Powered by Deep Web Technologies
Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Comments of the Demand Response and Smart Grid Coalition on DOE...  

Broader source: Energy.gov (indexed) [DOE]

the Demand Response and Smart Grid Coalition on DOE's Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy...

2

Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical...  

Broader source: Energy.gov (indexed) [DOE]

Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company:...

3

Microsoft Word - SmartGrid - NRC Input to DOE Requestrvjcomments...  

Broader source: Energy.gov (indexed) [DOE]

Notices) Smart Grid Implementation Input - NRC Contact: Kenn A. Miller, Office of Nuclear Reactor Regulation, 301-415-3152 Comments relevant to the following two sections...

4

A Successful Implementation with the Smart Grid: Demand Response Resources  

E-Print Network [OSTI]

1 A Successful Implementation with the Smart Grid: Demand Response Resources Contribution of intelligent line switching, demand response resources (DRRs), FACTS devices and PMUs is key in the smart grid events as a result of voluntary load curtailments. Index Terms--Electricity Markets, Demand Response re

Gross, George

5

Implementing Production Grids for Science and Engineering  

E-Print Network [OSTI]

. Brooke2 , Randy Butler3 , David Foster4 , Mirco Mazzucato5 We examine experience accrued by those who-Champaign (USA), rbutler@ncsa.uiuc.edu 4 CERN LHC Computing Grid Project, david.foster@cern.ch 5 INFN

6

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WV DoE-NRCCE-APERC DRAFT February 16, 2009 1 West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Customer Complaints to WV PSC about Electric Power...

7

DOE: Support Implementation of EEOICPA  

Broader source: Energy.gov [DOE]

DOE’s primary role in the EEOICPA is to provide records to DOL, NIOSH and DOJ, to support claim processing, dose reconstruction and ultimately claim adjudication. The worker records provided by...

8

smart grid | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNLBuildingsScattering at JLab and LeadSensorssmart grid

9

Re: DOE Request for Information - Implementing the National Broadband...  

Broader source: Energy.gov (indexed) [DOE]

or "DOE") regarding the current and future communications requirements of utilities, including, but not limited to, the requirements of the Smart Grid, in an effort to...

10

Re: DOE Request for Information - Implementing the National Broadband...  

Broader source: Energy.gov (indexed) [DOE]

or "DOE") regarding the current and future communications requirements of utilities, including, but not limited to, the requirements of the Smart Grid in an effort to...

11

Comments of DRSG to DOE Smart Grid RFI: Addressing Policy and...  

Broader source: Energy.gov (indexed) [DOE]

DRSG to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Comments of DRSG to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges In light of the fact...

12

DOE Publishes Notice of Public Meeting for Smart Grid-connected...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Smart Grid-connected Buildings DOE Publishes Notice of Public Meeting for Smart Grid-connected Buildings April 8, 2014 - 9:30am Addthis DOE has published a notice of public...

13

Policy Flash 2014-40 Implementation of DOE O 580.1A, DOE Energy...  

Energy Savers [EERE]

4-40 Implementation of DOE O 580.1A, DOE Energy Personal Property Management Policy Flash 2014-40 Implementation of DOE O 580.1A, DOE Energy Personal Property Management Questions...

14

EV-Smart Grid Research & Interoperability Activities 2014 DOE...  

Broader source: Energy.gov (indexed) [DOE]

- Codes & Standards Support, Grid Connectivity R&D, International Cooperation and EV-Smart Grid Interoperability Center (funding began in FY 2013) Grid Integration * PEV J1772...

15

Galvin Electricity Initiative DOE RFI DOE RFI 2010-23251: Addressing...  

Broader source: Energy.gov (indexed) [DOE]

Galvin Electricity Initiative DOE RFI DOE RFI 2010-23251: Addressing Policy and Logistical Challenges to Smart Grid Implementation Galvin Electricity Initiative DOE RFI DOE RFI...

16

DOE: Quantifying the Value of Hydropower in the Electric Grid  

SciTech Connect (OSTI)

The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

None

2012-12-31T23:59:59.000Z

17

Microsoft Word - DOE Smart Grid RFI_APGA Comments 110110.doc  

Broader source: Energy.gov (indexed) [DOE]

of Energy 1000 Independence Avenue, SW, Room 8H033 Washington, D.C. 20585 RE: Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation, 75 Fed....

18

DOE Handbook: Implementing Activity-level Work Planning & Control...  

Broader source: Energy.gov (indexed) [DOE]

that Govern Activity-level Work Developing Good Practices and Lessons Learned Linking Safety Culture and the Effectiveness of WP&C Practices DOE Handbook: Implementing...

19

Implementation Guidance for the DOE Policy on Documentation and...  

Broader source: Energy.gov (indexed) [DOE]

To further transparency and openness in its implementation of the National Environmental Policy Act (NEPA), the Department of Energy (DOE) has established a policy requiring each...

20

Advancing Smart Grid Interoperability and Implementing NIST's Interoperability Roadmap  

SciTech Connect (OSTI)

The IEEE American National Standards project P2030TM addressing smart grid interoperability and the IEEE 1547 series of standards addressing distributed resources interconnection with the grid have been identified in priority action plans in the Report to NIST on the Smart Grid Interoperability Standards Roadmap. This paper presents the status of the IEEE P2030 development, the IEEE 1547 series of standards publications and drafts, and provides insight on systems integration and grid infrastructure. The P2030 and 1547 series of standards are sponsored by IEEE Standards Coordinating Committee 21.

Basso,T.; DeBlasio, R.

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

file://P:\\Smart Grid\\Smart Grid RFI Policy and Logistical Comme  

Broader source: Energy.gov (indexed) [DOE]

Docket: DOE-HQ-2010-0024 Policy and Logistical Challenges to Smart Grid Implementation Comment On: DOE-HQ-2010-0024-0001 Policy and Logistical Challenges to Smart Grid...

22

DOE Releases Maturity Model to Better Protect the Nation's Grid...  

Office of Environmental Management (EM)

the Nation's Grid from Cybersecurity Threats May 31, 2012 - 4:32pm Addthis The Electricity Subsector Cybersecurity Capability Maturity Model, which allows electric utilities...

23

Design and Implementation of Real-Time Off-Grid Detection Tool Based on FNET/GridEye  

SciTech Connect (OSTI)

Real-time situational awareness tools are of critical importance to power system operators, especially during emergencies. The availability of electric power has become a linchpin of most post disaster response efforts as it is the primary dependency for public and private sector services, as well as individuals. Knowledge of the scope and extent of facilities impacted, as well as the duration of their dependence on backup power, enables emergency response officials to plan for contingencies and provide better overall response. Based on real-time data acquired by Frequency Disturbance Recorders (FDRs) deployed in the North American power grid, a real-time detection method is proposed. This method monitors critical electrical loads and detects the transition of these loads from an on-grid state, where the loads are fed by the power grid to an off-grid state, where the loads are fed by an Uninterrupted Power Supply (UPS) or a backup generation system. The details of the proposed detection algorithm are presented, and some case studies and off-grid detection scenarios are also provided to verify the effectiveness and robustness. Meanwhile, the algorithm has already been implemented based on the Grid Solutions Framework (GSF) and has effectively detected several off-grid situations.

Guo, Jiahui [University of Tennessee, Knoxville (UTK); Zhang, Ye [University of Tennessee, Knoxville (UTK); Liu, Yilu [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Young II, Marcus Aaron [ORNL; Irminger, Philip [ORNL; Dimitrovski, Aleksandar D [ORNL; Willging, Patrick [U.S. Department of Energy

2014-01-01T23:59:59.000Z

24

Implementation and Characterization of Protein Folding on a Desktop Computational Grid  

E-Print Network [OSTI]

Implementation and Characterization of Protein Folding on a Desktop Computational Grid Is CHARMM such as protein folding, desktop grids could become viable alter- natives to clusters of PCs. In this paper, we present a prototype and discuss the viabil- ity of a protein folding application with CHARMM on the United

Taufer, Michela

25

Comments of Tendril Networks, Inc. on DOE Request for Information...  

Broader source: Energy.gov (indexed) [DOE]

Consumers and the Smart Grid: Data Access, Third Party Use and Privacy Comments of the Demand Response and Smart Grid Coalition on DOE's Implementing the National Broadband Plan...

26

On-grid PV implementation program. Phase I report, August 1994--January 1995  

SciTech Connect (OSTI)

Southern California Edison Company (Edison) is finalizing a Cooperative Agreement with the U.S. Department of Energy (DOE) to develop high value On-Grid applications for electricity from Photovoltaics (PV). Edison`s efforts are the result of Edison`s long-standing commitment to the pursuit of Renewable Energy. Edison has been a world leader in the development and use of PV. As the technology becomes more commercial, Edison has been actively seeking more applications for PV. After strenuous effort, Edison has now received approval to offer off-grid PV packages within its service territory. In addition, Edison has been very interested in finding high-value on-grid PV applications that may have the potential to become cost effective as PV applications increase and prices decline. Such high-value applications at Edison and other utilities will accelerate the price reductions, which in turn will increase the number of cost-effective applications, driving towards a market competitive with traditional sources of energy. Edison`s efforts build upon the work done by Pacific Gas & Electric (PG&E) at their Kerman substation, but goes much further than that effort. Edison submitted its original proposal to the DOE on June 30, 1993. A revised proposal was submitted on February 1, 1994, in response to a letter from the DOE`s Director of Solar Energy, Robert H. Annan. In a letter dated March 30, 1994, from Paul K. Kearns, Head of Contracting Activity for the DOE`s Golden Field Office, the DOE conditionally approved certain pre-award contract costs. The Cooperative Agreement with DOE was executed on August 16, 1994.

NONE

1994-11-29T23:59:59.000Z

27

US Nuclear Regulatory Commission Input to DOE Request for Information...  

Energy Savers [EERE]

US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart...

28

Using System Dynamics to Define, Study, and Implement Smart Control Strategies on the Electric Power Grid  

SciTech Connect (OSTI)

The United States electric power grid is the most complex and expansive control system in the world. Local generation control occurs at individual units based on response time and unit economics, larger regional control coordinates unit response to error conditions, and high level large-area regional control is ultimately administered by a network of humans guided by economic and resiliency related factors. Under normal operating conditions, the grid is a relatively slow moving entity that exhibits high inertia to outside stimuli, and behaves along repeatable diurnal and seasonal patterns. However, that paradigm is quickly changing because of the increasing implementation of renewable generation sources. Renewable generators by nature cannot be tightly controlled or scheduled. They appear like a negative load to the system with all of the variability associated with load on a larger scale. Also, grid-reactive loads (i.e. smart devices) can alter their consumption based on price or demand rules adding more variability to system behavior. This paper demonstrates how a systems dynamic modeling approach capable of operating over multiple time scales, can provide valuable insight into developing new “smart-grid” control strategies and devices needed to accommodate renewable generation and regulate the frequency of the grid.

Lyle G. Roybal; Robert F Jeffers

2013-07-01T23:59:59.000Z

29

A Run-Time Verification Framework for Smart Grid Applications Implemented on Simulation Frameworks  

SciTech Connect (OSTI)

Smart grid applications are implemented and tested with simulation frameworks as the developers usually do not have access to large sensor networks to be used as a test bed. The developers are forced to map the implementation onto these frameworks which results in a deviation between the architecture and the code. On its turn this deviation makes it hard to verify behavioral constraints that are de- scribed at the architectural level. We have developed the ConArch toolset to support the automated verification of architecture-level behavioral constraints. A key feature of ConArch is programmable mapping for architecture to the implementation. Here, developers implement queries to identify the points in the target program that correspond to architectural interactions. ConArch generates run- time observers that monitor the flow of execution between these points and verifies whether this flow conforms to the behavioral constraints. We illustrate how the programmable mappings can be exploited for verifying behavioral constraints of a smart grid appli- cation that is implemented with two simulation frameworks.

Ciraci, Selim; Sozer, Hasan; Tekinerdogan, Bedir

2013-05-18T23:59:59.000Z

30

A conceptual framework for the vehicle-to-grid (V2G) implementation Christophe Guille , George Gross  

E-Print Network [OSTI]

A conceptual framework for the vehicle-to-grid (V2G) implementation Christophe Guille Ã?, George Gross Department of Electrical and Computer Engineering, University of Illinois at Urbana

Gross, George

31

Grid Integration  

SciTech Connect (OSTI)

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

Not Available

2008-09-01T23:59:59.000Z

32

Re: DOE Request for Information - Implementing the National Broadband...  

Broader source: Energy.gov (indexed) [DOE]

the National Broadband Plan by Studying the Communications Requirements of Electric Utilities To Inform Federal Smart Grid Policy The Edison Electric Institute ("EEI"), on behalf...

33

Re: DOE Request for Information - Implementing the National Broadband...  

Broader source: Energy.gov (indexed) [DOE]

the National Broadband Plan by Studying the Communications Requirements of Electric Utilities To Inform Federal Smart Grid Policy (Federal RegisterVol.75, No.90Tuesday May 11,...

34

Re: DOE Request for Information - Implementing the National Broadband...  

Broader source: Energy.gov (indexed) [DOE]

the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy, which was published at 75 Federal Register...

35

New DOE Reports on Smart Grid Technologies Seek to Promote Innovation...  

Office of Environmental Management (EM)

policy issues raised by Smart Grid technologies that can promote innovation, cut costs for consumers and modernize our electrical grid. Each report completes a...

36

Senior Managers' Implementation Guide for Use with DOE O 450.1, Environmental Protection Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides a summary description of environmental management systems (EMSs) for DOE senior managers, including their responsibilities as they apply to the successful implementation of an Integrated Safety Management Systems/EMS and the expected benefits to be derived from such implementation. Canceled by DOE N 251.82.

2004-10-25T23:59:59.000Z

37

Microsoft Word - 10-DOE Plan v Alliance Implementation Strategy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

future Owners and End Users in mid- 2017. Schedule to proceed: - The DOE expects a cooperative agreement with a supplier in 2011 with COLA preparation September 2011 to...

38

EAC Recommendations for DOE Action Regarding Implementing Effective...  

Broader source: Energy.gov (indexed) [DOE]

Boards More Documents & Publications DOE Responses to EAC Work Products - June 2014 Cybersecurity Risk Management Process (RMP) Guideline - Final (May 2012) Electricity Advisory...

39

DOE Receives Responses on the Implementation of Large-Capacity...  

Broader source: Energy.gov (indexed) [DOE]

Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE Energy Star Testing...

40

The Modern Grid Initiative is a DOE-funded project managed by...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

McAdams Theory of grid modernization. This is final in a series of discussions on how different mindsets look at grid modernization. With four generation "X" and "Y" children...

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Modern Grid Initiative is a DOE-funded project managed by...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rainsuit Theory of grid modernization. This is third in a series of discussions on how different mindsets look at grid modernization. One of my past bosses used to share humorous...

42

Attachment 1: DOE Phased Retirement Implementation Plan Purpose...  

Broader source: Energy.gov (indexed) [DOE]

earning non-Federal income outside the 40 hours per pay period that the phased retiree is working in DOE other than normal conflict of interest and ethics regulations. Payroll...

43

Grid Interaction Tech Team, and International Smart Grid Collaboration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Team, and International Smart Grid Collaboration Grid Interaction Tech Team, and International Smart Grid Collaboration 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

44

Re: DOE Request for Information - Implementing the National Broadband  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More Documents &DOE.FTrans-AtlanticPlan by Empowering

45

Re: DOE Request for Information - Implementing the National Broadband  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More Documents &DOE.FTrans-AtlanticPlan by

46

Re: DOE Request for Information - Implementing the National Broadband  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More Documents &DOE.FTrans-AtlanticPlan byPlan by

47

Re: DOE Request for Information - Implementing the National Broadband  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More Documents &DOE.FTrans-AtlanticPlan byPlan byPlan

48

Re: DOE Request for Information - Implementing the National Broadband  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More Documents &DOE.FTrans-AtlanticPlan byPlan

49

Re: DOE Request for Information - Implementing the National Broadband  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More Documents &DOE.FTrans-AtlanticPlan byPlanPlan by

50

Re: DOE Request for Information - Implementing the National Broadband  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More Documents &DOE.FTrans-AtlanticPlan byPlanPlan

51

Institutional Controls Implementation Guide for Use with DOE P 454.1, Use of Institutional Controls  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides information to assist Department of Energy program and field offices in understanding what is necessary and acceptable for implementing the provisions of DOE P 454.1, Use of Institutional Controls. Certified 1-28-11.

2005-10-14T23:59:59.000Z

52

Letter to Mr. Podonsky from DOE and Contractor Attorneys' Association concerning 10 CFR 851 implementation issues, May 21, 2007  

Broader source: Energy.gov [DOE]

Memorandum to Mr. Podonsky from DOE and Contractor Attorneys' Association concerning 10 CFR 851 implementation issues, May 21, 2007

53

DOE NEPA Implementing Procedures: Final Rule (57 Fed Reg 15122) |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE ExercisesReserve |DepartmentSeptemberDepartment

54

DOE NEPA Implementing Procedures: Final Rule (61 Fed Reg 36222) |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE ExercisesReserve

55

DOE NEPA Implementing Procedures: Final Rule (61 Fed Reg 64603) |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE ExercisesReserveDepartment of Energy 64603)

56

PMEL contributions to the collaboration: SCALING THE EARTH SYSTEM GRID TO PETASCALE DATA for the DOE SciDACs Earth System Grid Center for Enabling Technologies  

SciTech Connect (OSTI)

Drawing to a close after five years of funding from DOE's ASCR and BER program offices, the SciDAC-2 project called the Earth System Grid (ESG) Center for Enabling Technologies has successfully established a new capability for serving data from distributed centers. The system enables users to access, analyze, and visualize data using a globally federated collection of networks, computers and software. The ESG softwareâ??now known as the Earth System Grid Federation (ESGF)â??has attracted a broad developer base and has been widely adopted so that it is now being utilized in serving the most comprehensive multi-model climate data sets in the world. The system is used to support international climate model intercomparison activities as well as high profile U.S. DOE, NOAA, NASA, and NSF projects. It currently provides more than 25,000 users access to more than half a petabyte of climate data (from models and from observations) and has enabled over a 1,000 scientific publications.

Hankin, Steve

2012-06-01T23:59:59.000Z

57

DOE-EPRI On-Line Monitoring Implementation Guidelines  

SciTech Connect (OSTI)

Industry and EPRI experience at several plants has shown on-line monitoring to be very effective in identifying out-of-calibration instrument channels or indications of equipment-degradation problems. The EPRI implementation project for on-line monitoring has demonstrated the feasability of on-line monitoring at several participating nuclear plants. The results have been very enouraging, and substantial progress is anticipated in the coming years.

E. Davis, R. Bickford

2003-01-02T23:59:59.000Z

58

DOE-EPRI On-Line Monitoring Implementation Guidelines  

SciTech Connect (OSTI)

OAK B139 Industry and EPRI experience at several plants has shown on-line monitoring to be very effective in identifying out-of-calibration instrument channels or indications of equipment-degradation problems. The EPRI implementation project for on-line monitoring has demonstrated the feasibility of on-line monitoring at several participating nuclear plants. The results have been very encouraging, and substantial progress is anticipated in the coming years.

E. Davis; R. Bickford

2003-01-02T23:59:59.000Z

59

Distribution Grid Integration  

Broader source: Energy.gov [DOE]

The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

60

A grid-level alkali liquid metal battery recycling process : design, implementation, and characterization  

E-Print Network [OSTI]

The application of liquid metal batteries for large scale grid-level energy storage is being enabled through the development of research conducted at the Massachusetts Institute of Technology (MIT) in 2006. A recycling ...

Thomas, Dale Arlington, III

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report  

SciTech Connect (OSTI)

The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate data sets. Its specific goals are to (1) provide an easy-to-use and secure web-based data access environment for data sets; (2) add value to individual data sets by presenting them in the context of other data sets and tools for comparative analysis; (3) address the specific requirements of participating organizations with respect to bandwidth, access restrictions, and replication; (4) ensure that the data are readily accessible through the analysis and visualization tools used by the climate research community; and (5) transfer infrastructure advances to other domain areas. For the ESGF, the U.S. Department of Energy's (DOE's) Earth System Grid Center for Enabling Technologies (ESG-CET) team has led international development and delivered a production environment for managing and accessing ultra-scale climate data. This production environment includes multiple national and international climate projects (such as the Community Earth System Model and the Coupled Model Intercomparison Project), ocean model data (such as the Parallel Ocean Program), observation data (Atmospheric Radiation Measurement Best Estimate, Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, etc.), and analysis and visualization tools, all serving a diverse user community. These data holdings and services are distributed across multiple ESG-CET sites (such as ANL, LANL, LBNL/NERSC, LLNL/PCMDI, NCAR, and ORNL) and at unfunded partner sites, such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing Centre, the National Aeronautics and Space Administration Jet Propulsion Laboratory, and the National Oceanic and Atmospheric Administration. The ESGF software is distinguished from other collaborative knowledge systems in the climate community by its widespread adoption, federation capabilities, and broad developer base. It is the leading source for present climate data holdings, including the most important and largest data sets in the global-climate community, and - assuming its development continues - we expect it to be the leading source for future climate data holdings as well. Recently, ESG-CET extended its services beyond data-file access and delivery to include more detailed information products (scientific graphics, animations, etc.), secure binary data-access services (based upon the OPeNDAP protocol), and server-side analysis. The latter capabilities allow users to request data subsets transformed through commonly used analysis and intercomparison procedures. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users seeking to understand, process, extract value from, visualize, and/or communicate it to others. This ongoing effort, though daunting in scope and complexity, will greatly magnify the value of numerical climate model outputs and climate observations for future national and international climate-assessment reports. The ESG-CET team also faces substantial technical challenges due to the rapidly increasing scale of climate simulation and observational data, which will grow, for example, from less than 50 terabytes for the last Intergovernmental Panel on Climate Change (IPCC) assessment to multiple Petabytes for the next IPCC assessment. In a world of exponential technological change and rapidly growing sophistication in climate data analysis, an infrastructure such as ESGF must constantly evolve if it is to remain relevant and useful. Regretfully, we submit our final report at the end of project funding. To continue to serve the climate-science community, we are

Williams, D N

2011-09-27T23:59:59.000Z

62

Implementation Guide for DOE Fire Protection and Emergency Services Programs for Use with DOE O 420.1B, Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide facilitates the implementation of requirements of DOE O 420.1B by providing an acceptable approach to meet the requirements for Fire Protection Programs. Cancels DOE G 440.1-5.

2007-09-27T23:59:59.000Z

63

DOE Nevada Operations Office Environmental Protection Implementation Plan, November 9, 1993--November 9, 1994  

SciTech Connect (OSTI)

DOE Order 5400.1, ``General Environmental Protection Program,`` established environmental protection program requirements, authorities, and responsibilities to assure that the Department of Energy (DOE) operations are in compliance with applicable federal, state, and local environmental protection laws and regulations, executive orders, and internal department policies. Chapter III of DOE Order 5400.1 required that each field organization prepare a plan for implementing the requirements of this order by no later than November 9, 1989, and update the plan annually. Therefore, the Department of Energy/Nevada Operations Office (DOE/NV) has prepared this fourth annual update of its Environmental Protection Implementation Plan (EPIP). The Order and corresponding guidances also require estimated budgetary resources necessary for implementation of the Order be identified in the Environmental Protection Implementation Plan. To satisfy this requirement, the estimated costs to effectuate necessary changes in existing programs or processes and to institute new programs or processes for compliance with the Order are provided in the following sections of this plan. The DOE/NV Assistant Manager for Environment, Safety, Security, & Health (AMESSH), in consultation with other organizations responsible for line management of plan implementation, is responsible for annual plan revisions.

Elle, D.R. [USDOE Nevada Operations Office, Las Vegas, NV (United States); Townsend, Y.E. [ed.; Latham, A.R.; Black, S.C. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (United States)

1993-11-01T23:59:59.000Z

64

Journal of Power Sources xxx (2005) xxxxxx Vehicle-to-grid power implementation: From stabilizing the  

E-Print Network [OSTI]

December 2004 Abstract Vehicle-to-grid power (V2G) uses electric-drive vehicles (battery, fuel cell fleet with the electric power system. The vehicle fleet has 20 times the power capacity, less than one for electric-drive vehicles used to provide power for several power markets. This arti- cle quantitatively

Firestone, Jeremy

65

Spatially-discretized high-temperature approximations and theirO(N) implementation on a grid  

SciTech Connect (OSTI)

We consider the problem of performing imaginary-time propagation of wavefunctions on a grid. We demonstrate that spatially-continuous high-temperature approximations can be discretized in such a way that their convergence order is preserved. Requirements of minimal computational work and reutilization of data then uniquely determine the optimal grid, quadrature technique, and propagation method. It is shown that the optimal propagation technique is O(N) with respect to the grid size. The grid technique is utilized to compare the Monte Carlo efficiency of the Trotter-Suzuki approximation against a recently introduced fourth-order high-temperature approximation, while circumventing the issue of statistical noise, which usually prevents such comparisons from being carried out. We document the appearance of a systematic bias in the Monte Carlo estimators that involve temperature differentiation of the density matrix, bias that is due to the dependence of the eigenvalues on the inverse temperature. This bias is negotiated more successfully by the short-time approximations having higher convergence order, leading to non-trivial computational savings.

Predescu, Cristian

2006-10-01T23:59:59.000Z

66

Implementation of battery energy storage system for the electricity grid in Singapore  

E-Print Network [OSTI]

The market of grid-level electricity storage is growing rapidly, with a predicted market value of 1.6 billion in 2012 and 8.3 billion in 2016. Electrochemical storages such as lead-acid, nickel-cadmium, sodium-sulfur and ...

Wu, Zhenqi, M. Eng. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

67

Status Update for Implementation of Best Available Technology per DOE Order 5400.5  

SciTech Connect (OSTI)

This report provides an update, as of July 1999, on the implementation of best available technology to control or eliminate radionuclide discharges to soil columns at facilities at the Idaho National Engineering and Environmental Laboratory in accordance with DOE Order 5400.5, ''Radiation Protection of the Public and Environment.'' The best available technology to reduce or eliminate radionuclide discharges to soil columns currently implemented by the different facilities appears to be generally effective. Therefore, the different facilities should continue their current best available technology approaches, and also implement the specific recommendations listed in this report for their respective facility.

C. A. Major

1999-07-01T23:59:59.000Z

68

Guidance for Developing and Implementing Institutional Controls for Long-Term Surveillance and Maintenance at DOE Legacy Management Sites  

Broader source: Energy.gov [DOE]

This guidance document is to help U.S. Department of Energy (DOE) Office of Legacy Management (LM) personnel understand what is necessary and acceptable for implementing the provisions of DOE...

