Powered by Deep Web Technologies
Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Mitigation Action Plan  

SciTech Connect (OSTI)

This Mitigation Action Plan (MAP) focuses on mitigation commitments stated in the Supplemental Environmental Impact Statement (SEIS) and the Record of Decision (ROD) for the Naval Petroleum Reserve No. 1 (NPR-1). Specific commitments and mitigation implementation actions are listed in Appendix A-Mitigation Actions, and form the central focus of this MAP. They will be updated as needed to allow for organizational, regulatory, or policy changes. It is the intent of DOE to comply with all applicable federal, state, and local environmental, safety, and health laws and regulations. Eighty-six specific commitments were identified in the SEIS and associated ROD which pertain to continued operation of NPR-1 with petroleum production at the Maximum Efficient Rate (MER). The mitigation measures proposed are expected to reduce impacts as much as feasible, however, as experience is gained in actual implementation of these measures, some changes may be warranted.

Not Available

1994-02-01T23:59:59.000Z

2

Mitigation Action Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0Statements |Mission73 4.17Mitigation Action

3

EIS-0380: Fiscal Year 2011 Mitigation Action Plan Annual Report...  

Office of Environmental Management (EM)

EIS-0380: Fiscal Year 2011 Mitigation Action Plan Annual Report for the 2008 Los Alamos Site-Wide Environmental Impact Statement EIS-0380: Fiscal Year 2011 Mitigation Action Plan...

4

Collective action for community-based hazard mitigation: a case study of Tulsa project impact  

E-Print Network [OSTI]

During the past two decades, community-based hazard mitigation (CBHM) has been newly proposed and implemented as an alternative conceptual model for emergency management to deal with disasters comprehensively in order to curtail skyrocketing...

Lee, Hee Min

2005-11-01T23:59:59.000Z

5

Mitigation and monitoring plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. [Uranium Mill Tailings Remedial Action (UMTRA) Project  

SciTech Connect (OSTI)

The U.S Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project is the result of the Uranium Mill Tailings Radiation Control Act(UMTRA) which was passed in response to the public's concern over the potential public health hazards related to uranium mill tailings and associated contaminated material at abandoned or otherwise uncontrolled inactive processing sites throughout the United States. The Gunnison, Colorado abandoned uranium mill site is one of the sites slated for cleanup by the DOE under authority of UMTRA. The contaminated material at this site will be transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities will temporarily disturb 0.8 acre and permanently eliminate 5.1 acres of wetlands. This report describes the proposed mitigation plan for the 5.9 acres of impacted wetlands. In conjunction with the mitigation of the permanently impacted wetlands through the enhancement of wetland and adjacent riparian areas, impacts to wildlife as a result of this project will also be mitigated. However, wildlife mitigation is not the focus of this document and is covered in relevant BLM permits for this project. This plan proposes the enhancement of a 3:1 ratio of impacted wetlands in accordance with US Environmental Protection Agency guidelines, plus the enhancement of riparian areas for wildlife mitigation. Included in this mitigation plan is a monitoring plan to ensure that the proposed measures are working and being maintained.

Not Available

1992-06-01T23:59:59.000Z

6

October 2013 ENVIRONMENTAL SETTING, IMPACTS, AND MITIGATION  

E-Print Network [OSTI]

October 2013 4-1 CHAPTER 4 ENVIRONMENTAL SETTING, IMPACTS, AND MITIGATION MEASURES This chapter discusses the environmental setting, impacts, and mitigation measures for the 14 fully evaluated to measure changes that would result #12;Chapter 4 Environmental Setting, Impacts, and Mitigation Measures

Lee, Jason R.

7

Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1997  

SciTech Connect (OSTI)

This Mitigation Action Plan Annual Report (MAPAR) has been prepared by the US Department of Energy (DOE) as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP). This MAPAR provides a status on specific DARHT facility design- and construction-related mitigation actions that have been initiated in order to fulfill DOE`s commitments under the DARHT MAP. The functions of the DARHT MAP are to (1) document potentially adverse environmental impacts of the Phased Containment Option delineated in the Final EIS, (2) identify commitments made in the Final EIS and ROD to mitigate those potential impacts, and (3) establish Action Plans to carry out each commitment (DOE 1996). The DARHT MAP is divided into eight sections. Sections 1--5 provide background information regarding the NEPA review of the DARHT project and an introduction to the associated MAP. Section 6 references the Mitigation Action Summary Table which summaries the potential impacts and mitigation measures; indicates whether the mitigation is design-, construction-, or operational-related; the organization responsible for the mitigation measure; and the projected or actual completion data for each mitigation measure. Sections 7 and 8 discuss the Mitigation Action Plan Annual Report and Tracking System commitment and the Potential Impacts, Commitments, and Action Plans respectively. Under Section 8, potential impacts are categorized into five areas of concern: General Environment, including impacts to air and water; Soils, especially impacts affecting soil loss and contamination; Biotic Resources, especially impacts affecting threatened and endangered species; Cultural/Paleontological Resources, especially impacts affecting the archeological site known as Nake`muu; and Human Health and Safety, especially impacts pertaining to noise and radiation. Each potential impact includes a brief statement of the nature of the impact and its cause(s). The commitment made to mitigate the potential impact is identified and the Action Plan for each commitment is described in detail, with a description of actions to be taken, pertinent time frames for the actions, verification of mitigation activities, and identification of agencies/organizations responsible for satisfying the requirements of the commitment.

Haagenstad, H.T.

1998-01-15T23:59:59.000Z

8

Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage 2012 DOE...

9

Peaking of world oil production: Impacts, mitigation, & risk management  

SciTech Connect (OSTI)

The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.... The purpose of this analysis was to identify the critical issues surrounding the occurrence and mitigation of world oil production peaking. We simplified many of the complexities in an effort to provide a transparent analysis. Nevertheless, our study is neither simple nor brief. We recognize that when oil prices escalate dramatically, there will be demand and economic impacts that will alter our simplified assumptions. Consideration of those feedbacks will be a daunting task but one that should be undertaken. Our aim in this study is to-- • Summarize the difficulties of oil production forecasting; • Identify the fundamentals that show why world oil production peaking is such a unique challenge; • Show why mitigation will take a decade or more of intense effort; • Examine the potential economic effects of oil peaking; • Describe what might be accomplished under three example mitigation scenarios. • Stimulate serious discussion of the problem, suggest more definitive studies, and engender interest in timely action to mitigate its impacts.

Hirsch, R.L. (SAIC); Bezdek, Roger (MISI); Wendling, Robert (MISI)

2005-02-01T23:59:59.000Z

10

Restoration As Mitigation: Analysis of Stream Mitigation for Coal Mining Impacts in Southern Appalachia  

E-Print Network [OSTI]

Restoration As Mitigation: Analysis of Stream Mitigation for Coal Mining Impacts in Southern or degraded but little is known about the success of stream mitigation. This article presents a synthesis of information about 434 stream mitigation projects from 117 permits for surface mining in Appalachia. Data from

Palmer, Margaret A.

11

EA-1628: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADAMitigation Action Plan EA-1617:Mitigation Action

12

EA-1636: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADAMitigation Action PlanMitigation Action Plan

13

EA-1617: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADAMitigation Action Plan EA-1617: Mitigation

14

EA-1755: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADAMitigation7: RevisedMonroe,Mitigation Action

15

EA-1440: Mitigation Action Plan | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant Potomac RiverEA-0847:Mitigation Action Plan EA-1440:

16

EA-1679: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADAMitigation Action50:0: FindingMitigation Action

17

EA-1704: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADAMitigation Action50:0:0:6:Mitigation Action Plan

18

Session: Avoiding, minimizing, and mitigating avian and bat impacts  

SciTech Connect (OSTI)

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a discussion/question answer period. The session addressed a variety of questions related to avoiding, minimizing, and mitigating the avian and bat impacts of wind power development including: what has been learned from operating turbines and mitigating impacts where they are unavoidable, such as at Altamont Pass WRA, and should there be mitigation measures such as habitat creation or land conservation where impacts occur. Other impact minimization and mitigation approaches discussed included: location and siting evaluations; options for construction and operation of wind facilities; turbine lighting; and the physical alignment/orientation. Titles and authors of the presentations were: 'Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part II' by Carl Thelander and 'Prevention and Mitigation of Avian Impacts at Wind Power Facilities' by Paul Kerlinger.

Thelander, Carl; Kerlinger, Paul

2004-09-01T23:59:59.000Z

19

EA-1456: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA andDriving5-FEB. 15,61:1:6: Mitigation Action

20

EA-1592: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA andDriving5-FEB.55: Finding4:Mitigation Action

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EA-1706: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADAMitigation Action50:0:0:6:MitigationFinding

22

EIS-0186: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9:Department ofofGNA Cliffs Energy6: Mitigation Action

23

Mitigation and monitoring plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado  

SciTech Connect (OSTI)

The U.S Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project is the result of the Uranium Mill Tailings Radiation Control Act(UMTRA) which was passed in response to the public`s concern over the potential public health hazards related to uranium mill tailings and associated contaminated material at abandoned or otherwise uncontrolled inactive processing sites throughout the United States. The Gunnison, Colorado abandoned uranium mill site is one of the sites slated for cleanup by the DOE under authority of UMTRA. The contaminated material at this site will be transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities will temporarily disturb 0.8 acre and permanently eliminate 5.1 acres of wetlands. This report describes the proposed mitigation plan for the 5.9 acres of impacted wetlands. In conjunction with the mitigation of the permanently impacted wetlands through the enhancement of wetland and adjacent riparian areas, impacts to wildlife as a result of this project will also be mitigated. However, wildlife mitigation is not the focus of this document and is covered in relevant BLM permits for this project. This plan proposes the enhancement of a 3:1 ratio of impacted wetlands in accordance with US Environmental Protection Agency guidelines, plus the enhancement of riparian areas for wildlife mitigation. Included in this mitigation plan is a monitoring plan to ensure that the proposed measures are working and being maintained.

Not Available

1992-06-01T23:59:59.000Z

24

RESEARCH REPORT 1740-1 WETLANDS MITIGATION FORHIGHWAY IMPACTS  

E-Print Network [OSTI]

RESEARCH REPORT 1740-1 WETLANDS MITIGATION FORHIGHWAY IMPACTS: A NATIONWIDESURVEY OF STATE; 8QFODVVLILHG 1RRISDJHV 3ULFH )RUP'27)#12; 5HSURGXFWLRQRIFRPSOHWHGSDJHDXWKRUL]HG #12;WETLANDS Title: Development of a Mechanism to Compare On-Site vs. Off-Site Wetlands Mitigation Conducted

Texas at Austin, University of

25

Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1998  

SciTech Connect (OSTI)

This Mitigation Action Plan Annual Report (MAPAR) has been prepared as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP) to protect workers, soils, water, and biotic and cultural resources in and around the facility.

Haagenstad, T.

1999-01-15T23:59:59.000Z

26

Evaluation of impacts and mitigation assessments for the UMTRA Project: Gunnison and Durango pilot studies. Final report  

SciTech Connect (OSTI)

This report evaluates the impacts assessment and proposed mitigations provided in environmental documents concerning the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The projected impacts and proposed mitigations identified in UMTRA Project environmental documents were evaluated for two UMTRA Project sites. These sites are Gunnison and Durango, which are representative of currently active and inactive UMTRA Project sites, respectively. National Environmental Policy Act (NEPA) documentation was prepared for the remedial action at Durango and Gunnison as well as for the provision of an alternate water supply system at Gunnison. Additionally, environmental analysis was completed for mill site demolition Gunnison, and for a new road related to the Durango remedial action. The results in this report pertain only to the impact assessments prepared by the Regulatory Compliance staff as a part of the NEPA compliance requirements. Similarly, the mitigative measures documented are those that were identified during the NEPA process.

Beranich, S.J. [Southwest Environmental, Albuquerque, NM (United States)

1994-08-24T23:59:59.000Z

27

Mitigating avian impacts: Applying the wetlands experience to wind farms  

SciTech Connect (OSTI)

The National Environmental Policy Act (NEPA) and state environmental laws spawned by NEPA, such as the California Environmental Quality Act (CEQA) and Washington State`s Environmental Policy Act (SEPA) have made us familiar with the concept of {open_quotes}mitigating{close_quotes} a project`s adverse environmental impacts. As wind energy projects expand to state with widely varying environmental regulation, the wind industry can look to other experiences in land use regulation, such as wetlands, for approaches to mitigation. Wetlands have been a point of friction between environmentalists, property rights advocates, local and state governments, and a host of federal agencies. A highly developed conceptual framework to mitigating environmental impacts has risen from this regulatory swamp of conflicting interests and overlapping jurisdictions.

Wolff, B. [Conservation and Renewable Energy System, Vancouver, WA (United States)

1995-12-31T23:59:59.000Z

28

Air Quality and Emissions Impacts of Heat Island Mitigation Strategies  

E-Print Network [OSTI]

Air Quality and Emissions Impacts of Heat Island Mitigation Strategies ENVIRONMENTAL AREA RESEARCH the temperature of the ground surface and the ambient air. This situation creates areas called urban heat summertime temperatures reduces electricity demand for air conditioning, which lowers air pollution levels

29

The Economic Impact of Drought and Mitigation in Agriculture  

E-Print Network [OSTI]

The Economic Impact of Drought and Mitigation in Agriculture Texas Drought and Beyond CIESS Austin · In Agriculture, it Began in 2010 ­ Wheat and other winter grazing crops are planted in the Fall ­ Lost value ­ Infrastructure losses #12;Agricultural Costs of Drought · Estimated $7.62 Billion ­ Corn, cotton, wheat, hay $4

Yang, Zong-Liang

30

PEAKING OF WORLD OIL PRODUCTION: IMPACTS, MITIGATION, & RISK MANAGEMENT  

E-Print Network [OSTI]

liquid fuels: 1) Improved Oil Recovery (IOR) can marginally increase production from existing reservoirs oil production declines from reservoirs that are past their peak production: 2) Heavy oil / oil sandsPEAKING OF WORLD OIL PRODUCTION: IMPACTS, MITIGATION, & RISK MANAGEMENT Robert L. Hirsch, SAIC

Laughlin, Robert B.

31

Ecofys-Nationally Appropriate Mitigation Actions: Insights from...  

Open Energy Info (EERE)

Actions: Insights from Example Development1 "Ecofys elaborated in several projects, concrete examples of NAMAs to understand the issues arising from this concept. This report...

32

EA-1595: Mitigation Action Plan | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant Potomac RiverEA-0847:Mitigation7

33

EA-1891: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the2-A Dynegy-A7: H.Q6 New891: Mitigation

34

EA-1917: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the2-A Dynegy-A7: H.Q6DraftMitigation

35

EIS-0457: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1: Draft6: Record of DecisionConductRecordMitigation

36

EA-1508: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA andDriving5-FEB. 15,61:1:6:Final08: Mitigation

37

EA-1858: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADAMitigation7:3:8:4:2: NoticeDepartmentMitigation

38

EA-1212: Mitigation Action Plan | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S.7685 Vol. 76, No.5-FEB. 15, 200721:Final12: Mitigation

39

EIS-0026: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9:Department of EnergyQCJuly8,EIS8:TheseMitigation

40

EA-1611: Mitigation Action Plan | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant Potomac RiverEA-0847:Mitigation7East1 PSI: Finding of

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Environmental Assessment and Finding of No Significant Impact: Implementation of the Wetland Mitigation Bank Program at the Savannah River Site  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1205) for the proposed implementation of a wetland mitigation bank program at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI) and Floodplain Statement of Findings.

N /A

1999-04-28T23:59:59.000Z

42

Policy and Procedures for the Review of Federal Actions Impacting...  

Broader source: Energy.gov (indexed) [DOE]

Policy and Procedures for the Review of Federal Actions Impacting the Environment Policy and Procedures for the Review of Federal Actions Impacting the Environment This manual...

43

EIS-0389: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThis EIS evaluates theOrangeImpactThe Western Area

44

Impacts of ocean acidification and mitigative hydrated lime addition on Pacific oyster larvae  

E-Print Network [OSTI]

Impacts of ocean acidification and mitigative hydrated lime addition on Pacific oyster larvae, and for other species. Keywords: Ocean acidification; Pacific oyster; Larval stages; Hydrated lime; Shellfish No.: 577 Title of Project: Impacts of ocean acidification and mitigative hydrated lime addition

45

Peru-Mitigation Action Plans and Scenarios (MAPS) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLCPascoagPerformance HomeMitigation Action

46

Designing, implementing and monitoring social impact mitigation strategies: Lessons from Forest Industry Structural Adjustment Packages  

SciTech Connect (OSTI)

Social impact mitigation strategies are implemented by the proponents of policies and projects with the intent of reducing the negative, and increasing the positive social impacts of their activities, and facilitating the achievement of policy/project goals. Evaluation of mitigation strategies is critical to improving their future success and cost-effectiveness. This paper evaluates two Forest Industry Structural Adjustment Packages (FISAP) implemented in Australia in the 1990s to 2000s as part of broader policy changes that reduced access to timber from publicly owned native forests. It assesses the effectiveness of the structure, design, implementation and monitoring of the FISAPs, and highlights the interactions between these four elements and their influence on social impacts. The two FISAPs were found to be effective in terms of reducing negative impacts, encouraging positive impacts and contributing towards policy goals, although they did not mitigate negative impacts in all cases, and sometimes interacted with external factors and additional policy changes to contribute to significant short and long term negative impacts. -- Highlights: ? Mitigation strategies aim to reduce negative and enhance positive social impacts ? Mitigation strategy design, implementation, and monitoring are critical to success ? Effective mitigation enhanced the capacity of recipients to respond to change ? Mitigation strategies influenced multiple interacting positive and negative impacts ? Success required good communication, transparency, support, resources and timing.

Loxton, Edwina A., E-mail: Edwina.Loxton@anu.edu.au [Fenner School of Environment and Society, The Australian National University, Canberra, 0200 (Australia); Schirmer, Jacki, E-mail: Jacki.Schirmer@canberra.edu.au [Fenner School of Environment and Society, The Australian National University, Canberra, 0200 (Australia) [Fenner School of Environment and Society, The Australian National University, Canberra, 0200 (Australia); Cooperative Research Centre for Forestry, Hobart, 7001 (Australia); Kanowski, Peter, E-mail: P.Kanowski@cgiar.org [Fenner School of Environment and Society, The Australian National University, Canberra, 0200 (Australia) [Fenner School of Environment and Society, The Australian National University, Canberra, 0200 (Australia); Cooperative Research Centre for Forestry, Hobart, 7001 (Australia)

2013-09-15T23:59:59.000Z

47

Official Merit Promotion System and Its Impact on Climate Change Mitigation Policy in China  

E-Print Network [OSTI]

on mitigating carbon emission, strengthening performance standards to control carbon standards and implementing in a long term in carbon dioxides reduction is to use its "iron hand". "Iron hand" came from Premier WenOfficial Merit Promotion System and Its Impact on Climate Change Mitigation Policy in China

Zhou, Pei

48

Strategies for mitigating adverse environmental impacts due to structural building materials  

E-Print Network [OSTI]

This thesis assesses the problem of adverse environmental impacts due to the use of Portland cement and structural steel in the construction industry. The thesis outlines three technology and policy strategies to mitigate ...

Chaturvedi, Swati, 1976-

2004-01-01T23:59:59.000Z

49

Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments  

DOE Patents [OSTI]

Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Popovich, Dragan; Halloran, Joseph P.; Fulcher, Michael L.; Cook, Randy C.

2005-12-13T23:59:59.000Z

50

Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments  

DOE Patents [OSTI]

Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

Mulligan, Anthony C. (Tucson, AZ); Rigali, Mark J. (Tucson, AZ); Sutaria, Manish P. (Malden, MA); Popovich, Dragan (Redmond, WA); Halloran, Joseph P. (Tucson, AZ); Fulcher, Michael L. (Tucson, AZ); Cook, Randy C. (Tucson, AZ)

2009-04-14T23:59:59.000Z

51

Impacts of greenhouse gas mitigation policies on agricultural land  

E-Print Network [OSTI]

Greenhouse gas (GHG) emissions are widely acknowledged to be responsible for much of the global warming in the past century. A number of approaches have been proposed to mitigate GHG emissions. Since the burning of ...

Wang, Xiaodong, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

52

Impact load mitigation in sandwich beams using local resonators  

E-Print Network [OSTI]

Dynamic response of sandwich beams with resonators embedded in the cores subjected to impact loads is studied. Using finite element models the effectiveness of various local resonator frequencies under a given impact load is compared to the behavior of an equivalent mass beam. It is shown that addition of appropriately chosen local resonators into the sandwich beam is an effective method of improving its flexural bending behavior under impact loads. The effect of a given local resonance frequency under different impact load durations is also studied. It is demonstrated that the choice of appropriate local resonance frequency depends on the impact duration. Further, by performing transverse impact experiments, the finite element models are verified and the advantage of using internal resonators under impact loading conditions is demonstrated.

Sharma, B

2015-01-01T23:59:59.000Z

53

November 18 PSERC Webinar: Quantifying and Mitigating the Impacts...  

Broader source: Energy.gov (indexed) [DOE]

High penetrations of photovoltaic (PV) systems impact distribution system operations in a number of ways, spanning voltage and other power quality, resistive losses, requirements...

54

Experimental Investigation of the Root Cause Mechanism and Effectiveness of Mitigating Actions for Axial Offset Anomaly in Pressurized Water Reactors  

SciTech Connect (OSTI)

Axial offset anomaly (AOA) in pressurized water reactors refers to the presence of a significantly larger measured negative axial offset deviation than predicted by core design calculations. The neutron flux depression in the upper half of high-power rods experiencing significant subcooled boiling is believed to be caused by the concentration of boron species within the crud layer formed on the cladding surface. Recent investigations of the root-cause mechanism for AOA [1,2] suggest that boron build-up on the fuel is caused by precipitation of lithium metaborate (LiBO2) within the crud in regions of subcooled boiling. Indirect evidence in support of this hypothesis was inferred from operating experience at Callaway, where lithium return and hide-out were, respectively, observed following power reductions and power increases when AOA was present. However, direct evidence of lithium metaborate precipitation within the crud has, heretofore, not been shown because of its retrograde solubility. To this end, this investigation has been undertaken in order to directly verify or refute the proposed root-cause mechanism of AOA, and examine the effectiveness of possible mitigating actions to limit its impact in high power PWR cores.

Said Abdel-Khalik

2005-07-02T23:59:59.000Z

55

A Mitigation Process for Impacts of the All American Pipeline on Oak Woodlands in Santa Barbara County1  

E-Print Network [OSTI]

A Mitigation Process for Impacts of the All American Pipeline on Oak Woodlands in Santa Barbara for pipeline construction impacts to oak tree habitat by describing the re- quirements for the Offsite Oak Mitigation Program for the All American Pipeline (AAPL) in Santa Barbara County, Califor- nia. After

Standiford, Richard B.

56

IV. Environmental Impact, Setting, and Mitigation Measures LBNL LRDP EIR IV.G-1 ESA / 201074  

E-Print Network [OSTI]

IV. Environmental Impact, Setting, and Mitigation Measures LBNL LRDP EIR IV.G-1 ESA / 201074 Public discusses existing surface water and groundwater conditions at LBNL and analyzes the potential Setting IV.G.2.1 Hydrologic Setting Surface Water LBNL is situated within Blackberry and Strawberry

Lee, Jason R.

57

Reducing climate change impacts on agriculture: Global and regional effects of mitigation, 20002080  

E-Print Network [OSTI]

and poor countries [7]. A consensus has emerged that developing countries are more vulnerable to climate change than developed countries, because of the predominance of agriculture in their economiesReducing climate change impacts on agriculture: Global and regional effects of mitigation, 2000

58

Looking before we leap: an ongoing, quantative investigation of asteroid and comet impact hazard mitigation  

SciTech Connect (OSTI)

There are many outstanding questions about the correct response to an asteroid or comet impact threat on Earth. Nuclear munitions are currently thought to be the most efficient method of delivering an impact-preventing impulse to a potentially hazardous object (PHO). However, there are major uncertainties about the response of PHOs to a nuclear burst, and the most appropriate ways to use nuclear munitions for hazard mitigation.

Plesko, Catherine S [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Bradley, Paul A [Los Alamos National Laboratory; Huebner, Walter F [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

59

The impacts of direct seeding into mulch on the CO2 mitigation MR KHALEDIAN1,2  

E-Print Network [OSTI]

The impacts of direct seeding into mulch on the CO2 mitigation MR KHALEDIAN1,2 , JC MAILHOL1 , P RUELLE1 1) UMR G-EAU CEMAGREF, BP 5095, 34196 Montpellier Cedex 05 France 2) Agricultural Faculty CO2 mitigation. Author-produced version of the article published in Agronomy Research, 2012, 10(1

Boyer, Edmond

60

Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures  

SciTech Connect (OSTI)

On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a checklist for assessing the navigational impacts of potential marine and hydrokinetic projects, and provides guidance for improving the existing navigational guidance promulgated by the USCG in Navigation Vessel Inspection Circular 02 07. At the request of the USCG, our checklist and mitigation guidance was written in a generic nature so that it could be equally applied to offshore wind projects. PCCI teleconferenced on a monthly basis with DOE, Pacific Energy Ventures and reVision in order to share information and review work products. Although the focus of our effort was on marine and hydrokinetic technologies, as defined above, this effort drew upon earlier work by the USCG on offshore wind renewable energy installations. The guidance provided herein can be applied equally to marine and hydrokinetic technologies and to offshore wind, which are collectively referred to by the USCG as Renewable Energy Installations.

Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

2009-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program  

SciTech Connect (OSTI)

This paper presents an analysis of the potential impacts of an international initiative designed to support and promote the development and implementation of appliances standards and labelling programs throughout the world. As part of previous research efforts, LBNL developed the Bottom Up Energy Analysis System (BUENAS), an analysis framework that estimates impact potentials of energy efficiency policies on a global scale. In this paper, we apply this framework to an initiative that would result in the successful implementation of programs focused on high priority regions and product types, thus evaluating the potential impacts of such an initiative in terms of electricity savings and carbon mitigation in 2030. In order to model the likely parameters of such a program, we limit impacts to a five year period starting in 2009, but assume that the first 5 years of a program will result in implementation of 'best practice' minimum efficiency performance standards by 2014. The 'high priority' regions considered are: Brazil, China, the European Union,India, Mexico and the United States. The products considered are: refrigerators, air conditioners, lighting (both fluorescent and incandescent), standby power (for consumer electronics) and televisions in the residential sector, and air conditioning and lighting in commercial buildings. In 2020, these regions and enduses account for about 37percent of global residential electricity and 29percent of electricity in commercial buildings. We find that 850Mt of CO2 could be saved in buildings by 2030 compared to the baseline forecast.

McNeil, Michael A; Letschert, Virginie E.; de la Rue du Can, Stephane; Egan, Christine

2009-05-29T23:59:59.000Z

62

An assessment of potential hydrologic and ecologic impacts of constructing mitigation wetlands, Rifle, Colorado, UMTRA project sites  

SciTech Connect (OSTI)

This-assessment examines the consequences and risks that could result from the proposed construction of mitigation wetlands at the New and Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project sites near Rifle, Colorado. Remediation of surface contamination at those sites is now under way. Preexisting wetlands at or near the Old and New Rifle sites have been cleaned up, resulting in the loss of 0.7 and 10.5 wetland acres (ac) (0.28 and 4.2 hectares [ha]) respectively. Another 9.9 ac (4.0 ha) of wetlands are in the area of windblown contamination west of the New Rifle site. The US Army Corps of Engineers (USACE) has jurisdiction over the remediated wetlands. Before remedial action began, and before any wetlands were eliminated, the USACE issued a Section 404 Permit that included a mitigation plan for the wetlands to be lost. The mitigation plan calls for 34.2 ac (1 3.8 ha) of wetlands to be constructed at the south end and to the west of the New Rifle site. The mitigation wetlands would be constructed over and in the contaminated alluvial aquifer at the New Rifle site. As a result of the hydrologic characteristics of this aquifer, contaminated ground water would be expected to enter the environment through the proposed wetlands. A preliminary assessment was therefore required to assess any potential ecological risks associated with constructing the mitigation wetlands at the proposed location.

NONE

1995-04-01T23:59:59.000Z

63

Numerical and probabilistic analysis of asteroid and comet impact hazard mitigation  

SciTech Connect (OSTI)

The possibility of asteroid and comet impacts on Earth has received significant recent media and scientific attention. Still, there are many outstanding questions about the correct response once a potentially hazardous object (PHO) is found. Nuclear munitions are often suggested as a deflection mechanism because they have a high internal energy per unit launch mass. However, major uncertainties remain about the use of nuclear munitions for hazard mitigation. There are large uncertainties in a PHO's physical response to a strong deflection or dispersion impulse like that delivered by nuclear munitions. Objects smaller than 100 m may be solid, and objects at all sizes may be 'rubble piles' with large porosities and little strength. Objects with these different properties would respond very differently, so the effects of object properties must be accounted for. Recent ground-based observations and missions to asteroids and comets have improved the planetary science community's understanding of these objects. Computational power and simulation capabilities have improved such that it is possible to numerically model the hazard mitigation problem from first principles. Before we know that explosive yield Y at height h or depth -h from the target surface will produce a momentum change in or dispersion of a PHO, we must quantify energy deposition into the system of particles that make up the PHO. Here we present the initial results of a parameter study in which we model the efficiency of energy deposition from a stand-off nuclear burst onto targets made of PHO constituent materials.

Plesko, Catherine S [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Huebner, Walter F [Los Alamos National Laboratory

2010-09-09T23:59:59.000Z

64

E-Print Network 3.0 - action environmental impact Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

environmental impact Search Powered by Explorit Topic List Advanced Search Sample search results for: action environmental impact Page: << < 1 2 3 4 5 > >> 1 Environmental Policy...

65

Mitigation and Monitoring Plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. Revision 1  

SciTech Connect (OSTI)

The Gunnison, Colorado, abandoned uranium mill site is one site being cleaned up by the DOE under UMTRCA authority. This site`s contaminated material is being transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities have temporarily disturbed 0.8 acre (ac) (0.3 hectares [ha]) of wetlands and permanently eliminated 4.3 ac (1.7 ha). As required by the Clean Water Act, the US Army Corps of Engineers (USACE) prepared a Section 404 Permit that addresses the loss of wetlands as a result of remedial action at the Gunnison UMTRA Project site. The 404 permit includes this report as an attachment and it describes the wetland mitigation and monitoring plan. The DOE formulated this plan in consultation with the BLM and the USACE. This report represents a revised version of the mitigation and monitoring plan (DOE, 1992b).

Not Available

1994-12-01T23:59:59.000Z

66

Climate Action Plans and Long-Range Transportation  

E-Print Network [OSTI]

Climate Action Plans and Long-Range Transportation Plans in the Pacific Northwest: A Review Climate Change and Impacts Mitigation versus Adaptation Impacts of Climate Change: Nation & the Pacific Northwest Climate Change Planning Efforts Transportation Sector Response - Survey Recommendations Continued

Bertini, Robert L.

67

Burlington Bottoms Wildlife Mitigation Project. Final Environmental Assessment/Management Plan and Finding of No Significant Impact.  

