Powered by Deep Web Technologies
Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

FEMP Energy Savings Expert Teams (ESET) to Help Federal Facilities Immediately Reduce Demand and Consumption  

SciTech Connect

FEMP offers energy savings expert teams (ESET) assessments for federal facilities as part of a broad strategy to reduce natural gas consumption.

2005-10-01T23:59:59.000Z

2

Consumption  

E-Print Network (OSTI)

www.eia.gov Annual Energy Outlook 2013 projections to 2040 • Growth in energy production outstrips consumption growth • Crude oil production rises sharply over the next decade • Motor gasoline consumption reflects more stringent fuel economy standards • The U.S. becomes a net exporter of natural gas in the early 2020s • U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040

Adam Sieminski Administrator; Adam Sieminski; Adam Sieminski; Adam Sieminski; Adam Sieminski

2013-01-01T23:59:59.000Z

3

HIV entering the cell  

NLE Websites -- All DOE Office Websites (Extended Search)

NA Question: How does the HIV virus enter the cell, is it through active transport or passive? Could it be endocytosis? Replies: None of these, usually. Many viruses, T4 for...

4

Enter Title of Presentation  

U.S. Energy Information Administration (EIA) Indexed Site

Long-term Global Oil Scenarios: Long-term Global Oil Scenarios: Looking Beyond 2030 EIA 2008 Energy Conference Washington, DC April 7, 2008 Glen Sweetnam Energy Information Administration Long term Global Oil Scenarios: April 7, 2008 2 EIA's view to 2030 * Reference Case: - Liquid fuels consumption grows to 113 MMB/D - 29 MMB/D increase from 2006 - Conventional crude oil and lease condensate up only 12 MMB/D * Higher oil prices slow consumption growth - Liquid fuels grow to 98 MMB/D in the high price case - Conventional crude and lease condensate down 11 MMB/D from 2006 * Important difference between conventional crude oil and total liquids Long term Global Oil Scenarios: April 7, 2008 3 Unconventional liquids become more important over time 76.1 99.3 81.9 Conventional Subtotal 21.6 14.0 2.8 Unconventional Subtotal

5

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

6

Survey Consumption  

Gasoline and Diesel Fuel Update (EIA)

fsidentoi fsidentoi Survey Consumption and 'Expenditures, April 1981 March 1982 Energy Information Administration Wasningtoa D '" N """"*"""*"Nlwr. . *'.;***** -. Mik>. I This publication is available from ihe your COr : 20585 Residential Energy Consumption Survey: Consum ption and Expendi tures, April 1981 Through March 1982 Part 2: Regional Data Prepared by: Bruce Egan This report was prepared by the Energy Information Administra tion, the independent statistical

7

Enter data into Portfolio Manager | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Enter data into Portfolio Manager Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

8

Optimization Online - Enter Your Password to Continue  

E-Print Network (OSTI)

... of Gas Supply Contracts with Take-or-pay Clauses in the Brazilian Long-term Energy Planning. Enter the Article Password: ... Search, Browse the Repository.

9

Optimization Online - Enter Your Password to Continue  

E-Print Network (OSTI)

A Security Framework for Smart Metering with Multiple Data Consumers. Enter the Article Password: If you forgot your password, select your e-mail address:.

10

Optimization Online - Enter Your Password to Continue  

E-Print Network (OSTI)

Production design for plate products in the steel industry. Enter the Article Password: If you forgot your password, select your e-mail address: sanjeebd@us.

11

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997 CONSUMPTION AND ...  

U.S. Energy Information Administration (EIA)

Residential Sector energy Intensities for 1978-1997 using data from EIA Residential Energy Consumption Survey.

12

Factors of material consumption  

E-Print Network (OSTI)

Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

Silva Díaz, Pamela Cristina

2012-01-01T23:59:59.000Z

13

All Consumption Tables  

U.S. Energy Information Administration (EIA)

2010 Consumption Summary Tables. Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2010 (Trillion Btu) ... Ranked by State, 2010

14

Predicting summer energy consumption from homeowners attitudes  

SciTech Connect

Two surveys examined the relationship between homeowners attitudes toward energy use and their actual summer electric consumption. In Survey 1, 56 couples filled out questionnaires concerning their energy attitudes. A factor analysis of their responses revealed four factors: comfort and health concerns, effort to conserve and monetary savings, role of the individual, and legitimacy of the energy crisis. The factors were entered into a multiple regression analysis to predict actual summer electric consumption. The attitudinal factors together significantly accounted for 55% of the variance in summer electric consumption. The comfort and health factor by itself explained 30% of the consumption variance. Survey 2, consisting of 69 couples, was conducted to elaborate the meaning of the factors. The results of the factor analysis of Survey 2 revealed six factors: comfort, health, individual's role, belief in science, legitimacy of the energy crisis, and effort to conserve. An overall regression analysis showed that the factors significantly explained nearly 60% of the summer consumption variance. The comfort factor was again the best predictor of summer electric consumption, accounting for 42% of the variance. It was concluded that attitudes about one's comfort are significantly related to household energy consumption (primarily air conditioning). The implications for energy conservation campaigns were discussed. 10 references, 3 tables.

Seligman, C.; Kriss, M.; Darley, J.M.; Fazio, R.H.; Becker, L.J.; Pryor, J.B.

1979-01-01T23:59:59.000Z

15

Consumption Technical Notes  

U.S. Energy Information Administration (EIA)

as street lighting and public services; and the Manufacturing Energy Consumption Survey covers only manufacturing establishments,

16

Electricity Consumption Electricity Consumption EIA Electricity Consumption Estimates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumption Consumption Electricity Consumption EIA Electricity Consumption Estimates (million kWh) National Petroleum Council Assumption: The definition of electricity con- sumption and sales used in the NPC 1999 study is the equivalent ofwhat EIA calls "sales by utilities" plus "retail wheeling by power marketers." This A nn u al Gro wth total could also be called "sales through the distribution grid," 2o 99 99 to Sales by Utilities -012% #N/A Two other categories of electricity consumption tracked by EIA cover on site Retail Wheeling Sales by generation for host use. The first, "nonutility onsite direct use," covers the Power Marketen 212.25% #N/A traditional generation/cogeneration facilities owned by industrial or large All Sales Through Distribution

17

Manhattan Project: Enter the Army, 1942  

Office of Scientific and Technical Information (OSTI)

Army parade, Los Alamos ENTER THE ARMY Army parade, Los Alamos ENTER THE ARMY (1942) Events > Difficult Choices, 1942 More Uranium Research, 1942 More Piles and Plutonium, 1942 Enter the Army, 1942 Groves and the MED, 1942 Picking Horses, November 1942 Final Approval to Build the Bomb, December 1942 The decision to proceed with planning for the production of enriched uranium and of plutonium led directly to the involvement of the Army, specifically the Corps of Engineers. President Roosevelt had approved Army involvement on October 9, 1941, and Vannevar Bush had arranged for Army participation at S-1 meetings beginning in March 1942. The need for security suggested placing the S-1 program within one of the armed forces, and the construction expertise of the Corps of Engineers made it the logical choice to build the production facilities envisioned in the Conant report of May 23.

18

Fuel Consumption - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Energy Information Administration, Residential Energy Consumption Survey(RTECS), 1994 Fuel Consumption

19

Consumption emotional experiences : an investigation of their design, outcomes, and underlying mechanism of action in the context of repeated services episodes.  

E-Print Network (OSTI)

??Despite many efforts to promote the importance of considering consumer experience, few studies have provided empirical evidence of their impact on immediate consumption outcomes and… (more)

Paquet, Catherine, 1977-

2007-01-01T23:59:59.000Z

20

enter part number BNC / RP-BNC  

E-Print Network (OSTI)

enter part number Products 7/16 1.0/2.3 1.6/5.6 AFI AMC BNC / RP-BNC C FAKRA SMB FME HN MCX Mini ------- Product Search ------- Inventory Search Search Results for: 31-10152-RFX Results: 1 - 1 of 1 Part Number. All rights reserved. Copyright | Terms & Conditions | RF E-Mail Client | Contact Us | Amphenol

Berns, Hans-Gerd

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Federal Energy Management Program: Data Center Energy Consumption Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumption Trends Consumption Trends Data centers can consume up to 100 times more energy than a standard office building. Often, less than 15% of original source energy is used for the information technology equipment within a data center. Figure 1 outlines typical data center energy consumption ratios. An illustration that features a graphic of a coal container representing 100 units of coal. This enters a graphic of a power plant, where those 100 units of coal are turned into 35 units of energy. The 35 units of energy are distributed by power lines, represented by a graphic of power lines, where 33 units are delivered to a pie chart representing data typical data center energy end use. The data center pie chart features 48% representing server load and computing operation consumption; 43% representing cooling equipment consumption; and 9% representing power conversion and distribution consumption.

22

Are Refiners Entering a Golden Age or a Short Cycle?  

U.S. Energy Information Administration (EIA)

Are Refiners Entering a Golden Age or a Short Cycle? Global Refining Strategies 2007 Barcelona, Spain

23

UK Energy Consumption by Sector The energy consumption data consists...  

Open Energy Info (EERE)

Consumption by Sector The energy consumption data consists of five spreadsheets: "overall data tables" plus energy consumption data for each of the following...

24

Connected Consumption: The hidden networks of consumption  

E-Print Network (OSTI)

In this paper, we present the Connected Consumption Network (CCN) that allows a community of consumers to collaboratively sense the market from a mobile device, enabling more informed financial decisions in geo-local ...

Reed, David P.

25

CSV File Documentation: Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption The State Energy Data System (SEDS) comma-separated value (CSV) files contain consumption estimates shown in the tables located on the SEDS website. There are four files that contain estimates for all states and years. Consumption in Physical Units contains the consumption estimates in physical units for all states; Consumption in Btu contains the consumption estimates in billion British thermal units (Btu) for all states. There are two data files for thermal conversion factors: the CSV file contains all of the conversion factors used to convert data between physical units and Btu for all states and the United States, and the Excel file shows the state-level conversion factors for coal and natural gas in six Excel spreadsheets. Zip files are also available for the large data files. In addition, there is a CSV file for each state, named

26

FOR IMMEDIATE RELEASE CONTACT: MATT LETOURNEAU  

U.S. Energy Information Administration (EIA) Indexed Site

FOR IMMEDIATE RELEASE CONTACT: MATT LETOURNEAU APRIL 8, 2008 (202) 224-6977 mrep~red qext of rKpK pen~tor mete sK aomenici's oem~rks ~t bf^'s ^nnu~l bnergy `onference OMMU Thank you, Administrator Caruso, for that introduction, and for the invitation to speak here this morning.

27

FOR IMMEDIATE RELEASE: Sept. 10, 2012  

E-Print Network (OSTI)

for deliberately participating in illegal gun sales among their colleagues, and opinions on selected policy issues of information on retail commerce in firearms, links between legal and illegal gun sales, and policies designedFOR IMMEDIATE RELEASE: Sept. 10, 2012 MEDIA CONTACT: Carole Gan (916) 734-9047 GUN DEALERS

Leistikow, Bruce N.

28

consumption | OpenEI  

Open Energy Info (EERE)

consumption consumption Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 32.3 KiB)

29

OpenEI - consumption  

Open Energy Info (EERE)

91/0 en Operational water 91/0 en Operational water consumption and withdrawal factors for electricity generating technologies http://en.openei.org/datasets/node/969 This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions.

License

30

Energy-consumption modelling  

SciTech Connect

A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

Reiter, E.R.

1980-01-01T23:59:59.000Z

31

EIA Average Energy Consumption 2005  

U.S. Energy Information Administration (EIA)

Table US8. Average Consumption by Fuels Used, 2005 Physical Units per Household Fuels Used (physical units of consumption per household using the fuel)

32

Household Energy Consumption and Expenditures  

Reports and Publications (EIA)

Presents information about household end use consumption of energy and expenditures for that energy. These data were collected in the 2005 Residential Energy Consumption Survey (RECS)

Information Center

2008-09-01T23:59:59.000Z

33

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

methodology used to estimate these statistics relied on data from the 1990 Residential Energy Consumption Survey (RECS), the 1991 Residential Transportation Energy Consumption...

34

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

J Related EIA Publications on Energy Consumption Energy Information AdministrationManufacturing Consumption of Energy 1991 526 Appendix J Related EIA Publications on Energy...

35

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. Energy Consumption in the Manufacturing Sector, 1991 In 1991, the amount of energy consumed in the manufacturing sector was as follows: * Primary Consumption of Energy for All...

36

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

5HVLGHQWLDO (QHUJ\\ &RQVXPSWLRQ 6XUYH\\V 1997 Consumption and Expenditures Tables Appliances Consumption Tables (17 pages, 60 kb) Contents Pages CE5-1c.

37

Elements of consumption: an abstract visualization of household consumption  

Science Conference Proceedings (OSTI)

To promote sustainability consumers must be informed about their consumption behaviours. Ambient displays can be used as an eco-feedback technology to convey household consumption information. Elements of Consumption (EoC) demonstrates this by visualizing ... Keywords: a-life, eco-feedback, household consumption, sustainability

Stephen Makonin; Philippe Pasquier; Lyn Bartram

2011-07-01T23:59:59.000Z

38

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

39

Amtrak fuel consumption study  

Science Conference Proceedings (OSTI)

This report documents a study of fuel consumption on National Railroad Passenger Corporation (Amtrak) trains and is part of an effort to determine effective ways of conserving fuel on the Amtrak system. The study was performed by the Transportation Systems Center (TSC). A series of 26 test runs were conducted on Amtrak trains operating between Boston, Massachusetts, and New Haven, Connecticut, to measure fuel consumption, trip time and other fuel-use-related parameters. The test data were analyzed and compared with results of the TSC Train Performance Simulator replicating the same operations.

Hitz, J.

1981-02-01T23:59:59.000Z

40

Reduced power consumption in  

E-Print Network (OSTI)

and a potential energy savings of over $30 Billion/year. This new approach is demanded by the exponentiallyBenefits Reduced power consumption in IC devices; hence potential energy savings of 300 Billion KWh://www.sia- online.org) CuRIE Interconnect Technology for Improved Energy Efficiency in IC Chips ARPA-E Technology

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Natural Gas Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Lease Fuel Consumption Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential Volumes Delivered to Commercial Consumers Volumes Delivered to Industrial Consumers Volumes Delivered to Vehicle Fuel Consumers Volumes Delivered to Electric Power Consumers Period: Monthly Annual Lease Fuel Consumption Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential Volumes Delivered to Commercial Consumers Volumes Delivered to Industrial Consumers Volumes Delivered to Vehicle Fuel Consumers Volumes Delivered to Electric Power Consumers Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 23,103,793 23,277,008 22,910,078 24,086,797 24,477,425 25,533,448 1949-2012 Alabama 418,512 404,157 454,456 534,779 598,514 666,738 1997-2012 Alaska 369,967 341,888 342,261 333,312 335,458 343,110 1997-2012

42

& CONSUMPTION US HYDROPOWER PRODUCTION  

E-Print Network (OSTI)

12% of the nation's electricity. Hydropower produces more than 90,000 megawatts of electricity, which is enough to meet the needs of 28.3 million consumers. Hydropower accounts for over 90% of all electricity the NAO. ENERGY CONSUMPTION AND PRODUCTION IN NORWAY AND THE NAO The demand for heating oil in Norway

43

Reduction of Water Consumption  

E-Print Network (OSTI)

Cooling systems using water evaporation to dissipate waste heat, will require one pound of water per 1,000 Btu. To reduce water consumption, a combination of "DRY" and "WET" cooling elements is the only practical answer. This paper reviews the various options available: WET-DRY towers, or DRY-WET, or combination WET and DRY towers!

Adler, J.

1985-05-01T23:59:59.000Z

44

Crisis and Consumption Smoothing  

Science Conference Proceedings (OSTI)

The dramatic impact of the current crisis on performance of businesses across sectors and economies has been headlining the business press for the past several months. Extant reconciliations of these patterns in the popular press rely on ad hoc reasoning. ... Keywords: consumer behavior, consumption smoothing, crisis, econometrics, marketing strategy

Pushan Dutt; V. Padmanabhan

2011-05-01T23:59:59.000Z

45

Enter Search Term Enter Drill Deeper or ED Online ID Home Subscribe Back Issues Design FAQs Ideas for Design Power Analog  

E-Print Network (OSTI)

Enter Search Term Enter Drill Deeper or ED Online ID Home Subscribe Back Issues Design FAQs Ideas Subscribe to Electronic Design UPDATE (Archive) Email: Enter Email Click to view this week's welcome screen

Rogers, John A.

46

Data Center Energy Consumption Trends | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Data Center Energy Efficiency » Data Center Program Areas » Data Center Energy Efficiency » Data Center Energy Consumption Trends Data Center Energy Consumption Trends October 8, 2013 - 10:09am Addthis Data centers can consume up to 100 times more energy than a standard office building. Often, less than 15% of original source energy is used for the information technology equipment within a data center. Figure 1 outlines typical data center energy consumption ratios. An illustration that features a graphic of a coal container representing 100 units of coal. This enters a graphic of a power plant, where those 100 units of coal are turned into 35 units of energy. The 35 units of energy are distributed by power lines, represented by a graphic of power lines, where 33 units are delivered to a pie chart representing data typical data center energy end use. The data center pie chart features 48% representing server load and computing operation consumption; 43% representing cooling equipment consumption; and 9% representing power conversion and distribution consumption.

47

Data Center Power Consumption  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Center Power Consumption Center Power Consumption A new look at a growing problem Fact - Data center power density up 10x in the last 10 years 2.1 kW/rack (1992); 14 kW/rack (2007) Racks are not fully populated due to power/cooling constraints Fact - Increasing processor power Moore's law Fact - Energy cost going up 3 yr. energy cost equivalent to acquisition cost Fact - Iterative power life cycle Takes as much energy to cool computers as it takes to power them. Fact - Over-provisioning Most data centers are over-provisioned with cooling and still have hot spots November 2007 SubZero Engineering An Industry at the Crossroads Conflict between scaling IT demands and energy efficiency Server Efficiency is improving year after year Performance/Watt doubles every 2 years Power Density is Going Up

48

101. Natural Gas Consumption  

Gasoline and Diesel Fuel Update (EIA)

1. Natural Gas Consumption 1. Natural Gas Consumption in the United States, 1930-1996 (Million Cubic Feet) Table Year Lease and Plant Fuel Pipeline Fuel Delivered to Consumers Total Consumption Residential Commercial Industrial Vehicle Fuel Electric Utilities Total 1930 ....................... 648,025 NA 295,700 80,707 721,782 NA 120,290 1,218,479 1,866,504 1931 ....................... 509,077 NA 294,406 86,491 593,644 NA 138,343 1,112,884 1,621,961 1932 ....................... 477,562 NA 298,520 87,367 531,831 NA 107,239 1,024,957 1,502,519 1933 ....................... 442,879 NA 283,197 85,577 590,865 NA 102,601 1,062,240 1,505,119 1934 ....................... 502,352 NA 288,236 91,261 703,053 NA 127,896 1,210,446 1,712,798 1935 ....................... 524,926 NA 313,498 100,187 790,563 NA 125,239 1,329,487 1,854,413 1936 ....................... 557,404 NA 343,346

49

Residential Energy Consumption Survey:  

Gasoline and Diesel Fuel Update (EIA)

E/EIA-0262/2 E/EIA-0262/2 Residential Energy Consumption Survey: 1978-1980 Consumption and Expenditures Part II: Regional Data May 1981 U.S. Department of Energy Energy Information Administration Assistant Administrator for Program Development Office of the Consumption Data System Residential and Commercial Data Systems Division -T8-aa * N uojssaooy 'SOS^-m (£03) ao£ 5925 'uofSfAfQ s^onpojj aa^ndmoo - aojAaag T BU T3gN am rcoj? aig^IT^^ '(adBx Q-naugBH) TOO/T8-JQ/30Q 30^703 OQ ' d jo :moaj ajqBfT^A^ 3J^ sjaodaa aAoqe aqa jo 's-TZTOO-eoo-Tgo 'ON ^ois odo 'g^zo-via/aoQ 'TBST Sujpjjng rXaAang uojidmnsuoo XSaaug sSu-ppjprig ON ^oo^s OdO '^/ZOZO-Via/aOQ *086T aunr '6L6I ?sn§ny og aunf ' jo suja^Bd uoj^dmnsuoo :XaAjng uo^^dmnsuoQ XSaaug OS '9$ '6-ieTOO- 00-T90 OdD 'S/ZOZO-Via/aOa C

50

DOE/Mitsubishi Enter Consent Decree Dismissing Claims of Certification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/Mitsubishi Enter Consent Decree Dismissing Claims of DOE/Mitsubishi Enter Consent Decree Dismissing Claims of Certification Violations DOE/Mitsubishi Enter Consent Decree Dismissing Claims of Certification Violations May 7, 2010 - 12:41pm Addthis On May 7, 2010, DOE entered into a Consent Decree with Mitsubishi Electric & Electronics, USA Inc. dismissing alleged energy efficiency certification violations in return for a $5000 voluntary contribution that will be made on Mitsubishi's behalf by the Air-Conditioning, Heating and Refrigeration Institute (AHRI). This will resolve the case initiated on April 21, 2010, against Mitsubishi. After issuing a Notice of Proposed Civil Penalty alleging that Mitsubishi had failed to submit certification reports for some models of air conditioners and heat pumps, DOE discovered Mitsubishi

51

Entering Invoices Through the Vendor Inquiry Payment Electronic Reporting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entering Invoices Through the Vendor Inquiry Payment Electronic Entering Invoices Through the Vendor Inquiry Payment Electronic Reporting System (VIPERS) Entering Invoices Through the Vendor Inquiry Payment Electronic Reporting System (VIPERS) The purpose of this document is to provide an overview of the process to submit invoices electronically to the Oak Ridge Financial Service Center (ORFSC) and interface them into STARS using the Vendor Inquiry Payment Electronic Reporting System (VIPERS). It is recommended that the plan outlined below be used by Department of Energy vendors to submit electronic invoices and to check status of outstanding invoice payments. Entering Invoices Through the Vendor Inquiry Payment Electronic Reporting System (VIPERS) More Documents & Publications Smart Grid Investment Grant Invoice Template and Instructions

52

DOE/Mitsubishi Enter Consent Decree Dismissing Claims of Certification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/Mitsubishi Enter Consent Decree Dismissing Claims of DOE/Mitsubishi Enter Consent Decree Dismissing Claims of Certification Violations DOE/Mitsubishi Enter Consent Decree Dismissing Claims of Certification Violations May 7, 2010 - 12:41pm Addthis On May 7, 2010, DOE entered into a Consent Decree with Mitsubishi Electric & Electronics, USA Inc. dismissing alleged energy efficiency certification violations in return for a $5000 voluntary contribution that will be made on Mitsubishi's behalf by the Air-Conditioning, Heating and Refrigeration Institute (AHRI). This will resolve the case initiated on April 21, 2010, against Mitsubishi. After issuing a Notice of Proposed Civil Penalty alleging that Mitsubishi had failed to submit certification reports for some models of air conditioners and heat pumps, DOE discovered Mitsubishi

53

NNSA enters into strategic partnership to promote cybersecurity | National  

NLE Websites -- All DOE Office Websites (Extended Search)

enters into strategic partnership to promote cybersecurity | National enters into strategic partnership to promote cybersecurity | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA enters into strategic partnership to promote cybersecurity NNSA enters into strategic partnership to promote cybersecurity Posted By Bob Osborn, NNSA Associate Administrator for Information

54

Entering Invoices Through the Vendor Inquiry Payment Electronic Reporting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entering Invoices Through the Vendor Inquiry Payment Electronic Entering Invoices Through the Vendor Inquiry Payment Electronic Reporting System (VIPERS) Entering Invoices Through the Vendor Inquiry Payment Electronic Reporting System (VIPERS) The purpose of this document is to provide an overview of the process to submit invoices electronically to the Oak Ridge Financial Service Center (ORFSC) and interface them into STARS using the Vendor Inquiry Payment Electronic Reporting System (VIPERS). It is recommended that the plan outlined below be used by Department of Energy vendors to submit electronic invoices and to check status of outstanding invoice payments. Entering Invoices Through the Vendor Inquiry Payment Electronic Reporting System (VIPERS) More Documents & Publications Smart Grid Investment Grant Invoice Template and Instructions

55

Multiphoton Laser Processing: A Unique and Simple Way to Enter...  

