CNNs) are reviewed. Some of them are extended and reformulated, with the purpose of providing to the CNN designer simple criteria for checking the stability properties. A particular emphasis ...

Pier Paolo-Civalleri; Marco Gilli

1999-11-01T23:59:59.000Z

355

Exploiting Social Networks for Sensor Data Sharing with SenseShare  

E-Print Network (OSTI)

and link people together Facebook allows you to create aapplication developers Facebook implemented an API to itsusing the social networks the Facebook users create. Problem

Schmid, Thomas; Srivastava, Mani B

2007-01-01T23:59:59.000Z

356

Secure naming in information-centric networks  

Science Conference Proceedings (OSTI)

In this paper, we present a secure naming system to locate resources in information-centric networks. The main goal is to allow secure content retrieval from multiple unknown or untrusted sources. The proposal uses a new, flexible naming scheme that ... Keywords: architecture, information networking, naming system

Walter Wong; Pekka Nikander

2010-11-01T23:59:59.000Z

357

Network Mobility Home Network Models  

E-Print Network (OSTI)

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited. Copyright Notice Copyright (C) The IETF Trust (2007). This paper documents some of the usage patterns and the associated issues when deploying a Home Network for Network Mobility (NEMO)enabled Mobile Routers, conforming to the NEMO Basic Support. The aim here is specifically to provide some examples of organization of the Home Network, as they were discussed in NEMO-related mailing

P. Thubert; Cisco Systems; R. Wakikawa; V. Devarapalli

2007-01-01T23:59:59.000Z

358

State Energy Program Assurances - Maine Governor Baldacci | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Energy Program Assurances - Maine Governor Baldacci State Energy Program Assurances - Maine Governor Baldacci Letter from Maine Governor Baldacci Rounds providing Secretary...

359

PP-43 Maine Electric Power Company, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Maine Electric Power Company, Inc. PP-43 Maine Electric Power Company, Inc. Presidential Permit authorizing Maine Electric Power Company, Inc. to construct, operate, and maintain...

360

EA-1792: University of Maine's Deepwater Offshore Floating Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's...

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

PP-32 Eastern Maine Electric Cooperative Inc | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Eastern Maine Electric Cooperative Inc PP-32 Eastern Maine Electric Cooperative Inc Presidential permit authorizing Eastern Maine Electric Cooperative Inc to construct, operate,...

362

High Performance Network Monitoring  

SciTech Connect

Network Monitoring requires a substantial use of data and error analysis to overcome issues with clusters. Zenoss and Splunk help to monitor system log messages that are reporting issues about the clusters to monitoring services. Infiniband infrastructure on a number of clusters upgraded to ibmon2. ibmon2 requires different filters to report errors to system administrators. Focus for this summer is to: (1) Implement ibmon2 filters on monitoring boxes to report system errors to system administrators using Zenoss and Splunk; (2) Modify and improve scripts for monitoring and administrative usage; (3) Learn more about networks including services and maintenance for high performance computing systems; and (4) Gain a life experience working with professionals under real world situations. Filters were created to account for clusters running ibmon2 v1.0.0-1 10 Filters currently implemented for ibmon2 using Python. Filters look for threshold of port counters. Over certain counts, filters report errors to on-call system administrators and modifies grid to show local host with issue.

Martinez, Jesse E [Los Alamos National Laboratory

2012-08-10T23:59:59.000Z

363

SOAJ Search : Main View : Deep Federated Search  

Office of Scientific and Technical Information (OSTI)

SOAJ Search SOAJ Search Search Powered By Deep Web Technologies New Search Preferences Powered by Deep Web Technologies HOME ABOUT ADVANCED SEARCH CONTACT US HELP Science Open Access Journals (SOAJ) Science Open Access Journals Main View This view is used for searching all possible sources. Additional Information Keyword: Title: Additional Information Author: Fields to Match: All Any Field(s) Additional Information Date Range: Beginning Date Range Pick Year 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 toEnding Date Range Pick Year 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 DWT Logo Search Clear All Help Simple Search Select All

364

Maine Public Service Co | Open Energy Information  

Open Energy Info (EERE)

Public Service Co Public Service Co Place Maine Utility Id 11522 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agricultural Produce Storage Rate (F) Commercial Backup and Maintenance Service-Primary (B) Commercial Backup and Maintenance Service-Secondary (B) Commercial Backup and Maintenance Service-Sub-Transmission(B) Commercial Backup and Maintenance Service-Transmission(B) Commercial General service (C) Commercial Large Power service - Primary-Time of use (E-P-T) Industrial

365

Intensity Limitations in Fermilab Main Injector  

SciTech Connect

The design beam intensity of the FNAL Main Injector (MI) is 3 x 10{sup 13} ppp. This paper investigates possible limitations in the intensity upgrade. These include the space charge, transition crossing, microwave instability, coupled bunch instability, resistive wall, beam loading (static and transient), rf power, aperture (physical and dynamic), coalescing, particle losses and radiation shielding, etc. It seems that to increase the intensity by a factor of two from the design value is straightforward. Even a factor of five is possible provided that the following measures are to be taken: an rf power upgrade, a {gamma}{sub t}-jump system, longitudinal and transverse feedback systems, rf feedback and feedforward, stopband corrections and local shieldings.

Chan, W.

1997-06-01T23:59:59.000Z

366

Definition: Synchrophasor Communications Network | Open Energy Information  

Open Energy Info (EERE)

Synchrophasor Communications Network Synchrophasor Communications Network Jump to: navigation, search Dictionary.png Synchrophasor Communications Network A communications network to transport the digital information from phasor measurement units (PMUs) to where the data will be used. Typically implemented using a private wide-area network (WAN), this network can be any digital transport system that offers acceptable security and availability. Functional requirements have been developed as part of the North American SynchroPhasor Initiative (NASPI) to provide for flexible, fast, vendor-agnostic, and secure communication of phasor measurements from data collection points to various levels of phasor data concentrators (PDCs) and phasor application use points.[1] Related Terms sustainability, fuel cell, smart grid

367

Homemaestro: Order from chaos in home networks  

E-Print Network (OSTI)

We present HomeMaestro, a distributed system for monitoring and instrumentation of home networks. HomeMaestro performs extensive measurements at the host level to infer application network requirements, and identifies networkrelated problems through time-series analysis. By sharing and correlating information across hosts in the home network, our system automatically detects and resolves contention over network resources among applications based on predefined policies. Finally, HomeMaestro implements a distributed virtual queue to enforce those policies by prioritizing applications without additional assistance from network equipment such as routers or access points. We outline the challenges in managing home networks, describe the design choices and architecture of our system, and highlight the performance of HomeMaestro components in typical home scenarios. 1.

Thomas Karagiannis; Elias Athanasopoulos; Christos Gkantsidis; Peter Key

2008-01-01T23:59:59.000Z

368

Implementing the National Broadband  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MEEKER COOPERATIVE LIGHT AND POWER-MINNESOTA MEEKER COOPERATIVE LIGHT AND POWER-MINNESOTA I. Introduction a. Identification/description of your company. Meeker Cooperative Light and Power (MCLP) is a non-profit electric cooperative serving 9120 consumers and is located in central Minnesota. The cooperative serves an area of approximately 1410 square miles. The geography varies from flat to moderate rolling hills with many lakes and wooded areas. For the most part the area is relatively sparsely populated. The average consumer density is less than five consumers per mile. All power purchases are from our cooperative power suppliers of Basin Electric Power COOP and Great River Energy (GRE). Overview of communications networks 1. 220 MHz radio point to point 2. 900 MHz MAS radio

369

Atoms of multistationarity in chemical reaction networks  

E-Print Network (OSTI)

Chemical reaction networks taken with mass-action kinetics are dynamical systems that arise in chemical engineering and systems biology. Deciding whether a chemical reaction network admits multiple positive steady states is to determine existence of multiple positive solutions to a system of polynomials with unknown coefficients. In this work, we consider the question of whether the minimal (in a precise sense) networks, which we propose to call `atoms of multistationarity,' characterize the entire set of multistationary networks. We show that if a subnetwork admits multiple nondegenerate positive steady states, then these steady states can be extended to establish multistationarity of a larger network, provided that the two networks share the same stoichiometric subspace. Our result provides the mathematical foundation for a technique used by Siegal-Gaskins et al. of establishing bistability by way of `network ancestry.' Here, our main application is for enumerating small multistationary continuous-flow stir...