SciTech Connect (OSTI)

Bonneville Power Administration (BPA) proposes to fund wildlife management and enhancement activities for the Burlington bottoms wetlands mitigation site. Acquired by BPA in 1991, wildlife habitat at Burlington bottoms would contribute toward the goal of mitigation for wildlife losses and inundation of wildlife habitat due to the construction of Federal dams in the lower Columbia and Willamette River Basins. Target wildlife species identified for mitigation purposes are yellow warbler, great blue heron, black-capped chickadee, red-tailed hawk, valley quail, spotted sandpiper, wood duck, and beaver. The Draft Management Plan/Environmental Assessment (EA) describes alternatives for managing the Burlington Bottoms area, and evaluates the potential environmental impacts of the alternatives. Included in the Draft Management Plan/EA is an implementation schedule, and a monitoring and evaluation program, both of which are subject to further review pending determination of final ownership of the Burlington Bottoms property.

Not Available

1994-12-01T23:59:59.000Z

68

Mitigation action plan sale of Naval Petroleum Reserve No. 1 (Elk Hills) Kern County, California  

SciTech Connect (OSTI)

Naval Petroleum Reserve No. 1 (NPR-1, also called {open_quotes}Elk Hills{close_quotes}), a Federally-owned oil and gas production field in Kern County, California, was created by an Executive Order issued by President Taft on September 2, 1912. He signed another Executive Order on December 13, 1912, to establish Naval Petroleum Reserve No. 2 (NPR-2), located immediately south of NPR-1 and containing portions of the town of Taft, California. NPR-1 was not developed until the 1973-74 oil embargo demonstrated the nation`s vulnerability to oil supply interruptions. Following the embargo, Congress passed the Naval Petroleum Reserves Production Act of 1976 which directed that the reserve be explored and developed to its fall economic potential at the {open_quotes}maximum efficient rate{close_quotes} (MER) of production. Since Elk Hills began full production in 1976, it has functioned as a commercial operation, with total revenues to the Federal government through FY 1996 of $16.4 billion, compared to total exploration, development and production costs of $3.1 billion. In February 1996, Title 34 of the National Defense Authorization Act for Fiscal Year 1996 (P.L. 104-106), referred to as the Elk Hills Sales Statute, directed the Secretary of Energy to sell NPR-1 by February 10, 1998.The Secretary was also directed to study options for enhancing the value of the other Naval Petroleum and Oil Shale Reserve properties such as NPR-2, located adjacent to NPR-1 in Kern County- Naval Petroleum Reserve No. 3 (NPR-3) located in Natrona County, Wyoming; Naval Oil Shale Reserves No. 1 and No. 3 (NOSR-1 and NOSR-3) located in Garfield County, Colorado; and Naval Oil Shale Reserve No. 2 (NOSR-2) located in Uintah and Carbon Counties, Utah. The purpose of these actions was to remove the Federal government from the inherently non-Federal function of operating commercial oil fields while making sure that the public would obtain the maximum value from the reserves.

NONE

1998-01-01T23:59:59.000Z

69

Mitigation Action Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

new cooling towers, process water system upgrades, new process water and wastewater treatment systems, and a new concrete exhaust stack. The new oxy-combustion facility would...

70

Mitigation Action Plan  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 MasterAcquisitiTechnologyPotomac

71

MITIGATION ACTION PLAN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministration -Lowell L.Fall Careernews>aps

72

Mitigation Monitoring and Reporting Program for continued operation of Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

A Mitigation Monitoring and Reporting Program, required by the California Environmental Quality Act, was developed by UC as part of the Final EIS/EIR process. This document describing the program is a companion to the Final Environmental Impact Statement/Environmental Impact Report (EIS/EIR) for the Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). The Final EIS/EIR analyzes the potential environmental impacts of the proposed action, which for the purposes of NEPA is: continued operation, including near-term (within 5 to 1 0 years) proposed projects, of LLNL and SNL, Livermore. The proposed action for the EIR is the renewal of the contract between DOE and UC for UC`s continued operation and management of LLNL. The Mitigation Monitoring and Reporting Program is for implementing and monitoring progress of measures taken to mitigate the significant impacts of the proposed action. A complete description of the impacts and proposed mitigations is in Section 5 of Volume I of the Final EIS/EIR. This report summarizes the mitigation measures, identifies the responsible party at the Laboratory for implementing the mitigation measure, states when monitoring will be implemented, when the mitigation measure will be in place and monitoring completed, and who will verify that the mitigation measure was implemented.

Not Available

1992-08-01T23:59:59.000Z

73

EA-1931: Finding of No Significant Impact and Mitigation Action Plan |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the2-A Dynegy-A7:Department5:

74

EA-1946: Finding of No Significant Impact and Mitigation Action Plan |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the2-AFinal Environmental4:

75

EA-1950: Finding of No Significant Impact and Mitigation Action Plan |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the2-AFinalErrata Sheet EA-1949:Department

76

Washington Wildlife Mitigation Projects : Final Programmatic Environmental Assessment and Finding of No Significant Impact.  

SciTech Connect (OSTI)

Bonneville Power Administration (BPA) proposes to fund the portion of the Washington Wildlife Mitigation Agreement (Agreement) pertaining to wildlife habitat mitigation projects to be undertaken in a cooperative effort with the Washington Department of Fish and Wildlife (WDFW). This Agreement serves to establish a monetary budget funded by BPA for projects proposed by Washington Wildlife Coalition members and approved by BPA to protect, mitigate, and improve wildlife and/or wildlife habitat within the State of Washington that has been affected by the construction of Federal dams along the Columbia River. This Environmental Assessment examines the potential environmental effects of acquiring and/or improving wildlife habitat within five different project areas. These project areas are located throughout Grant County and in parts of Okanogan, Douglas, Adams, Franklin, Kittias, Yakima, and Benton Counties. The multiple projects would involve varying combinations of five proposed site-specific activities (habitat improvement, operation and maintenance, monitoring and evaluation, access and recreation management, and cultural resource management). All required Federal, State, and tribal coordination, permits and/or approvals would be obtained prior to ground-disturbing activities.

United States. Bonneville Power Administration; Washington (State). Dept. of Fish and Wildlife.

1996-08-01T23:59:59.000Z

77

EA-1923: Mitigated Finding of No Significant Impact | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the2-A Dynegy-A7:Department ofMitigated

78

Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMyMinutes from December 16,Mitigation

79

Mitigation of the Impact of Pt Contamination on Cu-Zeolite SCR Catalyst  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMyMinutes from December 16,MitigationPerformance

80

Meeting the Demand for Biofuels: Impact on Land Use and Carbon Mitigation  

SciTech Connect (OSTI)

The purpose of this research was to develop an integrated, interdisciplinary framework to investigate the implications of large scale production of biofuels for land use, crop production, farm income and greenhouse gases. In particular, we examine the mix of feedstocks that would be viable for biofuel production and the spatial allocation of land required for producing these feedstocks at various gasoline and carbon emission prices as well as biofuel subsidy levels. The implication of interactions between energy policy that seeks energy independence from foreign oil and climate policy that seeks to mitigate greenhouse gas emissions for the optimal mix of biofuels and land use will also be investigated. This project contributes to the ELSI research goals of sustainable biofuel production while balancing competing demands for land and developing policy approaches needed to support biofuel production in a cost-effective and environmentally friendly manner.

Khanna, Madhu; Jain, Atul; Onal, Hayri; Scheffran, Jurgen; Chen, Xiaoguang; Erickson, Matt; Huang, Haixiao; Kang, Seungmo.

2011-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Income distribution impacts of climate change mitigation policy in the Susquehanna River Basin Economy  

SciTech Connect (OSTI)

We examine the cost-side income distribution impacts of a carbon tax in the Susquehanna River Basin (SRB) Region of the United States utilizing a computable general equilibrium model. We find the aggregate impacts of a $25/ton carbon tax on the SRB economy are likely to be negative but modest-an approximately one-third of 1% reduction in Gross Regional Product (GRP) in the short-run and double that amount in the long-run. However, unlike many previous studies, we find that the carbon tax is mildly progressive as measured by income bracket changes, per capita equivalent variation, and Gini coefficient changes based on expenditure patterns. The dominant factors affecting the distributional impacts are the pattern of output, income and consumption impacts that affect lower income groups relatively less than higher income ones, an increase in transfer payments favoring lower income groups, and decreased corporate profits absorbed primarily by higher income groups.

Oladosu, Gbadebo A [ORNL

2007-01-01T23:59:59.000Z

82

Mitigating the Social and Environmental Impacts of Multimodal Freight Corridor Operations at Southern California Ports  

E-Print Network [OSTI]

SPBP freight traffic, air pollution, and the health of localSPBP freight traffic, air pollution, and the health of localhealth impact assessment to quantitatively assess the characteristics of the populations bearing the brunt of air pollution

Recker, Will W

2008-01-01T23:59:59.000Z

83

Conduct and Impact vs. State of the Market Triggers for Automatic Market Mitigation Shmuel S. Oren  

E-Print Network [OSTI]

competitive wholesale electricity industry: the lack of price-responsive demand and generation concentration the price signals for efficient investment and demand response." The immediate consequence of market objectives and at containing the potential adverse economic impact of such imperfections. In most markets

Oren, Shmuel S.

84

IMPROVED CAPABILITIES FOR SITING WIND FARMS AND MITIGATING IMPACTS ON RADAR OBSERVATIONS  

SciTech Connect (OSTI)

The development of efficient wind energy production involves challenges in technology and interoperability with other systems critical to the national mission. Wind turbines impact radar measurements as a result of their large reflectivity cross section as well as through the Doppler phase shift of their rotating blades. Wind farms can interfere with operational radar in multiple contexts, with degradation impacts on: weather detection such as tornado location, wind shear, and precipitation monitoring; tracking of airplanes where air traffic control software can lose the tracks of aircraft; and in identification of other low flying targets where a wind farm located close to a border might create a dead zone for detecting intruding objects. Objects in the path of an electromagnetic wave affect its propagation characteristics. This includes actual blockage of wave propagation by large individual objects and interference in wave continuity due to diffraction of the beam by individual or multiple objects. As an evolving industry, and the fastest growing segment of the energy sector, wind power is poised to make significant contributions in future energy generation requirements. The ability to develop comprehensive strategies for designing wind turbine locations that are mutually beneficial to both the wind industry that is dependent on production, and radar sites which the nation relies on, is critical to establishing reliable and secure wind energy. The mission needs of the Department of Homeland Security (DHS), Department of Defense (DOD), Federal Aviation Administration (FAA), and National Oceanographic and Atmospheric Administration (NOAA) dictate that the nation's radar systems remain uninhibited, to the maximum extent possible, by man-made obstructions; however, wind turbines can and do impact the surveillance footprint for monitoring airspace both for national defense as well as critical weather conditions which can impact life and property. As a result, a number of potential wind power locations have been contested on the basis of radar line of site. Radar line of site is dependent on local topography, and varies with atmospheric refractive index which is affected by weather and geographic conditions.

Chiswell, S.

2010-01-15T23:59:59.000Z

85

Local Action: Global Impact Engage your students in inquiry and  

E-Print Network [OSTI]

of environmental sustainability issues that impact our world regionally, nationally, and globally. Participate: Koldus Building, Rooms 110 and111 On the campus of Texas A&M University To be eligible to attend the conference, students must submit an environmental sustainability project either individually or in teams

86

Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies  

SciTech Connect (OSTI)

Several short-lived pollutants known to impact Arctic climate may be contributing to the accelerated rates of warming observed in this region relative to the global annually averaged temperature increase. Here, we present a summary of the short-lived pollutants that impact Arctic climate including methane, tropospheric ozone, and tropospheric aerosols. For each pollutant, we provide a description of the major sources and the mechanism of forcing. We also provide the first seasonally averaged forcing and corresponding temperature response estimates focused specifically on the Arctic. The calculations indicate that the forcings due to black carbon, methane, and tropospheric ozone lead to a positive surface temperature response indicating the need to reduce emissions of these species within and outside the Arctic. Additional aerosol species may also lead to surface warming if the aerosol is coincident with thin, low lying clouds. We suggest strategies for reducing the warming based on current knowledge and discuss directions for future research to address the large remaining uncertainties.

Menon, Surabi; Quinn, P.K.; Bates, T.S.; Baum, E.; Doubleday, N.; Fiore, A.M.; Flanner, M.; Fridlind, A.; Garrett, T.J.; Koch, D.; Menon, S.; Shindell, D.; Stohl, A.; Warren, S.G.

2007-09-24T23:59:59.000Z

87

Wildlife mitigation and monitoring report Gunnison, Colorado, site  

SciTech Connect (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project is administered by the U.S. Department of Energy (DOE); its purpose is to cleanup uranium mill tailings and other contaminated material at 24 UMTRA Project sites in 10 states. This report summarizes the wildlife mitigation and monitoring program under way at the Gunnison UMTRA Project, Gunnison, Colorado. Remedial action at the Gunnison site was completed in December 1995 and is described in detail in the Gunnison completion report. The impacts of this activity were analyzed in the Gunnison environmental assessment (EA). These impacts included two important game species: the pronghorn antelope (Antilocapra americans) and sage grouse (Wentrocerus urophasianus). Haul truck traffic was predicted to limit antelope access to water sources north of the Tenderfoot Mountain haul road and that truck traffic along this and other haul roads could result in antelope road kills. Clearing land at the disposal cell, haul road and borrow site activities, and the associated human activities also were predicted to negatively impact (directly and indirectly) sage grouse breeding, nesting, loafing, and wintering habitat. As a result, an extensive mitigation and monitoring plan began in 1992. Most of the monitoring studies are complete and the results of these studies, written by different authors, appear in numerous reports. This report will: (1) Analyze existing impacts and compare them to predicted impacts. (2) Summarize mitigation measures. (3) Summarize all existing monitoring data in one report. (4) Analyze the effectiveness of the mitigation measures.

NONE

1997-04-01T23:59:59.000Z

88

November 2013 ANALYSIS OF RAW ACTIONS ADDRESSING RFS  

E-Print Network [OSTI]

environmental resource areas for the proposed RAW actions associated with RFS contamination described in SectionNovember 2013 5-1 CHAPTER 5 ANALYSIS OF RAW ACTIONS ADDRESSING RFS CONTAMINATION This chapter discusses the environmental setting, impacts, and mitigation measures for the 14 fully evaluated

Lee, Jason R.

89

Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds  

Broader source: Energy.gov [DOE]

The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

90

Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options  

SciTech Connect (OSTI)

This study is a model comparison assessing the drivers and impacts of bioenergy production on the global land system and the interaction with other land use based mitigation options in the context of the EMF 27 project. We compare and evaluate results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE). All three models project that dedicated bioenergy crops and biomass residues are a potentially important and cost-effective component of the energy system. But bioenergy deployment levels and feedstock composition vary notably across models as do the implications for land-use and greenhouse gas emissions and the interaction with other land use based mitigation measures. Despite numerous model differences, we identify a few that are likely contributing to differences in land-use and emissions attributable to energy crop deployment.

Popp, Alexander; Rose, Steven K.; Calvin, Katherine V.; Van Vuuren, Detlef; Dietrich, Jan P.; Wise, Marshall A.; Stehfest, Eike; Humpenoder, Florian; Kyle, G. Page; Van Vliet, Jasper; Bauer, Nico; Lotze-Campen, Hermann; Klein, David; Kriegler, Elmar

2014-04-01T23:59:59.000Z

91

Wildlife Protection, Mitigation, and Enhancement Planning Phase II, Dworshak Reservoir, Final Report.  

SciTech Connect (OSTI)

The Pacific Northwest Electric Power Planning and Conservation Act of 1980 directed that measures be implemented to protect, mitigate, and enhance fish and wildlife to the extent affected by development and operation of hydropower projects on the Columbia River System. This Act created the Northwest Power Planning Council, which in turn developed the Columbia River Basin Fish and Wildlife Program. This program established a four-part process: wildlife mitigation status reports; wildlife impact assessments; wildlife protection, mitigation, and enhancement plans; and implementation of protection, mitigation, and enhancement projects. This mitigation plan for the Dworshak Reservoir Hydroelectric Facility was developed to fulfill requirements of Sections 1003(b)(2) and (3) of the Columbia River Basin Fish and Wildlife Program. Specific objectives of wildlife protection, mitigation, and enhancement planning for Dworshak Reservoir included: quantify net impacts to target wildlife species affected by hydroelectric development and operation of Dworshak Dam and Reservoir; develop protection, mitigation, and enhancement goals and objectives for the target wildlife species; recommend protection, mitigation, and enhancement actions for the target wildlife species; and coordination of project activities. 46 refs., 4 figs., 31 tabs.

Hansen, H. Jerome; Martin, Robert C.

1989-11-01T23:59:59.000Z

92

Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

Corrective Action Unit (CAU) 107 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Low Impact Soil Sites' and consists of the following 15 Corrective Action Sites (CASs), located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site: CAS 01-23-02, Atmospheric Test Site - High Alt; CAS 02-23-02, Contaminated Areas (2); CAS 02-23-03, Contaminated Berm; CAS 02-23-10, Gourd-Amber Contamination Area; CAS 02-23-11, Sappho Contamination Area; CAS 02-23-12, Scuttle Contamination Area; CAS 03-23-24, Seaweed B Contamination Area; CAS 03-23-27, Adze Contamination Area; CAS 03-23-28, Manzanas Contamination Area; CAS 03-23-29, Truchas-Chamisal Contamination Area; CAS 04-23-02, Atmospheric Test Site T4-a; CAS 05-23-06, Atmospheric Test Site; CAS 09-23-06, Mound of Contaminated Soil; CAS 10-23-04, Atmospheric Test Site M-10; and CAS 18-23-02, U-18d Crater (Sulky). Closure activities were conducted from February through April 2009 according to the FFACO (1996; as amended February 2008) and Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 107 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2009). The corrective action alternatives included No Further Action and Closure in Place with Administrative Controls. Closure activities are summarized.

NSTec Environmental Restoration

2009-06-01T23:59:59.000Z

93

Engaging on corporate social responsibility : the impact of FTSE4Good on environmental management, countering bribery and mitigating climate change   

E-Print Network [OSTI]

This thesis examines the effect of a responsible investment index (FTSE4Good) on corporate social responsibility (CSR). In the first study I investigate the impact of the FTSE engagement reinforced by the threat of ...

Rodionova, Tatiana

2014-07-02T23:59:59.000Z

94

Contents of environmental impact statements prepared for the Uranium Mill Tailings Remedial Action Project  

SciTech Connect (OSTI)

This document presents two versions of the outline for the environmental impact statements (EISS) to be prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The first displays the basic structure of the statements; it lists only the titles of sections. The second is a guide to the contents of the statements which provides, under each title, a brief summary of contents. The outline is intended to comply with the planning requirements and the definitions of terms established by the Council on Environmental Quality as well as DOE Order 5440.lB (Implementation of the National Environmental Policy Act), and compliance with Floodplain/Wetlands Environmental Review Requirements. These requirements and definitions are implicity part of the outline. The outline presented in this document will guide the preparation of EISs Guidelines for preparation of environmental assessments for the UMTRA Project are available.

Not Available

1986-01-01T23:59:59.000Z

95

Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings  

SciTech Connect (OSTI)

This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

2006-07-31T23:59:59.000Z

96

Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.  

SciTech Connect (OSTI)

A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

United States. Bonneville Power Administration.

1993-10-01T23:59:59.000Z

97

Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Phase 1, Volume Two (B), Clark Fork River Projects, Cabinet Gorge and Noxon Rapids Dams, Operator, Washington Water Power Company.  

SciTech Connect (OSTI)

This report documents best available information concerning the wildlife species impacted and the degree of the impact. A target species list was developed to focus the impact assessment and to direct mitigation efforts. Many non-target species also incurred impacts but are not discussed in this report. All wildlife habitats inundated by the two reservoirs are represented by the target species. It was assumed the numerous non-target species also affected will be benefited by the mitigation measures adopted for the target species. Impacts addressed are limited to those directly attributable to the loss of habitat and displacement of wildlife populations due to the construction and operation of the two hydroelectric projects. Secondary impacts, such as the relocation of railroads and highways, and the increase of the human population, were not considered. In some cases, both positive and negative impacts were assessed; and the overall net effect was reported. The loss/gain estimates reported represent impacts considered to have occurred during one point in time except where otherwise noted. When possible, quantitative estimates were developed based on historical information from the area or on data from similar areas. Qualitative loss estimates of low, moderate, or high with supporting rationale were assessed for each species or species group.

Wood, Marilyn

1984-06-01T23:59:59.000Z

98

2006 Long Range Development Plan Final Environmental Impact Report  

E-Print Network [OSTI]

locations. V.G.2 Impacts Environmental effects at the hillThis EIR IV. Environmental Setting, Impacts, and Mitigation1, Summary of Environmental Impacts and Mitigation Measures,

Philliber, Jeff

2007-01-01T23:59:59.000Z

99

Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993  

SciTech Connect (OSTI)

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1993 (July 1, 1992, through June 30, 1993). To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized.

Not Available

1993-12-01T23:59:59.000Z

100

Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995  

SciTech Connect (OSTI)

This Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1995 (1 July 1994 through 30 June 1995). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock, Colorado. Economic data were requested from the Remedial Action Contractor (RAC), the Technical Assistance Contractor (TAC) and the US Department of Energy (DOE). The most significant benefits associated with the UMTRA Project in Colorado are summarized.

NONE

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Policy and Procedures for the Review of Federal Actions Impacting the Environment  

Broader source: Energy.gov [DOE]

This manual establishes polices and procedures for carrying out the EPA's responsibilities to review and comment on Federal actions affecting the quality of the environment. 

102

Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995. Revision 1  

SciTech Connect (OSTI)

As required by the Romer-Twining Agreement of 1990, the US Department of Energy (DOE) has prepared this annual economic impact study for the state of Colorado. This report assesses the economic impacts related to the DOE Uranium Mill Tailings Remedial Action (UMTRA) Project in Colorado during the state fiscal year (FY) between 1 July 1994 and 30 June 1995. To estimate net economic benefit, employment, salaries and wages, and other related economic benefits are discussed, quantified, and then compared to the state`s 10 percent share of the remedial action costs. Actual data obtained from sites currently undergoing remedial action were used as the basis for analyses. If data were not available, estimates were used to derive economic indicators. This study describes the types of employment associated with the UMTRA Project and estimates of the numbers of people employed by UMTRA Project subcontractors in Colorado during state FY 1995. Employment totals are reported in estimated average annual jobs; however, the actual number of workers at the site fluctuates depending on weather and on the status of remedial action activities. In addition, the actual number of people employed on the Project during the year may be higher than the average annual employment reported due to the temporary nature of some of the jobs.

NONE

1995-12-01T23:59:59.000Z

103

Contents of environmental impact statements prepared for the Uranium Mill Tailings Remedial Action Project. [Uranium Mill Tailings Remedial Action (UMTRA) Project  

SciTech Connect (OSTI)

This document presents two versions of the outline for the environmental impact statements (EISS) to be prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The first displays the basic structure of the statements; it lists only the titles of sections. The second is a guide to the contents of the statements which provides, under each title, a brief summary of contents. The outline is intended to comply with the planning requirements and the definitions of terms established by the Council on Environmental Quality as well as DOE Order 5440.lB (Implementation of the National Environmental Policy Act), and compliance with Floodplain/Wetlands Environmental Review Requirements. These requirements and definitions are implicity part of the outline. The outline presented in this document will guide the preparation of EISs Guidelines for preparation of environmental assessments for the UMTRA Project are available.

Not Available

1986-01-01T23:59:59.000Z

104

Analysis of long-term impacts of TRU waste remaining at generator/storage sites for No Action Alternative 2  

SciTech Connect (OSTI)

This report is a supplement to the Waste Isolation Pilot Plant Disposal-Phase Final Supplemental Environmental Impact Statement (SEIS-II). Described herein are the underlying information, data, and assumptions used to estimate the long-term human-health impacts from exposure to radionuclides and hazardous chemicals in transuranic (TRU) waste remaining at major generator/storage sites after loss of institutional control under No Action Alternative 2. Under No Action Alternative 2, TRU wastes would not be emplaced at the Waste Isolation Pilot Plant (WIPP) but would remain at generator/storage sites in surface or near-surface storage. Waste generated at smaller sites would be consolidated at the major generator/storage sites. Current TRU waste management practices would continue, but newly generated waste would be treated to meet the WIPP waste acceptance criteria. For this alternative, institutional control was assumed to be lost 100 years after the end of the waste generation period, with exposure to radionuclides and hazardous chemicals in the TRU waste possible from direct intrusion and release to the surrounding environment. The potential human-health impacts from exposure to radionuclides and hazardous chemicals in TRU waste were analyzed for two different types of scenarios. Both analyses estimated site-specific, human-health impacts at seven major generator/storage sites: the Hanford Site (Hanford), Idaho National Engineering and Environmental Laboratory (INEEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Rocky Flats Environmental Technology Site (RFETS), and Savannah River Site (SRS). The analysis focused on these seven sites because 99 % of the estimated TRU waste volume and inventory would remain there under the assumptions of No Action Alternative 2.

Buck, J.W.; Bagaasen, L.M.; Bergeron, M.P.; Streile, G.P. [and others

1997-09-01T23:59:59.000Z

105

Ultrasonic mitigation investigation  

SciTech Connect (OSTI)

The suggestion was made that the introduction of ultrasound into Tank 101-SY might serve to release the hydrogen bubbles trapped in the slurry. This would cause a continuous release of bubbles and thereby prevent the turnover phenomenon. Two major considerations were (1) the method for delivering the energy into the slurry and (2) the effective volume of action. In this study, we attached the former by designing and testing a liquid-filled waveguide and radiator, and the latter by making ultrasonic property measurements on synthetic waste. Our conclusion is that ultrasonic mitigation may not be feasible, primarily because of the very high attenuation (1000 to 50000 dB/m) factor to 10 to 30 kHz. Such a high attenuation would restrict the action volume to such a low value as to make the method impractical. Further investigations are recommended to identify the cause of this effect and determine if this same effect will be seen in real 101-SY waste.

Hildebrand, B.P.; Shepard, C.L.

1993-04-01T23:59:59.000Z

106

1992 North Dakota Economic Impact Study for the Uranium Mill Tailings Remedial Action Project, Belfield and Bowman, North Dakota  

SciTech Connect (OSTI)

The goal of the Uranium Mill Tailings Remedial Action (UMTRA) Project in North Dakota is to improve the environment and reduce the negative health effects associated with residual radioactive material (RRM) from the inactive processing sites at Belfield and Bowman, North Dakota. A secondary benefit of the UMTRA Project is economic gain. The 1992 North Dakota Economic Impact Study (NDEIS) analyzes the impact of the remedial actions at the inactive Belfield and Bowman processing sites and their associated vicinity properties. This analysis is based on the assumption that the state of North Dakota will provide 10 percent of the funding required for remediation. For every dollar the state of North Dakota invests in the Belfield and Bowman onsite portion of the UMTRA Project, it will realize $5.04 in gross labor income (i.e., gross labor income divided by the state's total funding requirement). For every dollar the state of North Dakota invests, it will realize a net return of $3.04 (i.e., net benefit divided by the state's total funding requirement). This reflects only labor expenditure and employment impact. ff state and local non-labor tax benefits were considered in the net economic benefit, North Dakota could receive significantly more than $3.04 for each dollar it invests. The UMTRA Project work at Belfield and Bowman will benefit the state of North Dakota. Benefits include a reduction in the negative health effects caused by low-level RRM, an improvement in the environment, and increased economic growth.

Not Available

1993-01-01T23:59:59.000Z

107

Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado State fiscal year 1994. Revision 1  

SciTech Connect (OSTI)

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994 (1 July 1993 through 30 June 1994). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. Information on wages, taxes, and subcontract expenditures in combination with estimates and economic multipliers is used to estimate the dollar economic benefits to Colorado during the state fiscal year. Finally, the fiscal year 1994 estimates are compared to fiscal year 1993 employment and economic information.

Not Available

1994-12-01T23:59:59.000Z

108

Colorado economic impact study on the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993  

SciTech Connect (OSTI)

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1993. To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are: Direct employment was estimated at 894 workers; An estimated 89 percent of all direct employment was local; Secondary employment resulting from remedial action at the active Colorado UMTRA Project sites and the Grand Junction vicinity property program is estimated at 546 workers. Total employment (direct and secondary) is estimated at 1440 workers for the period of study (July 1, 1992, to June 30, 1993). An estimated $24.1 million was paid in wages to UMTRA workers in Colorado during FY1993; Direct and secondary wage earnings were estimated at $39.9 million; Income tax payments to the state of Colorado were estimated at $843,400 during FY1993; The gross economic impact of UMTRA Project activities in the state of Colorado is estimated at $70 million during the 1-year study period; and the net economic benefit to the state of Colorado was estimated at $57.5 million, or $5.90 per dollar of funding provided by Colorado. This figure includes both direct and secondary benefits but does not include the impact of alternative uses of the state funding.

Not Available

1993-11-12T23:59:59.000Z

109

1991 New Mexico economic impact study for the Uranium Mill Tailings Remedial Action Project, Ambrosia Lake, New Mexico, site  

SciTech Connect (OSTI)

The University of New Mexico Bureau of Business and Economic Research completed an abbreviated cost-benefit analysis of the income and employment impact of the US Department of Energy (DOE) and contractor offices in Albuquerque. Since the Project Office will have a significant positive impact on the State`s economy (shown on Table 8), the impact is combined with the impact of remedial actions at the Ambrosia Lake site to highlight the cost-benefit of the entire Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project at the Ambrosia Lake site will generate $12.509 million in gross labor income in New Mexico between 1989 and 1994. This includes $1.161 million in federal tax revenue, $1.015 million in State personal income tax revenue, and seven thousand in local tax revenue. The UMTRA Project will generate the equivalent of 84 full-time jobs during the peak year of remedial action at Ambrosia Lake site. New Mexico`s total funding requirement for the UMTRA Project is estimated to be $2.963 million. The net economic benefit of the Ambrosia Lake portion of the UMTRA Project to New Mexico after the State`s share of the project`s cost, the federal income tax, and the $0.936 million income impact of the alternate use of the State funding are subtracted, will be $7.451 million between 1990 and 1994. In Fiscal Year 1990 the UMTRA Project DOE and contractor offices in Albuquerque directly employed 163 people. Another 78 jobs were also maintained in support of the industry sector and 166 jobs were also maintained in other sections of the New Mexico economy. It is estimated that $19 million dollars of income was generated and 1.949 million of State and local taxes were collected. The University of New Mexico study shows that for every dollar the State of New Mexico invests in the UMTRA Project, it will realize $95.05 in gross labor income. This corresponds to a net return on the States investment in the Project of $97.20 for every dollar invested.

Not Available

1991-06-01T23:59:59.000Z

110

WIPPAnnualMitigationActionReport2012  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell DirectorEnergyDepartment

111

Nationally Appropriate Mitigation Actions | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3InformationofServices TMS Inc || Open Energy Information

112

Impacts of Water Levels on Breeding Canada Geese and Methods for Mitigation and Management in the Southern Flathead Valley, Montana, 1983-1987 Final Report.  

