National Library of Energy BETA

Sample records for imbalance resolution storage

  1. Multi-resolution Storage and Search in Sensor Deepak Ganesan

    E-Print Network [OSTI]

    Ganesan, Deepak

    of sensor data to internet gateways which can quickly drain battery-operated nodes. Constructing a storageMulti-resolution Storage and Search in Sensor Networks Deepak Ganesan Department of Computer world. This paper addresses two key challenges in wireless sensor networks: in-network storage

  2. Thermal Design of a Metal Hydride Storage Bed, Permitting Tritium Accountancy to 0.1% Resolution and Repeatability

    E-Print Network [OSTI]

    Thermal Design of a Metal Hydride Storage Bed, Permitting Tritium Accountancy to 0.1% Resolution and Repeatability

  3. Energy Imbalance Markets (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    The anticipated increase in variable renewable generation, such as wind and solar power, over the next several years has raised concerns about how system operators will maintain balance between electricity production and demand in the Western Interconnection, especially in its smaller balancing authority areas (BAAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. Meanwhile, uncertainties about future load growth and challenges siting new transmission and generation resources may add additional stresses on the Western Interconnection of the future. One proposed method of addressing these challenges is an energy imbalance market (EIM). An EIM is a means of supplying and dispatching electricity to balance fluctuations in generation and load. It aggregates the variability of generation and load over multiple balancing areas (BAs).

  4. Earth's Energy Imbalance and Implications

    E-Print Network [OSTI]

    Hansen, James; Kharecha, Pushker; von Schuckmann, Karina

    2011-01-01

    Improving observations of ocean temperature confirm that Earth is absorbing more energy from the sun than it is radiating to space as heat, even during the recent solar minimum. The inferred planetary energy imbalance, 0.59 \\pm 0.15 W/m2 during the 6-year period 2005-2010, provides fundamental verification of the dominant role of the human-made greenhouse effect in driving global climate change. Observed surface temperature change and ocean heat gain constrain the net climate forcing and ocean mixing rates. We conclude that most climate models mix heat too efficiently into the deep ocean and as a result underestimate the negative forcing by human-made aerosols. Aerosol climate forcing today is inferred to be -1.6 \\pm 0.3 W/m2, implying substantial aerosol indirect climate forcing via cloud changes. Continued failure to quantify the specific origins of this large forcing is untenable, as knowledge of changing aerosol effects is needed to understand future climate change. A recent decrease in ocean heat uptake ...

  5. Governmental-Owner Power Imbalance and Privatization 

    E-Print Network [OSTI]

    Xu, Kehan

    2011-10-21

    relationships of SOEs and their governmental owners. Four panel databases of 206 pharmaceutical firms across eight years in China were combined to answer the research question of this dissertation: What is the role of power imbalance between different...

  6. Resolution of safety issues associated with the storage of high-level radioactive waste at the Hanford Site

    SciTech Connect (OSTI)

    Mellinger, G.B. (Pacific Northwest Lab., Richland, WA (United States)); Tseng, J.C. (USDOE Assistant Secretary for Environmental Restoration and Waste Management, Washington, DC (United States))

    1992-08-01

    A number of high-level radioactive waste (HLW) safety issues have been identified at the Hanford Site in southeastern Washington State. Resolution of these issues is one of the Highest Priorities of the US Department of Energy. The most urgent issues are the potential for explosions in certain tanks (due to periodic venting of large quantities of flammable gases, or the presence of substantial quantities of ferrocyanide and/or organic compounds in combination with nitrates-nitrites). Other safety issues have been identified as well, such as the requirement for periodic water additions to one tank to control its temperature and the release of noxious vapors from a number of tanks. Substantial progress has been made toward safety issue resolution. Potential mechanisms have been identified for the generation, retention and periodic venting of flammable gas mixtures; potential methods for controlling the periodic release behavior have been identified and in-tank testing will be initiated in 1992. Research is being conducted to determine the initiation temperatures, energetics, reaction sequences and effects of catalysts and initiators on ferrocyanide-nitrate/nitrite reactions; waste characterization on a tank-by-tank basis will be required to identify whether ferrocyanide-containing wastes are safe to store as-is or will require further treatment to eliminate safety concerns. Resolution of all of the Hanford Site HLW safety issues will be accomplished as an integral part of the Hanford Tank Waste Remediation System, that has been established to manage the storage of these wastes and their preparation for disposal.

  7. Earth's Energy Imbalance: Confirmation and Implications

    E-Print Network [OSTI]

    on the climate model_s ability to simulate the planetary energy imbalance. The lag in the climate response Tausnev3 Our climate model, driven mainly by increasing human-made greenhouse gases and aerosols, among specified level of climate change; and (iii) the likelihood of acceleration of ice sheet disintegration

  8. Impact of Energy Imbalance Tariff on Wind Energy

    SciTech Connect (OSTI)

    Wan, Y.; Milligan, M.; Kirby, B.

    2007-07-01

    This paper summarizes the results of a study that uses actual wind power data and actual energy prices to analyze the impact of an energy imbalance tariff imposed by the Federal Energy Regulatory Commission on wind power.

  9. Probing Structure-Property Relationship of Energy Storage Materials Using Ex-Situ, In-Situ Dynamic Microscopy and Spectroscopy with High Spatial and Fast Temporal Resolution

    E-Print Network [OSTI]

    Probing Structure-Property Relationship of Energy Storage Materials Using Ex-Situ, In-Situ Dynamic, chemistry, and properties of energy storage materials Find general guiding principle for accelerated-situ chemical imaging and spectroscopic study of structure and chemical evolution of new energy storage

  10. Building Decision Trees for the Multi-class Imbalance Problem

    E-Print Network [OSTI]

    Chawla, Nitesh V.

    Building Decision Trees for the Multi-class Imbalance Problem T. Ryan Hoens1 , Qi Qian2 , Nitesh V. In imbalanced datasets, the class of interest is generally a small fraction of the total instances, but misclassification of such instances is often expensive. While there is a significant body of research on the class

  11. Data Storage Data Storage

    E-Print Network [OSTI]

    Jiang, Anxiao "Andrew"

    I Data Storage #12;#12;Data Storage Edited by Prof. Florin Balasa In-Tech intechweb.org #12 Jakobovic Cover designed by Dino Smrekar Data Storage, Edited by Prof. Florin Balasa p. cm. ISBN 978-953-307-063-6 #12;V Preface Many different forms of storage, based on various natural phenomena, has been invented

  12. Western Interconnection Energy Imbalance Market Status and Prospects (Presentation)

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; King, J.; Beuning, S.