Joshi, Badal

2011-01-01T23:59:59.000Z

370

Implementing the National Broadband  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Before the Before the Department of Energy Washington, D.C. 20585 In the Matter of Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities To Inform Federal Smart Grid Policy NBP RFI: Communications Requirements COMMENTS OF BALTIMORE GAS & ELECTRIC COMPANY I. Introduction BGE is the nation's oldest and most experienced utility company. It has met the energy needs of central Maryland for nearly 200 years. Today, it serves more than 1.2 million business and residential electric customers, and approximately 650,000 gas customers in an economically diverse, 2,300-square-mile area encompassing Baltimore City and all or part of ten central Maryland counties.

371

Environmental Implementation Plan  

SciTech Connect

The purpose of the Environmental Implementation Plan (EIP) is to show the current and future (five years) environmental plans from individual site organizations and divisions, as well as site environmental programs and initiatives which are designed to protect the environment and meet or exceed changing environmental/regulatory requirements. Communicating with site organizations, departments, and committees is essential in making the site's environmental-planning process work. The EIP gives the site the what, when, how, and why for environmental requirements. Through teamwork and proactive planning, a partnership for environmental excellence is formed to achieve the site vision for SRS to become the recognized model for Environmental Excellence in the Department of Energy's Nuclear Weapons Complex.

Not Available

1993-03-15T23:59:59.000Z

372

Environmental Implementation Plan  

SciTech Connect

The purpose of the Environmental Implementation Plan (EIP) is to show the current and future (five years) environmental plans from individual site organizations and divisions, as well as site environmental programs and initiatives which are designed to protect the environment and meet or exceed changing environmental/regulatory requirements. Communicating with site organizations, departments, and committees is essential in making the site`s environmental-planning process work. The EIP gives the site the what, when, how, and why for environmental requirements. Through teamwork and proactive planning, a partnership for environmental excellence is formed to achieve the site vision for SRS to become the recognized model for Environmental Excellence in the Department of Energy`s Nuclear Weapons Complex.

1993-03-15T23:59:59.000Z

373

Environmental Implementation Plan  

SciTech Connect

The purpose of the Environmental Implementation Plan (EIP) is to show the current and future (five years) environmental plans from individual site organizations and divisions, as well as site environmental programs and initiatives which are designed to protect the environment and meet or exceed changing environmental/regulatory requirements. Communicating with site organizations, departments, and committees is essential in making the site's environmental-planning process work. The EIP gives the site the what, when, how, and why for environmental requirements. Through teamwork and proactive planning, a partnership for environmental excellence is formed to achieve the site vision for SRS to become the recognized model for Environmental Excellence in the Department of Energy's Nuclear Weapons Complex.

1993-03-15T23:59:59.000Z

374

Natural networks  

E-Print Network (OSTI)

Scale-free and non-computable characteristics of natural networks are found to result from the least-time dispersal of energy. To consider a network as a thermodynamic system is motivated since ultimately everything that exists can be expressed in terms of energy. According to the variational principle, the network will grow and restructure when flows of energy diminish energy differences between nodes as well as relative to nodes in surrounding systems. The natural process will yield scale-free characteristics because the nodes that contribute to the least-time consumption of free energy preferably attach to each other. Network evolution is a path-dependent and non-deterministic process when there are two or more paths to consume a common source of energy. Although evolutionary courses of these non-Hamiltonian systems cannot be predicted, many mathematical functions, models and measures that characterize networks can be recognized as appropriate approximations of the thermodynamic equation of motion that has been derived from statistical physics of open systems.

Tuomo Hartonen; Arto Annila

2011-06-21T23:59:59.000Z

375

Mercury concentrations in Maine sport fishes  

Science Conference Proceedings (OSTI)

To assess mercury contamination of fish in Maine, fish were collected from 120 randomly selected lakes. The collection goal for each lake was five fish of the single most common sport fish species within the size range commonly harvested by anglers. Skinless, boneless fillets of fish from each lake were composited, homogenized, and analyzed for total mercury. The two most abundant species, brook trout Salvelinus fontinalis and smallmouth bass Micropterus dolomieu, were also analyzed individually. The composite fish analyses indicate high concentrations of mercury, particularly in large and long-lived nonsalmonid species. Chain pickerel Esox niger, smallmouth bass, largemouth bass Micropterus salmoides, and white perch Morone americana had the highest average mercury concentrations, and brook trout and yellow perch Perca flavescens had the lowest. The mean species composite mercury concentration was positively correlated with a factor incorporating the average size and age of the fish. Lakes containing fish with high mercury concentrations were not clustered near known industrial or population centers but were commonest in the area within 150 km of the seacoast, reflecting the geographical distribution of species that contained higher mercury concentrations. Stocked and wild brook trout were not different in length or weight, but wild fish were older and had higher mercury concentrations. Fish populations maintained by frequent introductions of hatchery-produced fish and subject to high angler exploitation rates may consist of younger fish with lower exposure to environmental mercury and thus contain lower concentrations than wild populations.

Stafford, C.P. [Univ. of Maine, Orono, ME (United States); Haines, T.A. [Geological Survey, Orono, ME (United States)

1997-01-01T23:59:59.000Z

376

Foreign Obligations Implementation Status Presentation  

National Nuclear Security Administration (NNSA)

January 13, 2004 Crowne Plaza Ravinia Atlanta, January 13, 2004 Crowne Plaza Ravinia Atlanta, January 13, 2004 Crowne Plaza Ravinia Atlanta, Georgia Georgia Obligations Accounting Implementation Workshop Obligations Accounting Implementation Workshop Foreign Obligations Implementation Status Brian G. Horn U.S. Nuclear Regulatory Commission January 13, 2004 Obligations Accounting Implementation Workshop January 13, 2 Obligations Accounting Implementation Workshop January 13, 2004 Crowne Plaza Ravinia Atlanta, GA 004 Crowne Plaza Ravinia Atlanta, GA Overview of Meeting Overview of Meeting * Review how the Obligation Tracking System is working * Presentations: - Review of Government notification procedures - Establishment of the beginning Obligation Balances for sites

377

Underwater Sensor Network (UWSN) LabUnderwater Sensor Network (UWSN) Lab Demonstration of PCDemonstration of PC--based and DSPbased and DSP--basedbased  

E-Print Network (OSTI)

Underwater Sensor Network (UWSN) LabUnderwater Sensor Network (UWSN) Lab Demonstration--OFDM is one ultimate solution for highOFDM is one ultimate solution for high--datadata--raterate underwater acoustic communications!underwater acoustic communications! PC based implementationPC based implementation

Zhou, Shengli

378

Aging and functional brain networks  

SciTech Connect

Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the 'default-mode' network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis, we evaluated resting-state data sets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping (FCDM), a voxelwise and data-driven approach, together with parallel computing. Aging was associated with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that, in addition to the DMN, the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging.

Tomasi D.; Tomasi, D.; Volkow, N.D.

2011-07-11T23:59:59.000Z

379

Brookhaven Women Engineers' Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Home | Mission | Other links BWEN Brookhaven Women Engineers' Network BNLlogo Brookhaven Women Engineers' Network Network for professionals in engineering, computing and...

380

PDSF Network Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Statistics Network Activity Network Activity PDSF Network Uplinks to NERSC (dual 10 Gbps) NERSC Uplink to ESnet Last edited: 2011-03-31 22:20:59...

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Network Connections  

NLE Websites -- All DOE Office Websites (Extended Search)

Connecting to NERSC Using X Windows Connecting to NERSC with NX Transferring Data Network Performance Queues and Scheduling Job Logs & Analytics Training & Tutorials Software Accounts & Allocations Policies Data Analytics & Visualization Data Management Policies Science Gateways User Surveys NERSC Users Group User Announcements Help Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting http://help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home » For Users » Network Connections Network Connections NERSC's resources can be accessed using SSH and related tools, grid tools, and via the web. This section explains how to connect to NERSC

382

Barbados-Regional Implementation Plan for CARICOM's Climate Change  

Open Energy Info (EERE)

Barbados-Regional Implementation Plan for CARICOM's Climate Change Barbados-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Jump to: navigation, search Name Barbados-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development, Caribbean Community Climate Change Centre (CCCCC) Partner Caribbean Community Climate Change Centre (CCCCC), Caribbean Community Heads of State (CARICOM) Sector Climate, Energy, Land Topics Adaptation, Background analysis, Low emission development planning, -LEDS, Market analysis, Pathways analysis Website http://cdkn.org/project/planni Program Start 2009 Program End 2015 Country Barbados Caribbean References CDKN-CARICOM-A Regional Implementation Plan for CARICOM's Regional Climate Change Resilience Framework[1]

383

Suriname-Regional Implementation Plan for CARICOM's Climate Change  

Open Energy Info (EERE)