NLE Websites -- All DOE Office Websites (Extended Search)

Multiphoton Laser Processing: A Unique and Simple Way to Enter the Nano-Platform Speaker(s): Andreas Ostendorf Date: January 27, 2006 - 12:00pm Location: Bldg. 90 Multiphoton laser...

56

NREL: Education Programs - Wind for Schools Project Enters 2013...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind for Schools Project Enters 2013 with 124 Turbine Installations March 29, 2013 This past winter, NREL hosted the Sixth Annual Wind for Schools Summit. Forty-six attendees...

57

NREL: Technology Deployment - Wind for Schools Project Enters...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind for Schools Project Enters 2013 with 124 Turbine Installations March 29, 2013 This past winter, NREL hosted the Sixth Annual Wind for Schools Summit. Forty-six attendees...

58

NREL: Education Programs - Wind for Schools Project Enters 2013...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enters 2013 with 124 Turbine Installations and Lessons to Share: A Wind Powering America Success Story January 28, 2013 On January 14-15, 2013, Wind Powering America hosted its...

59

NREL: Wind Research - Wind for Schools Project Enters 2013 with...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Schools Project Enters 2013 with 124 Turbine Installations and Lessons to Share: A Wind Powering America Success Story January 28, 2013 On January 14-15, 2013, Wind Powering...

60

AEO2011: Primary Natural Gas Flows Entering NGTDM Region from...  

Open Energy Info (EERE)

Primary Natural Gas Flows Entering NGTDM Region from Neighboring Regions

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

2009 Energy Consumption Per Person  

Energy.gov (U.S. Department of Energy (DOE))

Per capita energy consumption across all sectors of the economy. Click on a state for more information.

62

Reducing Greenhouse Emissions and Fuel Consumption  

E-Print Network (OSTI)

the Emissions and Fuel Consumption Impacts of IntelligentTravel Time, Fuel Consumption and Weigh Station Efficiency.EMISSIONS AND FUEL CONSUMPTION - Sustainable Approaches for

Shaheen, Susan; Lipman, Timothy

2007-01-01T23:59:59.000Z

63

Essays on consumption cycles and corporate finance  

E-Print Network (OSTI)

and the consumption cycle . . . . . . . . . . . . .3.1.6 Optimal consumption, expenditures and1.3.2 Optimal nondurable consumption and durable

Issler, Paulo Floriano

2013-01-01T23:59:59.000Z

64

Milk consumption and acne in adolescent girls  

E-Print Network (OSTI)

Milk consumption and acne in adolescent girls Clement Aassociation between milk consumption and occurrence of acneand 'don't drink milk'. Consumption of the specific types of

2006-01-01T23:59:59.000Z

65

A Note on the Consumption Function  

E-Print Network (OSTI)

Zeldes, S. (1989) ‘ Consumption and Liquidity Constraints:A Note on the Consumption Function Douglas G.Steigerwald Consumption Function The international

Steigerwald, Douglas G

2009-01-01T23:59:59.000Z

66

Stock Market and Consumption: Evidence from China  

E-Print Network (OSTI)

A. 1992. Understanding Consumption. Cambridge, UK: CambridgeStock market wealth and consumption. The Journal of Economic139–146. Stock Market and Consumption: Evidence from China

Hau, Leslie C

2011-01-01T23:59:59.000Z

67

ENERGY CONSUMPTION SURVEY  

U.S. Energy Information Administration (EIA) Indexed Site

5 RESIDENTIAL TRANSPORTATION 5 RESIDENTIAL TRANSPORTATION ENERGY CONSUMPTION SURVEY Prepared for: UNITED STATES DEPARTMENT OF ENERGY ENERGY INFORMATION ADMINISTRATION OFFICE OF ENERGY MARKETS AND END USE ENERGY END USE DIVISION RESIDENTIAL AND COMMERCIAL BRANCH WASHINGTON, DC 20585 Prepared by: THE ORKAND CORPORATION 8484 GEORGIA AVENUE SILVER SPRING, MD 20910 October 1986 Contract Number DE-AC01-84EI19658 TABLE OF CONTENTS FRONT MATTER Index to Program Descriptions........................................... vi List of Exhibits ....................................................... viii Acronyms and Abbreviations ............................................. ix SECTION 1: GENERAL INFORMATION ........................................ 1-1 1.1. Summary ....................................................... 1-1

68

Margins up; consumption down  

SciTech Connect

The results of a survey of dealers in the domestic fuel oil industry are reported. Wholesale prices, reacting to oversupply, decreased as did retail prices; retail prices decreased at a slower rate so profit margins were larger. This trend produced competitive markets as price-cutting became the method for increasing a dealer's share of the profits. Losses to other fuels decreased, when the figures were compared to earlier y; and cash flow was very good for most dealers. In summary, profits per gallon of oil delivered increased, while the consumption of gasoline per customer decreased. 22 tables.

Mantho, M.

1983-09-01T23:59:59.000Z

69

Indexes of Consumption and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Figure on manufacturing production indexes and purchased energy consumption Figure on manufacturing production indexes and purchased energy consumption Source: Energy Information Administration and Federal Reserve Board. History of Shipments This chart presents indices of 14 years (1980-1994) of historical data of manufacturing production indexes and Purchased (Offsite-Produced) Energy consumption, using 1992 as the base year (1992 = 100). Indexing both energy consumption and production best illustrates the trends in output and consumption. Taken separately, these two indices track the relative growth rates within the specified industry. Taken together, they reveal trends in energy efficiency. For example, a steady increase in output, coupled with a decline in energy consumption, represents energy efficiency gains. Likewise, steadily rising energy consumption with a corresponding decline in output illustrates energy efficiency losses.

70

Manufacturing Consumption of Energy 1991--Combined Consumption and Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

< < Welcome to the U.S. Energy Information Administration's Manufacturing Web Site. If you are having trouble, call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of Energy 1991 (Combined Consumption and Fuel Switching) Overview Full Report Tables & Spreadsheets This report presents national-level estimates about energy use and consumption in the manufacturing sector as well as manufacturers' fuel-switching capability. Contact: Stephanie.battle@eia.doe.gov Stephanie Battle Director, Energy Consumption Division Phone: (202) 586-7237 Fax: (202) 586-0018 URL: http://www.eia.gov/emeu/mecs/mecs91/consumption/mecs1a.html File Last Modified: May 25, 1996

71

Residential Energy Consumption Survey Results: Total Energy Consumption,  

Open Energy Info (EERE)

Survey Results: Total Energy Consumption, Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) Dataset Summary Description The Residential Energy Consumption Survey (RECS) is a national survey that collects residential energy-related data. The 2005 survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the U.S. Data were obtained from residential energy suppliers for each unit in the sample to produce the Consumption & Expenditures data. The Consumption & Expenditures and Intensities data is divided into two parts: Part 1 provides energy consumption and expenditures by census region, population density, climate zone, type of housing unit, year of construction and ownership status; Part 2 provides the same data according to household size, income category, race and age. The next update to the RECS survey (2009 data) will be available in 2011.

72

Electrical appliance energy consumption control methods and ...  

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy ...

73

Map Data: State Consumption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumption Map Data: State Consumption stateconsumptionpc2009.csv More Documents & Publications Map Data: Renewable Production Map Data: State Spending...

74

Consumption & Efficiency - Analysis & Projections - U.S ...  

U.S. Energy Information Administration (EIA)

Today in Energy - Commercial Consumption & Efficiency. Short, timely articles with graphs about recent commercial consumption and efficiency ...

75

Enter data into Portfolio Manager | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Enter data into Portfolio Manager Enter data into Portfolio Manager Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager The new ENERGY STAR Portfolio Manager How Portfolio Manager helps you save The benchmarking starter kit Identify your property type Enter data into Portfolio Manager The data quality checker How Portfolio Manager calculates metrics

76

Green academy helps researchers enter the marketplace | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green academy helps researchers enter the marketplace Green academy helps researchers enter the marketplace Green academy helps researchers enter the marketplace March 29, 2010 - 11:07am Addthis Andrew Hargadon teaches a workshop at Green Technology Entrepreneurship Academy in Incline Village, Nevada.
| Photo Courtesy of University of California, Davis Andrew Hargadon teaches a workshop at Green Technology Entrepreneurship Academy in Incline Village, Nevada.
| Photo Courtesy of University of California, Davis Stephen Graff Former Writer & editor for Energy Empowers, EERE Before wading into the green energy sector, there are crucial things every budding entrepreneur should know: think like an investor, know your customer, and prove your research is going to solve a problem. To the business-savvy this advice may seem obvious, but for the

77

Better Buildings Federal Award 2013 Guidelines for Entering | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Guidelines for Entering 2013 Guidelines for Entering Better Buildings Federal Award 2013 Guidelines for Entering October 7, 2013 - 4:40pm Addthis Have Questions? A list of frequently asked questions contains answers to a variety of Better Buildings Federal Award queries. The Better Buildings Federal Award recognizes the Federal Government's highest-performing buildings through a competition to reduce annual energy intensity (Btu per square foot of facility space) on a year-over-year basis. The winner is the Federal building that reduces its energy intensity the most as compared to the previous year. Selecting Applicants Agencies should consider nominating a building based on how well it expects the building to perform in 2013 as compared to 2012, taking into account a wide range of innovative or comprehensive energy management practices being

78

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

ENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . .28 ENERGY CONSUMPTIONENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

79

Energy Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

80

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997  

U.S. Energy Information Administration (EIA)

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997. OVERVIEW: MOST POPULOUS STATES ... Homes with air-conditioning: 95%... with a central air-conditioning system: 83%

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

includes descriptions of the 30 groups that comprise the strata of the Manufacturing Energy Consumption Survey. These are the 20 major industrial groups (two-digit SIC) and...

82

2001 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA)

Residential Energy Consumption Survey ... Office of Management and Budget, Washington, DC 20503. Form EIA-457A (2001) Form Approval: OMB No. 1905-0092 ...

83

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

DOEEIA-0464(91) Distribution Category UC-950 Household Vehicles Energy Consumption 1991 December 1993 Energy Information Administration Office of Energy Markets and End Use U.S....

84

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Information AdministrationManufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas...

85

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

86

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Appendix A How the Survey Was Conducted Introduction The Residential Transportation Energy Consumption Survey (RTECS) was designed by the Energy Information Administration (EIA)...

87

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

B Survey Design, Implementation, and Estimates Introduction The 1991 Manufacturing Energy Consumption Survey (MECS) has been designed by the Energy Information Administration...

88

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

a regular basis at the time of the 1990 RECS personal interviews. Electricity: See Main Heating Fuel. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991...

89

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

AdministrationHousehold Vehicles Energy Consumption 1994 110 Electricity: See Main Heating Fuel. Energy Used in the Home: For electricity or natural gas, the quantity is the...

90

World energy consumption  

Science Conference Proceedings (OSTI)

Historical and projected world energy consumption information is displayed. The information is presented by region and fuel type, and includes a world total. Measurements are in quadrillion Btu. Sources of the information contained in the table are: (1) history--Energy Information Administration (EIA), International Energy Annual 1992, DOE/EIA-0219(92); (2) projections--EIA, World Energy Projections System, 1994. Country amounts include an adjustment to account for electricity trade. Regions or country groups are shown as follows: (1) Organization for Economic Cooperation and Development (OECD), US (not including US territories), which are included in other (ECD), Canada, Japan, OECD Europe, United Kingdom, France, Germany, Italy, Netherlands, other Europe, and other OECD; (2) Eurasia--China, former Soviet Union, eastern Europe; (3) rest of world--Organization of Petroleum Exporting Countries (OPEC) and other countries not included in any other group. Fuel types include oil, natural gas, coal, nuclear, and other. Other includes hydroelectricity, geothermal, solar, biomass, wind, and other renewable sources.

NONE

1995-12-01T23:59:59.000Z

91

Coal consumption | OpenEI  

Open Energy Info (EERE)

consumption consumption Dataset Summary Description Total annual coal consumption by country, 1980 to 2009 (available as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords coal Coal consumption EIA world Data text/csv icon total_coal_consumption_1980_2009quadrillion_btu.csv (csv, 38.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

92

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

(MECS) > MECS 1994 Combined Consumption and Fuel Switching (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption Logo Full Report - (file size 5.4 MB) pages:531 Selected Sections (PDF format) Contents (file size 56 kilobytes, 10 pages). Overview (file size 597 kilobytes, 11 pages). Chapters 1-3 (file size 265 kilobytes, 9 pages). Chapter 4 (file size 1,070 kilobytes, 15 pages). Appendix A - Detailed Tables Tables A1 - A8 (file size 1,031 kilobytes, 139 pages). Tables A9 - A23 (file size 746 kilobytes, 119 pages). Tables A24 - A29 (file size 485 kilobytes, 84 pages). Tables A30 - A44 (file size 338 kilobytes, 39 pages). Appendix B (file size 194 kilobytes, 24 pages). Appendix C (file size 116 kilobytes, 16 pages).

93

Electricity Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description Total annual electricity consumption by country, 1980 to 2009 (billion kilowatthours). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA Electricity Electricity Consumption world Data text/csv icon total_electricity_net_consumption_1980_2009billion_kwh.csv (csv, 50.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

94

Biofuels Consumption | OpenEI  

Open Energy Info (EERE)

Biofuels Consumption Biofuels Consumption Dataset Summary Description Total annual biofuels consumption and production data by country was compiled by the Energy Information Administration (EIA). Data is presented as thousand barrels per day. Source EIA Date Released Unknown Date Updated Unknown Keywords Biofuels Biofuels Consumption EIA world Data text/csv icon total_biofuels_production_2000_2010thousand_barrels_per_day.csv (csv, 9.3 KiB) text/csv icon total_biofuels_consumption_2000_2010thousand_barrels_per_day.csv (csv, 9.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2000 - 2010 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote

95

Validation of Hot Water and Lactic Acid Sprays for the Reduction of Enteric Pathogens on the Surface of Beef Carcasses  

E-Print Network (OSTI)

Escherichia coli O157:H7 and Salmonella have emerged as the most common foodborne enteric pathogens causing human illness from the consumption of beef. By mandate of the U.S. Department of Agriculture (USDA), Food Safety and Inspection Service (FSIS), the industry has implemented a Hazard Analysis and Critical Control Points (HACCP) system that utilize intervention technologies for controlling, preventing, and/or reducing enteric pathogens. In addition, USDA-FSIS has mandated that each facility must validate, monitor, and verify the effectiveness of each intervention implemented to eliminate E. coli O157:H7 and Salmonella. For this study, microbial decontamination interventions at two beef slaughter facilities were validated to demonstrate effectiveness in eliminating or reducing enteric pathogens. The facilities selected utilized either a lactic acid spray treatment or a combination of hot water followed by a lactic acid treatment. At both facilities, mesophilic plate counts (MPC) were significantly (P < 0.05) reduced, and E. coli and coliforms were eliminated below detectable limits at both facilities. No Salmonella positive samples were detected after either facility's intervention sequence. The framework used in this research to validate interventions can also be utilized in the future for yearly verification of the effectiveness of each intervention.

Wright, Kyle D.

2009-12-01T23:59:59.000Z

96

Instructions on Entering Publications into the APS Database  

NLE Websites -- All DOE Office Websites (Extended Search)

Methods to enter user publications into the APS publication database Methods to enter user publications into the APS publication database The APS Publications Database is a searchable compendium of information on results from research at the APS, and the official source for listings of APS-related publications. It is the source for reports to APS review and advisory committees (including the APS Scientific Advisory Committee); the U.S. Department of Energy; and other government agencies. Maintaining complete and up-to-date records is of great importance to the facility and its users. Please note that the database is also the repository for dissertations, abstracts, awards, and invited talks. In this way, we hope to build a comprehensive record of information about research at the APS. We appreciate your help in keeping this important database current, and

97

Media contact: FOR IMMEDIATE RELEASE Diana Hanford September 24, 2012  

E-Print Network (OSTI)

to 22 technology companies working in conjunction with the FAU College of Engineering and ComputerMedia contact: FOR IMMEDIATE RELEASE Diana Hanford September 24, 2012 Ambit Advertising and Public by FAU student-based teams working on industry projects. It also serves as a knowledge resource center

Belogay, Eugene A.

98

Media contact: FOR IMMEDIATE RELEASE Diana Hanford May 4, 2012  

E-Print Network (OSTI)

companies working in conjunction with the FAU College of Engineering and Computer Science, the FAU Charles EMedia contact: FOR IMMEDIATE RELEASE Diana Hanford May 4, 2012 Ambit Advertising and Public working on industry projects. Also included is a dedicated office for the annual FAU Business Plan

Fernandez, Eduardo

99

MobShare: controlled and immediate sharing of mobile images  

Science Conference Proceedings (OSTI)

In this paper we describe the design and implementation of a mobile one picture sharing system MobShare that enables immediate, controlled, and organized sharing of mobile pictures, and the browsing, combining, and discussion of the shared ... Keywords: camera ones, digital image management, multimedia tools, wireless multimedia applications

Risto Sarvas; Mikko Viikari; Juha Pesonen; Hanno Nevanlinna

2004-10-01T23:59:59.000Z

100

Press release For Immediate Release Seattle, USA. June 6, 2008  

E-Print Network (OSTI)

Press release ­ For Immediate Release Seattle, USA. June 6, 2008 Global trade of woody biomass has almost doubled in five years With the increasing demand for woody biomass, global trade of particularly fiber source for energy generation but because of higher demand for renewable energy and increasing

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

US ENC IL Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

IL IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Illinois households spending 2% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

102

US ENC MI Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

MI MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Michigan households spending 6% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

103

US ENC MI Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

MI MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Michigan households spending 6% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

104

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified in Standard Industrial Classification 20 through 39 of the U.S. economy as defined 2 by the Office of Management and Budget. The manufacturing sector is a part of the industrial sector, which also includes mining; construction; and agriculture, forestry, and fishing. The EIA also conducts energy consumption surveys in the residential, commercial buildings, and residential transportation sectors: the Residential Energy 3 Consumption Survey (RECS); the Commercial Buildings Energy Consumption Survey (CBECS); and, until recently, the Residential Transportation Energy Consumption Survey (RTECS).

105

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

17 17 Table C12. Total Energy Consumption, Gross Domestic Product (GDP), Energy Consumption per Real Dollar of GDP, Ranked by State, 2011 Rank Total Energy Consumption Gross Domestic Product (GDP) Energy Consumption per Real Dollar of GDP State Trillion Btu State Billion Chained (2005) Dollars State Thousand Btu per Chained (2005) Dollar 1 Texas 12,206.6 California 1,735.4 Louisiana 19.7 2 California 7,858.4 Texas 1,149.9 Wyoming 17.5 3 Florida 4,217.1 New York 1,016.4 North Dakota 15.4 4 Louisiana 4,055.3 Florida 661.1 Alaska 14.3 5 Illinois 3,977.8 Illinois 582.1 Mississippi 13.8 6 Ohio 3,827.6 Pennsylvania 500.4 Kentucky 13.5

106

US ENC IL Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

IL IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Illinois households spending 2% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

107

Fuel Consumption | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Consumption, CO2 Emissions, And A Simple Connection To the Vehicle Fuel Consumption, CO2 Emissions, And A Simple Connection To the Vehicle Road Load Equation Jan 15 2014 11:30 AM - 12:30 PM Glen E. Johnson Tennessee Tech University, Cookeville Energy and Transportation Science Division Seminar National Transportation Research Center, Room C-04 CONTACT : Email: Andreas Malikopoulos Phone:865.382.7827 Add to Calendar SHARE Ambitious goals have been set to reduce fuel consumption and CO2 emissions over the next generation. Starting from first principles, we will derive relations to connect fuel consumption and carbon dioxide emissions to a vehicle's road load equation. The model suggests approaches to facilitate achievement of future fuel and emissions targets. About the speaker: Dr. Johnson is a 1973 Mechanical Engineering graduate of Worcester

108

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

109

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

W as hi ng to n, DC DOEEIA-0464(94) Distribution Category UC-950 Household Vehicles Energy Consumption 1994 August 1997 Energy Information Administration Office of Energy Markets...