    2011-10-01

    This presentation describes how a new wholesale electricity market for energy imbalance ancillary services could be implemented and operated. Some conclusions of this presentation are: (1) Method for calculating additional reserve requirements due to wind and solar production; (2) EIM results in substantial reduction in reserves requirements and ramping demand; (3) Reduced participation reduces benefits for all but reduces the benefits to non-participants the most; (4) Full participation leads to maximum benefit across the Western Interconnection, up to 42% of total reserve requirement; and (5) Regional EIM implementations have smaller but substantial benefits.

  13. Effects of chiral imbalance and magnetic field on pion superfluidity and color superconductivity

    E-Print Network [OSTI]

    Gaoqing Cao; Pengfei Zhuang

    2015-05-20

    The effects of chiral imbalance and external magnetic field on pion superfluidity and color superconductivity are investigated in extended Nambu--Jona-Lasinio models. We take Schwinger approach to treat the interaction between charged pion condensate and magnetic field at finite isospin density and include simultaneously the chiral imbalance and magnetic field at finite baryon density. For the superfluidity, the chiral imbalance and magnetic field lead to catalysis and inverse catalysis effects, respectively. For the superconductivity, the chiral imbalance enhances the critical baryon density, and the magnetic field results in a de Haas--van Alphan oscillation on the phase transition line.

  14. Effects of chiral imbalance and magnetic field on pion superfluidity and color superconductivity

    E-Print Network [OSTI]

    Cao, Gaoqing

    2015-01-01

    The effects of chiral imbalance and external magnetic field on pion superfluidity and color superconductivity are investigated in extended Nambu--Jona-Lasinio models. We take Schwinger approach to treat the interaction between charged pion condensate and magnetic field at finite isospin density and include simultaneously the chiral imbalance and magnetic field at finite baryon density. For the superfluidity, the chiral imbalance and magnetic field lead to catalysis and inverse catalysis effects, respectively. For the superconductivity, the chiral imbalance enhances the critical baryon density, and the magnetic field results in a de Haas--van Alphan oscillation on the phase transition line.

  15. A dynamical investigation of the heat and helium imbalance Peter E. van Keken aY

    E-Print Network [OSTI]

    van Keken, Peter

    and helium released from the whole mantle convection models is smaller than the production ratioA dynamical investigation of the heat and helium imbalance Peter E. van Keken aY *, Chris J; accepted 6 April 2001 Abstract The terrestrial heat^helium imbalance [O'Nions and Oxburgh, Nature 306 (1983

  16. Control and Size Energy Storage for Managing Energy balance of Variable Generation Resources

    SciTech Connect (OSTI)

    Ke, Xinda; Lu, Ning; Jin, Chunlian

    2015-01-01

    This paper presents control algorithms and sizing strategies for using energy storage to manage energy balance for variable generation resources. The control objective is to minimize the hourly generation imbalance between the actual and the scheduled generation of the wind farm. Three control algorithms are compared: tracking power imbalance, post-compensation, and pre-compensation. Measurement data from a wind farm located in South-central Washington State are used in the study. The results show that tracking power imbalance yields the best performance by keeping the hourly energy imbalances zero. However, the energy storage system (ESS) will be significantly oversized. Post-compensation reduces power rating of the ESS but the hourly imbalance may not be kept as zero when large and long-lasting energy imbalances occur. A linear regression forecasting algorithm is developed for the pre-compensation algorithm to pre-charge or pre-discharge the ESS based on predicted energy imbalances. The performance comparison shows that the pre-compensation method significantly reduces the size of the ESS while maintaining satisfactory performance.

  17. The effect of imbalance distribution and measurement locations on critical speeds in a turboprop engine rotor 

    E-Print Network [OSTI]

    Marin, Manuel

    1996-01-01

    The critical speeds of a turbomachine can be defined as the speeds at which synchronous response to imbalance is maximum (Vance,1988). Identifying the proper placement of critical speeds is very important in the design process of turbomachinery...

  18. Measurements of imbalance response for a rigid rotor fully supported on squeeze film dampers 

    E-Print Network [OSTI]

    Lubell, Daniel Roger

    2000-01-01

    Modern high performance turbomachinery providing increased power to weight ratios and larger efficiencies are designed to operate at higher speeds than prior designs. These machines are more sensitive to imbalance since they must traverse critical...

  19. Examination of Potential Benefits of an Energy Imbalance Market in the Western Interconnection

    SciTech Connect (OSTI)

    Milligan, M.; Clark, K.; King, J.; Kirby, B.; Guo, T.; Liu, G.

    2013-03-01

    In the Western Interconnection, there is significant interest in improving approaches to wide-area coordinated operations of the bulk electric power system, in part because of the increasing penetration of variable generation. One proposed solution is an energy imbalance market. This study focused on that approach alone, with the goal of identifying the potential benefits of an energy imbalance market in the year 2020.

  20. Neutrino signals in electron-capture storage-ring experiments

    E-Print Network [OSTI]

    Avraham Gal

    2015-05-26

    Neutrino signals in electron-capture storage-ring experiments at GSI are reconsidered, with special emphasis placed on the quasi-circular motion of the daughter ions in two-body decays. Whereas parent-ion decay rates cannot exhibit modulation with the several-second period reported in these experiments, the time evolution of the detected daughter ions is shown to produce oscillations that under certain conditions may provide resolution of the `GSI Oscillations' puzzle. New dedicated storage-ring or trap experiments could look up for these oscillations.

  1. Global Imbalances and the U.S. Trade Deficit Robert A. Blecker

    E-Print Network [OSTI]

    Carlini, David

    incomes of working-class and middle- class households and creating a latent deficiency of aggregate demand domestic demand and lent the U.S. the funds required to finance the resulting trade imbalances. Those U. The author alone is responsible for the views expressed here and any remaining errors. #12;2 to compete

  2. Handling Class Overlap and Imbalance to Detect Prompt Situations in Smart Homes

    E-Print Network [OSTI]

    Cook, Diane J.