Suriname-Regional Implementation Plan for CARICOM's Climate Change Suriname-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Jump to: navigation, search Name Suriname-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development, Caribbean Community Climate Change Centre (CCCCC) Partner Caribbean Community Climate Change Centre (CCCCC), Caribbean Community Heads of State (CARICOM) Sector Climate, Energy, Land Topics Adaptation, Background analysis, Low emission development planning, -LEDS, Market analysis, Pathways analysis Website http://cdkn.org/project/planni Program Start 2009 Program End 2015 Country Suriname South America References CDKN-CARICOM-A Regional Implementation Plan for CARICOM's Regional Climate Change Resilience Framework[1]

384

Jamaica-Regional Implementation Plan for CARICOM's Climate Change  

Open Energy Info (EERE)

Jamaica-Regional Implementation Plan for CARICOM's Climate Change Jamaica-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Jump to: navigation, search Name Jamaica-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development, Caribbean Community Climate Change Centre (CCCCC) Partner Caribbean Community Climate Change Centre (CCCCC), Caribbean Community Heads of State (CARICOM) Sector Climate, Energy, Land Topics Adaptation, Background analysis, Low emission development planning, -LEDS, Market analysis, Pathways analysis Website http://cdkn.org/project/planni Program Start 2009 Program End 2015 Country Jamaica Caribbean References CDKN-CARICOM-A Regional Implementation Plan for CARICOM's Regional Climate Change Resilience Framework[1]

385

Guyana-Regional Implementation Plan for CARICOM's Climate Change  

Open Energy Info (EERE)

Guyana-Regional Implementation Plan for CARICOM's Climate Change Guyana-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Jump to: navigation, search Name Guyana-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development, Caribbean Community Climate Change Centre (CCCCC) Partner Caribbean Community Climate Change Centre (CCCCC), Caribbean Community Heads of State (CARICOM) Sector Climate, Energy, Land Topics Adaptation, Background analysis, Low emission development planning, -LEDS, Market analysis, Pathways analysis Website http://cdkn.org/project/planni Program Start 2009 Program End 2015 Country Guyana South America References CDKN-CARICOM-A Regional Implementation Plan for CARICOM's Regional Climate Change Resilience Framework[1]

386

Bahamas-Regional Implementation Plan for CARICOM's Climate Change  

Open Energy Info (EERE)

Bahamas-Regional Implementation Plan for CARICOM's Climate Change Bahamas-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Jump to: navigation, search Name Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development, Caribbean Community Climate Change Centre (CCCCC) Partner Caribbean Community Climate Change Centre (CCCCC), Caribbean Community Heads of State (CARICOM) Sector Climate, Energy, Land Topics Adaptation, Background analysis, Low emission development planning, Market analysis, Pathways analysis Website http://cdkn.org/project/planni Program Start 2009 Program End 2015 Country Bahamas Caribbean References CDKN-CARICOM-A Regional Implementation Plan for CARICOM's Regional Climate Change Resilience Framework[1]

387

Grenada-Regional Implementation Plan for CARICOM's Climate Change  

Open Energy Info (EERE)

Grenada-Regional Implementation Plan for CARICOM's Climate Change Grenada-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Jump to: navigation, search Name Grenada-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development, Caribbean Community Climate Change Centre (CCCCC) Partner Caribbean Community Climate Change Centre (CCCCC), Caribbean Community Heads of State (CARICOM) Sector Climate, Energy, Land Topics Adaptation, Background analysis, Low emission development planning, -LEDS, Market analysis, Pathways analysis Website http://cdkn.org/project/planni Program Start 2009 Program End 2015 Country Grenada Caribbean References CDKN-CARICOM-A Regional Implementation Plan for CARICOM's Regional Climate Change Resilience Framework[1]

388

Dominica-Regional Implementation Plan for CARICOM's Climate Change  

Open Energy Info (EERE)

Dominica-Regional Implementation Plan for CARICOM's Climate Change Dominica-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Jump to: navigation, search Name Dominica--Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development, Caribbean Community Climate Change Centre (CCCCC) Partner Caribbean Community Climate Change Centre (CCCCC), Caribbean Community Heads of State (CARICOM) Sector Climate, Energy, Land Topics Adaptation, Background analysis, Low emission development planning, -LEDS, Market analysis, Pathways analysis Website http://cdkn.org/project/planni Program Start 2009 Program End 2015 Country Dominica Caribbean References CDKN-CARICOM-A Regional Implementation Plan for CARICOM's Regional Climate Change Resilience Framework[1]

389

The AGS main magnet power supply upgrade  

SciTech Connect

The AGS Main Magnet Power Supply consists of a group of thyristor controlled power converters that operate from full rectify to full invert. In order to minimize ripple during the critical periods of injection and extraction 24 pulse converters are used for these portions of the cycle. The maximum voltage available in this mode is nominally 2,000 volts. The converters that are functional during this portion of the cycle are called the flat-top bank or ``F`` bank modules. During acceleration and invert where voltages of up to 12,000 volts are needed and where the ripple requirements are less stringent, groups of twelve pulse converters are operational. These converters are called the Pulsed bank or ``P`` bank modules. The original controlled rectifier system consisted of 96 large mercury filled excitron tubes divided equally between the P bank and F bank converters. These devices were extremely durable and ran successfully for over twenty years. It was, decided to replace the excitron farm with multiple arrangements of three-phase, full-wave, bridge modules that utilize silicon controlled rectifiers (SCR`s or thyristors) as the switching element. In order to match the existing transformer connections and buswork, eight identical modules were required; four for the P bank system and four for the F bank system. In order to reduce noise pickup and provide electrical isolation the high level SCR gate triggers are provided via fiberoptic cable. The status of various parameters such as water flow, auxiliary power supply performance, trigger circuitry failure, over voltage, overcurrent, and loss of phase reference are monitored via a programmable logic controller (PLCs). The PLCs use isolated input and output modules for various voltage levels from TTL to 150 Vdc to 125 Vac. These devices are extremely flexible and have allowed modifications and improvements that have enhanced the performance over any equivalent hard wired system.

Sandberg, J.N.; Casella, R.; Geller, J.; Marneris, I.; Soukas, A.; Schumburg, N.

1995-05-01T23:59:59.000Z

390

Challenges in Implementing Methodologies for Nonproliferation Assessments  

Science Conference Proceedings (OSTI)

A handful of models for explaining and predicting States development of nuclear weapons programs have been proposed since the 1970s. Despite the array of techno-social variables and computational concepts employed in these models, no model has yet been established as an agreed-upon standard. Likewise, the International Atomic Energy Agency (IAEA)one of the main institutions evaluating social, political, and technological information for assessments of States current nuclear capabilitiesuses only a qualitative framework by which to evaluate such information to assess the correctness and completeness of a States declaration. In this paper, analysts familiar with both the development of techno-social modelling and the IAEAs implementation of a safeguards system that is information driven discuss the challenges faced in the development, implementation, and evaluation of models and methodologies for nonproliferation assessments, based on experiences at Pacific Northwest National Laboratory (PNNL) and the IAEA.

Gastelum, Zoe N.; Dalton, Angela C.; Coles, Garill A.

2011-07-17T23:59:59.000Z

391

Science DMZ Implemented at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

ESnet Overview ESnet Staff Governance Our Network Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ CU Science DMZ Penn State & VTTI Science DMZ NOAA...

392

Poor man's social network: consistently trade freshness for scalability  

Science Conference Proceedings (OSTI)

Typical social networking functionalities such as feed following are known to be hard to scale. Different from the popular approach that sacrifices consistency for scalability, in this paper we describe, implement, and evaluate a method that can simultaneously ...

Zhiwu Xie; Jinyang Liu; Herbert Van De Sompel; Johann Van Reenen; Ramiro Jordan

2012-06-01T23:59:59.000Z

393

Encoding network-constrained travel trajectories using routing algorithms  

Science Conference Proceedings (OSTI)

This study proposes a generic encoder for network-constrained travel trajectories, and it implements two encoders by combining the proposed generic encoder with two routing algorithms, which reduce the size of a travel trajectory's path along ...

Pablo Martinez Lerin; Daisuke Yamamoto; Naohisa Takahashi

2013-03-01T23:59:59.000Z

394

A Framework for IP Based Virtual Private Networks  

Science Conference Proceedings (OSTI)

This document describes a framework for Virtual Private Networks (VPNs) running across IP backbones. It discusses the various different types of VPNs, their respective requirements, and proposes specific mechanisms that could be used to implement each ...

B. Gleeson; A. Lin; J. Heinanen; G. Armitage; A. Malis

2000-02-01T23:59:59.000Z

395

Embedding a middleware for networked hardware and software objects  

Science Conference Proceedings (OSTI)

In this paper we present a novel approach to the design of ubiquitous computing environments based on an ultra low-cost implementation of standard distributed object middlewares suitable for networked hardware and software components of the system. We ...