69

The International Plan of Action for Sharks: How does national implementation measure up?  

E-Print Network [OSTI]

the original FAO guidelines. For comprehensiveness, additional management and conservation measures for sharksThe International Plan of Action for Sharks: How does national implementation measure up? Brendal a greater need for effective conservation measures. In 1999 the Food and Agriculture Organization (FAO

Myers, Ransom A.

70

Grid Storage and the Energy Frontier Research Centers | Department...  

Broader source: Energy.gov (indexed) [DOE]

Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

71

DOE Announces Awards for up to $11 Million for New Solar Energy Grid  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThirdPartnership | Department ofIntegration Systems |

72

Comments of Santiago Grijalva: High-Level Response to DOE RFI on Smart Grid  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart Grid RFI: Addressing Policy and Logistical Challenges

73

Smart Grid Outreach and Communication Strategy: Next Steps - EAC Recommendations for DOE (October 17, 2012)  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of Energy U.S. DepartmentCommitmentGovernmentSmart Cities - U.S.Smart Grid

74

Implementation Guide - Performance Indicators (Metrics ) for Use with DOE O 440.2B, Aviation Management and Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Guide provides information regarding specific provisions of DOE O 440.2B and is intended to be useful in understanding and implementing performance indicators (metrics) required by the Order. Cancels DOE G 440.2B-1. Canceled by DOE N 251.98.

2005-09-19T23:59:59.000Z

75

DOE Extends Deadline for Submission of Smart Grid RFI Reply Comments |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartnersDepartment DOE ESPC TASKAgenda DOE16 /Department of

76

An Exploration of Impacts of Wide-Scale Implementation of Net Zero-Energy Homes on the Western Grid  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory conducted a study on the impact of wide-scale implementation of net zero-energy homes (ZEHs) in the western grid. Although minimized via utilization of advanced building technologies, ZEHs still consume energy that must be balanced on an annual basis via self-generation of electricity, which is commonly assumed to be from rooftop photovoltaics (PV). This results in a ZEH having a significantly different electricity demand profile than a conventional home. Widespread implementation of ZEHs will cause absolute demand levels to fall compared to continued use of more conventional facilities; however, the shape of the demand profile will also change significantly. Demand profile changes will lead to changes in the hourly value of electric generation. With significant penetration of ZEHs, it can be expected that ZEHs will face time-of-day rates or real-time pricing that reflect the value of generation and use. This will impact the economics of ZEHs and the optimal design of PV systems for subsequent ZEHs.

Dirks, James A.

2010-07-01T23:59:59.000Z

77

The Impact of Wide-Scale Implementation of Net Zero-Energy Homes on the Western Grid  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory conducted a study on the impact of wide-scale implementation of net zero-energy homes (ZEHs) in the western grid. Although minimized via utilization of advanced building technologies, ZEHs still consume energy that must be balanced on an annual basis via self-generation of electricity which is commonly assumed to be from rooftop photovoltaics (PV). This results in a ZEH having a significantly different electricity demand profile than a conventional home. Wide-spread implementation of ZEHs will cause absolute demand levels to fall compared to continued use of more conventional facilities; however, the shape of the demand profile will also change significantly. Demand profile changes will lead to changes in the hourly value of electric generation. With significant penetration of ZEHs, it can be expected that ZEHs will face time of day rates or real time pricing that reflect the value of generation and use. This will impact the economics of ZEHs and the optimal design of PV systems for subsequent ZEHs.

Dirks, James A.

2010-08-16T23:59:59.000Z

78

DOE Provides $4.3 Million to Improve Reliability of the U.S. Electric Grid  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOEInfrastructureEnergy DOE Proposes|

79

Implementation of a low-cost smart grid device to prevent brownouts in village micro-hydro systems.  

E-Print Network [OSTI]

??Brownouts are a common problem in micro-hydro mini-grid systems due to the limited supply of power and the difficulty of restricting usage. The GridShare is… (more)

Quetchenbach, Thomas

2011-01-01T23:59:59.000Z

80

Preparing for Implementation of DOE O 435.1 at Hanford  

SciTech Connect (OSTI)

Implementation of a new DOE Order at a complex site like Hanford is not as simple as just stating that the Order is to be followed. There are contractual changes, interface adjustments and institutional obstacles to overcome that all must be properly analyzed and dealt with before the actual physical changes embodied in the new requirements can be put into practice. In planning for these changes associated with the new DOE 0 435.1 ''Radioactive Waste Management'', the Richland Operations Office (RL) of the U.S. Department of Energy is attempting to make an orderly and efficient transition to the new Order requirements. In so doing, RL is tasking the Management and Integration contractor for the Project Hanford Management Contract (PHMC) held by Fluor Daniel Hanford (FDH) to coordinate the planning and integration efforts necessary to ensure that resources needed to implement the new requirements are identified and plans for implementation completed within the first year after issuance of the Order. Implementation at Hanford is complicated not only by the relatively complex contract situation with the PHMC under FDH and its major subcontractors, the Environmental Remediation Contract (under Bechtel), and the Pacific Northwest National Laboratory (run by Battelle), but also by the newly created Office of River Protection (ORP) which reports directly to EM-1, and not to the Hanford site RL Manager. Despite the obstacles, however, Hanford is making a concerted effort to effectively implement the new requirements, while maximizing use of existing systems, processes and documentation. This paper describes the process and experiences Hanford has developed to accomplish this objective. The interested audience will include others involved in implementation of new DOE Order 435.1 and others interested in the workings of large federal installations such as Hanford. This paper concludes that through use of planning, communications and participation of involved parties, complex new requirements can be appropriately evaluated, analyzed and approaches for their implementation developed and successfully put into place. The approach taken by Hanford to accomplish this mission is set forth in this paper, and lessons learned along the way are described.

FRITZ, D.W.

2000-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Microsoft Word - DOCS-#287906-v1-National_Grid_Comments_on_DOE_RFI_#3.DOC  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE Tribal LeaderDE-OE0000660 Page 1June DELPHI

82

Microsoft Word - DOE Smart Grid RFI_APGA Comments 110110.doc  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE Tribal LeaderDE-OE0000660 Page 1JuneofSTATEMENT F ORMs.6

83

DOE Hosts Public Roundtable Discussion of Smart-Grid Data Access and  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese areDepartment ofPrivacy Issues |

84

DRSG Comments to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix DOE-STD-3009-2014ofOutline of Remarks ofDepartmentAgenda

85

Comments of the Demand Response and Smart Grid Coalition on DOE's  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codes andDepartment|CrowSpacePublic PowerImplementing

86

Local Government Implementation of Long-Term Stewardship at Two DOE Facilities  

SciTech Connect (OSTI)

The Department of Energy (DOE) is responsible for cleaning up the radioactive and chemical contamination that resulted from the production of nuclear weapons. At more than one hundred sites throughout the country DOE will leave some contamination in place after the cleanup is complete. In order to protect human health and the environment from the remaining contamination DOE, U.S. Environmental Protection Agency (EPA), state environmental regulatory agencies, local governments, citizens and other entities will need to undertake long-term stewardship of such sites. Long-term stewardship includes a wide range of actions needed to protect human health in the environment for as long as the risk from the contamination remains above acceptable levels, such as barriers, caps, and other engineering controls and land use controls, signs, notices, records, and other institutional controls. In this report the Environmental Law Institute (ELI) and the Energy Communities Alliance (ECA) examine how local governments, state environmental agencies, and real property professionals implement long-term stewardship at two DOE facilities, Losa Alamos National Laboratory and Oak Ridge Reservation.

John Pendergrass; Roman Czebiniak; Kelly Mott; Seth Kirshenberg; Audrey Eidelman; Zachary Lamb; Erica Pencak; Wendy Sandoz

2003-08-13T23:59:59.000Z

87

AUSTRIAN GRID AUSTRIAN GRID  

E-Print Network [OSTI]

AUSTRIAN GRID 1/18 AUSTRIAN GRID THE INITIAL VERSION OF SEE-GRID Document Identifier: AG-DA1c-1) #12;AUSTRIAN GRID 2/18 Delivery Slip Name Partner Date Signature From Károly Bósa RISC 31 See cover on page 3 #12;AUSTRIAN GRID 3/18 THE INITIAL VERSION OF SEE-GRID Karoly Bosa Wolfgang

88

Implementation Guide - Aviation Program Performance Indicators (Metrics) for use with DOE O 440.2B, Aviation Management And Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Guide provides information regarding Departmental expectations on provisions of DOE 440.2B, identifies acceptable methods of implementing Aviation Program Performance Indicators (Metrics) requirements in the Order, and identifies relevant principles and practices by referencing Government and non-Government standards. Canceled by DOE G 440.2B-1A.

2002-12-10T23:59:59.000Z

89

Smart Grid e-Forum | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Federal Smart Grid Task Force Smart Grid e-Forum Smart Grid e-Forum DOE conducted a series of Smart Grid E-Forums to discuss various issues surrounding Smart Grid including...

90

Data Management in the GridRPC GridRPC Data Management API  

E-Print Network [OSTI]

Data Management in the GridRPC Issues Conclusion GridRPC Data Management API Implementations, Le Mahec, Nakada GridRPC DM API: Implem. and Interop. Issues (1/13) #12;Data Management in the GridRPC Issues Conclusion Goal GridRPC DM types: Reminder 1 Data Management in the GridRPC Goal GridRPC DM types

Caniou, Yves

91

Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical...  

Broader source: Energy.gov (indexed) [DOE]

Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District Smart Grid RFI: Addressing Policy and...

92

Modern Grid Strategy: Enhanced GridLAB-D Capabilities Final Report  

SciTech Connect (OSTI)

GridLAB-D is a software simulation environment that was initially developed by the US Department of Energy (DOE) Office of Electricity (OE) for the purpose of enabling the effective analysis of emerging smart grid technologies. In order to achieve this goal GridLAB-D was developed using an open source approach with the intent that numerous people and organizations would contribute to the ongoing development. Because of the breadth and complexity of the emerging smart grid technologies the inclusion of multiple groups of developers is essential in order to address the many aspects of the smart grid. As part of the continuing Modern Grid Strategy (MGS) the Pacific Northwest National Laboratory (PNNL) has been tasked with developing an advanced set of GridLAB-D capabilities. These capabilities were developed to enable the analysis of complex use case studies which will allow for multi-disciplinary analysis of smart grid operations. The advanced capabilities which were developed include the implementation of an unbalanced networked power flow algorithm, the implementation of an integrated transmission and distribution system solver, and a set of use cases demonstrating the capabilities of the new solvers.

Schneider, Kevin P.; Fuller, Jason C.; Tuffner, Francis K.; Chen, Yousu

2009-09-09T23:59:59.000Z

93

Implementation Guide for Use with DOE O 450.1, Environmental Protection Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides background information, an overview of the integration process and guidance relating to the preliminary steps that DOE sites should undertake in order to meet the requirements of DOE O 450.1. Canceled by DOE N 251.96. Cancels DOE G 450.1-1.

2005-10-24T23:59:59.000Z

94

Addressing Policy and Logistical Challenges to smart grid Implementati...  

Broader source: Energy.gov (indexed) [DOE]

smart grid Implementation: eMeter Response to Department of Energy RFI Addressing Policy and Logistical Challenges to smart grid Implementation: eMeter Response to Department of...

95

Addressing Policy and Logistical Challenges to Smart Grid Implementati...  

Broader source: Energy.gov (indexed) [DOE]

Smart Grid Implementation: Federal Register Notice Volume 75, No. 180 - Sep. 17, 2010 Addressing Policy and Logistical Challenges to Smart Grid Implementation: Federal Register...

96

Addressing Policy and Logistical Challenges to Smart Grid Implementati...  

Broader source: Energy.gov (indexed) [DOE]

Smart Grid Implementation: Comments by the Office of the Ohio Consumers' Counsel Addressing Policy and Logistical Challenges to Smart Grid Implementation: Comments by the Office of...

97

Implementation Guide for Use with DOE O 450.1, Environmental Protection Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides background information, an overview of the integration process, and guidance relating to the preliminary steps that DOE sites should undertake to meet the requirements of DOE O 450.1.

2004-02-18T23:59:59.000Z

98

Accelerator Facility Safety Implementation Guide for DOE O 420.2C, Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This document is a guide to understanding and meeting the requirements of DOE O 420.2C, and shares lessons learned based on valuable experience within the community. Cancels DOE G 420.2-1.

2014-08-01T23:59:59.000Z

99

EconoGrid: A detailed Simulation Model of a Standards-based Grid Compute Economy  

E-Print Network [OSTI]

EconoGrid: A detailed Simulation Model of a Standards-based Grid Compute Economy EconoGrid is a detailed simulation model, implemented in SLX1 , of a grid compute economy that implements selected of users. In a grid compute economy, computing resources are sold to users in a market where price

100

Accelerator Facility Safety Implementation Guide for DOE O 420.2B, Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This document is an aid to understanding and meeting the requirements of DOE O 420.2B, Safety of Accelerator Facilities, dated 7/23/04. It does not impose requirements beyond those stated in that Order or any other DOE Order. No cancellation.

2005-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

P2Pro(RSM) : a computerized management tool for implementing DOE's authorized release process for radioactive scrap metals.  

SciTech Connect (OSTI)

Within the next few decades, several hundred thousand tons of metal and several million cubic meters of concrete are expected to be removed from nuclear facilities across the US Department of Energy (DOE) complex as a result of decontamination and decommissioning (D&D) activities. These materials, together with large quantities of tools, equipment, and other items that are commonly recovered from site cleanup or D&D activities, constitute non-real properties that warrant consideration for release from regulatory control for reuse or recycle, as permitted and practiced under current DOE policy. The provisions for implementing this policy are contained in the Draft Handbook for Controlling Release for Reuse or Recycle of Non-Real Property Containing Residual Radioactive Material published by DOE in 1997 and distributed to DOE Field Offices for interim use and implementation. This manual describes a computer management tool, P2Pro(RSM), that implements the first 5 steps of the 10-step process stipulated by the Handbook. P2Pro(RSM) combines an easy-to-use Windows interface with a comprehensive database to facilitate the development of authorized release limits for non-real property.

Arnish, J.; Chen, S. Y.; Kamboj, S.; Nieves, L.

1999-07-22T23:59:59.000Z

102

DOE Announces Public Meetings on the Communications Needs of Utilities and Smart-Grid Data Access and Privacy  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE) has long recognized the importance of incorporating broadband and other interactive communications technologies into ongoing efforts to modernize America’s electrical...

103

Accelerator Facility Safety Implementation Guide for DOE Order 420.2C, Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This is a guide to understanding and meeting the requirements of DOE Order 420.2C and shares lessons learned based on valuable experience within the community.

2013-08-30T23:59:59.000Z

104

Articles about Grid Integration and Transmission  

Broader source: Energy.gov [DOE]

Stories about grid integration and transmission featured by the U.S. Department of Energy (DOE) Wind Program.

105

Grid Connectivity Research, Development & Demonstration Projects...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Connectivity Research, Development & Demonstration Projects Grid Connectivity Research, Development & Demonstration Projects 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

106

Understanding The Smart Grid  

SciTech Connect (OSTI)

The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology providers involved in the Smart Grid and provides profiles on them including contact information, company overviews, technology reviews, and key Smart Grid activities.

NONE

2007-11-15T23:59:59.000Z

107

Transmission Grid Integration  

Broader source: Energy.gov [DOE]

The levels of solar energy penetration envisioned by the DOE SunShot Initiative must be interconnected effectively onto the transmission grid. This interconnection requires an in-depth...

108

EFFECTIVE IMPLEMENTATION OF DOE RESTART ORDERS AND STANDARDS FOR DEACTIVATION FACILITIES  

SciTech Connect (OSTI)

Building 9206 at the Y-12 National Security Complex has recently completed an Operational Readiness Review (ORR). The scope of the review covered the transition from a post operation surveillance and maintenance (S&M) mode to a deactivation mode. This process has generated several lessons learned that may be valuable to other Department of Energy (DOE) nuclear facilities.

Tindal, W.C.; Daniels, D.L.

2003-02-27T23:59:59.000Z

109

Implementation guide for use with suspect/counterfeit items: Requirements of DOE O 440.1, worker protection management; 10 CFR 830.120; and DOE 5700.6C, quality assurance  

SciTech Connect (OSTI)

Department of Energy (DOE) Order (O) 440.1, Worker Protection Management For DOE Federal and Contractors Employees, [7] sets forth requirements for DOE and its contractors to implement suspect and counterfeit items (S/CI) controls as part of the quality assurance (QA) programs required by 10 Code of Federal Regulations (CFR) 830.120 [8] or DOE 5700.6C, Quality Assurance [9]. DOE G-830.120, Implementation Guide for Use with 10 CFR Part 830.120, Quality Assurance, [10] provides additional guidance on establishing and implementing effective QA processes to control S/CIs. DOE O 232.1, Occurrence Reporting and Processing of Operations, [11] specifies requirements for reporting S/CIs under the DOE Occurrence Reporting and Processing System (ORPS). DOE promulgated the requirements and guidance to control or eliminate the hazards posed by S/CIs, which can lead to unexpected equipment failures and undue risks to the DOE mission, the environment, and personnel. This Guide is a compendium of information contained in the referenced DOE directives and other documents concerning S/CI controls. It incorporates, updates, and supersedes earlier guidance issued in Plan for the Suspect/Counterfeit Products Issue in the Department of Energy, dated October 1993, [4] and in memoranda issued by Defense Programs (DP) [12-16] and other DOE program offices. This guidance was developed to strengthen the procurement process, identify and eliminate S/CIs, and improve the reporting of S/CIs. The information in this Guide, when implemented by DOE and its contractors, will satisfy the S/CI requirements contained in the referenced DOE directives.

NONE

1997-06-01T23:59:59.000Z

110

Implementation Guide for Use with DOE O 460.1A, Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides information concerning the use of current principles and practices, including regulatory guidance from the U. S. Department of Transportation and the U. S. Nuclear Regulatory Commission, where available, to establish and implement effective packaging and transportation safety programs.

1997-06-05T23:59:59.000Z

111

DOE Provides up to $51.8 Million to Modernize the U.S. Electric Grid System  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOEInfrastructureEnergy DOE Proposes|Education|

112

Best Practices for HPSB Guiding Principles Implementation in Existing DOE Buildings  

SciTech Connect (OSTI)

The intent of this paper is to document an approach to screening existing buildings at DOE sites for High-Performance and Sustainable Buildings (HPSB) Guiding Principles (GPs) potential, developing policies and programs to address a majority of the HPSB GPs, and how to prioritize buildings with the greatest potential. This paper will also include example strategies for HPSB inventory and projection schedules and best practices on approaching and interpreting select criteria that have been troublesome to sites.

Henderson, Jordan W.

2014-05-06T23:59:59.000Z

113

Los Alamos National Laboratory DOE M441.1-1 implementation  

SciTech Connect (OSTI)

Loss of containment of nuclear material stored in containers such as food-pack cans, paint cans, or taped slip lid cans has generated concern about packaging requirements for interim storage of nuclear materials in working facilities such as the plutonium facility at Los Alamos National Laboratory (LANL). The Department of Energy (DOE) issued DOE M 441.1-1, Nuclear Materials Packaging Manual on March 7, 2008 in response to the Defense Nuclear Facilities Safety Board Recommendation 2005-1. The Manual directs DOE facilities to follow detailed packaging requirements to protect workers from exposure to nuclear materials stored outside of approved engineered-contamination barriers. Los Alamos National Laboratory has identified the activities that will be performed to bring LANL into compliance with DOE M 441.1-1. These include design, qualification and procurement of new containers, repackaging based on a risk-ranking methodology, surveillance and maintenance of containers, and database requirements. The primary purpose is to replace the out-dated nuclear material storage containers with more robust containers that meet present day safety and quality standards. The repackaging campaign is supported by an integrated risk reduction methodology to prioritize the limited resources to the highest risk containers. This methodology is systematically revised and updated based on the collection of package integrity data. A set of seven nested packages with built-in filters have been designed. These range in size from 1 qt. to 10 gallon. Progress of the testing to meet Manual requirements will be given. Due to the number of packages at LANL, repackaging to achieve full compliance will take five to seven years.

Worl, Laura A [Los Alamos National Laboratory; Veirs, D Kirk [Los Alamos National Laboratory; Smith, Paul H [Los Alamos National Laboratory; Yarbro, Tresa F [Los Alamos National Laboratory; Stone, Timothy A [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

114

Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage 2012 DOE...

115

Hydrogen Energy Storage for Grid and Transportation Services...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and Industry...

116

Presentation to the EAC - Smart Grid Subcommittee Work Plan Status...  

Broader source: Energy.gov (indexed) [DOE]

Electricity Advisory Committee Smart Grid Subcommittee Work Plan Status Joe Paladino - DOE Wanda Reder - EAC Smart Grid Sub- Committee Chair June 12, 2012 * Considerations: - Build...

117

Applications (Grid Tools)  

E-Print Network [OSTI]

Grid Fabric Software Grid Applications Core Grid Middleware User-Level Middleware (Grid Tools) !"# $ %& ' ( ) * #& + '& ' , - . / # ) ) 0 # * 1 PDB CDB Grid Fabric Hardware &+ '' + ) , '1 '1 ' % - * # ( Grid Fabric Software Grid Applications Core Grid Middleware User-Level Middleware (Grid Tools) !"# $ %& ' ( ) * #& + '& ' , - . / # ) ) 0

Buyya, Rajkumar

118

Implementation of an Integrated Information Management System for the US DOE Hanford Tank Farms Project  

SciTech Connect (OSTI)

In its role as the Tank Operations Contractor at the U.S. Department of Energy's site in Hanford, WA, Washington River Protection Solutions, LLC is implementing an integrated document control and configuration management system. This system will combine equipment data with technical document data that currently resides in separate disconnected databases. The new system will provide integrated information, enabling users to more readily identify the documents that relate to a structure, system, or component and vice-versa. Additionally, the new system will automate engineering work processes through electronic workflows, and where practical and feasible provide integration with design authoring tools. Implementation of this system will improve configuration management of the technical baseline, increase work process efficiencies, support the efficient design of future large projects, and provide a platform for the efficient future turnover of technical baseline data and information.

Joyner, William Scott [Washington River Protection Systems, Richland, WA (United States); Knight, Mark A. [Washington River Protection Systems, Richland, WA (United States)

2013-11-14T23:59:59.000Z

119

Microsoft Word - DM_VA-#126832-v3-Smart_Grid_Comments_--_DOE_--_Policy_and_Logistical_Challenges.DOC  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE Tribal LeaderDE-OE0000660 Page 1June DELPHI October

120

Status Update for Implementing Best Available Technology per DOE Order 5400.5  

SciTech Connect (OSTI)

This report documents the Bechtel BWXT Idaho, LCC, operated facilities at the Idaho National Engineering and Environmental Laboratory that require the Best Available Technology selection process in accordance with Department of Energy Order 5400.5, Chapter II (3), “Management and Control of Radioactive Materials in Liquid Discharges.”1 This report differs from previous reports in that only those liquid waste streams and facilities requiring the Best Available Technology selection process will be evaluated in detail. In addition, this report will be submitted to the DOE-ID Field Office Manager for approval in accordance with DOE Order 5400.5, Chapter II, Section 3.b.(1). The report also identifies facilities addressed in last year’s report that do not require the Best Available Technology selection process to be completed. These facilities will not be addressed in future reports. This report reviews the following facilities: • Auxiliary Reactor Area • Idaho National Engineering and Environmental Laboratory Block Areas • Central Facilities Area • Idaho Nuclear Technology and Engineering Center • Idaho Falls Facilities • Power Burst Facility • Radioactive Waste Management Complex • Test Area North • Test Reactor Area. Three facilities (Central Facilities Area Sewage Treatment Plant, Idaho Nuclear Technology and Engineering Center Percolation Ponds and Test Area North/Technical Support Facility Disposal Pond) at the Idaho National Engineering and Environmental Laboratory required documentation of the Best Available Technology selection process. The Idaho Nuclear Technology and Engineering Center Percolation Ponds and Test Area North/Technical Support Facility Disposal Pond discharge wastewater that may contain process-derived radionuclides to a soil column with average radionuclide concentrations below drinking water MCLs. At the request of the Department of Energy Idaho Operations Office, Bechtel BWXT Idaho, LLC has included the 73.5acre Central Facilities Area Sewage Treatment Plant land application site in Section 4 (Facilities Requiring BAT) of this report to ensure the requirements of DOE Order 5400.5, Chapter II, Section 3 are met. The Central Facilities Area Sewage Treatment Plant effluent may contain process-derived radionuclides. However, the average concentrations of these radionuclides are below MCLs.According to DOE guidance, “If the liquid waste stream is below MCLs, this indicates that the goals of the Best Available Technology selection process are being met and the liquid waste stream is considered clean water. However, it is necessary to document this through the Best Available Technology selection process”.

Lewis, Michael George

2001-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DOE Issues Two Notices Seeking Comment on the Implementation of Its  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese(NoticeStandards NOPR

122

Methodology to determine the technical performance and value proposition for grid-scale energy storage systems : a study for the DOE energy storage systems program.  

SciTech Connect (OSTI)

As the amount of renewable generation increases, the inherent variability of wind and photovoltaic systems must be addressed in order to ensure the continued safe and reliable operation of the nation's electricity grid. Grid-scale energy storage systems are uniquely suited to address the variability of renewable generation and to provide other valuable grid services. The goal of this report is to quantify the technical performance required to provide di erent grid bene ts and to specify the proper techniques for estimating the value of grid-scale energy storage systems.