SciTech Connect (OSTI)

Kerr Hydroelectric Dam is located at the south end of Flathead Lake, controls water levels on the lake and the Flathead River below the dam, and is currently operated as a load control facility. Current operation of Kerr Dam creates the greatest yearly water level fluctuations on both the lake and river during the Canada goose (Branta canadensis moffitti) brood and nesting period. Data collected from 1980-1982 indicated that goose nest numbers on the river were lower than during the 1950's, and that brood habitat on the lake may be limiting the goose population there. Our study was conducted from 1983-1987 to determine the effects of Kerr Dam operation on Canada goose populations and habitat on the south half of Flathead Lake and the Flathead River, and to formulate management and mitigation recommendations. Nesting geese on the river appeared to be negatively affected by a lack of nest sites free from predators, and responded to available artificial nest structures with an increase in nest numbers and nesting success. Under current dam operation, river channel depths and widths do not discourage access to nesting islands by mammalian predators during some years and high predation on ground nests occurs. Intensively used brood areas on the lake and river were identified and described. Brood habitat on the lake was lower in quality and quantity than on the river due to dam operations. Gosling mortality on the lake was high, almost 2 times higher than on the river. Lake broods expended more energy obtaining food than river broods. Losses of brood habitat in the form of wet meadow marshes were documented and mitigation options developed. Management/mitigation alternatives and monitoring methods for nesting and brooding geese were identified.

Mackey, Dennis L.; Gregory, Shari K.; Matthews, William C. Jr.; Claar, James J.; Ball, I. Joseph

1987-11-01T23:59:59.000Z

113

Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1994  

SciTech Connect (OSTI)

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994. To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized. This study assesses benefits associated with the Grand Junction, Gunnison, Naturita, and Rifle UMTRA Projects sites for the 1-year period under study. Work at the Naturita site was initiated in April 1994 and involved demolition of buildings at the processing site. Actual start-up of remediation of Naturita is planned to begin in the spring of 1995. Work at the Slick Rock and Maybell sites is expected to begin in 1995. The only current economic benefits associated with these sites are related to UMTRA Project support work.

Not Available

1994-11-01T23:59:59.000Z

114

Mitigation of Radiation and EMI Effects on the Vacuum Control System of LHC  

E-Print Network [OSTI]

The 26 km of vacuum chambers where circulates the beam of the Large Hadron Collider (LHC) must be maintained under Ultra High Vacuum (UHV) to minimize the beam interactions with residual gases, and allow the operation of specific systems. The vacuum level is measured by several thousands of gauges along the accelerator. Bad vacuum quality may trigger a beam dump and close the associated sector valves. The effects of radiation or Electromagnetic Interferences (EMI) on components that may stop the machine must be evaluated and minimized. We report on the actions implemented to mitigate their impact on the vacuum control system.

Pigny, G; Krakowski, P; Rio, B

2014-01-01T23:59:59.000Z

115

Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.  

SciTech Connect (OSTI)

This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources. The Rainwater project is much more than a wildlife project--it is a watershed project with potential to benefit resources at the watershed scale. Goals and objectives presented in the following sections include both mitigation and non-mitigation related goals and objectives.

Childs, Allen B.

2002-03-01T23:59:59.000Z

116

Implications of simultaneously mitigating and adapting to climate change: Initial experiments using GCAM  

SciTech Connect (OSTI)

Historically climate impacts research and climate mitigation research have been two separate and independent domains of inquiry. Climate mitigation research has investigated greenhouse gas emissions assuming that climate is unchanging. At the same time climate mitigation research has investigated the implications of climate change on the assumption that climate mitigation will proceed without affecting the degree of climate impacts or the ability of human and natural systems to adapt. The Global Change Assessment Model (GCAM) has largely been employed to study climate mitigation. Here we explore the development of capabilities to assess climate change impacts and adaptation within the GCAM model. These capabilities are being developed so as to be able to simultaneously reconcile the joint implications of climate change mitigation, impacts and adaptive potential. This is an important step forward in that it enables direct comparison between climate mitigation activities and climate impacts and the opportunity to understand interactions between the two.

Calvin, Katherine V.; Wise, Marshall A.; Clarke, Leon E.; Edmonds, James A.; Kyle, G. Page; Luckow, Patrick W.; Thomson, Allison M.

2013-04-01T23:59:59.000Z

117

Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.  

SciTech Connect (OSTI)

Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

NONE

1995-04-01T23:59:59.000Z

118

Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I  

SciTech Connect (OSTI)

This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings " ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are in accordance with the final standards. The EPA reserves the right to modify the ground water standards, if necessary, based on changes in EPA drinking water standards. Appendix A contains a copy of the 1983 EPA ground water compliance standards, the 1987 proposed changes to the standards, and the 1995 final rule. Under UMTRA, DOE is responsible for bringing the designated processing sites into compliance with the EPA ground water standards and complying with all other applicable standards and requirements. The U.S. Nuclear Regulatory Commission (NRC) must concur with DOE's actions. States are full participants in the process. The DOE also must consult with any affected Indian tribes and the Bureau of Indian Affairs. Uranium processing activities at most of the inactive mill sites resulted in the contamination of ground water beneath and, in some cases, downgradient of the sites. This contaminated ground water often has elevated levels of constituents such as but not limited to uranium and nitrates. The purpose of the UMTRA Ground Water Project is to eliminate or reduce to acceptable levels the potential health and environmental consequences of milling activities by meeting the EPA ground water standards.

None

1996-10-01T23:59:59.000Z

119

Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume I  

SciTech Connect (OSTI)

The environmental impacts associated with remedial actions in connection with residual radioactive materials remaining at the inactive uranium processing site located in Canonsburg, Washington County, Pennsylvania are evaluated. The Canonsburg site is an 18.5-acre property that was formerly owned by the Vitro Rare Metals Company. The expanded Canonsburg site would be 30-acre property that would include the Canonsburg site (the former Vitro Rare Metals plant), seven adjacent private houses, and the former Georges Pottery property. During the period 1942 through 1957 the Vitro Manufacturing Company and its successor, the Vitro Corporation of America, processed onsite residues and ores, and government-owned ores, concentrates, and scraps to extract uranium and other rare metals. The Canonsburg site is now the Canon Industrial Park. In addition to storing the residual radioactive materials of this process at the Canonsburg site, about 12,000 tons of radioactively contaminated materials were transferred to a railroad landfill in Burrell Township, Indiana County, Pennsylvania. This Canonsburg FEIS evaluates five alternatives for removing the potential public health hazard associated with the radioactively contaminated materials. In addition to no action, these alternatives involve various combinations of stabilization of the radioactively contaminated materials in place or decontamination of the Canonsburg and Burrell sites by removing the radioactively contaminated materials to another location. In addition to the two sites mentioned, a third site located in Hanover Township, Washington County, Pennsylvania has been considered as a disposal site to which the radioactively contaminated materials presently located at either of the other two sites might be moved.

Not Available

1983-07-01T23:59:59.000Z

120

ORIGINAL ARTICLE Synergisms between climate change mitigation  

E-Print Network [OSTI]

but increasingly so in developing countries and economies in transition. Certain measures that integrate climateORIGINAL ARTICLE Synergisms between climate change mitigation and adaptation: an insurance an aggregator of the impacts of climate change and a market actor able to play a material role in decreasing

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Climate Change Mitigation: Climate, Health, and Equity Implications of the Visible and the Hidden  

E-Print Network [OSTI]

impacts of climate change on California agriculture. Climateby climate change in California, such as agriculture areas agriculture. Without proactive climate change mitigation

Shonkoff, Seth Berrin

2012-01-01T23:59:59.000Z

122

Hellsgate Winter Range : Wildlife Mitigation Project. Preliminary Environmental Assessment.  

SciTech Connect (OSTI)

The Bonneville Power Administration proposes funding the Hellsgate Winter Range Wildlife Mitigation Project in cooperation with the Colville Convederated Tribes and Bureau of Indian Affairs. This Preliminary Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. The Propose action is intended to meet the need for mitigation of wildlife and wild life habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

United States. Bonneville Power Administration.

1995-01-01T23:59:59.000Z

123

Reaching an agreement to build a new coal-fired power plant near a national park by mitigating potential environmental impacts  

SciTech Connect (OSTI)

This paper presents an interesting example of compromise through comprehensive environmental analysis and intensive negotiation to build a coal-fired power plant near an environmentally sensitive area. In December 1993, the US Department of Energy (DOE) completed the final environmental impact statement (EIS) for the Healy Clean Coal Project (HCCP), a proposed demonstration project that would be cost-shared by DOE and the Alaska Industrial Development and Export Authority (AIDEA). The HCCP would be built adjacent to the existing coal-fired Golden Valley Electric Association, Inc. (GVEA) Unit No. 1 in Healy, Alaska, about 4 miles north of Denali National Park and Preserve (DNPP). In response to US Department of the Interior (DOI) concerns about potential air quality related impacts on DNPP, DOE facilitated negotiations among DOI, AIDEA, and GVEA which overcame a ``stalemate`` situation. A Memorandum of Agreement was signed by all four parties, enabling DOI to withdraw its objections. The cornerstone of the Agreement is the planned retrofit of Unit No. 1 to reduce emissions of sulfur dioxide and oxides of nitrogen. if the demonstration technologies operate as expected, combined emissions from the Healy site would increase by only about 8% but electrical generation would triple. The Agreement is a ``win/win`` outcome: DOE can demonstrate the new technologies, AIDEA can build a new power plant for GVEA to operate, and DOI can safeguard the pristine environment of DNPP.

Miller, R.L. [Oak Ridge National Lab., TN (United States); Ruppel, T.C.; Evans, E.W.; Heintz, S.J. [USDOE Pittsburgh Energy Technology Center, PA (United States)

1994-12-31T23:59:59.000Z

124

Heat Waves, Global Warming, and Mitigation  

E-Print Network [OSTI]

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 175 stroke2001). 2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 177

Carlson, Ann E.

2008-01-01T23:59:59.000Z

125

wind engineering & natural disaster mitigation  

E-Print Network [OSTI]

wind engineering & natural disaster mitigation #12;wind engineering & natural disaster mitigation Investment WindEEE Dome at Advanced Manufacturing Park $31million Insurance Research Lab for Better Homes $8million Advanced Facility for Avian Research $9million #12;wind engineering & natural disaster mitigation

Denham, Graham

126

Hungry Horse Dam Fisheries Mitigation Implementation Plan, 1990-2003 Progress (Annual) Report.  

SciTech Connect (OSTI)

In this document the authors present mitigation implementation activities to protect and enhance resident fish and aquatic habitat affected by the construction and operation of Hungry Horse Dam. This plan only addresses non-operational actions (mitigation measures that do not affect dam operation) described in the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' (Mitigation Plan) submitted to the Northwest Power Planning Council (Council) in March 1991 and in accordance with subsequent Council action on that Mitigation Plan. Operational mitigation was deferred for consideration under the Columbia Basin System Operation Review (SOR) process. This document represents an implementation plan considered and conditionally approved by the Council in March of 1993.

Montana Department of Fish, Wildlife and Parks; Confederated Salish and Kootenai Tribes

1993-03-10T23:59:59.000Z

127

1992 Colorado Economic Impact Study for the US Department of Energy and Colorado Department of Health Uranium Mill Tailings Remedial Action (UMTRA) Project  

SciTech Connect (OSTI)

The findings of the 1992 Colorado Economic Impact Study (CEIS) for the Uranium Mill Tailings Remedial Action (UMTRA) Project are outlined below. All dollar amounts used in the study are in year-of-expenditure dollars. The total funding requirement for the State of Colorado for the UMTRA Project is estimated to be $66.8 million, or 10 percent of the remedial action costs for the UMTRA Project in Colorado. The UMTRA Project will generate $487.5 million in gross labor income in Colorado between 1983 and 1996. This includes $54.4 million in state and local tax revenues and $41.2 million in federal individual income tax revenues. The net economic benefit of the UMTRA Project to Colorado is $355.1 million. For every dollar the State of Colorado invests in the UMTRA Project, it will realize $5.32 in gross labor income. The employment impact to the Western Slope region is significant. The UMTRA Project will create a total employment impact of 13,749 fulltime equivalents (FTES) spread over. a period of 13 years in seven site areas. Nearly 100 percent of the labor will be drawn from the local communities. The State of Colorado's Western Slope is anticipated to be minimally impacted by the phaseout of the UMTRA Project. Unlike industries that shut down operations without warning, the UMTRA Project workers, local government, and businesses know the schedule for completion and can consider and prepare for the impact of UMTRA Project conclusion. Further, because the majority of the work force is local, there has not been a significant investment in each community's infrastructure. Any small increases in the infrastructure will not be abandoned at the end of the UMTRA Project due to a marked increase in migration out of the local community.

Not Available

1991-10-22T23:59:59.000Z

128

1992 Colorado Economic Impact Study for the US Department of Energy and Colorado Department of Health Uranium Mill Tailings Remedial Action (UMTRA) Project. Preliminary final  

SciTech Connect (OSTI)

The findings of the 1992 Colorado Economic Impact Study (CEIS) for the Uranium Mill Tailings Remedial Action (UMTRA) Project are outlined below. All dollar amounts used in the study are in year-of-expenditure dollars. The total funding requirement for the State of Colorado for the UMTRA Project is estimated to be $66.8 million, or 10 percent of the remedial action costs for the UMTRA Project in Colorado. The UMTRA Project will generate $487.5 million in gross labor income in Colorado between 1983 and 1996. This includes $54.4 million in state and local tax revenues and $41.2 million in federal individual income tax revenues. The net economic benefit of the UMTRA Project to Colorado is $355.1 million. For every dollar the State of Colorado invests in the UMTRA Project, it will realize $5.32 in gross labor income. The employment impact to the Western Slope region is significant. The UMTRA Project will create a total employment impact of 13,749 fulltime equivalents (FTES) spread over. a period of 13 years in seven site areas. Nearly 100 percent of the labor will be drawn from the local communities. The State of Colorado`s Western Slope is anticipated to be minimally impacted by the phaseout of the UMTRA Project. Unlike industries that shut down operations without warning, the UMTRA Project workers, local government, and businesses know the schedule for completion and can consider and prepare for the impact of UMTRA Project conclusion. Further, because the majority of the work force is local, there has not been a significant investment in each community`s infrastructure. Any small increases in the infrastructure will not be abandoned at the end of the UMTRA Project due to a marked increase in migration out of the local community.

Not Available

1991-10-22T23:59:59.000Z

129

Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement  

SciTech Connect (OSTI)

This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

None

1986-12-01T23:59:59.000Z

130

XXI ICTAM, 1521 August 2004, Warsaw, Poland IMPACT FRACTURE OF ROCK MATERIALS DUE TO PERCUSSIVE DRILLING ACTION  

E-Print Network [OSTI]

DRILLING ACTION Anton M. Krivtsov, Ekaterina E. Pavlovskaia, Marian Wiercigroch St. Petersburg State fracture of rocks caused by percussive drilling is presented. The process is modeled using particle are investigated. INTRODUCTION Percussive drilling is proved to be superior when compared to a convention rotary

Krivtsov, Anton M.

131

Climate Change 2007: Causes, impacts, mitigation.  

E-Print Network [OSTI]

livelli. Nessun settore o tecnologia da sola puň mitigare lee per la diffusione di tecnologia. Notevoli risultati sono

Schiavon, Stefano; Zecchin, Roberto

2007-01-01T23:59:59.000Z

132

Climate Change 2007: Causes, impacts, mitigation.  

E-Print Network [OSTI]

il Rapporto il ruolo del governo nella mitigazione deiclimatici č importante. Il governo, attraverso i contributi

Schiavon, Stefano; Zecchin, Roberto

2007-01-01T23:59:59.000Z

133

Mitigating Potential Environmental Impacts of Energy Development...  

Energy Savers [EERE]

the risk for bird and bat species that may be susceptible to collisions with wind turbines. This tool will be used in environmental decision-making for the planning, siting,...

134

Mitigating Potential Environmental Impacts of Energy Development |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment, SafetyWaterMary Landrieu AboutBenefits »MissionMission MissionDepartment

135

Sandia National Laboratories: mitigating glare impact  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime is themicrodesignmicrosystems-enabledlossglare

136

Unit environmental transport assessment of contaminants from Hanford`s past-practice waste sites. Hanford Remedial Action Environmental Impact Statement  

SciTech Connect (OSTI)

The US Department of Energy, Richland Operations Office (DOE-RL) contracted Pacific Northwest Laboratory (PNL) to provide support to Advanced Sciences, Incorporated (ASI) in implementing tile regional no-action risk assessment in the Hanford Remedial Action Environmental Impact Statement. Researchers at PNL were charged with developing unit concentrations for soil, groundwater, surface water, and air at multiple locations within an 80-km radius from the center of tile Hanford installation. Using the Multimedia Environmental Pollutant Assessment System (MEPAS), PNL simulated (1) a unit release of one ci for each radionuclide and one kg for each chemical from contaminated soils and ponded sites, (2) transport of the contaminants in and through various environmental media and (3) exposure/risk of four exposure scenarios, outlined by the Hanford Site Baseline Remedial Action Methodology. These four scenarios include residential, recreational, industrial, and agricultural exposures. Spacially and temporally distributed environmental concentrations based on unit releases of radionuclides and chemicals were supported to ASI in support of the HRA-EIS. Risk for the four exposure scenarios, based on unit environment concentrations in air, water, and soil. were also supplied to ASI. This report outlines the procedure that was used to implement the unit transport portion of the HRA-EIS baseline risk assessment. Deliverables include unit groundwater, surface water, air, and soil concentrations at multiple locations within an 80-km radius from the center of the Hanford installation.

Whelan, G.; Buck, J.W.; Castleton, K.J. [and others

1995-06-01T23:59:59.000Z

137

Gulf of Mexico Sales 147 and 150: Central and Western planning areas. Final environmental impact statement, Volume 1: Sections 1 through 4.C  

SciTech Connect (OSTI)

This Final Environmental Impact Statement (EIS) covers the proposed 1994 Gulf of Mexico OCS oil and gas lease sales [Central Gulf of Mexico Sale 147 (March 1994) and Western Gulf of Mexico Sale 150 (August 1994)]. This document includes the purpose and background of the proposed actions, the alternatives, the descriptions of the affected environment, and the potential environmental impacts of the proposed actions and alternatives. Proposed mitigating measures and their effects are analyzed, in addition to potential cumulative impacts resulting from proposed activities.

Not Available

1993-11-01T23:59:59.000Z

138

1992 North Dakota Economic Impact Study for the Uranium Mill Tailings Remedial Action Project, Belfield and Bowman, North Dakota. Preliminary final report  

SciTech Connect (OSTI)

The goal of the Uranium Mill Tailings Remedial Action (UMTRA) Project in North Dakota is to improve the environment and reduce the negative health effects associated with residual radioactive material (RRM) from the inactive processing sites at Belfield and Bowman, North Dakota. A secondary benefit of the UMTRA Project is economic gain. The 1992 North Dakota Economic Impact Study (NDEIS) analyzes the impact of the remedial actions at the inactive Belfield and Bowman processing sites and their associated vicinity properties. This analysis is based on the assumption that the state of North Dakota will provide 10 percent of the funding required for remediation. For every dollar the state of North Dakota invests in the Belfield and Bowman onsite portion of the UMTRA Project, it will realize $5.04 in gross labor income (i.e., gross labor income divided by the state`s total funding requirement). For every dollar the state of North Dakota invests, it will realize a net return of $3.04 (i.e., net benefit divided by the state`s total funding requirement). This reflects only labor expenditure and employment impact. ff state and local non-labor tax benefits were considered in the net economic benefit, North Dakota could receive significantly more than $3.04 for each dollar it invests. The UMTRA Project work at Belfield and Bowman will benefit the state of North Dakota. Benefits include a reduction in the negative health effects caused by low-level RRM, an improvement in the environment, and increased economic growth.

Not Available

1993-01-01T23:59:59.000Z

139

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (FFACO, 1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. (1) CAS 01-23-02, Atmospheric Test Site - High Alt; (2) CAS 02-23-02, Contaminated Areas (2); (3) CAS 02-23-03, Contaminated Berm; (4) CAS 02-23-10, Gourd-Amber Contamination Area; (5) CAS 02-23-11, Sappho Contamination Area; (6) CAS 02-23-12, Scuttle Contamination Area; (7) CAS 03-23-24, Seaweed B Contamination Area; (8) CAS 03-23-27, Adze Contamination Area; (9) CAS 03-23-28, Manzanas Contamination Area; (10) CAS 03-23-29, Truchas-Chamisal Contamination Area; (11) CAS 04-23-02, Atmospheric Test Site T4-a; (12) CAS 05-23-06, Atmospheric Test Site; (13) CAS 09-23-06, Mound of Contaminated Soil; (14) CAS 10-23-04, Atmospheric Test Site M-10; and (15) CAS 18-23-02, U-18d Crater (Sulky). Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107. CAU 107 closure activities will consist of verifying that the current postings required under Title 10 Code of Federal Regulations (CFR) Part 835 are in place and implementing use restrictions (URs) at two sites, CAS 03-23-29 and CAS 18-23-02. The current radiological postings combined with the URs are adequate administrative controls to limit site access and worker dose.

NSTec Environmental Restoration

2008-09-30T23:59:59.000Z

140

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. {sm_bullet} CAS 01-23-02, Atmospheric Test Site - High Alt{sm_bullet} CAS 02-23-02, Contaminated Areas (2){sm_bullet} CAS 02-23-03, Contaminated Berm{sm_bullet} CAS 02-23-10, Gourd-Amber Contamination Area{sm_bullet} CAS 02-23-11, Sappho Contamination Area{sm_bullet} CAS 02-23-12, Scuttle Contamination Area{sm_bullet} CAS 03-23-24, Seaweed B Contamination Area{sm_bullet} CAS 03-23-27, Adze Contamination Area{sm_bullet} CAS 03-23-28, Manzanas Contamination Area{sm_bullet} CAS 03-23-29, Truchas-Chamisal Contamination Area{sm_bullet} CAS 04-23-02, Atmospheric Test Site T4-a{sm_bullet} CAS 05-23-06, Atmospheric Test Site{sm_bullet} CAS 09-23-06, Mound of Contaminated Soil{sm_bullet} CAS 10-23-04, Atmospheric Test Site M-10{sm_bullet} CAS 18-23-02, U-18d Crater (Sulky) Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107.

NSTec Environmental Restoration

2009-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Wind Engineering & Natural Disaster Mitigation  

E-Print Network [OSTI]

Wind Engineering & Natural Disaster Mitigation For more than 45 years, Western University has been internationally recognized as the leading university for wind engineering and wind- related research. Its of environmental disaster mitigation, with specific strengths in wind and earthquake research. Boundary Layer Wind

Denham, Graham

142

Climate change mitigation and co-benefits of feasible transport demand policies in Beijing  

E-Print Network [OSTI]

i n f o Keywords: Climate change mitigation Transport demand management External costs Urban and potential impacts of travel demand management help to define policy instruments that mitigate the damaging. The paper investi- gates the role of demand elasticities and demonstrates that joint demand and supply-side

Kammen, Daniel M.

143

Implantation, Activation, Characterization and Prevention/Mitigation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Activation, Characterization and PreventionMitigation of Internal Short Circuits in Lithium-Ion Cells Implantation, Activation, Characterization and PreventionMitigation of...

144

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network [OSTI]

Energy Resources for Carbon Emissions Mitigation RyanEnergy Resources for Carbon Emissions Mitigation Ryanand/or site-attributable carbon emissions at commercial and

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

145

Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in the United States  

SciTech Connect (OSTI)

This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption in the most cost-effective way. A major difference between the current study and some others is that we focus on individual equipment types that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. The approach of the study is to assess the impact of short-term actions on long-term impacts. “Short term” market transformation is assumed to occur by 2015, while “long-term” energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. The 15-year time frame is significant for many products however, indicating that delay of implementation postpones impacts such as net economic savings and mitigation of emissions of carbon dioxide. Such delays would result in putting in place energy-wasting technologies, postponing improvement until the end of their service life, or potentially resulting in expensive investment either in additional energy supplies or in early replacement to achieve future energy or emissions reduction targets.

Bojda, Nicholas; Ke, Jing; de la Rue du Can, Stephane; E. Letschert, Virginie; E. McMahon, James; McNeil, Michael A.

2011-06-01T23:59:59.000Z

146

The Role of China in Mitigating Climate Change  

E-Print Network [OSTI]

We explore short- and long-term implications of several energy scenarios of China’s role in efforts to mitigate global climate risk. The focus is on the impacts on China’s energy system and GDP growth, and on global climate ...

Paltsev, S.

147

Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining  

SciTech Connect (OSTI)

Femtosecond laser machining is used to create mitigation pits to stabilize nanosecond laser-induced damage in multilayer dielectric mirror coatings on BK7 substrates. In this paper, we characterize features and the artifacts associated with mitigation pits and further investigate the impact of pulse energy and pulse duration on pit quality and damage resistance. Our results show that these mitigation features can double the fluence-handling capability of large-aperture optical multilayer mirror coatings and further demonstrate that femtosecond laser macromachining is a promising means for fabricating mitigation geometry in multilayer coatings to increase mirror performance under high-power laser irradiation.

Wolfe, Justin E.; Qiu, S. Roger; Stolz, Christopher J.

2011-03-20T23:59:59.000Z

148

Characterization and mitigation of process variation in digital circuits and systems  

E-Print Network [OSTI]

Process variation threatens to negate a whole generation of scaling in advanced process technologies due to performance and power spreads of greater than 30-50%. Mitigating this impact requires a thorough understanding of ...

Drego, Nigel Anthony, 1980-

2009-01-01T23:59:59.000Z

149

1996 monitoring report for the Gunnison, Colorado, wetlands mitigation plan  

SciTech Connect (OSTI)

The US Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project to clean up uranium mill tailings and other surface contamination at 24 abandoned uranium mill sites in 10 states. One of these abandoned mill sites was near the town of Gunnison, Colorado. Surface remediation was completed at the Gunnison site in December 1995. Remedial action resulted in the elimination of 4.3 acres of wetlands and mitigation of this loss is through the enhancement of 17.8 acres of riparian plant communities in six spring-fed areas on US Bureau of Land Management mitigation sites. A five-year monitoring program was then implemented to document the response of vegetation and wildlife to the exclusion of livestock. This report provides the results of the third year of the monitoring program.

NONE

1996-12-01T23:59:59.000Z

150

Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume II  

SciTech Connect (OSTI)

Volume II of the programmatic environmental impact statement (PElS) is a comment and response document; it is the collection of the comments received on the draft PElS. The U.S. Department of Energy's (DOE) response to each comment is provided after each comment. If the comment resulted in a change to the PElS, the affected section number of the PElS is provided in the response. Comments 1 through 259 were received at public hearings. The name of the hearing at which the comment was received is listed after each comment. Comments were recorded on flip charts and by notetakers. DOE representatives were present to hear the comments and respond to them. The DOE's written response is provided after each comment. Comments 260 through 576 were received in writing at the hearings, and from various federal, tribal, and state agencies and from individuals during the public comment period. Copies of the written comments follow the comments and responses.

none,

1996-10-01T23:59:59.000Z

151

High Precision Astrometry in Asteroid Mitigation - the NEOShield Perspective  

E-Print Network [OSTI]

Among the currently known Near Earth Objects (NEOs), roughly 1400 are classified as being potentially hazardous asteroids. The recent Chelyabinsk event has shown that these objects can pose a real threat to mankind. We illustrate that high precision asteroid astrometry plays a vital role in determining potential impact risks, selecting targets for deflection demonstration missions and evaluating mitigation mission success. After a brief introduction to the NEOShield project, an international effort initiated by the European Commission to investigate aspects of NEO mitigation in a comprehensive fashion, we discuss current astrometric performances, requirements and possible issues with NEO risk assessment and deflection demonstration missions.

Eggl, Siegfried; Hestroffer, Daniel; Perna, Davide; Bancelin, David; Thuillot, William

2013-01-01T23:59:59.000Z

152

Corrective Action  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Corrective Action Individual Permit: Corrective Action Certifications If confirmation monitoring sample results demonstrate that one or more TALs are exceeded at a Site, the...

153

Climate Change Impacts on Texas Water: A White Paper Assessment of the Past, Present and Future and Recommendations for Action  

SciTech Connect (OSTI)

Texas comprises the eastern portion of the Southwest region, where the convergence of climatological and geopolitical forces has the potential to put extreme stress on water resources. Geologic records indicate that Texas experienced large climate changes on millennial time scales in the past, and over the last thousand years, tree-ring records indicate that there were significant periods of drought in Texas. These droughts were of longer duration than the 1950s 'drought of record' that is commonly used in planning, and they occurred independently of human-induced global climate change. Although there has been a negligible net temperature increase in Texas over the past century, temperatures have increased more significantly over the past three decades. Under essentially all climate model projections, Texas is susceptible to significant climate change in the future. Most projections for the 21st century show that with increasing atmospheric greenhouse gas concentrations, there will be an increase in temperatures across Texas and a shift to a more arid average climate. Studies agree that Texas will likely become significantly warmer and drier, yet the magnitude, timing, and regional distribution of these changes are uncertain. There is a large uncertainty in the projected changes in precipitation for Texas for the 21st century. In contrast, the more robust projected increase in temperature with its effect on evaporation, which is a dominant component in the region's hydrologic cycle, is consistent with model projections of frequent and extended droughts throughout the state. For these reasons, we recommend that Texas invest resources to investigate and anticipate the impacts of climate change on Texas water resources, with the goal of providing data to inform resource planning. This investment should support development of (1) research programs that provide policy-relevant science; (2) education programs to engage future researchers and policy-makers; and (3) connections between policy-makers, scientists, water resource managers, and other stakeholders. It is proposed that these goals may be achieved through the establishment of a Texas Climate Consortium, consisting of representatives from academia, industry, government agencies, water authorities, and other stakeholders. The mission of this consortium would be to develop the capacity to provide decision makers with the information needed to develop adaptation strategies in the face of future climate change and uncertainty.

Banner, Jay L.; Jackson, Charles S.; Yang, Zong-Liang; Hayhoe, Katharine; Woodhouse, Connie; Gulden, Lindsey; Jacobs, Kathy; North, Gerald; Leung, Lai-Yung R.; Washington, Warren M.; Jiang, Xiaoyan; Casteel, Richard

2010-09-01T23:59:59.000Z

154

Republic of Congo-Nationally Appropriate Mitigation Actions ...  

Open Energy Info (EERE)

Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy, Land, Water Focus Area...

155

Rwanda-Nationally Appropriate Mitigation Actions (NAMAs) in the...  

Open Energy Info (EERE)

Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy, Land, Water Focus Area...

156

Central African Republic-Nationally Appropriate Mitigation Actions...  

Open Energy Info (EERE)

Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy, Land, Water Focus Area...

157

Peru-GEF Nationally Appropriate Mitigation Actions in the Energy...  

Open Energy Info (EERE)

& the Caribbean1 Contents 1 Program Overview 1.1 Program Focus 1.2 Environment and Sustainable Development 2 References Program Overview "Across Latin America and the...

158

Burundi-Nationally Appropriate Mitigation Actions (NAMAs) in...  

Open Energy Info (EERE)

Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy, Land, Water Focus Area...

159

Angola-Nationally Appropriate Mitigation Actions (NAMAs) in the...  

Open Energy Info (EERE)

Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy, Land, Water Focus Area...

160

Cameroon-Nationally Appropriate Mitigation Actions (NAMAs) in...  

Open Energy Info (EERE)

Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy, Land, Water Focus Area...