David Villa; Felix Jess Villanueva; Francisco Moya; Fernando Rincn; Jess Barba; Juan Carlos Lpez

2006-05-01T23:59:59.000Z

396

Fuzzy ART neural network parallel computing on the GPU  

Science Conference Proceedings (OSTI)

Graphics Processing Units (GPUs) have evolved into powerful programmable processors, faster than Central Processing Units (CPUs) regarding the execution of parallel algorithms. In this paper, an implementation of a Fuzzy ART Neural Network on the GPU ...

Mario Martnez-Zarzuela; Francisco Javier Daz Pernas; Josél Fernando Dez Higuera; Mriam Antn Rodrguez

2007-06-01T23:59:59.000Z

397

Environmental Implementation Plan  

SciTech Connect

The Environmental Implementation Plan (EIP) is a dynamic long-range environmental-protection plan for SRS. The EIP communicates the current and future (five year) environmental plans from individual organizations and divisions as well as site environmental initiatives which are designed to protect the environment and meet or exceed compliance with changing environmental/ regulatory requirements. Communication with all site organizations is essential for making the site environmental planning process work. Demonstrating environmental excellence is a high priority embodied in DOE and WSRC policy. Because of your support and participation in the three EIP initiatives; Reflections, Sectional Revision, and Integrated Planning, improvements are being made to the EIP and SRS environmental protection programs. I appreciate the ``Partnership in Environmental Excellence`` formed by the environmental coordinators and professionals who work daily toward our goal of compliance and environmental excellence. I look forward to seeing continued success and improvement in our environmental protection programs through combined efforts of all site organizations to protect our employees, the public health, and the environment. Together, we will achieve our site vision for SRS to be the recognized model for Environmental Excellence in the DOE Nuclear Weapons Complex.

1994-02-01T23:59:59.000Z

398

Home Area Network Performance and Reliability  

Science Conference Proceedings (OSTI)

In current deployments, the in-meter communications interface between a utilitys advanced metering infrastructure (AMI) system and a consumers home area network (HAN) could be a critical link for the implementation of retail energy services. The reliability of communications across this interface will affect the overall customer experience and may impact the value of these services. This report examines technologies currently being used in North America and elsewhere to implement that link narrowband and...

2010-12-31T23:59:59.000Z

399

E-print Network : Main View : Search Results for Title: "Cosmic...  

Office of Scientific and Technical Information (OSTI)

Search: Title: "Cosmic Calibration" Did you mean ? Create new alert from this search New Search | My Selections (0) | | | | Alerts | Source Status Activity Indicator 0 top results...

400

E-print Network : Main View : Search Results for Full Record...  

Office of Scientific and Technical Information (OSTI)

Search: Full Record: "gamma ray bursts" Did you mean ? Create new alert from this search New Search | My Selections (0) | | | | Alerts | Source Status Activity Indicator 0 top...

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Implementing the National Broadband  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STEELE-WASECA COOPERATIVE ELECTRIC STEELE-WASECA COOPERATIVE ELECTRIC I. Introduction a. Identification/description of your company. Steele-Waseca Cooperative Electric is a distribution cooperative that mainly serves the rural area of the three counties of Rice, Steele, and Waseca in southwestern Minnesota. Some of Steele-Waseca Cooperative Electric's service territory also exists in the surrounding counties of Blue Earth, Dodge, Faribault, Freeborn and Le Sueur. With headquarters in Owatonna, MN, Steele-Waseca Cooperative Electric serves 9,583 members. The majority of the members served are in rural, agricultural areas though there are residential areas in Steele-Waseca Cooperative Electric territory in the bedroom communities of Medford and Lonsdale. Industrial and commercial

402

Implementing the National Broadband  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AVISTA CORPORATION AVISTA CORPORATION I. Introduction Founded in 1889, Avista engages in energy production, transmission and distribution, as well as other energy-related activities. An investor-owned utility (New York Stock Exchange ticker symbol: AVA) with annual revenues of more than $1.5 billion, Avista provides electric service to 356,000 customers and natural gas to 316,000 customers in a service territory of more than 30,000 square miles. We serve those customers with a mix of hydro, natural gas, coal, biomass, wind and other generation delivered over 2,600 miles of transmission line, 17,800 miles of distribution lines and 7,600 miles of natural gas distribution mains. Avista is headquartered in Spokane, Washington, and our nearly 1,600 employees work in

403

Agent-based policy-enabled network management architecture for mobile ad hoc networks  

Science Conference Proceedings (OSTI)

We describe in this paper a novel design of a network management architecture that incorporates both agent and policy technologies. The conceptual model, main components, and various transports employed in this architecture are discussed. We believe ...

Ritu Chadha; Cho-Yu Jason Chiang; Mike Little; Sunil Samtani

2003-10-01T23:59:59.000Z

404

Implementation of an Integrated Energy Information System in a Large University Campus  

E-Print Network (OSTI)

This paper describes the design, installation and implementation of an integrated energy information system at the central plant, auxiliary utility plants, and selected buildings at the University of New Mexico in Albuquerque. The Comprehensive Integrated Metering and Monitoring System (CIMMS) at the University of New Mexico collects electricity, natural gas, chilled water and steam energy consumption and production data. The CIMMS project was implemented to develop baseline energy consumption measurements and provide the ability to evaluate and improve energy system performance through data analysis and control systems. Prior to implementation of CIMMS, the campus had only two main electric meters and no way to collect detailed steam, chilled water or natural gas consumption data. CIMMS was implemented by Square D in association with New Horizon Technologies and the Energy Systems Laboratory at Texas A&M University. As installed, CIMMS included 28 Square D Power Logic Circuit Monitors with on-board data logging, true RMS metering, ANSI C12.16 revenue accuracy, sag/swell and harmonic power quality analysis and field installable modules for Ethernet, on-board alarming and programmable logic. The system also included six Power Logic Power Meters and System Manager Software (SMS). Another key element of CIMMS is the integration of mechanical metering. Twenty Modicon Momentum Programmable Logic Controllers were networked with the Circuit monitors and collect more than 120 thermal energy data points from utility natural gas meters and campus natural gas, steam and chilled water sub-meters. Square D's SMS is the primary communication and data collection software that is used for integrating MODBUS devices, uploading onboard logs, storing historical data logs and pictorially displaying real-time data. EnerTel software, developed by eComponents Technology, Inc., overlays the SMS database to create historical data views, load profiles, utility cost estimates and custom reports. The CIMMS software generates numerous automated custom reports including a campus energy balance with electricity, steam and chilled water subsystems, steam and chilled water production and consumption reports and individual facility or building energy production and consumption reports. This paper will focus on the design, installation and implementation challenges associated with a large, state-of-the-art energy information system. Key aspects of CIMMS that will be highlighted in this paper include the following: Turn-key project ownership Proven technology (Commercial, Off-the-Shelf) Industry standard, open system network protocols Reliance on the existing campus Ethernet TCP/IP backbone fiber optic network Requirement of 48 hours of on-board data-logging capability at the device level to provide security from network disruption Integration of legacy electronic Watt metering equipment into CIMMS Extensive data analysis and reporting software requirements Capability for integration with future building automation system (BAS).

McBride, J. R.; Schuster, L.; Rickey, D.

2003-05-01T23:59:59.000Z

405

Saint Lucia-Regional Implementation Plan for CARICOM's Climate Change  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Saint Lucia-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Jump to: navigation, search Name Saint Lucia-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development, Caribbean Community Climate Change Centre (CCCCC) Partner Caribbean Community Climate Change Centre (CCCCC), Caribbean Community Heads of State (CARICOM) Sector Climate, Energy, Land Topics Adaptation, Background analysis, Low emission development planning, -LEDS, Market analysis, Pathways analysis Website http://cdkn.org/project/planni Program Start 2009

406

Networking support for underwater wireless networks.  

E-Print Network (OSTI)

?? Underwater wireless networks provide many opportunities for exploration, environmental monitoring, and military applications. Future growth of underwater networks seems promising as much of the (more)

Kredo, Kurtis B., II

2010-01-01T23:59:59.000Z

407

SERAPH implementation plans  

DOE Green Energy (OSTI)

The Solar Energy Research Institute (SERI) devotes a significant research effort to the application of solar technology in the industrial sector. It is well known that US industries consume a significant amount of energy, a large portion of which is required in a temperature range in which concentrating solar collectors work effectively. The SERAPH facility (Solar Energy Research and Applications in Process Heat) will provide at SERI the capability of addressing many of the technical issues that currently hamper industrial solar thermal energy system implementation. The primary building blocks of SERAPH are the solar delivery subsystem, control, and data acquisition subsystem (including sequencing and emergency supervision), energy distribution subsystem and two physical areas set aside for storage development and the introduction of load devices. Emphasis has been placed on creating a versatile test facility within which the solar industry can work with SERI in the development of solar systems that will be attractive to potential industrial users. SERAPH will have an initial capability of producing steam at a rate of 900 lb/h (410 kg/h) which corresponds to an energy delivery rate of 1.5 million Btu/h (1.6 x 10/sup 6/ kJ/h) at 430/sup 0/F (220/sup 0/C) with expansion capability to approximately 600/sup 0/F (315/sup 0/C). The initial system controls will be analog with supervisory and direct digital control to follow. The issues to be addressed at SERAPH will be computer predictive model validation and refinement, control strategy development, solar equipment evaluation, and the accumulation of operating and maintenance experience. A consistent theme throughout the planning and operation of SERAPH is the need to develop and follow practices that are consistent with conventional industrial operating procedures.