Byrne, Raymond Harry; Loose, Verne William; Donnelly, Matthew K. [Montana Tech of The University of Montana, Butte, MT; Trudnowski, Daniel J. [Montana Tech of The University of Montana, Butte, MT

2012-12-01T23:59:59.000Z

123

Status Update for Implementing Best Available Technology per DOE Order 5400.5 (2003)  

SciTech Connect (OSTI)

This report identifies discharges of liquid waste streams that require documentation of the best available technology selection process at Bechtel BWXT Idaho, LLC, operated facilities at the Idaho National Engineering and Environmental Laboratory. The best available technology selection process is conducted according to Department of Energy Order 5400.5, Chapter II (3), “Management and Control of Radioactive Materials in Liquid Discharges and Phaseout of Soil Columns” and Department of Energy guidance. This report evaluates only those liquid waste streams and facilities where the best available technology selection process was determined to apply. Two facilities (Idaho Nuclear Technology and Engineering Center New Percolation Ponds and Test Area North/Technical Support Facility Sewage Treatment Plant Disposal Pond) at the Idaho National Engineering and Environmental Laboratory required documentation of the best available technology selection process. These two facilities required documentation of the best available technology selection process because they discharge wastewater that may contain process-derived radionuclides to a soil column even though the average radioactivity levels are typically below drinking water maximum contaminant levels. At the request of the Department of Energy Idaho Operations Office, the 73.5-acre Central Facilities Area Sewage Treatment Plant land application site is included in this report to ensure the requirements of DOE Order 5400.5, Chapter II, Section 3 are met. The Central Facilities Area Sewage Treatment Plant effluent contains process-derived radionuclides from radioactive tracers used in certain analytical procedures. The radioactivity levels of these radionuclides are below maximum contaminant levels. The Department of Energy Idaho Operations Office will submit this report to their field office manager for approval according to DOE Order 5400.5, Chapter II, Section 3.b.(1).

Michael Lewis

2004-09-01T23:59:59.000Z

124

DOE  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term Energy Outlook QuarterlyDOE

125

EAC Recommendations for DOE Action Regarding Consumer Acceptance...  

Energy Savers [EERE]

Consumer Acceptance of Smart Grid - June 6, 2013 EAC Recommendations for DOE Action Regarding Consumer Acceptance of Smart Grid - June 6, 2013 EAC Recommendations for DOE Action...

126

Status Update for Implementing Best Available Technology per DOE Order 5400.5  

SciTech Connect (OSTI)

This report identifies discharges of liquid waste streams that require documentation of the best available technology selection process at Bechtel BWXT Idaho, LLC, operated facilities at the Idaho National Engineering and Environmental Laboratory. The best available technology selection process is conducted according to Department of Energy Order 5400.5, Chapter II (3), ''Management and Control of Radioactive Materials in Liquid Discharges and Phaseout of Soil Columns'' and Department of Energy guidance. This report evaluates only those liquid waste streams and facilities where the best available technology selection process was determined to be applicable. In addition, the Department of Energy Idaho Operations Office will submit this report to their field office manager for approval according to DOE Order 5400.5, Chapter II, Section 3.b.(1). According to Department of Energy guidance, ''If the liquid waste stream is below maximum contaminant levels, then the goals of the best available technology selection process are being met and the liquid waste stream is considered 'clean water.' However, it is necessary to document this through the best available technology selection process.'' Because liquid waste streams below drinking water maximum contaminant levels are already considered ''clean water,'' additional treatment technologies are considered unnecessary and unjustifiable on a cost-benefit basis and are not addressed in this report. Two facilities (Idaho Nuclear Technology and Engineering Center New Percolation Ponds and Test Area North/Technical Support Facility Disposal Pond) at the Idaho National Engineering and Environmental Laboratory required documentation of the best available technology selection process (Section 4). These two facilities required documentation of the best available technology selection process because they discharge wastewater that may contain process-derived radionuclides to a soil column even though the average radioactivity levels are typically below drinking water maximum contaminant levels. At the request of the Department of Energy Idaho Operations Office, the 73.5-acre Central Facilities Area Sewage Treatment Plant land application site is included in Section 4 of this report to ensure the requirements of DOE Order 5400.5, Chapter II, Section 3 are met. The Central Facilities Area Sewage Treatment Plant effluent contains process-derived radionuclides from radioactive tracers used in certain analytical procedures. The radioactivity levels of these radionuclides are below maximum contaminant levels.

Michael G. Lewis

2003-09-01T23:59:59.000Z

127

Status Update for Implementing Best Available Technology per DOE Order 5400.5 - September 2002  

SciTech Connect (OSTI)

This report identifies discharges of liquid waste streams that require documentation of the Best Available Technology selection process at Bechtel BWXT Idaho, LLC, operated facilities at the Idaho National Engineering and Environmental Laboratory. The Best Available Technology selection process is conducted according to Department of Energy Order 5400.5, Chapter II (3),“Management and Control of Radioactive Materials in Liquid Discharges and Phaseout of Soil Columns” and Department of Energy guidance. Only those liquid waste streams and facilities requiring the Best Available Technology selection process are evaluated in further detail. In addition, this report will be submitted to the Department of Energy Idaho Operations Office Field Office manager for approval according to DOE Order 5400.5, Chapter II, Section 3.b.(1). Two facilities (Idaho Nuclear Technology and Engineering Center existing Percolation Ponds and Test Area North/Technical Support Facility Disposal Pond) at the Idaho National Engineering and Environmental Laboratory required documentation of the Best Available Technology selection process (Section 4). These two facilities required documentation of the Best Available Technology selection process because they discharge wastewater that may contain process-derived radionuclides to a soil column even though the average radioactivity levels are typically below drinking water maximum contaminant levels. At the request of the Department of Energy Idaho Operations Office, the 73.5-acre Central Facilities Area Sewage Treatment Plant land application site is included in Section 4 of this report to ensure the requirements of DOE Order 5400.5, Chapter II, Section 3 are met. The Central Facilities Area Sewage Treatment Plant effluent contains process-derived radionuclides from radioactive tracers used in certain analytical procedures. The radioactivity levels of these radionuclides are below maximum contaminant levels. According to Department of Energy guidance, “If the liquid waste stream is below maximum contaminant levels, then the goals of the Best Available Technology selection process are being met and the liquid waste stream is considered clean water. However, it is necessary to document this through the Best Available Technology selection process.” Because liquid waste streams below maximum contaminant levels are already considered “clean water,” additional treatment technologies are considered unnecessary and are not addressed in this report.

Lewis, Michael George

2002-09-01T23:59:59.000Z

128

Cybersecurity and the Smarter Grid (2014)  

Broader source: Energy.gov [DOE]

An article by OE’s Carol Hawk and Akhlesh Kaushiva in The Electricity Journal discusses cybersecurity for the power grid and how DOE and the energy sector are partnering to keep the smart grid reliable and secure.

129

Implementation Implementation  

E-Print Network [OSTI]

The SLP System: An Implementation of Super Logic Programs 1 The SLP System: An Implementation.09.2002 The SLP System: An Implementation of Super Logic Programs 4 SLP Interpreter (1) Negation Semantics Brass Dagstuhl, 16.09.2002 #12; The SLP System: An Implementation of Super Logic Programs 5 SLP

Brass, Stefan

130

Implementation Implementation  

E-Print Network [OSTI]

The SLP System: An Implementation of Super Logic Programs 1 The SLP System: An Implementation: An Implementation of Super Logic Programs 2 Super Logic Programs (1) #15; Arbitrarily nested propositional: An Implementation of Super Logic Programs 3 Super Logic Programs (2) #15; Default negation can be used only

Brass, Stefan

131

Panel 3, Electrolysis for Grid Energy Storage  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND CLEAN FUEL PRODUCTION ITM POWER INC. ITM...

132

Modern Grid Initiative Distribution Taxonomy Final Report  

SciTech Connect (OSTI)

This is the final report for the development of a toxonomy of prototypical electrical distribution feeders. Two of the primary goals of the Department of Energy's (DOE) Modern Grid Initiative (MGI) are 'to accelerate the modernization of our nation's electricity grid' and to 'support demonstrations of systems of key technologies that can serve as the foundation for an integrated, modern power grid'. A key component to the realization of these goals is the effective implementation of new, as well as existing, 'smart grid technologies'. Possibly the largest barrier that has been identified in the deployment of smart grid technologies is the inability to evaluate how their deployment will affect the electricity infrastructure, both locally and on a regional scale. The inability to evaluate the impacts of these technologies is primarily due to the lack of detailed electrical distribution feeder information. While detailed distribution feeder information does reside with the various distribution utilities, there is no central repository of information that can be openly accessed. The role of Pacific Northwest National Laboratory (PNNL) in the MGI for FY08 was to collect distribution feeder models, in the SynerGEE{reg_sign} format, from electric utilities around the nation so that they could be analyzed to identify regional differences in feeder design and operation. Based on this analysis PNNL developed a taxonomy of 24 prototypical feeder models in the GridLAB-D simulations environment that contain the fundamental characteristics of non-urban core, radial distribution feeders from the various regions of the U.S. Weighting factors for these feeders are also presented so that they can be used to generate a representative sample for various regions within the United States. The final product presented in this report is a toolset that enables the evaluation of new smart grid technologies, with the ability to aggregate their effects to regional and national levels. The distribution feeder models presented in this report are based on actual utility models but do not contain any proprietary or system specific information. As a result, the models discussed in this report can be openly distributed to industry, academia, or any interested entity, in order to facilitate the ability to evaluate smart grid technologies.

Schneider, Kevin P.; Chen, Yousu; Chassin, David P.; Pratt, Robert G.; Engel, David W.; Thompson, Sandra E.

2008-11-01T23:59:59.000Z

133

Smart Grid Information Security (IS) Functional Requirement  

E-Print Network [OSTI]

It is important to implement safe smart grid environment to enhance people's lives and livelihoods. This paper provides information on smart grid IS functional requirement by illustrating some discussion points to the sixteen identified requirements. This paper introduces the smart grid potential hazards that can be referred as a triggering factor to improve the system and security of the entire grid. The background of smart information infrastructure and the needs for smart grid IS is described with the adoption of hermeneutic circle as methodology. Grid information technology and security-s session discusses that grid provides the chance of a simple and transparent access to different information sources. In addition, the transformation between traditional versus smart grid networking trend and the IS importance on the communication field reflects the criticality of grid IS functional requirement identification is introduces. The smart grid IS functional requirements described in this paper are general and ...

Ling, Amy Poh Ai

2011-01-01T23:59:59.000Z

134

Ground Water Protection Programs Implementation Guide for Use with DOE O 450.1, Environmental Protection Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides a description of the elements of an integrated site-wide ground water protection program that can be adapted to unique physical conditions and programmatic needs at each DOE site. Canceled by DOE N 251.82.

2005-05-05T23:59:59.000Z

135

Unlocking the smart grid  

SciTech Connect (OSTI)

The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)

Rokach, Joshua Z.

2010-10-15T23:59:59.000Z

136

Vids 4 Grids: Surge Arresters and Switchgears  

Broader source: Energy.gov [DOE]

A new video series is increasing general public knowledge of the cutting edge jobs in the power sector that are essential to implementing a national clean-energy Smart Grid. Find out how switches and surge arresters are making the grid more reliable -- helping to bring the grid into the 21st century.

137

NREL Smart Grid Projects  

SciTech Connect (OSTI)

Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

Hambrick, J.

2012-01-01T23:59:59.000Z

138

Grid Security  

E-Print Network [OSTI]

Sinnott,R.O. National Centre for e-Social Science book, Grid Computing: Technology, Service and Application, CRC Press, November 2008.

Sinnott, R.O.

139

Smart Grid Investments Improve Grid Reliability, Resilience,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November...

140

Final Report for DOE grant DE-FG02-07ER64432 "New Grid and Discretization Technologies for Ocean and Ice Simulations"  

SciTech Connect (OSTI)

The work reported is in pursuit of these goals: high-quality unstructured, non-uniform Voronoi and Delaunay grids; improved finite element and finite volume discretization schemes; and improved finite element and finite volume discretization schemes. These are sought for application to spherical and three-dimensional applications suitable for ocean, atmosphere, ice-sheet, and other climate modeling applications.

Gunzburger, Max

2013-03-12T23:59:59.000Z

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ground Water Surveillance Monitoring Implementation Guide for Use with DOE O 450.1, Environmental Protection Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide assists DOE sites in establishing and maintaining surveillance monitoring programs to detect future impacts on ground water resources from site operations, to track existing ground water contamination, and to assess the potential for exposing the general public to site releases. Canceled by DOE N 251.82.

2004-06-24T23:59:59.000Z

142

DOE Office of Energy Research laboratories self-asessment workshop: The nuts and bolts of implementation, July 27--28, 1993  

SciTech Connect (OSTI)

Making self-assessment a ``cultural norm`` at the DOE Office of Energy Research (ER) laboratories has been a tremendous challenge. In an effort to provide a forum for the ER laboratories to share their self-assessment program implementation experiences, the Lawrence Berkeley Laboratory hosted a Self-Assessment Workshop: July 1993. The workshop was organized to cover such areas as: DOE`s vision of self-assessment; what makes a workable program; line management experiences; how to identify root causes and trends; integrating quality assurance, conduct of operations, and self-assessment; and going beyond environment, safety, and health. Individuals from the ER laboratories wishing to participate in the workshop were invited to speak on topics of their choice. The workshop was organized to cover general topics in morning presentations to all attendees and to cover selected topics at afternoon breakout sessions. This report summarizes the presentations and breakout discussions.

Not Available

1993-09-21T23:59:59.000Z

143

FUTURE POWER GRID INITIATIVE Future Power Grid  

E-Print Network [OSTI]

FUTURE POWER GRID INITIATIVE Future Power Grid Control Paradigm OBJECTIVE This project integration & exploit the potential of distributed smart grid assets » Significantly reduce the risk of advanced mathematical models, next- generation simulation and analytics capabilities for the power grid

144

Grid Load Balancing Using Intelligent Agents Junwei Cao1  

E-Print Network [OSTI]

- 1 - Grid Load Balancing Using Intelligent Agents Junwei Cao1 , Daniel P. Spooner* , Stephen A for grid computing. The management and scheduling of dynamic grid resources in a scalable way requires new technologies to implement a next generation intelligent grid environment. This work demonstrates that AI

Jarvis, Stephen

145

Implementation Implementation  

E-Print Network [OSTI]

. Increase of the power and number of processors of supercomputers Site Computer kProc Tflops DOE(US) SGI 14 126 Computational Res. Lab.(India) EKA Cluster Xeon 14 117 Government Agency (Sweden) Cluster with the LOBPCG method 1 Theoretical background The Norm-Conserving method (NC) The Projector Augmented-Wave

Knyazev, Andrew

146

Smart Grid Integration Laboratory  

SciTech Connect (OSTI)

The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

Wade Troxell

2011-09-30T23:59:59.000Z

147

Implementation Guide, Wildland Fire Management Program for Use with DOE O 450.1, Environmental Protection Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides a full range of activities and functions to plan, prepare, and respond to potential fires and rehabilitate undeveloped lands following a fire. Canceled by DOE N 251.82.

2004-02-11T23:59:59.000Z

148

738 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 2, JUNE 2012 Utilizing a Smart Grid Monitoring System to Improve  

E-Print Network [OSTI]

738 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 2, JUNE 2012 Utilizing a Smart Grid Monitoring, Senior Member, IEEE Abstract--The implementation of smart grids will fundamen- tally change the approach that relies upon customer complaints. The monitoring capabilities of a smart grid will allow utilities

Simões, Marcelo Godoy

149

Accelerator Facility Safety Implementation Guide for DOE Order (0) 420.2C, Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The revision will address implementation of roles and responsibilities, improve operational efficiency using operating experience, and clarify the use of program requirements such as the Unreviewed Safety Issue and Accelerator Readiness Review.

2013-07-17T23:59:59.000Z

150

DOE and FERC Jointly Submit Implementation Proposal for The National Action Plan on Demand Response to Congress  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy and the Federal Energy Regulatory Commission (FERC) jointly submitted to Congress a required “Implementation Proposal for The National Action Plan on Demand Response.”

151

Coordination of the U.S. DOE-Argentine National Atomic Energy Commission (CNEA) science and technology implementing arrangement. Final report  

SciTech Connect (OSTI)

In 1989, the US Department of Energy (DOE) established the Office of Environmental Management (EM) and delegated to the office the responsibility of cleaning up the US nuclear weapons complex. EM`s mission has three primary activities: (1) to assess, remediate, and monitor contaminated sites and facilities; (2) to store, treat, and dispose of wastes from past and current operations; and (3) to develop and implement innovative technologies for environmental remediation. To this end, EM has established domestic and international cooperative technology development programs, including one with the Republic of Argentina. Cooperating with Argentine scientific institutes and industry meets US cleanup objectives by: (1) identifying and accessing Argentine EM-related technologies, thereby leveraging investments and providing cost-savings; (2) improving access to technical information, scientific expertise, and technologies applicable to EM needs; and (3) fostering the development of innovative environmental technologies by increasing US private sector opportunities in Argentina in EM-related areas. Florida International University`s Hemispheric Center for Environmental Technology (FIU-HCET) serves as DOE-OST`s primary technology transfer agent. FIU-HCET acts as the coordinating and managing body for the Department of Energy (DOE)-Argentina National Atomic Energy Commission (CNEA) Arrangement. Activities include implementing standard operating procedures, tracking various technical projects, hosting visiting scientists, advising DOE of potential joint projects based on previous studies, and demonstrating/transferring desired technology. HCET hosts and directs the annual Joint Coordinating Committee for Radioactive and Mixed Waste Management meeting between the DOE and CNEA representatives. Additionally, HCET is evaluating the possibility of establishing similar arrangements with other Latin American countries.

Ebadian, M.A.

1998-01-01T23:59:59.000Z

152

FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced  

E-Print Network [OSTI]

FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced Computational Kernels OBJECTIVE The U of the power grid will also have to evolve to insure accurate and timely simulations. On the other hand, the software tools available for power grid simulation today are primarily sequential single core programs

153

Developing and Implementing the Foundation for a Renewable Energy-Based "Distribution Generation Micro-grid": A California Energy Commission Public Interest Energy Research Co-Funded Program  

E-Print Network [OSTI]

The California Energy Commission has been implementing its Public Interest Energy Research (PIER) and Renewable Energy Programs since early 1998. In the last two years, the demand for renewable distributed generation systems has increased rapidly...

Lilly, P.; Sebold, F. D.; Carpenter, M.; Kitto, W.

154

An automated energy management system in a smart grid context  

E-Print Network [OSTI]

The ongoing transformation of electric grids into smart grids provides the technological basis to implement demand-sensitive pricing strategies aimed at using the electric power infrastructure more efficiently. These ...

Lopes, M.

155

Grid artifact reduction for direct digital radiography detectors based on rotated stationary grids with homomorphic filtering  

SciTech Connect (OSTI)

Purpose: Grid artifacts are caused when using the antiscatter grid in obtaining digital x-ray images. In this paper, research on grid artifact reduction techniques is conducted especially for the direct detectors, which are based on amorphous selenium. Methods: In order to analyze and reduce the grid artifacts, the authors consider a multiplicative grid image model and propose a homomorphic filtering technique. For minimal damage due to filters, which are used to suppress the grid artifacts, rotated grids with respect to the sampling direction are employed, and min-max optimization problems for searching optimal grid frequencies and angles for given sampling frequencies are established. The authors then propose algorithms for the grid artifact reduction based on the band-stop filters as well as low-pass filters. Results: The proposed algorithms are experimentally tested for digital x-ray images, which are obtained from direct detectors with the rotated grids, and are compared with other algorithms. It is shown that the proposed algorithms can successfully reduce the grid artifacts for direct detectors. Conclusions: By employing the homomorphic filtering technique, the authors can considerably suppress the strong grid artifacts with relatively narrow-bandwidth filters compared to the normal filtering case. Using rotated grids also significantly reduces the ringing artifact. Furthermore, for specific grid frequencies and angles, the authors can use simple homomorphic low-pass filters in the spatial domain, and thus alleviate the grid artifacts with very low implementation complexity.

Kim, Dong Sik [Department of Electronics Engineering, Hankuk University of Foreign Studies, Gyeonggi-do 449-791 (Korea, Republic of); Lee, Sanggyun [R and D Center, DRTECH Co., Gyeonggi-do 463-782 (Korea, Republic of)

2013-06-15T23:59:59.000Z

156

Powering Your Community With Solar: Overcoming Market and Implementation Barriers (Fact Sheet), U.S. Department of Energy (DOE)  

Broader source: Energy.gov [DOE]

This document introduces the Energy Department’s new Solarize Guidebook: A Community Guide to Collective Purchasing of Residential PV Systems. The guide is designed for “green” consumers, utilities, local governments, and community groups who want to replicate the success of the Solarize Portland model, overcome barriers to implementation, and permanently transform the market for solar energy in their communities.

157

NATL Grid Map 50-Meter Grid  

E-Print Network [OSTI]

NATL-east NATL Grid Map 50-Meter Grid Locations in NATL can be specified by reference to a grid intervals. Each gridline intersection ("grid point") is identified by its two gridlines (e.g., E5). Each 50x50-m block formed by the gridlines is identified by the grid point in its northwest corner (e

Slatton, Clint

158

DOE-ER-STD-6001-92; Implementation Guide for Quality Assurance Programs for Basic and applied Research  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContractto Host aDesignDOE's Use

159

Smart Energy Management and Control for Fuel Cell Based Micro-Grid Connected Neighborhoods  

SciTech Connect (OSTI)

Fuel cell power generation promises to be an efficient, pollution-free, reliable power source in both large scale and small scale, remote applications. DOE formed the Solid State Energy Conversion Alliance with the intention of breaking one of the last barriers remaining for cost effective fuel cell power generation. The Alliance’s goal is to produce a core solid-state fuel cell module at a cost of no more than $400 per kilowatt and ready for commercial application by 2010. With their inherently high, 60-70% conversion efficiencies, significantly reduced carbon dioxide emissions, and negligible emissions of other pollutants, fuel cells will be the obvious choice for a broad variety of commercial and residential applications when their cost effectiveness is improved. In a research program funded by the Department of Energy, the research team has been investigating smart fuel cell-operated residential micro-grid communities. This research has focused on using smart control systems in conjunction with fuel cell power plants, with the goal to reduce energy consumption, reduce demand peaks and still meet the energy requirements of any household in a micro-grid community environment. In Phases I and II, a SEMaC was developed and extended to a micro-grid community. In addition, an optimal configuration was determined for a single fuel cell power plant supplying power to a ten-home micro-grid community. In Phase III, the plan is to expand this work to fuel cell based micro-grid connected neighborhoods (mini-grid). The economic implications of hydrogen cogeneration will be investigated. These efforts are consistent with DOE’s mission to decentralize domestic electric power generation and to accelerate the onset of the hydrogen economy. A major challenge facing the routine implementation and use of a fuel cell based mini-grid is the varying electrical demand of the individual micro-grids, and, therefore, analyzing these issues is vital. Efforts are needed to determine the most appropriate means of implementing micro-grids and the costs and processes involved with their extended operation. With the development and availability of fuel cell based stand-alone power plants, an electrical mini-grid, encompassing several connected residential neighborhoods, has become a viable concept. A primary objective of this project is to define the parameters of an economically efficient fuel cell based mini-grid. Since pure hydrogen is not economically available in sufficient quantities at the present time, the use of reforming technology to produce and store excess hydrogen will also be investigated. From a broader perspective, the factors that bear upon the feasibility of fuel cell based micro-grid connected neighborhoods are similar to those pertaining to the electrification of a small town with a localized power generating station containing several conventional generating units. In the conventional case, the town or locality would also be connected to the larger grid system of the utility company. Therefore, in the case of the fuel cell based micro-grid connected neighborhoods, this option should also be available. The objectives of this research project are: To demonstrate that smart energy management of a fuel cell based micro-grid connected neighborhood can be efficient and cost-effective;To define the most economical micro-grid configuration; and, To determine how residential micro-grid connected fuel cell(s) can contribute to America's hydrogen energy future.

Dr. Mohammad S. Alam

2006-03-15T23:59:59.000Z

160

Smart Grid Outreach and Communication Strategy: Next Steps -...  

Broader source: Energy.gov (indexed) [DOE]

Act of 2009 CFA - Consumer Federation of America DOE - U.S. Department of Energy DRSG - Demand Response and Smart Grid Coalition EAC - Electricity Advisory Committee EEI - Edison...

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Smart Grid Investment Grant Recipient FAQs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

These Questions and Answers have been provided by DOE to Smart Grid Investment Grant selectees. The information discussed within these documents applies specifically and only to...

162

Smart Grid Stakeholder Roundtable Group Perspectives- September 2009  

Broader source: Energy.gov [DOE]

This document is designed to capture key questions posed by stakeholders concerning implementation of smart grids. These perspectives were compiled during a series of discussions among members of...

163

Metrics for Measuring ProgressToward Implementation of the Smart...  

Broader source: Energy.gov (indexed) [DOE]

Metrics for Measuring ProgressToward Implementation of the Smart Grid (June 2008) Metrics for Measuring ProgressToward Implementation of the Smart Grid (June 2008) Results of the...

164

Power Grid Voltage Integrity Verification Department of ECE  

E-Print Network [OSTI]

Power Grid Voltage Integrity Verification Maha Nizam Department of ECE University of Toronto devgan@magma-da.com ABSTRACT Full-chip verification requires one to check if the power grid is safe, i.e., if the voltage drop on the grid does not exceed a cer- tain threshold. The traditional simulation-based solution

Najm, Farid N.

165

Ion mobility spectrometer with virtual aperture grid  

DOE Patents [OSTI]

An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

Pfeifer, Kent B. (Los Lunas, NM); Rumpf, Arthur N. (Albuquerque, NM)

2010-11-23T23:59:59.000Z

166

Energy storage for the electricity grid : benefits and market potential assessment guide : a study for the DOE Energy Storage Systems Program.  

SciTech Connect (OSTI)

This guide describes a high-level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric-utility-related applications. The overarching theme addressed is the concept of combining applications/benefits into attractive value propositions that include use of energy storage, possibly including distributed and/or modular systems. Other topics addressed include: high-level estimates of application-specific lifecycle benefit (10 years) in $/kW and maximum market potential (10 years) in MW. Combined, these criteria indicate the economic potential (in $Millions) for a given energy storage application/benefit. The benefits and value propositions characterized provide an important indication of storage system cost targets for system and subsystem developers, vendors, and prospective users. Maximum market potential estimates provide developers, vendors, and energy policymakers with an indication of the upper bound of the potential demand for storage. The combination of the value of an individual benefit (in $/kW) and the corresponding maximum market potential estimate (in MW) indicates the possible impact that storage could have on the U.S. economy. The intended audience for this document includes persons or organizations needing a framework for making first-cut or high-level estimates of benefits for a specific storage project and/or those seeking a high-level estimate of viable price points and/or maximum market potential for their products. Thus, the intended audience includes: electric utility planners, electricity end users, non-utility electric energy and electric services providers, electric utility regulators and policymakers, intermittent renewables advocates and developers, Smart Grid advocates and developers, storage technology and project developers, and energy storage advocates.