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EA-1440-S1: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the2-A Dynegy Power Marketing,-AMitigation

162

EA-1562-SA-1: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the2-A Dynegy PowerA

163

EA-1901: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the2-A Dynegy-A7: H.Q6 New891:

164

EA-1912: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the2-A Dynegy-A7: H.Q6 Sempra

165

EA-1923: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the2-A Dynegy-A7:Department

166

EA-1934: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the2-A Dynegy-A7:Department5:Energy

167

EA-1941: Mitigation Action Plan (MAP) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the2-A

168

EIS-0380: Annual Mitigation Action Plan Annual Report | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1: Draft Environmentalof6:2: Record

169

EIS-0380: Mitigation Action Plan Annual Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1: Draft Environmentalof6:2: Record2008 Los

170

EIS-0380: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1: Draft Environmentalof6:2: Record2008 LosPlan

171

EIS-0425: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1: Draft Environmentalof6:2:Record-SA-01:3:7:2:of5:

172

EIS-0460: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1: Draft6: Record ofEnvironmental

173

EIS-0464: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1: Draft6: Record

174

EIS-0472: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1: Draft6: RecordRecord of

175

EIS-0473: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1: Draft6: RecordRecord ofEnergy close on

176

EIS-0323: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - Libby CreekProgram,DepartmentBig Sandy Energyof

177

EIS-0323: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - Libby CreekProgram,DepartmentBig Sandy EnergyofProject This

178

EIS-0332: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - Libby CreekProgram,DepartmentBig SandyStatement andMcNary-JohnThiskV

179

EIS-0332: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - Libby CreekProgram,DepartmentBig SandyStatement

180

EIS-0350-S1: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - Libbyof Energy Project, Washington and OregonofAnnouncement

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EIS-0380: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThis EIS evaluates the potentialTheThe

182

EIS-0384: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThis EIS evaluates theOrange County, FL Record of

183

EIS-0397: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThis EIS evaluates The DepartmentNotice

184

EIS-0409: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThis EIS evaluatesStatement

185

EIS-0422: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThis EISStatement | Department of Energy Line,Project

186

Malaysia-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held &InformationWind Farm

187

Argentina-Mitigation Action Plans and Scenarios (MAPS) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Energy Co LtdInformation Plans and Scenarios

188

Argentina-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Energy Co LtdInformation Plans

189

Brazil-Mitigation Action Plans and Scenarios (MAPS) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO) Jump to:InformationInformation

190

Burundi-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO)

191

Democratic Republic of Congo-Nationally Appropriate Mitigation Actions  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park,DellProgramme (LECBP) |

192

Vietnam-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpenVerona, New Jersey:012225°,(EC-LEDS)

193

Microsoft Word - Final Mitigated Action Plan - CNMI.docx  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 Master EMAZINFO Department ofBalanced ScorecardThisDepartment

194

Mitigation Action Plans (MAP) and Related Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared TemansonEnergySAR.docEnergyThrough

195

Indonesia-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany:InformationInformation

196

Mitigation Action Implementation Network (MAIN) Feed | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area Energy Efficiency,GridMinster, Ohio:Information

197

Mitigation Action Implementation Network (MAIN) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area Energy Efficiency,GridMinster, Ohio:Information

198

Mitigation Action Plans and Scenarios (MAPS) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area Energy Efficiency,GridMinster,

199

Thailand-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to:TetraSunanalysis, Technology

200

Uruguay-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator JumpUnited States:DelawareSchoolInformation

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Brazil-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGEFairfield(CTIAdvanced Fossil

202

Central African Republic-Nationally Appropriate Mitigation Actions (NAMAs)  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedarCAPS JumpForestryin the

203

Chile-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanic National Park | OpenChevronFuels

204

EA-1591: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA andDriving5-FEB.55: Finding4: Final6:1:

205

EA-1736: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADAMitigation7: RevisedMonroe, LA |Finding of

206

EA-1739: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADAMitigation7: RevisedMonroe, LA

207

EA-1782: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADAMitigation7:3: Finding

208

EA-1870: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADAMitigation7:3:8:4:2:FindingFindingFinding of

209

Mexico-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalwayHydrothermalMcFarlandSurveyREDDGIZ-Mexico

210

Mitigation Action Plans and Scenarios (MAPS) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to: navigation, search Name: Mithun

211

EIS-0128: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9:Department ofof Energy 0-S:Record of:Banos-Gates

212

EIS-0128: Mitigation Action Plan | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9:Department ofof Energy 0-S:Record

213

Colombia-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPowerRaft River 5 MW Power

214

Costa Rica-The Mitigation Action Implementation Network (MAIN) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to:Information NewAdvisorsCosmos Energyof||Energy

215

EA-1855: Mitigation Action Plan | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal Environmental AssessmentTuscarora, NV |:BC855:

216

EA-1913: Mitigation Action Plan | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal Environmental891: Sempra EnergyFinding of13:

217

Pakistan-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County is aOrmesaPPT ResearchPacificPakini Nui

218

Panama-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County is aOrmesaPPTAct YearBiofuels Inc

219

Philippines-The Mitigation Action Implementation Network (MAIN) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru: Energy Resources

220

Dominican Republic-The Mitigation Action Implementation Network (MAIN) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has TypeGeothermal Area JumpSixfor Small

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Peru-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources JumpPerryman, Maryland:Economy Jump

222

Colombia-Mitigation Action Plans and Scenarios (MAPS) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan,Information Feed JumpCartagenaInformation

223

Ecofys-Nationally Appropriate Mitigation Actions: Insights from Example  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLow CarbonOpen1 June,Ecofys Feed NO

224

Cameroon-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder,Research Jump to:Information

225

Chile-Mitigation Action Plans and Scenarios (MAPS) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuoCatalyst RenewablesChad-IAEAElectricCountries

226

China-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuoCatalystPathways Calculator

227

Mitigation Action Plans (MAP) and Related Documents | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthComments MEMA:May1.docEx5.docofPotomac

228

Mitigation Action Plans (MAP) and Related Documents | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthComments MEMA:May1.docEx5.docofPotomacJuly 1, 2009 EIS-0323:

229

India-The Mitigation Action Implementation Network (MAIN) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: Eden Prairie, Minnesota Zip: 55344ESMAP Low

230

L-325 Sagebrush Habitat Mitigation Project: FY2008 Compensation Area Monitoring Report  

SciTech Connect (OSTI)

This document provides a review and status of activities conducted in support of the Fluor Daniel Hanford Company (Fluor) Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades. It includes time-zero monitoring results for planting activities conducted in January 2008, annual survival monitoring for all planting years (2007 and 2008), and recommendations for the successful completion of DOE habitat mitigation commitments for this project.

Durham, Robin E.; Sackschewsky, Michael R.

2008-09-30T23:59:59.000Z

231

Libby Mitigation Program, 2007 Annual Progress Report: Mitigation for the Construction and Operation of Libby Dam.  

SciTech Connect (OSTI)

Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possible conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to 'protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to restore the fisheries and fish habitat in basin streams and lakes. 'Mitigation for the Construction and Operation of Libby Dam' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan.

Dunnigan, James; DeShazer, J.; Garrow, L.

2009-05-26T23:59:59.000Z

232

Computable General Equilibrium Models for Eco-nomic Policy Evaluation and Impact Analysis  

E-Print Network [OSTI]

to the assessment of the economic impacts of policies ranging from tax reforms to the mitigation and adaptation

Wing, Ian Sue

233

Albeni Falls Wildlife Mitigation Project  

E-Print Network [OSTI]

from the Albeni Falls Hydroelectric Project #12;Biological Objective 1 Protect 900 acres of wetland hydroelectric project. · 1988 publication of the Final Report Albeni Falls Wildlife Protection, Mitigation effects on wildlife resulting from hydroelectric development. 2. Select target wildlife species

234

Wildlife Loss Estimates and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Volume Three, Hungry Horse Project.  

SciTech Connect (OSTI)

This assessment addresses the impacts to the wildlife populations and wildlife habitats due to the Hungry Horse Dam project on the South Fork of the Flathead River and previous mitigation of theses losses. In order to develop and focus mitigation efforts, it was first necessary to estimate wildlife and wildlife hatitat losses attributable to the construction and operation of the project. The purpose of this report was to document the best available information concerning the degree of impacts to target wildlife species. Indirect benefits to wildlife species not listed will be identified during the development of alternative mitigation measures. Wildlife species incurring positive impacts attributable to the project were identified.

Casey, Daniel

1984-10-01T23:59:59.000Z

235

Annual Adaptive Management Report for Compensatory Mitigation at Keyport Lagoon: Mitigation of Pier B Development at the Bremerton Naval Facilities - Compensatory Mitigation at Keyport Lagoon - Naval Underwater Warfare Center Division - Keyport, Washington  

SciTech Connect (OSTI)

Unites States Navy capital improvement projects are designed to modernize and improve mission capacity. Such capital improvement projects often result in unavoidable environmental impacts by increasing over-water structures, which results in a loss of subtidal habitat within industrial areas of Navy bases. In the Pacific Northwest, compensatory mitigation often targets alleviating impacts to Endangered Species Act-listed salmon species. The complexity of restoring large systems requires limited resources to target successful and more coordinated mitigation efforts to address habitat loss and improvements in water quality that will clearly contribute to an improvement at the site scale and can then be linked to a cumulative net ecosystem improvement.

Vavrinec, John; Borde, Amy B.; Woodruff, Dana L.; Brandenberger, Jill M.; Thom, Ronald M.; Wright, Cynthia L.; Cullinan, Valerie I.

2012-06-01T23:59:59.000Z

236

Rainwater Wildlife Area Management Plan Executive Summary : A Columbia Basin Wildlife Mitigation Project.  

SciTech Connect (OSTI)

This Executive Summary provides an overview of the Draft Rainwater Wildlife Area Management Plan. The comprehensive plan can be viewed on the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) website at: www.umatilla.nsn.us or requested in hard copy from the CTUIR at the address below. The wildlife area was established in September 1998 when the CTUIR purchased the Rainwater Ranch through Bonneville Power Administration (BPA) for purposes of fish and wildlife mitigation for the McNary and John Day dams. The Management Plan has been developed under a standardized planning process developed by BPA for Columbia River Basin Wildlife Mitigation Projects (See Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus management actions and prioritize funding during the 2002-2006 planning period. Since acquisition of the property in late 1998, the CTUIR has conducted an extensive baseline resource assessment in preparation for the management plan, initiated habitat restoration in the Griffin Fork drainage to address road-related resource damage caused by roads constructed for forest practices and an extensive flood event in 1996, and initiated infrastructure developments associated with the Access and Travel Management Plan (i.e., installed parking areas, gates, and public information signs). In addition to these efforts, the CTUIR has worked to set up a long-term funding mechanism with BPA through the NPPC Fish and Wildlife Program. The CTUIR has also continued to coordinate closely with local and state government organizations to ensure consistency with local land use laws and maintain open lines of communication regarding important issues such as big game hunting, tribal member exercise of treaty rights, and public access. During the past two years, non-Indian public concern over big game hunting issues has at times overwhelmed other issues related to the wildlife area. In 2001, the CTUIR Fish and Wildlife Committee closed the wildlife area to tribal branch antlered bull elk harvest in response to harvest data that indicated harvest rates were greater than expected. In addition, illegal harvest of mature bull elk in southeastern Washington during the 2001 season exceeded the legal tribal and nontribal harvest combined which has created a potential significant regression in the bull;cow ratio in the Blue Mountain Elk herd. CTUIR Fish and Wildlife Committee and staff and Washington Department of Fish and Wildlife Regional Director and staff have been coordinating regularly to develop strategies to address harvest rates and ensure protection of viable big game herds in southeastern Washington. The CTUIR Fish and Wildlife Committee and WDFW has jointly agreed to continue close coordination on this and other issues and continue working together to ensure the long-term vigor of the elk herd on the Rainwater Wildlife Area. The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources.

Childs, Allen B.

2002-02-01T23:59:59.000Z

237

1997 Monitoring report for the Gunnison, Colorado Wetlands Mitigation Plan  

SciTech Connect (OSTI)

Under the Uranium Mill Tailings Remedial Action (UMTRA) Project, the U.S. Department of Energy (DOE) cleaned up uranium mill tailings and other surface contamination near the town of Gunnison, Colorado. Remedial action resulted in the elimination of 4.3 acres (ac) (1.7 hectares [ha]) of wetlands. This loss is mitigated by the enhancement of six spring-fed areas on Bureau of Land Management (BLM) land (mitigation sites). Approximately 254 ac (1 03.3 ha) were fenced at the six sites to exclude grazing livestock. Of the 254 ac (103.3 ha), 17.8 ac (7.2 ha) are riparian plant communities; the rest are sagebrush communities. Baseline grazed conditions of the riparian plant communities at the mitigation sites were measured prior to fencing. This report discusses results of the fourth year of a monitoring program implemented to document the response of vegetation and wildlife to the exclusion of livestock. Three criteria for determining success of the mitigation were established: plant height, vegetation density (bare ground), and vegetation diversity. By 1996, Prospector Spring, Upper Long`s Gulch, and Camp Kettle met the criteria. The DOE requested transfer of these sites to BLM for long-term oversight. The 1997 evaluation of the three remaining sites, discussed in this report, showed two sites (Houston Gulch and Lower Long`s Gulch) meet the criteria. The DOE will request the transfer of these two sites to the BLM for long-term oversight. The last remaining site, Sage Hen Spring, has met only two of the criteria (percent bare ground and plant height). The third criterion, vegetation diversity, was not met. The vegetation appears to be changing from predominantly wet species to drier upland species, although the reason for this change is uncertain. It may be due to below-normal precipitation in recent years, diversion of water from the spring to the stock tank, or manipulation of the hydrology farther up gradient.

NONE

1997-11-01T23:59:59.000Z

238

L-325 Sagebrush Habitat Mitigation Project: FY2009 Compensation Area Monitoring Report  

SciTech Connect (OSTI)

Annual monitoring in support of the Fluor Daniel Hanford Company (Fluor) Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades was conducted in June 2009. MAP guidelines defined mitigation success for this project as 3000 established sagebrush transplants on a 4.5 ha mitigation site after five monitoring years. Annual monitoring results suggest that an estimated 2130 sagebrush transplants currently grow on the site. Additional activities in support of this project included gathering sagebrush seed and securing a local grower to produce between 2250 and 2500 10-in3 tublings for outplanting during the early winter months of FY2010. If the minimum number of seedlings grown for this planting meets quality specifications, and planting conditions are favorable, conservative survival estimates indicate the habitat mitigation goals outlined in the MAP will be met in FY2014.

Durham, Robin E.; Sackschewsky, Michael R.

2009-09-29T23:59:59.000Z

239

L-325 Sagebrush Habitat Mitigation Project: Final Compensation Area Monitoring Report  

SciTech Connect (OSTI)

This document provides a review and status of activities conducted in support of the Fluor Daniel Hanford Company (Fluor), now Mission Support Alliance (MSA), Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades (2007). Three plantings have been installed on a 4.5-hectare mitigation area to date. This review provides a description and chronology of events, monitoring results, and mitigative actions through fiscal year (FY) 2012. Also provided is a review of the monitoring methods, transect layout, and FY 2012 monitoring activities and results for all planting years. Planting densities and performance criteria stipulated in the MAP were aimed at a desired future condition (DFC) of 10 percent mature sagebrush (Artemisia tridentata ssp wyomingensis) cover. Current recommendations for yielding this DFC are based upon a conceptual model planting of 1000 plants/ha (400/ac) exhibiting a 60-percent survival rate after 5 monitoring years (DOE 2003). Accordingly, a DFC after 5 monitoring years would not be less than 600 plants/ha (240/ac). To date, about 8700 sagebrush plants have been grown and transplanted onto the mitigation site. Harsh site conditions and low seedling survival have resulted in an estimated 489 transplants/ha on the mitigation site, which is 111 plants/ha short of the target DFC. Despite this apparent shortcoming, 71, 91, and 24 percent of the surviving seedlings planted in FY 2007 and FY 2008 and FY 2010, respectively, showed signs of blooming in FY 2012. Blooming status may be a positive indication of future sagebrush recruitment, and is therefore a potential source for reaching the target DFC of 600 plants/ha on this mitigation site over time. Because of the difficulty establishing small transplants on this site, we propose that no additional plantings be considered for this mitigation area and to rely upon the potential recruitment by established seedlings to achieve the mitigation commitment set forth in the MAP of 600 plants/ha.

Durham, Robin E.; Becker, James M.

2013-09-26T23:59:59.000Z

240

Timelines for mitigating methane emissions from energy technologies  

E-Print Network [OSTI]

Energy technologies emitting differing proportions of methane and carbon dioxide vary in their relative climate impacts over time, due to the different atmospheric lifetimes of the two gases. Standard technology comparisons using the global warming potential (GWP) emissions equivalency metric do not reveal these dynamic impacts, and may not provide the information needed to assess technologies and emissions mitigation opportunities in the context of broader climate policy goals. Here we formulate a portfolio optimization model that incorporates changes in technology impacts as a radiative forcing (RF) stabilization target is approached. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher methane-emitting technologies prior to an optimal switching year, followed by methane-light technologies as the stabilization year approac...

Roy, Mandira; Trancik, Jessika E

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Comprehensive mitigation assessment process (COMAP) - Description and instruction manual  

SciTech Connect (OSTI)

In order to prepare policies and plans to reduce GHG emissions, national policy-makers need information on the costs and benefits of different mitigation options in addition to their carbon implications. Policy-makers must weigh the costs, benefits, and impacts of climate change mitigation and adaptation options, in the face of competition for limited resources. The policy goal for mitigation options in the land use sector is to identify which mix of options is likely to best achieve the desired forestry service and production objectives at the least cost, while attempting to maximize economic and social benefits, and minimize negative environmental and social impacts. Improved national-level cost estimates of response options in the land use sector can be generated by estimating the costs and benefits of different forest management practices appropriate for specific country conditions which can be undertaken within the constraint of land availability and its opportunity cost. These co st and land use estimates can be combined to develop cost curves, which would assist policy-makers in constructing policies and programs to implement forest responses.

Makundi, Willy; Sathaye, Jayant

2001-11-09T23:59:59.000Z

242

Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Phase I, Volume Two (A), Clark Fork Projects, Thompson Falls Dam, Operator, Montana Power Company.  

SciTech Connect (OSTI)

The Thompson Falls Dam inundated approximately 347 acres of wildlife habitat that likely included conifer forests, deciduous bottoms, mixed conifer-deciduous forests and grassland/hay meadows. Additionally, at least one island, and several gravel bars were inundated when the river was transformed into a reservoir. The loss of riparian and riverine habitat adversely affected the diverse wildlife community inhabiting the lower Clark Fork River area. Quantitative loss estimates were determined for selected target species based on best available information. The loss estimates were based on inundation of the habitat capable of supporting the target species. Whenever possible, loss estimates bounds were developed by determining ranges of impacts based on density estimates and/or acreage loss estimates. Of the twelve target species or species groups, nine were assessed as having net negative impacts. 86 refs., 2 figs., 5 tabs.

Wood, Marilyn

1984-03-27T23:59:59.000Z

243

Estimating Mitigation Potential of Agricultural Projects: an...  

Open Energy Info (EERE)

Mitigation Potential of Agricultural Projects: an Application of the EX-Ante Carbon-balance Tool (EX-ACT) AgencyCompany Organization: Food and Agriculture Organization of...

244

Heat Waves, Global Warming, and Mitigation  

E-Print Network [OSTI]

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*II. HEAT WAVE DEFINITIONS .. A . HCHANGE AND HEAT WAVES .. CLIMATE III. IV. HEAT

Carlson, Ann E.

2008-01-01T23:59:59.000Z

245

Advanced Technology Development and Mitigation | National Nuclear...  

National Nuclear Security Administration (NNSA)

Technology Development and Mitigation This sub-program includes laboratory code and computer engineering and science projects that pursue long-term simulation and computing goals...

246

Greenhouse gas mitigation by agricultural intensification  

E-Print Network [OSTI]

et al. (2007) Agriculture. Climate Change 2007: Mitigationagriculture’s future contributions to climate change,agriculture greenhouse gas emissions mitigation carbon price | land use change | climate

Burney, J. A; Davis, S. J; Lobell, D. B

2010-01-01T23:59:59.000Z

247

Climate Change 2007: Mitigation of Climate Change.  

E-Print Network [OSTI]

2007: Mitigation of Climate Change. Full report. WorkingIntergovernmental Panel on Climate Change www.webcda.it LaIntergovernmental Panel on Climate Change”. Il Rapporto

Schiavon, Stefano; Zecchin, Roberto

2007-01-01T23:59:59.000Z

248

Environmental Mitigation Technology (Innovative System Testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine Environmental Mitigation Technology (Innovative System...

249

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network [OSTI]

mitigate 21 MtCO 2 . Cogeneration (also called Combined Heatefficiencies. Industrial cogeneration is an important partpotential for industrial cogeneration is estimated at almost

Worrell, Ernst

2009-01-01T23:59:59.000Z

250

U.S. Postal Service radon assessment and mitigation program. Progress report, September 1993--November 1994  

SciTech Connect (OSTI)

In 1992, the US Postal Service (USPS) entered into an Interagency Agreement with the Department of Energy (DOE) whereby DOE would provide technical assistance in support of the USPS Radon Assessment and Mitigation Program. To aid in this effort, DOE tasked the Hazardous Waste Remedial Actions Program (HAZWRAP), which is managed by Martin Marietta Energy Systems, Inc., for DOE under contract AC05-84OR21400. Since that time, HAZWRAP has developed and finalized the sampling protocol, mitigation diagnostic protocol, and the quality assurance and quality control procedures. These procedures were validated during the Protocol Validation (1992-1993) and Pilot Study (1993-1994) phases of the program. To date, HAZWRAP has performed approximately 16,000 radon measurements in 250 USPS buildings. Mitigation diagnostics have been performed in 27 buildings. Thus far, 13% of the measurements have been above the Environmental Protection Agency action level of 4 pCi/L. This report summarizes the pilot program radon testing data and mitigation diagnostic data for 22 sites and contains recommendations for mitigation diagnostics.

Velazquez, L.E.; Petty, J.L. Jr.

1994-12-31T23:59:59.000Z

251

Hungry Horse Mitigation Plan; Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam, 1990-2003 Technical Report.  

SciTech Connect (OSTI)

In this document we present fisheries losses, mitigation alternatives, and recommendations to protect, mitigate, and enhance resident fish and aquatic habitat affected by the construction and operation of Hungry Horse Dam. This plan addresses six separate program measures in the 1987 Columbia Basin Fish and Wildlife Program. We designed the plan to be closely coordinated in terms of dam operations, funding, and activities with the Kerr Mitigation Plan presently before the Federal Energy Regulatory Commission. This document represents a mitigation plan for consideration by the Northwest Power Planning Council process; it is not an implementation plan. Flathead Lake is one of the cleanest lakes of its size in the world. The exceptional water quality and unique native fisheries make the Flathead Lake/River system extremely valuable to the economy and quality of life in the basin. The recreational fishery in Flathead Lake has an estimated value of nearly eight million dollars annually. This mitigation process represents our best opportunity to reduce the impacts of hydropower in this valuable aquatic system and increase angling opportunity. We based loss estimates and mitigation alternatives on an extensive data base, agency reports, nationally and internationally peer-reviewed scientific articles, and an innovative biological model for Hungry Horse Reservoir and the Flathead River. We conducted an extensive, 14-month scoping and consultation process with agency representatives, representatives of citizen groups, and the general public. This consultation process helped identify issues, areas of agreement, areas of conflict, and advantages and disadvantages of mitigation alternatives. The results of the scoping and consultation process helped shape our mitigation plan. Our recommended plan is based firmly on principles of adaptive management and recognition of biological uncertainty. After we receive direction from the NPPC, we will add more detailed hypotheses and other features necessary for a long-term implementation plan.

Fraley, John J.; Marotz, Brian L. (Montana Department of Fish, Wildlife and Parks, Helena, MT); DosSantos, Joseph M. (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

2003-04-01T23:59:59.000Z

252

CARBON MITIGATION HS 2014 Prof. Nicolas Gruber  

E-Print Network [OSTI]

CARBON MITIGATION HS 2014 Prof. Nicolas Gruber Mondays 10-12, CHN E42 (nicolas & Introduction (Gruber) Introduction to the carbon mitigation problem 9/22 2 Geological CO2 sequestration (Mazzotti) Putting the CO2 underground... 9/29 3 No class ­ group formation 10/06 4 Carbon sinks on land

Fischlin, Andreas

253

CARBON MITIGATION HS 2013 Prof. Nicolas Gruber  

E-Print Network [OSTI]

CARBON MITIGATION HS 2013 Prof. Nicolas Gruber Mondays 10-12, CHN E42 (nicolas & Introduction (Gruber) Introduction to the carbon mitigation problem 9/23 2 Ocean Sequestration (Gruber) Putting2 sequestration (Mazzotti) Putting the CO2 underground... 10/14 5 Carbon sinks on land (Gruber) How

Fischlin, Andreas

254

Resource Programs : Draft Environmental Impact Statement, Volume 2, Appendices.  

SciTech Connect (OSTI)

Every two years, Bonneville Power Administration (BPA) prepares a Resource Program which identifies the resource actions BPA will take to meet its obligation to serve the forecasted power requirements of its customers. The Resource Program`s Environmental Impact Statement (RPEIS) is a programmatic environmental document which will support decisions made in several future Resource Programs. Environmental documents tiered to the EIS may be prepared on a site-specific basis. The RPEIS includes a description of the environmental effects and mitigation for the various resource types available in order to evaluate the trade-offs among them. It also assesses the environmental impacts of adding thirteen alternative combinations of resources to the existing power system. This report contains the appendices to the RPEIS.

United States. Bonneville Power Administration.

1992-03-01T23:59:59.000Z

255

China-Transportation Demand Management in Beijing: Mitigation...  

Open Energy Info (EERE)

Mitigation of Emissions in Urban Transport Jump to: navigation, search Name Transportation Demand Management in Beijing - Mitigation of emissions in urban transport Agency...

256

Improving Department of Energy Capabilities for Mitigating Beyond...  

Broader source: Energy.gov (indexed) [DOE]

Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events April...

257

Korea's Green Growth Strategy: Mitigating Climate Change and...  

Open Energy Info (EERE)

Korea's Green Growth Strategy: Mitigating Climate Change and Developing New Growth Engines Jump to: navigation, search Name Korea's Green Growth Strategy: Mitigating Climate Change...

258

Recent Diesel Engine Emission Mitigation Activities of the Maritime...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime...

259

South Africa-Facilitating Implementation and Readiness for Mitigation...  

Open Energy Info (EERE)

and Readiness for Mitigation (FIRM)" Retrieved from "http:en.openei.orgwindex.php?titleSouthAfrica-FacilitatingImplementationandReadinessforMitigation(FIRM)&oldid70000...

260

Development of Micro-structural Mitigation Strategies for PEM...  

Broader source: Energy.gov (indexed) [DOE]

Development of Micro-structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulation and Experimental Approaches Development of Micro-structural Mitigation Strategies...

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Procedures for Interagency Consultation to Avoid or Mitigate...  

Broader source: Energy.gov (indexed) [DOE]

Consultation to Avoid or Mitigate Adverse Effects on Rivers in the Nationwide Inventory Procedures for Interagency Consultation to Avoid or Mitigate Adverse Effects on...

262

Finding of No Significant Impact for the Environmental Assessment for the Strategic Petroleum Reserve West Hackberry Facility Raw Water Intake Pipeline Replacement Cameron and Calcasieu Parishes, Louisiana  

SciTech Connect (OSTI)

DOE has prepared an Environmental Assessment (EA), DOE/EA-1497, for the proposed replacement of the existing 107 centimeter (cm) [42 inch (in)] 6.87 kilometer (km) [4.27 mile (mi)] raw water intake pipeline (RWIPL). This action is necessary to allow for continued, optimum operations at the West Hackberry facility (main site/facility). The EA described the proposed action (including action alternatives) and three alternatives to the proposed action. The EA evaluated only the potential environmental consequences of the proposed action (one action alternative), and Alternative 3, which consisted of the No Build Action that is required by 10 CFR 1021.321(c). Based on the analysis in DOE/EA-1497, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting humans or the natural environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), 42 USC 4321 et seq. Therefore, an Environmental Impact Statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI). To further minimize impacts to environmental media, the DOE will also implement a Mitigation Action Plan (MAP) for this action. The MAP is included as Appendix F of this EA, which is appended to this FONSI. The Energy Policy and Conservation Act of 1975 (EPCA), as amended, authorizes the creation of the Strategic Petroleum Reserve (SPR) to store crude oil to reduce the United States' vulnerability to energy supply disruptions. Crude oil is stored in geologic formations, or salt domes, located under these facilities. The purpose of this proposed project is to construct a new RWIPL at the main site to replace the existing RWIPL which services this facility.

N /A

2004-08-31T23:59:59.000Z

263

Optimal Pollution Mitigation in Monterey Bay Based on Coastal Radar Data and Nonlinear  

E-Print Network [OSTI]

Optimal Pollution Mitigation in Monterey Bay Based on Coastal Radar Data and Nonlinear Dynamics run-off which is a typical source of pollution in the bay. We show that a HF radar-based pollution release scheme using this flow structure reduces the impact of pollution on the coastal envi- ronment

Marsden, Jerrold

264

GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge  

E-Print Network [OSTI]

GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge Grid Impacts-55080 #12;GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Electric Vehicle Grid Integration 2 Cross Cutting & TESTING DEPLOYMENT & PARTNERSHIPS Tx Tx Tx #12;GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG3 Vehicle Test

265

Grand Coulee Dam Wildlife Mitigation Program : Pygmy Rabbit Programmatic Management Plan, Douglas County, Washington.  

SciTech Connect (OSTI)

The Northwest Power Planning Council and the Bonneville Power Administration approved the pygmy rabbit project as partial mitigation for impacts caused by the construction of Grand Coulee Dam. The focus of this project is the protection and enhancement of shrub-steppe/pygmy rabbit habitat in northeastern Washington.

Ashley, Paul

1992-06-01T23:59:59.000Z

266

Extracting CO2 from seawater: Climate change mitigation and renewable liquid fuel  

E-Print Network [OSTI]

Extracting CO2 from seawater: Climate change mitigation and renewable liquid fuel Matthew Eisaman and their impact · Technology: Extracting CO2 from seawater · Application: Renewable liquid fuel #12;Outline: Renewable liquid fuel #12;The data on atmospheric CO2 2000 years ago http://cdiac.ornl.gov/trends/co2

Homes, Christopher C.

267

Predicting and mitigating the global warming potential of agro-ecosystems  

E-Print Network [OSTI]

Predicting and mitigating the global warming potential of agro-ecosystems S. Lehugera 1 , B and methane are the main biogenic greenhouse gases (GHG) con-2 tributing to the global warming potential (GWP to design productive16 agro-ecosystems with low global warming impact.17 Keywords18 Global warming potential

Paris-Sud XI, Université de

268

Insider Threat - Material Control and Accountability Mitigation  

SciTech Connect (OSTI)

The technical objectives of nuclear safeguards are (1) the timely detection of diversion of significant quantities of nuclear material from peaceful uses to the manufacture of nuclear weapons or other nuclear explosive devices or for purposes unknown and (2) the deterrence of such diversion by the risk of early detection. The safeguards and security program must address both outsider threats and insider threats. Outsider threats are primarily addressed by the physical protection system. Insider threats can be any level of personnel at the site including passive or active insiders that could attempt protracted or abrupt diversion. This could occur by an individual acting alone or by collusion between an individual with material control and accountability (MC&A) responsibilities and another individual who has responsibility or control within both the physical protection and the MC&A systems. The insider threat is one that must be understood and incorporated into the safeguards posture. There have been more than 18 documented cases of theft or loss of plutonium or highly enriched uranium. The insider has access, authority, and knowledge, as well as a set of attributes, that make him/her difficult to detect. An integrated safeguards program is designed as a defense-in-depth system that seeks to prevent the unauthorized removal of nuclear material, to provide early detection of any unauthorized attempt to remove nuclear material, and to rapidly respond to any attempted removal of nuclear material. The program is also designed to support protection against sabotage, espionage, unauthorized access, compromise, and other hostile acts that may cause unacceptable adverse impacts on national security, program continuity, the health and safety of employees, the public, or the environment. Nuclear MC&A play an essential role in the capabilities of an integrated safeguards system to deter and detect theft or diversion of nuclear material. An integrated safeguards system with compensating mitigation can decrease the risk of an insider performing a malicious act without detection.