    Handling Class Overlap and Imbalance to Detect Prompt Situations in Smart Homes Barnan Das University, Pullman, WA 99164-2752 Email: barnandas@wsu.edu, {ckn, cook}@eecs.wsu.edu Abstract--The class for over a decade. Under-representation of one or more of the target classes (minority class(es

  3. Evidence for metabolic imbalance of vitamin A2 in wild fish chronically exposed to metals

    E-Print Network [OSTI]

    Bernatchez, Louis

    Evidence for metabolic imbalance of vitamin A2 in wild fish chronically exposed to metals Michel A was observed. These results suggest that the enzymes and the binding proteins involved in vitamin A homeostasis are inhibited by the presence of Cd. Alternatively, the increase in tissue vitamin A (antioxidant) levels could

  4. Mud budget imbalance in the Taiwan Strait receiving high input of fluvial sediments from mountainous rivers

    E-Print Network [OSTI]

    Lin, Andrew Tien-Shun

    #12;1 Mud budget imbalance in the Taiwan Strait receiving high input of fluvial sediments from for Environmental Change, Academia Sinica, Taipei, Taiwan 2 Institute of Hydrological Sciences, National Central University, Jungli, Taoyuan, Taiwan 3 School of Marine Science, College of William and Mary, Gloucester Pt

  5. GAIN-SCHEDULED PID FOR IMBALANCE COMPENSATION OF A MAGNETIC BEARING

    E-Print Network [OSTI]

    Noll, Dominikus

    GAIN-SCHEDULED PID FOR IMBALANCE COMPENSATION OF A MAGNETIC BEARING Laleh Hosseini@yahoo.fr, noll@mip.ups-tlse.fr Keywords: Scheduled controller for magnetic bearing, H optimal decentralized PID of a magnetic bearing device is addressed by parameter varying control. Within the structure of decen- tralized

  6. Supporting Information Increasing desalination by mitigating anolyte pH imbalance using catholyte

    E-Print Network [OSTI]

    S1 Supporting Information Increasing desalination by mitigating anolyte pH imbalance using catholyte effluent addition in a multi-anode, bench scale microbial desalination cell Robert J. Davis1M) Figure S2. The average power density observed during operation over one desalination cycle at 10

  7. Using Electric Vehicles to Mitigate Imbalance Requirements Associated with an Increased Penetration of Wind Generation

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-10-10

    The integration of variable renewable generation sources continues to be a significant area of focus for power system planning. Renewable portfolio standards and initiatives to reduce the dependency on foreign energy sources drive much of the deployment. Unfortunately, renewable energy generation sources like wind and solar tend to be highly variable in nature. To counter the energy imbalance caused by this variability, wind generation often requires additional balancing resources to compensate for the variability in the electricity production. With the expected electrification of transportation, electric vehicles may offer a new load resource for meeting all, or part, of the imbalance created by the renewable generation. This paper investigates a regulation-services-based battery charging method on a population of plug-in hybrid electric vehicles to meet the power imbalance requirements associated with the introduction of 11 GW of additional wind generation into the Northwest Power Pool. It quantifies the number of vehicles required to meet the imbalance requirements under various charging assumptions.

  8. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  9. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  10. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01

    T. E. Reilly, 2002: Flow and storage in groundwater systems.storage ..2013: Global ocean storage of anthropogenic carbon.

  11. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01

    storage . . . . . . . . . . . . . . . . . . . . . .example system based on log-structured storage 10.1 SystemA storage bottleneck. . . . . . . . . . . . . . . .

  12. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  13. Safety Issues Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Issues · Chemical Storage ·Store in compatible containers that are in good condition to store separately. #12;Safety Issues · Flammable liquid storage -Store bulk quantities in flammable storage cabinets -UL approved Flammable Storage Refrigerators are required for cold storage · Provide

  14. Energy Storage

    SciTech Connect (OSTI)

    Mukundan, Rangachary

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10-8 mol/s/cm2 were achieved.

  15. Energy storage, Thermal energy storage (TES)

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Energy storage, Thermal energy storage (TES) Ron Zevenhoven Åbo Akademi University Thermal and Flow 8, 20500 Turku 2/32 4.1 Energy storage #12;Energy storage - motivations Several reasons motivate the storage of energy, either as heat, cold, or electricity: ­ Supplies of energy are in many cases

  16. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall

  17. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    of such an aquifer thermal storage system were studied andusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  18. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01

    AutoRAID hierarchical storage system,” in SOSP, 1995. [147]next-generation storage systems, and to use segments andclasses of distributed storage systems. Bibliography [1] D.

  19. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  20. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  1. Cool Storage Performance 

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1985-01-01

    . This article covers three thermal storage topics. The first section catalogs various thermal storage systems and applications. Included are: load shifting and load leveling, chilled water storage systems, and ice storage systems using Refrigerant 22 or ethylene...

  2. Alternative Approaches to Calculate Benefits of an Energy Imbalance Market With Wind and Solar Energy: Preprint

    SciTech Connect (OSTI)

    Kirby, B.; King, J.; Milligan, M.

    2012-06-01

    The anticipated increase in variable generation in the Western Interconnection over the next several years has raised concerns about how to maintain system balance, especially in smaller Balancing Authority Areas (BAAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. The consequent increase in variability and uncertainty that must be managed by the conventional generation fleet and responsive loads has resulted in a proposal for an Energy Imbalance Market (EIM). This paper extends prior work to estimate the reserve requirements for regulation, spinning, and non-spinning reserves with and without the EIM. We also discuss alternative approaches to allocating reserve requirements and show that some apparently attractive allocation methods have undesired consequences.

  3. Storage System and IBM System Storage

    E-Print Network [OSTI]

    IBM® XIV® Storage System and IBM System Storage® SAN Volume Controller deliver high performance and smart management for SAP® landscapes IBM SAP International Competence Center #12;"The combination of the XIV Storage System and SAN Volume Controller gives us a smarter way to manage our storage. If we need

  4. IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS, PART B 1 Multi-Class Imbalance Problems: Analysis and

    E-Print Network [OSTI]

    Yao, Xin

    IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS, PART B 1 Multi-Class Imbalance Problems: Analysis and Potential Solutions Shuo Wang, Member, IEEE, and Xin Yao, Fellow, IEEE Abstract--Class by the imbalanced class distributions. Especially, many ensemble methods have been proposed to deal

  5. From balance to imbalance: a shift in the dynamic behaviour of Chhota Shigri glacier, western Himalaya, India

    E-Print Network [OSTI]

    Berthier, Etienne

    From balance to imbalance: a shift in the dynamic behaviour of Chhota Shigri glacier, western Toulouse Cedex, France ABSTRACT. Mass-balance and dynamic behaviour of Chhota Shigri glacier, western­89. During the period 2002­10, the glacier experienced a negative glacier-wide mass balance of ­0.67 Æ 0.40 m

  6. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  7. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  8. Storage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhoton Source Parameters Storage Ringsrlogo_t.gif

  9. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with...

  10. Licensing of spent fuel dry storage and consolidated rod storage: A Review of Issues and Experiences

    SciTech Connect (OSTI)

    Bailey, W.J.

    1990-02-01

    The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs.