110

Financing retirement consumption and bequests  

E-Print Network (OSTI)

This dissertation consists of three essays that evaluate possible vehicles for financing either retirement consumption or bequests. Chapter 1 compares the use of Roth and tax-deferred retirement accounts for retirement ...

Bishop, Tonja Bowen

2009-01-01T23:59:59.000Z

111

Progressive consumption : strategic sustainable excess  

E-Print Network (OSTI)

Trends in the marketplace show that urban dwellers are increasingly supporting locally produced foods. This thesis argues for an architecture that responds to our cultures consumptive behaviors. Addressing the effects of ...

Bonham, Daniel J. (Daniel Joseph MacLeod)

2007-01-01T23:59:59.000Z

112

Energy consumption of building 39  

E-Print Network (OSTI)

The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further expand our understanding of how the MIT campus consumes energy and ...

Hopeman, Lisa Maria

2007-01-01T23:59:59.000Z

113

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

S Y M n i 1 y 2 i (W i ) (W i 1) , Energy Information Administration, Manufacturing Energy Consumption Survey: Methodological Report 1985. Although this report describes 44...

114

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

C2. Energy Consumption Estimates for Major Energy Sources in Physical Units, 2011 State Coal Natural Gas a Petroleum Nuclear Electric Power Hydro- electric Power f Fuel Ethanol g...

115

Feedback as a means of decreasing residential energy consumption. Report PU/CES 34  

SciTech Connect

When residential units are analyzed in human factor terms, it is apparent that the consumption level feedback (typically a bill, calculated once a month, over all appliances) is inadequate to give the resident useful information about his energy consuming actions. The present study tested the hypothesis that providing immediate feedback to homeowners concerning their daily rate of electric usage would be effective in reducing electric consumption. In the studied homes, central air-conditioning is the largest single source of electric power consumption during the summer. Accordingly, it was possible to predict the household's expected electric consumption in terms of the average daily outdoor temperature. Predicted electric consumption was derived from a previous month's modeling period during which a regression line was fitted to predict consumption from average daily temperature, for each home. Feedback was expressed as a percentage of actual consumption over predicted consumption. Feedback was displayed to homeowners four times a week for approximately one month. The results confirmed the prediction. Before feedback began, the feedback and control groups were consuming electricity at approximately equal rates. During the feedback period, the feedback group used 10.5 percent less electricity. The effectiveness of the feedback procedure was explained in terms of its cueing, motivational, and commitment functions.

Seligman, C.; Darley, J.M.

1976-08-01T23:59:59.000Z

116

OpenEI - Electricity Consumption  

Open Energy Info (EERE)

Annual Electricity Annual Electricity Consumption (1980 - 2009) http://en.openei.org/datasets/node/877 Total annual electricity consumption by country, 1980 to 2009 (billion kilowatthours). Compiled by Energy Information Administration (EIA). License

Type of License:  Other (please specify below)
Source of data

117

Manufacturing consumption of energy 1991  

SciTech Connect

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

1994-12-01T23:59:59.000Z

118

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 District Heat Consumption District Heat Expenditures per Building (million Btu) per Square Foot...

119

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 All Buildings Using District Heat District Heat Consumption District Heat Expenditures Number of...

120

Commercial Buildings Energy Consumption and Expenditures 1992...  

U.S. Energy Information Administration (EIA) Indexed Site

1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Natural gas consumption reflects shifting sectoral patterns ...  

U.S. Energy Information Administration (EIA)

U.S. natural gas consumption since 1997 reflects shifting patterns. Total U.S. natural gas consumption rose 7% between 1997 and 2011, but this modest ...

122

Residential Energy Consumption Survey (RECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

RECS data show decreased energy consumption per household. RECS 2009 — Release date: June 6, 2012. Total United States energy consumption in homes has remained ...

123

Approaches for Monitoring and Reduction of Energy Consumption in the Home  

E-Print Network (OSTI)

By now, energy consumption in the home or even for single devices has not been monitored widely, except for billing and accounting reasons. Consumers are not able to track individual load profiles, therefore positive or negative trends in consumption were not noticed immediately. This work is based on the importance of direct feedback and its savings potential in terms of energy consumption: If you can’t measure it, you can’t improve it. We compare various monitoring approaches such as metering on device level, smart meters and non intrusive load monitoring of electrical devices. Furthermore, the In a world of highly developed countries and emerging economics, energy supply plays a major role. In a modern household, hardly any device runs without electricity. Load profiles are the overlay of a household’s energy demand. Consumers are not able to keep track of individual energy consumption. The basic idea of this work is: If you

Faculty Of Informatics; Tobias Hochwallner; Lukas Lang

2009-01-01T23:59:59.000Z

124

Manhattan Project: The War Enters Its Final Phase, 1945  

Office of Scientific and Technical Information (OSTI)

American troops approaching the beach, D-Day, June 6, 1944. THE WAR ENTERS ITS FINAL PHASE American troops approaching the beach, D-Day, June 6, 1944. THE WAR ENTERS ITS FINAL PHASE (1945) Events > Dawn of the Atomic Era, 1945 The War Enters Its Final Phase, 1945 Debate Over How to Use the Bomb, Late Spring 1945 The Trinity Test, July 16, 1945 Safety and the Trinity Test, July 1945 Evaluations of Trinity, July 1945 Potsdam and the Final Decision to Bomb, July 1945 The Atomic Bombing of Hiroshima, August 6, 1945 The Atomic Bombing of Nagasaki, August 9, 1945 Japan Surrenders, August 10-15, 1945 The Manhattan Project and the Second World War, 1939-1945 Harry Truman being sworn in as president, April 12, 1945. On April 12, 1945, only weeks before Germany's unconditional surrender on May 7, President Franklin Roosevelt died suddenly in Warm Springs, Georgia. Vice President Harry S. Truman, a veteran of the United States Senate, was now president. Truman had not been privy to many of Roosevelt's internal policy deliberations and had to be briefed extensively in his first weeks in office. One of these briefings, provided by Secretary of War Henry Stimson on April 25, concerned S-1 (the Manhattan Project). Stimson, with Leslie Groves present during part of the meeting, traced the history of the Manhattan Project, summarized its status, and detailed the timetable for testing and combat delivery. Truman asked numerous questions during the forty-five minute meeting and made it clear that he understood the relevance of the atomic bomb to upcoming diplomatic and military initiatives.

125

Today in Energy - Residential Consumption & Efficiency  

Reports and Publications (EIA)

Short, timely articles with graphs about recent residential consumption and efficiency issues and trends

126

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

State Energy Data System ... An Assessment of EIA's Building Consumption Data. ... Commercial Buildings - CBECS. Manufacturing - MECS.

127

Railroad fuel-oil consumption in 1928  

SciTech Connect

Data are presented, by districts, covering the consumption of fuel oil for various uses by railroads.

Redfield, A.H.

1930-01-01T23:59:59.000Z

128

Today in Energy - Commercial Consumption & Efficiency  

Reports and Publications (EIA)

Short, timely articles with graphs about recent commercial consumption and efficiency issues and trends

129

US WSC TX Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

130

US WSC TX Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

131

US ESC TN Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

ESC TN ESC TN Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ESC TN Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US ESC TN Site Consumption kilowatthours $0 $400 $800 $1,200 $1,600 US ESC TN Expenditures dollars ELECTRICITY ONLY average per household * Tennessee households consume an average of 79 million Btu per year, about 12% less than the U.S. average. * Average electricity consumption for Tennessee households is 33% higher than the national average and among the highest in the nation, but spending for electricity is closer to average due to relatively low electricity prices. * Tennessee homes are typically newer, yet smaller in size, than homes in other parts of the country.

132

US ENC WI Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

120 120 US ENC WI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC WI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC WI Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US ENC WI Expenditures dollars ELECTRICITY ONLY average per household * Wisconsin households use 103 million Btu of energy per home, 15% more than the U.S. average. * Lower electricity and natural gas rates compared to states with a similar climate, such as New York, result in households spending 5% less for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S.

133

US ENC WI Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

120 120 US ENC WI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC WI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC WI Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US ENC WI Expenditures dollars ELECTRICITY ONLY average per household * Wisconsin households use 103 million Btu of energy per home, 15% more than the U.S. average. * Lower electricity and natural gas rates compared to states with a similar climate, such as New York, result in households spending 5% less for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S.

134

OpenEI - Energy Consumption  

Open Energy Info (EERE)

Commercial and Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States http://en.openei.org/datasets/node/961 This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols).  This dataset also includes the consumption/residential/">Residential Energy Consumption Survey (RECS) for statistical references of building types

135

Monitoring Energy Consumption of Smartphones  

E-Print Network (OSTI)

With the rapid development of new and innovative applications for mobile devices like smartphones, advances in battery technology have not kept pace with rapidly growing energy demands. Thus energy consumption has become a more and more important issue of mobile devices. To meet the requirements of saving energy, it is critical to monitor and analyze the energy consumption of applications on smartphones. For this purpose, we develop a smart energy monitoring system called SEMO for smartphones using Android operating system. It can profile mobile applications with battery usage information, which is vital for both developers and users.

Ding, Fangwei; Zhang, Wei; Zhao, Xuhai; Ma, Chengchuan

2012-01-01T23:59:59.000Z

136

The 1997 Residential Energy Consumption Survey -- Two Decades  

U.S. Energy Information Administration (EIA)

1997 Residential Energy Consumption Survey presents two decades of changes in energy consumption related Household Characteristics

137

US NE MA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

NE MA NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption results in households spending 22% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S. However, spending on electricity is closer to the national average due to higher

138

US NE MA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

NE MA NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption results in households spending 22% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S. However, spending on electricity is closer to the national average due to higher

139

Conspicuous Consumption and Dynamic Pricing  

Science Conference Proceedings (OSTI)

How do firms develop marketing strategy when consumers seek to satisfy both quality and status-related considerations? We develop an analytical model to study this issue, examining both pricing and product management decisions in markets for conspicuous ... Keywords: conspicuous consumption, durable goods, dynamic pricing, game theory, status

Raghunath Singh Rao, Richard Schaefer

2013-09-01T23:59:59.000Z

140

Reduces a processor's energy consumption  

E-Print Network (OSTI)

). Clearly, this is energy inefficient and wasteful of energy. 2 More precisely, the faster that a processor decide that energy is being wasted and will decrease the frequency/voltage level. Translation: LowerReduces a processor's energy consumption by up to 70% Diminishes greenhouse gas emissions Improves

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Media Release Media Contact FOR IMMEDIATE RELEASE Heather Rasmussen  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Release Media Contact Release Media Contact FOR IMMEDIATE RELEASE Heather Rasmussen September 22, 2011 Communication Specialist (801) 819-7623 hrasmussen@wecc.biz WECC releases its first-ever transmission plan for the Western Interconnection The Western Electricity Coordinating Council (WECC) announced the release of its first 10-Year Regional Transmission Plan (Plan) for the Western Interconnection. Looking ahead to 2020, the Plan focuses on how to meet the Western Interconnection's transmission requirements; including transmission expansion, new generation development, adapting to local, state/provincial, and federal policy changes, and their associated financial and environmental costs.

142

NIST HANDBOOK 150-17 ANNEX F CHECKLIST (REV. 2012-04-05) PAGE 1 OF 3 Enter Date: Enter NVLAP Lab Code  

E-Print Network (OSTI)

NIST HANDBOOK 150-17 ANNEX F CHECKLIST (REV. 2012-04-05) PAGE 1 OF 3 Enter Date: Enter NVLAP Lab Code: NIST HANDBOOK 150-17 Annex F CHECKLIST DHS Identity and Privilege Credential Management Testing Handbook 150-17, Cryptographic and Security Testing, for the DHS Identity and Privilege Credential

Magee, Joseph W.

143

NIST HANDBOOK 150-23 CHECKLIST (REV. 2010-04-13) PAGE 1 OF 11 Enter Date: Enter NVLAP Lab Code  

E-Print Network (OSTI)

NIST HANDBOOK 150-23 CHECKLIST (REV. 2010-04-13) PAGE 1 OF 11 Enter Date: Enter NVLAP Lab Code: NIST HANDBOOK 150-23 CHECKLIST RADIATION DETECTION INSTRUMENTS Instructions to the Assessor: This checklist addresses specific accreditation requirements prescribed in NIST Handbook 150-23, Radiation

Magee, Joseph W.

144

NIST HANDBOOK 150-9 CHECKLIST (REV. 2011-10-20) PAGE 1 OF 19 Enter Date: Enter NVLAP Lab Code  

E-Print Network (OSTI)

NIST HANDBOOK 150-9 CHECKLIST (REV. 2011-10-20) PAGE 1 OF 19 Enter Date: Enter NVLAP Lab Code: NIST HANDBOOK 150-9 CHECKLIST WOOD-BASED PRODUCTS Instructions to the Assessor: This checklist addresses specific accreditation requirements prescribed in NIST Handbook 150-9, Wood-Based Products. All items

Magee, Joseph W.

145

NIST HANDBOOK 150-17 ANNEX E CHECKLIST (REV. 2013-05-14) PAGE 1 OF 3 Enter Date: Enter NVLAP Lab Code  

E-Print Network (OSTI)

NIST HANDBOOK 150-17 ANNEX E CHECKLIST (REV. 2013-05-14) PAGE 1 OF 3 Enter Date: Enter NVLAP Lab Code: NIST HANDBOOK 150-17 Annex E CHECKLIST Security Content Automation Protocol Testing Instructions to the Assessor: This checklist addresses specific accreditation requirements prescribed in NIST Handbook 150

Magee, Joseph W.

146

NIST HANDBOOK 150-6 CHECKLIST (REV. 2011-10-20) PAGE 1 OF 18 Enter Date: Enter NVLAP Lab Code  

E-Print Network (OSTI)

NIST HANDBOOK 150-6 CHECKLIST (REV. 2011-10-20) PAGE 1 OF 18 Enter Date: Enter NVLAP Lab Code: NIST HANDBOOK 150-6 CHECKLIST CARPET AND CARPET CUSHION TESTING PROGRAM Instructions to the Assessor: This checklist addresses specific accreditation requirements prescribed in NIST Handbook 150-6, Carpet and Carpet

Magee, Joseph W.

147

NIST HANDBOOK 150-31 CHECKLIST (REV. 2012-01-05) PAGE 1 OF 13 Enter Date: Enter NVLAP Lab Code  

E-Print Network (OSTI)

NIST HANDBOOK 150-31 CHECKLIST (REV. 2012-01-05) PAGE 1 OF 13 Enter Date: Enter NVLAP Lab Code: NIST HANDBOOK 150-31 CHECKLIST HEALTHCARE INFORMATION TECHNOLOGY TESTING Instructions to the Assessor: This checklist addresses specific accreditation requirements prescribed in NIST Handbook 150-31, Healthcare

Magee, Joseph W.

148

NIST HANDBOOK 150-15 CHECKLIST (REV. 2011-10-20) PAGE 1 OF 16 Enter Date: Enter NVLAP Lab Code  

E-Print Network (OSTI)

NIST HANDBOOK 150-15 CHECKLIST (REV. 2011-10-20) PAGE 1 OF 16 Enter Date: Enter NVLAP Lab Code: NIST HANDBOOK 150-15 CHECKLIST THERMAL INSULATION MATERIALS TESTING PROGRAM Instructions to the Assessor: This checklist addresses specific accreditation requirements prescribed in NIST Handbook 150

Magee, Joseph W.

149

NIST HANDBOOK 150-8 CHECKLIST (REV. 2011-04-25) PAGE 1 OF 11 Enter Date: Enter NVLAP Lab Code  

E-Print Network (OSTI)

NIST HANDBOOK 150-8 CHECKLIST (REV. 2011-04-25) PAGE 1 OF 11 Enter Date: Enter NVLAP Lab Code: NIST HANDBOOK 150-8 CHECKLIST ACOUSTICAL TESTING SERVICES Instructions to the Assessor: This checklist addresses specific accreditation requirements prescribed in NIST Handbook 150-8, Acoustical Testing Services (ACO

Magee, Joseph W.

150

NIST HANDBOOK 150-21 CHECKLIST (REV. 2011-07-12) PAGE 1 OF 7 Enter Date: Enter NVLAP Lab Code  

E-Print Network (OSTI)

NIST HANDBOOK 150-21 CHECKLIST (REV. 2011-07-12) PAGE 1 OF 7 Enter Date: Enter NVLAP Lab Code: NIST HANDBOOK 150-21 CHECKLIST Chemical Calibration: Certifiers of Spectrophotometric NTRMs Instructions to the Assessor: This checklist addresses specific accreditation requirements prescribed in NIST Handbook 150

Magee, Joseph W.

151

NIST HANDBOOK 150-18 CHECKLIST (REV. 2009-10-28) PAGE 1 OF 11 Enter Date: Enter NVLAP Lab Code  

E-Print Network (OSTI)

NIST HANDBOOK 150-18 CHECKLIST (REV. 2009-10-28) PAGE 1 OF 11 Enter Date: Enter NVLAP Lab Code: NIST HANDBOOK 150-18 CHECKLIST FASTENERS AND METALS TESTING PROGRAM Instructions to the Assessor: This checklist addresses specific accreditation requirements prescribed in NIST Handbook 150-18, Fasteners

Magee, Joseph W.

152

NIST HANDBOOK 150-3 CHECKLIST (REV. 2011-02-18) PAGE 1 OF 26 Enter Date: Enter NVLAP Lab Code  

E-Print Network (OSTI)

NIST HANDBOOK 150-3 CHECKLIST (REV. 2011-02-18) PAGE 1 OF 26 Enter Date: Enter NVLAP Lab Code: NIST HANDBOOK 150-3 CHECKLIST BULK ASBESTOS ANALYSIS Instructions to the Assessor: This checklist addresses specific accreditation requirements prescribed in NIST Handbook 150-3, Bulk Asbestos Analysis (2006 edition

Magee, Joseph W.

153

NIST HANDBOOK 150-17 ANNEX B CHECKLIST (REV. 2012-04-05) PAGE 1 OF 7 Enter Date: Enter NVLAP Lab Code  

E-Print Network (OSTI)

NIST HANDBOOK 150-17 ANNEX B CHECKLIST (REV. 2012-04-05) PAGE 1 OF 7 Enter Date: Enter NVLAP Lab Code: NIST HANDBOOK 150-17 Annex B CHECKLIST Cryptographic Algorithms and Cryptographic Modules Testing Handbook 150-17, Cryptographic and Security Testing, for Cryptographic Algorithms Validation (17CAV

Magee, Joseph W.

154

NIST HANDBOOK 150-1 CHECKLIST (REV. 2010-12-30) PAGE 1 OF 14 Enter Date: Enter NVLAP Lab Code  

E-Print Network (OSTI)

NIST HANDBOOK 150-1 CHECKLIST (REV. 2010-12-30) PAGE 1 OF 14 Enter Date: Enter NVLAP Lab Code: NIST HANDBOOK 150-1 CHECKLIST ENERGY EFFICIENT LIGHTING PRODUCTS PROGRAM Instructions to the Assessor: This checklist addresses specific accreditation requirements prescribed in NIST Handbook 150-1, Energy Efficient

Magee, Joseph W.

155

NIST HANDBOOK 150-17 ANNEX C CHECKLIST (REV. 2012-04-05) PAGE 1 OF 3 Enter Date: Enter NVLAP Lab Code  

E-Print Network (OSTI)

NIST HANDBOOK 150-17 ANNEX C CHECKLIST (REV. 2012-04-05) PAGE 1 OF 3 Enter Date: Enter NVLAP Lab Code: NIST HANDBOOK 150-17 Annex C CHECKLIST Personal Identity Verification (PIV) Testing Instructions to the Assessor: This checklist addresses specific accreditation requirements prescribed in NIST Handbook 150

Magee, Joseph W.

156

NIST HANDBOOK 150-4 CHECKLIST (REV. 2012-01-24) PAGE 1 OF 15 Enter Date: Enter NVLAP Lab Code  

E-Print Network (OSTI)

NIST HANDBOOK 150-4 CHECKLIST (REV. 2012-01-24) PAGE 1 OF 15 Enter Date: Enter NVLAP Lab Code: NIST HANDBOOK 150-4 CHECKLIST IONIZING RADIATION DOSIMETRY TESTING PROGRAM Instructions to the Assessor: This checklist addresses specific accreditation requirements prescribed in NIST Handbook 150-4, Ionizing

Magee, Joseph W.

157

NIST HANDBOOK 150-17 ANNEX D CHECKLIST (REV. 2012-04-05) PAGE 1 OF 4 Enter Date: Enter NVLAP Lab Code  

E-Print Network (OSTI)

NIST HANDBOOK 150-17 ANNEX D CHECKLIST (REV. 2012-04-05) PAGE 1 OF 4 Enter Date: Enter NVLAP Lab Code: NIST HANDBOOK 150-17 Annex D CHECKLIST General Services Administration Precursor (GSAP) Testing Handbook 150-17, Cryptographic and Security Testing, for the General Services Administration Precursor test

Magee, Joseph W.

158

Enter Search Term Enter ED Online ID Advanced Search | Help Electronic Design Home Recent Articles Back Issues Featured Vendors Discussion Forums Subscribe / Renew  

E-Print Network (OSTI)

Enter Search Term Enter ED Online ID Advanced Search | Help Electronic Design Home Recent Articles- analyzer vendors have kept pace with industry demands in terms of speed and functionality. However, in many tools. Logic- analyzer vendors have kept pace with industry demands in terms of speed and functionality

LaMeres, Brock J.