Castle, J.; Su, W.; Dougherty, D.A.; Wright, J.D.

1979-05-01T23:59:59.000Z

408

Supporting Advanced Communications Networks  

Science Conference Proceedings (OSTI)

... it will rely on revolutionary advances in network architecture. ... telemedicine), sensor and control networks (eg, Smart Grid, environmental monitoring ...

2012-02-13T23:59:59.000Z

409

Organizations and Networks | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Registered Technical and Research Organizations Networks Climate Eval "The website promotes active debate on areas relevant to evaluation of climate change and development evaluation by bringing relevant topics to a peer to peer discussion forum." Coordinated Low Emissions Assistance Network (CLEAN) CLEAN aims to improve communication and coordination by bringing together national and international organizations that are assisting developing countries with preparation and implementation of low greenhouse gas emission plans and strategies. This includes support for technology needs assessments, for low carbon and clean energy development plans, and for technology roadmaps and deployment programs. Renewable Energy Policy Network for the 21st Century (REN21)

410

A privilege management system for a secure network  

Science Conference Proceedings (OSTI)

Modern research projects may involve dozens of geographically distributed collaborators who access distributed information, applications workstations and devices. We are developing an architecture and methods for distributed, decentralized privilege ... Keywords: CEBAF, Chinese Institute of High Energy Physics, Continuous Electron Beam Accelerator Facility, DICCE project, Distributed Informatics Computing and Collaborative Environments project, ESnet, Internet, Old Dominion University, US Department of Energy's Energy Science Network, World Wide Web based interfaces, X-windows, authentication, authorisation, authorization, computer network management, design, distributed computing environment networks, distributed information, implementation, network interfaces, privilege management system, secure network

K. J. Maly; A. Gupta; B. Kvande; I. B. Levinstein; R. Mukkamala; M. Olson; R. Whitney; R. Chambers

1996-06-01T23:59:59.000Z

411

Predicting Geomagnetic Storms From Solar-Wind Data Using Time-Delay Neural Networks  

E-Print Network (OSTI)

. We have used time-delay feed-forward neural networks to compute the geomagnetic activity index D st one hour ahead from a temporal sequence of solar wind data. The input data includes solar-wind density n, velocity V and the southward component B z of the interplanetary magnetic field. D st is not included in the input data. The networks implement an explicit functional relationship between the solar wind and the geomagnetic disturbance, including both direct and time-delayed nonlinear relations. In this study we specially consider the influence of varying the temporal size of the input data sequence. The networks are trained on data covering 6600 h, and tested on data covering 2100 h. It is found that the initial and main phases of geomagnetic storms are well predicted, almost independent of the length of the inputdata sequence. However, to predict the recovery phase, we have to use up to 20 h of solar-wind input data. The recovery phase is mainly governed by the ring-current loss...

Gleisner Lundstedt; H. Gleisner; H. Lundstedt; P. Wintoft

1996-01-01T23:59:59.000Z

412

Energy efficient sensor node implementations  

Science Conference Proceedings (OSTI)

In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. ... Keywords: acoustic, distributed sensor network (dsn), dsp, fpga, seismic, vehicle classification, video

Jan R. Frigo; Eric Y. Raby; Sean M. Brennan; Christophe Wolinski; Charles Wagner; Francois Charot; Edward Rosten; Vinod K. Kulathumani

2010-02-01T23:59:59.000Z

413

Graceful network state migrations  

Science Conference Proceedings (OSTI)

A significant fraction of network events (such as topology or route changes) and the resulting performance degradation stem from premeditated network management and operational tasks. This paper introduces a general class of Graceful Network State Migration ... Keywords: communication system operations and management, computer network management, network maintenance, network upgrade

Saqib Raza; Yuanbo Zhu; Chen-Nee Chuah

2011-08-01T23:59:59.000Z

414

Network Economics Anna Nagurney  

E-Print Network (OSTI)

: · Transportation Networks ·the Internet · Financial Networks · Supply Chains ·Electric Power Generation power generation and distribution networks can be reformulated as transportation network equilibrium · Brief History of the Science of Networks · Interdisciplinary Impact of Networks · User-Optimization vs

Nagurney, Anna

415

Former Worker Medical Screening Program Implementation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Worker Medical Screening Program Implementation Former Worker Medical Screening Program Implementation Program implementation focuses on four specific activities, which are:...

416

Electricity Policy Coordination and Implementation | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Implementation Electricity Policy Coordination and Implementation OE is laying the framework for a modern electricity system by contributing to the development and implementation...

417

NEPA Implementation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Implementation Implementation NEPA Implementation Selected documents providing guidance on the implementation of NEPA. September 7, 2012 OMB and CEQ Joint Memorandum on Environmental Collaboration and Conflict Resolution This Office of Management and Budget (OMB) and Council on Environmental Quality (CEQ) joint memorandum expands and builds on the November 28, 2005, Environmental Conflict Resolution (ECR) Memorandum, directing departments and agencies to increase the appropriate and effective use of third-party assisted environmental collaboration as well as environmental conflict resolution to resolve problems and conflicts that arise in the context of environmental, public lands, or natural resources issues, including matters related to energy, transportation, and water and land management.

418

Educational Technology| Leadership and Implementation.  

E-Print Network (OSTI)

?? The purpose of this study was to evaluate two important aspects of educational technology: leadership and implementation. The research conducted in this study aimed (more)

Galla, Anthony J.

2011-01-01T23:59:59.000Z

419

NMR implementations of Gauss sums  

E-Print Network (OSTI)

I describe the use of NMR experiments which implement Gauss sums as a method for factoring numbers and discuss whether this approach can be computationally useful.

Jonathan A. Jones

2008-07-10T23:59:59.000Z

420

IMPLEMENTATION GUIDANCE | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

detailed operational procedures used to implement the Department of Energy (DOE) Procedural Rules for the Assessment of Civil Penalties for Classified Information Security...

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Gateway:Coordinated Low Emissions Assistance Network (CLEAN) | Open Energy  

Open Energy Info (EERE)

(Redirected from Coordinated Low Emissions Assistance Network) (Redirected from Coordinated Low Emissions Assistance Network) Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve Coordinated Low Emissions Assistance Network (CLEAN) Featured CLEAN Reports Review of Networks and Platforms for Low Emission and Climate Compatible Development Planning LEDS networks and platforms rev (12-01-11).pdf Concepts on the Implementation Framework for the Climate Technology Center and Network under the UNFCCC CTCN Implementation Framework CLEAN paper.pdf Featured LEDS Event Outcomes LEDS Program Workshop CLEAN Expert Workshop Featured Partner Web Portals Click here to view LEDS-related portals Clean Energy Solutions Center ClimateTechWiki ESMAP Low Carbon Development Knowledge Products and E-Learning

422

Gateway:Coordinated Low Emissions Assistance Network (CLEAN) | Open Energy  

Open Energy Info (EERE)

Coordinated Low Emissions Assistance Network (CLEAN) Coordinated Low Emissions Assistance Network (CLEAN) (Redirected from CLEAN) Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve Coordinated Low Emissions Assistance Network (CLEAN) Featured CLEAN Reports Review of Networks and Platforms for Low Emission and Climate Compatible Development Planning LEDS networks and platforms rev (12-01-11).pdf Concepts on the Implementation Framework for the Climate Technology Center and Network under the UNFCCC CTCN Implementation Framework CLEAN paper.pdf Featured LEDS Event Outcomes LEDS Program Workshop CLEAN Expert Workshop Featured Partner Web Portals Click here to view LEDS-related portals Clean Energy Solutions Center ClimateTechWiki ESMAP Low Carbon Development Knowledge Products and E-Learning

423

Maine Electric Power Co, Inc | Open Energy Information  

Open Energy Info (EERE)

Maine Electric Power Co, Inc Jump to: navigation, search Name Maine Electric Power Co, Inc Place Maine Utility Id 11521 Utility Location Yes Ownership I NERC Location NPCC NERC...