  11. Spectroscopy of the soliton lattice formation in quasi-one-dimensional fermionic superfluids with population imbalance

    SciTech Connect (OSTI)

    Lutchyn, Roman M. [Joint Quantum Institute and Condensed Matter Theory Center, University of Maryland, College Park, Maryland 20742-4111 (United States); Microsoft Research, Station Q, Elings Hall, University of California, Santa Barbara, California 93106 (United States); Dzero, Maxim [Joint Quantum Institute and Condensed Matter Theory Center, University of Maryland, College Park, Maryland 20742-4111 (United States); Department of Physics, Kent State University, Kent, Ohio 44242 (United States); Yakovenko, Victor M. [Joint Quantum Institute and Condensed Matter Theory Center, University of Maryland, College Park, Maryland 20742-4111 (United States)

    2011-09-15

    Motivated by recent experiments in low-dimensional trapped fermionic superfluids, we study a quasi-one-dimensional (quasi-1D) superfluid with a population imbalance between two hyperfine states using an exact mean-field solution for the order parameter. When an effective 'magnetic field' exceeds a critical value, the superfluid order parameter develops spatial inhomogeneity in the form of a soliton lattice. The soliton lattice generates a band of quasiparticle states inside the energy gap, which originate from the Andreev bound states localized at the solitons. Emergence of the soliton lattice is accompanied by formation of a spin-density wave, with the majority fermions residing at the points in space where the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) order parameter vanishes. We discuss possibilities for experimental detection of the quasi-1D FFLO state using elastic and inelastic optical Bragg scattering and radiofrequency spectroscopy. We show that these measurements can provide necessary information for unambiguous identification of the spatially inhomogeneous quasi-1D FFLO state and the soliton lattice formation.

  12. Photon Storage Cavities

    E-Print Network [OSTI]

    Kim, K.-J.

    2008-01-01

    Sessler, "Analysis of Photon Storage Cavities for a Free-configuration of coupled storage cavity and PEL cavity. TheFig. 2. A ring resonator storage cavity coupled through a

  13. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    and Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Aquifer Storage of Hot Water from Solar Energy Collectors,"with solar energy systems, aquifer energy storage provides a

  14. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    varying solar energy inputs and thermal or power demands. Itusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  15. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    to MW/40 MWI-IR Battery Energy Storage Facility", proc. 23rdcompressed air, and battery energy storage are all only 65

  16. Analysis of Benefits of an Energy Imbalance Market in the NWPP

    SciTech Connect (OSTI)

    Samaan, Nader A.; Bayless, Rich; Symonds, Mark; Nguyen, Tony B.; Jin, Chunlian; Wu, Di; Diao, Ruisheng; Makarov, Yuri V.; Kannberg, Landis D.; Guo, Tao; Dennison-Leonard , Sarah; Goodenough, Mike; Schellberg, Ron; Conger, Sid; Harris, Kevin; Rarity, Matt; Wallace, Steven; Austin, Jamie; Noteboom, Rod; Van Blaricom , Tim; McRunnel, Kim; Apperson, John; Empey, Marshall; Etingov, Pavel V.; Warady, Debra; Brush, Ray; Newkirk, Joshua; Williams, Peter; Landauer, Marv; Owen, Hugh; Morter, Wayne; Haraguchi, Keli; Portouw, Jim; Downey, kathryn; Sorey, Steve; Williams, Stan; Gossa, Teyent; Kalich, Clint; Damiano, Patrick; Macarthur, Clay; Martin, Tom; Hoerner, Joe; Knudsen, Steve; Johnson, Anders; Link, Rick; Holcomb, Dennis

    2013-10-18

    The Northwest Power Pool (NWPP) Market Assessment Committee (MC) Initiative, which was officially launched on March 19, 2012, set out to explore a range of alternatives that could help the Balancing Authorities and scheduling utilities in the NWPP area address growing operational and commercial challenges affecting the regional power system. The MC formed an Analytical Team with technical representatives from each of the member Balancing Areas in the NWPP and with staff of Pacific Northwest National Laboratory (PNNL). This Analytical Team was instructed to conduct extensive studies of intra-hour operation of the NWPP system in the year 2020 and of the NWPP region with 14,671 MW of wind penetration. The effort utilized a sub-hourly production cost model (the PLEXOS® computer model) that inputs data from the Western Electricity Coordinating Council (WECC)-wide Production Cost Model (PCM) to evaluate potential production cost savings. The Analytical Team was given two general options to evaluate: •Energy Imbalance Market (EIM): establishment of an automated, organized NWPP area market for economically supplying energy imbalance within the hour. •Enhanced Market-Operational Tools (EMT) that might augment or replace an EIM. The Analytical The Analytical Team built on the WECC-wide PCM data from prior work done in the WECC and carried forward the evolution of the original WECC Transmission Expansion Planning Policy Committee (TEPPC) 2020 PC0 data base. A large number of modifications and improvements were made to this case and the data were subjected to extensive review by the team members to improve the model representation of the Northwest (NW). MC meetings that were open to the public were held for interested parties to review and provide input to the study. Results for the test, base, and sensitivity case studies performed by the MC Initiative Analytical Team indicate that there are a wide range of benefits that could be obtained from the operation of an EIM in the NWPP depending on what assumptions are made. The instructions from the MC were to determine a "minimum high confidence" range of potential benefits. The results for the Base Case indicate that the EIM benefits ranged from approximately $40 million to $70 million in annual savings from the operation of an EIM in the NWPP footprint. A number of additional relevant sensitivity cases were performed, including low and high water conditions, low and high natural gas prices, and various flex reserve requirements, resource operations, and amounts of resource capability held back during the preschedule period. Along with the results for the Base Case, the results for these studies yielded EIM benefits that clustered within the range of $70 to $80 million dollars per year with potential benefits ranging from approximately $125 million to as little as $17 million per year. Because the design and operation of an EIM could enable participating Balancing Authorities (BAs) to collectively lower the quantity of resources they must carry to meet within-hour balancing needs, a sensitivity case was also performed to analyze the impact that such reductions might have on the benefits from an EIM. The results for this sensitivity case indicate that such reductions could increase the benefits from the operation of an EIM in the NWPP into the range of approximately $130 million to $160 million per year. Also, a sensitivity case for a WECC-wide EIM was performed with the results indicating that the potential benefits to the NWPP could increase into the range of $197 million to $233 million per year. While there may be potential reliability benefits from the coordinated dispatch process underlying the operation of an EIM, reliability benefits from an EIM were out of the scope of this study. The EIM benefit analyses that were performed by the Analytical Team are provided in this report.

  17. Transportation Storage Interface | Department of Energy

    Office of Environmental Management (EM)

    Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. Transportation Storage Interface More Documents & Publications Gap...