159

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Energy Consumption Survey Forms Form EIA-846A (4-6-95) U.S. Department of Commerce Bureau of the Census Acting as Collecting and Compiling Agent For 1994 MANUFACTURING ENERGY CONSUMPTION SURVEY Public reporting burden for this collection of information is estimated to average 9 hours per response, including the time of reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Energy Information Administration, Office of Statistical Standards, EI-73, 1707 H-Street, NW, Washington, DC 20585; and to the Office of Information and Regulatory Affairs, Office of

160

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the tables. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle miles traveled (VMT) or gallons consumed; (2) Tables of per household statistics such as VMT per household; and (3) Tables of per vehicle statistics such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model year data, or family income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table. Row and Column Factors These tables present estimates

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

US WNC MO Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

WNC MO WNC MO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WNC MO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US WNC MO Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US WNC MO Expenditures dollars ELECTRICITY ONLY average per household * Missouri households consume an average of 100 million Btu per year, 12% more than the U.S. average. * Average household energy costs in Missouri are slightly less than the national average, primarily due to historically lower residential electricity prices in the state. * Missouri homes are typically larger than homes in other states and are more likely to be attached or detached single-family housing units.

162

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

2(94) 2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. ii Energy Information Administration/Manufacturing Consumption of Energy 1994 Contacts This publication was prepared by the Energy Information Administration (EIA) under the general direction of W. Calvin

163

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

E E U.S. Census Regions and Divisions 489 Energy Information Administration/Manufacturing Consumption of Energy 1994 Source: U.S. Department of Commerce, Bureau of the Census, Statistical Abstract of the United States,1996 (Washington, DC, October 1996), Figure 1. Appendix E U.S. Census Regions and Divisions Appendix F Descriptions of Major Industrial Groups and Selected Industries Executive Office of the President, Office of Management and Budget, Standard Industrial Classification Manual, 1987, pp. 67-263. 54 493 Energy Information Administration/Manufacturing Consumption of Energy 1994 Appendix F Descriptions of Major Industrial Groups and Selected Industries This appendix contains descriptions of industrial groups and selected industries taken from the Standard Industrial

164

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration/Manufacturing Consumption of Energy 1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas restructuring, gas pipelines were opened to multiple users. Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, arrange the transportation, and have the natural gas delivered either by the local distribution company or directly through a connecting pipeline. More recently, the electricity markets have been undergoing change. When Congress passed the Energy Policy Act of 1992, requirements were included not only to open access to the ownership of electricity generation, but also to open access to the transmission lines so that wholesale trade in electricity would be possible. Now several States, including California and

165

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

166

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

6 6 State Energy Data 2011: Consumption Table C11. Energy Consumption by Source, Ranked by State, 2011 Rank Coal Natural Gas a Petroleum b Retail Electricity Sales State Trillion Btu State Trillion Btu State Trillion Btu State Trillion Btu 1 Texas 1,695.2 Texas 3,756.9 Texas 5,934.3 Texas 1,283.1 2 Indiana 1,333.4 California 2,196.6 California 3,511.4 California 893.7 3 Ohio 1,222.6 Louisiana 1,502.9 Louisiana 1,925.7 Florida 768.0 4 Pennsylvania 1,213.0 New York 1,246.9 Florida 1,680.3 Ohio 528.0 5 Illinois 1,052.2 Florida 1,236.6 New York 1,304.0 Pennsylvania 507.6 6 Kentucky 1,010.6 Pennsylvania 998.6 Pennsylvania 1,255.6 New York 491.5

167

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

3. Energy Consumption per Capita by End-Use Sector, Ranked by State, 2011 3. Energy Consumption per Capita by End-Use Sector, Ranked by State, 2011 Rank Residential Sector Commercial Sector Industrial Sector Transportation Sector Total Consumption State Million Btu State Million Btu State Million Btu State Million Btu State Million Btu 1 North Dakota 99.8 District of Columbia 193.1 Louisiana 585.8 Alaska 277.3 Wyoming 974.7 2 West Virginia 90.9 Wyoming 119.2 Wyoming 568.2 Wyoming 200.7 Louisiana 886.5 3 Missouri 89.4 North Dakota 106.9 Alaska 435.7 North Dakota 172.8 Alaska 881.3 4 Tennessee 87.8 Alaska 94.1 North Dakota 388.9 Louisiana 158.0 North Dakota 768.4 5 Kentucky 87.4 Montana 78.4 Iowa 243.4 Oklahoma 122.3 Iowa 493.6

168

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

4) 4) June 2007 State Energy Consumption Estimates 1960 Through 2004 2004 Consumption Summary Tables Table S1. Energy Consumption Estimates by Source and End-Use Sector, 2004 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Coal Natural Gas c Petroleum Nuclear Electric Power Hydro- electric Power d Biomass e Other f Net Interstate Flow of Electricity/Losses g Residential Commercial Industrial b Transportation Alabama 2,159.7 853.9 404.0 638.5 329.9 106.5 185.0 0.1 -358.2 393.7 270.2 1,001.1 494.7 Alaska 779.1 14.1 411.8 334.8 0.0 15.0 3.3 0.1 0.0 56.4 63.4 393.4 266.0 Arizona 1,436.6 425.4 354.9 562.8 293.1 69.9 8.7 3.6 -281.7 368.5 326.0 231.2 511.0 Arkansas 1,135.9 270.2 228.9 388.3 161.1 36.5 76.0 0.6 -25.7 218.3 154.7 473.9 288.9 California 8,364.6 68.9 2,474.2 3,787.8 315.6 342.2

169

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9) 9) June 2011 State Energy Consumption Estimates 1960 Through 2009 2009 Consumption Summary Tables Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2009 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity/ Losses f Net Electricity Imports Residential Commercial Industrial b Transportation Coal Natural Gas c Petroleum d Total Alabama 1,906.8 631.0 473.9 583.9 1,688.8 415.4 272.9 -470.3 0.0 383.2 266.0 788.5 469.2 Alaska 630.4 14.5 344.0 255.7 614.1 0.0 16.3 0.0 (s) 53.4 61.0 325.4 190.6 Arizona 1,454.3 413.3 376.7 520.8 1,310.8 320.7 103.5 -279.9 -0.8 400.8 352.1 207.8 493.6 Arkansas 1,054.8 264.1 248.1 343.1 855.3 158.7 126.5 -85.7 0.0 226.3 167.0 372.5

170

Household vehicles energy consumption 1994  

SciTech Connect

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

171

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C31A. Natural Gas Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Natural Gas Consumption...

172

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Next CBECS will be conducted in 2007 Table C25A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption...

173

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C32A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption...

174

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C10A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption...

175

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C30A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption...

176

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Next CBECS will be conducted in 2007 Table C35A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption...

177

Benefits vs. risks of fish consumption  

Science Conference Proceedings (OSTI)

The benefits of fish consumption outweigh the risks, according to a joint expert consultation released in October 2011 by two United Nations agencies. Benefits vs. risks of fish consumption News Inform Magazine Inform Archives Health Nutrition Omega

178

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

A B C D E F G H I J K L M N O P Q R S T U V W XYZ ‹ Consumption & Efficiency Residential Energy Consumption Survey (RECS) Glossary ...

179

State energy data report 1992: Consumption estimates  

SciTech Connect

This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

Not Available

1994-05-01T23:59:59.000Z

180

Residential Energy Consumption Survey Data Tables  

U.S. Energy Information Administration (EIA)

Below are historical data tables from the Residential Energy Consumption Survey (RECS). These tables cover the total number of households ...

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy Consumption and Expenditures RECS 2001  

U.S. Energy Information Administration (EIA)

Water Heating. Space Heating. Appliances. Air-Conditioning. About the Data. Tables: Total Energy Consumption in U.S ...

182

Consumption & Efficiency - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Consumption & Efficiency. Energy use in homes, commercial buildings, ... State Energy Data System: Noncombustible Renewable Energy for 2011 ...

183

EIA - Analysis of Natural Gas Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption 2010 Natural Gas Year-In-Review 2009 This is a special report that provides an overview of the natural gas industry and markets in 2009 with special focus on the first complete set of supply and disposition data for 2009 from the Energy Information Administration. Topics discussed include natural gas end-use consumption trends, offshore and onshore production, imports and exports of pipeline and liquefied natural gas, and above-average storage inventories. Categories: Prices, Production, Consumption, Imports/Exports & Pipelines, Storage (Released, 7/9/2010, Html format) Trends in U.S. Residential Natural Gas Consumption This report presents an analysis of residential natural gas consumption trends in the United States through 2009 and analyzes consumption trends for the United States as a whole (1990 through 2009) and for each Census Division (1998 through 2009). It examines a long-term downward per-customer consumption trend and analyzes whether this trend persists across Census Divisions. The report also examines some of the factors that have contributed to the decline in per-customer consumption. To provide a more meaningful measure of per-customer consumption, EIA adjusted consumption data presented in the report for weather. Categories: Consumption (Released, 6/23/2010, pdf format)

184

Mathematical models of natural gas consumption  

E-Print Network (OSTI)

Mathematical models of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan Vazler , Marijana Zeki-Susac ksabo of natural gas consumption hourly fore- cast on the basis of hourly movement of temperature and natural gas

Scitovski, Rudolf

185

Nevada Field Office News News Media Contact: For Immediate Release:  

NLE Websites -- All DOE Office Websites (Extended Search)

Nevada Field Office News Nevada Field Office News News Media Contact: For Immediate Release: Darwin J. Morgan, 702-295-3521 October 22, 2013 Darwin.Morgan@nnsa.doe.gov Kelly K. Snyder, 702-295-3521 Kelly.Snyder@nnsa.doe.gov Annual Environmental Monitoring Report Released The Nevada National Security Site (NNSS) Environmental Report for 2012 has been released and is available on-line at www.nv.energy.gov/library/publications/aser.aspx. This document is a collection of results from environmental activities, such as air and groundwater monitoring and ecological surveys, performed at the NNSS and offsite facilities from January through December 2012. The report includes estimates of radiological exposure to the public from operations and legacy

186

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network (OSTI)

2008 Standby Power Consumption Report”, March. http://of measurement for the power consumption of audio, video andand Low Power Mode Energy Consumption”, Energy Efficiency in

Park, Won Young

2011-01-01T23:59:59.000Z

187

Addressing Water Consumption of Evaporative Coolers with Greywater  

E-Print Network (OSTI)

5 3. Water Consumption of Evaporative7 3.1.2. Water Consumption Due to9 3.1.4. Water Consumption due to

Sahai, Rashmi

2013-01-01T23:59:59.000Z

188

Alcohol consumption, medical conditions and health behavior in older adults  

E-Print Network (OSTI)

Alcohol consumption In press, American JournalHealth Behavior Alcohol Consumption, Medical Conditions andin the association of alcohol consumption with health and

Satre, Derek; Gordon, Nancy P.; Weisner, Constance

2007-01-01T23:59:59.000Z

189

Whole-house measurements of standby power consumption  

E-Print Network (OSTI)

Whole-House Measurements of Standby Power Consumption" InStudy on Miscellaneous Standby Consumption of HouseholdA. , Murakoshi, C. 1997. Standby Electricity Consumption in

Ross, J.P.; Meier, Alan

2000-01-01T23:59:59.000Z

190

Modelling the impact of user behaviour on heat energy consumption  

E-Print Network (OSTI)

strategies impact on energy consumption in residentialBEHAVIOUR ON HEAT ENERGY CONSUMPTION Nicola Combe 1 ,2 ,nearly 60% of domestic energy consumption and 27% of total

Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

2011-01-01T23:59:59.000Z

191

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network (OSTI)

and Low Power Mode Energy Consumption”, Energy Efficiency inEnergy Consumption ..26 3.1.3. 3D TV Energy Consumption and Efficiency

Park, Won Young

2011-01-01T23:59:59.000Z

192

2009 Energy Consumption Per Person | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home 2009 Energy Consumption Per Person 2009 Energy Consumption Per Person 2009 Energy Consumption...

193

DOE/EIA-0321/HRIf Residential Energy Consumption Survey. Consumption  

Gasoline and Diesel Fuel Update (EIA)

/HRIf /HRIf Residential Energy Consumption Survey. Consumption and Expenditures, April 1981 Through March 1982 an Part I: National Data Energy Information Administration Washington, D.C. (202) 20fr02 'O'Q 'uoifkjjUSBM ujiuud juaoiujeAog 'S'n siuawnooQ jo luapuaiuuadns - 0088-292 (202) 98S02 '0'Q 8f 0-d I 6ujp|ing uoiieflSjUjiup v UOIIBUJJOJU | ABjau 3 02-13 'jaiuao UOIJBUJJOJUI XBjaug IBUO!;BN noA pasopua s; uujoi japjo uy 'MO|aq jeadde sjaqoinu auoydajaj PUB sassajppv 'OI3N 9>4i oi papajip aq pinoqs X6jaue uo suotjsenQ '(OIBN) J9»ueo aqjeiMJO^ui ASjaug (BUOIJEN s,vi3 QMi JO OdO 941 UUGJJ peuiBiqo eq ABOI suoijBonqnd (vi3) UO!JBJ;S!UILUPV UOIIBUUJO|U| XBjeug jaiflo PUB SJMJ p ssBiiojnd PUB UOIIBLUJO^JI 6uuepjQ (Od9) 90IWO Bujjuud luetuujaAOQ -g'n 'sjuaiunooa p juapuaiuuedng aqt LUOJI aiqB||BAB si uoHBOjiqnd sjt|i

194

Figure 1.6 State-Level Energy Consumption Estimates and Estimated ...  

U.S. Energy Information Administration (EIA)

Figure 1.6 State-Level Energy Consumption Estimates and Estimated Consumption per Capita, 2010 Consumption Consumption per Capita

195

Grupe Homes Enters the Whole-House Retrofit Market  

Science Conference Proceedings (OSTI)

This article for HomeEnergy Magazine, a trade magazine on energy efficient home construction, retrofitting, remodeling, and research, describes retrofit projects by Grupe Homes of Sacramento, California, a production builder who has worked with DOE's Building America program on energy-efficient home demonstration projects. In this project, The article is a case study of Grupe's decision to enter the energy efficient remodeling market when new home sales lagged due to the economic slowdown starting in late 2007. The article also describes an energy-efficient retrofit of of a 22-year-old, 3-bedroom home in California’s Central Valley done in 2009 by Grupe. The home is Grupe's first retrofit and was done according to the criteria of Home Performance with ENERGY STAR, a national program from the EPA and DOE that promotes a comprehensive, whole-house approach to making energy-efficiency improvements. Grupe's staff were trained through the California Building Performance Contractors Association and passed the Building Performance Institute test to learn how to conduct extensive energy audits of existing houses as well to perform the energy efficient retrofits. In the retrofit home, they did extensive air sealing, replaced and added insulation, and replaced inefficient HVAC equipment and leaky can lights. They cut air leakage from 2478 to 1115 cfm 50, a 55% reduction. A Building America case study on this project was distributed at the EEBA (Energy and Environmental Building Alliance) Annual Conference in Denver, Colorado, Sept 28-30, 2009. The Home Energy article was published in the March/April 2010 issue.

Hefty, Marye G.; Gilbride, Theresa L.

2010-03-01T23:59:59.000Z

196

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

F (2005) - Household Natural Gas Usage Form F (2005) - Household Natural Gas Usage Form OMB No. 1905-0092, Expiring May 31, 2008 Household Natural Gas Usage Form Service Address: If the customer account number is not shown above, please enter it here. STEP 1 Customer Account: __/__/__/__/__/__/__/__/__/__/__/__/__/__/__/ STEP 2 Now, please turn the page and provide the requested information for the household identified above. Completed forms are due by March 4, 2006. If you have any questions, please call (toll-free) 1-NNN-NNN-NNNN. Ask for the Supplier Survey Specialist. This report is mandatory under Public Law 93-275, as amended. See the enclosed Answers to Frequently Asked Questions for more details concerning confidentiality and sanctions. Use the enclosed self-addressed envelope and return the completed form to:

197

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

G (2005) - Household Fuel Oil or Kerosene Usage Form G (2005) - Household Fuel Oil or Kerosene Usage Form OMB No. 1905-0092, Expiring May 31, 2008 Household Fuel Oil or Kerosene Usage Form Service Address: If the customer account number is not shown on the label, please enter it here. STEP 1 Customer Account: __/__/__/__/__/__/__/__/__/__/__/__/__/__/__/ STEP 2 Now, please turn the page and answer the seven questions for the household identified above. Completed forms are due by March 4, 2006. If you have any questions, please call (toll-free) 1-NNN-NNN-NNNN. Ask for the Supplier Survey Specialist. This report is mandatory under Public Law 93-275, as amended. See the enclosed Answers to Frequently Asked Questions for more details concerning confidentiality and sanctions.

198

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

D (2005) - Household Propane (Bottled Gas or LPG) Usage Form D (2005) - Household Propane (Bottled Gas or LPG) Usage Form OMB No. 1905-0092, Expiring May 31, 2008 Household Propane (Bottled Gas or LPG) Usage Form Service Address: If the customer account number is not shown on the label, please enter it here. STEP 1 Customer Account: __/__/__/__/__/__/__/__/__/__/__/__/__/__/__/ STEP 2 Now, please turn the page and answer the seven questions for the household identified above. Completed forms are due by March 4, 2006. If you have any questions, please call (toll-free) 1-NNN-NNN-NNNN. Ask for the Supplier Survey Specialist. This report is mandatory under Public Law 93-275, as amended. See the enclosed Answers to Frequently Asked Questions for more details concerning confidentiality

199

Electrical appliance energy consumption control methods and electrical energy consumption systems  

DOE Patents (OSTI)

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

2008-09-02T23:59:59.000Z

200

Electrical appliance energy consumption control methods and electrical energy consumption systems  

DOE Patents (OSTI)

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

2006-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Modelling Energy Consumption in China  

E-Print Network (OSTI)

Energy consumption in China has attracted considerable research interest since the middle 1990s. This is largely prompted by the environmental ramifications of the extensive use of fossil fuels in the country to propel two decades of high economic growth. Since the late 1980s, there has been an increasing awareness on the part of the Chinese government of the imperative for the balance of economic growth and environmental protection. The government has since taken various measures ranging from encouraging energy-saving practice, controlling waste discharges to financing R & D programs on improving energy efficiency. Against this backdrop has seen a constant decline of the energy intensity of the economy, measured as the ratio of total energy consumed in standard coal equivalent to the real GDP since 1989. Using the 1987 and 1997 input-output tables for China, the present study examines the impact of technical and structural changes in the economy on industry fuel consumption over the 10-year period. Technical changes are reflected in changes in direct input-output coefficients, which capture the technical evolvement of intermediate production processes. Structural changes refer to shifts in the pattern of final demand for energy, including the import and export composition of various fuels. Six fuels are included in the study, namely, coal, oil, natural gas, electricity, petroleum and coke and gas, which cover all of the energy types available in the input-output tables. It is found that the predominant force of falling energy intensity was changes in direct energy input requirements in various industries. Such changes were responsible for a reduction in the consumption of four of the six fuels per unit of total output. Structural changes were not conducive for improv...

Baiding Hu Department; Baiding Hu

2004-01-01T23:59:59.000Z

202

Canada's Fuel Consumption Guide | Open Energy Information  

Open Energy Info (EERE)

Canada's Fuel Consumption Guide Canada's Fuel Consumption Guide Jump to: navigation, search Tool Summary Name: Canada's Fuel Consumption Guide Agency/Company /Organization: Natural Resources Canada Focus Area: Fuels & Efficiency Topics: Analysis Tools Website: oee.nrcan.gc.ca/transportation/tools/fuel-consumption-guide/fuel-consu Natural Resources Canada has compiled fuel consumption ratings for passenger cars and light-duty pickup trucks, vans, and special purpose vehicles sold in Canada. The website links to the Fuel Consumption Guide and allows users to search for vehicles from current and past model years. It also provides information about vehicle maintenance and other practices to reduce fuel consumption. How to Use This Tool This tool is most helpful when using these strategies:

203

The Perils of Consumption and the Gift Economy as the Solution Daniel Miller’s Consumption and Its Consequences  

E-Print Network (OSTI)

Press. Miller, D. (2012). Consumption and its consequences.The Perils of Consumption and the Gift Economy asSolution Daniel Miller’s ‘Consumption and Its Consequences’

Leahy, Terry

2013-01-01T23:59:59.000Z

204

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

C3. Primary Energy Consumption Estimates, 2011 C3. Primary Energy Consumption Estimates, 2011 (Trillion Btu) State Fossil Fuels Fossil Fuels (as commingled) Coal Natural Gas excluding Supplemental Gaseous Fuels a Petroleum Total Natural Gas including Supplemental Gaseous Fuels a Motor Gasoline including Fuel Ethanol a Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline excluding Fuel Ethanol a Residual Fuel Oil Other d Total Alabama ........... 651.0 614.8 156.5 13.4 12.8 304.5 13.4 49.1 549.5 1,815.4 614.8 319.8 Alaska ............... 15.5 337.0 85.1 118.2 1.3 31.9 1.9 28.6 267.1 619.6 337.0 34.6 Arizona ............. 459.9 293.7 151.8 21.5 9.1 297.3 (s) 21.1 500.9 1,254.5 293.7 323.4 Arkansas ........... 306.1 288.6 134.9 5.9 9.4 165.4 0.2 19.8 335.7 930.5 288.6 175.6 California .......... 55.3 2,196.6 567.0 549.7 67.2 1,695.4 186.9 339.6 3,405.8 5,657.6 2,196.6

205

Consumption & Efficiency - Data - U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Find statistics on energy consumption and efficiency across all fuel sources. + EXPAND ALL Residential Energy Consumption Survey Data Household characteristics Release Date: March 28, 2011 Survey data for occupied primary housing units. Residential Energy Consumption Survey (RECS)

206

Residential Energy Consumption Survey (RECS) - Data - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Housing Characteristics; Consumption & Expenditures; Microdata; Consumption & Expenditures Tables + EXPAND ALL. Summary Statistics (revised January 2009) PDF (all tables)

207

Table 6a. Total Electricity Consumption per Effective Occupied...  