Powell, Danny H [ORNL] [ORNL; Elwood Jr, Robert H [ORNL] [ORNL; Roche, Charles T [ORNL] [ORNL

2011-01-01T23:59:59.000Z

269

Heading into the Amendment Process: Hydrosystem Mitigation  

E-Print Network [OSTI]

reforms: Implementation of l ll d t d h t h iti ti lllegally mandated hatchery mitigation, as well uncertainties. Standardized metrics, protocols, reporting and HLIs are being adopted. A number of reforms

270

Wildlife Protection, Mitigation and Enhancement Planning for Grand Coulee Dam, Final Report.  

SciTech Connect (OSTI)

The development and operation of Grand Coulee Dam inundated approximately 70,000 acres of wildlife habitat under the jurisdictions of the Colville Confederated Tribes, the Spokane Tribe, and the State of Washington. Under the provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, this study reviews losses to wildlife and habitat, and proposes mitigation for those losses. Wildlife loss estimates were developed from information available in the literature. Habitat losses and potential habitat gains through mitigation were estimated by a modified Habitat Evaluation Procedure. The mitigation plan proposes (1) acquisition of sufficient land or management rights to land to protect Habitat Units equivalent to those lost (approximately 73,000 acres of land would be required), (2) improvement and management of those lands to obtain and perpetuate target Habitat Units, and (3) protection and enhancement of suitable habitat for bald eagles. Mitigation is presented as four actions to be implemented over a 10-year period. A monitoring program is proposed to monitor mitigation success in terms of Habitat Units and wildlife population trends.

Creveling, Jennifer

1986-08-01T23:59:59.000Z

271

Mitigation for the Construction and Operation of Libby Dam, 2004-2005 Annual Report.  

SciTech Connect (OSTI)

''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana Fish, Wildlife & Parks (MFWP) uses a combination of techniques to collect physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered and threatened species, and the assessment of restoration or management activities designed to restore native fishes and their habitats.

Dunnigan, James; DeShazer, Jay; Garrow, Larry (Montana Department of Fish, Wildlife and Parks, Libby, MT)

2005-06-01T23:59:59.000Z

272

Advanced Mitigating Measures for the Cell Internal Short Risk (Presentation)  

SciTech Connect (OSTI)

This presentation describes mitigation measures for internal short circuits in lithium-ion battery cells.

Darcy, E.; Smith, K.

2010-04-01T23:59:59.000Z

273

Lights, camera ... action? Altered attitudes and behaviour in response to the climate change film The Age of Stupid  

E-Print Network [OSTI]

action, such as limited options for improving home energy efficiency among those in rented accommodation, motivation to act, fear about the potential for catastrophe, beliefs about responsibility for action in promoting some mitigation actions and behavioural change, although respondents reported barriers to further

274

Action Items  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout Us » FAQsUCNIOF ENERGYU.S.-BrazilACTION

275

Wetland mitigation banking for the oil and gas industry: Assessment, conclusions, and recommendations  

SciTech Connect (OSTI)

Wetland mitigation banks are already in existence in the United States, and the number is increasing. To date, most of these banks have been created and operated for mitigation of impacts arising from highway or commercial development and have not been associated with the oil and gas industry. Argonne National Laboratory evaluated the positive and negative aspects of wetland mitigation banking for the oil and gas industry by examining banks already created for other uses by federal, state, and private entities. Specific issues addressed in this study include (1) the economic, ecological, and technical effectiveness of existing banks; (2) the changing nature of local, state, and federal jurisdiction; and (3) the unique regulatory and jurisdictional problems affecting bank developments associated with the oil and gas industry.

Wilkey, P.L.; Sundell, R.C.; Bailey, K.A.; Hayes, D.C.

1994-01-01T23:59:59.000Z

276

Insights from EMF Associated Agricultural and Forestry Greenhouse Gas Mitigation Studies  

SciTech Connect (OSTI)

Integrated assessment modeling (IAM) as employed by the Energy Modeling Forum (EMF) generally involves a multi-sector appraisal of greenhouse gas emission (GHGE) mitigation alternatives and climate change effects typically at the global level. Such a multi-sector evaluation encompasses potential climate change effects and mitigative actions within the agricultural and forestry (AF) sectors. In comparison with many of the other sectors covered by IAM, the AF sectors may require somewhat different treatment due to their critical dependence upon spatially and temporally varying resource and climatic conditions. In particular, in large countries like the United States, forest production conditions vary dramatically across the landscape. For example, some areas in the southern US present conditions favorable to production of fast growing, heat tolerant pine species, while more northern regions often favor slower-growing hardwood and softwood species. Moreover, some lands are currently not suitable for forest production (e.g., the arid western plains). Similarly, in agriculture, the US has areas where citrus and cotton can be grown and other areas where barley and wheat are more suitable. This diversity across the landscape causes differential GHGE mitigation potential in the face of climatic changes and/or responses to policy or price incentives. It is difficult for a reasonably sized global IAM system to reflect the full range of sub-national geographic AF production possibilities alluded to above. AF response in the face of climate change altered temperature precipitation regimes or mitigation incentives will likely involve region-specific shifts in land use and agricultural/forest production. This chapter addresses AF sectoral responses in climate change mitigation analysis. Specifically, we draw upon US-based studies of AF GHGE mitigation possibilities that incorporate sub-national detail drawing largely on a body of studies done by the authors in association with EMF activities. We discuss characteristics of AF sectoral responses that could be incorporated in future IAM efforts in climate change policy.

McCarl, Bruce A.; Murray, Brian; Kim, Man-Keun; Lee, Heng-Chi; Sands, Ronald D.; Schneider, Uwe

2007-11-19T23:59:59.000Z

277

Gas powered fluid gun with recoil mitigation  

DOE Patents [OSTI]

A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

Grubelich, Mark C; Yonas, Gerold

2013-11-12T23:59:59.000Z

278

Methodological Issues In Forestry Mitigation Projects: A CaseStudy Of Kolar District  

SciTech Connect (OSTI)

There is a need to assess climate change mitigationopportunities in forest sector in India in the context of methodologicalissues such as additionality, permanence, leakage, measurement andbaseline development in formulating forestry mitigation projects. A casestudy of forestry mitigation project in semi-arid community grazing landsand farmlands in Kolar district of Karnataka, was undertaken with regardto baseline and project scenariodevelopment, estimation of carbon stockchange in the project, leakage estimation and assessment ofcost-effectiveness of mitigation projects. Further, the transaction coststo develop project, and environmental and socio-economic impact ofmitigation project was assessed.The study shows the feasibility ofestablishing baselines and project C-stock changes. Since the area haslow or insignificant biomass, leakage is not an issue. The overallmitigation potential in Kolar for a total area of 14,000 ha under variousmitigation options is 278,380 tC at a rate of 20 tC/ha for the period2005-2035, which is approximately 0.67 tC/ha/yr inclusive of harvestregimes under short rotation and long rotation mitigation options. Thetransaction cost for baseline establishment is less than a rupee/tC andfor project scenario development is about Rs. 1.5-3.75/tC. The projectenhances biodiversity and the socio-economic impact is alsosignificant.

Ravindranath, N.H.; Murthy, I.K.; Sudha, P.; Ramprasad, V.; Nagendra, M.D.V.; Sahana, C.A.; Srivathsa, K.G.; Khan, H.

2007-06-01T23:59:59.000Z

279

Near-Term Climate Mitigation by Short-Lived Forcers  

SciTech Connect (OSTI)

Emissions reductions focused on anthropogenic climate forcing agents with relatively short atmospheric lifetimes such as methane (CH4) and black carbon (BC) have been suggested as a strategy to reduce the rate of climate change over the next several decades. We find that reductions of methane and BC would likely have only a modest impact on near-term climate warming. Even with maximally feasible reductions phased in from 2015 to 2035, global mean temperatures in 2050 are reduced by 0.16 °C, with an uncertainty range of 0.04-0.36°C, with the high end of this range only possible if total historical aerosol forcing is small. More realistic mitigation scenarios would likely provide a smaller climate benefit. The climate benefits from targeted reductions in short-lived forcing agents are smaller than previously estimated and are not substantially different in magnitude from the benefits due to a comprehensive climate policy.

Smith, Steven J.; Mizrahi, Andrew H.

2013-08-12T23:59:59.000Z

280

Environmental impact report (draft)  

SciTech Connect (OSTI)

The three projects as proposed by Pacific Gas and Electric Company and the environmental analysis of the projects are discussed. Sections on the natural and social environments of the proposed projects and their surrounding areas consist of descriptions of the setting, discussions of the adverse and beneficial consequences of the project, and potential mitigation measures to reduce the effects of adverse impacts. The Environmental Impact Report includes discussions of unavoidable adverse effects, irreversible changes, long-term and cumulative impacts, growth-inducing effects, and feasible alternatives to the project. (MHR)

Not Available

1980-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

IDAHO HABITAT EVALUATION FOR OFFSITE MITIGATION RECORD  

E-Print Network [OSTI]

-1 #12;This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy Mitigation Record, Annual Report FY 1984, Report to Bonneville Power Administration, Contract No. 1984BP13381 Administration Environment, Fish and Wildlife Division P.O. Box 3621 905 N.E. 11th Avenue Portland, OR 97208

282

ORIGINAL ARTICLE Mitigation needs adaptation: Tropical forestry  

E-Print Network [OSTI]

ORIGINAL ARTICLE Mitigation needs adaptation: Tropical forestry and climate change Manuel R adapt to this change. This paper discusses how tropical forestry practices can contribute to maintaining Forestry Research, P.O. Box 6596 JKPWB, Jakarta 10065, Indonesia e-mail: m.guariguata@cgiar.org J. P

Paris-Sud XI, Université de

283

Climate Change Basics: Science, Adaptation, & Mitigation  

E-Print Network [OSTI]

Science Global atmospheric concentrations of carbon dioxide, methane and nitrous oxide have increased from ice cores spanning many thousands of years. The global increases in carbon dioxide concentrationClimate Change Basics: Science, Adaptation, & Mitigation with a Family Forest Perspective Baylor

Fox-Kemper, Baylor

284

Mitigating Performance Degradation of High-Energy Lithium-Ion...  

Broader source: Energy.gov (indexed) [DOE]

Mitigating Performance Degradation of High-Energy Lithium-Ion Cells Mitigating Performance Degradation of High-Energy Lithium-Ion Cells 2013 DOE Hydrogen and Fuel Cells Program and...

285

Natural Gas Infrastructure R&D and Methane Emissions Mitigation...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop November 12, 2014 11:00AM EST to...

286

BMW v. Gore: Mitigating the Punitive Economics of Punitive Damages  

E-Print Network [OSTI]

BMW v GORE: MITIGATING THE PUNITIVE ECONOMICS OF PUNITIVEE. Calfee, Mark F. Grady In BMW v Gore, the Supreme Courtadded). 480 US 102 (1987). BMW v. Gore: Mitigating the

Grady, Mark F.; Rubin, Paul H.; Calfee, John E

1997-01-01T23:59:59.000Z

287

2007 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

SciTech Connect (OSTI)

The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2007 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 3 bat habitat mitigation projects.

K. A. Gano; C. T. Lindsey

2007-09-27T23:59:59.000Z

288

2008 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

SciTech Connect (OSTI)

The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2008 and includes 22 revegetation/restoration projects, one revegetation/mitigation project, and two bat habitat mitigation projects.

C. T. Lindsey; K. A. Gano

2008-09-30T23:59:59.000Z

289

Energy Impact Illinois Rebates  

Broader source: Energy.gov [DOE]

The Energy Impact Illinois program offers rebates for implementing energy efficient measures. Homeowners and businesses can use the "Find Energy Savings Actions" tool to see all the programs they...

290

Mitigation options for accidental releases of hazardous gases  

SciTech Connect (OSTI)

The objective of this paper is to review and compare technologies available for mitigation of unconfined releases of toxic and flammable gases. These technologies include: secondary confinement, deinventory, vapor barriers, foam spraying, and water sprays/monitors. Guidelines for the design and/or operation of effective post-release mitigation systems and case studies involving actual industrial mitigation systems are also presented.

Fthenakis, V.M.

1995-05-01T23:59:59.000Z

291

The role of China in mitigating climate change* Sergey Paltsev, Jennifer Morris, Yongxia Cai, Valerie Karplus and Henry Jacoby  

E-Print Network [OSTI]

The role of China in mitigating climate change* Sergey Paltsev, Jennifer Morris, Yongxia Cai interactions among natural and human climate system components; objectively assess uncertainty in economic, monitor and verify greenhouse gas emissions and climatic impacts. This reprint is one of a series intended

292

Energy Impact Illinois - Final Technical Report  

SciTech Connect (OSTI)

Energy Impact Illinois (EI2) is an alliance of government organizations, nonprofits, and regional utility companies led by the Chicago Metropolitan Agency for Planning (CMAP) that is dedicated to helping communities in the Chicago metropolitan area become more energy efficient. Originally organized as the Chicago Region Retrofit Ramp-Up (CR3), EI2 became part of the nationwide Better Buildings Neighborhood Program (BBNP) in May 2010 after receiving a $25 million award from the U.S. Department of Energy (DOE) authorized through the American Recovery and Reinvestment Act of 2009 (ARRA). The program’s primary goal was to fund initiatives that mitigate barriers to energy efficiency retrofitting activities across residential, multifamily, and commercial building sectors in the seven-county CMAP region and to help to build a sustainable energy efficiency marketplace. The EI2 Final Technical Report provides a detailed review of the strategies, implementation methods, challenges, lessons learned, and final results of the EI2 program during the initial grant period from 2010-2013. During the program period, EI2 successfully increased direct retrofit activity in the region and was able to make a broader impact on the energy efficiency market in the Chicago region. As the period of performance for the initial grant comes to an end, EI2’s legacy raises the bar for the region in terms of helping homeowners and building owners to take action on the continually complex issue of energy efficiency.

Olson, Daniel [Senior Energy Efficiency Planner] [Senior Energy Efficiency Planner; Plagman, Emily [Senior Energy Planner] [Senior Energy Planner; Silberhorn, Joey-Lin [Energy Efficiency Program Assistant] [Energy Efficiency Program Assistant

2014-02-18T23:59:59.000Z

293

Buildings GHG Mitigation Estimator Worksheet, Version 1  

Broader source: Energy.gov [DOE]

Xcel document describes Version 1 of the the Buildings GHG Mitigation Estimator tool. This tool assists federal agencies in estimating the greenhouse gas mitigation reduction from implementing energy efficiency measures across a portfolio of buildings. It is designed to be applied to groups of office buildings, for example, at a program level (regional or site) that can be summarized at the agency level. While the default savings and cost estimates apply to office buildings, users can define their own efficiency measures, costs, and savings estimates for inclusion in the portfolio assessment. More information on user-defined measures can be found in Step 2 of the buildings emission reduction guidance. The output of this tool is a prioritized set of activities that can help the agency to achieve its greenhouse gas reduction targets most cost-effectively.

294

EPR Severe Accident Threats and Mitigation  

SciTech Connect (OSTI)

Despite the extremely low EPR core melt frequency, an improved defence-in-depth approach is applied in order to comply with the EPR safety target: no stringent countermeasures should be necessary outside the immediate plant vicinity like evacuation, relocation or food control other than the first harvest in case of a severe accident. Design provisions eliminate energetic events and maintain the containment integrity and leak-tightness during the entire course of the accident. Based on scenarios that cover a broad range of physical phenomena and which provide a sound envelope of boundary conditions associated with each containment challenge, a selection of representative loads has been done, for which mitigation measures have to cope with. This paper presents the main critical threats and the approach used to mitigate those threats. (authors)

Azarian, G. [Framatome ANP SAS, Tour Areva, Place de la Coupole 92084 Paris la Defense (France); Kursawe, H.M.; Nie, M.; Fischer, M.; Eyink, J. [Framatome ANP GmbH, Freyeslebenstrasse, 1, D-91058 Erlangen (Germany); Stoudt, R.H. [Framatome ANP Inc. - 3315 Old Forest Rd, Lynchburgh, VA 24501 (United States)

2004-07-01T23:59:59.000Z

295

Explosive parcel containment and blast mitigation container  

DOE Patents [OSTI]

The present invention relates to a containment structure for containing and mitigating explosions. The containment structure is installed in the wall of the building and has interior and exterior doors for placing suspicious packages into the containment structure and retrieving them from the exterior of the building. The containment structure has a blast deflection chute and a blowout panel to direct over pressure from explosions away from the building, surrounding structures and people.

Sparks, Michael H. (Frederick County, MD)

2001-06-12T23:59:59.000Z

296

A response surface model of the air quality impacts of aviation  

E-Print Network [OSTI]

Aviation demand is expected to double in the coming decades, and there are growing concerns about its impacts on the environment. Governments seek to mitigate the impacts of aviation on climate, air quality, and noise by ...

Ma?ek, Tudor

2008-01-01T23:59:59.000Z

297

EA-1588: Finding of No Significant Impact | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

of No Significant Impact EA-1588: Finding of No Significant Impact Sacramento Municipal Utility District 230-kV Folsom Dam Transmission Line Relocation SMUD's proposed action...

298

Planning ahead for asteroid and comet hazard mitigation, phase 1: parameter space exploration and scenario modeling  

SciTech Connect (OSTI)

The mitigation of impact hazards resulting from Earth-approaching asteroids and comets has received much attention in the popular press. However, many questions remain about the near-term and long-term, feasibility and appropriate application of all proposed methods. Recent and ongoing ground- and space-based observations of small solar-system body composition and dynamics have revolutionized our understanding of these bodies (e.g., Ryan (2000), Fujiwara et al. (2006), and Jedicke et al. (2006)). Ongoing increases in computing power and algorithm sophistication make it possible to calculate the response of these inhomogeneous objects to proposed mitigation techniques. Here we present the first phase of a comprehensive hazard mitigation planning effort undertaken by Southwest Research Institute and Los Alamos National Laboratory. We begin by reviewing the parameter space of the object's physical and chemical composition and trajectory. We then use the radiation hydrocode RAGE (Gittings et al. 2008), Monte Carlo N-Particle (MCNP) radiation transport (see Clement et al., this conference), and N-body dynamics codes to explore the effects these variations in object properties have on the coupling of energy into the object from a variety of mitigation techniques, including deflection and disruption by nuclear and conventional munitions, and a kinetic impactor.

Plesko, Catherine S [Los Alamos National Laboratory; Clement, R Ryan [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Bradley, Paul A [Los Alamos National Laboratory; Huebner, Walter F [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

299

The contribution of future agricultural trends in the US Midwest to global climate change mitigation  

SciTech Connect (OSTI)

Land use change is a complex response to changing environmental and socioeconomic systems. Historical drivers of land use change include changes in the natural resource availability of a region, changes in economic conditions for production of certain products and changing policies. Most recently, introduction of policy incentives for biofuel production have influenced land use change in the US Midwest, leading to concerns that bioenergy production systems may compete with food production and land conservation. Here we explore how land use may be impacted by future climate mitigation measures by nesting a high resolution agricultural model (EPIC – Environmental Policy Indicator Climate) for the US Midwest within a global integrated assessment model (GCAM – Global Change Assessment Model). This approach is designed to provide greater spatial resolution and detailed agricultural practice information by focusing on the climate mitigation potential of agriculture and land use in a specific region, while retaining the global economic context necessary to understand the far ranging effects of climate mitigation targets. We find that until the simulated carbon prices are very high, the US Midwest has a comparative advantage in producing traditional food and feed crops over bioenergy crops. Overall, the model responds to multiple pressures by adopting a mix of future responses. We also find that the GCAM model is capable of simulations at multiple spatial scales and agricultural technology resolution, which provides the capability to examine regional response to global policy and economic conditions in the context of climate mitigation.

Thomson, Allison M.; Kyle, G. Page; Zhang, Xuesong; Bandaru, Varaprasad; West, Tristram O.; Wise, Marshall A.; Izaurralde, Roberto C.; Calvin, Katherine V.

2014-01-19T23:59:59.000Z

300

Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in China  

SciTech Connect (OSTI)

This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption cost-effectively. We focus on individual end use equipment types (hereafter referred to as appliance groups) that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. As the study title suggests, the high efficiency or Business Case scenario is constructed around a model of cost-effective efficiency improvement. Our analysis demonstrates that a significant reduction in energy consumption and emissions is achievable at net negative cost, that is, as a profitable investment for consumers. Net savings are calculated assuming no additional costs to energy consumption such as carbon taxes. Savings relative to the base case as calculated in this way is often referred to as 'economic savings potential'. Chinese energy demand has grown dramatically over the last few decades. While heavy industry still plays a dominant role in greenhouse gas emissions, demand from residential and commercial buildings has also seen rapid growth in percentage terms. In the residential sector this growth is driven by internal migration from the countryside to cities. Meanwhile, income in both urban and rural subsectors allows ownership of major appliances. While residences are still relatively small by U.S. or European standards, nearly all households own a refrigerator, a television and an air conditioner. In the future, ownership rates are not expected to grow as much as in other developing countries, because they are already close to saturation. However, the gradual turnover of equipment in the world's largest consumer market provides a huge opportunity for greenhouse gas mitigation. In addition to residences, commercial floor space has expanded rapidly in recent years, and construction continues at a rapid pace. Growth in this sector means that commercial lighting and HVAC will play an increasingly important role in energy demand in China. The outlook for efficiency improvement in China is encouraging, since the Chinese national and local governments have implemented significant policies to contain energy intensity and announced their intention to continue and accelerate these. In particular, the Chinese appliance standards program, first established in 1989, was significantly strengthened and modernized after the passage of the Energy Conservation Law of 1997. Since then, the program has expanded to encompass over 30 equipment types (including motor vehicles). The current study suggests that, in spite of these efforts, there is significant savings to be captured through wide adoption of technologies already available on the Chinese market. The approach of the study is to assess the impact of short-term actions on long-term impacts. 'Short-term' market transformation is assumed to occur by 2015, while 'long-term' energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. Early in 2011, the Chinese government announced a plan to reduce carbon dioxide emissions intensity (per unit GDP) by 16% by 2015 as part of the 12th five year plan. These targets are consistent with longer term goals to reduce emissions intensity 40-45% relative to 2005 levels by 2020. The efforts of the 12th FYP focus on short-term gains to meet the four-year targets, and concentrate mainly in industry. Implementation of cost-effective technologies for all new equipment in the buildings sector thus is largely complementary to the 12th FYP goals, and would provide a mechanism to sustain intensity reductions in the medium and long term. The 15-year time frame is significant for many products, in the sense that delay of implementation postpones economic benefits and mitigation of emissions of carbon dioxide. Such delays would result in putting in place energy-wasting technologies, postponin

McNeil, Michael A.; Bojda, Nicholas; Ke, Jing; Qin, Yining; de la Rue du Can, Stephane; Fridley, David; Letschert, Virginie E.; McMahon, James E.

2011-08-18T23:59:59.000Z

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Federal Actions to Address Impacts of Uranium  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*. . : '* FEB1f\l p :.; .FY-92 Report

302

Malheur River Wildlife Mitigation Project, Annual Report 2003.  

SciTech Connect (OSTI)

Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affect wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project proposals are subjected to a rigorous review process prior to receiving final approval. An eleven-member panel of scientists referred to as the Independent Scientific Review Panel (ISRP) examines project proposals. The ISRP recommends project approval based on scientific merit. The Bonneville Power Administration (BPA), the Columbia Basin Fish and Wildlife Authority (CBFWA), Council staff, the U.S. Fish and Wildlife Service (USFWS), the National Oceanic and Atmospheric Administration (NOAA), and subbasin groups also review project proposals to ensure each project meets regional and subbasin goals and objectives. The Program also includes a public involvement component that gives the public an opportunity to provide meaningful input on management proposals. After a thorough review, the Burns Paiute Tribe (BPT) acquired the Malheur River Mitigation Project (Project) with BPA funds to compensate, in part, for the loss of fish and wildlife resources in the Columbia and Snake River Basins and to address a portion of the mitigation goals identified in the Council's Program (NPPC 2000).

Ashley, Paul

2004-01-01T23:59:59.000Z

303

Safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-101-SY: Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101, which is located within the Hanford Site, Richland, Washington. The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

Lentsch, J.W., Westinghouse Hanford

1996-05-16T23:59:59.000Z

304

A safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-SY-101: Hanford Site,Richland, Washington  

SciTech Connect (OSTI)

This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101,which is located within the Hanford Site, Richland, Washington.The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

Lentsch, J.W.

1996-07-01T23:59:59.000Z

305

Draft environmental impact statement for construction and operation of the proposed Bangor Hydro-Electric Company`s second 345-kV transmission tie line to New Brunswick  

SciTech Connect (OSTI)

This Draft Environmental Impact Statement (DEIS) was prepared by the US Department of Energy (US DOE). The proposed action is the issuance of Presidential Permit PP-89 by DOE to Bangor Hydro-Electric Company to construct and operate a new international transmission line interconnection to New Brunswick, Canada that would consist of an 83.8 mile (US portion), 345-kilovolt (kV) alternating current transmission line from the US-Canadian border at Baileyville, Maine to an existing substation at Orrington, Maine. The principal environmental impacts of the construction and operation of the transmission line would be incremental in nature and would include the conversion of forested uplands (mostly commercial timberlands) and wetlands to right-of-way (small trees, shrubs, and herbaceous vegetation). The proposed line would also result in localized minor to moderate visual impacts and would contribute a minor incremental increase in the exposure of some individuals to electromagnetic fields. This DEIS documents the purpose and need for the proposed action, describes the proposed action and alternatives considered and provides a comparison of the proposed and alternatives routes, and provides detailed information on analyses of the environmental consequences of the proposed action and alternatives, as well as mitigative measures to minimize impacts.

NONE

1993-10-01T23:59:59.000Z

306

Functional design criteria for SY-101 hydrogen mitigation test project Data Acquisition and Control System (DACS-1)  

SciTech Connect (OSTI)

Early in 1990, the potential for a large quantity of hydrogen and nitrous oxide to exist as an explosive mixture within some Hanford waste tanks was declared an unreviewed safety question. The waste tank safety task team was established at that time to carry out safety evaluations and plan the means for mitigating this potential hazard. Action was promptly taken to identify those tanks with the highest hazard and to implement interim operating requirements to minimize ignition sources.

Truitt, R.W.

1994-09-01T23:59:59.000Z

307

Security Informatics Research Challenges for Mitigating Cyber Friendly Fire  

SciTech Connect (OSTI)

This paper addresses cognitive implications and research needs surrounding the problem of cyber friendly re (FF). We dene cyber FF as intentional o*ensive or defensive cyber/electronic actions intended to protect cyber systems against enemy forces or to attack enemy cyber systems, which unintentionally harms the mission e*ectiveness of friendly or neutral forces. We describe examples of cyber FF and discuss how it ts within a general conceptual framework for cyber security failures. Because it involves human failure, cyber FF may be considered to belong to a sub-class of cyber security failures characterized as unintentional insider threats. Cyber FF is closely related to combat friendly re in that maintaining situation awareness (SA) is paramount to avoiding unintended consequences. Cyber SA concerns knowledge of a system's topology (connectedness and relationships of the nodes in a system), and critical knowledge elements such as the characteristics and vulnerabilities of the components that comprise the system and its nodes, the nature of the activities or work performed, and the available defensive and o*ensive countermeasures that may be applied to thwart network attacks. We describe a test bed designed to support empirical research on factors a*ecting cyber FF. Finally, we discuss mitigation strategies to combat cyber FF, including both training concepts and suggestions for decision aids and visualization approaches.

Carroll, Thomas E.; Greitzer, Frank L.; Roberts, Adam D.

2014-09-30T23:59:59.000Z

308

Climate change action plan  

E-Print Network [OSTI]

Delivery Climate change action plan 2009-2011 #12;2 | Climate change action plan ©istockphoto.com #12;Climate Change Action Plan Climate change action plan | 3 Contents Overview 4 Preface and Introduction 5 Climate change predictions for Scotland 6 The role of forestry 7 Protecting and managing

309

The Climate Change Action Plan: Technical supplement  

SciTech Connect (OSTI)

This Technical Annex documents the assumptions and parameters used in developing the supporting analysis for the Climate Change Action Plan (the Plan) issued by President Clinton on October 19, 1993. The Annex is intended to meet the needs of independent energy and environmental analysts who wish to better understand the Plan, its analytical underpinnings, and the events that need to transpire for the emissions reductions called for in the Plan to be realized. The Plan documented in this Annex reflects the outcome of a wide-ranging effort by Government agencies and interested members of the public to develop and implement actions that can reduce net greenhouse gas emissions in the year 2000 to their aggregate 1990 level. Based on agency and public input, the Climate Change Mitigation Group, chaired by the White House Office on Environmental Policy, developed the Plan`s content. Many of the actions called for in the Plan are now underway, while others are in advanced planning pending congressional action on the fiscal year 1995 budget. The analysis supporting the Plan represents the results of an interagency effort. The US Department of Energy (DOE) was responsible for the integrated analysis of energy-related options, based on the analysis of individual energy-related options by DOE, the US Environmental Protection Agency (EPA), and the US Department of Transportation (DOT). EPA led in providing analysis for actions related to methane, hydrofluorocarbons, and perfluorocarbons. The US Department of Agriculture (USDA) led the analysis of carbon sequestration actions and cooperated with EPA in the analysis of actions to reduce nitrous oxide emissions.

Not Available

1994-03-01T23:59:59.000Z

310

Industrial Energy Efficiency and Climate Change Mitigation  

SciTech Connect (OSTI)

Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

2009-02-02T23:59:59.000Z

311

Information Needs for Energy Mitigation and Siting  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting Thomas F.Needs for Energy Mitigation

312

Property:EnvironmentalMitigation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation, search Property NameEnvironmentalMitigation Jump to:

313

Civil Engineering Explore the environmental impact of dams.  

E-Print Network [OSTI]

Dams Civil Engineering Objective · Explore the environmental impact of dams. · Discuss the need for dams, and how environmental engineers mitigate some impacts. Standards and Objectives · Earth Systems humans' standard of living and environmental impacts. · The basic concept of constructing a dam

Provancher, William

314

Global climate change mitigation and sustainable forest management--The challenge of monitoring and verification  

SciTech Connect (OSTI)

In this paper, sustainable forest management is discussed within the historical and theoretical framework of the sustainable development debate. The various criteria and indicators for sustainable forest management put forth by different institutions are critically explored. Specific types of climate change mitigation policies/projects in the forest sector are identified and examined in the light of the general criteria for sustainable forest management. Areas of compatibility and contradiction between the climate mitigation objectives and the minimum criteria for sustainable forest management are identified and discussed. Emphasis is put on the problems of monitoring and verifying carbon benefits associated with such projects given their impacts on pre-existing policy objectives on sustainable forest management. The implications of such policy interactions on assignment of carbon credits from forest projects under Joint Implementation/Activities Implemented Jointly initiatives are discussed. The paper concludes that a comprehensive monitoring and verification regime must include an impact assessment on the criteria covered under other agreements such as the Biodiversity and/or Desertification Conventions. The actual carbon credit assigned to a specific project should at least take into account the negative impacts on the criteria for sustainable forest management. The value of the impacts and/or the procedure to evaluate them need to be established by interested parties such as the Councils of the respective Conventions.