  18. Distributed storage with communication costs

    E-Print Network [OSTI]

    Armstrong, Craig Kenneth

    2011-01-01

    5 Introduction to Coding for Distributed Storage The Repairflow graph for 1 repair with varying storage capac- itythe Capacity of Storage Nodes . . . 4.1 Characterizing

  19. Operating Reserve Reductions from a Proposed Energy Imbalance Market with Wind and Solar Generation in the Western Interconnection

    SciTech Connect (OSTI)

    King, J.; Kirby, B.; Milligan, M.; Beuning, S.

    2012-05-01

    This paper considers several alternative forms of an energy imbalance market (EIM) proposed in the nonmarket areas of the Western Interconnection. The proposed EIM includes two changes in operating practices that independently reduce variability and increase access to responsive resources: balancing authority cooperation and sub-hourly dispatch. As the penetration of variable generation increases on the power system, additional interest in coordination would likely occur. Several alternative approaches could be used, but consideration of any form of coordinated unit commitment is beyond the scope of this analysis. This report examines the benefits of several possible EIM implementations--both separately and in concert.

  20. Pumped Storage Hydropower

    Broader source: Energy.gov [DOE]

    In addition to traditional hydropower, pumped-storage hydropower (PSH)—A type of hydropower that works like a battery, pumping water from a lower reservoir to an upper reservoir for storage and...

  1. Multiported storage devices 

    E-Print Network [OSTI]

    Grande, Marcus Bryan

    2000-01-01

    and intelligence than the traditional block storage device. A multiported storage device allows application-specific code that we call filter applets to be downloaded to the device while still maintaining the simple block-level interface. The device contains...

  2. Transportation Storage Interface

    Office of Environmental Management (EM)

    in above- ground bunkers, each of which is about the size of a one-car garage. Spent Fuel Storage: Dual Purpose Cask Systems 8 Spent Fuel Storage and Transportation: Framework...

  3. Unit 35 - Raster Storage

    E-Print Network [OSTI]

    Unit 35, CC in GIS; Peuquet, Donna

    1990-01-01

    in GIS - 1990 Page 8 Unit 35 - Raster Storage GIS to whichNCGIA Core Curriculum in GIS - 1990 Page 9 Unit 35 - RasterStorage UNIT 35 IMAGES NCGIA Core Curriculum in GIS - 1990

  4. Energy Storage Systems

    SciTech Connect (OSTI)

    Conover, David R.

    2013-12-01

    Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

  5. Accountable Storage Giuseppe Ateniese

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Accountable Storage Giuseppe Ateniese Michael T. Goodrich Vassilios Lekakis Charalampos Papamanthou§ Evripidis Paraskevas§ Roberto Tamassia¶ Abstract We introduce Accountable Storage (AS), a framework allowing. Such protocols offer "provable storage insurance" to a client: In case of a data loss, the client can

  6. Groundwater and Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01

    T. E. Reilly, 2002: Flow and storage in groundwater systems.Estimating ground water storage changes in the Mississippistorage..

  7. Storage Ring Revised March 1994

    E-Print Network [OSTI]

    Brookhaven National Laboratory - Experiment 821

    Chapter 8. Storage Ring Revised March 1994 8.1. Introduction -- 107 -- #12; 108 Storage Ring 8.2. Magnetic Design and Field Calculations 8.2.1. Conceptual Approach #12; Storage Ring 109 #12; 110 Storage Ring 8.2.2. Computer Aided Refined Pole Designs #12; Storage Ring 111 #12; 112 Storage Ring #12

  8. Storage : DAS / SAN / NAS Dploiement

    E-Print Network [OSTI]

    Collette. Sébastien

    CH8 Divers 2 Agenda · Storage : DAS / SAN / NAS · Déploiement · VLAN ­ 802.1Q · Gestion d · Sécurisation de Windows · Sécurisation de UNIX · Qu'est-ce que... ­ Firewall, VPN, IDS/IPS, PKI Storage : DAS, NAS, SAN #12;3 Storage : DAS, NAS, SAN · Direct Attached Storage · Network Attached Storage · Storage

  9. Conflict Resolution Day

    Broader source: Energy.gov [DOE]

    Conflict Resolution Day takes a look at mediation, conciliation, negotiation, arbitration, the ombudsman, and facilitation to resolve conflict in the workplace. Employees and contractors are...

  10. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  11. Culex quinquefasciatus Storage Proteins

    E-Print Network [OSTI]

    2013-01-01

    and hemolymph proteins of Cx. quinquefasciatus . A and B:of typical storage proteins in Cx. quinquefasciatus.Fourth-instar Cx. quinquefasciatus larvae and early pupae

  12. Transmission and Storage Operations

    Energy Savers [EERE]

    Transmission and Storage Operations Natural Gas Infrastructure R&D and Methane Mitigation Workshop Mary Savalle, PMP, LSSGB Compression Reliability Engineer November 12, 2014...

  13. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    and R. W . BOOIll, "Superconductive Energy Storage Inducand H. A. Peterson, "Superconductive E nergy S torage forMeeting, Janua ry N. Mohan, "Superconductive Energy S torage

  14. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  15. Hydrogen Storage Challenges

    Broader source: Energy.gov [DOE]

    For transportation, the overarching technical challenge for hydrogen storage is how to store the amount of hydrogen required for a conventional driving range (>300 miles) within the vehicular...

  16. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    thermal energy becomes apparent with the development of solarsolar energy systems, aquifer energy storage provides a buffer between time-varying solar energy inputs and thermal

  17. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    Weekday Total Electricity Generation (Storage AdoptionWeekday Total Electricity Generation (Storage Adoptionrecovery and storage) utility electricity and natural gas

  18. Ice Bear® Storage Module | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ice Bear Storage Module Ice Bear Storage Module Thermal Energy Storage for Light Commercial Refrigerant-Based Air Conditioning Units The Ice Bear storage technology was...

  19. Sandia Energy - Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Test Pad (ESTP) Home Energy Permalink Gallery Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Energy, Energy Storage, Energy Storage Systems, Energy...