Eyer, James M. (Distributed Utility Associates, Inc., Livermore, CA); Corey, Garth P. (KTech Corporation, Albuquerque, NM)

2010-02-01T23:59:59.000Z

167

FUTURE POWER GRID INITIATIVE GridOPTICSTM  

E-Print Network [OSTI]

FUTURE POWER GRID INITIATIVE GridOPTICSTM : A Software Framework for Power System Operations technologies needed to support the operations and planning of the future power grid » provide a framework for integrating novel new operations and planning technologies with external power grid systems, including energy

168

The Neutron Science TeraGrid Gateway, a TeraGrid Science Gateway to Support the Spallation Neutron Source  

SciTech Connect (OSTI)

The National Science Foundation's (NSF's) Extensible Terascale Facility (ETF), or TeraGrid [1] is entering its operational phase. An ETF science gateway effort is the Neutron Science TeraGrid Gateway (NSTG.) The Oak Ridge National Laboratory (ORNL) resource provider effort (ORNL-RP) during construction and now in operations is bridging a large scale experimental community and the TeraGrid as a large-scale national cyberinfrastructure. Of particular emphasis is collaboration with the Spallation Neutron Source (SNS) at ORNL. The U.S. Department of Energy's (DOE's) SNS [2] at ORNL will be commissioned in spring of 2006 as the world's brightest source of neutrons. Neutron science users can run experiments, generate datasets, perform data reduction, analysis, visualize results; collaborate with remotes users; and archive long term data in repositories with curation services. The ORNL-RP and the SNS data analysis group have spent 18 months developing and exploring user requirements, including the creation of prototypical services such as facility portal, data, and application execution services. We describe results from these efforts and discuss implications for science gateway creation. Finally, we show incorporation into implementation planning for the NSTG and SNS architectures. The plan is for a primarily portal-based user interaction supported by a service oriented architecture for functional implementation.

Cobb, John W [ORNL; Geist, Al [ORNL; Kohl, James Arthur [ORNL; Miller, Stephen D [ORNL; Peterson, Peter F [ORNL; Pike, Gregory [ORNL; Reuter, Michael A [ORNL; Swain, William [ORNL; Vazhkudai, Sudharshan S [ORNL; Vijayakumar, Nithya N [ORNL

2006-01-01T23:59:59.000Z

169

Comments of Santiago Grijalva: High-Level Response to DOE RFI...  

Energy Savers [EERE]

Santiago Grijalva: High-Level Response to DOE RFI on Smart Grid Policy Comments of Santiago Grijalva: High-Level Response to DOE RFI on Smart Grid Policy High-Level Response to DOE...

170

A Middleware Substrate for Integrating Services on the Grid  

E-Print Network [OSTI]

A Middleware Substrate for Integrating Services on the Grid Viraj Bhat and Manish Parashar://www.caip.rutgers.edu/TASSL Abstract. In this paper we present the design, implementation and evaluation of the Grid-enabled Discover middleware substrate. The mid- dleware substrate enables Grid infrastructure services provided by the Globus

Daniels, Jeffrey J.

171

Grid Cells and Theta as Oscillatory Interference: Theory and Predictions  

E-Print Network [OSTI]

Grid Cells and Theta as Oscillatory Interference: Theory and Predictions Neil Burgess* ABSTRACT: The oscillatory interference model [Burgess et al. (2007) Hippocampus 17:801­802] of grid cell firing is reviewed as an algorith- mic level description of path integration and as an implementation level description of grid

Burgess, Neil

172

Implementation of the Clean Air Act, Title V operating permit program requirements for the U.S. DOE Oak Ridge Reservation facilities  

SciTech Connect (OSTI)

Title V of the Clean Air Act (CAA) establishes a new permit program requiring major sources and sources subject to Title III (Hazardous Air Pollutants) to obtain a state operating permit. Historically, most states have issued operating permits for individual emission units. Under the Title V permit program, a single permit will be issued for all of the emission units at the facility much like the current National Pollutant Discharge Elimination System (NPDES) permit program. The permit will specify all reporting, monitoring, and record-keeping requirements for the facility. Sources required to obtain permits include (a) major sources that emit 100 tons per year or more of any criteria air contaminant, (b) any source subject to the HAP provisions of Title III, (c) any source subject to the acid rain provisions of Title IV, (d) any source subject to New Source Performance Standards, and (e) any source subject to new source review under the nonattainment or Prevention of Significant Deterioration provisions. The State of Tennessee Title V Operating Permit Program was approved by EPA on August 28, 1996. This paper will provide details of initiatives underway at US Department of Energy (DOE) Oak Ridge Reservation (ORR) Facilities for implementation of requirements under the Title V Operating Permit Program. The ORR encompasses three DOE Facilities: the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the East Tennessee Technology Park (ETTP). The Y-12 Plant manufactures component parts for the national nuclear weapons program; the ORNL is responsible for research and development activities including nuclear engineering, engineering technologies, and the environmental sciences; and the ETTP conducts a variety of research and development activities and is the home of a mixed waste incinerator. Each of the three DOE Facilities is considered a major source under Title V of the CAA.

Humphreys, M.P. [Dept. of Energy Oak Ridge Operations Office, TN (United States). Environmental Protection Div.

1998-12-31T23:59:59.000Z

173

Now Available: Smart Grid Investments Improve Grid Reliability...  

Energy Savers [EERE]

Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and...

174

Smart Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights SuccessSmart Grid Pages default

175

Cloud feedback studies with a physics grid  

SciTech Connect (OSTI)

During this project the investigators implemented a fully parallel version of dual-grid approach in main frame code ICON, implemented a fully conservative first-order interpolation scheme for horizontal remapping, integrated UCLA-LES micro-scale model into ICON to run parallely in selected columns, and did cloud feedback studies on aqua-planet setup to evaluate the classical parameterization on a small domain. The micro-scale model may be run in parallel with the classical parameterization, or it may be run on a "physics grid" independent of the dynamics grid.

Dipankar, Anurag [Max Planck Institute for Meteorology Hamburg; Stevens, Bjorn [Max Planck Institute for Meteorology Hamburg

2013-02-07T23:59:59.000Z

176

Waste Generator Instructions: Key to Successful Implementation of the US DOE's 435.1 for Transuranic Waste Packaging Instructions (LA-UR-12-24155) - 13218  

SciTech Connect (OSTI)

In times of continuing fiscal constraints, a management and operation tool that is straightforward to implement, works as advertised, and virtually ensures compliant waste packaging should be carefully considered and employed wherever practicable. In the near future, the Department of Energy (DOE) will issue the first major update to DOE Order 435.1, Radioactive Waste Management. This update will contain a requirement for sites that do not have a Waste Isolation Pilot Plant (WIPP) waste certification program to use two newly developed technical standards: Contact-Handled Defense Transuranic Waste Packaging Instructions and Remote-Handled Defense Transuranic Waste Packaging Instructions. The technical standards are being developed from the DOE O 435.1 Notice, Contact-Handled and Remote-Handled Transuranic Waste Packaging, approved August 2011. The packaging instructions will provide detailed information and instruction for packaging almost every conceivable type of transuranic (TRU) waste for disposal at WIPP. While providing specificity, the packaging instructions leave to each site's own discretion the actual mechanics of how those Instructions will be functionally implemented at the floor level. While the Technical Standards are designed to provide precise information for compliant packaging, the density of the information in the packaging instructions necessitates a type of Rosetta Stone that translates the requirements into concise, clear, easy to use and operationally practical recipes that are waste stream and facility specific for use by both first line management and hands-on operations personnel. The Waste Generator Instructions provide the operator with step-by-step instructions that will integrate the sites' various operational requirements (e.g., health and safety limits, radiological limits or dose limits) and result in a WIPP certifiable waste and package that can be transported to and emplaced at WIPP. These little known but widely productive Waste Generator Instructions (WGIs) have been used occasionally in the past at large sites for treatment and packaging of TRU waste. The WGIs have resulted in highly efficient waste treatment, packaging and certification for disposal of TRU waste at WIPP. For example, a single WGI at LANL, combined with an increase in gram loading, resulted in a mind boggling 6,400% increase in waste loading for {sup 238}Pu heat source waste. In fact, the WGI combined with a new Contact Handled (CH) TRU Waste Content (TRUCON) Code provided a massive increase in shippable wattage per Transuranic Package Transporter-II (TRUPACT-II) over the previously used and more restrictive TRUCON Code that have been used previously for the heat source waste. In fact, the use of the WGI process at LANL's TA-55 facility reduced non-compliant drums for WIPP certification and disposal from a 13% failure rate down to a 0.5% failure rate and is expected to further reduce the failure rate to zero drums per year. The inherent value of the WGI is that it can be implemented in a site's current procedure issuance process and it provides documented proof of what actions were taken for each waste stream packaged. The WGI protocol provides a key floor-level operational component to achieve goal alignment between actual site operations, the WIPP TRU waste packaging instructions, and DOE O 435.1. (authors)

French, David M. [LANL EES-12, Carlsbad, NM, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)] [LANL EES-12, Carlsbad, NM, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Hayes, Timothy A. [LANL EES-12, Carlsbad, NM, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)] [LANL EES-12, Carlsbad, NM, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Pope, Howard L. [Aspen Resources Ltd., Inc., P.O. Box 3038, Boulder, CO 80307 (United States)] [Aspen Resources Ltd., Inc., P.O. Box 3038, Boulder, CO 80307 (United States); Enriquez, Alejandro E. [LANL NCO-4, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)] [LANL NCO-4, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Carson, Peter H. [LANL NPI-7, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)] [LANL NPI-7, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

2013-07-01T23:59:59.000Z

177

Smart Grid | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electricity Delivery and Energy Reliability Smart Grid Smart Grid Overview Smart Grid refers to electrical grids that automatically gather and communicate information on usage,...

178

Improving Energy Use Forecast for Campus Micro-grids using Indirect Indicators Department of Computer Science  

E-Print Network [OSTI]

and institutional campuses can significantly contribute to energy conservation. The rollout of smart grids of occupants, and is a micro-grid test-bed for the DoE sponsored Los Angeles Smart Grid Demonstration ProjectImproving Energy Use Forecast for Campus Micro-grids using Indirect Indicators Saima Aman

Prasanna, Viktor K.

179

SMART GRID Request for Information And Public Comments  

Broader source: Energy.gov [DOE]

As part of its ongoing effort regarding the formation of smart grid policy, the Department of Energy issued a Request for Information in September of 2010 on the topic of “Addressing Policy and Logistical Challenges to Smart Grid Implementation.” The purpose was to solicit comments from interested stakeholders on policy and logistical challenges that confront smart grid implementation, and recommendations on how to best overcome those challenges.

180

ORISE: Policy Implementation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Policy Implementation The Oak Ridge Institute for Science and Education (ORISE) assists the U.S. Department of Energy (DOE) Office of Science in the implementation of its program...

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Feasibility of a simple method of hybrid collimation for megavoltage grid therapy  

SciTech Connect (OSTI)

Purpose: Megavoltage grid therapy is currently delivered with step-and-shoot multisegment techniques or using a high attenuation block with divergent holes. However, the commercial availability of grid blocks is limited, their construction is difficult, and step-and-shoot techniques require longer treatment times and are not practical with some multileaf collimators. This work studies the feasibility of a hybrid collimation system for grid therapy that does not require multiple segments and can be easily implemented with widely available technical means. Methods: The authors have developed a system to generate a grid of beamlets by the simultaneous use of two perpendicular sets of equally spaced leaves that project stripe patterns in orthogonal directions. One of them is generated with the multileaf collimator integrated in the accelerator and the other with an in-house made collimator constructed with a low melting point alloy commonly available at radiation oncology departments. The characteristics of the grid fields for 6 and 18 MV have been studied with a shielded diode, an unshielded diode, and radiochromic film. Results: The grid obtained with the hybrid collimation is similar to some of the grids used clinically with respect to the beamlet size (about 1 cm) and the percentage of open beam (1/4 of the total field). The grid fields are less penetrating than the open fields of the same energy. Depending on the depth and the direction of the profiles (diagonal or along the principal axes), the measured valley-to-peak dose ratios range from 5% to 16% for 6 MV and from 9% to 20% for 18 MV. All the detectors yield similar results in the measurement of profiles and percent depth dose, but the shielded diode seems to overestimate the output factors. Conclusions: The combination of two stripe pattern collimators in orthogonal directions is a feasible method to obtain two-dimensional arrays of beamlets and has potential usefulness as an efficient way to deliver grid therapy. The implementation of this method is technically simpler than the construction of a conventional grid block.

Almendral, Pedro; Mancha, Pedro J.; Roberto, Daniel [Servicio de Proteccion Radiologica y Radiofisica Hospitalaria, Hospital Infanta Cristina, 06080 Badajoz (Spain)

2013-05-15T23:59:59.000Z

182

Final Report for DOE Project: Portal Web Services: Support of DOE SciDAC Collaboratories  

SciTech Connect (OSTI)

Grid portals provide the scientific community with familiar and simplified interfaces to the Grid and Grid services, and it is important to deploy grid portals onto the SciDAC grids and collaboratories. The goal of this project is the research, development and deployment of interoperable portal and web services that can be used on SciDAC National Collaboratory grids. This project has four primary task areas: development of portal systems; management of data collections; DOE science application integration; and development of web and grid services in support of the above activities.

Mary Thomas, PI; Geoffrey Fox, Co-PI; D. Gannon; M. Pierce; R. Moore; D Schissel; J. Boisseau

2007-10-01T23:59:59.000Z

183

DOE-STD-1104  

Office of Environmental Management (EM)

Implementation 1 DOE-STD-1104-2014 Roll-out AU Roll-out Contacts 2 Garrett Smith, Director, Nuclear Safety Basis and Facility Design, Office of Nuclear Safety (DOE...

184

DOE Grid Tech Team | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select aCapture2 DOEDepartmentTeam

185

smart grid publications | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNLBuildingsScattering at JLab and LeadSensors

186

SmartGrid: Quarterly Data Summaries from the Data Hub and SmartGrid Project Information (from OpenEI and SmartGrid.gov)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Both OpenEI and SmartGrid.gov are DOE portals to a wealth of information about the federal initiatives that support the development of the technologies, policies and projects transforming the electric power industry. Projects funded through the U.S. Recovery Act are organized by type and pinned to an interactive map at http://en.openei.org/wiki/Gateway:Smart_Grid. Each project title links to more detailed information. The Quarterly Data Summaries from the Data Hub at SmartGrid.gov are also available on OpenEI at http://en.openei.org/datasets/node/928. In addition, the SmartGrid Information Center contains documents and reports that can be searched or browsed. Smart Grid Resources introduces international SmartGrid programs and sites, while OpenEI encourages users to add SmartGrid information to the repository.

187

Management and Independent Assessments Guide for Use with 10 CFR Part 830, Subpart A, and DOE O 414.1C, Quality Assurance; DOE M 450.4 -1, Integrated Safety Management System Manual; and DOE O 226.1A, Implementation of DOE Oversight Policy  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides information on establishing processes for performing effective assessments. The revision to Guide reflects updated assessment practices, international standards, and changes in DOE expectations. Cancels DOE G 414.1-1A. Certified 11-18-10. Canceled by DOE G 414.1-1C.

2007-09-27T23:59:59.000Z

188

Modeling Smart Grid using Generalized Stochastic Petri Net  

E-Print Network [OSTI]

Building smart grid for power system is a major challenge for safe, automated and energy efficient usage of electricity. The full implementation of the smart grid will evolve over time. However, before a new set of infrastructures are invested to build the smart grid, proper modeling and analysis is needed to avoid wastage of resources. Modeling also helps to identify and prioritize appropriate systems parameters. In this paper, an all comprehensive model of smart grid have been proposed using Generalized Stochastic Petri Nets (GSPN). The model is used to analyze the constraints and deliverables of the smart power grid of future.

Dey, Amrita; Sanyal, Sugata

2011-01-01T23:59:59.000Z

189

American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. Army – Project 214 Analysis of Regulations Associated with Implementation of a Rocky Mountain Secure Smart-Grid  

SciTech Connect (OSTI)

This document describes technical assistance provided by PNNL to further develop a smart grid technologies concept to provide a basis for policies and plans for the US Army. The effort was to analyze the potential to utilize emerging smart grid technologies along with indigenous renewable and other resources to meet the emergency and other power needs of Department of Defense facilities in Colorado and Wyoming.

Warwick, William M.

2010-09-30T23:59:59.000Z

190

Microsoft PowerPoint - 02.11.2010_Smart Grid Conference.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BPL Project Summary Prepared by Bruce Renz, Smart Grid Implement Strategy Team February 11, 2010 Smart Grid and Overhead Reliability Conference - Columbus, OH Funded by the U.S....

191

Technological and economic comparison of battery technologies for U.S.A electric grid stabilization applications  

E-Print Network [OSTI]

Energy storage can provide many benefits to the electric grid of the United States of America. With recent pushes to stabilize renewable energy and implement a Smart Grid, battery technology can play a pivotal role in the ...

Fernandez, Ted (Ted A.)

2010-01-01T23:59:59.000Z

192

Smart Grid Consortium, Response of New York State Smart Grid...  

Broader source: Energy.gov (indexed) [DOE]

Consortium, Response of New York State Smart Grid Addressing Policy and Logistical Challenges Smart Grid Consortium, Response of New York State Smart Grid Addressing Policy and...

193

2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid...  

Broader source: Energy.gov (indexed) [DOE]

Smart Grid Panel Discussion 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel Discussion The Office of Electricity Delivery and Energy Reliability held its...

194

Grid Logging: Best Practices Guide  

E-Print Network [OSTI]

Revision date: March 1, 2008 Grid Logging: Best Practicesis to help developers of Grid middleware and applicationlog files that will be useful to Grid administrators, users,

Tierney, Brian L

2008-01-01T23:59:59.000Z

195

Sandia National Laboratories: SMART Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid...

196

Smart Grid Data Integrity Attack  

E-Print Network [OSTI]

Data Injection Attacks on Power Grids”, IEEE Transactionson Smart Grid, vol. 2, no. 2, June [21] O. Kosut, L.Data Attacks on Smart Grid State Estimation: Attack

Poolla, Kameshwar

2012-01-01T23:59:59.000Z

197

Grid Logging: Best Practices Guide  

SciTech Connect (OSTI)

The purpose of this document is to help developers of Grid middleware and application software generate log files that will be useful to Grid administrators, users, developers and Grid middleware itself. Currently, most of the currently generated log files are only useful to the author of the program. Good logging practices are instrumental to performance analysis, problem diagnosis, and security auditing tasks such as incident tracing and damage assessment. This document does not discuss the issue of a logging API. It is assumed that a standard log API such as syslog (C), log4j (Java), or logger (Python) is being used. Other custom logging API or even printf could be used. The key point is that the logs must contain the required information in the required format. At a high level of abstraction, the best practices for Grid logging are: (1) Consistently structured, typed, log events; (2) A standard high-resolution timestamp; (3) Use of logging levels and categories to separate logs by detail and purpose; (4) Consistent use of global and local identifiers; and (5) Use of some regular, newline-delimited ASCII text format. The rest of this document describes each of these recommendations in detail.

Tierney, Brian L; Tierney, Brian L; Gunter, Dan

2008-04-01T23:59:59.000Z

198

Smart Grid Publications Archive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Smart Grid Publications Archive Smart Grid Publications Archive 2010 Smart Grid System Report, February 2012 2009 Smart Grid System Report, July 2009 The Smart Grid Stakeholder...

199

DOE Report Describes Progress in the Deployment of Synchrophasor...  

Open Energy Info (EERE)

Grid The U.S. Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE) is pleased to announce the publication of a new report from the Smart Grid...

200

Fuel rod support grid  

DOE Patents [OSTI]

A grid for the support of nuclear fuel rods arranged in a triangular array. The grid is formed by concentric rings of strap joined by radially arranged web sections.

Downs, Robert E. (Monroeville, PA); Schwallie, Ambrose L. (Greensburg, PA)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The soft grid  

E-Print Network [OSTI]

The grid in architecture is a systematic organization of space. The means that architects use to organize space are, almost by definition, rigid and totalizing. The Cartesian grid, which will serve as the antagonist of the ...

Kardasis, Ari (Ari David)

2011-01-01T23:59:59.000Z

202

Method of grid generation  

DOE Patents [OSTI]

The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

Barnette, Daniel W. (Veguita, NM)

2002-01-01T23:59:59.000Z

203

Vehicle to Grid Demonstration Project  

SciTech Connect (OSTI)

This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

2010-12-31T23:59:59.000Z

204

Implementation Guide - Aviation Management, Operations, Maintenance, Security, and Safety for Use with DOE O 440.2B Chg 1, Aviation Management and Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides detailed information to help all personnel, responsible for a part of the aviation program, understand and comply with the rules and regulations applicable to their assignments. Cancels DOE G 440.2B-2. Canceled by DOE N 251.110.

2008-10-17T23:59:59.000Z

205

Chaninik Wind Group Wind Heat Smart Grids Final Report  

SciTech Connect (OSTI)

Final report summarizes technology used, system design and outcomes for US DoE Tribal Energy Program award to deploy Wind Heat Smart Grids in the Chaninik Wind Group communities in southwest Alaska.

Meiners, Dennis [Technical Contact

2013-06-29T23:59:59.000Z

206

Rethinking the Future Grid: Integrated Nuclear Renewable Energy...  

Office of Scientific and Technical Information (OSTI)

Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint Re-direct Destination: The U.S. DOE is supporting research and development that could lead to more...

207

2012 SG Peer Review - Recovery Act: Pacific Northwest Smart Grid...  

Broader source: Energy.gov (indexed) [DOE]

Principal Investigator Battelle, Pacific Northwest Division Presented at DOE-OE Smart Grid R&D Peer Review June 8, 2012 PNWD-SA-9876 Pacific Northwest Demonstration Project What:...

208

Radiological Protection for DOE Activities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes radiological protection program requirements that, combined with 10 CFR 835 and its associated implementation guidance, form the basis for a comprehensive program for protection of individuals from the hazards of ionizing radiation in controlled areas. Extended by DOE N 441.3. Cancels DOE 5480.11, DOE 5480.15, DOE N 5400.13, DOE N 5480.11; please note: the DOE radiological control manual (DOE/EH-0256T)

1995-09-29T23:59:59.000Z

209

The Particle Physics Data Grid. Final Report  

SciTech Connect (OSTI)

The main objective of the Particle Physics Data Grid (PPDG) project has been to implement and evaluate distributed (Grid-enabled) data access and management technology for current and future particle and nuclear physics experiments. The specific goals of PPDG have been to design, implement, and deploy a Grid-based software infrastructure capable of supporting the data generation, processing and analysis needs common to the physics experiments represented by the participants, and to adapt experiment-specific software to operate in the Grid environment and to exploit this infrastructure. To accomplish these goals, the PPDG focused on the implementation and deployment of several critical services: reliable and efficient file replication service, high-speed data transfer services, multisite file caching and staging service, and reliable and recoverable job management services. The focus of the activity was the job management services and the interplay between these services and distributed data access in a Grid environment. Software was developed to study the interaction between HENP applications and distributed data storage fabric. One key conclusion was the need for a reliable and recoverable tool for managing large collections of interdependent jobs. An attached document provides an overview of the current status of the Directed Acyclic Graph Manager (DAGMan) with its main features and capabilities.

Livny, Miron

2002-08-16T23:59:59.000Z

210

Smart Grid Cybersecurity: Job Performance Model Report  

SciTech Connect (OSTI)

This is the project report to DOE OE-30 for the completion of Phase 1 of a 3 phase report. This report outlines the work done to develop a smart grid cybersecurity certification. This work is being done with the subcontractor NBISE.

O'Neil, Lori Ross; Assante, Michael; Tobey, David

2012-08-01T23:59:59.000Z

211

Progress in Grid Scale Flow Batteries  

E-Print Network [OSTI]

Progress in Grid Scale Flow Batteries IMRE GYUK, PROGRAM MANAGER ENERGY STORAGE RESEARCH, DOE Flow;LogMW Renewables (not capacity factor adjusted) 9 8 7 6 5 4 3 Wind Wind (proj) Solar PV Solar PV 2011Year #12;Flow Battery Research at PNNL and Sandia #12

212

MATLAB*G: A Grid-Based Parallel MATLAB  

E-Print Network [OSTI]

This paper describes the design and implementation of MATLAB*G, a parallel MATLAB on the ALiCE Grid. ALiCE (Adaptive and scaLable internet-based Computing Engine), developed at NUS, is a lightweight grid-computing middleware. ...

Chen, Ying

213

Grid-based modeling in "Wissensnetz Energiemeteorologie" Jan Ploski1  

E-Print Network [OSTI]

-Grid) for running numerical weather prediction models. Based on experience with our introductory implementation resources of the German Grid [3] for running NWP (Numerical Weather Prediction) models. This paper its prediction quality and on overcoming the technical challenges to establish numerical weather

Heinemann, Detlev

214

Implementation Guide - Aviation Management, Operations, Maintenance, Security, and Safety for Use with DOE O 440.2B, Aviation Management and Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides detailed information to help all personnel, responsible for a part of the aviation program, understand and comply with the rules and regulations applicable to their assignments. Canceled by DOE G 440.2B-2A.

2003-07-18T23:59:59.000Z

215

EAC Recommendations for DOE Action Regarding Development of the...  

Broader source: Energy.gov (indexed) [DOE]

Development of the Next Generation Grid Operating System (Energy Management System) - October 17, 2012 EAC Recommendations for DOE Action Regarding Development of the Next...

216

DOE RFI 2010-11129 NBP RFI: Communications Requirements Titled...  

Broader source: Energy.gov (indexed) [DOE]

the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy" DOE RFI 2010-11129 NBP RFI: Communications...

217

Panel 1, DOE Fuel Cell Technologies Office: Hydrogen for Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

22011 eere.energy.gov DOE Fuel Cell Technologies Office Hydrogen for Energy Storage Workshop on Hydrogen Energy Storage Grid and Transportation Services Sacramento, California Dr....

218

DOE Convenes Multi-stakeholder Process to Address Privacy for...  

Energy Savers [EERE]

Convenes Multi-stakeholder Process to Address Privacy for Data Enabled by Smart Grid Technologies DOE Convenes Multi-stakeholder Process to Address Privacy for Data Enabled by...