U.S. Energy Information Administration (EIA) Indexed Site

a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

208

1997 Consumption and Expenditures-Detailed Data Tables  

U.S. Energy Information Administration (EIA)

1997 Resdiential Energy Consumption Survey(RECS)-1997 Consumption and Expenditures-1997 Detailed Tables, Energy Information Administration

209

Table 2.1d Industrial Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

Table 2.1d Industrial Sector Energy Consumption Estimates, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Electricity

210

Table 2.1e Transportation Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

Table 2.1e Transportation Sector Energy Consumption Estimates, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Electricity

211

Table US8. Average Consumption by Fuels Used, 2005 Physical ...  

U.S. Energy Information Administration (EIA)

Wood (cords) Energy Information Administration 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Table US8.

212

Consumption & Efficiency | U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Consumption and efficiency analysis & projections. Annual Energy Outlook 2013 Reference Case: consumption by sector projections; energy intensity projections

213

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Energy Information Administration/Manufacturing Consumption of Energy 1994 Glossary Anthracite: A hard, black, lustrous coal containing a high percentage of fixed carbon and a low percentage of volatile matter. Often referred to as hard coal. Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Bituminous Coal: A dense, black coal, often with well-defined bands of bright and dull material, with a moisture content usually less than 20 percent. Often referred to as soft coal. It is the most common coal. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to

214

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

215

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Sector Overview 1991-1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 xiii Why Do We Investigate Energy Use in the Manufacturing Sector? What Data Do EIA Use To Investigate Energy Use in the Manufacturing Sector? In 1991, output in the manufactur- ing sector fell as the country went into a recession. After 1991, however, output increased as the country slowly came out of the recession. Between 1991 and 1994, manufacturers, especially manu- facturers of durable goods such as steel and glass, experienced strong growth. The industrial production index for durable goods during the period increased by 21 percent. Real gross domestic product for durable goods increased a corre- sponding 16 percent. The growth of nondurables was not as strong-- the production index increased by only 9 percent during this time period.

216

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Design, Survey Design, Implementation, and Estimates 411 Energy Information Administration/Manufacturing Consumption of Energy 1994 Overview of Changes from Previous Surveys Sample Design. The MECS has increased its sample size by roughly 40 percent since the 1991 survey, increasing the designed sample size from 16,054 establishments to 22,922. This increase in size and change in sampling criteria required a departure from using the Annual Survey of Manufactures (ASM) as the MECS sampling frame. For 1994, establishments were selected directly from the 1992 Census of Manufactures (CM) mail file, updated by 1993 ASM. Sample Frame Coverage. The coverage in the 1994 MECS is 98 percent of the manufacturing population as measured in total payroll. The sampling process itself provided that level of coverage, and no special adjustments were

217

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

218

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

C C Quality of the Data Appendix C Quality of the Data Introduction This appendix discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on these data. The first section discusses under- coverage of the vehicle stock in the residential sector. The second section discusses the effects of using July 1991 as a time reference for the survey. The remainder of this appendix discusses the treatment of sampling and nonsampling errors in the RTECS, the quality of specific data items such as the Vehicle Identification Number (VIN) and fuel prices, and poststratification procedures used in the 1991 RTECS. The quality of the data collection and the processing of the data affects the accuracy of estimates based on survey data. All the statistics published in this report such as total

219

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A24. A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994: Part 1 (Estimates in Trillion Btu) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 285 SIC Management Any Type of Sponsored Self-Sponsored Sponsored Sponsored Code Industry Group and Industry Program Sponsorship Involvement Involvement Involvement Involvement a No Energy Electric Utility Government Third Party Type of Sponsorship of Management Programs (1992 through 1994) RSE Row Factors Federal, State, or Local RSE Column Factors: 0.7 1.1 1.0 0.7 1.9 0.9 20-39 ALL INDUSTRY GROUPS Participation in One or More of the Following Types of Programs . .

220

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A9. A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 166 End-Use Categories (trillion Btu) kWh) (1000 bbl) (1000 bbl) cu ft) (1000 bbl) tons) (trillion Btu) Total (million Fuel Oil Diesel Fuel (billion LPG (1000 short Other Net Distillate Natural and Electricity Residual Fuel Oil and Gas Breeze) a b c Coal (excluding Coal Coke d RSE Row Factors Total United States RSE Column Factors: NF 0.5 1.3 1.4 0.8 1.2 1.2 NF TOTAL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,515 778,335 70,111 26,107 5,962 25,949 54,143 5,828 2.7 Indirect Uses-Boiler Fuel . . . . . . . . . . . . . . . . . . . . . . . --

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Household vehicles energy consumption 1991  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

222

EIA - Natural Gas Consumption Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Consumption by End Use U.S. and State consumption by lease and plant, pipeline, and delivered to consumers by sector (monthly, annual). Number of Consumers Number of sales and transported consumers for residential, commercial, and industrial sectors by State (monthly, annual). State Shares of U.S. Deliveries By sector and total consumption (annual). Delivered for the Account of Others Commercial, industrial and electric utility deliveries; percentage of total deliveries by State (annual). Heat Content of Natural Gas Consumed Btu per cubic foot of natural gas delivered to consumers by State (annual) and other components of consumption for U.S. (annual). Natural Gas Weekly Update Analysis of current price, supply, and storage data; and a weather snapshot.

223

Renewable Energy Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA renewable electricity Renewable Energy Consumption world Data text/csv icon total_renewable_electricity_net_consumption_2005_2009billion_kwh.csv (csv, 8.5 KiB) text/csv icon total_renewable_electricity_net_consumption_2005_2009quadrillion_btu.csv (csv, 8.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

224

annual energy consumption | OpenEI  

Open Energy Info (EERE)

energy consumption energy consumption Dataset Summary Description Provides annual renewable energy consumption by source and end use between 1989 and 2008. This data was published and compiled by the Energy Information Administration. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords annual energy consumption consumption EIA renewable energy Data application/vnd.ms-excel icon historical_renewable_energy_consumption_by_sector_and_energy_source_1989-2008.xls (xls, 41 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 1989-2008 License License Creative Commons CCZero Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset

225

Household energy consumption and expenditures 1993  

Science Conference Proceedings (OSTI)

This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

NONE

1995-10-05T23:59:59.000Z

226

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

State State Energy Data 2011: Consumption 11 Table C8. Transportation Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Retail Electricity Sales Net Energy Electrical System Energy Losses e Total Aviation Gasoline Distillate Fuel Oil Jet Fuel b LPG c Lubricants Motor Gasoline d Residual Fuel Oil Total Alabama ............. 0.0 23.5 0.4 124.4 13.4 0.3 2.3 316.3 6.7 463.7 0.0 487.2 0.0 487.2 Alaska ................. 0.0 3.5 0.8 44.4 118.2 (s) 0.4 32.9 0.4 197.2 0.0 200.7 0.0 200.7 Arizona ............... 0.0 15.6 1.0 111.3 21.5 0.8 1.6 318.2 0.0 454.5 0.0 470.1 0.0 470.1 Arkansas ............. 0.0 11.5 0.4 99.7 5.9 0.4 2.0 171.3 0.0 279.8 (s) 291.2 (s) 291.2 California ............ 0.0 25.7 1.9 440.9 549.7 3.8 13.3 1,770.1 186.9 2,966.5 2.8 2,995.1 5.5 3,000.5 Colorado ............. 0.0 14.7 0.6 83.2 58.3 0.3

227

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

0 0 State Energy Data 2011: Consumption Table C7. Industrial Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric power e Biomass Geo- thermal Retail Electricity Sales Net Energy h,i Electrical System Energy Losses j Total h,i Distillate Fuel Oil LPG b Motor Gasoline c Residual Fuel Oil Other d Total Wood and Waste f Losses and Co- products g Alabama ............. 65.0 179.1 23.9 3.7 3.3 6.7 46.3 83.9 0.0 147.2 0.0 (s) 115.1 590.4 219.5 810.0 Alaska ................. 0.1 253.8 19.2 0.1 1.0 0.0 27.1 47.4 0.0 0.1 0.0 0.0 4.5 306.0 9.4 315.4 Arizona ............... 10.0 22.0 33.2 1.4 4.6 (s) 18.4 57.6 0.0 1.4 3.1 0.2 42.1 136.5 84.7 221.2 Arkansas ............. 5.6 93.1 31.1 2.6 4.0 0.1 17.4 55.1 0.0 72.7 0.0 (s) 58.0 284.5 120.5 405.0 California ............ 35.6 767.4 77.2 23.9 29.6 (s) 312.5

228

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

8 8 State Energy Data 2011: Consumption Table C5. Residential Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal a Natural Gas b Petroleum Biomass Geothermal Solar/PV e Retail Electricity Sales Net Energy f Electrical System Energy Losses g Total f Distillate Fuel Oil Kerosene LPG c Total Wood d Alabama ............. 0.0 37.2 0.1 0.1 6.0 6.2 6.0 0.1 0.2 112.6 162.2 214.7 376.9 Alaska ................. 0.0 20.5 8.1 0.1 0.5 8.8 1.9 0.1 (s) 7.3 38.6 15.1 53.7 Arizona ............... 0.0 39.1 (s) (s) 5.5 5.5 2.6 (s) 7.9 112.9 168.0 226.8 394.7 Arkansas ............. 0.0 34.2 0.1 (s) 5.2 5.3 8.6 0.7 0.2 64.1 113.1 133.2 246.3 California ............ 0.0 522.4 0.6 0.6 30.9 32.2 33.3 0.2 43.2 301.6 932.9 583.1 1,516.1 Colorado ............. 0.0 134.2 0.1 (s) 12.3 12.4 8.3 0.2 0.7 62.4 216.5 136.5 353.0 Connecticut ......... 0.0 46.0 59.6

229

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 State Energy Data 2011: Consumption Table C9. Electric Power Sector Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Nuclear Electric Power Hydroelectric Power b Biomass Geothermal Solar/PV d Wind Net Electricity Imports e Total f Distillate Fuel Oil Petroleum Coke Residual Fuel Oil Total Wood and Waste c Alabama ............. 586.1 349.4 1.1 0.0 0.0 1.1 411.8 86.3 4.6 0.0 0.0 0.0 0.0 1,439.3 Alaska ................. 6.0 42.3 3.3 0.0 1.5 4.8 0.0 13.1 0.0 0.0 0.0 0.1 (s) 66.3 Arizona ............... 449.9 183.9 0.6 0.0 0.0 0.6 327.3 89.1 2.4 0.0 0.8 2.5 1.5 1,057.9 Arkansas ............. 300.5 109.2 0.5 0.0 0.1 0.6 148.5 28.7 1.3 0.0 0.0 0.0 0.0 588.9 California ............ 19.7 630.1 0.4 11.1 (s) 11.5 383.6 413.4 69.0 122.0 8.4 75.3 20.1 1,753.1 Colorado ............. 362.4 88.1 0.3 0.0 0.0 0.3 0.0 20.2 0.9

230

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2011 . Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2011 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity f Net Electricity Imports g Residential Commercial Industrial b Transportation Coal Natural Gas c Petroleum d Total Alabama 1,931.3 651.0 614.8 549.5 1,815.4 411.8 260.6 -556.6 0.0 376.9 257.2 810.0 487.2 Alaska 637.9 15.5 337.0 267.1 619.6 0.0 18.4 0.0 (s) 53.7 68.2 315.4 200.7 Arizona 1,431.5 459.9 293.7 500.9 1,254.5 327.3 136.6 -288.4 1.5 394.7 345.5 221.2 470.1 Arkansas 1,117.1 306.1 288.6 335.7 930.5 148.5 123.7 -85.6 0.0 246.3 174.7 405.0 291.2 California 7,858.4 55.3 2,196.6 3,405.8 5,657.6 383.6 928.5 868.6 20.1 1,516.1 1,556.1 1,785.7 3,000.5 Colorado 1,480.8 368.9 476.5 472.9 1,318.3

231

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

C4. Total End-Use Energy Consumption Estimates, 2011 C4. Total End-Use Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric power f Biomass Geo- thermal Solar/PV i Retail Electricity Sales Net Energy j,k Electrical System Energy Losses l Total j,k Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste g Losses and Co- products h Alabama ........... 65.0 265.4 155.4 13.4 12.8 319.8 13.4 49.1 563.8 0.0 154.1 0.0 0.1 0.2 303.7 1,352.2 579.1 1,931.3 Alaska ............... 9.5 294.7 81.8 118.2 1.3 34.6 0.4 28.6 265.0 0.0 2.3 0.0 0.2 (s) 21.6 593.2 44.7 637.9 Arizona ............. 10.0 109.8 151.3 21.5 9.1 323.4 (s) 21.1 526.5 0.0 4.4 3.1 0.3 7.9 255.7 917.8 513.7 1,431.5 Arkansas ........... 5.6 179.4 134.5 5.9 9.4 175.6 0.1 19.8 345.4 0.0 82.6 0.0 0.7 0.2 163.5 777.4 339.8 1,117.1 California ..........

232

GRR/Section 3-HI-f - Permit to Cross or Enter the State Energy Corridor |  

Open Energy Info (EERE)

GRR/Section 3-HI-f - Permit to Cross or Enter the State Energy Corridor GRR/Section 3-HI-f - Permit to Cross or Enter the State Energy Corridor < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-HI-f - Permit to Cross or Enter the State Energy Corridor 03HIFPermitToCrossOrEnterTheStateEnergyCorridor.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Transportation Harbors Divsion Regulations & Policies Hawaii Revised Statutes Chapter 277 Triggers None specified Click "Edit With Form" above to add content 03HIFPermitToCrossOrEnterTheStateEnergyCorridor.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

233

T-729: Mozilla Code Installation Through Holding Down Enter | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Mozilla Code Installation Through Holding Down Enter 9: Mozilla Code Installation Through Holding Down Enter T-729: Mozilla Code Installation Through Holding Down Enter September 29, 2011 - 8:30am Addthis PROBLEM: Mozilla Code Installation Through Holding Down Enter. PLATFORM: Versions prior to the following are vulnerable: Firefox 7.0 Firefox 3.6.23 Thunderbird 7.0 SeaMonkey 2.4 ABSTRACT: Attackers can exploit this issue by enticing an unsuspecting victim into viewing and interacting with a malicious Web page. An attacker may be able to exploit this issue to bypass a confirmation dialog and install an arbitrary add-on. This may aid in further attacks. reference LINKS: Mozilla Foundation Security Advisory 2011-40 Firefox Security Advisories CVE-2011-2372 CVE-2011-3001 IMPACT ASSESSMENT: High Discussion: If a user holds down the Enter key--as part of a game or test, perhaps--a

234

Trends in Renewable Energy Consumption and Electricity  

Reports and Publications (EIA)

Presents a summary of the nation’s renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and State. The report covers the period from 2006 through 2010.

2012-12-11T23:59:59.000Z

235

,"Utah Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","52013" ,"Release Date:","7...

236

Consumption & Efficiency - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Cost of Natural Gas Used in Manufacturing Sector Has Fallen. Release Date: ... and water consumption for hospital buildings greater than 200,000 squar ...

237

Residential Energy Consumption Survey (RECS) - Energy Information ...  

U.S. Energy Information Administration (EIA)

Maps by energy source and topic, includes ... Total United States energy consumption in homes has remained relatively stable for many years as increased energy ...

238

Residential Energy Consumption Survey (RECS) - Energy Information ...  

U.S. Energy Information Administration (EIA)

Heating and cooling no longer majority of U.S. home energy use. Source: U.S. Energy Information Administration, Residential Energy Consumption Survey.

239

2005 RECS Consumption and Expenditures Detailed Tables  

U.S. Energy Information Administration (EIA)

Detailed Consumption and Expenditures (C&E) tables containing Space Heating, Air-Conditioning, Water Heating, and Appliance residential energy data are now available.

240

,"Ohio Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","72013" ,"Release Date:","9...

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

242

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

may not sum to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Form EIA-871A of the 2003 Commercial Buildings Energy Consumption Survey....

243

Consumption & Efficiency - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Annual state-level estimates of consumption for hydroelectric power, wind, geothermal, and solar energy. Annual Energy Outlook 2013.

244

A Green Solution To Energy Consumption  

Science Conference Proceedings (OSTI)

Presentation Title, MAX HT® Bayer Sodalite Scale Inhibiter: A Green Solution To Energy Consumption. Author(s), Morris E. Lewellyn, Alan Rothenberg, Calvin ...

245

Consumption & Efficiency - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

A video about changes in home heating in the United States. Annual Energy Review Consumption Statistics. Released September 27, 2012. A report of annual energy ...

246

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

... video - Keeping Our Homes Warm, released November 2, 2012. Energy consumption per home has steadily declined over the last three decades ...

247

,"Wisconsin Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","72013" ,"Release...

248

,"Texas Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

249

,"New Hampshire Natural Gas Industrial Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural...

250

,"Michigan Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","72013" ,"Release...

251

,"Idaho Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Consumption by End Use",6,"Monthly","102013","1151989" ,"Release...

252

Household Vehicles Energy Consumption 1994 - PDF Tables  

U.S. Energy Information Administration (EIA)

Table 1 U.S. Number of Vehicles, Vehicle Miles, Motor Fuel Consumption and Expenditures, 1994 Table 2 U.S. per Household Vehicle Miles Traveled, Vehicle Fuel ...

253

Manufacturing Energy Consumption Survey (MECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

The gross output for the petroleum and coal products subsector grew by about 3 percent, ... Manufacturing Energy Consumption Survey, MECS Definition of Fuel Use, ...

254

Figure 70. Delivered energy consumption for transportation ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 70. Delivered energy consumption for transportation by mode, 2011 and 2040 (quadrillion Btu) Total Rail Pipeline Marine ...

255

,"California Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural...

256

,"Tennessee Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural...

257

,"Colorado Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural...

258

,"Washington Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural...

259

,"Virginia Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural...

260

,"Nebraska Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural...

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Consumption externalities, habit formation and equilibrium efficiency  

E-Print Network (OSTI)

We analyze the welfare properties of the competitive equilibrium in a capital accumulation model where individual preferences are subject to both habit formation and consumption spillovers. Using an additive specification for preferences, according to which the argument in the utility function is a linear combination of present and past values of own consumption and consumption spillovers, we analyze the circumstances under which these spillovers are a source of inefficiency. It is shown that consumption externalities have to interact with habits in order to generate an inefficient dynamic equilibrium. Finally, we characterize optimal tax policies aimed at restoring efficient decentralized paths.

Jaime Alonso-carrera; Jordi Caballé; Xavier Raurich

2004-01-01T23:59:59.000Z

262

,"Pennsylvania Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania...

263

Optimal consumption policies in illiquid markets  

E-Print Network (OSTI)

We investigate optimal consumption policies in the liquidity risk model introduced in Pham and Tankov (2007). Our main result is to derive smoothness results for the value functions of the portfolio/consumption choice problem. As an important consequence, we can prove the existence of the optimal control (portfolio/consumption strategy) which we characterize both in feedback form in terms of the derivatives of the value functions and as the solution of a second-order ODE. Finally, numerical illustrations of the behavior of optimal consumption strategies between two trading dates are given.

Cretarola, Alessandra; Pham, Huyên; Tankov, Peter

2008-01-01T23:59:59.000Z

264

,"Arkansas Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural...

265

,"Kentucky Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural...

266

,"Mississippi Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural...

267

,"Michigan Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural...

268

,"Delaware Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural...

269

,"Maryland Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural...

270

,"Louisiana Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural...

271

,"Missouri Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural...

272

,"Oklahoma Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural...

273

Resource Consumption of Additive Manufacturing Technology.  

E-Print Network (OSTI)

??The degradation of natural resources as a result of consumption to support the economic growth of humans society represents one of the greatest sustainability challenges.… (more)

Nopparat, Nanond

2012-01-01T23:59:59.000Z

274

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

This Week in Petroleum › Weekly Petroleum Status Report › Weekly Natural Gas ... Total United States energy consumption in homes has remained relatively ...

275

,"California Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

276

Renewable Energy Consumption and Electricity Preliminary ...  

U.S. Energy Information Administration (EIA)

Renewable Energy Consumption and Electricity Preliminary Statistics 2010 June 2011 ... and Job Creation Act of 2010 (H.R. 4853) was signed in December

277

All Consumption Tables - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2009 (Trillion Btu) State Total Energy b Sources End-Use Sectors a

278

Residential Energy Consumption Survey (RECS) 2009 Technical ...  

U.S. Energy Information Administration (EIA)

Residential Energy Consumption Survey (RECS) Using the 2009 microdata file to compute estimates and standard errors (RSEs) February 2013 Independent Statistics & Analysis

279

Commercial Buildings Energy Consumption and Expenditures 1992  

Annual Energy Outlook 2012 (EIA)

(92) Distribution Category UC-950 Commercial Buildings Energy Consumption and Expenditures 1992 April 1995 Contacts The Energy Information Administration (EIA) prepared this...

280

Residential Energy Consumption Survey data show decreased ...  

U.S. Energy Information Administration (EIA)

Total U.S. energy consumption in homes has remained relatively stable for many years as increased energy efficiency has offset the increase in the ...

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

,"Vermont Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","72013" ,"Release...

282

California Energy Commission - Electricity Consumption by Utility  

Open Energy Info (EERE)

Utility (1990-2009) Electricity consumption by Utility company for Commercial, Residential, Ag & Water Pump, Streetlight, Industry, Mining & Construction and Total...

283

California Energy Commission - Electricity Consumption by Planning...  

Open Energy Info (EERE)

Planning Area (1990-2009) Electricity consumption data from the California Energy Commission by planning area for Commercial, Residential, Ag & Water Pump, Streetlight,...

284

,"Texas Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

285

,"Texas Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

286

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

287

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

by Building Size for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

288

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

289

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

290

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

291

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

292

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh) Distribution of Building-Level Intensities (kWhsquare foot)...

293

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

294

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

295

,"South Dakota Natural Gas Industrial Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"South Dakota Natural Gas Industrial Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

296

,"New Mexico Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Total Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","10312013"...

297

,"Texas Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","52013" ,"Release Date:","7...