  20. Increasing Desalination by Mitigating Anolyte pH Imbalance Using Catholyte Effluent Addition in a Multi-Anode Bench Scale Microbial

    E-Print Network [OSTI]

    Increasing Desalination by Mitigating Anolyte pH Imbalance Using Catholyte Effluent Addition in a Multi-Anode Bench Scale Microbial Desalination Cell Robert J. Davis, Younggy Kim, and Bruce E. Logan desalination cell (MDC) uses exoelectrogenic bacteria to oxidize organic matter while desalinating water

  1. Storage resource manager

    SciTech Connect (OSTI)

    Perelmutov, T.; Bakken, J.; Petravick, D.; /Fermilab

    2004-12-01

    Storage Resource Managers (SRMs) are middleware components whose function is to provide dynamic space allocation and file management on shared storage components on the Grid[1,2]. SRMs support protocol negotiation and reliable replication mechanism. The SRM standard supports independent SRM implementations, allowing for a uniform access to heterogeneous storage elements. SRMs allow site-specific policies at each location. Resource Reservations made through SRMs have limited lifetimes and allow for automatic collection of unused resources thus preventing clogging of storage systems with ''orphan'' files. At Fermilab, data handling systems use the SRM management interface to the dCache Distributed Disk Cache [5,6] and the Enstore Tape Storage System [15] as key components to satisfy current and future user requests [4]. The SAM project offers the SRM interface for its internal caches as well.

  2. ,"Underground Natural Gas Storage by Storage Type"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

  3. Energy Storage | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage SHARE Energy Storage Development Growing popularity and education about the benefits of alternative, sustainable transportation options-such as electric and hybrid...

  4. Secure Storage Architectures

    SciTech Connect (OSTI)

    Aderholdt, Ferrol; Caldwell, Blake A; Hicks, Susan Elaine; Koch, Scott M; Naughton, III, Thomas J; Pogge, James R; Scott, Stephen L; Shipman, Galen M; Sorrillo, Lawrence

    2015-01-01

    The purpose of this report is to clarify the challenges associated with storage for secure enclaves. The major focus areas for the report are: - review of relevant parallel filesystem technologies to identify assets and gaps; - review of filesystem isolation/protection mechanisms, to include native filesystem capabilities and auxiliary/layered techniques; - definition of storage architectures that can be used for customizable compute enclaves (i.e., clarification of use-cases that must be supported for shared storage scenarios); - investigate vendor products related to secure storage. This study provides technical details on the storage and filesystem used for HPC with particular attention on elements that contribute to creating secure storage. We outline the pieces for a a shared storage architecture that balances protection and performance by leveraging the isolation capabilities available in filesystems and virtualization technologies to maintain the integrity of the data. Key Points: There are a few existing and in-progress protection features in Lustre related to secure storage, which are discussed in (Chapter 3.1). These include authentication capabilities like GSSAPI/Kerberos and the in-progress work for GSSAPI/Host-keys. The GPFS filesystem provides native support for encryption, which is not directly available in Lustre. Additionally, GPFS includes authentication/authorization mechanisms for inter-cluster sharing of filesystems (Chapter 3.2). The limitations of key importance for secure storage/filesystems are: (i) restricting sub-tree mounts for parallel filesystem (which is not directly supported in Lustre or GPFS), and (ii) segregation of hosts on the storage network and practical complications with dynamic additions to the storage network, e.g., LNET. A challenge for VM based use cases will be to provide efficient IO forwarding of the parallel filessytem from the host to the guest (VM). There are promising options like para-virtualized filesystems to help with this issue, which are a particular instances of the more general challenge of efficient host/guest IO that is the focus of interfaces like virtio. A collection of bridging technologies have been identified in Chapter 4, which can be helpful to overcome the limitations and challenges of supporting efficient storage for secure enclaves. The synthesis of native filesystem security mechanisms and bridging technologies led to an isolation-centric storage architecture that is proposed in Chapter 5, which leverages isolation mechanisms from different layers to facilitate secure storage for an enclave. Recommendations: The following highlights recommendations from the investigations done thus far. - The Lustre filesystem offers excellent performance but does not support some security related features, e.g., encryption, that are included in GPFS. If encryption is of paramount importance, then GPFS may be a more suitable choice. - There are several possible Lustre related enhancements that may provide functionality of use for secure-enclaves. However, since these features are not currently integrated, the use of Lustre as a secure storage system may require more direct involvement (support). (*The network that connects the storage subsystem and users, e.g., Lustre s LNET.) - The use of OpenStack with GPFS will be more streamlined than with Lustre, as there are available drivers for GPFS. - The Manilla project offers Filesystem as a Service for OpenStack and is worth further investigation. Manilla has some support for GPFS. - The proposed Lustre enhancement of Dynamic-LNET should be further investigated to provide more dynamic changes to the storage network which could be used to isolate hosts and their tenants. - The Linux namespaces offer a good solution for creating efficient restrictions to shared HPC filesystems. However, we still need to conduct a thorough round of storage/filesystem benchmarks. - Vendor products should be more closely reviewed, possibly to include evaluation of performance/protection of select products. (Note, we are investigation the opti

  5. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  6. Understanding I/O workload characteristics of a Peta-scale storage system

    SciTech Connect (OSTI)

    Kim, Youngjae [ORNL; Gunasekaran, Raghul [ORNL

    2015-01-01

    Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the I/O workloads of scientific applications of one of the world s fastest high performance computing (HPC) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). OLCF flagship petascale simulation platform, Titan, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize the system utilization, the demands of reads and writes, idle time, storage space utilization, and the distribution of read requests to write requests for the Peta-scale Storage Systems. From this study, we develop synthesized workloads, and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution. We also study the I/O load imbalance problems using I/O performance data collected from the Spider storage system.

  7. Storage Exchange: A Global Trading Platform for Storage Services

    E-Print Network [OSTI]

    Melbourne, University of

    Storage Exchange: A Global Trading Platform for Storage Services Martin Placek and Rajkumar Buyya}@csse.unimelb.edu.au Abstract. The Storage Exchange (SX) is a new platform allowing stor- age to be treated as a tradeable resource. Organisations with varying storage requirements can use the SX platform to trade and exchange

  8. Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage

    E-Print Network [OSTI]

    Minnesota, University of

    Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher Yongdae Kim are witnessing a revival of Storage Service Providers (SSP) in the form of new vendors as well as traditional players. While storage outsourcing is cost-effective, many companies are hesitating to outsource

  9. Storage Exchange: A Global Trading Platform for Storage Services

    E-Print Network [OSTI]

    Melbourne, University of

    Storage Exchange: A Global Trading Platform for Storage Services Martin Placek and Rajkumar Buyya,raj}@csse.unimelb.edu.au Abstract. The Storage Exchange (SX) is a new platform allowing stor- age to be treated as a tradeable resource. Organisations with varying storage requirements can use the SX platform to trade and exchange

  10. Flexibility Reserve Reductions from an Energy Imbalance Market with High Levels of Wind Energy in the Western Interconnection

    SciTech Connect (OSTI)

    King, J.; Kirby, B.; Milligan, M.; S. Beuning

    2011-10-01

    The anticipated increase in variable generation in the Western Interconnection (WI) over the next several years has raised concerns about how to maintain system balance, especially in smaller Balancing Areas (BAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts (GW) of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. The consequent increase in variability and uncertainty that must be managed by the conventional generation fleet and responsive load make it attractive to consider ways in which Balancing Area Authorities (BAAs) can pool their variability and response resources, thus taking advantage of geographic and temporal diversity to increase overall operational efficiency. Our analysis considers several alternative forms of an Energy Imbalance Market (EIM) that have been proposed in the non-market areas of the WI. The proposed EIM includes two changes in operating practices that independently reduce variability and increase access to responsive resources: BAA cooperation and sub-hourly dispatch. As proposed, the EIM does not consider any form of coordinated unit commitment; however, over time it is possible that BAAs would develop formal or informal coordination plans. This report examines the benefits of several possible EIM implementations, both separately and in concert.