Makundi, Willy R.

1997-12-31T23:59:59.000Z

315

Marine and Hydrokinetic Renewable Energy Devices, Potential Navigational Hazards and Mitigation Measures  

SciTech Connect (OSTI)

On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies. A technical report addressing our findings is available on this Science and Technology Information site under the Product Title, "Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures". This product is a brochure, primarily for project developers, that summarizes important issues in that more comprehensive report, identifies locations where that report can be downloaded, and identifies points of contact for more information.

Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

2009-12-01T23:59:59.000Z

316

ACTIONS AND PARTIAL ACTIONS OF INDUCTIVE CONSTELLATIONS  

E-Print Network [OSTI]

ACTIONS AND PARTIAL ACTIONS OF INDUCTIVE CONSTELLATIONS VICTORIA GOULD AND CHRISTOPHER HOLLINGS structure of a semigroup can be recovered from a partial order it possesses. Date: August 13, 2009. 2000 and FEDER, and also FCT post-doctoral grant SFRH/BPD/34698/2007. 1 #12;2 VICTORIA GOULD AND CHRISTOPHER

Gould, Victoria

317

Global climate change and the mitigation challenge  

SciTech Connect (OSTI)

Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO{sub 2}), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8{sup o}C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO{sub 2} emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5{sup o}C in 2100, the recent annual 3% CO{sub 2} emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required. 20 refs., 18 figs., 4 tabs.

Frank Princiotta [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States). Air Pollution Prevention and Control Division

2009-10-15T23:59:59.000Z

318

Climate Change Mitigation in the Energy and Forestry Sectors...  

Open Energy Info (EERE)

of Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation in the Energy and Forestry Sectors of Developing Countries...

319

Agricultural Technologies for Climate Change Mitigation and Adaptation...  

Open Energy Info (EERE)

Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Agricultural Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for...

320

Costa Rica-Mitigation of Greenhouse Gas Emissions through Avoided...  

Open Energy Info (EERE)

Avoided Deforestation of Tropical Rainforests on Privately-owned Lands in High Conservation Value Areas Jump to: navigation, search Name Costa Rica-Mitigation of Greenhouse Gas...

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Uruguay-Climate Change Mitigation and Agriculture in Latin America...  

Open Energy Info (EERE)

mitigation options adapted to the farming conditions of each country. In Uruguay, Argentina and Colombia, agriculture is the main contributor to greenhouse gas emissions,...

322

assess mitigation strategies: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Websites Summary: *** May 7, 1995 (Paper for the May 15-19 workshop, "Terrestrial Carbon Sequestration: An Economic to mitigate global change through the sequestration of...

323

Financing Climate Adaptation and Mitigation in Rural Areas of...  

Open Energy Info (EERE)

Rural Areas of Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financing Climate Adaptation and Mitigation in Rural Areas of Developing Countries...

324

Characterizing Uncertainty for Regional Climate Change Mitigation and Adaptation Decisions  

SciTech Connect (OSTI)

This white paper describes the results of new research to develop an uncertainty characterization process to help address the challenges of regional climate change mitigation and adaptation decisions.

Unwin, Stephen D.; Moss, Richard H.; Rice, Jennie S.; Scott, Michael J.

2011-09-30T23:59:59.000Z

325

Kenya-Standard Assessment of Mitigation Potential and Livelihoods...  

Open Energy Info (EERE)

Livelihoods in Smallholder Systems (SAMPLES) Jump to: navigation, search Name Kenya-Standard Assessment of Mitigation Potential and Livelihoods in Smallholder Systems (SAMPLES)...

326

Webinar: Micro-Structural Mitigation Strategies for PEM Fuel Cells  

Broader source: Energy.gov [DOE]

Video recording of the Fuel Cell Technologies Office webinar, Micro-Structural Mitigation Strategies for PEM Fuel Cells, originally presented on November 19, 2013.

327

Pollution Prevention - Environmental Impact Reduction Checklists...  

Broader source: Energy.gov (indexed) [DOE]

provides a valuable opportunity for Federal agency NEPA309 reviewers to incorporate pollution prevention and environmental impact reduction into actions (or projects). This...

328

Sandia National Laboratories: Siting and Barrier Mitigation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for wind-energy deployment; and developing a framework that allows users to analyze potential impacts of proposed wind projects on radar systems. These efforts utilize...

329

Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk  

SciTech Connect (OSTI)

Fossil fuels are abundant, inexpensive to produce, and are easily converted to usable energy by combustion as demonstrated by mankind's dependence on fossil fuels for over 80% of its primary energy supply (13). This reliance on fossil fuels comes with the cost of carbon dioxide (CO{sub 2}) emissions that exceed the rate at which CO{sub 2} can be absorbed by terrestrial and oceanic systems worldwide resulting in increases in atmospheric CO{sub 2} concentration as recorded by direct measurements over more than five decades (14). Carbon dioxide is the main greenhouse gas linked to global warming and associated climate change, the impacts of which are currently being observed around the world, and projections of which include alarming consequences such as water and food shortages, sea level rise, and social disruptions associated with resource scarcity (15). The current situation of a world that derives the bulk of its energy from fossil fuel in a manner that directly causes climate change equates to an energy-climate crisis. Although governments around the world have only recently begun to consider policies to avoid the direst projections of climate change and its impacts, sustainable approaches to addressing the crisis are available. The common thread of feasible strategies to the energy climate crisis is the simultaneous use of multiple approaches based on available technologies (e.g., 16). Efficiency improvements (e.g., in building energy use), increased use of natural gas relative to coal, and increased development of renewables such as solar, wind, and geothermal, along with nuclear energy, are all available options that will reduce net CO{sub 2} emissions. While improvements in efficiency can be made rapidly and will pay for themselves, the slower pace of change and greater monetary costs associated with increased use of renewables and nuclear energy suggests an additional approach is needed to help bridge the time period between the present and a future when low-carbon energy is considered cheap enough to replace fossil fuels. Carbon dioxide capture and storage (CCS) is one such bridging technology (1). CCS has been the focus of an increasing amount of research over the last 15-20 years and is the subject of a comprehensive IPCC report that thoroughly covers the subject (1). CCS is currently being carried out in several countries around the world in conjunction with natural gas extraction (e.g., 2, 3) and enhanced oil recovery (17). Despite this progress, widespread deployment of CCS remains the subject of research and future plans rather than present action on the scale needed to mitigate emissions from the perspective of climate change. The reasons for delay in deploying CCS more widely are concerns about cost (18), regulatory and legal uncertainty (19), and potential environmental impacts (21). This chapter discusses the long-term (decadal) sustainability and environmental hazards associated with the geologic CO{sub 2} storage (GCS) component of large-scale CCS (e.g., 20). Discussion here barely touches on capture and transport of CO{sub 2} which will occur above ground and which are similar to existing engineering, chemical processing, and pipeline transport activities and are therefore easier to evaluate with respect to risk assessment and feasibility. The focus of this chapter is on the more uncertain part of CCS, namely geologic storage. The primary concern for sustainability of GCS is whether there is sufficient capacity in sedimentary basins worldwide to contain the large of amounts of CO{sub 2} needed to address climate change. But there is also a link between sustainability and environmental impacts. Specifically, if GCS is found to cause unacceptable impacts that are considered worse than its climate-change mitigation benefits, the approach will not be widely adopted. Hence, GCS has elements of sustainability insofar as capacity of the subsurface for CO{sub 2} is concerned, and also in terms of whether the associated environmental risks are acceptable or not to the public.

Oldenburg, C.M.

2011-04-01T23:59:59.000Z

330

October 2006 Standards Actions  

Broader source: Energy.gov (indexed) [DOE]

Project No. SAFT-0109 Continued on next page Standards Actions Page 2 October 2006 2.0 NON-GOVERNMENT STANDARDS ACTIONS 2.1 American National Standards Institute American...

331

July 2006 Standards Actions  

Broader source: Energy.gov (indexed) [DOE]

were received in June 2006. Continued on next page Standards Actions Page 2 July 2005 2.0 Non-Government Standards Actions 2.1 American National Standards Institute (ANSI)...

332

Derivative actions in China   

E-Print Network [OSTI]

The enactment of derivative action was expected to be actively used by shareholders to protect their interests. In fact, it turned out that this reform effort seemed futile as the right to engage in such actions was ...

Lin, Shaowei

2014-07-02T23:59:59.000Z

333

Corrosion mitigation considerations in planning for zero liquid discharge  

SciTech Connect (OSTI)

A reduction in the availability and in the quality of water, coupled with more significantly more stringent water discharge restrictions, has resulted in increasing numbers of industrial complexes investigating water reuse and zero liquid discharge. Their investigation generally includes a survey of the potential impact of increased dissolved solids on the formation of mineral salt scales on heat transfer surfaces. These predictive tools are readily available and fairly accurate. The prediction of corrosion potential, however, is not as clearly defined, and as a consequence, little consideration is given to the effects of increased solids on corrosion. In addition to the potential for accelerated corrosion related to increased dissolved solids, many reuse waters contain elevated levels of biological activity and are rich in the nutrients that feed these micro organisms. This paper looks at the reasons for selecting zero liquid discharge as a means of water conservation and discharge reduction, the unit operations available to achieve these goals, and the corrosion mechanisms and mitigation associated with reuse water.

DeWitt-Dick, D.B. [Ashland Chemical Co., Portland, TX (United States). Drew Industrial Division; Lee, B. [Ashland Chemical Co., Boonton, NJ (United States). Drew Industrial Division

1995-12-01T23:59:59.000Z

334

International perspectives on mitigating laboratory biorisks.  

SciTech Connect (OSTI)

The International Perspectives on Mitigating Laboratory Biorisks workshop, held at the Renaissance Polat Istanbul Hotel in Istanbul, Republic of Turkey, from October 25 to 27, 2010, sought to promote discussion between experts and stakeholders from around the world on issues related to the management of biological risk in laboratories. The event was organized by Sandia National Laboratories International Biological Threat Reduction program, on behalf of the US Department of State Biosecurity Engagement Program and the US Department of Defense Cooperative Biological Engagement Program. The workshop came about as a response to US Under Secretary of State Ellen O. Tauscher's statements in Geneva on December 9, 2009, during the Annual Meeting of the States Parties to the Biological Weapons Convention (BWC). Pursuant to those remarks, the workshop was intended to provide a forum for interested countries to share information on biorisk management training, standards, and needs. Over the course of the meeting's three days, participants discussed diverse topics such as the role of risk assessment in laboratory biorisk management, strategies for mitigating risk, measurement of performance and upkeep, international standards, training and building workforce competence, and the important role of government and regulation. The meeting concluded with affirmations of the utility of international cooperation in this sphere and recognition of positive prospects for the future. The workshop was organized as a series of short presentations by international experts on the field of biorisk management, followed by breakout sessions in which participants were divided into four groups and urged to discuss a particular topic with the aid of a facilitator and a set of guiding questions. Rapporteurs were present during the plenary session as well as breakout sessions and in particular were tasked with taking notes during discussions and reporting back to the assembled participants a brief summary of points discussed. The presentations and breakout sessions were divided into five topic areas: 'Challenges in Biorisk Management,' 'Risk Assessment and Mitigation Measures,' 'Biorisk Management System Performance,' 'Training,' and 'National Oversight and Regulations.' The topics and questions were chosen by the organizers through consultation with US Government sponsors. The Chattham House Rule on non-attribution was in effect during question and answer periods and breakout session discussions.

Pinard, William J.; Salazar, Carlos A.

2010-11-01T23:59:59.000Z

335

Blast mitigation capabilities of aqueous foam.  

SciTech Connect (OSTI)

A series of tests involving detonation of high explosive blanketed by aqueous foam (conducted from 1982 to 1984) are described in primarily terms of recorded peak pressure, positive phase specific impulse, and time of arrival. The investigation showed that optimal blast mitigation occurs for foams with an expansion ratio of about 60:1. Simple analyses representing the foam as a shocked single phase mixture are presented and shown inadequate. The experimental data demonstrate that foam slows down and broadens the propagated pressure disturbance relative to a shock in air. Shaped charges and flyer plates were evaluated for operation in foam and appreciable degradation was observed for the flyer plates due to drag created by the foam.

Hartman, William Franklin; Larsen, Marvin Elwood; Boughton, Bruce A.

2006-02-01T23:59:59.000Z

336

Mitigation of radiation induced surface contamination  

DOE Patents [OSTI]

A process for mitigating or eliminating contamination and/or degradation of surfaces having common, adventitious atmospheric contaminants adsorbed thereon and exposed to radiation. A gas or a mixture of gases is introduced into the environment of a surface(s) to be protected. The choice of the gaseous species to be introduced (typically a hydrocarbon gas, water vapor, or oxygen or mixtures thereof) is dependent upon the contaminant as well as the ability of the gaseous species to bind to the surface to be protected. When the surface and associated bound species are exposed to radiation reactive species are formed that react with surface contaminants such as carbon or oxide films to form volatile products (e.g., CO, CO.sub.2) which desorb from the surface.

Klebanoff, Leonard E. (Dublin, CA); Stulen, Richard H. (Livermore, CA)

2003-01-01T23:59:59.000Z

337

The optimal combined design of climate mitigation and geoengineering  

E-Print Network [OSTI]

Combined climate mitigation/geoengineering approach has better economic utility, less emission control rate and temperature increase than mitigation alone. If setting the 50% reduction rate and 2^\\circC temperature increase as constrains, we find there is no a feasible solution for emission control, but combined design is still available.

Liang, Wang

2010-01-01T23:59:59.000Z

338

Mediterranean Seagrass Meadows: Resilience and Contribution to Climate Change Mitigation  

E-Print Network [OSTI]

Mediterranean Seagrass Meadows: Resilience and Contribution to Climate Change Mitigation A Short to Climate Change Mitigation, A Short Summary / Les herbiers de Magnoliophytes marines de Méditerranée: 1 Evolution of the average temperature and level of the sea since 1850 (after Climate Change 2007

Boudouresque, Charles F.

339

CO2 Emissions Mitigation and Technological Advance: An  

E-Print Network [OSTI]

PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced/2003) #12;PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Analysis of Advanced Technology of atmospheric CO2 concentrations at 450 parts per million by volume (ppmv) and 550 ppmv in MiniCAM. Each

340

List of Texas Fuel Mitigation Vendors This list of fuel mitigation vendors that offer services in Texas is divided into two groups  

E-Print Network [OSTI]

List of Texas Fuel Mitigation Vendors This list of fuel mitigation vendors that offer services as a service to communities and landowners seeking assistance with fuel mitigation practices on their land Service Area Mu, Be, CP, Sc, Mo, FB Page 1 of 4Last updated on 10/16/2013 #12;List of Fuel Mitigation

Behmer, Spencer T.

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

European-Led Climate Policy versus Global Mitigation Action: Implications on  

E-Print Network [OSTI]

) Euro-Mediterranean Center on Climate Change (CMCC) Isola di San Giorgio Maggiore, 30124 Venezia, Italy, Amit Kanudia, Sergey Paltsev, Ronald D. Sands and Katja Schumacher *Reprinted from Climate Change and predictions of the risks of climate change and the challenges of limiting human influence on the environment

342

EA-1934: 2014 Annual Report for Mitigation Action Plan | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the2-A Dynegy-A7:Department5:Energy 4:

343

EIS-0380: Fiscal Year 2011 Mitigation Action Plan Annual Report for the  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1: Draft Environmentalof6:2: Record2008 Los Alamos

344

EIS-0425: Record of Decision and Mitigation Action Plan | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1: Draft

345

Peru-GEF Nationally Appropriate Mitigation Actions in the Energy Generation  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLCPascoagPerformance Home Ocop'sCountriesand

346

Rwanda-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerType JumpJersey)

347

EIS-0421: Record of Decision and Mitigation Action Plan | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThis EIS evaluatesStatementNoticeDeerDepartmentDepartment

348

Republic of Congo-Nationally Appropriate Mitigation Actions (NAMAs) in the  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access(California andEnergyRenewableRenewafuelRentricityCongo

349

South Africa-Mitigation Action Plans and Scenarios (MAPS) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region -Sonelgaz Jump to:Sopogy

350

EA-1440-S-I: Mitigation Action Plan Completion Report | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant Potomac RiverEA-0847: FinalEA-1172:4-APS81:

351

Peru-GEF Nationally Appropriate Mitigation Actions in the Energy Generation  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange CountyPennsylvania/GeothermalLLCInformationand

352

Angola-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:OperationsAnchorage| Open Energy

353

Boyer-Tillamook Access Road Improvement Project 1 Mitigation Action Plan for Final Environmental Assessment  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy andNews and updatesStudy | Department ofBoyer-Tillamook

354

Ecofys-How to get Nationally Appropriate Mitigation Actions (NAMAs) to work  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLow CarbonOpen1 June,Ecofys Feed NO FEEDFact|

355

Addendum to 2010 NREL Environmental Performance Report Â… Traffic Mitigation Action Plan Update  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts of(RevisionAchieveAdvanced BiofuelsDepartment ofFOA

356

University at Buffalo Climate Action Plan  

E-Print Network [OSTI]

......................................................................................................... 3-26 3.5 Cumulative Reduction in UB's Carbon Footprint.......................................... 3)....................................................................... 1-5 2 UB's Greenhouse Gas Footprint..............................................2-1 2.1 Technical-9 2.4 The Impact of Campus Growth on UB's GHG Footprint.............................. 2-11 3 Actions

Oh, Kwang W.

357

Integrating Agricultural and Forestry GHG Mitigation Response into General Economy Frameworks  

E-Print Network [OSTI]

Integrating Agricultural and Forestry GHG Mitigation Response into General Economy Frameworks. #12;2 Integrating Agricultural and Forestry GHG Mitigation Response into General Economy Frameworks for characterizing potential responses to greenhouse gas mitigation policies by the agriculture and forestry

McCarl, Bruce A.

358

San Diego, California: Solar in Action (Brochure), Solar America...  

Broader source: Energy.gov (indexed) [DOE]

the Impact of Electricity Rate Structures on the Economics of PV Systems * Using a Solar Map for Education and Outreach October 2011 Solar in Action San Diego was designated...

359

Environmental Assessment and Finding of No Significant Impact: The Nevada Test Site Development Corporations's Desert Rock Sky Park at the Nevada Test Site  

SciTech Connect (OSTI)

The United States Department of Energy has prepared an Environmental Assessment (DOE/EA-1300) (EA) which analyzes the potential environmental effects of developing operating and maintaining a commercial/industrial park in Area 22 of the Nevada Test Site, between Mercury Camp and U.S. Highway 95 and east of Desert Rock Airport. The EA evaluates the potential impacts of infrastructure improvements necessary to support fill build out of the 512-acre Desert Rock Sky Park. Two alternative actions were evaluated: (1) Develop, operate and maintain a commercial/industrial park in Area 22 of the Nevada Test Site, and (2) taking no action. The purpose and need for the commercial industrial park are addressed in Section 1.0 of the EA. A detailed description of the proposed action and alternatives is in section 2.0. Section 3.0 describes the affected environment. Section 4.0 the environmental consequences of the proposed action and alternative. Cumulative effects are addressed in Section 5.0. Mitigation measures are addressed in Section 6.0. The Department of Energy determined that the proposed action of developing, operating and maintaining a commercial/industrial park in Area 22 of the Nevada Test Site would best meet the needs of the agency.

N /A

2000-03-01T23:59:59.000Z

360

Wildlife and Wildlife Habitat Mitigation Plan for Libby Hydroelectric Project, Final Report.  

SciTech Connect (OSTI)

This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Libby hydroelectric project. Mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. The report describes mitigation that has already taken place and 8 recommended mitigation projects designed to complete total wildlife mitigation. 8 refs., 2 figs., 12 tabs.

Mundinger, John

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A greenhouse-gas information system monitoring and validating emissions reporting and mitigation  

SciTech Connect (OSTI)

Current GHG-mitigating regimes, whether internationally agreed or self-imposed, rely on the aggregation of self-reported data, with limited checks for consistency and accuracy, for monitoring. As nations commit to more stringent GHG emissions-mitigation actions and as economic rewards or penalties are attached to emission levels, self-reported data will require independent confirmation that they are accurate and reliable, if they are to provide the basis for critical choices and actions that may be required. Supporting emissions-mitigation efforts and agreements, as well as monitoring energy- and fossil-fuel intensive national and global activities would be best achieved by a process of: (1) monitoring of emissions and emission-mitigation actions, based, in part, on, (2) (self-) reporting of pertinent bottom-up inventory data, (3) verification that reported data derive from and are consistent with agreed-upon processes and procedures, and (4) validation that reported emissions and emissions-mitigation action data are correct, based on independent measurements (top-down) derived from a suite of sensors in space, air, land, and, possibly, sea, used to deduce and attribute anthropogenic emissions. These data would be assessed and used to deduce and attribute measured GHG concentrations to anthropogenic emissions, attributed geographically and, to the extent possible, by economic sector. The validation element is needed to provide independent assurance that emissions are in accord with reported values, and should be considered as an important addition to the accepted MRV process, leading to a MRV&V process. This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a system that meets specifications derived from imposed requirements; the need for rigorous calibration, verification, and validation (CV&V) standards, processes, and records for all measurement and modeling/data-inversion data; the need to develop and adopt an uncertainty-quantification (UQ) regimen for all measurement and modeling data; and the requirement that GHGIS products can be subjected to third-party questioning and scientific scrutiny. This report examines and assesses presently available capabilities that could contribute to a future GHGIS. These capabilities include sensors and measurement technologies; data analysis and data uncertainty quantification (UQ) practices and methods; and model-based data-inversion practices, methods, and their associated UQ. The report further examines the need for traceable calibration, verification, and validation processes and attached metadata; differences between present science-/research-oriented needs and those that would be required for an operational GHGIS; the development, operation, and maintenance of a GHGIS missions-operations center (GMOC); and the complex systems engineering and integration that would be required to develop, operate, and evolve a future GHGIS. Present monitoring systems would be heavily relied on in any GHGIS implementation at the outset and would likely continue to provide valuable future contributions to GHGIS. However, present monitoring systems were developed to serve science/research purposes. This study concludes that no component or capability presently available is at the level of technological maturity and readiness required for implementation in an operational GHGIS today. However, purpose-designed and -built components could be developed and implemented in support of a future GHGIS. The study concludes that it is possible to develop and provide a capability-driven prototype GHGIS, as part of a Phase-1 effort, within three years from project-funding start, that would make use of and integrate existing sensing and system capabilities. As part of a Phase-2 effort, a requirem

Jonietz, Karl K [Los Alamos National Laboratory; Dimotakis, Paul E [JPL/CAL TECH; Roman, Douglas A [LLNL; Walker, Bruce C [SNL

2011-09-26T23:59:59.000Z

362

EIS-0195: Remedial Actions at Operable Unit 4, Fernald Environmental Management Project, Fernald, Ohio  

Broader source: Energy.gov [DOE]

This EIS evaluates the potential environmental impacts of a proposal to conduct remedial action at Operable Unit 4 at the Fernald Environmental Management Project.

363

Sources and Mitigation of CO and UHC Emissions in Low-temperature...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Mitigation of CO and UHC Emissions in Low-temperature Diesel Combustion Regimes: Insights Obtained via Homogeneous Reactor Modeling Sources and Mitigation of CO and UHC...

364

Special Issue On Estimation Of Baselines And Leakage In Carbon Mitigation Forestry Projects  

E-Print Network [OSTI]

In Carbon Mitigation Forestry Projects Jayant A. Sathaye*,climate change. Interest in forestry mitigation activitiesled to the inclusion of forestry practices at the project

Sathaye, Jayant A.; Andrasko, Kenneth

2008-01-01T23:59:59.000Z

365

E-Print Network 3.0 - assess carbon mitigation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

, The potential for U.S. forest soils to sequester carbon and mitigate the greenhouse effect. CRC Press, New York... fields: assessment, measurement and mitigation. Plant...

366

Climate mitigation’s impact on global and regional electric power sector water use in the 21st Century  

SciTech Connect (OSTI)

Over the course of this coming century, global electricity use is expected to grow at least five fold and if stringent greenhouse gas emissions controls are in place the growth could be more than seven fold from current levels. Given that the electric power sector represents the second largest anthropogenic use of water and given growing concerns about the nature and extent of future water scarcity driven by population growth and a changing climate, significant concern has been expressed about the electricity sector’s use of water going forward. In this paper, the authors demonstrate that an often overlooked but absolutely critical issue that needs to be taken into account in discussions about the sustainability of the electric sector’s water use going forward is the tremendous turn over in electricity capital stock that will occur over the course of this century; i.e., in the scenarios examined here more than 80% of global electricity production in the year 2050 is from facilities that have not yet been built. The authors show that because of the large scale changes in the global electricity system, the water withdrawal intensity of electricity production is likely to drop precipitously with the result being relatively constant water withdrawals over the course of the century even in the face of the large growth in electricity usage. The ability to cost effectively reduce the water intensity of power plants with carbon dioxide capture and storage systems in particular is key to constraining overall global water use.

Dooley, James J.; Kyle, G. Page; Davies, Evan

2013-08-05T23:59:59.000Z

367

Restarting TMI unit one: social and psychological impacts  

SciTech Connect (OSTI)

A technical background is provided for preparing an environmental assessment of the social and psychological impacts of restarting the undamaged reactor at Three Mile Island (TMI). Its purpose is to define the factors that may cause impacts, to define what those impacts might be, and to make a preliminary assessment of how impacts could be mitigated. It does not attempt to predict or project the magnitude of impacts. Four major research activities were undertaken: a literature review, focus-group discussions, community profiling, and community surveys. As much as possible, impacts of the accident at Unit 2 were differentiated from the possible impacts of restarting Unit 1. It is concluded that restart will generate social conflict in the TMI vicinity which could lead to adverse effects. Furthermore, between 30 and 50 percent of the population possess characteristics which are associated with vulnerability to experiencing negative impacts. Adverse effects, however, can be reduced with a community-based mitigation strategy.

Sorensen, J.; Soderstrom, J.; Bolin, R.; Copenhaver, E.; Carnes, S.

1983-12-01T23:59:59.000Z

368

WHC natural phenomena hazards mitigation implementation plan  

SciTech Connect (OSTI)

Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.

Conrads, T.J.

1996-09-11T23:59:59.000Z

369

May 2008 Standards Actions  

Broader source: Energy.gov (indexed) [DOE]

Standards Actions 2 American National Standards Institute (ANSI) 2 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society...

370

May 2006 Standards Actions  

Broader source: Energy.gov (indexed) [DOE]

Standards Actions 1 American National Standards Institute (ANSI) 1 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society...

371

November 2006 Standards Actions  

Broader source: Energy.gov (indexed) [DOE]

Actions 2 American National Standards Institute (ANSI) 2 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National...

372

October 2007 Standards Actions  

Broader source: Energy.gov (indexed) [DOE]

Actions 1 American National Standards Institute (ANSI) 1 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National...

373

Protective Actions and Reentry  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This volume defines appropriate protective actions and reentry of a site following an emergency. Canceled by DOE G 151.1-4.

1997-08-21T23:59:59.000Z

374

Climate Action Plan (Kentucky)  

Broader source: Energy.gov [DOE]

The Commonwealth of Kentucky established the Kentucky Climate Action Plan Council (KCAPC) process to identify opportunities for Kentucky to respond to the challenge of global climate change while...

375

HANFORD TANK FARM RESOURCE CONVERVATION & RECOVERY ACT (RCRA) CORRECTIVE ACTION PROGRAM  

SciTech Connect (OSTI)

As a consequence of producing special nuclear material for the nation's defense, large amounts of extremely hazardous radioactive waste was created at the US Department of Energy's (DOE) Hanford Site in south central Washington State. A little over 50 million gallons of this waste is now stored in 177 large, underground tanks on Hanford's Central Plateau in tank farms regulated under the Atomic Energy Act and the Resource, Conservation, and Recovery Act (RCRA). Over 60 tanks and associated infrastructure have released or are presumed to have released waste in the vadose zone. In 1998, DOE's Office of River Protection established the Hanford Tank Farm RCRA Corrective Action Program (RCAP) to: (1) characterize the distribution and extent of the existing vadose zone contamination; (2) determine how the contamination will move in the future; (3) estimate the impacts of this contamination on groundwater and other media; (4) develop and implement mitigative measures; and (5) develop corrective measures to be implemented as part of the final closure of the tank farm facilities. Since its creation, RCAP has made major advances in each of these areas, which will be discussed in this paper.

KRISTOFZSKI, J.G.

2007-01-15T23:59:59.000Z

376

Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents  

SciTech Connect (OSTI)

The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables.

Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

1984-04-01T23:59:59.000Z

377

Gearbox Typical Failure Modes, Detection, and Mitigation Methods (Presentation)  

SciTech Connect (OSTI)

This presentation was given at the AWEA Operations & Maintenance and Safety Seminar and focused on what the typical gearbox failure modes are, how to detect them using detection techniques, and strategies that help mitigate these failures.

Sheng, S.

2014-01-01T23:59:59.000Z

378

Introduction to Administrative Programs that Mitigate the Insider Threat  

SciTech Connect (OSTI)

This presentation begins with the reality of the insider threat, then elaborates on these tools to mitigate the insider threat: Human Reliability Program (HRP); Nuclear Security Culture (NSC) Program; Employee Assistance Program (EAP).

Gerke, Gretchen K.; Rogers, Erin; Landers, John; DeCastro, Kara

2012-09-01T23:59:59.000Z

379

Development of Micro-structural Mitigation Strategies for PEM...  

Broader source: Energy.gov (indexed) [DOE]

R D P O W E R S Y S T E M S Development of Micro-structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulation and Experimental Approaches DOE Fuel Cell Projects...

380

Design of innovative dynamic systems for seismic response mitigation  

E-Print Network [OSTI]

Rocking wall systems consist of shear walls, laterally connected to a building, that are moment-released in their strong plane. Their purpose is to mitigate seismic structural response by constraining a building primarily ...

Seymour, Douglas (Douglas Benjamin)

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Northwest Montana Wildlife Mitigation Habitat Protection : Advance Design : Final Report.  

SciTech Connect (OSTI)

This report summarizes the habitat protection process developed to mitigate for certain wildlife and wildlife habitat losses due to construction of Hungry Horse and Libby dams in northwestern Montana.

Wood, Marilyn A.

1993-02-01T23:59:59.000Z

382

Energy Action Month  

Broader source: Energy.gov [DOE]

The Federal Energy Management Program (FEMP) supports Energy Action Month by offering materials that promote energy- and water-saving practices in Federal facilities. This year's outreach materials call on Federal employees to take action and empower leadership, innovation, and excellence to realize a secure energy future.

383

2010 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

SciTech Connect (OSTI)

This report documents eh status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with CERLA cleanup of National Priorities List waste sites at Hanford. This report contains vegetation monitoring data that were collected in the spring and summer of 2010 from the River Corridor Closure Contract’s revegetation and mitigation areas on the Hanford Site.