298

Microsoft Word - Gas Prices and Oil Consumption Would Increase Without Biofuels  

NLE Websites -- All DOE Office Websites (Extended Search)

For Immediate Release For Immediate Release June 11, 2008 202-586-4940 Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Edward T. Schafer sent a letter on June 11, 2008 to Senator Jeff Bingaman addressing a number of questions related to biofuels, food, and gasoline and diesel prices. The letter is available at http://www.energy.gov Without Biofuels, Gas Prices Would Increase $.20 to $.35 per Gallon. * The U.S. Department of Energy (DOE) estimates that gasoline prices would be between 20 cents to 35 cents per gallon higher without ethanol 1 , a first-generation biofuel. * For a typical household, that means saving about $150 to $300 per year. * For the U.S. overall, this saves gas expenditures of $28 billion to $49 billion based on annual

299

Consumption & Efficiency - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports An Assessment of EIA's Building Consumption Data Background image of CNSTAT logo The U.S. Energy Information Administration (EIA) routinely uses feedback from customers and outside experts to help improve its programs and products. As part of an assessment of its consumption

300

Residential energy consumption survey. Consumption patterns of household vehicles, supplement: January 1981-September 1981  

Science Conference Proceedings (OSTI)

Information on the fuel consumption characteristics on household vehicles in the 48 contiguous States and the District of Columbia is presented by monthly statistics of fuel consumption, expenditures, miles per gallon, and miles driven.

Not Available

1983-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Immediate Deployment of Waste Energy Recovery Technologies at Multi Sites  

SciTech Connect

Verso Paper Corp. implemented a portfolio of 13 commercially available proven industrial technologies each exceeding 30% minimum threshold efficiency and at least 25% efficiency increase. These sub-projects are a direct result of a grant received from the Department of Energy (DOE) through its FOA 0000044 (Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment), which was funded by the American Recovery Act. These were installed at 3 sites in 2 states and are helping to reduce Verso costs, making the facilities more competitive. This created approximately 100 construction jobs (FTE's) and reduced impacted Verso facilities' expense budgets. These sub-projects were deployed at Verso paper mills located in Jay, Maine, Bucksport, Maine, and Sartell, Minnesota. The paper mills are the economic engines of the rural communities in which these mills are located. Reinvestment in waste energy recovery capital improvements is providing a stimulus to help maintain domestic jobs and to competitively position the US pulp and paper industry with rising energy costs. Energy efficiency improvements are also providing a positive environmental impact by reducing greenhouse gas emissions, the quantity of wastewater treated and discharged, and fossil fuel demand. As a result of these projects, when fully operating, Verso realized a total of approximately 1.5 TBtu/Year reduction in overall energy consumption, which is 119% of the project objectives. Note that three paper machines have since been permanently curtailed. However even with these shutdowns, the company still met its energy objectives. Note also that the Sartell mill's paper machine is down due to a recent fire which damaged the mill's electrical infrastructure (the company has not decided on the mill's future).

Dennis Castonguay

2012-06-29T23:59:59.000Z

302

Immediate colour constancy David H. Foster*, B. 1. Craven? and Elizabeth R. H. Sale  

E-Print Network (OSTI)

Immediate colour constancy David H. Foster*, B. 1. Craven? and Elizabeth R. H. Sale Department resolution on each gun (Ramtek UK Ltd, Basingstoke, Hampshire, 4660 se

Foster, David H.

303

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

304

Prediction of domestic warm-water consumption  

Science Conference Proceedings (OSTI)

The paper presents methodologies able to predict dynamic warm water consumption in district heating systems, using time-series analysis. A simulation model according to the day of a week has been chosen for modeling the domestic warm water consumption ... Keywords: autoregressive model, district heating systems, domestic warm water, prediction, simulation, time series models

Elena Serban; Daniela Popescu

2008-12-01T23:59:59.000Z

305

Energy Consumption Issues on Mobile Network Systems  

Science Conference Proceedings (OSTI)

This paper describes energy consumption demographic data in operating real mobile networks. We examine published data from NTT DoCoMo, which is the largest mobile telecommunication operator in Japan and operating nation-wide 3G networks, and identify ... Keywords: Moble Network, Power Consumption, Battery, CO2, Green Network

Minoru Etoh; Tomoyuki Ohya; Yuji Nakayama

2008-07-01T23:59:59.000Z

306

Modelling Office Energy Consumption: An Agent Based  

E-Print Network (OSTI)

Modelling Office Energy Consumption: An Agent Based Approach Tao Zhang, Peer-Olaf Siebers, Uwe · Overall Project Background · Office Energy Consumption · Case Study · Simulation Experiments · Conclusions #12;Overall Project Background · EPSRC funded City Energy Future Project ­ Under Energy & Complexity

Aickelin, Uwe

307

US SoAtl GA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

GA GA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl GA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl GA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl GA Expenditures dollars ELECTRICITY ONLY average per household * Site energy consumption (89.5 million Btu) and energy expenditures per household ($2,067) in Georgia are similar to the U.S. household averages. * Per household electricity consumption in Georgia is among the highest in the country, but similar to other states in the South. * Forty-five percent of homes in Georgia were built since 1990, a characteristic typically associated with lower per household consumption. Georgia homes,

308

Chapter 4. Fuel Economy, Consumption and Expenditures  

U.S. Energy Information Administration (EIA) Indexed Site

4. Fuel Economy, Consumption, and Expenditures 4. Fuel Economy, Consumption, and Expenditures Chapter 4. Fuel Economy, Consumption, and Expenditures This chapter analyzes trends in fuel economy, fuel consumption, and fuel expenditures, using data unique to the Residential Transportation Energy Consumption Survey, as well as selected data from other sources. Analysis topics include the following: Following the oil supply and price disruptions caused by the Arab oil embargo of 1973-1974, motor gasoline price increases, the introduction of corporate average fuel economy standards, and environmental quality initiatives helped to spur major changes in vehicle technology. But have the many advances in vehicle technology resulted in measurable gains in the fuel economy of the residential vehicle fleet?

309

US SoAtl GA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

GA GA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl GA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl GA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl GA Expenditures dollars ELECTRICITY ONLY average per household * Site energy consumption (89.5 million Btu) and energy expenditures per household ($2,067) in Georgia are similar to the U.S. household averages. * Per household electricity consumption in Georgia is among the highest in the country, but similar to other states in the South. * Forty-five percent of homes in Georgia were built since 1990, a characteristic typically associated with lower per household consumption. Georgia homes,

310

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table C6. Commercial Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric Power e Biomass Geothermal Retail Electricity Sales Net Energy g Electrical System Energy Losses h Total g Distillate Fuel Oil Kerosene LPG b Motor Gasoline c Residual Fuel Oil Total d Wood and Waste f Alabama ............. 0.0 25.5 7.0 (s) 2.7 0.2 0.0 10.0 0.0 0.9 0.0 75.9 112.4 144.8 257.2 Alaska ................. 9.4 16.9 10.1 0.1 0.6 0.7 0.0 11.5 0.0 0.3 0.1 9.7 48.0 20.2 68.2 Arizona ............... 0.0 33.1 6.8 (s) 1.5 0.7 0.0 8.9 0.0 0.5 (s) 100.7 143.2 202.3 345.5 Arkansas ............. 0.0 40.6 3.6 (s) 1.2 0.4 0.0 5.2 0.0 1.3 0.0 41.4 88.6 86.1 174.7 California ............ 0.0 250.9 47.9 0.1 8.7 1.4 0.0 58.1 (s) 17.4 0.7 418.9 746.2 809.9 1,556.1 Colorado ............. 3.2 57.6 5.9 (s) 2.9 0.2 0.0 9.1 0.0 1.2 0.2

311

Making a fast curry: push/enter vs. eval/apply for higher-order languages  

Science Conference Proceedings (OSTI)

Higher-order languages that encourage currying are typically implemented using one of two basic evaluation models: push/enter or eval/apply. Implementors use their intuition and qualitative judgements to choose one model or the other. Our ...

Simon Marlow; Simon Peyton Jones

2006-07-01T23:59:59.000Z

312

How Does Labrador Sea Water Enter the Deep Western Boundary Current?  

Science Conference Proceedings (OSTI)

Labrador Sea Water (LSW), a dense water mass formed by convection in the subpolar North Atlantic, is an important constituent of the meridional overturning circulation. Understanding how the water mass enters the deep western boundary current (...

Jaime B. Palter; M. Susan Lozier; Kara L. Lavender

2008-05-01T23:59:59.000Z

313

Pacific Northwest Residential Energy Consumption Survey : Sample Selection Activities.  

Science Conference Proceedings (OSTI)

The primary purpose of the 1983 Pacific Northwest Residential Energy Consumption Survey is to obtain a comprehensive data base regarding household energy usage patterns incorporating not only general behavioral indicators of usage (e.g., temperature at which the dwelling is maintained at different times of day during the months of the year in which heating systems are activated or conservation measures effected) but also those characteristics lying further beyond the realm of immediate influence of the household dwellers which directly effect energy consumption (e.g., housing and household characteristics including square footage, number of floors or levels, the number and characteristics of the appliances in the household and household demographics/composition). The data base to be assembled as part of this research effort is also to include households' actual level of energy use for two major fuels (i.e., electricity and natural gas) obtained, with the consent of respondents, from their servicing utility(ies). Two samples have been incorporated in the study. The primary sample - the Regional Sample - will generate a large and comprehensive data base from a representative cross-section of individual households in the Pacific Northwest. A second, Supplementary Sample was incorporated in the survey design to ensure that a sufficient number of households not participating in qualified loan or grant programs, but comparable to participant households on a number of key descriptive characteristics, were included in the assessment. Inclusion of such households in the assessment will permit a formal evaluation of the loan/grant programs to be accomplished. Sampling procedures are described thoroughly.

Louis Harris and Associates

1983-08-03T23:59:59.000Z

314

Energy Information Administration - Transportation Energy Consumption by  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply surveys, directed to the suppliers and marketers of specific energy sources, that measure the quantities of specific fuels produced for and/or supplied to the market; and consumption surveys, which gather information on the types of energy used by consumer groups along with the consumer characteristics that are associated with energy use. In the transportation sector, EIA's core consumption survey was the Residential Transportation Energy Consumption Survey. RTECS belongs to the consumption group because it collects information directly from the consumer, the household. For roughly a decade, EIA fielded the RTECS--data were first collected in 1983. This survey, fielded for the last time in 1994, was a triennial survey of energy use and expenditures, vehicle miles-traveled (VMT), and vehicle characteristics for household vehicles. For the 1994 survey, a national sample of more than 3,000 households that own or use some 5,500 vehicles provided data.

315

Residential Energy Consumption Survey (RECS) - Energy Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumption Survey (RECS) - U.S. Energy Information Consumption Survey (RECS) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels

316

State energy data report 1993: Consumption estimates  

SciTech Connect

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

NONE

1995-07-01T23:59:59.000Z

317

Residential Energy Consumption Survey: Quality Profile  

SciTech Connect

The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

NONE

1996-03-01T23:59:59.000Z

318

Consumption processes and positively homogeneous projection properties  

E-Print Network (OSTI)

We constructively prove the existence of time-discrete consumption processes for stochastic money accounts that fulfill a pre-specified positively homogeneous projection property (PHPP) and let the account always be positive and exactly zero at the end. One possible example is consumption rates forming a martingale under the above restrictions. For finite spaces, it is shown that any strictly positive consumption strategy with restrictions as above possesses at least one corresponding PHPP and could be constructed from it. We also consider numeric examples under time-discrete and -continuous account processes, cases with infinite time horizons and applications to income drawdown and bonus theory.

Fischer, Tom

2007-01-01T23:59:59.000Z

319

Consumption processes and positively homogeneous projection properties  

E-Print Network (OSTI)

We constructively prove the existence of time-discrete consumption processes for stochastic money accounts that fulfill a pre-specified positively homogeneous projection property (PHPP) and let the account always be positive and exactly zero at the end. One possible example is consumption rates forming a martingale under the above restrictions. For finite spaces, it is shown that any strictly positive consumption strategy with restrictions as above possesses at least one corresponding PHPP and could be constructed from it. We also consider numeric examples under time-discrete and-continuous account processes, cases with infinite time horizons and applications to income drawdown and bonus theory.

Tom Fischer

2008-01-01T23:59:59.000Z

320

State Energy Data Report, 1991: Consumption estimates  

DOE Green Energy (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA`s energy models.

Not Available

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2010-11-08T23:59:59.000Z

322

Using occupancy to reduce energy consumption of buildings  

E-Print Network (OSTI)

viii Figure 4.1: Electrical power usage breakdown for a3:30PM. The total HVAC electrical power consumption for thepower consumption, over Electrical Power Consumption (in kW)

Balaji, Bharathan

2011-01-01T23:59:59.000Z

323

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

installation Total Electricity Consumption 1 Year Pre & PostGWh total Total Electricity Consumption 1 Year Pre & 2 YearsInstall Total Electricity Consumption 1 Year Pre & 3 Years

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

324

Using occupancy to reduce energy consumption of buildings  

E-Print Network (OSTI)

Figure 4.4: Power consumption of a desktop PC + 3 LCDChapter 2 Trends in Building Consumption 2.1 UCSD as abreakdown of the energy consumption of the CSE mixed- use

Balaji, Bharathan

2011-01-01T23:59:59.000Z

325

Using occupancy to reduce energy consumption of buildings  

E-Print Network (OSTI)

breakdown of the energy consumption of the CSE mixed- useFigure 3.7: The energy consumption of HVAC during ourSpring 2011 tests - Energy consumption for electricity and

Balaji, Bharathan

2011-01-01T23:59:59.000Z

326

US SoAtl VA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

SoAtl VA SoAtl VA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl VA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl VA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl VA Expenditures dollars ELECTRICITY ONLY average per household * Virginia households consume an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are higher for Virginia households than the national average, but similar to those in neighboring states where electricity is the most common heating fuel. * Virginia homes are typically newer and larger than homes in other parts of the country. CONSUMPTION BY END USE

327

Natural gas consumption | OpenEI  

Open Energy Info (EERE)

gas consumption gas consumption Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 136, and contains only the reference case. This dataset is in trillion cubic feet. The data is broken down into residential, commercial, industrial, electric power and transportation. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Natural gas consumption Data application/vnd.ms-excel icon AEO2011: Natural Gas Consumption by End-Use Sector and Census Division- Reference Case (xls, 138.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

328

Iowa Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption 293,274 325,772 315,186...

329

Compiler Support for Reducing Leakage Energy Consumption  

Science Conference Proceedings (OSTI)

Current trends indicate that leakage energy consumption will be an important concern in upcoming process technologies. In this paper, we propose a compiler-based leakage energy optimization strategy. Our strategy is built upon a data-flow analysis that ...

W. Zhang; M. Kandemir; N. Vijaykrishnan; M. J. Irwin; V. De

2003-03-01T23:59:59.000Z

330

US Mnt(S) AZ Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Mnt(S) AZ Mnt(S) AZ Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(S) AZ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US Mnt(S) AZ Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US Mnt(S) AZ Expenditures dollars ELECTRICITY ONLY average per household * Arizona households use 66 million Btu of energy per home, 26% less than the U.S. average. * The combination of lower than average site consumption of all energy, but above average electricity which is relatively expensive, results in Arizona households spending 3% less for energy than the U.S. average. * More reliance on air conditioning keeps average site electricity consumption in the state high relative to other parts of the U.S.

331

US SoAtl VA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

SoAtl VA SoAtl VA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl VA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl VA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl VA Expenditures dollars ELECTRICITY ONLY average per household * Virginia households consume an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are higher for Virginia households than the national average, but similar to those in neighboring states where electricity is the most common heating fuel. * Virginia homes are typically newer and larger than homes in other parts of the country. CONSUMPTION BY END USE

332

US Mnt(S) AZ Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

Mnt(S) AZ Mnt(S) AZ Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(S) AZ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US Mnt(S) AZ Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US Mnt(S) AZ Expenditures dollars ELECTRICITY ONLY average per household * Arizona households use 66 million Btu of energy per home, 26% less than the U.S. average. * The combination of lower than average site consumption of all energy, but above average electricity which is relatively expensive, results in Arizona households spending 3% less for energy than the U.S. average. * More reliance on air conditioning keeps average site electricity consumption in the state high relative to other parts of the U.S.

333

US MidAtl NJ Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

in New Jersey homes is for space heating. Air conditioning accounts for a larger share of household consumption than other Northeast states, but still only accounts for 3% of the...

334

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C12A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of...

335

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major...

336

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Next CBECS will be conducted in 2007 Table C29A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas...

337

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1...

338

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C28A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas...

339

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C27A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Natural Gas...

340

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C9A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3...

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C11A. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for All Buildings, 2003 Sum of...

342

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C5A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of...

343

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

sum to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

344

,"Idaho Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas...

345

,"Wyoming Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas...

346

,"Alaska Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas...

347

,"Oregon Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas...

348

,"Alabama Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas...

349

,"Florida Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas...

350

,"Arizona Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas...

351

,"Kansas Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas...

352

,"Montana Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas...

353

,"Nevada Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas...

354

,"Utah Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas...

355

,"Indiana Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas...

356

,"Texas Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas...

357

,"Ohio Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas...

358

Reducing the Energy Consumption of Networked Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing the Energy Consumption of Networked Devices Speaker(s): Ken Christensen Date: July 19, 2005 - 12:00pm Location: 90-4133 When Personal Computers are networked, energy...

359

California Natural Gas Residential Consumption (Million Cubic ...  

U.S. Energy Information Administration (EIA)

California Natural Gas Residential Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1960's: 522,122 ...

360

Energy consumption metrics of MIT buildings  

E-Print Network (OSTI)

With world energy demand on the rise and greenhouse gas levels breaking new records each year, lowering energy consumption and improving energy efficiency has become vital. MIT, in a mission to help improve the global ...

Schmidt, Justin David

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

TECHNICAL DOCUMENTATION Commercial Buildings Energy Consumption Survey  

Reports and Publications (EIA)

This is the technical documentation for the public use data set based on the 1992 Commercial Buildings Energy Consumption Survey (CBECS), the national sample survey of commercial buildings and their energy suppliers conducted by the Energy Information Administration.

Information Center

1996-07-01T23:59:59.000Z

362

Residential Energy Consumption Survey (RECS) - Energy Information...  

U.S. Energy Information Administration (EIA) Indexed Site

Heating and cooling no longer majority of U.S. home energy use Pie chart of energy consumption in homes by end uses Source: U.S. Energy Information Administration, Residential...

363

US MidAtl NJ Site Consumption  

Annual Energy Outlook 2012 (EIA)

than the average U.S. household. * New Jersey homes are 20% larger than the average U.S. home. CONSUMPTION BY END USE Nearly half the energy consumed in New Jersey homes is for...

364

California Energy Commission - Electricity Consumption by County  

Open Energy Info (EERE)

County (2006-2009) Electricity consumption data from the California Energy Commission sorted by County for Residential and Non-residential from 2006 to 2009.


...

365

,"Texas Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 3:31:19 PM" "Back to Contents","Data 1: Texas Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570STX2" "Date","Texas...

366

State energy data report 1996: Consumption estimates  

Science Conference Proceedings (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

NONE

1999-02-01T23:59:59.000Z

367

Illinois energy consumption 1963-1977  

SciTech Connect

This report contains current and historical Illinois energy consumption data by consuming sector and fuel type. It also contains detailed description of mapping techniques used in developing the data.

Hill, L.; Biermann, W.

1979-06-01T23:59:59.000Z

368

,"New Mexico Natural Gas Residential Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 3:27:06 PM" "Back to Contents","Data 1: New Mexico Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010NM2" "Date","New Mexico...

369

,"New Mexico Natural Gas Industrial Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 3:27:55 PM" "Back to Contents","Data 1: New Mexico Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035NM2" "Date","New Mexico...

370

OpenEI - Renewable Energy Consumption  

Open Energy Info (EERE)

Jul 2011 18:05:28 +0000 Meredith1219 758 at http:en.openei.orgdatasets EIA Data: 2009 United States Renewable Energy Consumption by Sector and Source http:en.openei.org...

371

Estimates of US biomass energy consumption 1992  

DOE Green Energy (OSTI)

This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

Not Available

1994-05-06T23:59:59.000Z

372

State energy data report 1994: Consumption estimates  

Science Conference Proceedings (OSTI)

This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

NONE

1996-10-01T23:59:59.000Z

373

Table 6.2 Consumption Ratios of Fuel, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Consumption Ratios of Fuel, 2002;" 2 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,"Consumption" " ",,"Consumption","per Dollar"," " " ","Consumption","per Dollar","of Value","RSE" "Economic","per Employee","of Value Added","of Shipments","Row" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

374

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2006;" 3 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

375

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2002;" 3 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

376

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network (OSTI)

console usage and national energy consumption: Results fromNational Energy Consumption .Discussion National Energy Consumption Under the assumption

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

377

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

commercial). National Energy Consumption Estimates We usedsection entitled “National Energy Consumption Estimates”).section entitled “National Energy Consumption Estimates”).

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

378

Consumption & Efficiency - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Technical Workshop on Behavior Economics Presentations Technical Workshop on Behavior Economics Presentations Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy

379

Federal Energy Management Program: Data Center Energy Consumption Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Center Energy Data Center Energy Consumption Trends to someone by E-mail Share Federal Energy Management Program: Data Center Energy Consumption Trends on Facebook Tweet about Federal Energy Management Program: Data Center Energy Consumption Trends on Twitter Bookmark Federal Energy Management Program: Data Center Energy Consumption Trends on Google Bookmark Federal Energy Management Program: Data Center Energy Consumption Trends on Delicious Rank Federal Energy Management Program: Data Center Energy Consumption Trends on Digg Find More places to share Federal Energy Management Program: Data Center Energy Consumption Trends on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Data Center Energy Efficiency Energy Consumption Trends

380

Idaho Natural Gas Vehicle Fuel Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Idaho Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Idaho Natural Gas Vehicle Fuel Consumption (Million Cubic...

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption...  

Annual Energy Outlook 2012 (EIA)

-- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1...

382

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

How can we compare or add up our energy consumption? To compare or aggregate energy consumption across different energy sources like oil, natural gas, ...

383

Global natural gas consumption doubled from 1980 to 2010 - Today ...  

U.S. Energy Information Administration (EIA)

Although consumption in North America saw the slowest regional ... trends in regional natural gas consumption and production are more similar because of the limited ...

384

Table CT1. Energy Consumption Estimates for Major Energy Sources ...  