219

Real Time Simulation of Power Grid Disruptions  

SciTech Connect (OSTI)

DOE-OE and DOE-SC workshops (Reference 1-3) identified the key power grid problem that requires insight addressable by the next generation of exascale computing is coupling of real-time data streams (1-2 TB per hour) as the streams are ingested to dynamic models. These models would then identify predicted disruptions in time (2-4 seconds) to trigger the smart grid s self healing functions. This project attempted to establish the feasibility of this approach and defined the scientific issues, and demonstrated example solutions to important smart grid simulation problems. These objectives were accomplished by 1) using the existing frequency recorders on the national grid to establish a representative and scalable real-time data stream; 2) invoking ORNL signature identification algorithms; 3) modeling dynamically a representative region of the Eastern interconnect using an institutional cluster, measuring the scalability and computational benchmarks for a national capability; and 4) constructing a prototype simulation for the system s concept of smart grid deployment. The delivered ORNL enduring capability included: 1) data processing and simulation metrics to design a national capability justifying exascale applications; 2) Software and intellectual property built around the example solutions; 3) demonstrated dynamic models to design few second self-healing.

Chinthavali, Supriya [ORNL; Dimitrovski, Aleksandar D [ORNL; Fernandez, Steven J [ORNL; Groer, Christopher S [ORNL; Nutaro, James J [ORNL; Olama, Mohammed M [ORNL; Omitaomu, Olufemi A [ORNL; Shankar, Mallikarjun [ORNL; Spafford, Kyle L [ORNL; Vacaliuc, Bogdan [ORNL

2012-11-01T23:59:59.000Z

220

Dependability Analysis of Control Center Networks in Smart Grid using Stochastic Petri Nets  

E-Print Network [OSTI]

1 Dependability Analysis of Control Center Networks in Smart Grid using Stochastic Petri Nets: xshen@bbcr.uwaterloo.ca Abstract--As an indispensable infrastructure for the future life, smart grid is being implemented to save energy, reduce costs, and increase reliability. In smart grid, control center

Shen, Xuemin "Sherman"

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Re: Implementing the National Broadband Plan by Studying the...  

Broader source: Energy.gov (indexed) [DOE]

Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy Re: Implementing the National Broadband Plan by Studying the Communications...

222

Implementing the National Broadband Plan by Empowering Consumers...  

Energy Savers [EERE]

Privacy Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy The United States Telecom Association...

223

Exploiting the Computational Grid Lecture 1 Globus and the Grid  

E-Print Network [OSTI]

Exploiting the Computational Grid Lecture 1 ­ Globus and the Grid · The grid needs middleware to enable things such as logins etc · The toolkit model for the grid is to define a set of standards for the grid and then develop applications on top. The low level stuff is then hidden from the user · Globus

224

Mapping Unstructured Grids to Structured Grids and Multigrid  

E-Print Network [OSTI]

Chapter 4 Mapping Unstructured Grids to Structured Grids and Multigrid Many problems based solution is to map the unstructured grid onto a structured grid and then apply multigrid to a sequence). We 65 #12; CHAPTER 4. MAPPING UNSTRUCTURED GRIDS 66 show that unless great care is taken

225

Cyber Security & Smart Grid  

E-Print Network [OSTI]

Cyber Security & Smart Grid Jonathan Shapiro Texas Institute The Clean Air Through Energy Efficiency (CATEE) Conference Cyber Security & Smart Grid ESL-KT-11-11-23 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 Cyber Security and The Smart... and communication protocols. ESL-KT-11-11-23 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 Smart Grid Systems ?Current Cyber Security Issues ? Advanced Metering Infrastructure (AMI) Security ? The wireless devices are used in the smart meters located...

Shapiro, J.

2011-01-01T23:59:59.000Z

226

Smart Grid: Transforming the Electric System  

SciTech Connect (OSTI)

This paper introduces smart grid concepts, summarizes the status of current smart grid related efforts, and explains smart grid priorities.

Widergren, Steven E.

2010-04-13T23:59:59.000Z

227

Challenges facing production grids  

SciTech Connect (OSTI)

Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

Pordes, Ruth; /Fermilab

2007-06-01T23:59:59.000Z

228

Grid Transformation Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3-03-Grid-Transformation-Workshop Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

229

Implementation of Department of Energy Oversight Policy  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order provides direction for implementing Department of Energy (DOE) P 226.1, Department of Energy Oversight Policy, dated 6-10-05, which establishes DOE policy for assurance systems and processes established by DOE contractors and oversight programs performed by DOE line management and independent oversight organizations. Cancels DOE P 450.5. Canceled by DOE O 226.1A.

2005-09-15T23:59:59.000Z

230

Coplanar interdigitated grid detector with single electrode readout  

DOE Patents [OSTI]

The coplanar interdigitated grid technique with single electrode readout provides substantial spectral performance improvement over that of conventional full-area planar electrode detectors and over coplanar interdigitated grid detectors which measure the difference between the induced charge signals from two interdigitated coplanar grid electrodes. The signal from only one interdigitated grid electrode is read out. The signal response is optimized by changing the relative areas of the two grid electrodes and the bias applied across the detector. Only one preamplifier is needed and signal subtraction is not necessary. This eliminates the electronic noise contribution from the additional preamplifier used in the normal coplanar grid implementation, and conventional single-amplifier detector electronics can be used.

Luke, Paul N. (Castro Valley, CA)

2001-01-01T23:59:59.000Z

231

DOE Final Report for DE-FG02-01ER63198 Title: IMPROVING THE PROCESSES OF LAND-ATMOSPHERE INTERACTION IN CCSM 2.0 AT HIGHER RESOLUTION AND BETTER SUB-GRID SCALING  

SciTech Connect (OSTI)

Our CCPP project consists of the development and testing of a systematic sub-grid scaling framework for the CLM. It consists of four elements: i) a complex vegetation tiling representation; ii) an orographic tiling system; iii) a tiling system to describe a distribution of water table parameters intended to provide a realistic statistical model of wetlands; and iv) improvements of past developed treatments of precipitation intensity.

Dr. Robert Dickinson

2008-08-16T23:59:59.000Z

232

DOE SBIR Phase II Final Report: Distributed Relevance Ranking in Heterogeneous Document Collections  

SciTech Connect (OSTI)

This report contains the comprehensive summary of the work performed on the SBIR Phase II project (“Distributed Relevance Ranking in Heterogeneous Document Collections”) at Deep Web Technologies (http://www.deepwebtech.com). We have successfully completed all of the tasks defined in our SBIR Proposal work plan (See Table 1 - Phase II Tasks Status). The project was completed on schedule and we have successfully deployed an initial production release of the software architecture at DOE-OSTI for the Science.gov Alliance's search portal (http://www.science.gov). We have implemented a set of grid services that supports the extraction, filtering, aggregation, and presentation of search results from numerous heterogeneous document collections. Illustration 3 depicts the services required to perform QuickRank™ filtering of content as defined in our architecture documentation. Functionality that has been implemented is indicated by the services highlighted in green. We have successfully tested our implementation in a multi-node grid deployment both within the Deep Web Technologies offices, and in a heterogeneous geographically distributed grid environment. We have performed a series of load tests in which we successfully simulated 100 concurrent users submitting search requests to the system. This testing was performed on deployments of one, two, and three node grids with services distributed in a number of different configurations. The preliminary results from these tests indicate that our architecture will scale well across multi-node grid deployments, but more work will be needed, beyond the scope of this project, to perform testing and experimentation to determine scalability and resiliency requirements. We are pleased to report that a production quality version (1.4) of the science.gov Alliance's search portal based on our grid architecture was released in June of 2006. This demonstration portal is currently available at http://science.gov/search30 . The portal allows the user to select from a number of collections grouped by category and enter a query expression (See Illustration 1 - Science.gov 3.0 Search Page). After the user clicks “search” a results page is displayed that provides a list of results from the selected collections ordered by relevance based on the query expression the user provided. Our grid based solution to deep web search and document ranking has already gained attention within DOE, other Government Agencies and a fortune 50 company. We are committed to the continued development of grid based solutions to large scale data access, filtering, and presentation problems within the domain of Information Retrieval and the more general categories of content management, data mining and data analysis.

Abe Lederman

2007-01-08T23:59:59.000Z

233

Smart Grid Data Integrity Attack  

E-Print Network [OSTI]

IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Framework and Roadmap for Smart Grid Interoperability Stan-

Poolla, Kameshwar

2012-01-01T23:59:59.000Z

234

Smart Grid Data Integrity Attack  

E-Print Network [OSTI]

IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Attack and Detection in Smart Grid,” to appear in IEEE

Poolla, Kameshwar

2012-01-01T23:59:59.000Z

235

StaRMAP - A second order staggered grid method for spherical harmonics moment equations of radiative transfer  

E-Print Network [OSTI]

We present a simple method to solve spherical harmonics moment systems, such as the the time-dependent $P_N$ and $SP_N$ equations, of radiative transfer. The method, which works for arbitrary moment order $N$, makes use of the specific coupling between the moments in the $P_N$ equations. This coupling naturally induces staggered grids in space and time, which in turn give rise to a canonical, second-order accurate finite difference scheme. While the scheme does not possess TVD or realizability limiters, its simplicity allows for a very efficient implementation in Matlab. We present several test cases, some of which demonstrate that the code solves problems with ten million degrees of freedom in space, angle, and time within a few seconds. The code for the numerical scheme, called StaRMAP (Staggered grid Radiation Moment Approximation), along with files for all presented test cases, can be downloaded so that all results can be reproduced by the reader.

Benjamin Seibold; Martin Frank

2014-06-12T23:59:59.000Z

236

Sandia National Laboratories: SMART Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SMART Grid Vermont and Sandia National Laboratories Announce Energy Research Center On December 20, 2011, in Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis,...

237

Compressed Sensing Off the Grid  

E-Print Network [OSTI]

Jul 26, 2012 ... pressed sensing, the frequencies are not assumed to lie on a grid, but ... where the true parameters lie on the grid, discretization has several.

2012-07-26T23:59:59.000Z

238

Sandia National Laboratories: SMART Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Safety Workshop On April 7, 2014, in Capabilities, CINT, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Grid...

239

Sandia National Laboratories: SMART Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photovoltaic Specialists (PVSC) Conference On August 14, 2013, in DETL, Distribution Grid Integration, Energy, Facilities, Grid Integration, News, News & Events, Photovoltaic,...

240

Future Grid: The Environment Future Grid Initiative White Paper  

E-Print Network [OSTI]

Future Grid: The Environment Future Grid Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Future Grid: The Environment Prepared for the Project "The Future Grid to Enable Sustainable Energy Systems" Funded by the U

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

PHEV and Grid Interfacing  

Broader source: Energy.gov (indexed) [DOE]

Power Electronic Devices Annual DOE Peer Review Meeting - 2008 DOE Power Electronics Research Program Washington Fairmont Hotel Washington, DC 30 September 2008 A. A....

242

Grid Interaction Tech Team  

Broader source: Energy.gov (indexed) [DOE]

Team 2011 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 10, 2011 Keith Hardy (PI) Argonne National Laboratory Sponsored by Lee Slezak This presentation does...

243

Study of Security Attributes of Smart Grid Systems- Current Cyber Security Issues  

SciTech Connect (OSTI)

This document provides information for a report to congress on Smart Grid security as required by Section 1309 of Title XIII of the Energy Independence and Security Act of 2007. The security of any future Smart Grid is dependent on successfully addressing the cyber security issues associated with the nation’s current power grid. Smart Grid will utilize numerous legacy systems and technologies that are currently installed. Therefore, known vulnerabilities in these legacy systems must be remediated and associated risks mitigated in order to increase the security and success of the Smart Grid. The implementation of Smart Grid will include the deployment of many new technologies and multiple communication infrastructures. This report describes the main technologies that support Smart Grid and summarizes the status of implementation into the existing U.S. electrical infrastructure.

Wayne F. Boyer; Scott A. McBride

2009-04-01T23:59:59.000Z

244

Smart Grid Overview  

Broader source: Energy.gov (indexed) [DOE]

S imulator NREL Smart Grid TesHng Power I nfrastructure 11 Monitoring on DistribuLon Transformer Anatolia Subdivision --- SMUD 2kW of PV on each home Modeling System Impacts...

245

Conduct of operations implementation plan  

SciTech Connect (OSTI)

This implementation plan describes the process and provides information and schedules that are necessary to implement and comply with the Department of Energy (DOE) Order 5480.19, {open_quotes}Conduct of Operations{close_quotes} (CoOp). This plan applies to all Pinellas Plant operations and personnel. Generally, this Plan discusses how DOE Order 5480.19 will be implemented at the Pinellas Plant.

Anderson, C.K.; Hall, R.L.

1991-02-20T23:59:59.000Z

246

Time Stamp Attack on Wide Area Monitoring System in Smart Grid  

E-Print Network [OSTI]

Security becomes an extremely important issue in smart grid. To maintain the steady operation for smart power grid, massive measurement devices must be allocated widely among the power grid. Previous studies are focused on false data injection attack to the smart grid system. In practice, false data injection attack is not easy to implement, since it is not easy to hack the power grid data communication system. In this paper, we demonstrate that a novel time stamp attack is a practical and dangerous attack scheme for smart grid. Since most of measurement devices are equipped with global positioning system (GPS) to provide the time information of measurements, it is highly probable to attack the measurement system by spoofing the GPS. By employing the real measurement data in North American Power Grid, simulation results demonstrate the effectiveness of the time stamp attack on smart grid.

Zhang, Zhenghao; Li, Husheng; Pei, Changxing

2011-01-01T23:59:59.000Z

247

170 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013 An Empirical Study of Communication  

E-Print Network [OSTI]

Infrastructures Towards the Smart Grid: Design, Implementation, and Evaluation Xiang Lu, Student Member, IEEE--Communication infrastructures, DNP3 over TCP/IP, field deployment and performance evaluations, FREEDM systems, smart grid170 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013 An Empirical Study of Communication

Wang, Wenye

248

Abstract--Smart Grid technology appears necessary to succeed in activating the demand through demand side management  

E-Print Network [OSTI]

1 Abstract--Smart Grid technology appears necessary to succeed in activating the demand through recommendations regarding the instruments that should be implemented to maximize the benefits of smart grids by the European Union. The development of smart grids (SG) is a possible solution for achieving these goals [1

Paris-Sud XI, Université de

249

DOE-STD-3009-2014 Training Modules (Changes to DOE-STD-3009 and...  

Energy Savers [EERE]

Training Modules (Changes to DOE-STD-3009 and Expectations for Effective Implementation) DOE-STD-3009-2014 Training Modules (Changes to DOE-STD-3009 and Expectations for Effective...

250

Modelling Chinese Smart Grid: A Stochastic Model Checking Case Study  

E-Print Network [OSTI]

Cyber-physical systems integrate information and communication technology functions to the physical elements of a system for monitoring and controlling purposes. The conversion of traditional power grid into a smart grid, a fundamental example of a cyber-physical system, raises a number of issues that require novel methods and applications. In this context, an important issue is the verification of certain quantitative properties of the system. In this technical report, we consider a specific Chinese Smart Grid implementation and try to address the verification problem for certain quantitative properties including performance and battery consumption. We employ stochastic model checking approach and present our modelling and analysis study using PRISM model checker.

Yüksel, Ender; Nielson, Flemming; Zhu, Huibiao; Huang, Heqing

2012-01-01T23:59:59.000Z

251

NREL: Transmission Grid Integration - Grid Simulation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOtherForecasting NREL researchers use solarGrid

252

GROWDERS Demonstration of Grid Connected Electricity Systems...  

Open Energy Info (EERE)

GROWDERS Demonstration of Grid Connected Electricity Systems (Smart Grid Project) (Spain) Jump to: navigation, search Project Name GROWDERS Demonstration of Grid Connected...

253

Networked Loads in the Distribution Grid  

E-Print Network [OSTI]

Lu, and Deborah A. Frincke. Smart-Grid Security Issues. IEEELoads in the Distribution Grid Zhifang Wang ? , Xiao Li † ,Transformer   sensors   Grid   Cyber  system   Cooling    

Wang, Zhifang; Li, Xiao; Muthukumar, Vishak; Scaglione, Anna; Peisert, Sean; McParland, Chuck

2012-01-01T23:59:59.000Z

254

Flexible Transmission in the Smart Grid  

E-Print Network [OSTI]

New England Outlook: Smart Grid is About Consumers,” Apr. [Transmission in the Smart Grid By Kory Walter Hedman ATransmission in the Smart Grid by Kory Walter Hedman Doctor

Hedman, Kory Walter

2010-01-01T23:59:59.000Z

255

Safeguards and Security Oversight and Assessments Implementation Guide  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide identifies acceptable methods for implementing the safeguards and security provisions of DOE O 226.1A. Canceled by DOE N 251.80.

2007-12-21T23:59:59.000Z

256

FUTURE POWER GRID INITIATIVE GridOPTICSTM Power Networking,  

E-Print Network [OSTI]

FUTURE POWER GRID INITIATIVE GridOPTICSTM Power Networking, Equipment, and Technology (powerNET) Testbed OBJECTIVE A lot of interest in research, improvements, and testing surrounds the power grid to these activities. Specifically, » power system equipment is expensive and has a high knowledge barrier

257

DOE Office of Basic Sciences: An Overview of Basic Research Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Basic Energy Sciences Overview Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Grid Storage and the Energy Frontier...

258

GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical...  

Broader source: Energy.gov (indexed) [DOE]

GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical Challenges GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical Challenges The GridWise Alliance...

259

DOE Global Energy Storage Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

260

Cancellation of DOE G 440.2B-1A  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Cancels DOE G 440.2B-1A, Implementation Guide - Performance Indicators (Metrics) for Use with Doe O 440.2B, Aviation Management and Safety.

2011-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Stability of elastic grid shells  

E-Print Network [OSTI]

The elastic grid shell is a solution that combines double curvature and ease of mounting. This structural system, based on the deformation of an initially at grid without shear stiffness was invented more than fifty years ...

Mesnil, Romain, M. Eng. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

262

Smart Grid | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Usage Smart Grid Smart Grid October 21, 2014 Line workers get hands-on experience with an electrical pole as part of their training. | Photo courtesy of David Weaver....

263

APEC Smart Grid Initiative  

SciTech Connect (OSTI)

This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

Bloyd, Cary N.

2012-03-01T23:59:59.000Z

264

Grid Architecture William E. Johnston  

E-Print Network [OSTI]

·numerical grid generators ·etc. Apache Tomcat&WebSphere &Cold Fusion=JVM + servlet instantiation + routing

265

Worker Protection Management for DOE Federal and Contractor Employees Guide for use with DOE O 440.1  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This implementation guide provides general information and methodologies that DOE finds acceptable in meeting the Department's requirements defined in DOE O 440.1.

1997-07-10T23:59:59.000Z

266

Bent Hamilton Cycles in d-Dimensional Grid Graphs Department of Computer Science  

E-Print Network [OSTI]

Bent Hamilton Cycles in d-Dimensional Grid Graphs F. Ruskey Department of Computer Science Classifications: 05C45, 05C38 Abstract A bent Hamilton cycle in a grid graph is one in which each edge Hamilton cycle if some dimension is even and d 3, and does not have a bent Hamilton cycle if all

Sawada, Joe

267

Risk Metrics for Dynamic Complex Infrastructure Systems such as the Power Transmission Grid  

E-Print Network [OSTI]

Risk Metrics for Dynamic Complex Infrastructure Systems such as the Power Transmission Grid D. E in their probability versus size. This power law behavior suggests that conventional risk analysis does not apply of the power transmission grid. How these metrics change, implying changed risk, with different upgrade

Dobson, Ian

268

Grid Transfer Remark 4.1 Contents of this chapter. Consider a grid with grid size h and the  

E-Print Network [OSTI]

Chapter 4 Grid Transfer Remark 4.1 Contents of this chapter. Consider a grid with grid size h that there might be an iterative method for solving this system efficiently, which uses also coarser grids way between the grids. 2 4.1 The Coarse Grid System and the Residual Equa- tion Remark 4.2 Basic idea

John, Volker

269

A grid-enabled MPI : message passing in heterogeneous distributed computing systems.  

SciTech Connect (OSTI)

Application development for high-performance distributed computing systems, or computational grids as they are sometimes called, requires grid-enabled tools that hide mundate aspects of the heterogeneous grid environment without compromising performance. As part of an investigation of these issues, they have developed MPICH-G, a grid-enabled implementation of the Message Passing Interface (MPI) that allows a user to run MPI programs across multiple computers at different sites using the same commands that would be used on a parallel computer. This library extends the Argonne MPICH implementation of MPI to use services provided by the globus grid toolkit. In this paper, they describe the MPICH-G implementation and present preliminary performance results.

Foster, I.; Karonis, N. T.

2000-11-30T23:59:59.000Z

270

Re: NBP RFI-Implementing the National Broadband Plan by Studying...  

Broader source: Energy.gov (indexed) [DOE]

Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy Re: NBP RFI-Implementing the National Broadband Plan by Studying the...

271

Conference Proceedings Available - The Smart Grid Experience...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conference Proceedings Available - The Smart Grid Experience: Applying Results, Reaching Beyond Conference Proceedings Available - The Smart Grid Experience: Applying Results,...

272

Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid  

SciTech Connect (OSTI)

GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

None

2012-02-08T23:59:59.000Z

273

Technology Readiness and the Smart Grid  

SciTech Connect (OSTI)

Technology Readiness Levels (TRLs) originated as a way for the National Aeronautics and Space Administration (NASA) to monitor the development of systems being readied for space. The technique has found wide application as part of the more general topic of system engineering. In this paper, we consider the applicability of TRLs to systems being readied for the smart grid. We find that there are many useful parallels, and much to be gained by this application. However, TRLs were designed for a developer who was also a user. That is not usually the case for smart grid developments. We consider the matter from the point of view of the company responsible for implementation, typically a utility, and we find that there is a need for connecting the many standards in the industry. That connection is explored, and some new considerations are introduced.

Kirkham, Harold; Marinovici, Maria C.

2013-02-27T23:59:59.000Z

274

Transition Implementation Guide  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide was prepared to aid in the development, planning, and implementation of requirements and activities during the transition phase at Department of Energy (DOE) facilities that have been declared or are forecast to become excess to any future mission requirements.

2001-04-24T23:59:59.000Z

275

Course Description Grid Computing, NGSSC, 2p  

E-Print Network [OSTI]

: Application projects, software development projects, political and administrative aspects on grids, emerging grid standards (OGSA/OGSI), etc. ­ Foundations in algorithm and software development for grids. · Grid issues. ­ Sample grid middleware packages, software tools, and problem solv- ing environments for grids

Elmroth, Erik

276

The pilot way to Grid resources using glideinWMS  

SciTech Connect (OSTI)

Grid computing has become very popular in big and widespread scientific communities with high computing demands, like high energy physics. Computing resources are being distributed over many independent sites with only a thin layer of Grid middleware shared between them. This deployment model has proven to be very convenient for computing resource providers, but has introduced several problems for the users of the system, the three major being the complexity of job scheduling, the nonuniformity of computer resources, and the lack of good job monitoring. Pilot jobs address all the above problems by creating a virtual private computing pool on top of Grid resources. This paper presents both the general pilot concept, as well as a concrete implementation, called glideinWMS, deployed in the Open Science Grid.

Sfiligoi, Igor; /Fermilab; Bradley, Daniel C.; /Wisconsin U., Madison; Holzman, Burt; Mhashilkar, Parag; /Fermilab; Padhi, Sanjay; Wurthwrin, Frank; /UC, San Diego

2010-09-01T23:59:59.000Z

277

Grid 2020: Toward a Policy of Renewable & Distributed Resources  

E-Print Network [OSTI]

the equivalent of EU's 20/20/20 Plan #12;3 Source: DoE EERE 2012 US State Net Metering Policy Policy is Spurring DG AdopBon 43 states with net metering tariffs + 17 states Smart Grid with Web 2.0 Enables Customer Partnerships Consumer-Prosumer Evolu

278

LANL physicists discuss electrical grid in journal article  

E-Print Network [OSTI]

for image below: Satellite view of the United States mainland at night. Operated by Los Alamos National of which are required to solve the problems of tomorrow's grid. The DOE, National Science Foundation and Defense Threat Reduction Agency funded this work, which supports the Laboratory's Energy Security

279

Validating and scaling the microgrid: A scientific instrument for grid dynamics  

E-Print Network [OSTI]

depends on coordinated and accurate modeling of all four of these elements simultaneously. We have designed and implemented a tool called the MicroGrid which enables accurate and comprehensive study of the dynamic interaction of applications, middleware, resource, and networks. The MicroGrid creates a

Xin Liu; Huaxia Xia; Andrew A. Chien

280

Status of Grid Scale Energy Storage and Strategies for Accelerating Cost Effective  

E-Print Network [OSTI]

Status of Grid Scale Energy Storage and Strategies for Accelerating Cost Effective Deployment MIT · Motivation · Individual Functions/Markets · Energy Storage Technologies · Implementations to Combine) · Previously: · Energy storage and smart grid analyst at Lux Research and GTM Research · MIT SDM '08 (Graduated

de Weck, Olivier L.

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE National Environmental Policy Act Implementing Procedures...  

Office of Environmental Management (EM)

species or their habitat; and Federally-protected marine mammals and Essential Fish Habitat (Marine Mammals Protection Act; Magnuson-Stevens Fishery Conservation and...

282

Yellow: Pre-DOE Implementation Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2 ContinuingYan Mei Wang Yan MeiYejun

283

Sandia National Laboratories: Distribution Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia InvolvesDOE-BERPressure, NotDishDistribution Grid

284

Thick Pixelated CZT Detectors With Isolated Steering Grids  

E-Print Network [OSTI]

We explore the possibility to improve the performance of 0.5 cm thick Cadmium Zinc Telluride (CZT) detectors with the help of steering grids on the anode side of the detectors. Steering grids can improve the energy resolution of CZT detectors by enhancing the small pixel effect; furthermore, they can increase their detection efficiency by steering electrons to the anode pixels which otherwise would drift to the area between pixels. Previously, the benefit of steering grids had been compromised by additional noise associated with currents between the steering grids and the anode pixels. We use thin film deposition techniques to isolate the steering grid from the CZT substrate by a 150 nm thick layer of the isolator Aluminiumoxide. While the thin layer does not affect the beneficial effect of the steering grid on the weighting potentials and the electric field inside the detector, it suppresses the currents between the steering grid and the anode pixels. In this contribution, we present first results from a 2 x 2 x 0.5 cm CZT detector with 8 x 8 pixels that we tested before and after deposition of an isolated steering grid. The steering grid improves the 662 keV energy resolution of the detector by a factor of 1.3 (from about 2% to about 1.5%), while not reducing the detection efficiency. To gain further insights into the detector response in the region between pixels, we measured energy spectra with a collimated Cs137 source. The collimator measurements can be used to enhance our understanding of energy spectra measured under flood illumination of the detectors.