C. T. Lindsey, A. L. Johnson

2010-09-30T23:59:59.000Z

384

2011 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

SciTech Connect (OSTI)

This report documents the status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup of National Priorities List waste sites at Hanford. This report contains the vegetation monitoring data that was collected in the spring and summer of 2011 from the River Corridor Closure Contractor’s revegetation and mitigation areas on the Hanford Site.

West, W. J.; Lucas, J. G.; Gano, K. A.

2011-11-14T23:59:59.000Z

385

Numerical Prediction of High-Impact Local Weather: A  

E-Print Network [OSTI]

Chapter 6 Numerical Prediction of High-Impact Local Weather: A Driver for Petascale Computing Ming winds, lightning, hurricanes and winter storms, cause hundreds of deaths and average annual economic of mitigating the impacts of such events on the economy and society is obvious, our ability to do so

Xue, Ming

386

Release mitigation spray safety systems for chemical demilitarization applications.  

SciTech Connect (OSTI)

Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.

Leonard, Jonathan; Tezak, Matthew Stephen; Brockmann, John E.; Servantes, Brandon; Sanchez, Andres L.; Tucker, Mark David; Allen, Ashley N.; Wilson, Mollye C.; Lucero, Daniel A.; Betty, Rita G.

2010-06-01T23:59:59.000Z

387

Mitigating greenhouse gas emissions: Voluntary reporting  

SciTech Connect (OSTI)

The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

NONE

1997-10-01T23:59:59.000Z

388

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

Not Available

1994-06-01T23:59:59.000Z

389

Natural hazards phenomena mitigation with respect to seismic hazards at the Environmental Restoration Disposal Facility  

SciTech Connect (OSTI)

This report provides information on the seismic hazard for design of the proposed Environmental Restoration Disposal Facility (ERDF), a facility designed for the disposal of wastes generated during the cleanup of Hanford Site aggregate areas. The preferred ERDF site is located south and east of 200 East and 200 West Areas. The Washington State Groundwater Protection Program (WAC 173-303-806 (4)(a)(xxi)) requires that the characteristics of local and regional hydrogeology be defined. A plan for that work has been developed (Weekes and Borghese 1993). In addition, WAC 173-303-282 provides regulatory guidance on siting a dangerous waste facility, and US Department of Energy (DOE) Order 5480.28 requires consideration of natural phenomena hazards mitigation for DOE sites and facilities. This report provides information to evaluate the ERDF site with respect to seismic hazard. The ERDF will be a Corrective Action Management Unit (CAMU) as defined by 40 CFR 260.10.

Reidel, S.P.

1994-01-06T23:59:59.000Z

390

Probability, consequences, and mitigation for lightning strikes of Hanford high level waste tanks  

SciTech Connect (OSTI)

The purpose of this report is to summarize selected lightning issues concerning the Hanford Waste Tanks. These issues include the probability of a lightning discharge striking the area immediately adjacent to a tank including a riser, the consequences of significant energy deposition from a lightning strike in a tank, and mitigating actions that have been or are being taken. The major conclusion of this report is that the probability of a lightning strike deposition sufficient energy in a tank to cause an effect on employees or the public is unlikely;but there are insufficient, quantitative data on the tanks and waste to prove that. Protection, such as grounding of risers and air terminals on existing light poles, is recommended.

Zach, J.J.

1996-06-05T23:59:59.000Z

391

Probability, consequences, and mitigation for lightning strikes to Hanford site high-level waste tanks  

SciTech Connect (OSTI)

The purpose of this report is to summarize selected lightning issues concerning the Hanford Waste Tanks. These issues include the probability of lightning discharge striking the area immediately adjacent to a tank including a riser, the consequences of significant energy deposition from a lightning strike in a tank, and mitigating actions that have been or are being taken. The major conclusion of this report is that the probability of a lightning strike depositing sufficient energy in a tank to cause an effect on employees or the public is unlikely;but there are insufficient, quantitative data on the tanks and waste to prove that. Protection, such as grounding of risers and air terminals on existing light poles, is recommended.

Zach, J.J.

1996-08-01T23:59:59.000Z

392

RCRA corrective action program guide (Interim)  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is responsible for compliance with an increasingly complex spectrum of environmental regulations. One of the most complex programs is the corrective action program proposed by the US Environmental Protection Agency (EPA) under the authority of the Resource Conservation and Recovery Act (RCRA) as amended by the Hazardous and Solid Waste Amendments (HSWA). The proposed regulations were published on July 27, 1990. The proposed Subpart S rule creates a comprehensive program for investigating and remediating releases of hazardous wastes and hazardous waste constituents from solid waste management units (SWMUs) at facilities permitted to treat, store, or dispose of hazardous wastes. This proposed rule directly impacts many DOE facilities which conduct such activities. This guidance document explains the entire RCRA Corrective Action process as outlined by the proposed Subpart S rule, and provides guidance intended to assist those persons responsible for implementing RCRA Corrective Action at DOE facilities.

Not Available

1993-05-01T23:59:59.000Z

393

August 2007 Standards Actions  

Broader source: Energy.gov (indexed) [DOE]

August 2007 1.5 DOE Technical Standards Published No entries were received in August 2007 2.0 Non-Government Standards Actions 2.1 American National Standards Institute (ANSI)...

394

July 2007 Standards Actions  

Broader source: Energy.gov (indexed) [DOE]

in June 2007 1.5 DOE Technical Standards Published No entries were received in June 2007 2.0 Non-Government Standards Actions 2.1 American National Standards Institute (ANSI)...

395

April 2007 Standards Actions  

Broader source: Energy.gov (indexed) [DOE]

and Injury Surveillance Program Guidelines, 03222007; DOE-STD-1190-2007, OCSH-0005 2.0 Non-Government Standards Actions 2.1 American National Standards Institute (ANSI)...

396

Climate Action Plan (Maine)  

Broader source: Energy.gov [DOE]

In June 2003, the Maine State Legislature passed a bill charging the Department of Environmental Protection (DEP) with developing an action plan with the goal of reducing greenhouse gas (GHG)...

397

Corrective Action Program Guide  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide was developed to assist the Department of Energy (DOE) organizations and contractors in the development, implementation, and followup of corrective action programs utilizing the feedback and improvement core safety function within DOE's Integrated Safety Management System. This Guide outlines some of the basic principles, concepts, and lessons learned that DOE managers and contractors might consider when implementing corrective action programs based on their specific needs. Canceled by DOE G 414.1-2B. Does not cancel other directives.

2006-03-02T23:59:59.000Z

398

Student Housing South 7-1 Proposed Final Environmental Impact Report  

E-Print Network [OSTI]

Student Housing South 7-1 Proposed Final Environmental Impact Report CHAPTER 7 MITIGATION correlates with numbering of measures found in the Environmental Impact Analysis chapter of this EIR (refer to Chapter 4). #12;Chapter 7 7-2 Student Housing South Recirculated Draft Environmental Impact Report Table 7

Sze, Lawrence

399

Columbia Basin Wildlife Mitigation Project : Rainwater Wildlife Area Final Management Plan.  

SciTech Connect (OSTI)

This Draft Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary.

Childs, Allen

2002-03-01T23:59:59.000Z

400

Estimating the potential of greenhouse gas mitigation in Kazakhstan  

SciTech Connect (OSTI)

As part of the studies related to the obligations of the UN Framework Convention on Climate Change, the Republic of Kazakhstan started activities to inventory greenhouse gas (GHG) emissions and assess of GHG mitigation options, The objective of this paper is to present an estimate of the possibility of mitigating GHG emissions and determine the mitigation priorities. It presents a compilation of the possible options and their assessment in terms of major criteria and implementation feasibility. Taking into account the structure of GHG emissions in Kazakhstan in 1990, preliminary estimates of the potential for mitigation are presented for eight options for the energy sector and agriculture and forestry sector. The reference scenario prepared by expert assessments assumes a reduction of CO{sub 2} emissions in 1996-1998 by about 26% from the 1990 level due to general economic decline, but then emissions increase. It is estimated that the total potential for the mitigation of CO{sub 2} emissions for the year 2000 is 3% of the CO{sub 2} emissions in the reference scenario. The annual reduction in methane emissions due to the estimated options can amount to 5%-6% of the 1990 level. 10 refs., 1 fig., 4 tabs.

Monacrovich, E.; Pilifosova, O.; Danchuck, D. [Kazakh Scientific-Research Hydrometeorlogical Institute, Almaty (Kazakhstan)] [and others

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Viewing biology in action | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Viewing biology in action Viewing biology in action DOE-funded pilot program will create mesoscale biological imaging platform James Evans EMSL received first-year funding of...

402

Enhanced Practical Photosynthetic CO2 Mitigation  

SciTech Connect (OSTI)

This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/2/2003 through 7/01/2003. As indicated in the list of accomplishments below we have completed some long-term model scale bioreactor tests and are prepared to begin pilot scale bioreactor testing. Specific results and accomplishments for the second quarter of 2003 include: (1) Bioreactor support systems and test facilities: (a) Qualitative long-term survivability tests for S.C.1.2(2) on Omnisil have been successfully completed and results demonstrate a growth rate that appears to be acceptable. (b) Quantitative tests of long-term growth productivity for S.C.1.2(2) on Omnisil have been completed and initial results are promising. Initial results show that the mass of organisms doubled (from 54.9 grams to 109.8 grams) in about 5 weeks. Full results will be available as soon as all membranes and filters are completely dried. The growth rate should increase significantly with the initiation of weekly harvesting during the long term tests. (c) The phase 1 construction of the pilot scale bioreactor has been completed, including the solar collector and light distribution system. We are now in the phase of system improvement as we wait for CRF-2 results in order to be able to finalize the design and construction of the pilot scale system. (d) A mass transfer experimental setup was constructed in order to measure the mass transfer rate from the gas to the liquid film flowing over a membrane and to study the hydrodynamics of the liquid film flowing over a membrane in the bioreactor. Results were reported for mass transfer coefficient, film thickness, and fluid velocity over an Omnisil membrane with a ''drilled hole'' header pipe design. (2) Organisms and Growth Surfaces: (a) A selectivity approach was used to obtain a cyanobacterial culture with elevated resistance to acid pH. Microlonies of ''3.2.2 S.C.1 Positive'' migrated towards light along a light gradient, and against acid gradient, in whole. Nonetheless, some microcolonies were able to generate ''secondary'' microcolonies with increased ability to move towards acid area. These microcolonies with elevated resistance to acidity have been isolated and inoculated in BG-11 with pH 6. They are still under incubation. (b) We have continued our work on the genotyping of unialgal cyanobacterial cultures isolated in YNP. Because partial sequence of 16S rRNA gene of the isolate 5.2 S.C.1 did not appear to be more than 93% identical to published cyanobacterial sequences, we carried out entire sequence of this gene using the combination of different primers. It appears that we have found a representative of putative new genus. We expect to publish all sequences. (c) The new species (even probably new genus) of cyanobacteria, 5.2 s. c. 1 that was isolated from La Duke Spring in Great Yellowstone Basin demonstrate an elevated resistance to some compounds of iron. This might be very important for our project, because plant gases may have elevated amount of iron. Our study of the effect of different concentration of FeCl3 6H2O on the growth of 5.2 S.C.1 isolate showed that iron additions stimulated rather then inhibited the growth of 5.2. S.C.1 isolate. Because of this we would recommend this isolate for further experiments.

Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

2003-07-22T23:59:59.000Z

403

Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 447: Project Shoal Area, Subsurface, Nevada, Rev. No.: 3 with Errata Sheet  

SciTech Connect (OSTI)

This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for Corrective Action Unit (CAU) 447, Project Shoal Area (PSA)-Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 447 is located in the Sand Springs Mountains in Churchill County, Nevada, approximately 48 kilometers (30 miles) southeast of Fallon, Nevada. The CADD/CAP combines the decision document (CADD) with the Corrective Action Plan (CAP) and provides or references the specific information necessary to recommend corrective actions for CAU 447, as provided in the FFACO. Corrective Action Unit 447 consists of two corrective action sites (CASs): CAS 57-49-01, Emplacement Shaft, and CAS 57-57-001, Cavity. The emplacement shaft (CAS-57-49-01) was backfilled and plugged in 1996 and will not be evaluated further. The purpose of the CADD portion of the document (Section 1.0 to Section 4.0) is to identify and provide a rationale for the selection of a recommended corrective action alternative for the subsurface at PSA. To achieve this, the following tasks were required: (1) Develop corrective action objectives. (2) Identify corrective action alternative screening criteria. (3) Develop corrective action alternatives. (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. (5) Recommend a preferred corrective action alternative for the subsurface at PSA. The original Corrective Action Investigation Plan (CAIP) for the PSA was approved in September 1996 and described a plan to drill and test four characterization wells, followed by flow and transport modeling (DOE/NV, 1996). The resultant drilling is described in a data report (DOE/NV, 1998e) and the data analysis and modeling in an interim modeling report (Pohll et al., 1998). After considering the results of the modeling effort, the U.S. Department of Energy (DOE) determined that the degree of uncertainty in transport predictions for PSA remained unacceptably large. As a result, a second CAIP was developed by DOE and approved by the Nevada Division of Environmental Protection (NDEP) in December 1998 (DOE/NV, 1998a). This plan prescribed a rigorous analysis of uncertainty in the Shoal model and quantification of methods of reducing uncertainty through data collection. This analysis is termed a Data Decision Analysis (Pohll et al., 1999a) and formed the basis for a second major characterization effort at PSA (Pohll et al., 1999b). The details for this second field effort are presented in an Addendum to the CAIP, which was approved by NDEP in April 1999 (DOE/NV, 1999a). Four additional characterization wells were drilled at PSA during summer and fall of 1999; details of the drilling and well installation are in IT Corporation (2000), with testing reported in Mihevc et al. (2000). A key component of the second field program was a tracer test between two of the new wells (Carroll et al., 2000; Reimus et al., 2003). Based on the potential exposure pathways, two corrective action objectives were identified for CAU 447: Prevent or mitigate exposure to groundwater contaminants of concern at concentrations exceeding regulatory maximum contaminant levels or risk-based levels; and Reduce the risk to human health and the environment to the extent practicable. Based on the review of existing data, the results of the modeling, future use, and current operations at PSA, the following alternatives have been developed for consideration at CAU 447: Alternative 1--No Further Action; Alternative 2--Proof-of-Concept and Monitoring with Institutional Controls; and Alternative 3--Contaminant Control. The corrective action alternatives were evaluated based on the approach outlined in the ''Focused Evaluation of Selected Remedial Alternatives for the Underground Test Area'' (DOE/NV, 1998b). Each alternative was assessed against nine evaluation criteria. These criteria include overall protection of human health and the environment;

Tim Echelard

2006-03-01T23:59:59.000Z

404

Environmental assessment of remedial action at the Maybell Uranium Mill Tailings Site near Maybell, Colorado. Revision 1  

SciTech Connect (OSTI)

The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS).

Not Available

1994-04-01T23:59:59.000Z

405

Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado: Revision 2  

SciTech Connect (OSTI)

The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment and a floodplain/wetlands assessment are included as part of this EA. This report and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS).

Not Available

1994-11-01T23:59:59.000Z

406

EA-1137: Finding of No Significant Impact | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

impacts in the EA, the proposed action to use an electrochemical etching process on solid depleted uranium components at the DOE's Kansas City Plant would not significantly affect...

407

Underwater Blast Experiments and Modeling for Shock Mitigation  

SciTech Connect (OSTI)

A simple but novel mitigation concept to enforce standoff distance and reduce shock loading on a vertical, partially-submerged structure is evaluated using scaled aquarium experiments and numerical modeling. Scaled, water tamped explosive experiments were performed using three gallon aquariums. The effectiveness of different mitigation configurations, including air-filled media and an air gap, is assessed relative to an unmitigated detonation using the same charge weight and standoff distance. Experiments using an air-filled media mitigation concept were found to effectively dampen the explosive response of the aluminum plate and reduce the final displacement at plate center by approximately half. The finite element model used for the initial experimental design compares very well to the experimental DIC results both spatially and temporally. Details of the experiment and finite element aquarium models are described including the boundary conditions, Eulerian and Lagrangian techniques, detonation models, experimental design and test diagnostics.

Glascoe, L; McMichael, L; Vandersall, K; Margraf, J

2010-03-07T23:59:59.000Z

408

Albeni Falls Wildlife Mitigation Project, 2001 Annual Report.  

SciTech Connect (OSTI)

The Albeni Falls Interagency Work Group was actively engaged in implementing wildlife mitigation activities in 2001. The Work Group met quarterly to discuss management and budget issues affecting the Albeni Falls Wildlife Mitigation Program. Work Group members protected 851 acres of wetland habitat in 2001. Wildlife habitat protected to date for the Albeni Falls project is approximately 5,248.31 acres ({approx}4,037.48 Habitat Units). Approximately 14% of the total wildlife habitat lost has been mitigated. Administrative activities increased as funding was more evenly distributed among Work Group members and protection opportunities became more time consuming. In 2001, Work Group members focused on development and implementation of the monitoring and evaluation program as well as completion of site-specific management plans. With the implementation of the monitoring and evaluation program, and as management plans are reviewed and executed, on the ground management activities are expected to increase in 2002.

Terra-Burns, Mary (Idaho Department of Fish and Game, Albeni Falls Interagency Work Group, Boise, ID)

2002-02-11T23:59:59.000Z

409

Method to prevent/mitigate steam explosions in casting pits  

DOE Patents [OSTI]

Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water.

Taleyarkhan, Rusi P. (Knoxville, TN)

1996-01-01T23:59:59.000Z

410

Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2008.  

SciTech Connect (OSTI)

The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.

Hansen, Barry; Evarts, Les [Confederated Salish and Kootenai Tribes

2009-08-06T23:59:59.000Z

411

Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2007.  

SciTech Connect (OSTI)

The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Work Element A in the Statement of Work is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of all remaining Work Elements.

Hansen, Barry; Evarts, Les [Confederated Salish and Kootenai Tribes

2008-12-22T23:59:59.000Z

412

Hungry Horse Mitigation; Flathead Lake, 2003-2004 Annual Report.  

SciTech Connect (OSTI)

The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Objective 1 in the workplan is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of Objectives 2-8.

Hansen, Barry; Evarts, Les (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

2005-06-01T23:59:59.000Z

413

Corrective Action Plan for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 563, Septic Systems, in accordance with the Federal Facility Agreement and Consent Order. CAU 563 consists of four Corrective Action Sites (CASs) located in Areas 3 and 12 of the Nevada Test Site. CAU 563 consists of the following CASs: #2; CAS 03-04-02, Area 3 Subdock Septic Tank #2; CAS 03-59-05, Area 3 Subdock Cesspool #2; CAS 12-59-01, Drilling/Welding Shop Septic Tanks #2; CAS 12-60-01, Drilling/Welding Shop Outfalls Site characterization activities were performed in 2007, and the results are presented in Appendix A of the CAU 563 Corrective Action Decision Document. The scope of work required to implement the recommended closure alternatives is summarized below. #2; CAS 03-04-02, Area 3 Subdock Septic Tank, contains no contaminants of concern (COCs) above action levels. No further action is required for this site; however, as a best management practice (BMP), all aboveground features (e.g., riser pipes and bumper posts) will be removed, the septic tank will be removed, and all open pipe ends will be sealed with grout. #2; CAS 03-59-05, Area 3 Subdock Cesspool, contains no COCs above action levels. No further action is required for this site; however, as a BMP, all aboveground features (e.g., riser pipes and bumper posts) will be removed, the cesspool will be abandoned by filling it with sand or native soil, and all open pipe ends will be sealed with grout. #2; CAS 12-59-01, Drilling/Welding Shop Septic Tanks, will be clean closed by excavating approximately 4 cubic yards (yd3) of arsenic- and chromium-impacted soil. In addition, as a BMP, the liquid in the South Tank will be removed, the North Tank will be removed or filled with grout and left in place, the South Tank will be filled with grout and left in place, all open pipe ends will be sealed with grout or similar material, approximately 10 yd3 of chlordane-impacted soil will be excavated, and debris within the CAS boundary will be removed. #2; CAS 12-60-01, Drilling/Welding Shop Outfalls, contains no COCs above action levels. No further action is required for this site; however, as a BMP, three drain pipe openings will be sealed with grout.

NSTec Environmental Restoration

2009-03-31T23:59:59.000Z

414

Mitigating the Hospital Area Communication's Interference using Cognitive Radio Networks  

E-Print Network [OSTI]

, their communications could greatly increase electromagnetic interference with other critical medical equip- ments. There is therefore a need to mitigate potential risks of electromagnetic interference between the patients wireless should be devel- oped to ensure efficient communications while minimizing electromagnetic interference

Paris-Sud XI, Université de

415

Design of a Sediment Mitigation System for Conowingo Dam  

E-Print Network [OSTI]

Design of a Sediment Mitigation System for Conowingo Dam Rayhan Ain, Kevin Cazenas, Sheri Gravette as enhanced erosion of sediment due to significantly increased flow rates and constant interaction of water with the Dam. During these events, the sediment build up at Conowingo Dam in the Lower Susquehanna River has

416

0 1 & 2 -& 0 -* ! Forestry potential mitigation and  

E-Print Network [OSTI]

of forestry-based carbon offset investments and markets Voluntary investments Types of standards and shared forest management ·Increasing off-site C stocks in wood products ·Fossil fuel substitution (Bioenergy;Forestry (excluding bioenergy): Economic Mitigation Potential, at US$ 100 / tCO2, by 2030. (IPCC FAR, Vol

Pettenella, Davide

417

U.S. Agriculture's Role Greenhouse Gas Emission Mitigation World  

E-Print Network [OSTI]

U.S. Agriculture's Role in a Greenhouse Gas Emission Mitigation World: An Economic Perspective and Research Associate, respectively, Department of Agricultural Economics, Texas A&M University. Seniority of Authorship is shared. This research was supported by the Texas Agricultural Experiment Station through

McCarl, Bruce A.

418

Mitigated subsurface transfer line leak resulting in a surface pool  

SciTech Connect (OSTI)

This analysis evaluates the mitigated consequences of a potential waste transfer spill from an underground pipeline. The spill forms a surface pool. One waste composite, a 67% liquid, 33% solid, from a single shell tank is evaluated. Even drain back from a very long pipeline (50,000 ft), does not pose dose consequences to the onsite or offsite individual above guideline values.

SCOTT, D.L.

1999-02-08T23:59:59.000Z

419

Unconventional Nuclear Warfare Defense (UNWD) containment and mitigation subtask.  

SciTech Connect (OSTI)

The objective of this subtask of the Unconventional Nuclear Warfare Design project was to demonstrate mitigation technologies for radiological material dispersal and to assist planners with incorporation of the technologies into a concept of operations. The High Consequence Assessment and Technology department at Sandia National Laboratories (SNL) has studied aqueous foam's ability to mitigate the effects of an explosively disseminated radiological dispersal device (RDD). These benefits include particle capture of respirable radiological particles, attenuation of blast overpressure, and reduction of plume buoyancy. To better convey the aqueous foam attributes, SNL conducted a study using the Explosive Release Atmospheric Dispersion model, comparing the effects of a mitigated and unmitigated explosive RDD release. Results from this study compared health effects and land contamination between the two scenarios in terms of distances of effect, population exposure, and remediation costs. Incorporating aqueous foam technology, SNL created a conceptual design for a stationary containment area to be located at a facility entrance with equipment that could minimize the effects from the detonation of a vehicle transported RDD. The containment design was evaluated against several criteria, including mitigation ability (both respirable and large fragment particle capture as well as blast overpressure suppression), speed of implementation, cost, simplicity, and required space. A mock-up of the conceptual idea was constructed at SNL's 9920 explosive test site to demonstrate the containment design.

Wente, William Baker

2005-06-01T23:59:59.000Z

420

RESEARCH PAPER Fouling and its mitigation in silicon microchannels used  

E-Print Network [OSTI]

RESEARCH PAPER Fouling and its mitigation in silicon microchannels used for IC chip cooling Jeffrey@rit.edu 123 Microfluid Nanofluid (2008) 5:357­371 DOI 10.1007/s10404-007-0254-4 #12;lE electrophoretic and micro- electronics. In recent years, the proliferation of Micro Electro Mechanical Systems (MEMS) has

Kandlikar, Satish

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Efficient DHT attack mitigation through peers' ID distribution  

E-Print Network [OSTI]

Efficient DHT attack mitigation through peers' ID distribution Thibault Cholez, Isabelle Chrisment.festor}@loria.fr Abstract--We present a new solution to protect the widely deployed KAD DHT against localized attacks which DHT attacks by comparing real peers' ID distributions to the theoretical one thanks to the Kullback

Paris-Sud XI, Université de

422

The Costs of Greenhouse Gas Mitigation with Induced Technological Change  

E-Print Network [OSTI]

-analysis of the costs of mitigating global GHG emissions over the period to 2100, with and without the effects trading allowances at a regional or global level. It reports a wide range of costs with confusing-analyses done by the World Resources Institute for the US economy, 1997, and the IPCC post-SRES models

Watson, Andrew

423

Climate mitigation and the future of tropical landscapes  

SciTech Connect (OSTI)

Land use change to meet 21st Century demands for food, fuel, and fiber will occur in the context of both a changing climate as well as societal efforts to mitigate climate change. This changing natural and human environment will have large consequences for forest resources, terrestrial carbon storage and emissions, and food and energy crop production over the next century. Any climate change mitigation policies enacted will change the environment under which land-use decisions are made and alter global land use change patterns. Here we use the GCAM integrated assessment model to explore how climate mitigation policies that achieve a climate stabilization at 4.5 W m-2 radiative forcing in 2100 and value carbon in terrestrial ecosystems interact with future agricultural productivity and food and energy demands to influence land use in the tropics. The regional land use results are downscaled from GCAM regions to produce gridded maps of tropical land use change. We find that tropical forests are preserved only in cases where a climate mitigation policy that values terrestrial carbon is in place, and crop productivity growth continues throughout the century. Crop productivity growth is also necessary to avoid large scale deforestation globally and enable the production of bioenergy crops. The terrestrial carbon pricing assumptions in GCAM are effective at avoiding deforestation even when cropland must expand to meet future food demand.

Thomson, Allison M.; Calvin, Katherine V.; Chini, Louise Parsons; Hurtt, George; Edmonds, James A.; Bond-Lamberty, Benjamin; Frolking, Steve; Wise, Marshall A.; Janetos, Anthony C.

2010-11-16T23:59:59.000Z

424

Sensitivity of climate mitigation strategies to natural disturbances  

SciTech Connect (OSTI)

The present and future concentration of atmospheric carbon dioxide depends on both anthropogenic and natural sources and sinks of carbon. Most proposed climate mitigation strategies rely on a progressive transition to carbon12 efficient technologies to reduce industrial emissions, substantially supported by policies to maintain or enhance the terrestrial carbon stock in forests and other ecosystems. This strategy may be challenged if terrestrial sequestration capacity is affected by future climate feedbacks, but how and to what extent is little understood. Here, we show that climate mitigation strategies are highly sensitive to future natural disturbance rates (e.g. fires, hurricanes, droughts), because of potential effect of disturbances on the terrestrial carbon balance. Generally, altered disturbance rates affect the pace of societal and technological transitions required to achieve the mitigation target, with substantial consequences on the energy sector and on the global economy. Understanding the future dynamics and consequences of natural disturbances on terrestrial carbon balance is thus essential for developing robust climate mitigation strategies and policies

Le Page, Yannick LB; Hurtt, George; Thomson, Allison M.; Bond-Lamberty, Benjamin; Patel, Pralit L.; Wise, Marshall A.; Calvin, Katherine V.; Kyle, G. Page; Clarke, Leon E.; Edmonds, James A.; Janetos, Anthony C.

2013-02-19T23:59:59.000Z

425

Mitigating Flood Loss through Local Comprehensive Planning in Florida  

E-Print Network [OSTI]

and environment planning and policy. When sustainability was embraced by international organizations and governmental organizations managing development programs and projects, the term, ?sustainable development? became popular (Beatley, 1998). Currently...; and a more economically integrated and diverse population (Vale & Campanella, 2005). Based on previous literature (Beatley, 1998; Berke, 1995; Mileti, 1999), this study develops principles of sustainability that can be applied to flood mitigation...

Kang, Jung Eun

2010-10-12T23:59:59.000Z

426

1999 Leak Detection and Monitoring and Mitigation Strategy Update  

SciTech Connect (OSTI)

This document is a complete revision of WHC-SD-WM-ES-378, Rev 1. This update includes recent developments in Leak Detection, Leak Monitoring, and Leak Mitigation technologies, as well as, recent developments in single-shell tank retrieval technologies. In addition, a single-shell tank retrieval release protection strategy is presented.

OHL, P.C.

1999-09-23T23:59:59.000Z

427

NetPilot: Automating Datacenter Network Failure Mitigation  

E-Print Network [OSTI]

NetPilot: Automating Datacenter Network Failure Mitigation Xin Wu Daniel Turner Chao-Chih Chen Duke-on and fast-response online ser- vices have driven modern datacenter networks to undergo tremen- dous growth of critical failures commonly encountered in production datacenter networks. Categories and Subject

428

Mitigating the Risk of Insider Threats When Sharing  

E-Print Network [OSTI]

Mitigating the Risk of Insider Threats When Sharing Credentials by Muntaha NourEddin Qasem Alawneh Thesis submitted to the University of London for the degree of Doctor of Philosophy Information Security Security Group as a candidate for the degree of Doctor of Philosophy. This work has not been submitted

Sheldon, Nathan D.

429

ORIGINAL PAPER Adaptation and mitigation strategies in agriculture  

E-Print Network [OSTI]

distri- bution. Major contributing factors will include increasing atmospheric carbon dioxide, rising gases, chiefly carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) (IPCC 2001a). CurrentlyORIGINAL PAPER Adaptation and mitigation strategies in agriculture: an analysis of potential

430

Transportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation  

E-Print Network [OSTI]

.S. CO2 emissions sources. U.S. CO2 transportation emissions sources by mode. #12;Center% of the carbon dioxide we produce. As such it is a leading candidate for greenhouse gas ((GHG) (CO2, NH4, HFCsTransportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation Oak Ridge

431

Market Based Risk Mitigation: Risk Management vs. Risk Avoidance  

E-Print Network [OSTI]

Market Based Risk Mitigation: Risk Management vs. Risk Avoidance Shmuel Oren University of the critical infrastructures in our society. Risk assessment and systematic consideration of risk in the design knowledge for engineers, like physics for instance, consideration of risk has penetrated all engineering

432

iRESM INITIATIVE UNDERSTANDING DECISION SUPPORT NEEDS FOR CLIMATE CHANGE MITIGATION AND ADAPTATION --US Midwest Region—  

SciTech Connect (OSTI)

The impacts of climate change are already affecting human and environmental systems worldwide, yet many uncertainties persist in the prediction of future climate changes and impacts due to limitations in scientific understanding of relevant causal factors. In particular, there is mounting urgency to efforts to improve models of human and environmental systems at the regional scale, and to integrate climate, ecosystem and energy-economic models to support policy, investment, and risk management decisions related to climate change mitigation (i.e., reducing greenhouse gas emissions) and adaptation (i.e., responding to climate change impacts). The Pacific Northwest National Laboratory (PNNL) is developing a modeling framework, the integrated Regional Earth System Model (iRESM), to address regional human-environmental system interactions in response to climate change and the uncertainties therein. The framework will consist of a suite of integrated models representing regional climate change, regional climate policy, and the regional economy, with a focus on simulating the mitigation and adaptation decisions made over time in the energy, transportation, agriculture, and natural resource management sectors.