  11. APS Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    next up previous Next: Main Parameters APS Storage Ring Parameters M. Borland, G. Decker, L. Emery, W. Guo, K. Harkay, V. Sajaev, C.-Y. Yao Advanced Photon Source September 8, 2010...

  12. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  13. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  14. Wet storage integrity update

    SciTech Connect (OSTI)

    Bailey, W.J.; Johnson, A.B. Jr.

    1983-09-01

    This report includes information from various studies performed under the Wet Storage Task of the Spent Fuel Integrity Project of the Commercial Spent Fuel Management (CSFM) Program at Pacific Northwest Laboratory. An overview of recent developments in the technology of wet storage of spent water reactor fuel is presented. Licensee Event Reports pertaining to spent fuel pools and the associated performance of spent fuel and storage components during wet storage are discussed. The current status of fuel that was examined under the CSFM Program is described. Assessments of the effect of boric acid in spent fuel pool water on the corrosion and stress corrosion cracking of stainless steel and the stress corrosion cracking of stainless steel piping containing stagnant water at spent fuel pools are discussed. A list of pertinent publications is included. 84 references, 21 figures, 11 tables.

  15. Analog storage integrated circuit

    DOE Patents [OSTI]

    Walker, J.T.; Larsen, R.S.; Shapiro, S.L.

    1989-03-07

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.

  16. Analog storage integrated circuit

    DOE Patents [OSTI]

    Walker, J. T. (Palo Alto, CA); Larsen, R. S. (Menlo Park, CA); Shapiro, S. L. (Palo Alto, CA)

    1989-01-01

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks.

  17. Marketing Cool Storage Technology 

    E-Print Network [OSTI]

    McCannon, L.

    1987-01-01

    -09-74 Proceedings from the Ninth Annual Industrial Energy Technology Conference, Houston, TX, September 16-18, 1987 Utility Cool Storage Inducement Progra~ ,.,.. ?? ,.. ,., Utilities With Inducement~ CA -- Southern California Edison San Diego Gas &Electric..., electric utilities have been faced with risin~ construction costs, more strin~ent re~ulations, and increasin~ environmental constraints re~ardin~ development of new generatin~ facilities. As the viability of cool storage has been substantiated. bv...

  18. Storage In C Matt Bishop

    E-Print Network [OSTI]

    Bishop, Matt

    Storage In C Matt Bishop Research Institute for Advanced Computer Science NASA Ames Research Center. Intimately bound with the idea of scope is that of storage. When a program deÞnes a variable, the compiler storage (such as on a stack) or as more permanent storage (in data space.) Recall that the format of a C

  19. Storage In C Matt Bishop

    E-Print Network [OSTI]

    Bishop, Matt

    Storage In C Matt Bishop Research Institute for Advanced Computer Science NASA Ames Research Center. Intimately bound with the idea of scope is that of storage. When a program defines a variable, the compiler storage (such as on a stack) or as more permanent storage (in data space.) Recall that the format of a C

  20. Savannah River Hydrogen Storage Technology

    Broader source: Energy.gov [DOE]

    Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

  1. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  2. UFD Storage and Transportation - Transportation Working Group Report

    SciTech Connect (OSTI)

    Maheras, Steven J.; Ross, Steven B.

    2011-08-01

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011). Other sources of information surveyed to develop the list of SSCs and their degradation mechanisms included references such as Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel (NWTRB 2010), Transportation, Aging and Disposal Canister System Performance Specification, Revision 1 (OCRWM 2008), Data Needs for Long-Term Storage of LWR Fuel (EPRI 1998), Technical Bases for Extended Dry Storage of Spent Nuclear Fuel (EPRI 2002), Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program (EPRI 2010a), Industry Spent Fuel Storage Handbook (EPRI 2010b), and Transportation of Commercial Spent Nuclear Fuel, Issues Resolution (EPRI 2010c). SSCs include items such as the fuel, cladding, fuel baskets, neutron poisons, metal canisters, etc. Potential degradation mechanisms (FEPs) included mechanical, thermal, radiation and chemical stressors, such as fuel fragmentation, embrittlement of cladding by hydrogen, oxidation of cladding, metal fatigue, corrosion, etc. These degradation mechanisms are discussed in Section 2 of this report. The degradation mechanisms have been evaluated to determine if they would be influenced by extended storage or high burnup, the need for additional data, and their importance to transportation. These categories were used to identify the most significant transportation degradation mechanisms. As expected, for the most part, the transportation importance was mirrored by the importance assigned by the UFD Storage Task. A few of the more significant differences are described in Section 3 of this report

  3. Radioactive waste storage issues

    SciTech Connect (OSTI)

    Kunz, D.E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  4. Energy storage connection system

    DOE Patents [OSTI]

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  5. High Resolution Timing with Low Resolution Clocks A Microsecond Resolution Timer for Sun Workstations

    E-Print Network [OSTI]

    Melvin, Stephen

    High Resolution Timing with Low Resolution Clocks and A Microsecond Resolution Timer for Sun for Sun 3 and Sun 4 workstations1. One can measure average service times without a high resolution clock?" 1. Introduction - Who Needs a Microsecond Clock Beginning with its Sun 3 workstations, Sun

  6. Storage battery systems analysis

    SciTech Connect (OSTI)

    Murphy, K.D.

    1982-01-01

    Storage Battery Systems Analysis supports the battery Exploratory Technology Development and Testing Project with technical and economic analysis of battery systems in various end-use applications. Computer modeling and simulation techniques are used in the analyses. Analysis objectives are achieved through both in-house efforts and outside contracts. In-house studies during FY82 included a study of the relationship between storage battery system reliability and cost, through cost-of-investment and cost-of-service interruption inputs; revision and update of the SOLSTOR computer code in standard FORTRAN 77 form; parametric studies of residential stand-alone photovoltaic systems using the SOLSTOR code; simulation of wind turbine collector/storage battery systems for the community of Kalaupapa, Molokai, Hawaii.