424

A Protocol for Multimedia CDMA Personal Communication Networks  

Science Conference Proceedings (OSTI)

In this paper, a joint CDMA/TDMA protocol has been proposed for integrated video-phone/voice/data traffic in personal communication networks (PCN). The videophone service is implemented according to H.261 standard. The concept of dynamic boundary ... Keywords: CDMA, MAC, multimedia, personal communication networks, protocol

P. Xie; E. Gunawan; B. H. Soong; C. B. Soh

2000-09-01T23:59:59.000Z

425

HVAC Room Temperature Prediction Control Based on Neural Network Model  

Science Conference Proceedings (OSTI)

HVAC (Heating Ventilating &Air-conditioning) system is a nonlinear complex system with delay. It is very difficult to build a mathematical model of HVAC and implement model-based control. Since a BP (Back Propagation) neural network can fully approximate ... Keywords: BP neural network, predictive control, HVAC, least squares method

Shujiang Li, Shuang Ren, Xiangdong Wang

2013-01-01T23:59:59.000Z

426

A transmission line fault locator based on Elman recurrent networks  

Science Conference Proceedings (OSTI)

In this paper, a transmission line fault location model which is based on an Elman recurrent network (ERN) has been presented for balanced and unbalanced short circuit faults. All fault situations with different inception times are implemented on a 380-kV ... Keywords: Elman networks, Fault location, Transmission lines, Wavelet transform

Sami Ekici; Selcuk Yildirim; Mustafa Poyraz

2009-01-01T23:59:59.000Z

427

How to secure bluetooth-based pico networks  

Science Conference Proceedings (OSTI)

We have examined Bluetooth-based Pico-network (Piconet) applications in wireless computing and cellular devices and found an extensive number of "unexpected abuses", where the security expectations of the device owner can be violated. We have studied ... Keywords: Bluetooth, design flaws, implementation flaws, pico networks, security controls

Dennis K. Nilsson; Phillip A. Porras; Erland Jonsson

2007-09-01T23:59:59.000Z

428

Wellbore Integrity Network  

SciTech Connect

In this presentation, we review the current state of knowledge on wellbore integrity as developed in the IEA Greenhouse Gas Programme's Wellbore Integrity Network. Wells are one of the primary risks to the successful implementation of CO{sub 2} storage programs. Experimental studies show that wellbore materials react with CO{sub 2} (carbonation of cement and corrosion of steel) but the impact on zonal isolation is unclear. Field studies of wells in CO{sub 2}-bearing fields show that CO{sub 2} does migrate external to casing. However, rates and amounts of CO{sub 2} have not been quantified. At the decade time scale, wellbore integrity is driven by construction quality and geomechanical processes. Over longer time-scales (> 100 years), chemical processes (cement degradation and corrosion) become more important, but competing geomechanical processes may preserve wellbore integrity.

Carey, James W. [Los Alamos National Laboratory; Bachu, Stefan [Alberta Innovates

2012-06-21T23:59:59.000Z

429

Implementing a generic component-based framework for telecontrol applications  

Science Conference Proceedings (OSTI)

The rapid growth of telecontrol systems is one of the major trends in today's network-oriented community. The implementation of generic frameworks, consisting of reusable components that can form the basis for the development of such systems, is a necessity. ... Keywords: component-based systems, distributed control system (DCS), reusable software components, patterns and frameworks, supervisory control and data acquisition system (SCADA), telecontrol systems

Avraam N. Chimaris; George A. Papadopoulos

2007-08-01T23:59:59.000Z

430

Maine Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Maine Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Maine Natural Gas Pipeline and Distribution...

431

Maine Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Maine Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Maine Natural Gas Pipeline and Distribution Use (Million Cubic...

432

Androscoggin County, Maine ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Androscoggin County, Maine ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Androscoggin County, Maine ASHRAE Standard ASHRAE 169-2006 Climate...

433

Better Buildings: Workforce, Spotlight on Maine: Contractor Sales...  

NLE Websites -- All DOE Office Websites (Extended Search)

visit betterbuildings.energy.govneighborhoods. Spotlight on Maine: Contractor Sales Training Boosts Energy Upgrade Conversions When Efficiency Maine launched a new residential...

434

Maine Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Maine Natural Gas % of Total Residential - Sales (Percent) Maine Natural Gas % of Total Residential - Sales (Percent) Decade...

435

System and method for generating a relationship network  

DOE Patents (OSTI)

A computer-implemented system and process for generating a relationship network is disclosed. The system provides a set of data items to be related and generates variable length data vectors to represent the relationships between the terms within each data item. The system can be used to generate a relationship network for documents, images, or any other type of file. This relationship network can then be queried to discover the relationships between terms within the set of data items.

Franks, Kasian (Kensington, CA); Myers, Cornelia A. (St. Louis, MO); Podowski, Raf M. (Pleasant Hill, CA)

2011-07-26T23:59:59.000Z

436

Implementation Report: Energy Conservation Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

to Section 141 of the to Section 141 of the Energy Policy Act of 2005 U.S. Department of Energy February 2007 Table of Contents List of Acronyms .............................................................................................................. 3 Introduction ...................................................................................................................... 4 State of New York, et al. v. Bodman; and NRDC, Inc. et al v. Bodman ............................ 5 Multi-Year Schedule and Implementation Update..................................................... 6 Multi-Year Schedule....................................................................................................... 6 Implementation Update .................................................................................................. 9

437

Implementation Report: Energy Conservation Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Section 141 of the to Section 141 of the Energy Policy Act of 2005 U.S. Department of Energy February 2007 Table of Contents List of Acronyms .............................................................................................................. 3 Introduction ...................................................................................................................... 4 State of New York, et al. v. Bodman; and NRDC, Inc. et al v. Bodman ............................ 5 Multi-Year Schedule and Implementation Update..................................................... 6 Multi-Year Schedule....................................................................................................... 6 Implementation Update .................................................................................................. 9

438

Biofuel and Bioenergy implementation scenarios  

E-Print Network (OSTI)

Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André of this project are to provide structured and clear data on the availability and performance of biofuels

439

Molecular Implementation of Combinatory Computing  

E-Print Network (OSTI)

Molecular Implementation of Combinatory Computing for Nanostructure Synthesis and Control: Progress Molecular combinatory computing makes use of a small set of chemical re- actions that together have by several simulated nano-assembly applications, and discuss a possible molecular implementation in terms

MacLennan, Bruce

440

Implementing an Operator Excellence Program  

Science Conference Proceedings (OSTI)

This document is designed to offer power plant operations staff the essential elements that EPRI believes are necessary to effectively implement a successful Operator Excellence Program (OEP). The elements consist of the following: Creation of an OEP implementation team Project management considerations Blended training program considerations Qualification and certification considerations An effective quality assurance program

2002-12-29T23:59:59.000Z

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

IMPLEMENTATION TECHNIQUES FOR MAIN MEMORY DATABASE SYBTEMS Davvld J Dew& Randy H Kat62, Fra$i Olken3,  

E-Print Network (OSTI)

DE-AC66.76SFoOOO6,#W-74ObmC-46, 66d by the .4~ Porn O&6 d 6cidfic Ruurch under Grmt 6~0021 Penmsslon

Scheuermann, Peter

442

Introduction to T1/T3 Networking  

Science Conference Proceedings (OSTI)

From the Publisher:Here is a practical, solution-oriented guide to the capabilities, costs, and applications of rapidly proliferating T1/T3 networks. This book answers your questions about T1/T3 as it walks you through the entire analysis and implementation ...

Regis J. Bates; Bud Bates

1992-09-01T23:59:59.000Z

443

Water Quality Standards Implementation (Oklahoma) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Implementation (Oklahoma) Water Quality Standards Implementation (Oklahoma) Eligibility Agricultural Construction Fuel Distributor Industrial InstallerContractor Investor-Owned...

444

Wireless System Considerations When Implementing NERC Critical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wireless System Considerations When Implementing NERC Critical Infrastructure Protection Standards Wireless System Considerations When Implementing NERC Critical Infrastructure...