U.S. Energy Information Administration (EIA)

R A D O. U.S. Energy Information Administration State Energy Data 2011: Consumption 89 Table CT6. Industrial Sector Energy Consumption Estimates, Selected Years, 1960 ...

385

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

How can we compare or add up our energy consumption? To compare or aggregate energy consumption across different energy sources like oil, natural gas, and electricity ...

386

Review of Operational Water Consumption and Withdrawal Factors...  

NLE Websites -- All DOE Office Websites (Extended Search)

have the highest water consumption values when using a recirculating cooling system. Non-thermal renewables, such as photovoltaics (PV) and wind, have the lowest water consumption...

387

Texas Natural Gas Residential Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Residential Consumption (Million Cubic Feet) Texas Natural Gas Residential Consumption (Million Cubic Feet)...

388

Texas Natural Gas Industrial Consumption (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Industrial Consumption (Million Cubic Feet) Texas Natural Gas Industrial Consumption (Million Cubic Feet)...

389

Texas Natural Gas Vehicle Fuel Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Texas Natural Gas Vehicle Fuel Consumption (Million Cubic...

390

Table CT1. Energy Consumption Estimates for Major Energy ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration State Energy Data 2011: Consumption 365 Table CT2. Primary Energy Consumption Estimates, Selected Years, 1960-2011, North ...

391

Whole-house measurements of standby power consumption  

E-Print Network (OSTI)

kWh/year of non-heating electricity consumption correlatesof electricity consumption. The home at 20,000 kWh/year has

Ross, J.P.; Meier, Alan

2000-01-01T23:59:59.000Z

392

Annul Coal Consumption by Country (1980 -2009) Total annual coal  

Open Energy Info (EERE)

Annul Coal Consumption by Country (1980 -2009) Total annual coal consumption by country, 1980 to 2009 (available as Quadrillion Btu). Compiled by Energy Information Administration...

393

Essays on the effects of demographics on household consumption.  

E-Print Network (OSTI)

??My dissertation analyses the relationship between households' consumption behavior and changes in family demographic characteristics. The first paper studies consumption over the period of the… (more)

Stepanova, Ekaterina, 1977-

2006-01-01T23:59:59.000Z

394

Study on optimal train movement for minimum energy consumption.  

E-Print Network (OSTI)

?? The presented thesis project is a study on train energy consumption calculation and optimal train driving strategies for minimum energy consumption. This study is… (more)

Gkortzas, Panagiotis

2013-01-01T23:59:59.000Z

395

Table 8: Water Consumption Information for Large Hospitals  

U.S. Energy Information Administration (EIA)

Water Consumption Information for Large Hospitals, 2007 Table H8. RSEs for Water Consumption Information for Large Hospitals, 2007 Number of Large Hospital Buildings

396

How much of world energy consumption and electricity generation is ...  

U.S. Energy Information Administration (EIA)

How much of world energy consumption and electricity generation is from renewable energy? EIA estimates that about 10% of world marketed energy consumption is from ...

397

Biofuels Consumption and Production by Country (2000 - 2010)...  

Open Energy Info (EERE)

Biofuels Consumption and Production by Country (2000 - 2010) Total annual biofuels consumption and production data by country was compiled by the Energy Information Administration...

398

Table 37. Light-Duty Vehicle Energy Consumption by Technology ...  

U.S. Energy Information Administration (EIA)

Table 37. Light-Duty Vehicle Energy Consumption by Technology Type and Fuel Type (trillion Btu) Light-Duty Consumption by Technology Type Conventional Vehicles 1/

399

Total Biofuels Consumption (2005 - 2009) Total annual biofuels...  

Open Energy Info (EERE)

Total Biofuels Consumption (2005 - 2009) Total annual biofuels consumption (Thousand Barrels Per Day) for 2005 - 2009 for over 230 countries and regions.      ...

400

Manufacturing Energy Consumption Survey (MECS) - Data - U.S....  

U.S. Energy Information Administration (EIA) Indexed Site

| 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total First Use (formerly Primary Consumption) of Energy...

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Secretary of Energy Samuel W....

402

Industrial Biomass Energy Consumption and Electricity Net Generation...  

Open Energy Info (EERE)

Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Biomass energy consumption and electricity net generation in the industrial...

403

EIA Data: Total International Primary Energy Consumption

This...  

Open Energy Info (EERE)

EIA Data: Total International Primary Energy Consumption

This table lists total primary energy consumption by country and region in Quadrillion Btu.  Figures in this table...

404

Renewable Energy Consumption for Nonelectric Use by Energy Use...  

Open Energy Info (EERE)

Renewable Energy Consumption for Nonelectric Use by Energy Use Sector and Energy Source, 2004 - 2008 This dataset provides annual renewable energy consumption (in quadrillion Btu)...

405

Residential Energy Consumption for Water Heating (2005) Provides...  

Open Energy Info (EERE)

Residential Energy Consumption for Water Heating (2005) Provides total and average annual residential energy consumption for water heating in U.S. households in 2005, measured in...

406

Residential Energy Consumption Survey Results: Total Energy Consumptio...  

Open Energy Info (EERE)

Consumption Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005)

407

Annual Renewable Electricity Consumption by Country (2005 - 2009...  

Open Energy Info (EERE)

Renewable Electricity Consumption by Country (2005 - 2009) Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as...

408

Historical Renewable Energy Consumption by Energy Use Sector...  

Open Energy Info (EERE)

Historical Renewable Energy Consumption by Energy Use Sector and Energy Source, 1989-2008 Provides annual renewable energy consumption by source and end use between 1989 and 2008....

409

Natural Gas Consumption by Country (1980 - 2009) Total annual...  

Open Energy Info (EERE)

Natural Gas Consumption by Country (1980 - 2009) Total annual dry natural gas consumption by country, 1980 to 2009 (available in Quadrillion Btu). Compiled by Energy Information...

410

Table E7.1. Consumption Ratios of Fuel, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. Consumption Ratios of Fuel, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit:...

411

Annual Electricity Consumption (1980 - 2009) Total annual electricity  

Open Energy Info (EERE)

Consumption (1980 - 2009) Total annual electricity consumption by country, 1980 to 2009 (billion kilowatthours). Compiled by Energy Information Administration (EIA).
...

412

TV Energy Consumption Trends and Energy-Efficiency Improvement...  

NLE Websites -- All DOE Office Websites (Extended Search)

TV Energy Consumption Trends and Energy-Efficiency Improvement Options Title TV Energy Consumption Trends and Energy-Efficiency Improvement Options Publication Type Report LBNL...

413

Electricity Generation and Consumption by State (2008 ) Provides...  

Open Energy Info (EERE)

Electricity Generation and Consumption by State (2008 ) Provides total annual electricity consumption by sector (residential, commercial and industrial) for all states in 2008,...

414

South Dakota Natural Gas Industrial Consumption (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Industrial Consumption (Million Cubic Feet) South Dakota Natural Gas Industrial Consumption (Million...

415

South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Vehicle Fuel Consumption...

416

South Dakota Natural Gas Residential Consumption (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Residential Consumption (Million Cubic Feet) South Dakota Natural Gas Residential Consumption...

417

South Dakota Natural Gas Total Consumption (Million Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Total Consumption (Million Cubic Feet) South Dakota Natural Gas Total Consumption (Million Cubic Feet)...

418

South Dakota Natural Gas Lease Fuel Consumption (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Lease Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Lease Fuel Consumption (Million Cubic...

419

California Energy Commission - Natural Gas Consumption by Utility  

Open Energy Info (EERE)

California Energy Commission - Natural Gas Consumption by Utility (1990-2009) California Energy Commission natural gas consumption data by Utility company for Commercial,...

420

Natural Gas Production, Transmission, and Consumption by State...  

Open Energy Info (EERE)

Natural Gas Production, Transmission, and Consumption by State, 2009 The EIA dataset is a state by state comparison of natural gas production, transmission, and consumption for the...

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy consumption of building 39; Energy consumption of building thirty-nine.  

E-Print Network (OSTI)

??The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further… (more)

Hopeman, Lisa Maria

2007-01-01T23:59:59.000Z

422

CONTACT: Ann Guy, Energy Solutions FOR IMMEDIATE RELEASE Tel. 510/4824420  

E-Print Network (OSTI)

CONTACT: Ann Guy, Energy Solutions FOR IMMEDIATE RELEASE Tel. 510/4824420 Email: aguy@energysolution.com Energy Technology Assistance Program Exceeds ARRA Goals Oakland, CA September 18, 2012. The California Energy Commission's statewide municipal energy efficiency program

423

AEO2011: Primary Natural Gas Flows Entering NGTDM Region from Neighboring  

Open Energy Info (EERE)

Primary Natural Gas Flows Entering NGTDM Region from Neighboring Primary Natural Gas Flows Entering NGTDM Region from Neighboring Regions Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 138, and contains only the reference case. This dataset is in billion cubic feet per year. The data is broken down into New England, Middle Atlantic, East North Central, West Central, South Atlantic, East South Central, West South Central, Mountain, Pacific, Florida, Arizona/New Mexico, California. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIS Natural Gas Data application/vnd.ms-excel icon AEO2011: Primary Natural Gas Flows Entering NGTDM Region from Neighboring Regions- Reference Case (xls, 60 KiB)

424

Household energy consumption and expenditures 1987  

SciTech Connect

This report is the third in the series of reports presenting data from the 1987 Residential Energy Consumption Survey (RECS). The 1987 RECS, seventh in a series of national surveys of households and their energy suppliers, provides baseline information on household energy use in the United States. Data from the seven RECS and its companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are made available to the public in published reports such as this one, and on public use data files. This report presents data for the four Census regions and nine Census divisions on the consumption of and expenditures for electricity, natural gas, fuel oil and kerosene (as a single category), and liquefied petroleum gas (LPG). Data are also presented on consumption of wood at the Census region level. The emphasis in this report is on graphic depiction of the data. Data from previous RECS surveys are provided in the graphics, which indicate the regional trends in consumption, expenditures, and uses of energy. These graphs present data for the United States and each Census division. 12 figs., 71 tabs.

Not Available

1990-01-22T23:59:59.000Z

425

Energy Consumption of Die Casting Operations  

SciTech Connect

Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

Jerald Brevick; clark Mount-Campbell; Carroll Mobley

2004-03-15T23:59:59.000Z

426

State Energy Data System Consumption Estimates Technical Notes  

U.S. Energy Information Administration (EIA)

as street lighting and public services; and the Manufacturing Energy Consumption Survey covers only manufacturing establishments,

427

1997 Consumption and Expenditures-Data Tables RECS  

U.S. Energy Information Administration (EIA)

Residential Sector energy Intensities for 1978-1997 using data from EIA Residential Energy Consumption Survey.

428

Renewable energy consumption and economic efficiency: Evidence from European countries  

Science Conference Proceedings (OSTI)

This paper examines the relationship between renewable energy consumption and economic efficiency. For this reason

2013-01-01T23:59:59.000Z

429

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 District Heat Consumption District Heat Expenditures per Building (million Btu) per Square Foot (thousand Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All Buildings ................................ 9,470 113.98 108.4 1.31 11.45 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q Q Q Q Q 5,001 to 10,000 .............................. Q Q Q Q Q 10,001 to 25,000 ............................ Q Q Q Q Q 25,001 to 50,000 ............................ Q Q Q Q Q 50,001 to 100,000 .......................... Q Q Q Q Q 100,001 to 200,000 ........................ 17,452 118.10 Q Q Q

430

US Mnt(N) CO Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Mnt(N) CO Mnt(N) CO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(N) CO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US Mnt(N) CO Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US Mnt(N) CO Expenditures dollars ELECTRICITY ONLY average per household * Colorado households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Average household energy costs in Colorado are 23% less than the national average, primarily due to historically lower natural gas prices in the state. * Average electricity consumption per household is lower than most other states, as Colorado residents do not commonly use electricity for main space heating, air

431

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 All Buildings Using Fuel Oil Fuel Oil Consumption Fuel Oil Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (million gallons) Total (million dollars) All Buildings ................................ 465 16,265 35 228 1,644 1,826 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 211 606 3 34 249 292 5,001 to 10,000 .............................. 102 736 7 36 262 307 10,001 to 25,000 ............................ 66 1,043 16 28 201 238 25,001 to 50,000 ............................ 24 895 38 17 124 134 50,001 to 100,000 .......................... 25 1,852 76 29 209 229

432

Purifying mixed-use electrical consumption data  

SciTech Connect

This paper describes several analytical techniques for obtaining pure end-use load information from mixed end-use consumption data. This process is frequently necessary to make metered data useful to those involved in electric utility load forecasting and conservation assessment. Analyses based on traditional thermal models can be greatly augmented by these data sets if the measured entities correspond to those for which modeled estimates are necessary. We present two scenarios in which greater end-use resolution was needed than was available in existing data. The first involves segregating measured total HVAC consumption data into its heating, cooling, and ventilation constituents. The second discusses a technique to separate measurements of mixed equipment consumption into equipment type categories. These techniques were successfully applied to a large number of metered commercial buildings. We conclude with suggestions for extending these techniques to applications involving high-time-resolution building total data. 3 refs., 8 figs.

Taylor, Z.T.; Pratt, R.G.

1990-09-01T23:59:59.000Z

433

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 All Buildings Using District Heat District Heat Consumption District Heat Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (million dollars) All Buildings ................................ 67 5,576 83 636 7,279 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q Q Q Q Q 5,001 to 10,000 .............................. Q Q Q Q Q 10,001 to 25,000 ............................ 18 289 16 Q Q 25,001 to 50,000 ............................ 10 369 35 Q Q 50,001 to 100,000 .......................... 8 574 70 Q Q 100,001 to 200,000 ........................ 9 1,399 148 165 Q

434

International Energy Outlook 2001 - World Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

World Energy Consumption World Energy Consumption picture of a printer Printer Friendly Version (PDF) This report presents international energy projections through 2020, prepared by the Energy Information Administration, including outlooks for major energy fuels and issues related to electricity, transportation, and the environment. The International Energy Outlook 2001 (IEO2001) presents the Energy Information Administration (EIA) outlook for world energy markets to 2020. Current trends in world energy markets are discussed in this chapter, followed by a presentation of the IEO2001 projections for energy consumption by primary energy source and for carbon emissions by fossil fuel. Uncertainty in the forecast is highlighted by an examination of alternative assumptions about economic growth and their impacts on the

435

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Natural Gas Consumption and Expenditures in All Buildings, 2003 3A. Total Natural Gas Consumption and Expenditures in All Buildings, 2003 All Buildings Using Natural Gas Natural Gas Consumption Natural Gas Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (billion cubic feet) Total (million dollars) All Buildings ................................ 2,538 48,473 19.1 2,100 2,037 16,010 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 1,134 3,175 2.8 257 249 2,227 5,001 to 10,000 .............................. 531 3,969 7.5 224 218 1,830 10,001 to 25,000 ............................ 500 7,824 15.6 353 343 2,897 25,001 to 50,000 ............................ 185 6,604 35.8 278 270 2,054

436

US Mnt(N) CO Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

Mnt(N) CO Mnt(N) CO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(N) CO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US Mnt(N) CO Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US Mnt(N) CO Expenditures dollars ELECTRICITY ONLY average per household * Colorado households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Average household energy costs in Colorado are 23% less than the national average, primarily due to historically lower natural gas prices in the state. * Average electricity consumption per household is lower than most other states, as Colorado residents do not commonly use electricity for main space heating, air

437

Metropolitan functional specialization, transportation, and gasoline consumption  

SciTech Connect

This study examines metropolitan functional specialization relative to urban commuting patterns and per capita gasoline consumption in 55 Standard Metropolitan Statistical Areas throughout the United States. Under the concept of sustenance organization in human ecology, social scientists have documented support for the importance of the key urban economic function for composition and distribution of population and firms in cities. However, sociological and ecological knowledge of the relationships of functional specialization, commuting, and transportation energy use is extremely limited. The present research utilizes the concept of function specialization and the framework of the ecological complex in developing relationships and models of personal daily urban travel patterns and gasoline use. The effort is made to examine human ecological factors in a physical approach to energy consumption. Relationships are tested using correlation matrices, regression analyses, and scatterplots where necessary. The findings indicate that the functional specialization of communities is significant in accounting for variance and patterns in their commuting travel and per capita gasoline consumption.

Hoffman, W.D.

1985-01-01T23:59:59.000Z

438

Estimates of US biofuels consumption, 1990  

DOE Green Energy (OSTI)

This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

Not Available

1991-10-01T23:59:59.000Z

439

Performance Evaluation of Energy Consumption in MANETs  

E-Print Network (OSTI)

The mobility of nodes in MANET may result in dynamic topology with high rate of link breakage and network partitions leading to interruption in communication and packet loss. Many routing protocols have been proposed in the literature with different characteristics and properties. The routing protocols suffer from various overheads causing energy loss which is further aggravated by link breaks. The present work concentrate on the energy consumption issues of routing protocols. We have evaluated the performance of DSDV, DSR and AODV routing protocols with respect to energy consumption indicating their usage of node’s energy.

Ashish Kumar; M. Q. Rafiq; Kamal Bansal

2012-01-01T23:59:59.000Z

440

State energy data report 1995 - consumption estimates  

Science Conference Proceedings (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.

NONE

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ENSO and Short-Term Variability of the South Equatorial Current Entering the Coral Sea  

Science Conference Proceedings (OSTI)

Historical section data extending to 1985 are used to estimate the interannual variability of transport entering the Coral Sea between New Caledonia and the Solomon Islands. Typical magnitudes of this variability are ±5–8 Sv (Sv ? 106 m3 s?1) in ...

William S. Kessler; Sophie Cravatte

2013-05-01T23:59:59.000Z

442

2012 Entering Medical Class: Allopathic Medical Schools (48) to which 142 Penn State applicants matriculated  

E-Print Network (OSTI)

2012 Entering Medical Class: Allopathic Medical Schools (48) to which 142 Penn State applicants University Georgetown University * Jefferson Medical College ­ 38 Marshall University Medical University UMDNJ ­ New Jersey Medical School University of Arizona College of Medicine ­ Phoenix campus University

dePamphilis, Claude

443

Credit Constraints, Learning and Aggregate Consumption Volatility  

E-Print Network (OSTI)

This paper documents three empirical facts. First, consumption volatility relative to income volatility rose from 1947-1960 and then fell dramatically by 75 percent from the 1960s to the 1990s. Second, the correlation between consumption growth and personal income growth fell by about 75 percent over the same time period. Finally, absolute deviations of consumption changes from their mean exhibit two breaks in U.S. data, and the mean size of the absolute deviations has again fallen by about 75 percent. First, I find that a standard benchmark permanent income hypothesis model is unable to explain these facts. Then, I examine the ability of two hypotheses: a fall in credit constraints and changing beliefs about the permanence of income shocks to explain these facts. I find evidence for both explanations and find that these facts can be almost completely explained by a model with learning about the nature of income shocks and a reduction in credit constraints. Importantly, I find that estimated changes in beliefs about the permanence of income shocks have substantial explanatory power for consumption changes.

Daniel L. Tortorice

2009-01-01T23:59:59.000Z

444

Consumption risk and the cross section of expected returns  

E-Print Network (OSTI)

This paper evaluates the central insight of the consumption capital asset pricing model that an asset’s expected return is determined by its equilibrium risk to consumption. Rather than measure risk by the contemporaneous covariance of an asset’s return and consumption growth, we measure risk by the covariance of an asset’s return and consumption growth cumulated over many quarters following the return. While contemporaneous consumption risk explains little of the variation in average returns across the 25 Fama-French portfolios, our measure of ultimate consumption risk at a horizon of three years explains a large fraction of this variation. I.

Jonathan A. Parker; Christian Julliard; John Cochrane; Kent Daniel; Albina Danilova; Pierre-olivier Gourinchas; Sydney Ludvigson

2005-01-01T23:59:59.000Z

445

Multiphoton Laser Processing: A Unique and Simple Way to Enter the  

NLE Websites -- All DOE Office Websites (Extended Search)

Multiphoton Laser Processing: A Unique and Simple Way to Enter the Multiphoton Laser Processing: A Unique and Simple Way to Enter the Nano-Platform Speaker(s): Andreas Ostendorf Date: January 27, 2006 - 12:00pm Location: Bldg. 90 Multiphoton laser processing is one of the rapidly advancing laser technologies, providing unique possibilities for the fabrication of two- and three-dimensional microstructures. Multiphoton material processing has very important advantages over processes based on single photon absorption: an increased spatial resolution and the possibility of photofabrication inside transparent materials. Due to nonlinear nature of multiphoton processing, applications of ultrashort laser systems allow one to overcome the diffraction limit and to produce high quality 3D microstructures with a sub-wavelength resolution. This is very powerful

446

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C13. Total Electricity Consumption and Expenditures for Non-Mall Buildings, 2003 All Buildings* Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Primary Site Total (million dollars) Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings* ............................... 4,404 63,307 14.4 9,168 3,037 890 69,032 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,384 6,346 2.7 1,164 386 113 10,348 5,001 to 10,000 .............................. 834 6,197 7.4 790 262 77 7,296 10,001 to 25,000 ............................ 727 11,370 15.6 1,229 407 119 10,001

447

Table 3.1 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010; 1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99 3112 Grain and Oilseed Milling 350 16,479 * * 118 * 6 0 45 311221 Wet Corn Milling 214 7,467 * * 51 * 5 0 25 31131 Sugar Manufacturing 107 1,218 * * 15 * 2 * 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 9,203

448

Estimation of 1945 to 1957 food consumption  

Science Conference Proceedings (OSTI)

This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. The report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.

Anderson, D.M.; Bates, D.J.; Marsh, T.L.