Rice, Jennie S.; Runci, Paul J.; Moss, Richard H.; Anderson, Kate L.

2010-10-01T23:59:59.000Z

433

POSITION MANAGEMENT ACTION FORM  

E-Print Network [OSTI]

POSITION MANAGEMENT ACTION FORM Workforce Planning | 408-924-2250 classcomp@sjsu.edu SJSU Human FOR POSITION MANAGEMENT FORM Workforce Planning | 408-924-2250| classcomp@sjsu.edu SJSU Human Resources Revised contact your Workforce Planning Analyst. List the name of the position this position reports to

Eirinaki, Magdalini

434

Action Plan Materials Science  

E-Print Network [OSTI]

sense, including all strata) has available to it a wide range of con- venient products which improve, improving companies' pros- pects and generating wealth without harming the environment. And allAction Plan 2010-2013 Materials Science Area EXECUTIVE SUMMARY #12;N.B.: If you require any further

Fitze, Patrick

435

Action plan for responses to abnormal conditions in Hanford Site radioactive waste tanks with high organic content. Revision 1  

SciTech Connect (OSTI)

This action plan describes the criteria and the organizational responsibilities required for ensuring that waste storage tanks with high organic contents are maintained in a safe condition at the Hanford Site. In addition, response actions are outlined for (1) prevention or mitigation of excessive temperatures; or (2) a material release from any waste tank with high organic content. Other response actions may be defined by Westinghouse Hanford Company Systems Engineering if a waste tank parameter goes out of specification. Trend analysis indicates the waste tank parameters have seasonal variations, but are otherwise stable.

Fowler, K.D.

1993-07-01T23:59:59.000Z

436

E-Print Network 3.0 - activation effects mitigated Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 3 4 5 > >> Page: << < 1 2 3 4 5 > >> 61 6. Distribution of climate change mitigation costs across European Member States in both a CO2-only Summary: CO2 mitigation measures in...

437

Mitigation of Sulfur Poisoning of Ni/Zirconia SOFC Anodes by...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mitigation of Sulfur Poisoning of NiZirconia SOFC Anodes by Antimony and Tin . Mitigation of Sulfur Poisoning of NiZirconia SOFC Anodes by Antimony and Tin . Abstract: Surface...

438

Invention and International Diffusion of Climate Change Mitigation Technologies: An Empirical Approach  

E-Print Network [OSTI]

International technology transfer..........................................................51 6 Conclusion ......................................................................................................62 Research paper 2: What Drives the International Transfer of Climate Change Mitigation Technologies1 Invention and International Diffusion of Climate Change Mitigation Technologies: An Empirical

Paris-Sud XI, Université de

439

Wildlife and Wildlife Habitat Mitigation Plan for Hungry Horse Hydroelectric Project, Final Report.  

SciTech Connect (OSTI)

This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Hungry Horse hydroelectric project. In this report, mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. Mitigation objectives for each species (group) were established based on the loss estimates but tailored to the recommended projects. 13 refs., 3 figs., 19 tabs.

Bissell, Gael

1985-01-01T23:59:59.000Z

440

Corrective Action Investigation Plan for Corrective Action Unit...  

Office of Scientific and Technical Information (OSTI)

Plan for Corrective Action Unit 541: Small Boy Nevada National Security Site and Nevada Test and Training Range, Nevada Re-direct Destination: Corrective Action Unit (CAU) 541 is...

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Effectiveness of advanced coating systems for mitigating blast effects on steel components  

E-Print Network [OSTI]

Effectiveness of advanced coating systems for mitigating blast effects on steel components C. Chen1 of this work is to study the effectiveness of an advanced coating material, polyurea, as a blast mitigation. Effects of thicknesses and locations of the polyurea on the blast mitigation are also studied

442

SAVEnergy Action Plans  

SciTech Connect (OSTI)

The Department of Energy`s Federal Energy Management Program (FEMP) is charged with carrying out key sections of EPACT and Executive Order 12903, to make the Federal government operate more efficiently. A congressionally mandated energy and water conservation audit program is one component of this growing DOE program. This paper traces the SAVEnergy Action Plan program throughout its development from (1) identifying projects and Agency champions, (2) establishing a protocol and fitting auditors into the program, (3) developing a data base to track the audits and measure their success, and (4) evaluating the process, learning from mistakes, and charting and transferring successes. A major tenet of the SAVEnergy program is to proactively prescreen all audit activities to ensure that -- where audits are done and Action Plans completed -- projects will be done.

Mayo, K.; Westby, R. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); deMonsabert, S. [George Mason Univ., Fairfax, VA (United States)] [George Mason Univ., Fairfax, VA (United States); Ginsberg, M. [USDOE, Washington, DC (United States)] [USDOE, Washington, DC (United States)

1994-04-01T23:59:59.000Z

443

Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado  

SciTech Connect (OSTI)

The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands assessment (Assessment 2) are included as part of this EA. The following sections and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service.

Not Available

1993-09-01T23:59:59.000Z

444

Final Report. SFAA No. DEFC02-98CH10961. Technical assistance for joint implementation and other supporting mechanisms and measures for greenhouse gas emissions mitigation  

SciTech Connect (OSTI)

IIEC, a division of CERF, has developed an extensive base of experience implementing activities that support climate action by developing USIJI projects in transitional countries within Asia, Latin America, Central and Eastern Europe, and southern Africa. IIEC has been able to provide a range of technical and policy assistance to governments and industry in support of sustainable energy use. IIEC continues to work in key countries with local partners to develop and implement energy efficiency policies and standards, develop site-specific projects, and assist governing bodies to establish national priorities and evaluation criteria for approving GHG-mitigation projects. As part of this project, IIEC focused on promoting a series of activities in Thailand and South Africa in order to identify GHG mitigation projects and work within the national approval process of those countries. The sections of this report outline the activities conducted in each country in order to achieve that goal.

Knight, Denise

2001-10-15T23:59:59.000Z

445

Long-term-consequence analysis of no action alternative 2  

SciTech Connect (OSTI)

This report is a supplement to the Waste Isolation Pilot Plant (WIPP) Disposal-Phase Supplemental Environmental Impact Statement. Data and information is described which pertains to estimated impacts from postulated long-term release of radionuclides and hazardous constituents from alpha-bearing wastes stored at major generator/storage sites after loss of institutional control (no action alternative 2). Under this alternative, wastes would remain at the generator sites and not be emplaced at WIPP.

Buck, J.W.; Bagaasen, L.M.; Staven, L.H.; Serne, R.J. [and others

1996-07-01T23:59:59.000Z

446

CLEMSON UNIVERSITY Sustainability Action Plan  

E-Print Network [OSTI]

.......................................................................... 8 Action Steps for Sustainability Education, Culture, and Leadership CLEMSON UNIVERSITY Sustainability Action Plan Submitted by the President's Commission on Sustainability, August 1, 2011 Version 1.0.9 #12; 1 Table of Contents President

Duchowski, Andrew T.

447

Climate Action Plan (Manitoba, Canada)  

Broader source: Energy.gov [DOE]

Manitoba's Climate Action Plan centers around energy efficiency, although it includes mandates and initiatives for renewable sources of energy.

448

Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation...  

Open Energy Info (EERE)

of national actions that can also lead to improvements in long term agricultural productivity, enhancing food security and increasing environmental sustainability. Main...

449

Corrective Action Decision Document for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Decision Document identifies and rationalizes the US Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 254, R-MAD Decontamination Facility, under the Federal Facility Agreement and Consent Order. Located in Area 25 at the Nevada Test Site in Nevada, CAU 254 is comprised of Corrective Action Site (CAS) 25-23-06, Decontamination Facility. A corrective action investigation for this CAS as conducted in January 2000 as set forth in the related Corrective Action Investigation Plan. Samples were collected from various media throughout the CAS and sent to an off-site laboratory for analysis. The laboratory results indicated the following: radiation dose rates inside the Decontamination Facility, Building 3126, and in the storage yard exceeded the average general dose rate; scanning and static total surface contamination surveys indicated that portions of the locker and shower room floor, decontamination bay floor, loft floor, east and west decon pads, north and south decontamination bay interior walls, exterior west and south walls, and loft walls were above preliminary action levels (PALs). The investigation-derived contaminants of concern (COCs) included: polychlorinated biphenyls, radionuclides (strontium-90, niobium-94, cesium-137, uranium-234 and -235), total volatile and semivolatile organic compounds, total petroleum hydrocarbons, and total Resource Conservation and Recovery Act (Metals). During the investigation, two corrective action objectives (CAOs) were identified to prevent or mitigate human exposure to COCs. Based on these CAOs, a review of existing data, future use, and current operations at the Nevada Test Site, three CAAs were developed for consideration: Alternative 1 - No Further Action; Alternative 2 - Unrestricted Release Decontamination and Verification Survey; and Alternative 3 - Unrestricted Release Decontamination and Verification Survey and Dismantling of Building 3126. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors, and the preferred CAA chosen on technical merit was Alternative 2. This CAA was judged to meet all requirements for the technical components evaluated and applicable state and federal regulations for closure of the site, and reduce the potential for future exposure pathways.

U.S. Department of Energy, Nevada Operations Office

2000-06-01T23:59:59.000Z

450

Corrective Action Plan for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada  

SciTech Connect (OSTI)

This Corrective Action Plan provides methods for implementing the approved corrective action alternative as provided in the Corrective Action Decision Document for the Central Nevada Test Area (CNTA), Corrective Action Unit (CAU) 417 (DOE/NV, 1999). The CNTA is located in the Hot Creek Valley in Nye County, Nevada, approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. CAU 417 consists of 34 Corrective Action Sites (CASs). Results of the investigation activities completed in 1998 are presented in Appendix D of the Corrective Action Decision Document (DOE/NV, 1999). According to the results, the only Constituent of Concern at the CNTA is total petroleum hydrocarbons (TPH). Of the 34 CASs, corrective action was proposed for 16 sites in 13 CASs. In fiscal year 1999, a Phase I Work Plan was prepared for the construction of a cover on the UC-4 Mud Pit C to gather information on cover constructibility and to perform site management activities. With Nevada Division of Environmental Protection concurrence, the Phase I field activities began in August 1999. A multi-layered cover using a Geosynthetic Clay Liner as an infiltration barrier was constructed over the UC-4 Mud Pit. Some TPH impacted material was relocated, concrete monuments were installed at nine sites, signs warning of site conditions were posted at seven sites, and subsidence markers were installed on the UC-4 Mud Pit C cover. Results from the field activities indicated that the UC-4 Mud Pit C cover design was constructable and could be used at the UC-1 Central Mud Pit (CMP). However, because of the size of the UC-1 CMP this design would be extremely costly. An alternative cover design, a vegetated cover, is proposed for the UC-1 CMP.

K. Campbell

2000-04-01T23:59:59.000Z

451

Tank vapor mitigation requirements for Hanford Tank Farms  

SciTech Connect (OSTI)

Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

Rakestraw, L.D.

1994-11-15T23:59:59.000Z

452

Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.  

SciTech Connect (OSTI)

In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

2012-02-01T23:59:59.000Z

453

Ocean Fertilization and Other Climate Change Mitigation Strategies: An Overview  

SciTech Connect (OSTI)

In order to evaluate ocean fertilization in the larger context of other proposed strategies for reducing the threat of the global warming, a wide range of different climate change mitigation approaches are compared in terms of their long-term potential, stage of development, relative costs and potential risks, as well as public acceptance. This broad comparative analysis is carried out for the following climate change mitigation strategies: supply-side and end-use efficiency improvements, terrestrial and geological carbon sequestration, CO2 ocean disposal and iron fertilization, nuclear power, and renewable energy generation from biomass, passive solar, solar thermal, photovoltaics, hydroelectric and wind. In addition, because of the inherent problems of conducting an objective comparative cost-benefit analysis, two non-technological solutions to global warming are also discussed: curbing population growth and transitioning to a steady-state economy.

Huesemann, Michael H.

2008-07-29T23:59:59.000Z

454

Environmental assessment of remedial action at the Spook uranium mill tailings site, Converse County, Wyoming  

SciTech Connect (OSTI)

This document assesses a joint remedial action proposed by the US Department of Energy Uranium Mill Tailings Remedial Action Project and the State of Wyoming Abandoned Mine Lands Program. The proposed action would consist of stabilizing uranium mill tailings and other associated contaminated materials within an inactive open pit mine on the site; backfilling the open pit with overburden materials that would act as a radon barrier and cover; and recontouring and seeding all disturbed areas to premining conditions. The impacts of no action at this site are addressed as the alternative to the proposed action. 74 refs., 12 figs., 19 tabs.

Not Available

1989-04-01T23:59:59.000Z

455

Mitigating Pollution Concerns through Process Integration Technology Steps  

E-Print Network [OSTI]

MITIGATING POLLUTION CONCERNS THROUGH PROCESS INTEGRATION TECHNOLOGY STEPS Paul Tripathi, D.Shukla TENSA Services, Houston, Tx and Steve Smith Duke Power, Charlotte, NC Abstract: With increasing concern to reduce the emission of SOx... of the studies to illustrate succesahow sful partnership can work. 1.0 Introduction: Over the past decade, there is an increasing concern for reducing environmental pollution. Some of the issues being addressed related to this topic...

Tripathi, P.; Shukla, D.; Smith, S.

456

Leak detection, monitoring, and mitigation technology trade study update  

SciTech Connect (OSTI)

This document is a revision and update to the initial report that describes various leak detection, monitoring, and mitigation (LDMM) technologies that can be used to support the retrieval of waste from the single-shell tanks (SST) at the Hanford Site. This revision focuses on the improvements in the technical performance of previously identified and useful technologies, and it introduces new technologies that might prove to be useful.

HERTZEL, J.S.

1998-11-10T23:59:59.000Z

457

Climate change mitigation through forestry measures: potentials, options, practice  

E-Print Network [OSTI]

23.1 GtCO2 yr-1 Land-use change (including deforestation) 5.9 GtCO2 yr -1 Vegetation growth 11.0 Gt mitigation potential (Europe) 0 20 40 60 80 100 120 140 160 180 Avoided deforestation Afforestation Forest deforestation rates in Europe are generally small Will tend to be relevant to MS with areas of land available

458

Financing Global Climate Change Mitigation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart GridHomeFederatedCity CorporationMitigation

459

Property:NEPA Resource Applicant Mitigation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to:ManagingFieldOfficeApplicant Mitigation Jump to:

460

The Climate Impacts of Bioenergy Systems Depend on Market and  

E-Print Network [OSTI]

The Climate Impacts of Bioenergy Systems Depend on Market and Regulatory Policy Contexts D E R E K, and by sequestering atmospheric carbon. Which use mitigates the most emissions depends on market and regulatory the vehicle fleet and bioenergy use are fixed or free parameters constrain the policy questions an analysis

Kammen, Daniel M.

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Final Environmental Assessment of remedial action at the Falls City uranium mill tailings site, Falls City, Texas  

SciTech Connect (OSTI)

This environmental assessment (EA) is prepared pursuant to the National Environmental Policy Act (NEPA), which requires Federal agencies to assess the impacts that their actions may have on the environment. This EA examines the short- and long-term effects of the DOE`s proposed remedial action for the Falls City tailings site. The no action alternative is also examined. The DOE will use the information and analyses presented here to determine whether the proposed action would have a significant impact on the environment. If the impacts are determined to be significant, an EIS will be prepared. If the impacts are not judged to be significant, the DOE will issue an official ``Finding of No Significant Impact`` and implement the proposed action.

Not Available

1991-12-01T23:59:59.000Z

462

VIOLENT FRAMES IN ACTION  

SciTech Connect (OSTI)

We present a computational approach to radical rhetoric that leverages the co-expression of rhetoric and action features in discourse to identify violent intent. The approach combines text mining and machine learning techniques with insights from Frame Analysis and theories that explain the emergence of violence in terms of moral disengagement, the violation of sacred values and social isolation in order to build computational models that identify messages from terrorist sources and estimate their proximity to an attack. We discuss a specific application of this approach to a body of documents from and about radical and terrorist groups in the Middle East and present the results achieved.

Sanfilippo, Antonio P.; McGrath, Liam R.; Whitney, Paul D.

2011-11-17T23:59:59.000Z

463

Interim Action Determination  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 | Department7 U.S. Department ofAboutWAPAInterim Action

464

Natural Gas: Major Legislative and Regulatory Actions (1935 - 2008)  

Reports and Publications (EIA)

This special report Web-based product presents a chronology of some of the key federal legislative and regulatory actions that have helped shape the natural gas market, with particular emphasis on policy directives from 1978 to October 2008. Separate reports provide brief descriptions of specific legislation, regulations, or policies, and their impacts on the natural gas market.

2009-01-01T23:59:59.000Z

465

Mitigating Climate Change with Managed Forests: Balancing Expectations,  

E-Print Network [OSTI]

and biomass energy) and di- rect substitution for more energy-intensive building mate- rials (e.g., concrete. Carbon markets may in the future offer some potential for com- pensating forest landowners for actions Climate Action Registry, and Regional Greenhouse Gas Initiative), some managed forest projects may prove

Vermont, University of

466

Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: A case study of Tianjin, China  

SciTech Connect (OSTI)

The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further.

Zhao Wei, E-mail: zhaowei.tju@gmail.com [College of Civil Engineering and Architecture, Liaoning University of Technology, 121000 Jinzhou (China); Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Huppes, Gjalt, E-mail: huppes@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Voet, Ester van der, E-mail: Voet@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands)

2011-06-15T23:59:59.000Z

467

Corrective Action Decision Document for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Airport Strainer Box, Nevada Test Site, Nevada, Rev. 0  

SciTech Connect (OSTI)

This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 230, Area 22 Sewage Lagoons, and CAU 320, Area 22 Desert Rock Airport Strainer Box, under the Federal Facility Agreement and Consent Order. Referred to as CAU 230/320, both CAUs are located at the Nevada Test Site (NTS) and comprise two Corrective Action Sites (CASs), 22-03-01 (Sewage Lagoons) and 22-99-01 (Strainer Box). The Area 22 Sewage Lagoons site also includes a buried Imhoff Tank, sludge bed, and associated sewer piping. A September 1999 corrective action investigation identified the only contaminant of concern above preliminary action levels at this CAU (i.e., total petroleum hydrocarbons as diesel-range organics). During this same investigation, three Corrective Action Objectives (CAOs) were identified to prevent or mitigate exposure to subsurface debris and contaminated soil. Based on these CAOs, a review of existing data, future use, and current operations in Area 22 of the NTS, three CAAs were developed for consideration: Alternative 1 - No Further Action, Alternative 2 - Closure in Place with Administrative Controls, and Alternative 3 - Excavation and Removal. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Alternative 3 was chosen on technical merit as the preferred alternative for CAU 230/320. This alternative was judged to meet all applicable state and federal regulations for closure of the site and will eliminate potential future exposure pathways to the buried debris and contaminated soils at both of the CASs within Area 22.

U.S. Department of Energy, Nevada Operations Office

2000-04-20T23:59:59.000Z

468

REMEDIAL ACTION PLAN  

E-Print Network [OSTI]

designated site consists of the 111-acre tailings pile, the mill yard, and piles of demolition rubble awaiting burial. The site contains 2.659 million cubic yards of tailings including 277,000 cubic yards of contaminated material in the mill yard, ore storage area, and Ann Lee Mine area; 151,000 cubic yards in the protore storage and leach pad areas; and 664,000 cubic yards of windblown contaminated soil, including excess soil that would result from excavation. Remedial action The remedial action will start with the excavation of windblown contaminated material and placement around the west, south, and east sides of the pile to buttress the slopes for increased stability. Most of the demolition rubble will be placed in the southern part of the pile and be covered with tailings. The northern part of the tailings pile (one million cubic yards) will then be excavated and placed on the south part of the pile to reduce the size of the disposal cell footprint. Demolition rubble that

Inactive Uranium; Mill Tailings Site; Uranium Mill Tremedial

1990-01-01T23:59:59.000Z

469

Proposed modifications to the Lower Mokelumne River Project, California: FERC Project No. 2916-004. Final environmental impact statement  

SciTech Connect (OSTI)

This final environmental impact statement (FEIS) has been prepared for the Federal Energy Regulatory Commission (Commission) to consider modifications to the existing Lower Mokelumne River Project (LMRP) (FERC Project No. 2916-004) in California. Chinook salmon and steelhead trout populations in the lower Mokelumne River have experienced recent declines and fish kills associated, in part, with discharges from Camanche Dam. The California Department of Fish and Game and the California Sportfishing Protection Alliance have asked the Commission to investigate and correct these problems. A wide range of different mitigation actions has been proposed by parties participating in the scoping of this proceeding, and staff has evaluated these proposed actions in this assessment. The staff is recommending a combination of flow and non-flow modifications to the existing license, including new minimum flow and minimum pool elevation requirements at Camanche Reservoir, ramping rates on dam releases, interim attraction and out-migrant spike flows, instream habitat improvements, and a series of studies and monitoring to determine feasible means for solving off-site fish passage problems.

Not Available

1993-11-01T23:59:59.000Z

470

Initial Northwest Power Act Power Sales Contracts : Final Environmental Impact Statement. Volume 1, Environmental Analysis.  

SciTech Connect (OSTI)

This is volume 1 of the final environmental impact statement of the Bonneville Power Administration Information is included on the following: Purpose of and need for action; alternatives including the proposed action; affected environment; and environmental consequences.

United States. Bonneville Power Administration.

1992-01-01T23:59:59.000Z

471

Wind Integration Forum June 6, 2011 Action Items Update December, 2011  

E-Print Network [OSTI]

Wind Integration Forum June 6, 2011 Action Items Update December, 2011 The action items from the June 6 Wind Integration Steering Committee are repeated below, followed by brief summaries of progress concern over possible impacts on grid stability from the growing wind fleet. BPA will report back

472

Corrective Action Investigation Plan for Corrective Action Unit...  

Office of Scientific and Technical Information (OSTI)

Plan for Corrective Action Unit 541: Small Boy Nevada National Security Site and Nevada Test and Training Range, Nevada Re-direct Destination: Temp Data Fields Matthews, Patrick...

473

Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar...  

Broader source: Energy.gov (indexed) [DOE]

Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Philadelphia, Pennsylvania: Solar in Action (Brochure),...

474

Guam Energy Action Plan  

SciTech Connect (OSTI)

Describes the four near-term strategies selected by the Guam Energy Task Force during action planning workshops conducted in March 2013, and outlines the steps being taken to implement those strategies. Each strategy addresses one of the energy sectors identified in the earlier Guam strategic energy plan as being an essential component of diversifying Guam's fuel sources and reducing fossil energy consumption 20% by 2020. The four energy strategies selected are: (1) expanding public outreach on energy efficiency and conservation, (2) establishing a demand-side management revolving loan program, (3) exploring waste-to-energy options, and (4) influencing the transportation sector via anti-idling legislation, vehicle registration fees, and electric vehicles.

Conrad, M. D.; Ness, J. E.

2013-07-01T23:59:59.000Z

475

Mitigation of the Impact of Pt Contamination on Cu-Zeolite SCR...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

conditions under which PGM elements get volatilized and transferred onto the downstream SCR catalyst, resulting in loss of NOx reduction performance deer12chen.pdf More...

476

Assessment of Potential Contribution of Woodland Creation to Mitigating the Impacts of Agriculture on Water Quality  

E-Print Network [OSTI]

PLANTS WATER TRE WATER QUALITY MONITORING NETWORK I Central Pollution Control Board (CPCB) hasEF) promotes basin-wide pollution control strategies. It liaises with State Water Pollution Control BoardsWater Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute

477

Three Essays on Climate Change Impacts, Adaptation and Mitigation in Agriculture  

E-Print Network [OSTI]

regionally detailed dynamic land allocation model is developed and applied for studying interrelationships between limited natural resources (e.g. land and groundwater), climate change, bioenergy demands and agricultural production. We find out...

Wang, Wei Wei

2012-10-19T23:59:59.000Z

478

Mitigating Radiation Impact on Superconducting Magnets of the Higgs Factory Muon Collider  

E-Print Network [OSTI]

Recent discovery of a Higgs boson boosted interest in a low-energy medium-luminosity Muon Collider as a Higgs Factory (HF). A preliminary design of the HF storage ring (SR) is based on cos-theta Nb3Sn superconducting (SC) magnets with the coil inner diameter ranging from 50 cm in the interaction region to 16 cm in the arc. The coil cross-sections were chosen based on the operation margin, field quality and quench protection considerations to provide an adequate space for the beam pipe, helium channel and inner absorber (liner). With the 62.5-GeV muon energy and 2 x 10^12 muons per bunch, the electrons from muon decays deposit about 300 kW in the SC magnets, or unprecedented 1 kW/m dynamic heat load, which corresponds to a multi-MW room temperature equivalent. Based on the detailed MARS15 model built and intense simulations, a sophisticated protection system was designed for the entire SR to bring the peak power density in the SC coils safely below the quench limit and reduce the dynamic heat load to the cold ...

Mokhov, Nikolai; Kashikhin, Vadim V; Striganov, Sergei I; Tropin, Igor S; Zlobin, Alexander V

2015-01-01T23:59:59.000Z

479

Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program  

E-Print Network [OSTI]

both fluorescent and incandescent), standby power (forFluorescent Tubes Incandescent Lamps All % of CFL variableRefrigerator Savings Incandescent Lamp Savings Fluorescent

Letschert, Virginie E.

2010-01-01T23:59:59.000Z

480

Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies  

E-Print Network [OSTI]

present-day fossil, bio-fuel, and biomass burning emissionsresponse of fossil fuel and bio- fuel soot, accounting forcarbon) from fossil fuel, bio-fuel, and biomass combustion (

Quinn, P.K.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "impact mitigation action" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

482

Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program  

E-Print Network [OSTI]

energy efficiency policy in a specific context. The program discussed is the initiation of a Best Practices

Letschert, Virginie E.

2010-01-01T23:59:59.000Z

483

November 18 PSERC Webinar: Quantifying and Mitigating the Impacts of PV in  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy Second Quarter4, 2014 Dr.7446August 29, Meeting Points

484

Mitigating the Social and Environmental Impacts of Multimodal Freight Corridor Operations at Southern California Ports  

E-Print Network [OSTI]

at Southern California Ports. ” Presented at the 11 th WorldFreeway approaching the ports Figure 2. Overviews of Studyat Southern California Ports ABSTRACT The San Pedro Bay

Recker, Will W

2008-01-01T23:59:59.000Z

485

Technology Solutions for Mitigating Environmental Impacts of Oil and Gas E&P Activity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeignTechnology-Selection-Process Sign In About | Careers

486

EA-1634: Finding of No Significant Impact | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADAMitigation Action Plan EA-1617:Mitigation4:

487

EA-1642: Finding of No Significant Impact | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADAMitigation Action PlanMitigation0: Finding

488

EA-1533: Finding of No Significant Impact | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant Potomac RiverEA-0847:Mitigation ActionFinal

489

EA-1896: Finding of No Significant Impact | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal Environmental891: Mitigation Action

490

Review of metallic surface treatments for corrosion mitigation. Final report  

SciTech Connect (OSTI)

Innovative metallic surface treatments for corrosion protection of facility systems and components were reviewed, including plasma spraying, electroless nickel plating, and ion plating. The work is part of the U.S. Army Corps of Engineers effort to find coatings with properties superior to conventional polymeric types. The three methods were judged for adhesion, corrosion and erosion resistance, rust mitigation, and possible use in electromagnetic shielding. A brief description of physics is given for these methods along with case studies documenting their performance. Such metallic treatments may be a cost-effective, long-term corrosion protection alternative to traditional polymeric coatings, depending on component design and purpose.

Hock, V.F.; Rigsbee, J.M.; Boy, J.H.

1984-09-01T23:59:59.000Z

491

Climate Mitigation Policy Implications for Global Irrigation Water Demand  

SciTech Connect (OSTI)

Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of alternative land-use emissions mitigation policy options—one which values terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to lead to increased demand for water for agricultural systems (+200%), even in the absence of climate change. In general policies to mitigate climate change will increase agricultural demands for water, regardless of whether or not terrestrial carbon is valued or not. Burgeoning demands for water are driven by the demand for bioenergy in response to emissions mitigation policies. We also find that the policy matters. Increases in the demand for water when terrestrial carbon emissions go un-prices are vastly larger than when terrestrial system carbon emissions are prices at the same rate as fossil fuel and industrial emissions. Our estimates for increased water demands when terrestrial carbon systems go un-priced are larger than earlier studies. We find that the deployment of improved irrigation delivery systems could mitigate some of the increase in water demands, but cannot reverse the increases in water demands when terrestrial carbon emissions go un-priced. Finally we estimates that the geospatial pattern of water demands could stress some parts of the world, e.g. China, India and other countries in south and east Asia, earlier and more intensely than in other parts of the world, e.g. North America.

Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.

2013-08-22T23:59:59.000Z

492

Production and mitigation of acid chlorides in geothermal steam  

SciTech Connect (OSTI)

Measurements of the equilibrium distribution of relatively nonvolatile solutes between aqueous liquid and vapor phases have been made at temperatures to 350{degrees}C for HCl(aq) and chloride salts. These data are directly applicable to problems of corrosive-steam production in geothermal steam systems. Compositions of high-temperature brines which could produce steam having given concentrations of chlorides may be estimated at various boiling temperatures. Effects of mitigation methods (e.g., desuperheating) can be calculated based on liquid-vapor equilibrium constants and solute mass balances under vapor-saturation conditions.

Simonson, J.M.; Palmer, D.A.

1995-06-01T23:59:59.000Z

493

Tritium Formation and Mitigation in High-Temperature Reactors  

SciTech Connect (OSTI)

Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

Piyush Sabharwall; Carl Stoots

2012-10-01T23:59:59.000Z

494

Tritium Formation and Mitigation in High-Temperature Reactor Systems  

SciTech Connect (OSTI)

Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

Piyush Sabharwall; Carl Stoots; Hans A. Schmutz

2013-03-01T23:59:59.000Z

495

EA-1731: Mitigation Acton Plan | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant Potomac RiverEA-0847:Mitigation7East1709: FinalFinding of

496

Mitigating Wind-Radar Interference | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthComments MEMA:May1.docEx5.docofPotomac RiverVehicleSummaryMitigating

497

Federal Environmental Impact Statements: Overly Inflated Needs Result in Needless Environmental Harm  

E-Print Network [OSTI]

Impact Statement (EIS) must include a statement of thefor a proposed action in an EIS. If adopted, this principleof these documents. An EIS must describe the proposed

Steinhoff, Gordon

2006-01-01T23:59:59.000Z

498

Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies  

Broader source: Energy.gov [DOE]

To help estimate costs of implementing greenhouse gas (GHG) mitigation strategies for vehicles, the table below provides the initial investment, operating costs, and operating savings for each strategy.

499

Evaluating service mitigation proposals for the MBTA Green Line extension construction delay using simplified planning methods .  

E-Print Network [OSTI]

??This thesis reviews a select group of transit environmental mitigation proposals through the application of ridership estimation methodologies. In recent years, rider demands and environmental… (more)

Rosen, Jamie C. (Jamie Cara)

2013-01-01T23:59:59.000Z

500