445

Robust Clock Synchronization Methods for Wireless Sensor Networks  

E-Print Network (OSTI)

Wireless sensor networks (WSNs) have received huge attention during the recent years due to their applications in a large number of areas such as environmental monitoring, health and traffic monitoring, surveillance and tracking, and monitoring and control of factories and home appliances. Also, the rapid developments in the micro electro-mechanical systems (MEMS) technology and circuit design lead to a faster spread and adoption of WSNs. Wireless sensor networks consist of a number of nodes featured in general with energy-limited sensors capable of collecting, processing and transmitting information across short distances. Clock synchronization plays an important role in designing, implementing, and operating wireless sensor networks, and it is essential in ensuring a meaningful information processing order for the data collected by the nodes. Because the timing message exchanges between different nodes are affected by unknown possibly time-varying network delay distributions, the estimation of clock offset parameters represents a challenge. This dissertation presents several robust estimation approaches of the clock offset parameters necessary for time synchronization of WSNs via the two-way message exchange mechanism. In this dissertation the main emphasis will be put on building clock phase offset estimators robust with respect to the unknown network delay distributions. Under the assumption that the delay characteristics of the uplink and the downlink are asymmetric, the clock offset estimation method using the bootstrap bias correction approach is derived. Also, the clock offset estimator using the robust Mestimation technique is presented assuming that one underlying delay distribution is mixed with another delay distribution. Next, although computationally complex, several novel, efficient, and robust estimators of clock offset based on the particle filtering technique are proposed to cope with the Gaussian or non-Gaussian delay characteristics of the underlying networks. One is the Gaussian mixture Kalman particle filter (GMKPF) method. Another is the composite particle filter (CPF) approach viewed as a composition between the Gaussian sum particle filter and the KF. Additionally, the CPF using bootstrap sampling is also presented. Finally, the iterative Gaussian mixture Kalman particle filter (IGMKPF) scheme, combining the GMKPF with a procedure for noise density estimation via an iterative mechanism, is proposed.

Lee, Jae Han

2010-08-01T23:59:59.000Z

446

Broadband accelerator control network  

SciTech Connect

A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AG) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating system has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel.

Skelly, J.; Clifford, T.; Frankel, R.

1983-01-01T23:59:59.000Z

447

Computational Intelligence: Concepts to Implementations  

Science Conference Proceedings (OSTI)

Russ Eberhart and Yuhui Shi have succeeded in integrating various natural and engineering disciplines to establish Computational Intelligence. This is the first comprehensive textbook, including lots of practical examples. -Shun-ichi Amari, RIKEN Brain ... Keywords: Artificial Intelligence, Neural Networks

Russell C. Eberhart

2007-08-01T23:59:59.000Z

448

Applying Grounded Theory to Understand Software Process Improvement Implementation  

Science Conference Proceedings (OSTI)

Recent studies show that many organizations struggle to implement Software Process Improvement (SPI) based on process models and standards mainly because of incapacity to overcome critical barriers, such as lack of motivation and higher management support. ... Keywords: Grounded Theory, Software Process Improvement (SPI)

Mariano Angel Montoni; Ana Regina Rocha

2010-09-01T23:59:59.000Z

449

A survey of UNI signaling systems and protocols for ATM networks  

Science Conference Proceedings (OSTI)

The main aspect covered by signaling systems and protocols for ATM networks concerns the possibility to manage, maintain, and control a user-driven communication between arbitrary ATM end-systems connected to an ATM network. The tasks and procedures ...

Burkhard Stiller

1995-04-01T23:59:59.000Z

450

Alternative Fuels Data Center: Maine Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maine Laws and Maine Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Maine. Your Clean Cities coordinator at

451

Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Shuttle Propane Buses Shuttle Visitors in Maine to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Google Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Delicious Rank Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on AddThis.com... Oct. 13, 2012 Propane Buses Shuttle Visitors in Maine W atch how travelers in Bar Harbor, Maine, rely on propane-powered shuttle buses. For information about this project, contact Maine Clean Communities.

452

Maine's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Maine's 1st congressional district: Energy Resources Maine's 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Maine. Contents 1 US Recovery Act Smart Grid Projects in Maine's 1st congressional district 2 Registered Energy Companies in Maine's 1st congressional district 3 Registered Financial Organizations in Maine's 1st congressional district 4 Utility Companies in Maine's 1st congressional district US Recovery Act Smart Grid Projects in Maine's 1st congressional district Central Maine Power Company Smart Grid Project Registered Energy Companies in Maine's 1st congressional district Ascendant Energy Company Inc Criterium Engineers International WoodFuels LLC

453

Alternative Fuels Data Center: Maine Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maine Points of Maine Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Maine Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Maine Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Maine Points of Contact on Google Bookmark Alternative Fuels Data Center: Maine Points of Contact on Delicious Rank Alternative Fuels Data Center: Maine Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Maine Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Points of Contact The following people or agencies can help you find more information about Maine's clean transportation laws, incentives, and funding opportunities.

454

CafNet : a carry-and-forward delay-tolerant network  

E-Print Network (OSTI)

In this thesis, I designed and implemented a delay-tolerant network stack that allows applications to send messages to other network nodes when no end-to-end connectivity is present. CafNet, the Carry-and-Forward Network, ...

Chen, Kevin W. (Kevin William)

2007-01-01T23:59:59.000Z

455

Modeling and evaluation of ring-based interconnects for Network-on-Chip  

Science Conference Proceedings (OSTI)

A popular network topology for Network-on-Chip (NoC) implementations is the two-dimensional mesh, which has its drawbacks in the communication latency scalability, and the concentration of the traffic in the center of the mesh. In this paper, we consider ... Keywords: Hierarchical ring, Interconnect topologies, Mesh, Modeling, Network-on-Chip, SystemC

Stephan Bourduas; Zeljko Zilic

2011-01-01T23:59:59.000Z

456

Automated Recurrent Neural Network Design of a Neural Controller in a Custom Power Device  

Science Conference Proceedings (OSTI)

A general purpose implementation of the Tabu Search metaheuristic, called Universal Tabu Search, is used to optimally design a Locally Recurrent Neural Network architecture. Indeed, the design of a neural network is a tedious and time consuming trial ... Keywords: custom power protection device, neural controller, recurrent neural networks, universal Tabu Search

B. Cannas; G. Celli; A. Fanni; F. Pilo

2001-05-01T23:59:59.000Z

457

SensorScope: Application-specific sensor network for environmental monitoring  

Science Conference Proceedings (OSTI)

SensorScope is a turnkey solution for environmental monitoring systems, based on a wireless sensor network and resulting from a collaboration between environmental and network researchers. Given the interest in climate change, environmental monitoring ... Keywords: Architecture, deployment, environmental monitoring, implementation, wireless sensor network

Franois Ingelrest; Guillermo Barrenetxea; Gunnar Schaefer; Martin Vetterli; Olivier Couach; Marc Parlange

2010-02-01T23:59:59.000Z

458

Experiences from a wireless sensor network deployment in a petroleum environment  

Science Conference Proceedings (OSTI)

In this paper, we describe our experiences in the design, implementation and deployment of a wireless sensor network in a petroleum facility. A heterogeneous architecture is devised using Commercial Off-the-Shelf equipment and hardware interface is designed ... Keywords: embedded systems, heterogeneous networks, wireless sensor networks

Ian Johnstone; James Nicholson; Babar Shehzad; Jeff Slipp

2007-08-01T23:59:59.000Z

459

Regional Implementation Plan for CARICOM's Climate Change Resilience  

Open Energy Info (EERE)

(Redirected from CDKN-CARICOM-Trinidad and Tobago-A Regional Implementation (Redirected from CDKN-CARICOM-Trinidad and Tobago-A Regional Implementation Plan for CARICOM's Regional Climate Change Resilience Framework) Jump to: navigation, search Name Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development, Caribbean Community Climate Change Centre (CCCCC) Partner Caribbean Community Climate Change Centre (CCCCC), Caribbean Community Heads of State (CARICOM) Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, Market analysis, Pathways analysis Website http://cdkn.org/project/planni Program Start 2009 Program End 2015 Country Antigua and Barbuda, Bahamas, Barbados, Belize, Dominica, Grenada, Guyana, Haiti, Jamaica, Montserrat, Saint Lucia, Saint Vincent and the Grenadines, St. Kitts and Nevis, Suriname, Trinidad and Tobago

460

CDKN-CARICOM-A Regional Implementation Plan for CARICOM's Regional  

Open Energy Info (EERE)

CARICOM-A Regional Implementation Plan for CARICOM's Regional CARICOM-A Regional Implementation Plan for CARICOM's Regional Climate Change Resilience Framework Jump to: navigation, search Name CDKN-CARICOM-A Regional Implementation Plan for CARICOM's Regional Climate Change Resilience Framework Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development Partner Caribbean Community Climate Change Centre (CCCCC), Caribbean Community Heads of State (CARICOM) Sector Climate, Energy, Land Topics Background analysis, Market analysis, Pathways analysis Website http://cdkn.org/project/planni Program Start 2010 Country Antigua and Barbuda, The Bahamas, Barbados, Belize, Dominica, Grenada, Guyana, Haiti, Jamaica, Montserrat, Saint Lucia, St. Kitts and Nevis, St. Vincent and the Grenadines, Suriname, Trinidad and Tobago

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Advanced mobile networking, sensing, and controls.  