1993-03-01T23:59:59.000Z

449

Measuring energy consumption of a database cluster  

E-Print Network (OSTI)

Abstract: Energy consumption of database servers is a growing concern for companies as it is a critical part of a data center’s cost. To address the rising cost and the waste of energy, a new paradigm called GreenIT arose. Hardware and software developers are aiming at more energy-efficient systems. To improve the energy footprint of database servers, we developed a cluster of small-scale nodes, that can be dynamically powered dependent on the workload. This demo shows the measurement framework we set up to measure hardware components as well as an entire cluster of nodes. We’ll exhibit the measurement devices for components and servers and show the system’s behavior under varying workloads. Attendees will be able to adjust workloads and experience their impact on energy consumption. 1

Volker Hudlet; Daniel Schall; Ag Dbis; Tu Kaiserslautern

2011-01-01T23:59:59.000Z

450

Electricity Demand and Energy Consumption Management System  

E-Print Network (OSTI)

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

451

File:03HIFPermitToCrossOrEnterTheStateEnergyCorridor.pdf | Open Energy  

Open Energy Info (EERE)

HIFPermitToCrossOrEnterTheStateEnergyCorridor.pdf HIFPermitToCrossOrEnterTheStateEnergyCorridor.pdf Jump to: navigation, search File File history File usage Metadata File:03HIFPermitToCrossOrEnterTheStateEnergyCorridor.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 31 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:14, 29 March 2013 Thumbnail for version as of 14:14, 29 March 2013 1,275 × 1,650 (31 KB) Alevine (Talk | contribs) 12:47, 23 October 2012 Thumbnail for version as of 12:47, 23 October 2012 1,275 × 1,650 (44 KB) Dklein2012 (Talk | contribs) 12:40, 23 October 2012 Thumbnail for version as of 12:40, 23 October 2012 1,275 × 1,650 (44 KB) Dklein2012 (Talk | contribs)

452

Potential for Reducing Consumption Through Distribution Efficiency  

Science Conference Proceedings (OSTI)

In 2007, EPRI released a Prism analysis, providing a technically and economically feasible roadmap for the electricity sector to reduce its greenhouse gas emissions. This approach has been extended to evaluate the utility distribution sector and opportunities to improve efficiency and reduce consumption. Possible improvements in efficiency are estimated by improvement category, including use of more efficient transformers and better reactive power management. Voltage optimization is a significant option ...

2010-12-31T23:59:59.000Z

453

Energy consumption in the pipeline industry  

SciTech Connect

Estimates are developed of the energy consumption and energy intensity (EI) of five categories of U.S. pipeline industries: natural gas, crude oil, petroleum products, coal slurry, and water. For comparability with other transportation modes, it is desirable to calculate EI in Btu/Ton-Mile, and this is done, although the necessary unit conversions introduce additional uncertainties. Since water and sewer lines operate by lift and gravity, a comparable EI is not definable.

Banks, W. F.

1977-12-31T23:59:59.000Z

454

Abstract--Time-driven Switching (TDS) networks with non-immediate forwarding (NIF) provides scheduling  

E-Print Network (OSTI)

Abstract-- Time-driven Switching (TDS) networks with non-immediate forwarding (NIF) provides that with NIF scheduling complexity may grow exponentially. Efficiently finding a schedule from an exponential formulation of the NIF scheduling problem, under a wide variety of networking requirements, then introduces

Baldi, Mario

455

FOR IMMEDIATE RELEASE: Professor Presents Unique Theory of Evolution in New Book  

E-Print Network (OSTI)

FOR IMMEDIATE RELEASE: Professor Presents Unique Theory of Evolution in New Book Frozen Evolution. In the book, the author rejects Darwin's theory of evolution or the theory of the "selfish gene," arguing book to have a profound impact on the way people think about evolution. For more information

Flegr, Jaroslav

456

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 Fuel Oil Consumption Fuel Oil Expenditures per Building (gallons) per Square Foot (gallons) per Building (thousand dollars) per Square Foot (dollars) per Gallon (dollars) All Buildings ................................ 3,533 0.10 3.9 0.11 1.11 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 1,177 0.41 1.4 0.48 1.18 5,001 to 10,000 .............................. 2,573 0.36 3.0 0.42 1.17 10,001 to 25,000 ............................ 3,045 0.19 3.6 0.23 1.18 25,001 to 50,000 ............................ 5,184 0.14 5.6 0.15 1.09 50,001 to 100,000 .......................... 8,508 0.11 9.3 0.12 1.10 100,001 to 200,000 ........................ 12,639 0.09 13.1 0.09 1.03

457

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings ................................ 141 68 117 8,634 4,165 8,376 16.3 16.3 14.0 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 17 7 12 696 439 857 24.1 15.7 14.0 5,001 to 10,000 .............................. 12 5 15 865 451 868 13.8 12.1 17.7 10,001 to 25,000 ............................ 16 12 16 1,493 933 1,405 11.0 13.0 11.5

458

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings ................................ 162 538 343 17,509 32,945 19,727 9.2 16.3 17.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 24 54 38 2,072 2,767 1,640 11.4 19.4 23.0 5,001 to 10,000 .............................. 16 41 29 1,919 3,154 1,572 8.2 13.0 18.4 10,001 to 25,000 ............................ 28 69 45 3,201 5,610 3,683 8.7 12.3 12.2

459

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh) Distribution of Building-Level Intensities (kWh/square foot) 25th Per- centile Median 75th Per- centile per Building (thousand dollars) per Square Foot (dollars) per kWh (dollars) All Buildings ................................ 226 14.9 3.8 8.8 18.1 17.9 1.18 0.079 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 48 17.8 3.8 9.0 20.0 4.4 1.63 0.092 5,001 to 10,000 .............................. 96 12.9 4.0 8.2 15.5 9.2 1.23 0.096 10,001 to 25,000 ............................ 178 11.4 3.1 7.2 15.0 15.2 0.97 0.086

460

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings ............................... 580 986 471 12,407 22,762 13,304 46.8 43.3 35.4 Building Floorspace (Square Feet) 1,001 to 5,000 ............................... 86 103 61 1,245 1,271 659 69.0 81.0 92.1 5,001 to 10,000 ............................. 57 101 60 1,154 1,932 883 49.4 52.3 67.6 10,001 to 25,000 ........................... 105 174 65 2,452 3,390 1,982 42.6 51.2 32.7

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North Central New England Middle Atlantic East North Central All Buildings ................................ 41 131 168 3,430 10,469 12,202 12.0 12.5 13.8 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 5 9 20 369 662 921 12.9 13.9 21.9 5,001 to 10,000 .............................. 3 8 9 360 768 877 8.4 10.4 10.8 10,001 to 25,000 ............................ Q 16 24 674 1,420 2,113 Q 11.6 11.2

462

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption (million gallons) Total Floorspace of Buildings Using Fuel Oil (million square feet) Fuel Oil Energy Intensity (gallons/square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings .............................. 1,302 172 107 64 6,464 2,909 4,663 2,230 0.20 0.06 0.02 Q Building Floorspace (Square Feet) 1,001 to 10,000 ............................ 381 Q Q Q 763 Q 274 Q 0.50 Q 0.10 Q 10,001 to 100,000 ........................ 404 63 Q Q 1,806 648 985 351 0.22 0.10 Q Q Over 100,000 ............................... 517 21 45 Q 3,894 2,055 3,404 1,780 0.13 0.01 0.01 Q

463

US MidAtl NY Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

MidAtl NY MidAtl NY Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl NY Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl NY Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl NY Expenditures dollars ELECTRICITY ONLY average per household * New York households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Electricity consumption in New York homes is much lower than the U.S. average, because many households use other fuels for major energy end uses like space heating, water heating, and cooking. Electricity costs are closer to the national average due to higher than average electricity prices in the state.

464

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) All Buildings ................................ 4,859 71,658 14.7 6,523 1,342 91.0 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 2.7 685 265 99.0 5,001 to 10,000 .............................. 948 7,033 7.4 563 594 80.0 10,001 to 25,000 ............................ 810 12,659 15.6 899 1,110 71.0 25,001 to 50,000 ............................ 261 9,382 36.0 742 2,843 79.0

465

US MidAtl PA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

MidAtl PA MidAtl PA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl PA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl PA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl PA Expenditures dollars ELECTRICITY ONLY average per household * Pennsylvania households consume an average of 96 million Btu per year, 8% more than the U.S. average. Pennsylvania residents also spend 16% more than the average U.S. households for energy consumed in their homes. * Average electricity consumption in Pennsylvania homes is 10,402 kWh per year, which is lower than the national average, but 58% more than New York households and 17% more than New Jersey residents.

466

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) per Worker (million Btu) All Buildings* ............................... 4,645 64,783 13.9 5,820 1,253 89.8 79.9 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 2.7 672 263 98.9 67.6 5,001 to 10,000 .............................. 889 6,585 7.4 516 580 78.3 68.7 10,001 to 25,000 ............................ 738 11,535 15.6 776 1,052 67.3 72.0 25,001 to 50,000 ............................ 241 8,668 35.9 673 2,790 77.6 75.8

467

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 7A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North Central New England Middle Atlantic East North Central All Buildings ................................ 85 364 550 1,861 8,301 10,356 45.4 43.8 53.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q 42 69 Q 427 741 Q 98.4 92.9 5,001 to 10,000 .............................. Q 32 49 Q 518 743 Q 62.1 65.5 10,001 to 25,000 ............................ Q 47 102 Q 952 1,860 Q 49.7 54.6

468

Minneapolis residential energy consumption. Final report  

SciTech Connect

This report deals with residential energy consumption in single - family, townhouse, low - rise, and high - rise structures in Minnapolis, Minn., with the year 1957 chosen as a typical weather year for the area. Design and structural features considered important in defining the residences were structural parameters (construction details, dimensions, and materials), energy consumption parameters (heating and cooling equipment, types of fuels and energy used, and appliances and their energy consumption levels), and lifestyle parameters (thermostat set points, relative humidity set points, type and number of appliances, daily profile of appliance use, and use of ventilation fans). Annual heating and cooling loads and resultant energy requirements were calculated using a time - response computer program. This program included subroutines for determining hourly load contributions throughout the year due to conduction, convection, air infiltration, radiation, and internal heat gain. The heating load was significantly higher than the cooling load for single - family and townhouse residences, as would be expected for the cold Minneapolis climate. Due to increased internal heat generation, low - rise and high - rise cooling and heating loads were similar in magnitude. Energy - conserving modifications involving both structural and comfort control system changes resulted in the following: single - family residences consumed 47 percent, townhouse residences consumed 52 percent, low - rise residences consumed 53 percent, and high - rise residences consumed 34 percent of the primary energy required by the characteristic residence. Supporting data, layouts of the residences, and references are included.

Reed, J.E.; Barber, J.E.; White, B.

1976-11-01T23:59:59.000Z

469

US MidAtl PA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

MidAtl PA MidAtl PA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl PA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl PA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl PA Expenditures dollars ELECTRICITY ONLY average per household * Pennsylvania households consume an average of 96 million Btu per year, 8% more than the U.S. average. Pennsylvania residents also spend 16% more than the average U.S. households for energy consumed in their homes. * Average electricity consumption in Pennsylvania homes is 10,402 kWh per year, which is lower than the national average, but 58% more than New York households and 17% more than New Jersey residents.

470

US MidAtl NY Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

MidAtl NY MidAtl NY Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl NY Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl NY Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl NY Expenditures dollars ELECTRICITY ONLY average per household * New York households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Electricity consumption in New York homes is much lower than the U.S. average, because many households use other fuels for major energy end uses like space heating, water heating, and cooking. Electricity costs are closer to the national average due to higher than average electricity prices in the state.

471

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003 . Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003 All Buildings* Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat Primary Site All Buildings* ............................... 4,645 64,783 5,820 9,168 3,037 1,928 222 634 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 672 1,164 386 250 34 Q 5,001 to 10,000 .............................. 889 6,585 516 790 262 209 36 Q 10,001 to 25,000 ............................ 738 11,535 776 1,229 407 309 27 Q 25,001 to 50,000 ............................ 241 8,668 673 1,058 350 258 16 Q 50,001 to 100,000 .......................... 129 9,057 759 1,223 405 244 26 Q

472

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings ................................ 178 238 104 3,788 7,286 2,521 47.0 32.7 41.3 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 23 27 11 346 360 218 66.6 75.8 51.9 5,001 to 10,000 .............................. 14 36 Q 321 662 Q 45.1 53.8 Q 10,001 to 25,000 ............................ 31 33 Q 796 1,102 604 39.5 29.9 Q

473

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

1A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 1A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings ................................ 201 412 431 13,124 31,858 25,200 15.3 12.9 17.1 Principal Building Activity Education ....................................... 9 55 45 806 5,378 3,687 11.1 10.2 12.2 Food Sales ..................................... 36 24 Q 747 467 Q 48.8 51.1 Q

474

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings* ............................. 1,488 2,794 1,539 17,685 29,205 17,893 84.1 95.7 86.0 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 191 290 190 2,146 2,805 1,838 89.1 103.5 103.5 5,001 to 10,000 ............................ 131 231 154 1,972 2,917 1,696 66.2 79.2 91.0 10,001 to 25,000 .......................... 235 351 191 3,213 4,976 3,346 73.1 70.5 57.0

475

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings .............................. 454 715 356 378 134 8,486 14,122 8,970 11,796 5,098 53.5 50.6 39.7 32.0 26.3 Building Floorspace (Square Feet) 1,001 to 5,000 ............................. 57 84 35 58 16 666 1,015 427 832 234 84.8 83.1 81.9 69.6 66.6 5,001 to 10,000 ........................... 50 57 33 61 17 666 1,030 639 1,243 392 75.2 54.9 51.2 49.2 44.0

476

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Total Energy Consumption by Major Fuel for All Buildings, 2003 A. Total Energy Consumption by Major Fuel for All Buildings, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat Primary Site All Buildings ................................ 4,859 71,658 6,523 10,746 3,559 2,100 228 636 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 685 1,185 392 257 34 Q 5,001 to 10,000 .............................. 948 7,033 563 883 293 224 36 Q 10,001 to 25,000 ............................ 810 12,659 899 1,464 485 353 28 Q 25,001 to 50,000 ............................ 261 9,382 742 1,199 397 278 17 Q 50,001 to 100,000 .......................... 147 10,291 913 1,579 523 277 29 Q

477

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings .............................. 137 254 189 261 202 11,300 18,549 12,374 17,064 10,894 12.1 13.7 15.3 15.3 18.5 Building Floorspace (Square Feet) 1,001 to 5,000 ............................. 19 27 14 32 23 1,210 1,631 923 1,811 903 15.7 16.4 15.0 17.8 25.8 5,001 to 10,000 ........................... 12 18 15 27 14 1,175 1,639 1,062 1,855 914 10.2 10.9 14.3 14.3 15.5

478

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings ................................ 172 234 452 185 13,899 17,725 26,017 12,541 12.4 13.2 17.4 14.7 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 14 30 52 19 1,031 1,742 2,410 1,296 13.5 17.4 21.5 14.6 5,001 to 10,000 .............................. 11 17 37 21 1,128 1,558 2,640 1,319 9.8 10.8 14.0 15.8 10,001 to 25,000 ............................ 22 33 59 28 2,094 3,317 4,746 2,338 10.4 10.0 12.5 12.1

479

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings ................................ 448 728 511 350 10,162 14,144 15,260 8,907 44.1 51.5 33.5 39.3 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 50 92 68 40 547 1,086 912 629 90.6 84.6 74.5 63.7 5,001 to 10,000 .............................. 39 63 69 46 661 1,064 1,439 806 59.2 59.4 48.1 57.4 10,001 to 25,000 ............................ 58 133 81 70 1,293 2,656 2,332 1,542 45.2 50.1 34.7 45.7

480

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

1A. Natural Gas Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 1A. Natural Gas Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings ................................ 467 882 688 7,144 21,928 19,401 65.4 40.2 35.5 Principal Building Activity Education ....................................... Q 137 101 419 3,629 2,997 53.9 37.6 33.7 Food Sales ..................................... 16 Q Q 339 Q Q 46.6 Q Q

Note: This page contains sample records for the topic "immediately entered consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings ................................ 168 185 165 5,453 3,263 5,644 30.9 56.6 29.2 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 29 18 Q 334 266 363 87.9 68.5 60.2 5,001 to 10,000 .............................. 25 Q Q 545 291 514 45.6 62.7 54.4 10,001 to 25,000 ............................ 20 45 26 626 699 844 32.1 63.9 30.6

482

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings ................................ 66 254 57 5,523 13,837 3,546 12.0 18.3 16.2 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 10 28 7 821 1,233 481 12.4 22.4 15.4 5,001 to 10,000 .............................. 7 20 5 681 1,389 386 10.8 14.4 13.3 10,001 to 25,000 ............................ 9 31 12 1,204 2,411 842 7.8 12.8 14.1

483

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C8. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 2 C8. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings* ............................... 436 1,064 309 5,485 12,258 3,393 79.5 86.8 91.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 60 116 36 922 1,207 538 64.9 96.5 67.8 5,001 to 10,000 .............................. 44 103 Q 722 1,387 393 60.5 74.0 Q

484

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings ............................... 1,248 2,553 2,721 13,955 32,332 25,371 89.4 79.0 107.3 Principal Building Activity Education ...................................... 63 423 334 808 5,378 3,687 78.3 78.6 90.7 Food Sales ................................... 144 Q Q 765 467 Q 188.5 Q Q

485

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings* ........................... 990 1,761 1,134 1,213 724 10,622 17,335 11,504 15,739 9,584 93.2 101.6 98.5 77.0 75.5 Building Floorspace (Square Feet) 1,001 to 5,000 ............................ 143 187 90 170 95 1,313 1,709 1,010 1,915 975 108.7 109.6 88.8 89.0 97.9 5,001 to 10,000 .......................... 110 137 91 156 69 1,248 1,725 1,077 2,024 959 88.1 79.3 84.6 77.1 71.7

486

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings* ............................. 1,188 2,208 2,425 13,374 29,260 22,149 88.8 75.5 109.5 Principal Building Activity Education ...................................... 63 423 334 808 5,378 3,687 78.3 78.6 90.7

487

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 3 . Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings* ............................... 575 381 530 7,837 3,675 7,635 73.4 103.8 69.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 87 44 64 788 464 871 110.9 94.7 73.0 5,001 to 10,000 .............................. 60 36 76 879 418 820 68.2 86.7 92.9 10,001 to 25,000 ............................ 53 76 73 1,329 831 1,256 40.2 91.7 58.4

488

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings ................................ 456 1,241 340 5,680 13,999 3,719 80.2 88.7 91.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 60 123 37 922 1,283 547 64.9 96.2 67.6 5,001 to 10,000 .............................. 45 111 27 738 1,468 420 61.6 75.4 63.2

489

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings* ............................. 1,271 1,690 1,948 911 12,905 17,080 23,489 11,310 98.5 98.9 82.9 80.6 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 118 206 240 108 1,025 1,895 2,533 1,336 115.1 108.5 94.9 80.6 5,001 to 10,000 ............................ 102 117 185 112 1,123 1,565 2,658 1,239 90.7 74.7 69.5 90.8

490

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings ................................ 684 446 617 9,022 4,207 8,613 75.8 106.1 71.6 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 87 44 64 788 466 871 110.9 94.8 73.0 5,001 to 10,000 .............................. 67 39 84 957 465 878 69.7 84.8 95.1 10,001 to 25,000 ............................ 77 91 89 1,555 933 1,429 49.4 97.2 62.4

491

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North Central New England Middle Atlantic East North Central All Buildings ................................ 345 1,052 1,343 3,452 10,543 12,424 99.8 99.7 108.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 37 86 147 383 676 986 95.9 127.9 148.9 5,001 to 10,000 .............................. 39 68 83 369 800 939 106.0 85.4 88.2 10,001 to 25,000 ............................ Q 121 187 674 1,448 2,113 Q 83.4 88.4

492

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings ............................... 1,522 3,228 1,772 18,031 33,384 20,243 84.4 96.7 87.6 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 193 300 193 2,168 2,904 1,850 89.0 103.2 104.2 5,001 to 10,000 ............................ 134 263 165 2,032 3,217 1,784 66.0 81.9 92.5 10,001 to 25,000 .......................... 241 432 226 3,273 5,679 3,707 73.6 76.1 60.9

493

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings ............................ 1,086 1,929 1,243 1,386 879 11,529 18,808 12,503 17,630 11,189 94.2 102.6 99.4 78.6 78.6 Building Floorspace (Square Feet) 1,001 to 5,000 ............................ 143 187 90 170 95 1,313 1,709 1,010 1,915 975 108.7 109.6 88.8 89.0 97.9 5,001 to 10,000 .......................... 110 137 91 156 69 1,248 1,725 1,077 2,024 959 88.1 79.3 84.6 77.1 71.7

494

Gas consumption shrinks in commercial laundry plant  

SciTech Connect

The submerged-exhaust water-heating system with heat-recovery economizer operates above 90% efficiency compared to the 60% efficiency of the plant's old system. The system will require 3,936 therms/week compared to 5,887 with the old generator. Bubbles from the submerged downcomer tube rise through the surrounding bath, transferring heat through the gas-liquid interface as they rise to the surface. Heat transfer to the liquid bath is immediate and efficiency is high.

1981-09-01T23:59:59.000Z

495

Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Plan to Reduce State Plan to Reduce Petroleum Consumption to someone by E-mail Share Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Facebook Tweet about Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Twitter Bookmark Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Google Bookmark Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Delicious Rank Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Digg Find More places to share Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Plan to Reduce Petroleum Consumption

496

Utah Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

497

Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

498

Utah Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Total Consumption (Million Cubic Feet) Utah Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

499

Modeling Energy Consumption of Residential Furnaces and Boilers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Residential Furnaces and Boilers in U.S. homes Title Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. homes Publication Type Report...

500

Trends in U.S. Residential Natural Gas Consumption  

Gasoline and Diesel Fuel Update (EIA)

Trends in U.S. Residential Natural Gas Consumption Trends in U.S. Residential Natural Gas Consumption This report presents an analysis of residential natural gas consumption trends in the United States through 2009 and analyzes consumption trends for the United States as a whole (1990 through 2009) and for each Census Division (1998 through 2009). It examines a long-term downward per- customer consumption trend and analyzes whether this trend persists across Census Divisions. The report also examines some of the factors that have contributed to the decline in per-customer consumption. To provide a more meaningful measure of per-customer consumption, EIA adjusted consumption data presented in the report for weather. Questions or comments on the contents of this article should be directed to Lejla Alic at Lejla.Alic@eia.doe.gov or (202) 586-0858.