I. Jung; A. B. Garson; J. S. Perkins; H. Krawczynski; J. Matteson; R. T. Skelton; A. Burger; M. Groza

2005-11-18T23:59:59.000Z

285

Models of grid cells and theta oscillations ARISING FROM M. M.Yartsev, M. P. Witter & N. Ulanovsky Nature 479, 103107 (2011)  

E-Print Network [OSTI]

Models of grid cells and theta oscillations ARISING FROM M. M.Yartsev, M. P. Witter & N. Ulanovsky Nature 479, 103­107 (2011) Grid cells recorded in the medial entorhinal cortex (MEC) of freely moving of intense interest. Yartsev et al.1 report that the firing of grid cells in crawling bats does not show

Burgess, Neil

2011-01-01T23:59:59.000Z

286

Convergence for the Smart Grid -On the technology opportunities for Future Cyber-Physical Energy Systems, invited paper at New Research Directions for Future Cyber-Physical Energy  

E-Print Network [OSTI]

Convergence for the Smart Grid - On the technology opportunities for Future Cyber-Physical Energy Angeles, CA. 90095 http://winmec.ucla.edu Email:smartgrid@winmec.ucla.edu Convergence for the Smart Grid into what the Future / Smart Electric Grid should look like. For example the DOE has a vision for the Modern

California at Los Angeles, University of

287

Surveillance Guide - MAS 10.1 Implementation of the Integrated...  

Broader source: Energy.gov (indexed) [DOE]

2.0 References 2.1 DOE 4330.4B Maintenance Management Program 2.2 DOE 5480.19 Conduct of Operations for DOE Facilities 2.3 48 CFR 970.5204-2 Implementation of...

288

A TIME EFFICIENT ADAPTIVE GRIDDING APPROACH AND IMPROVED CALIBRATIONS IN  

E-Print Network [OSTI]

measurement times. Additionally, manu- al pitch and yaw calibration increases uncertainty. A new FHP pitch and yaw calibrator is designed and built to reduce the uncertainty of the measurements by precise and computer controlla- ble traversing system is implemented using an adaptive grid method for the refinement

Camci, Cengiz

289

COARSE-GRID SIMULATION OF REACTING AND NON-REACTING GAS-PARTICLE FLOWS  

SciTech Connect (OSTI)

The principal goal of this project, funded under the ''DOE Vision 21 Virtual Demonstration Initiative'' is virtual demonstration of circulating fluidized bed performance. We had proposed a ''virtual demonstration tool'', which is based on the open-domain CFD code MFIX. The principal challenge funded through this grant is to devise and implement in this CFD code sound physical models for the rheological characteristics of the gas-particle mixtures. Within the past year, which was the third year of the project, we have made the following specific advances. (a) We have completed a study of the impact of sub-grid models of different levels of detail on the results obtained in coarse-grid simulations of gas-particle flow. (b) We have also completed a study of a model problem to understand the effect of wall friction, which was proved in our earlier work to be very important for stable operation of standpipes in a circulating fluidized bed circuit. These are described in a greater detail in this report.

Sankaran Sundaresan

2004-03-01T23:59:59.000Z

290

UNITED STATES DEPARTMENT OF ENERGY (US DOE) DATA PRIVACY AND...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 UNITED STATES DEPARTMENT OF ENERGY (US DOE) DATA PRIVACY AND THE SMART GRID: A VOLUNTARY CODE OF CONDUCT (VCC) Final: January 8, 2015 MISSION STATEMENT The purpose of the Privacy...

291

Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint  

SciTech Connect (OSTI)

The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

2015-01-01T23:59:59.000Z

292

Smart Grid Interoperability Maturity Model Beta Version  

SciTech Connect (OSTI)

The GridWise Architecture Council was formed by the U.S. Department of Energy to promote and enable interoperability among the many entities that interact with the electric power system. This balanced team of industry representatives proposes principles for the development of interoperability concepts and standards. The Council provides industry guidance and tools that make it an available resource for smart grid implementations. In the spirit of advancing interoperability of an ecosystem of smart grid devices and systems, this document presents a model for evaluating the maturity of the artifacts and processes that specify the agreement of parties to collaborate across an information exchange interface. You are expected to have a solid understanding of large, complex system integration concepts and experience in dealing with software component interoperation. Those without this technical background should read the Executive Summary for a description of the purpose and contents of the document. Other documents, such as checklists, guides, and whitepapers, exist for targeted purposes and audiences. Please see the www.gridwiseac.org website for more products of the Council that may be of interest to you.

Widergren, Steven E.; Drummond, R.; Giroti, Tony; Houseman, Doug; Knight, Mark; Levinson, Alex; longcore, Wayne; Lowe, Randy; Mater, J.; Oliver, Terry V.; Slack, Phil; Tolk, Andreas; Montgomery, Austin

2011-12-02T23:59:59.000Z

293

Smart Grid - Transforming Power System Operations  

SciTech Connect (OSTI)

Abstract—Electric power systems are entering a new realm of operations. Large amounts of variable generation tax our ability to reliably operate the system. Couple this with a greater reliance on the electricity network to serve consumer demand that is likely to rise significantly even as we drive for greater efficiency. Trade-offs between energy and environmental needs will be constantly negotiated, while a reliable supply of electricity needs even greater assurance in a world where threats of disruption have risen. Smart grid capabilities are being proposed to help address the challenges confronting system operations. This paper reviews the impact of smart grid functionality on transforming power system operations. It explores models for distributed energy resources (DER – generation, storage, and load) that are appearing on the system. It reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be addressed as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.

Widergren, Steven E.; Kirkham, Harold

2010-04-28T23:59:59.000Z

294

Grid Integration of Robotic Telescopes  

E-Print Network [OSTI]

Robotic telescopes and grid technology have made significant progress in recent years. Both innovations offer important advantages over conventional technologies, particularly in combination with one another. Here, we introduce robotic telescopes used by the Astrophysical Institute Potsdam as ideal instruments for building a robotic telescope network. We also discuss the grid architecture and protocols facilitating the network integration that is being developed by the German AstroGrid-D project. Finally, we present three user interfaces employed for this purpose.

F. Breitling; T. Granzer; H. Enke

2009-03-23T23:59:59.000Z

295

DOE standard: Radiological control  

SciTech Connect (OSTI)

The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

Not Available

1999-07-01T23:59:59.000Z

296

Grid-based Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermalGoGreenServices Grid

297

Building the Distribution Grid  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prevBuilding the Distribution Grid of the Future

298

Sharing Smart Grid Experiences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smart Grid Experiences through Performance Feedback

299

National Grid Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Presentation covers the National Grid Energy Efficiency programs and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

300

Smart-Grid Security Issues  

SciTech Connect (OSTI)

TITLE: Smart-Grid Security Issues (Editorial Material, English) IEEE SECURITY & PRIVACY 8 (1). JAN-FEB 2010. p.81-85 IEEE COMPUTER SOC, LOS ALAMITOS

Khurana, Himanshu; Hadley, Mark D.; Lu, Ning; Frincke, Deborah A.

2010-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Smart Grid Data Integrity Attack  

E-Print Network [OSTI]

Against Data Injection Attacks on Power Grids”, IEEER. Thomas, and L. Tong, “Malicious Data Attacks on SmartState Estimation: Attack Strategies and Countermeasures,”

Poolla, Kameshwar

2012-01-01T23:59:59.000Z

302

2014 Modern Power Grid Video  

SciTech Connect (OSTI)

A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

None

2014-06-02T23:59:59.000Z

303

2014 Modern Power Grid Video  

ScienceCinema (OSTI)

A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

None

2014-07-22T23:59:59.000Z

304

LED Lighting Off the Grid  

Energy Savers [EERE]

D. & Kammen, D. M. Decentralized energy systems for clean electricity access. Nature Climate Change accepted, in press, (2015). Off-Grid Status Quo : Fuel Based Lighting...

305

Environmental Impacts of Smart Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and distribution TOU Time of use UBC Unburned hydrocarbon UNDEERC University of North Dakota Energy and Environmental Research Center V2G Vehicle to grid Environmental Impacts of...

306

National Grid Energy Efficiency Plans  

Broader source: Energy.gov [DOE]

Presentation covers the National Grid Energy Efficiency plans and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

307

Micro-Grids for Colonias (TX)  

SciTech Connect (OSTI)

This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid power. However, the operational costs are reasonable if grid power is unavailable, e.g. in a remote area or in a disaster recovery situation. In fact, avoided fuel costs for the smaller of the systems in use during this project would have a payback of the capital costs of that system in 2.3 years, far short of the effective system life.

Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

2012-07-31T23:59:59.000Z

308

Feedback" An Article for Smart Grid News The Smart Grid Transition...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sharing Smart Grid Experiences through Performance Feedback" An Article for Smart Grid News The Smart Grid Transition-Getting Started We are on the ground floor of a Smart Grid...

309

Enhancing Power Grid Stability through Analytics  

E-Print Network [OSTI]

the "Smart" Grid? · Premise #1: the grid has long been pretty smart (Edison, Tesla, Steinmetz et al were of Vermont Seminar October 23, 2013 3 What Drives the "Smart" Grid? · Premise #2: As well operated as grid of Vermont Seminar October 23, 2013 4 What Drives the "Smart" Grid? · Premise #3: new technology is providing

Lakoba, Taras I.

310

Smart Grid Enabled EVSE  

SciTech Connect (OSTI)

The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

None, None

2014-10-15T23:59:59.000Z

311

Volttron: An Agent Platform for the Smart Grid  

SciTech Connect (OSTI)

VOLLTRON platform enables the deployment of intelligent sensors and controllers in the smart grid and provides a stable, secure and flexible framework that expands the sensing and control capabilities. VOLTTRON platform provides services fulfilling the essential requirements of resource management and security for agent operation in the power grid. The facilities provided by the platform allow agent developers to focus on the implementation of their agent system and not on the necessary "plumbing' code. For example, a simple collaborative demand response application was written in less than 200 lines of Python.

Haack, Jereme N.; Akyol, Bora A.; Carpenter, Brandon J.; Tews, Cody W.; Foglesong, Lance W.

2013-05-06T23:59:59.000Z

312

International Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities and Solutions  

E-Print Network [OSTI]

International Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities is currently evolving into the smart grid. Smart grid integrates the traditional electrical power grid, controlling and managing the demands of customers. A smart grid is a huge complex network composed of millions

Aloul, Fadi

313

A Grid Services Implementation for a Virtual Research Environment  

E-Print Network [OSTI]

Agent Multimedia Group 2. Learning Technologies Group Electronics and Computer Science, University of Southampton, UK {gbw, lg3, qg2, hcd, tmb, dem, lac, wh}@ecs.soton.ac.uk 3 Royal College of Surgeons of England

Paris-Sud XI, Université de

314

Addressing Policy and Logistical Challenges to Smart Grid Implementation:  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------Chapter 39.2 (June 2005)Action forAd

315

Addressing Policy and Logistical Challenges to Smart Grid Implementation:  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------Chapter 39.2 (June 2005)Action forAdFederal

316

Addressing Policy and Logistical Challenges to smart grid Implementation:  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------Chapter 39.2 (June 2005)Action forAdFederaleMeter

317

Metrics for Measuring Progress Toward Implementation of the Smart Grid  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 Master EM ProjectMemoDepartmentFY 2010 Methane(June 2008) |

318

Addressing Policy and Logistical Challenges to Smart Grid Implementation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, April 2014 | Department of

319

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

views on the following: 1) whether the electric power utilities have shown interests in upgrading their distribution service equipment, etc., 2) whether the state regulatory...

320

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun Deng Associate Research PhysicistWestNA NAWV

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun Deng Associate Research PhysicistWestNA NAWV

322

Artificial Intelligence for the Smart Grid  

E-Print Network [OSTI]

Artificial Intelligence for the Smart Grid NICTA is developing technology to automate costs. The Future · Cover more of Smart Grid control (diagnosis, reconfiguration, protection, voltage) products for the Smart Grid. Contact Details: Technical Jussi Rintanen Canberra Research Laboratory Tel

323

Parametrization-independent elliptic surface grid generation  

E-Print Network [OSTI]

The generation of computational grids on surfaces of three-dimensional configurations is an important component of many areas of computational research, both as a boundary grid for volume grid generation or to perform ...

Rasmussen, Britt Bille

2009-01-01T23:59:59.000Z

324

Considering Prefabulous and Almost Off the Grid  

E-Print Network [OSTI]

Prefabulous and Almost Off the Grid Introduction Two recentPrefabulous and Almost Off the Grid by Sheri Koones In herand Almost O?fz‘/Je Grid (Abrams, 2012), Sheri Koones pro?

Grenier, Lotus; Beba, Zoe; Gray, Art

2013-01-01T23:59:59.000Z

325

Smart Grid Status and Metrics Report  

SciTech Connect (OSTI)

To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. It measures 21 metrics to provide insight into the grid’s capacity to embody these characteristics. This report looks across a spectrum of smart grid concerns to measure the status of smart grid deployment and impacts.

Balducci, Patrick J.; Weimar, Mark R.; Kirkham, Harold

2014-07-01T23:59:59.000Z

326

The Open Science Grid  

SciTech Connect (OSTI)

The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. OSG provides support for and evolution of the infrastructure through activities that cover operations, security, software, troubleshooting, addition of new capabilities, and support for existing and engagement with new communities. The OSG SciDAC-2 project provides specific activities to manage and evolve the distributed infrastructure and support its use. The innovative aspects of the project are the maintenance and performance of a collaborative (shared & common) petascale national facility over tens of autonomous computing sites, for many hundreds of users, transferring terabytes of data a day, executing tens of thousands of jobs a day, and providing robust and usable resources for scientific groups of all types and sizes. More information can be found at the OSG web site: www.opensciencegrid.org.

Pordes, Ruth; /Fermilab; Kramer, Bill; Olson, Doug; / /LBL, Berkeley; Livny, Miron; Roy, Alain; /Wisconsin U., Madison; Avery, Paul; /Florida U.; Blackburn, Kent; /Caltech; Wenaus, Torre; /Brookhaven; Wurthwein, Frank; /UC, San Diego; Gardner, Rob; Wilde, Mike; /Chicago U. /Indiana U.

2007-06-01T23:59:59.000Z

327

From the Grid to the Smart Grid, Topologically  

E-Print Network [OSTI]

The Smart Grid is not just about the digitalization of the Power Grid. In its more visionary acceptation, it is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the Smart Grid a reality will the Distribution Grid have to be updated? We assume a positive answer to the question and we consider the lower layers of Medium and Low Voltage to be the most affected by the change. In our previous work, we have analyzed samples of the Dutch Distribution Grid in our previous work and we have considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains in another previous work. In this paper, we take an extra important further step by defining a methodology for evolving any existing physical Power Grid to a good Smart Grid model th...

Pagani, Giuliano Andrea

2013-01-01T23:59:59.000Z

328

Secure Interoperable Open Smart Grid Demonstration Project  

SciTech Connect (OSTI)

The Consolidated Edison, Inc., of New York (Con Edison) Secure Interoperable Open Smart Grid Demonstration Project (SGDP), sponsored by the United States (US) Department of Energy (DOE), demonstrated that the reliability, efficiency, and flexibility of the grid can be improved through a combination of enhanced monitoring and control capabilities using systems and resources that interoperate within a secure services framework. The project demonstrated the capability to shift, balance, and reduce load where and when needed in response to system contingencies or emergencies by leveraging controllable field assets. The range of field assets includes curtailable customer loads, distributed generation (DG), battery storage, electric vehicle (EV) charging stations, building management systems (BMS), home area networks (HANs), high-voltage monitoring, and advanced metering infrastructure (AMI). The SGDP enables the seamless integration and control of these field assets through a common, cyber-secure, interoperable control platform, which integrates a number of existing legacy control and data systems, as well as new smart grid (SG) systems and applications. By integrating advanced technologies for monitoring and control, the SGDP helps target and reduce peak load growth, improves the reliability and efficiency of Con Edison’s grid, and increases the ability to accommodate the growing use of distributed resources. Con Edison is dedicated to lowering costs, improving reliability and customer service, and reducing its impact on the environment for its customers. These objectives also align with the policy objectives of New York State as a whole. To help meet these objectives, Con Edison’s long-term vision for the distribution grid relies on the successful integration and control of a growing penetration of distributed resources, including demand response (DR) resources, battery storage units, and DG. For example, Con Edison is expecting significant long-term growth of DG. The SGDP enables the efficient, flexible integration of these disparate resources and lays the architectural foundations for future scalability. Con Edison assembled an SGDP team of more than 16 different project partners, including technology vendors, and participating organizations, and the Con Edison team provided overall guidance and project management. Project team members are listed in Table 1-1.

Magee, Thoman

2014-12-31T23:59:59.000Z

329

IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 2, JUNE 2013 847 Cyber-Physical Security Testbeds: Architecture,  

E-Print Network [OSTI]

IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 2, JUNE 2013 847 Cyber-Physical Security Testbeds-physical systems, cyber security, smart grid, testbeds. I. INTRODUCTION CYBER security incidents have gained the importance of cyber security due to more substantial ICT dependencies. The U.S. Department of Energy (DOE

Manimaran, Govindarasu

330

Instrumentation, Controls, and Human-Machine Interface Technology Development Roadmap in Support of Grid Appropriate Reactors  

SciTech Connect (OSTI)

Grid Appropriate Reactors (GARs) are a component of the U.S. Department of Energy s (DOE s) Global Nuclear Energy Partnership (GNEP) program. GARs have smaller output power (<~600 MWe), than those intended for deployment on large, tightly coupled grids. This smaller size is important in avoiding grid destabilization, which can result from having a large fraction of a grid s electrical generation supplied by a single source. GARs are envisioned to be deployed worldwide often in locations without extensive nuclear power experience. DOE recently sponsored the creation of an Instrumentation, Controls, and Human-Machine Interface (ICHMI) technology development roadmap emphasizing the specific characteristics of GARs [1]. This roadmapping effort builds upon and focuses the recently developed, more general nuclear energy ICHMI technology development roadmap [2]. The combination of the smaller plant size, smaller grids, and deployment in locations without extensive prior nuclear power experience presents particular infrastructure, regulation, design, operational, and safeguards challenges for effective GAR deployment. ICHMI technologies are central to efficient GAR operation and as such are a dimension of each of these challenges. Further, while the particular ICHMI technologies to be developed would be useful at larger power plants, they are not high-priority development items at the larger plants. For example, grid transient resilience would be a useful feature for any reactor/grid combination and indeed would have limited some recent blackout events. However, most large reactors have limited passive cooling features. Large plants with active safety response features will likely preserve trip preferential grid transient response. This contrasts sharply with GARs featuring passive shutdown cooling, which can safely support grid stability during large grid transients. ICHMI technologies ranging from alternative control algorithms to simplified human-interface system designs are key to enabling GARs to respond properly and thereby stabilize the grid during transients.

Holcomb, David Eugene [ORNL] [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Kisner, Roger A [ORNL] [ORNL; O'Hara, John [Brookhaven National Laboratory (BNL)] [Brookhaven National Laboratory (BNL); Quinn, Edward L. [Longenecker & Associates] [Longenecker & Associates; Miller, Don W. [Ohio State University] [Ohio State University

2009-01-01T23:59:59.000Z

331

Sandia National Laboratories: Distribution Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure...

332

Sandia National Laboratories: Distribution Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Symposium On April 15, 2014, in Concentrating Solar Power, Distribution Grid Integration, Energy, Facilities, Grid Integration, News, News & Events, Photovoltaic,...

333

Sandia National Laboratories: Distribution Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distribution Grid Integration Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments On March 3, 2015, in Capabilities, Distribution Grid Integration,...

334

National Grid (Gas)- Commercial Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

National Grid’s Commercial Energy Efficiency Program provides support services and incentives to commercial customers who install energy efficient natural gas related measures. Prescriptive...

335

EV-Smart Grid Research & Interoperability Activities  

Broader source: Energy.gov (indexed) [DOE]

isolation chamber w wireless charging test fixture Integrated grid simulation, real-time grid data, and configurable branch circuit for smart charging and energy management...

336

Smart Grid Investment Grant Recipient Information | Department...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act SGIG Smart Grid Investment Grant Recipient Information Smart Grid Investment Grant Recipient Information BACKGROUND The Department of Energy's Office of Electricity...

337

Electricity Advisory Committee Smart Grid Subcommittee  

Broader source: Energy.gov (indexed) [DOE]

Electricity Advisory Committee Smart Grid Subcommittee Update to the 2008 EAC Report Smart Grid: Enabler of the New Energy Economy Report Recommendations May 10, 2011...

338

Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable Energy

339

DOE Launches New Smart Grid Web Portal | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartnersDepartmentfor EnergyCertificationFraud Reporting

340

DOE Onboarding  

Broader source: Energy.gov (indexed) [DOE]

First Six Months First Year *Continual Learning *Fraud Awareness *eOPF & ePerformance *ESS & Workflow *DOE Social Media *Networking Opportunity GETTING SETTLED ADJUSTMENT &...

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DOE PAGES  

Office of Scientific and Technical Information (OSTI)

a useful reference. Find out more Do you have questions about DOE PAGESBeta content, procedures, or policies? More information is available at OSTI's Public Access Policy page and...

342

Worker Protection Program for DOE (including the National Nuclear Security Administration) Federal Employees Guide for Use with DOE O 440.1B  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Guide provides suggestions and alternative approaches that DOE elements may consider in implementing their worker protection program. Cancels DOE G 440.1-1.

2007-06-04T23:59:59.000Z

343

Introduction to CamGrid  

E-Print Network [OSTI]

set up: one for users (92 currently registered) and the other for sysadmins. Have a nice web-based utility for viewing job files in realtime on execute hosts. 41 refereed publications to date, (Science, Phys. Rev. Lett., PLOS,…) USERS YOUR GRID... GOD SAVE THE GRID How you can help us help you Pressgang local resources. Why aren’t those laptops/desktops on CamGrid? When applying for grants, please ask for funds to put towards computational resources (~£10k?) Publications, publications...

Calleja, Mark

2008-06-26T23:59:59.000Z

344

National Smart Water Grid  

SciTech Connect (OSTI)

The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US-Mexico border; and decreased eutrophication (excessive plant growth and decay) in the Gulf of Mexico to name a few. The National Smart Water Grid{trademark} will pay for itself in a single major flood event.

Beaulieu, R A

2009-07-13T23:59:59.000Z

345

Smart Grid Projects Are Improving Performance and Helping Consumers Better  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE FormerEnergySavePEnergy Smart Grid

346

An integrated security framework for GOSS power grid analytics platform  

SciTech Connect (OSTI)

In power grid operations, security is an essential component for any middleware platform. Security protects data against unwanted access as well as cyber attacks. GridOpticsTM Software System (GOSS) is an open source power grid analytics platform that facilitates ease of access between applications and data sources and promotes development of advanced analytical applications. GOSS contains an API that abstracts many of the difficulties in connecting to various heterogeneous data sources. A number of applications and data sources have already been implemented to demonstrate functionality and ease of use. A security framework has been implemented which leverages widely accepted, robust JavaTM security tools in a way such that they can be interchanged as needed. This framework supports the complex fine-grained, access control rules identified for the diverse data sources already in GOSS. Performance and reliability are also important considerations in any power grid architecture. An evaluation is done to determine the overhead cost caused by security within GOSS and ensure minimal impact to performance.

Gibson, Tara D.; Ciraci, Selim; Sharma, Poorva; Allwardt, Craig H.; Rice, Mark J.; Akyol, Bora A.

2014-06-23T23:59:59.000Z

347

Grid Pricing of Fed Cattle  

E-Print Network [OSTI]

There are several value-based fed cattle pricing systems, including formula pricing, price grids and alliances. This publication describes the different cattle pricing methods and helps you decide which is best for you....

Schroeder, Ted C.; Hogan, Robert J.; Anderson, David P.

2009-03-02T23:59:59.000Z

348

Introduction to FireGrid   

E-Print Network [OSTI]

FireGrid is an ambitious and innovative project, seeking to develop the technology to support a new way of managing emergency response in the modern built environment. Specific novel aspects include the integration of ...

Welch, Stephen; Usmani, Asif; Upadhyay, Rochan; Berry, Dave; Potter, Stephen; Torero, Jose L

2007-11-14T23:59:59.000Z

349

Brookhaven National Laboratory Smarter Grid Centers  

E-Print Network [OSTI]

(Smart Grid Innovation Center) #12;3 Smart Grid enables 21st Century Economy and Creates Need for SGRID3 Research &Technology (AERTC) Center is designed to nurture creation of new technologies for Smart Grid - New - Development of SGIC (Smart Grid Innovation Center) at SBU - New -Development of AEGIS (Advanced

Homes, Christopher C.

350

Grid Architecture Release 2.3  

E-Print Network [OSTI]

Draft Grid Architecture Release 2.3 November 2014 Draft #12;Grid Architecture Release 2.3 November..................................................................................................... 2.1 3.0 Brief Introduction to Grid Architecture........................................................................................ 3.2 3.1 How Grid Architecture Can Be Used

351

Benchmarking Grid Information Systems Laurence Field1  

E-Print Network [OSTI]

Benchmarking Grid Information Systems Laurence Field1 and Rizos Sakellariou2 1 CERN, Geneva. Grid information systems play a central role in today's pro- duction Grid infrastructures, enabling the discovery of a range of in- formation about the Grid services that exist in an infrastructure. As the number

Sakellariou, Rizos

352

Evidential Grids Information Management in Dynamic Environments  

E-Print Network [OSTI]

of Compiègne CNRS Heudiasyc UMR 7253, France Email: surname.name@utc.fr Abstract--An occupancy grid map conditions. The perception strategy involves map and scan grids [9], [10]. Indeed, an instantaneous scan grid-detections. The map grid acts as a filter that accumulate information and allows to detect moving objects. In dynamic

Paris-Sud XI, Université de

353

Networks, smart grids: new model for synchronization  

E-Print Network [OSTI]

- 1 - Networks, smart grids: new model for synchronization May 21, 2013 Networks of individual scenarios and in smart grid applications. "Smart grid" refers to technology to modernize utility electricity in a volatile smart grid scenario that included fluctuating loads with random power demand, renewable energy

354

Smart Wire Grid: Resisting Expectations  

ScienceCinema (OSTI)

Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

Ramsay, Stewart; Lowe, DeJim

2014-04-09T23:59:59.000Z

355

Smart Wire Grid: Resisting Expectations  

SciTech Connect (OSTI)

Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

Ramsay, Stewart; Lowe, DeJim

2014-03-03T23:59:59.000Z

356

Reinventing Batteries for Grid Storage  

SciTech Connect (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2012-01-01T23:59:59.000Z

357

Reinventing Batteries for Grid Storage  

ScienceCinema (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2013-05-29T23:59:59.000Z

358

Grid Simulator for Testing a Wind Turbine on Offshore Floating Platform  

SciTech Connect (OSTI)

An important aspect of such offshore testing of a wind turbine floating platform is electrical loading of the wind turbine generator. An option of interconnecting the floating wind turbine with the onshore grid via submarine power cable is limited by many factors such as costs and associated environmental aspects (i.e., an expensive and lengthy sea floor study is needed for cable routing, burial, etc). It appears to be a more cost effective solution to implement a standalone grid simulator on a floating platform itself for electrical loading of the test wind turbine. Such a grid simulator must create a stable fault-resilient voltage and frequency bus (a micro grid) for continuous operation of the test wind turbine. In this report, several electrical topologies for an offshore grid simulator were analyzed and modeled.