SciTech Connect

This report describes an integrated approach for designing communication, sensing, and control systems for mobile distributed systems. Graph theoretic methods are used to analyze the input/output reachability and structural controllability and observability of a decentralized system. Embedded in each network node, this analysis will automatically reconfigure an ad hoc communication network for the sensing and control task at hand. The graph analysis can also be used to create the optimal communication flow control based upon the spatial distribution of the network nodes. Edge coloring algorithms tell us that the minimum number of time slots in a planar network is equal to either the maximum number of adjacent nodes (or degree) of the undirected graph plus some small number. Therefore, the more spread out that the nodes are, the fewer number of time slots are needed for communication, and the smaller the latency between nodes. In a coupled system, this results in a more responsive sensor network and control system. Network protocols are developed to propagate this information, and distributed algorithms are developed to automatically adjust the number of time slots available for communication. These protocols and algorithms must be extremely efficient and only updated as network nodes move. In addition, queuing theory is used to analyze the delay characteristics of Carrier Sense Multiple Access (CSMA) networks. This report documents the analysis, simulation, and implementation of these algorithms performed under this Laboratory Directed Research and Development (LDRD) effort.

Feddema, John Todd; Kilman, Dominique Marie; Byrne, Raymond Harry; Young, Joseph G.; Lewis, Christopher L.; Van Leeuwen, Brian P.; Robinett, Rush D. III; Harrington, John J.

2005-03-01T23:59:59.000Z

462

Implementing controlled languages in GF  

Science Conference Proceedings (OSTI)

This paper introduces GF, Grammatical Framework, as a tool for implementing controlled languages. GF provides a high-level grammar formalism and a resource grammar library that make it easy to write grammars that cover similar fragments in several natural ...

Krasimir Angelov; Aarne Ranta

2009-06-01T23:59:59.000Z

463

Oracle Essbase 9 Implementation Guide  

Science Conference Proceedings (OSTI)

Develop high-performance multidimensional analytic OLAP solutions with Oracle Essbase Build multidimensional Essbase database cubes and develop analytical Essbase applicationsStep-by-step instructions with expert tips from installation to implementationCan ...

Joseph Sydney Gomez; Sarma Anantapantula

2009-06-01T23:59:59.000Z

464

Migrating Interface Implementation to Aspects  

Science Conference Proceedings (OSTI)

Separation of concerns and modularization are the cornerstones of software engineering. However, when a system is decomposed into units, functionalities often emerge which cannot be assigned to a single element of the decomposition. The implementation ...

Paolo Tonella; Mariano Ceccato

2004-09-01T23:59:59.000Z

465

ARM - Expectations for Campaign Implementation  

NLE Websites -- All DOE Office Websites (Extended Search)

govField CampaignsExpectations for Campaign Implementation Schedule and Availability Preproposals now open for AMF and AAF Preproposals due 01 Feb Invited full proposals due 01 May...

466

IEC 61850 Implementation and Transition  

Science Conference Proceedings (OSTI)

This IEC 61850 Implementation and Transition survey report summarizes results of an EPRI survey designed to understand adoption and usage of IEC 61850 within utilities as of 2011. Implementing IEC 61850 within a utility is not necessarily easy or straightforward. While transitioning electromechanical relays to microprocessors is a relatively straightforward process, taking advantage of the entire suite of benefits enabled by IEC-61850-enabled devices is another matter altogether. Utilities have to consid...

2011-12-06T23:59:59.000Z

467

Enterprise Service Bus Implementation Profile  

Science Conference Proceedings (OSTI)

The purpose of this report is to define an implementation profile for International Electrotechnical Commission (IEC) 61968 using technologies commonly found on an Enterprise Service Bus (ESB). More specifically, this document describes how message payloads defined by parts 3 through 9 of IEC 61968 are conveyed using Web Services and the Java Message Service (JMS). The goal is to provide details that are sufficient to enable implementations of IEC 61968 to be interoperable.

2009-04-30T23:59:59.000Z

468

Simulation of a VPN implementation based on MPLS protocol, a case study: VPN-MPLS for MSN-AT  

Science Conference Proceedings (OSTI)

In this paper, we present the implementation of a Virtual Private Network (VPN) using a Multi-Protocol Label Switching (MPLS) protocol. Because this protocol is very promising, economically and technologically, we have adopted it as the basic protocol ... Keywords: MPLS, VPN, network, protocol, security

N. Djenane; A. Benaouda; S Harous

2009-12-01T23:59:59.000Z

469

Sandia's Network for Supercomputer `96: Linking Supercomputers in a Wide Area Asynchronous Transfer Mode (ATM) Network  

E-Print Network (OSTI)

The advanced networking department at Sandia National Laboratories has used the annual Supercomputing conference sponsored by the IEEE and ACM for the past several years as a forum to demonstrate and focus communication and networking developments. At Supercomputing 96, for the first time, Sandia National Laboratories, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory combined their Supercomputing 96 activities within a single research booth under the ASCI banner. Sandia provided the network design and coordinated the networking activities within the booth. At Supercomputing 96, Sandia elected: to demonstrate wide area network connected Massively Parallel Processors, to demonstrate the functionality and capability of Sandia's new edge architecture, to demonstrate inter-continental collaboration tools, and to demonstrate ATM video capabilities. This paper documents those accomplishments, discusses the details of their implementation, and describes how these dem...

Thomas Pratt Luis; Luis G. Martinez; Thomas V. Archuleta

1997-01-01T23:59:59.000Z

470

The Geothermal Progress Monitor: Design and Implementation  

DOE Green Energy (OSTI)

The Geothermal Progress Monitor (GPM) is an information system that links the various elements of the public and private sectors of the geothermal industry. The monitoring effort emphasizes the identification and analysis of indicators of what the main participants in geothermal energy utilization--field developers, energy users and government agencies--are doing to foster the discovery, confirmation and use of this resource. The major indicators considered both important and measurable are leasing activities, drilling efforts, feasibility studies, construction plans and progress, costs of installations, levels of investment, environmental study and regulatory activities, legislative status and changes, and government monetary investments in projects and activities. The GPM is unique in that it is a network, a process, a project staff and a product. As a process, the GPM identifies, acquires stores, tabulates, analyzes and reports on the information obtained through its network structure. The GPM project staff maintains the other aspects of the GPM and in particular produces pertinent analyses and responds to queries by providing information or directing the requestors to the appropriate sources. Finally, the GPM is a periodic report which summarizes activities, status and trends in the geothermal industry.

Entingh, D.J.; Lopez, A.F.; Neham, E.A.

1981-02-01T23:59:59.000Z

471

Network Programming with Perl  

Science Conference Proceedings (OSTI)

From the Book:The network is everywhere. At the office, machines are wired together into local area networks, and the local networks are interconnected via the Internet. At home, personal computers are either intermittently connected to the Internet, ...

Lincoln Stein

2000-12-01T23:59:59.000Z

472

Science-Driven Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Science-Driven Network Requirements for ESnet Update to the 2002 Office of Science Networking Requirements Workshop Report February 21, 2006 1-1 Science-Driven Network Requirements...

473

Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemptions to someone by E-mail Exemptions to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Exemptions The list below contains summaries of all Maine laws and incentives related

474

Alternative Fuels Data Center: Maine Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for EVs The list below contains summaries of all Maine laws and incentives related to EVs. State Incentives

475

Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Biodiesel The list below contains summaries of all Maine laws and incentives related

476

Maine Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Recovery Act State Memo Maine Recovery Act State Memo Maine Recovery Act State Memo Maine has substantial natural resources, including wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Maine are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind. Through these investments, Maine's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Maine to play an important role in the new energy economy of the future. Maine Recovery Act State Memo More Documents & Publications Slide 1 District of Columbia Recovery Act State Memo

477

Alternative Fuels Data Center: Maine Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Other The list below contains summaries of all Maine laws and incentives related

478

Consolidated Edison Sol Inc (Maine) | Open Energy Information  

Open Energy Info (EERE)

Consolidated Edison Sol Inc (Maine) Jump to: navigation, search Name Consolidated Edison Sol Inc Place Maine Utility Id 4191 References EIA Form EIA-861 Final Data File for 2010 -...

479

Hess Retail Natural Gas and Elec. Acctg. (Maine) | Open Energy...  

Open Energy Info (EERE)

Maine) Jump to: navigation, search Name Hess Retail Natural Gas and Elec. Acctg. Place Maine Utility Id 22509 References EIA Form EIA-861 Final Data File for 2010 - File220101...

480

Alternative Fuels Data Center: Maine Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives Listed below are the summaries of all current Maine laws, incentives, regulations, funding opportunities, and other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. You

Note: This page contains sample records for the topic "implementation network main" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Alternative Fuels Data Center: Maine Laws and Incentives for Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Grants to someone by E-mail Grants to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Grants The list below contains summaries of all Maine laws and incentives related