Gevorgian, V.

2012-02-01T23:59:59.000Z

359

A Core Grid Ontology for the Semantic Grid Wei Xing Marios D. Dikaiakos  

E-Print Network [OSTI]

A Core Grid Ontology for the Semantic Grid Wei Xing Marios D. Dikaiakos Department of Computer, we propose a Core Grid Ontology (CGO) that defines fundamental Grid-specific concepts, and the re- lationships between them. One of the key goals is to make this Core Grid Ontology general enough and easily

Pallis, George

360

Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter  

E-Print Network [OSTI]

Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter based in the same grid interface conditions by means of impedance-based analysis and modeling. Unlike the single grid connected inverter, it is found that multiple parallel connected inverters and grid impedance can

Bak, Claus Leth

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

What is a Grid? Grid Today, AUGUST 12, 2002: VOL. 1 NO. 9  

E-Print Network [OSTI]

What is a Grid? Grid Today, AUGUST 12, 2002: VOL. 1 NO. 9 (http://www.gridtoday.com/02/0812/020812.html) I would like to provide perspective on the question of what is a Grid - a perspective derived from several years of building production Grids. For a significant segment of the Grid community, most

362

Analysis of grid imprinting on geodesic spherical icosahedral grids Pedro S. Peixoto, Saulo R. M. Barros  

E-Print Network [OSTI]

Analysis of grid imprinting on geodesic spherical icosahedral grids Pedro S. Peixoto, Saulo R. M-090 S~ao Paulo, Brazil Abstract Numerical grid imprinting errors have often been observed in global atmospheric models on icosahedral grids. In this paper we analyse the sources of grid imprinting error related

363

Smart Grid: Opportunities and Challenges Toward a Stronger and Smarter Grid  

E-Print Network [OSTI]

Smart Grid: Opportunities and Challenges Toward a Stronger and Smarter Grid S. Massoud Amin, D electrical energy infrastructure ­ Transforming the Network into a Smart Grid ­ Developing an Expanded be reproduced in any form without prior authorization. Enabling a Stronger and Smarter Grid ·Smart Grid

Amin, S. Massoud

364

Pacific Northwest Smart GridPacific Northwest Smart Grid Demonstration ProjectDemonstration Project  

E-Print Network [OSTI]

Pacific Northwest Smart GridPacific Northwest Smart Grid Demonstration ProjectDemonstration Project Northwest Power and Conservation Council Lee Hall, BPA Smart Grid Program Manager Tracy Yount, Battelle Electric Grid Research Manager April 14, 2010 PNWD-SA-8921 #12;Agenda · Smart Grid ­ What is it? · PNW

365

National Grid Deep Energy Retrofit Pilot  

SciTech Connect (OSTI)

Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance. Evaluation of strategies is structured around the critical control functions of water, airflow, vapor flow, and thermal control. The aim of the research project is to develop guidance that could serve as a foundation for wider adoption of high performance, 'deep' retrofit work. The project will identify risk factors endemic to advanced retrofit in the context of the general building type, configuration and vintage encountered in the National Grid DER Pilot. Results for the test homes are based on observation and performance testing of recently completed projects. Additional observation would be needed to fully gauge long-term energy performance, durability, and occupant comfort.

Neuhauser, K.

2012-03-01T23:59:59.000Z

366

The Open Science Grid status and architecture  

SciTech Connect (OSTI)

The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. The OSG project[1] is funded by the National Science Foundation and the Department of Energy Scientific Discovery through Advanced Computing program. The OSG project provides specific activities for the operation and evolution of the common infrastructure. The US ATLAS and US CMS collaborations contribute to and depend on OSG as the US infrastructure contributing to the World Wide LHC Computing Grid on which the LHC experiments distribute and analyze their data. Other stakeholders include the STAR RHIC experiment, the Laser Interferometer Gravitational-Wave Observatory (LIGO), the Dark Energy Survey (DES) and several Fermilab Tevatron experiments- CDF, D0, MiniBoone etc. The OSG implementation architecture brings a pragmatic approach to enabling vertically integrated community specific distributed systems over a common horizontal set of shared resources and services. More information can be found at the OSG web site: www.opensciencegrid.org.

Pordes, Ruth; Petravick, Don; /Fermilab; Kramer, Bill; Olsen, James D.; /LBL, Berkeley; Livny, Miron; Roy, Gordon A.; /Wisconsin U., Madison; Avery, Paul Ralph; /Florida U.; Blackburn, Kent; /Caltech; Wenaus, Torre J.; /Brookhaven; Wuerthwein, Frank K.; /UC, San Diego; Foster, Ian; /Chicago U. /Indiana U.

2007-09-01T23:59:59.000Z

367

DOE plan for UMTRA Project water protection standards  

SciTech Connect (OSTI)

This plan was developed to define DOE`s implementation of water protection standards for the UMTRA Project, on an interim basis, until the EPA promulgates revised standards in response to the September, 1985, decision by the Tenth Circuit Court of Appeals. This plan presents the historical background of the development of the Title I standards and the rationale for the DOE implementation approach.

Not Available

1986-07-01T23:59:59.000Z

368

GRID-Launcher v.1.0  

E-Print Network [OSTI]

GRID-launcher-1.0 was built within the VO-Tech framework, as a software interface between the UK-ASTROGRID and a generic GRID infrastructures in order to allow any ASTROGRID user to launch on the GRID computing intensive tasks from the ASTROGRID Workbench or Desktop. Even though of general application, so far the Grid-Launcher has been tested on a few selected softwares (VONeural-MLP, VONeural-SVM, Sextractor and SWARP) and on the SCOPE-GRID.

N. Deniskina; M. Brescia; S. Cavuoti; G. d'Angelo; O. Laurino; G. Longo

2008-06-06T23:59:59.000Z

369

DOE explosives safety manual  

SciTech Connect (OSTI)

The Department of Energy (DOE) policy requires that all DOE activities be conducted in a manner that protects the safety of the public and provides a safe and healthful workplace for employees. DOE has also prescribed that all personnel be protected in any explosives operation undertaken. The level of safety provided shall be at least equivalent to that of the best industrial practice. The risk of death or serious injury shall be limited to the lowest practicable minimum. DOE and contractors shall continually review their explosives operations with the aim of achieving further refinements and improvements in safety practices and protective features. This manual describes the Department's explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. It is intended to reflect the state-of-the-art in explosives safety. In addition, it is essential that applicable criteria and requirements for implementing this policy be readily available and known to those responsible for conducting DOE programs.

Not Available

1991-10-01T23:59:59.000Z

370

Evaluation of Representative Smart Grid Investment Project Technologies: Demand Response  

SciTech Connect (OSTI)

This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of a limited number of demand response technologies and implementations deployed in the SGIG projects.

Fuller, Jason C.; Prakash Kumar, Nirupama; Bonebrake, Christopher A.

2012-02-14T23:59:59.000Z

371

The Vermont-Sandia Smart Grid Partnership Powering the Future: The Vermont Smart Grid and Beyond  

E-Print Network [OSTI]

The Vermont-Sandia Smart Grid Partnership Powering the Future: The Vermont Smart Grid and Beyond BURLINGTON SHERATON HOTEL & CONFERENCE CENTER MAY Laboratories 9:10-10:15 a.m. Opening Plenary: The Vermont-Sandia Smart Grid

Hayden, Nancy J.

372

DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity  

E-Print Network [OSTI]

DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity: Vol. 2, Privacy and the Smart Grid The Smart Grid Interoperability Panel ­ Smart Grid Cybersecurity Committee #12;DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity: Vol. 2, Privacy and the Smart Grid The Smart Grid

373

POWER GRID RELIABILITY AND SECURITY  

SciTech Connect (OSTI)

This project has led to the development of a real-time simulation platform for electric power grids called Grid Simulator or GridSim for simulating the dynamic and information network interactions of large- scale power systems. The platform consists of physical models of power system components including synchronous generators, loads and control, which are simulated using a modified commercial power simulator namely Transient Stability Analysis Tool (TSAT) [1] together with data cleanup components, as well as an emulated substation level and wide-area power analysis components. The platform also includes realistic representations of communication network middleware that can emulate the real-time information flow back and forth between substations and control centers in wide-area power systems. The platform has been validated on a realistic 6000-bus model of the western American power system. The simulator GridSim developed in this project is the first of its kind in its ability to simulate real-time response of large-scale power grids, and serves as a cost effective real-time stability and control simulation platform for power industry.

Bose, Anjan; Venkatasubramanian, Vaithianathan; Hauser, Carl; Bakken, David; Anderson, David; Zhao, Chuanlin; Liu, Dong; Yang, Tao; Meng, Ming; Zhang, Lin; Ning, Jiawei; Tashman, Zaid

2014-09-30T23:59:59.000Z

374

EcoGrid EU (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThisEcoGrid EU (Smart Grid Project) Jump to:

375

Incremental Implementation of Energy Management at Industrial Facilities  

E-Print Network [OSTI]

management practice by implementing the management system standard, most are intimidated by the perceived complexity and sweeping authority of the standard and elect not to pursue formal implementation. While the standard does require coordinated...

Brown, M.; Key, G.

2005-01-01T23:59:59.000Z

376

Criticality Safety Controls Implementation, May 31, 2013 (HSS...  

Broader source: Energy.gov (indexed) [DOE]

Implementation, May 31, 2013 (HSS CRAD 45-18, Rev. 1) More Documents & Publications CRAD, Criticality Safety Controls Implementation - May 31, 2013 DOE-STD-1158-2010 Application of...

377

Comments Received on Proposed Rulemaking for regulation implementing...  

Broader source: Energy.gov (indexed) [DOE]

DOE published a Notice of Proposed Rulemaking for regulation implementing section 216(h). Comments on the proposed rule were originally due on January 27, 2012. The comment...

378

Advanced Topics for the Portfolio Manager Initiative: Energy Disclosure Policy Implementation  

Broader source: Energy.gov [DOE]

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on the Energy Disclosure Policy Implementation

379

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

data  integration  for  Smart  Grid”,  B 2010  3rd  IEEE simulation  integration,  the  next generation smart grid the Smart Grid vision requires the efficient integration of 

Birman, Kenneth

2012-01-01T23:59:59.000Z

380

Smart Grid Week: Hurricane Season and the Department's Efforts...  

Broader source: Energy.gov (indexed) [DOE]

Season and the Department's Efforts to Make the Grid More Resilient to Power Outages Smart Grid Week: Hurricane Season and the Department's Efforts to Make the Grid More...

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...  

Broader source: Energy.gov (indexed) [DOE]

Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid...

382

Sandia National Laboratories: How a Grid Manager Meets Demand...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to meet peak loads. Comments are closed. Advanced Electric Systems Integrating Renewable Energy into the Electric Grid Why is Grid Synchronization Important? How a Grid Manager...

383

Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and...

384

DOE F  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the DOE6 / 06 2 SunProgrammatic

385

DOE F  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the DOE6 / 06 2

386

DOE-0346  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State oftoDOE-0346

387

Convectively cooled electrical grid structure  

DOE Patents [OSTI]

Undesirable distortions of electrical grid conductors from thermal cycling are minimized and related problems such as unwanted thermionic emission and structural failure from overheating are avoided by providing for a flow of fluid coolant within each conductor. The conductors are secured at each end to separate flexible support elements which accommodate to individual longitudinal expansion and contraction of each conductor while resisting lateral displacements, the coolant flow preferably being directed into and out of each conductor through passages in the flexible support elements. The grid may have a modular or divided construction which facilitates manufacture and repairs.

Paterson, J.A.; Koehler, G.W.

1980-11-10T23:59:59.000Z

388

GENI: Grid Hardware and Software  

SciTech Connect (OSTI)

GENI Project: The 15 projects in ARPA-E’s GENI program, short for “Green Electricity Network Integration,” aim to modernize the way electricity is transmitted in the U.S. through advances in hardware and software for the electric grid. These advances will improve the efficiency and reliability of electricity transmission, increase the amount of renewable energy the grid can utilize, and provide energy suppliers and consumers with greater control over their power flows in order to better manage peak power demand and cost.

None

2012-01-09T23:59:59.000Z

389

Grid Technologies | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermalGoGreenServices Grid Software andGrid

390

Maintenance Implementation Plan for B Plant. Revision 1  

SciTech Connect (OSTI)

The objective of the Maintenance Implementation Plan (MIP) is to describe how the B Plant will implement the requirements established by US Department of Energy (DOE) Order 4330.4A, Maintenance Management Program, Chapter II, ``Nuclear Facilities`` (DOE 1990). The plan provides a blueprint for a disciplined approach to implementation and compliance. Each element of the order is prioritized, categorized, and then placed into one of three phases for implementation.

Tritt, S.E.

1993-04-01T23:59:59.000Z

391

FermiGrid - experience and future plans  

SciTech Connect (OSTI)

Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and the Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.

Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Timm, S.; Yocum, D.; /Fermilab

2007-09-01T23:59:59.000Z

392

Interstate Grid Electrification Improvement Project  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

393

GridWise Transactive Energy Framework (DRAFT Version)  

SciTech Connect (OSTI)

Over the past decade, the use of demand response and other flexible distributed resources for market efficiency and grid reliability has grown dramatically. Federal and state policy objectives point to an important role for customers’ loads, generation and storage in the management of an increasingly unpredictable power system. As we consider the need to substantially scale the use of flexible distributed energy resources, there has been growing attention to the need to address not only the economics, but also the control system implications to ensure grid reliability. This has led to a focus on an area of activity called “Transactive Energy.” Transactive Energy refers to the combination of economic and control techniques to improve grid reliability and efficiency. These techniques may also be used to optimize operations within a customer’s facility. The Department of Energy has supported the GridWise® Architecture Council (“the Council”) in developing a conceptual framework that can be used in developing architectures, and designing solutions related to transactive energy. The goal of this effort is to encourage and facilitate collaboration among the many stakeholders involved in the transformation of the power system and thereby advance the practical implementation of transactive energy.

Melton, Ronald B.

2013-11-06T23:59:59.000Z

394

Nuclear Explosive Safety - DOE Directives, Delegations, and Requiremen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2D Admin Chg 1, Nuclear Explosive Safety by Carl Sykes This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of...

395

Nuclear Explosive Safety - DOE Directives, Delegations, and Requiremen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

52.2E, Nuclear Explosive Safety by Angela Chambers Functional areas: Safety, Security This Department of Energy (DOE) Order establishes requirements to implement the nuclear...

396

DOE EM Project Experience & Lessons Learned for In Situ Decommissionin...  

Office of Environmental Management (EM)

"DOE EM Project Experience & Lessons Learned for In Situ Decommissioning" report is to capture the considerable technical experience gained to date for implementation of In Situ...

397

Incorporation of NREL Solar Advisor Model Photovoltaic Capabilities with GridLAB-D  

SciTech Connect (OSTI)

This report provides a summary of the work updating the photovoltaic model inside GridLAB-D. The National Renewable Energy Laboratory Solar Advisor Model (SAM) was utilized as a basis for algorithms and validation of the new implementation. Subsequent testing revealed that the two implementations are nearly identical in both solar impacts and power output levels. This synergized model aides the system-level impact studies of GridLAB-D, but also allows more specific details of a particular site to be explored via the SAM software.

Tuffner, Francis K.; Hammerstrom, Janelle L.; Singh, Ruchi

2012-10-19T23:59:59.000Z

398

Implementation of Department of Energy Oversight Policy  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order implements the policy that establishes a Department-wide oversight process to protect the public, workers, environment, and national security assets effectively through continuous improvement. Cancels DOE O 226.1. Canceled by DOE O 226.1B

2007-07-31T23:59:59.000Z

399

GridMat: Matlab Toolbox for GridLAB-D to Analyse Grid Impact and Validate Residential Microgrid Level  

E-Print Network [OSTI]

GridMat: Matlab Toolbox for GridLAB-D to Analyse Grid Impact and Validate Residential Microgrid.alfaruque, fahourai} @ uci.edu Abstract-- Residential microgrid has the capability to participate in the distribution level) advanced control algorithms need to be developed and validated for such residential microgrids

Al Faruque, Mohammad Abdullah

400

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

where metrics are needed to monitor progress. 11 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y The Grid - Today vs. Tomorrow...

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Assistant Secretary Hoffman Discusses Grid Modernization with...  

Broader source: Energy.gov (indexed) [DOE]

Assistant Secretary Hoffman Discusses Grid Modernization with the New York Times and E&E TV Assistant Secretary Hoffman Discusses Grid Modernization with the New York Times and E&E...

402

Principal Characteristics of a Modern Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Joe Miller, Modern Grid Strategy Team Lead Grid Econ - The Economics of a Smarter...

403

Vids4Grids- Controls, Connectors & Surge Protectors  

Broader source: Energy.gov [DOE]

Modernizing our grid means exciting new devices in the power sector. Find out how new lighting controls, connectors and surge protection will bring out electric grid to the next level.

404

INFOGRAPHIC: Understanding the Grid | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Grid November 17, 2014 - 2:05pm Addthis Our GridWeek infographic shows how electricity is generated, transmitted and distributed for use in our homes. | Graphic by

405

GridWise Alliance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Challenges Re: NBP RFI: Communications Requirements 2010 U.S. Smart Grid Vendor Ecosystem Report on the companies and market dynamics shaping the current U.S. smart grid landscape...

406

Past and future of grid shell structures  

E-Print Network [OSTI]

Because of their original organic shape and the column free space that they provide, the design of grid shell structures challenges architects and structural engineers in more than one way. Very few grid shell building ...

Paoli, Céline (Céline Aude)

2007-01-01T23:59:59.000Z

407

Grid Applications Dr Gabrielle Allen  

E-Print Network [OSTI]

of chemistry and other codes (www.gridchem.org) ! Petroleum Engineering " UCoMS: Grid-enabling reservoir ! Requires incredible mix of technologies & expertise! ! Many scientific/engineering components " Physics? Finite elements? " Elliptic equations: multigrid, Krylov subspace,... " Mesh refinement ! Many different

Allen, Gabrielle

408

Embodied Energy and Off-Grid Lighting  

E-Print Network [OSTI]

as a point of comparison with LED lighting product embodieda fairer comparison between off- grid LED lighting and other

Alstone, Peter

2012-01-01T23:59:59.000Z

409

Flexible Transmission in the Smart Grid  

E-Print Network [OSTI]

Planning . 102 vi Transmission Line Maintenance Scheduling 103 Just-in-time Transmission 103 Flexible Transmission in the Smart Grid

Hedman, Kory Walter

2010-01-01T23:59:59.000Z

410

Grid Technology Overview and Status Geoffrey Fox1,2  

E-Print Network [OSTI]

Grid Technology Overview and Status Geoffrey Fox1,2 , Alex Ho2 , Marlon Pierce1 1 Community Grids...................................................................................................................... 1 2 What is a Grid? ................................................................................................................ 1 3 Grid Technologies and Capabilities

411

Cost benefit analysis for the implementation of smart metering...  

Open Energy Info (EERE)

Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Home application Smart Grid Projects - Customer...

412

The Adjustable Grid: A Grid-Based Cursor Control Solution using Speech Recognition  

E-Print Network [OSTI]

The Adjustable Grid: A Grid-Based Cursor Control Solution using Speech Recognition Tarif Haque1 of grid-based cursor control systems using speech recognition have been developed. These systems typically overlay a numbered 3x3 grid on the screen and allow the user to recursively drill the cursor down

Gray, Jeffrey G.

413

Information GRID in the Corporate World Information GRID in the Corporate World  

E-Print Network [OSTI]

Information GRID in the Corporate World Information GRID in the Corporate World .Bogonikolos Zeus Ontology Grid) project, an EU project funded under the Information Society Technologies programme and EAI Tools is discussed. The COG (Corporate Ontology Grid) project addresses the problem of accessing

Paris-Sud XI, Université de

414

GridBank: A Grid Accounting Services Architecture (GASA) for Distributed Systems Sharing and Integration  

E-Print Network [OSTI]

GridBank: A Grid Accounting Services Architecture (GASA) for Distributed Systems Sharing Australia Nedlands, Western Australia, 6009 barmouta@csse.uwa.edu.au Rajkumar Buyya Grid Computing and Distributed Systems (GRIDS) Lab Dept. of Computer Science and Software Engineering The University of Melbourne

Buyya, Rajkumar

415

GRID superscalar and SAGA: forming a high-level and platform-independent Grid  

E-Print Network [OSTI]

GRID superscalar and SAGA: forming a high-level and platform-independent Grid programming Universiteit, Amsterdam, The Netherlands {merzky|kielmann}@cs.vu.nl Abstract. The Simple API for Grid Applications (SAGA), as currently standardized within GGF, aims to provide a simple yet powerful Grid API; its

Kielmann, Thilo

416

A Multi-solver Scheme for Viscous Flows Using Adaptive Cartesian Grids and Meshless Grid  

E-Print Network [OSTI]

A Multi-solver Scheme for Viscous Flows Using Adaptive Cartesian Grids and Meshless Grid of an adaptive multi-solver approach for CFD sim- ulation of viscous flows. Curvilinear grids are used near solid bodies to capture boundary layers, and stuctured adaptive Cartesian grids are used away from the body

Jameson, Antony

417

Semantic-based Grid Resource Discovery and its Integration with the Grid Service Broker  

E-Print Network [OSTI]

1 Semantic-based Grid Resource Discovery and its Integration with the Grid Service Broker Thamarai Chromepet, Chennai ­ 600044, India Email : stselvi@annauniv.edu 2 Grid Computing and Distributed Systems :mohanram@cdacb.ernet.in Abstract: This paper addresses the need of semantic component in the grid

Melbourne, University of

418

Using the GridSim Toolkit for Enabling Grid Computing Education Manzur Murshed  

E-Print Network [OSTI]

with (Grid-enabled) resources or their agents using middleware services, map tasks to resources (schedulingUsing the GridSim Toolkit for Enabling Grid Computing Education Manzur Murshed Gippsland School: Grid Simulation; Education; Scheduling; Resource Management. Abstract Numerous research groups

Melbourne, University of

419

EL Program: Smart Grid Program Manager: David Wollman, Smart Grid and Cyber-Physical Systems  

E-Print Network [OSTI]

EL Program: Smart Grid Program Manager: David Wollman, Smart Grid and Cyber-Physical Systems Program Office, Associate Program Manager: Dean Prochaska, Smart Grid and Cyber- Physical Systems Program [updated August 23, 2013] Summary: This program develops and demonstrates smart grid measurement science

420

Smart Grids: Fact or Fiction? A Discussion of Smart Grids in New Zealand  

E-Print Network [OSTI]

May 2013 1 Smart Grids: Fact or Fiction? A Discussion of Smart Grids in New Zealand Dr Allan Miller. Introduction The term `smart grid' is used extensively today, even though there are diverse opinions on what to some extent, and the key questions should not be about what constitutes a `smart grid', but what

Hickman, Mark

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave  

E-Print Network [OSTI]

Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave INFORME para la Sostenibilidad Energética y Ambiental, FUNSEAM. #12;Smart Grids: Sectores y actividades clave eléctrica y los diferentes sectores que forman la smart grid. 6 Figura 2. Evolución y previsión de

Politècnica de Catalunya, Universitat

422

DOE Science Showcase - DOE's Smart Grid Research | OSTI, US Dept of Energy,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNALostPlasmaReviews »ofUSOfficeOffice of

423

FUTURE POWER GRID INITIATIVE Scalable Sensor Data  

E-Print Network [OSTI]

of sensors and a large number of applications in future smart grids » Provide a uniformed API to allow applications to access real time power grid data » Facilitate the integration of a large number of diverse management systems » Allow easy integration of a large number of diverse power grid applications

424

February 2002 Grid Scale Oscillations in MICOM  

E-Print Network [OSTI]

are the implications of the grid scale oscillation on ­ Surface Fluxes that drive THC ­ Heat transport ­ MeridionalFebruary 2002 Grid Scale Oscillations in MICOM Balasubramanya T. Nadiga Los Alamos National Model · 3o displaced pole grid. 16 layers · Kraus-Turner Bulk Mixed Layer · Explicit diapycnal

Nadiga, Balasubramanya T. "Balu"

425

"Reliability, Resiliency, and Restoration for Smarter Grid  

E-Print Network [OSTI]

"Reliability, Resiliency, and Restoration for Smarter Grid Workshop" Save the Date April 3 and 4 at mohlsen@bnl.gov "The Resilient Smart Grid" to be held at Brookhaven National Laboratory Upton, Long Island://www.bnl.gov/maps/. This is the 5th workshop that BNL is hosting on the Smart Grid. This Workshop will build on the previous

Ohta, Shigemi

426

Grid adaptation for multiscale plasma simulations  

E-Print Network [OSTI]

Grid adaptation for multiscale plasma simulations Gian Luca Delzanno Los Alamos National Laboratory In collaboration with L. Chacon and J.M. Finn #12;delzanno@lanl.gov Outline · Introduction and motivation · Grid tests · New directions · Conclusions #12;delzanno@lanl.gov Outline · Introduction and motivation · Grid

Ito, Atsushi

427

GRID Technologies => `Education' = `Distance Michalis Xenos  

E-Print Network [OSTI]

GRID Technologies => `Education' = `Distance Education' Michalis Xenos 1,2 , Bill Vassiliadis 1 possibilities that Grid technologies create in education, presents current learning paradigms and makes a prediction about the way in which Grid technologies may affect the future of education. The case

Boyer, Edmond

428

Distributing MCell Simulations on the Grid  

E-Print Network [OSTI]

Distributing MCell Simulations on the Grid Henri Casanova casanova@cs.ucsd.edu Tom Bartol The Computational Grid [21] is a promising platform for the deployment of large-scale scientific and engineering that structure, PSAs are particularly well suited to the Grid infrastructure and can be deployed on very large

Sejnowski, Terrence J.

429

Programming, Composing, Deploying for the Grid  

E-Print Network [OSTI]

Programming, Composing, Deploying for the Grid Laurent Baduel, Fran¸coise Baude, Denis Caromel FirstName.LastName@sophia.inria.fr Abstract. Grids raise new challenges in the following way: heterogene objects and components. We especially target Grid computing, but our approach also applies to application

Paris-Sud XI, Université de

430

Anisotropic Grid Adaptation for Multiple Aerodynamic Outputs  

E-Print Network [OSTI]

Anisotropic Grid Adaptation for Multiple Aerodynamic Outputs David A. Venditti and David L Anisotropic grid­adaptive strategies are presented for viscous flow simulations in which the accurate estimation and Hessian-based anisotropic grid adaptation. Airfoil test cases are presented to demonstrate

Peraire, Jaime

431

Multiprocessor computer overset grid method and apparatus  

DOE Patents [OSTI]

A multiprocessor computer overset grid method and apparatus comprises associating points in each overset grid with processors and using mapped interpolation transformations to communicate intermediate values between processors assigned base and target points of the interpolation transformations. The method allows a multiprocessor computer to operate with effective load balance on overset grid applications.

Barnette, Daniel W. (Veguita, NM); Ober, Curtis C. (Los Lunas, NM)

2003-01-01T23:59:59.000Z

432

Algorithms in grid classes Ruth Hoffmann  

E-Print Network [OSTI]

signs c1, . . . , cs and row signs, r1, . . . , rt and let = {(k, ) : Mk, = 0}. The map : GridAlgorithms in grid classes Ruth Hoffmann University of St Andrews, School of Computer Science Permutation Patterns 2013 Universit´e Paris Diderot 2nd July 2013 Ruth Hoffmann Algorithms in grid classes 1

St Andrews, University of

433

Semantic Information Integration for Smart Grid Applications*  

E-Print Network [OSTI]

Chapter 19 Semantic Information Integration for Smart Grid Applications* Yogesh Simmhan, Qunzhi Zhou, and Viktor Prasanna* Abstract. The Los Angeles Smart Grid Project aims to use informatics that supports 1.4 million customers and a rich ecosystem of Smart Grid applications from users, third party

Prasanna, Viktor K.

434

SMART WATER GRID PLAN B TECHNICAL REPORT  

E-Print Network [OSTI]

SMART WATER GRID PLAN B TECHNICAL REPORT FALL 2014 PREPARED BY: OLGA MARTYUSHEVA IN PARTIAL demand linked to the global population increase. A Smart Water Grid (SWG) is a two-way real time network, and others. A review of the benefits of Smart Water Grids is presented in the context of water conservation

Julien, Pierre Y.

435

Cyber Security in Smart Grid Substations  

E-Print Network [OSTI]

Cyber Security in Smart Grid Substations Thijs Baars Lucas van den Bemd Michail Theuns Robin van.089 3508 TB Utrecht The Netherlands #12;CYBER SECURITY IN SMART GRID SUBSTATIONS Thijs Baars T.Brinkkemper@uu.nl Abstract. This report describes the state of smart grid security in Europe, specifically the Netherlands

Utrecht, Universiteit

436

FUTURE POWER GRID INITIATIVE Next Generation Network  

E-Print Network [OSTI]

FUTURE POWER GRID INITIATIVE Next Generation Network Simulations for Power System Applications MANAGEMENT The Next Generation Network Simulator is a framework for the partitioning, distribution, and run Grid Initiative (FPGI) will deliver next-generation concepts and tools for grid operation and planning

437

The Smart Grid: An Estimation of the Energy and CO2 Benefits  

SciTech Connect (OSTI)

This report articulates nine mechanisms by which the smart grid can reduce energy use and carbon impacts associated with electricity generation and delivery. The quantitative estimates of potential reductions in electricity sector energy and associated CO2 emissions presented are based on a survey of published results and simple analyses. This report does not attempt to justify the cost effectiveness of the smart grid, which to date has been based primarily upon the twin pillars of cost-effective operation and improved reliability. Rather, it attempts to quantify the additional energy and CO2 emission benefits inherent in the smart grid’s potential contribution to the nation’s goal of mitigating climate change by reducing the carbon footprint of the electric power system.

Pratt, Robert G.; Balducci, Patrick J.; Gerkensmeyer, Clint; Katipamula, Srinivas; Kintner-Meyer, Michael CW; Sanquist, Thomas F.; Schneider, Kevin P.; Secrest, Thomas J.

2010-01-15T23:59:59.000Z

438

The Smart Grid: An Estimation of the Energy and CO2 Benefits  

SciTech Connect (OSTI)

This report articulates nine mechanisms by which the smart grid can reduce energy use and carbon impacts associated with electricity generation and delivery. The quantitative estimates of potential reductions in electricity sector energy and associated CO2 emissions presented are based on a survey of published results and simple analyses. This report does not attempt to justify the cost effectiveness of the smart grid, which to date has been based primarily upon the twin pillars of cost-effective operation and improved reliability. Rather, it attempts to quantify the additional energy and CO2 emission benefits inherent in the smart grid’s potential contribution to the nation’s goal of mitigating climate change by reducing the carbon footprint of the electric power system.

Pratt, Robert G.; Balducci, Patrick J.; Gerkensmeyer, Clint; Katipamula, Srinivas; Kintner-Meyer, Michael CW; Sanquist, Thomas F.; Schneider, Kevin P.; Secrest, Thomas J.

2010-01-27T23:59:59.000Z

439

Grid Service for User-Centric Job  

SciTech Connect (OSTI)

The User Centric Monitoring (UCM) project was aimed at developing a toolkit that provides the Virtual Organization (VO) with tools to build systems that serve a rich set of intuitive job and application monitoring information to the VO’s scientists so that they can be more productive. The tools help collect and serve the status and error information through a Web interface. The proposed UCM toolkit is composed of a set of library functions, a database schema, and a Web portal that will collect and filter available job monitoring information from various resources and present it to users in a user-centric view rather than and administrative-centric point of view. The goal is to create a set of tools that can be used to augment grid job scheduling systems, meta-schedulers, applications, and script sets in order to provide the UCM information. The system provides various levels of an application programming interface that is useful through out the Grid environment and at the application level for logging messages, which are combined with the other user-centric monitoring information in a abstracted “data store”. A planned monitoring portal will also dynamically present the information to users in their web browser in a secure manor, which is also easily integrated into any JSR-compliant portal deployment that a VO might employ. The UCM is meant to be flexible and modular in the ways that it can be adopted to give the VO many choices to build a solution that works for them with special attention to the smaller VOs that do not have the resources to implement home-grown solutions.

Lauret, Jerome

2009-07-31T23:59:59.000Z

440

High-Performance Computing for Real-Time Grid Analysis and Operation  

SciTech Connect (OSTI)

Power grids worldwide are undergoing an unprecedented transition as a result of grid evolution meeting information revolution. The grid evolution is largely driven by the desire for green energy. Emerging grid technologies such as renewable generation, smart loads, plug-in hybrid vehicles, and distributed generation provide opportunities to generate energy from green sources and to manage energy use for better system efficiency. With utility companies actively deploying these technologies, a high level of penetration of these new technologies is expected in the next 5-10 years, bringing in a level of intermittency, uncertainties, and complexity that the grid did not see nor design for. On the other hand, the information infrastructure in the power grid is being revolutionized with large-scale deployment of sensors and meters in both the transmission and distribution networks. The future grid will have two-way flows of both electrons and information. The challenge is how to take advantage of the information revolution: pull the large amount of data in, process it in real time, and put information out to manage grid evolution. Without addressing this challenge, the opportunities in grid evolution will remain unfulfilled. This transition poses grand challenges in grid modeling, simulation, and information presentation. The computational complexity of underlying power grid modeling and simulation will significantly increase in the next decade due to an increased model size and a decreased time window allowed to compute model solutions. High-performance computing is essential to enable this transition. The essential technical barrier is to vastly increase the computational speed so operation response time can be reduced from minutes to seconds and sub-seconds. The speed at which key functions such as state estimation and contingency analysis are conducted (typically every 3-5 minutes) needs to be dramatically increased so that the analysis of contingencies is both comprehensive and real time. An even bigger challenge is how to incorporate dynamic information into real-time grid operation. Today’s online grid operation is based on a static grid model and can only provide a static snapshot of current system operation status, while dynamic analysis is conducted offline because of low computational efficiency. The offline analysis uses a worst-case scenario to determine transmission limits, resulting in under-utilization of grid assets. This conservative approach does not necessarily lead to reliability. Many times, actual power grid scenarios are not studied, and they will push the grid over the edge and resulting in outages and blackouts. This chapter addresses the HPC needs in power grid analysis and operations. Example applications such as state estimation and contingency analysis are given to demonstrate the value of HPC in power grid applications. Future research directions are suggested for high performance computing applications in power grids to improve the transparency, efficiency, and reliability of power grids.

Huang, Zhenyu; Chen, Yousu; Chavarría-Miranda, Daniel

2013-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

New Report Characterizes Existing Offshore Wind Grid Interconnection...  

Office of Environmental Management (EM)

New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities September 3,...

442

A Semantic Grid Oriented to E-Tourism  

E-Print Network [OSTI]

With increasing complexity of tourism business models and tasks, there is a clear need of the next generation e-Tourism infrastructure to support flexible automation, integration, computation, storage, and collaboration. Currently several enabling technologies such as semantic Web, Web service, agent and grid computing have been applied in the different e-Tourism applications, however there is no a unified framework to be able to integrate all of them. So this paper presents a promising e-Tourism framework based on emerging semantic grid, in which a number of key design issues are discussed including architecture, ontologies structure, semantic reconciliation, service and resource discovery, role based authorization and intelligent agent. The paper finally provides the implementation of the framework.

Zhang, Xiao Ming

2009-01-01T23:59:59.000Z

443

Ecological risks of DOE`s programmatic environmental restoration alternatives  

SciTech Connect (OSTI)

This report assesses the ecological risks of the Department of Energy`s (DOE) Environmental Restoration Program. The assessment is programmatic in that it is directed at evaluation of the broad programmatic alternatives outlined in the DOE Implementation Plan. It attempts to (1) characterize the ecological resources present on DOE facilities, (2) describe the occurrence and importance of ecologically significant contamination at major DOE facilities, (3) evaluate the adverse ecological impacts of habitat disturbance caused by remedial activities, and (4) determine whether one or another of the programmatic alternatives is clearly ecologically superior to the others. The assessment focuses on six representative facilities: the Idaho National Engineering Laboratory (INEL); the Fernald Environmental Management Project (FEMP); the Oak Ridge Reservation (ORR), including the Oak Ridge National Laboratory (ORNL), Y-12 plant, and K-25 plant; the Rocky Flats Plant; the Hanford Reservation; and the Portsmouth Gaseous Diffusion Plant.

Not Available

1994-06-01T23:59:59.000Z

444

Conduct of Operations Requirements for DOE Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

"To provide requirements and guidelines for Departmental Elements, including the National Nuclear Security Administration (NNSA), to use in developing directives, plans, and/or procedures relating to the conduct of operations at DOE facilities. The implementation of these requirements and guidelines should result in improved quality and uniformity of operations. Change 2, 10-23-2001. Canceled by DOE O 422.1.

1990-07-09T23:59:59.000Z

445

Robust and efficient overset grid assembly for partitioned unstructured meshes  

SciTech Connect (OSTI)

This paper presents a method to perform efficient and automated Overset Grid Assembly (OGA) on a system of overlapping unstructured meshes in a parallel computing environment where all meshes are partitioned into multiple mesh-blocks and processed on multiple cores. The main task of the overset grid assembler is to identify, in parallel, among all points in the overlapping mesh system, at which points the flow solution should be computed (field points), interpolated (receptor points), or ignored (hole points). Point containment search or donor search, an algorithm to efficiently determine the cell that contains a given point, is the core procedure necessary for accomplishing this task. Donor search is particularly challenging for partitioned unstructured meshes because of the complex irregular boundaries that are often created during partitioning. Another challenge arises because of the large variation in the type of mesh-block overlap and the resulting large load imbalance on multiple processors. Desirable traits for the grid assembly method are efficiency (requiring only a small fraction of the solver time), robustness (correct identification of all point types), and full automation (no user input required other than the mesh system). Additionally, the method should be scalable, which is an important challenge due to the inherent load imbalance. This paper describes a fully-automated grid assembly method, which can use two different donor search algorithms. One is based on the use of auxiliary grids and Exact Inverse Maps (EIM), and the other is based on the use of Alternating Digital Trees (ADT). The EIM method is demonstrated to be more efficient than the ADT method, while retaining robustness. An adaptive load re-balance algorithm is also designed and implemented, which considerably improves the scalability of the method.

Roget, Beatrice, E-mail: broget@uwyo.edu; Sitaraman, Jayanarayanan, E-mail: jsitaram@uwyo.edu

2014-03-01T23:59:59.000Z

446

Spacer grid assembly and locking mechanism  

DOE Patents [OSTI]

A spacer grid assembly is disclosed for retaining a plurality of fuel rods in substantially parallel spaced relation, the spacer grids being formed with rhombic openings defining contact means for engaging from one to four fuel rods arranged in each opening, the spacer grids being of symmetric configuration with their rhombic openings being asymmetrically offset to permit inversion and relative rotation of the similar spacer grids for improved support of the fuel rods. An improved locking mechanism includes tie bars having chordal surfaces to facilitate their installation in slotted circular openings of the spacer grids, the tie rods being rotatable into locking engagement with the slotted openings.

Snyder, Jr., Harold J. (Rancho Santa Fe, CA); Veca, Anthony R. (San Diego, CA); Donck, Harry A. (San Diego, CA)

1982-01-01T23:59:59.000Z

447

Building the International Lattice Data Grid  

E-Print Network [OSTI]

We present the International Lattice Data Grid (ILDG), a loosely federated grid of grids for sharing data from Lattice Quantum Chromodynamics (LQCD) simulations. The ILDG comprises of metadata, file format and web-service standards, which can be used to wrap regional data-grid interfaces, allowing seamless access to catalogues and data in a diverse set of collaborating regional grids. We discuss the technological underpinnings of the ILDG, primarily the metadata and the middleware, and offer a critique of its various aspects with the hindsight of the design work and the first full year of production.

G. Beckett; B. Joo; C. M. Maynard; D. Pleiter; O. Tatebe; T. Yoshie

2009-10-09T23:59:59.000Z

448

New Battery Design Could Help Solar and Wind Power the Grid  

Broader source: Energy.gov [DOE]

Researchers from the U.S. Department of Energy’s (DOE) SLAC National Accelerator Laboratory and Stanford University have designed a low-cost, long-life “flow” battery that could enable solar and wind energy to become major suppliers to the electrical grid.

449

3rd IEEE E-Science and Grid Computing, Bangalore, December 2007 An Integrated Portal for  

E-Print Network [OSTI]

3rd IEEE E-Science and Grid Computing, Bangalore, December 2007 An Integrated Portal for Managing for Discovery & Management of Energy Resources" · DOE/BOR EPSCOR Research Infrastructure Project ­ University: ­ Petroleum engineering application scenarios (reservoir simulations, seismic analysis, well

Allen, Gabrielle

450

Bandwidth-Constrained Allocation in Grid Anshul Kothari , Subhash Suri , and Yunhong Zhou  

E-Print Network [OSTI]

(electricity or water)--users "draw" computing power or disk storage from a "reservoir" and pay only) also envisions a world wide computer, which aims to combine all the informational resources of the web in their current form, yet they differ in some important ways: grid has a centralized administration, P2P does not

Suri, Subhash

451

Solving Partial Differential Equations on Overlapping Grids  

SciTech Connect (OSTI)

We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solution of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.

Henshaw, W D

2008-09-22T23:59:59.000Z

452

Smart Grid Status and Metrics Report Appendices  

SciTech Connect (OSTI)

A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

2014-07-01T23:59:59.000Z

453

DOE HANDBOOK  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the2.4Today,Guide forHandbook

454

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE National

455

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE

456

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE December

457

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE

458

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOESeptember

459

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOESeptember

460

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

462

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

463

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

464

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

465

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

466

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656

467

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 U .

468

DOE-0336  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State ofto Partner36

469

DOE-0344  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State ofto

470

DOE-0400  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State

471

DOE Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNALostPlasma PhysicsDOE Plans2

472

DOE-0342  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice of ScientificSolar Residence by e2DOE5, 2012

473

Integrated Safety Management System Guide (Volume 1) for use with Safety Management System Policies (DOE P 450.4, DOE P 450.5, and DOE P 450.6); The Functions, Responsibilities, and Authorities Manual; and DOE Acquisition Regulation  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Department of Energy (DOE) Integrated Safety Management System (ISMS) Guide is approved for use by the Office of Environment, Safety and Health (EH) and the National Nuclear Security Administration (NNSA). This Guide is available for use by all DOE components and their contractors. This Guide is a consensus document coordinated by EH and prepared under the direction of the DOE Safety Management Implementation Team (SMIT). Replaces DOE G 450.4-1A. Canceled by DOE G 450.4-1C.

2001-03-01T23:59:59.000Z

474

RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS  

SciTech Connect (OSTI)

The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. Subsystems would be integrated ‘‘behind’’ the electrical transmission bus and would be comprised of two or more energy conversion subsystems that have traditionally been separate or isolated. Energy flows would be dynamically apportioned as necessary to meet grid demand via a single, highly responsive connection to the grid that provides dispatchable electricity while capital-intensive generation assets operate at full capacity. Candidate region-specific hybrid energy systems selected for further study and figures of merit that will be used to assess system performance will be presented.

S.M. Bragg-Sitton; R. Boardman

2014-12-01T23:59:59.000Z

475

Smart Grid: Building a Wireless Connection | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE FormerEnergySavePEnergy Smart|Smart Grid:

476

North RTL grid scan'' studies  

SciTech Connect (OSTI)

This study was made in response to screen measurements which indicated an emittance growth of nearly a factor of two within the North RTL or linac girder-1. Betatron oscillations are induced at the beginning of the North RTL to search for gross geometric aberrations arising within the RTL or sector-2 of the linac. The oscillations are induced horizontally and vertically with two X or two Y dipole correctors stepped in a nested loop fashion. In both cases the full set of RTL and first girder sector-2 linac beam position monitors (BPMs) are sampled in X and Y for each corrector setting. Horizontal (or vertical) data from pairs of BPMs are then transformed to phase space coordinates by the linear transformation constructed assuming the transport optics between the BPMs is known. A second transformation is then made to normalized phase space coordinates by using Twiss parameters consistent with the assumed transport optics. By careful choice of initial Twiss parameters the initial grid can be made square for convenience in graphical interpretation. A linear grid'' is then fitted to the transformed data points for each pair of BPMs. The area of each grid is calculated and linearity qualitatively evaluated. Furthermore, although not the focus of this study, the beta match at each BPM can be quantified. 6 figs.

Emma, P.

1990-10-17T23:59:59.000Z

477

The CMS integration grid testbed  

SciTech Connect (OSTI)

The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distribution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuous two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. In this paper, we describe the process that led to one of the world's first continuously available, functioning grids.

Graham, Gregory E.

2004-08-26T23:59:59.000Z

478

Micro Hydro Power: Promising Solution for Off-grid Renewable Energy Source  

E-Print Network [OSTI]

Abstract — Micro hydro current power plant studies to date have aimed at finding feasible solution of its realistic implementation to the different parts of the world.This paper will briefly review the micro hydro current power plant?s prospect as a possible off grid source of renewable energy.

Md Tanbhir Hoq; Nawshad U. A; Md. N. Islam; Md. K. Syfullah; Raiyan Rahman

479

DOE plan for UMTRA Project water protection standards  

SciTech Connect (OSTI)

This plan was developed to define DOE's implementation of water protection standards for the UMTRA Project, on an interim basis, until the EPA promulgates revised standards in response to the September, 1985, decision by the Tenth Circuit Court of Appeals. This plan presents the historical background of the development of the Title I standards and the rationale for the DOE implementation approach.

Not Available

1986-07-01T23:59:59.000Z

480

Negotiating equity for management of DOE wastes  

SciTech Connect (OSTI)

One important factor frustrating optimal management of Department of Energy (DOE)-complex wastes is the inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE`s waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholder and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholder and move toward a more optimal use of DOE`s waste management capabilities.

Carnes, S.A.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "implementation doe grid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Buildings-to-Grid Technical Opportunities: From the Grid Perspective |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of Energy Buildings Perspective Buildings-to-Grid

482

Smart Grid Savings and Grid Integration of Renewables in Idaho  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of Energy U.S. DepartmentCommitmentGovernmentSmart Cities - 1 Smart Grid Savings

483

Buildings-to-Grid Technical Opportunities: From the Grid Perspective  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prevBuilding the DistributionBUILDING-TO-GRID

484

Grid tied PV system energy smoothing.  

SciTech Connect (OSTI)

Grid-tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time interval. On a clear day the solar irradiance power curve is offset by about 1h, while on a variable cloudy day the inverter output power curve will be smoothed based on the average solar irradiance. Test results demonstrate that this smoothing algorithm works very well. Battery state of charge was more difficult to manage because of the variable system inefficiencies. Testing continued for 30-days and established consistent operational performance for extended periods of time under a wide variety of resource conditions. Both battery technologies from Exide (Absolyte) and East Penn (Advanced Valve Regulated Lead-Acid) proved to cycle well at a partial state of charge over the time interval tested.

Barrett, Keith Phillip; Gonzalez, Sigifredo; Hund, Thomas D.

2010-06-01T23:59:59.000Z

485

Grid-tied PV battery systems.  

SciTech Connect (OSTI)

Grid tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time interval. On a clear day the solar irradiance power curve is offset by about 1h, while on a variable cloudy day the inverter output power curve will be smoothed based on the average solar irradiance. Test results demonstrate that this smoothing algorithm works very well. Battery state of charge was more difficult to manage because of the variable system inefficiencies. Testing continued for 30-days and established consistent operational performance for extended periods of time under a wide variety of resource conditions. Both battery technologies from Exide (Absolyte) and East Penn (ALABC Advanced) proved to cycle well at a Partial state of charge over the time interval tested.

Barrett, Keith Phillip; Gonzalez, Sigifredo; Hund, Thomas D.

2010-09-01T23:59:59.000Z

486

Environmental Implementation Plan  

SciTech Connect (OSTI)

The Environmental Implementation Plan (EIP) is a dynamic long-range environmental-protection plan for SRS. The EIP communicates the current and future (five year) environmental plans from individual organizations and divisions as well as site environmental initiatives which are designed to protect the environment and meet or exceed compliance with changing environmental/ regulatory requirements. Communication with all site organizations is essential for making the site environmental planning process work. Demonstrating environmental excellence is a high priority embodied in DOE and WSRC policy. Because of your support and participation in the three EIP initiatives; Reflections, Sectional Revision, and Integrated Planning, improvements are being made to the EIP and SRS environmental protection programs. I appreciate the ``Partnership in Environmental Excellence`` formed by the environmental coordinators and professionals who work daily toward our goal of compliance and environmental excellence. I look forward to seeing continued success and improvement in our environmental protection programs through combined efforts of all site organizations to protect our employees, the public health, and the environment. Together, we will achieve our site vision for SRS to be the recognized model for Environmental Excellence in the DOE Nuclear Weapons Complex.

Not Available

1994-02-01T23:59:59.000Z

487

Green Energy Workshop Student Posters Semantic Complex Event Processing for Smart Grid Information  

E-Print Network [OSTI]

for Smart Grid Information Integration and Demand Management Qunzhi Zhou, Yogesh of the power grid to a Smart Grid. The benefits of Smart Grid include demand Grid Demonstration Project. We define an ontology model for Smart Grid

Prasanna, Viktor K.

488

ARPA-E: Advancing the Electric Grid  

SciTech Connect (OSTI)

The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

2014-02-24T23:59:59.000Z

489

ARPA-E: Advancing the Electric Grid  

ScienceCinema (OSTI)

The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

2014-03-13T23:59:59.000Z

490

DOE Policy on Decommissioning DOE Facilities Under CERCLA | Department...  

Broader source: Energy.gov (indexed) [DOE]

DOE Policy on Decommissioning DOE Facilities Under CERCLA DOE Policy on Decommissioning DOE Facilities Under CERCLA In May 1995, the Department of Energy (DOE) issued a policy in...

491

FINAL REPORT - CENTER FOR GRID MODERNIZATION  

SciTech Connect (OSTI)

The objective of the CGM was to develop high-priority grid modernization technologies in advanced sensors, communications, controls and smart systems to enable use of real-time or near real-time information for monitoring, analyzing and managing distribution and transmission grid conditions. The key strategic approach to carry out individual CGM research and development (R&D) projects was through partnerships, primarily with the GridApp™ Consortium utility members.

Markiewicz, Daniel R

2008-06-30T23:59:59.000Z

492

Insightful Workflow For Grid Computing  

SciTech Connect (OSTI)

We developed a workflow adaptation and scheduling system for Grid workflow. The system currently interfaces with and uses the Karajan workflow system. We developed machine learning agents that provide the planner/scheduler with information needed to make decisions about when and how to replan. The Kubrick restructures workflow at runtime, making it unique among workflow scheduling systems. The existing Kubrick system provides a platform on which to integrate additional quality of service constraints and in which to explore the use of an ensemble of scheduling and planning algorithms. This will be the principle thrust of our Phase II work.

Dr. Charles Earl

2008-10-09T23:59:59.000Z

493

Mapping on the HEALPix grid  

E-Print Network [OSTI]

The natural spherical projection associated with the Hierarchical Equal Area and isoLatitude Pixelisation, HEALPix, is described and shown to be one of an infinite class not previously documented in the cartographic literature. Projection equations are derived for the class in general and it is shown that the HEALPix projection suggests a simple method (a) of storing, and (b) visualising data sampled on the grid of the HEALPix pixelisation, and also suggests an extension of the pixelisation that is better suited for these purposes. Potentially useful properties of other members of the class are described. Finally, the formalism is defined for representing any member of the class in the FITS data format.

M. R. Calabretta

2004-12-23T23:59:59.000Z

494

Smart Grid | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights SuccessSmart Grid Pages

495

Sandia National Laboratories: Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvideAidsCanal,Grid Integration Recent Sandia

496

Smart Grid | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on Energy andDepartment ofAn AudienceEnergy AsSmart Grid

497

Sandia National Laboratories: grid modernization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfull moduleresources grid integration of

498

Grid Net | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net Jump to: navigation, search Name: Grid Net

499

Grid Partners | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net Jump to: navigation, search Name: Grid Net

500

Open Science Grid at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access1 TechnicalOilOnline ApplicationOpen Science Grid