  7. Energy Storage and Reactive Power Compensator in a Large Wind Farm: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.; Yinger, R.; Romanowitz, H.

    2003-10-01

    The size of wind farm power systems is increasing, and so is the number of wind farms contributing to the power systems network. The size of wind turbines is also increasing--from less than 1 MW a few years ago to the 2- to 3-MW machines being installed today and the 5-MW machines under development. The interaction of the wind farm, energy storage, reactive power compensation, and the power system network is being investigated. Because the loads and the wind farms' output fluctuate during the day, the use of energy storage and reactive power compensation is ideal for the power system network. Energy storage and reactive power compensation can minimize real/reactive power imbalances that can affect the surrounding power system. In this paper, we will show how the contribution of wind farms affects the power distribution network and how the power distribution network, energy storage, and reactive power compensation interact when the wind changes. We will also investigate the size of the components in relation to each other and to the power system.

  8. Energy Imbalance Market Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling boundary injections in real- time, but not day-ahead, caused congestion and uplift costs. * Example: Day-ahead market could dispatch up to 4000 MW of flow on Path 26...

  9. Automatic voltage imbalance detector

    DOE Patents [OSTI]

    Bobbett, Ronald E. (Los Alamos, NM); McCormick, J. Byron (Los Alamos, NM); Kerwin, William J. (Tucson, AZ)

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  10. Energy Imbalance Market Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOE Office of Science (SC)TrackingCentersCAISO

  11. Particle detector spatial resolution

    DOE Patents [OSTI]

    Perez-Mendez, V.

    1992-12-15

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.

  12. Particle detector spatial resolution

    DOE Patents [OSTI]

    Perez-Mendez, Victor (Berkeley, CA)

    1992-01-01

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector.

  13. High resolution data acquisition

    DOE Patents [OSTI]

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  14. High resolution data acquisition

    DOE Patents [OSTI]

    Thornton, Glenn W. (Los Alamos, NM); Fuller, Kenneth R. (Los Alamos, NM)

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  15. Spent-fuel-storage alternatives

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  16. Neptunium storage at Hanford

    SciTech Connect (OSTI)

    Alderman, C.J.; Shiraga, S.S.; Schwartz, R.A.; Smith, R.J.; Wootan, D.W.

    1993-06-01

    A decision must be made regarding whether the United State`s stockpile of neptunium should be discarded into the waste stream or kept for the production of Pu-238. Although the cost of long term storage is not inconsequential, to dispose of the material means the closing of our option to maintain control over our Pu-238 stockpile. Within the Fuels and Materials Examination Facility at Hanford there exists a remotely operated facility that can be converted for neptunium storage. This paper describes the facility and the anticipated handling requirements.

  17. Storage tracking refinery trends

    SciTech Connect (OSTI)

    Saunders, J.

    1996-05-01

    Regulatory and marketplace shakeups have made the refining and petrochemical industries highly competitive. The fight to survive has forced refinery consolidations, upgrades and companywide restructurings. Bulk liquid storage terminals are following suit. This should generate a flurry of engineering and construction by the latter part of 1997. A growing petrochemical industry translates into rising storage needs. Industry followers forecasted flat petrochemical growth in 1996 due to excessive expansion in 1994 and 1995. But expansion is expected to continue throughout this year on the strength of several products.

  18. Carbon Storage Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReports from thecarbon captureCarbon Storage AtlasStorage

  19. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays3 Prepared by:'!TransportStorage RingStorage Ring

  20. Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewable EnergyStaff andState andStorage Storage

  1. High resolution telescope

    DOE Patents [OSTI]

    Massie, Norbert A. (San Ramon, CA); Oster, Yale (Danville, CA)

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  2. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

  3. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    tiles for thermal energy storage,” working paper, Colorado1991). Wallboard with latent heat storage for passive solarR. (2000). Thermal energy storage for space cooling, Pacific

  4. Carbon Nanotube Films for Energy Storage Applications

    E-Print Network [OSTI]

    Kozinda, Alina

    2014-01-01

    Silicon Nanotubes and their Application to Energy Storage,&as an energy storage application of the amorphous-siliconof silicon nanowires hinders the energy storage capability [

  5. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Survey of Thermal Energy Storage in Aquifers Coupled withGeneration and Energy Storage," presented at Frontiers ofStudy of Underground Energy Storage Using High-Pressure,

  6. Carbon-based Materials for Energy Storage

    E-Print Network [OSTI]

    Rice, Lynn Margaret

    2012-01-01

    based Materials for Energy Storage A dissertation submittedbased Materials for Energy storage by Lynn Margaret Ricewind are intermittent. Energy storage systems, then, that

  7. Water Heaters (Storage Oil) | Department of Energy

    Energy Savers [EERE]

    Oil) Water Heaters (Storage Oil) Water Heater, Storage Oil - v1.0.xlsx More Documents & Publications Water Heaters (Tankless Electric) Water Heaters (Storage Electric)...

  8. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    Effect of Heat and Electricity Storage and Reliability onNM, USA. [37] Electricity Storage Association, Morgan Hill,dimensionless d. electricity storage loss factor for the EV

  9. Storage Viability and Optimization Web Service

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    Effect of Heat and Electricity Storage and Reliability onthe final report for the Electricity Storage Viability andof utility electricity purchase, on-site generation, storage

  10. Hydrogen Storage Research and Development Activities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Research and Development Activities Hydrogen Storage Research and Development Activities DOE's hydrogen storage research and development (R&D) activities are aimed...

  11. MASS STORAGE SYSTEMS AND LARGE RESEARCH LIBRARIES

    E-Print Network [OSTI]

    Baker, James A.

    2013-01-01

    Symposium on Mass Storage Systems, Denver, CO, April15-17, 1980 MASS STORAGE SYSTEMS AND LARGE RESEARCHSymposium on Mass Storage Systems, Denver, Colorado, April

  12. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    D. Todd, (1973). Heat storage Systems in the L - Temperaturements for Energy Storage Systems, Los Alamos Scientificdirector for Physi- cal Storage Systems. Under Jim are three

  13. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    the prob- lem of seasonal storage of thermal energy (Matheyto study seasonal storage of thermal energy: winter storagewithin the Seasonal Thermal Energy Storage Program managed

  14. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    for Electrochemical Energy Storage Nanostructured Electrodesof the batteries and their energy storage efficiency. viifor Nanostructure-Based Energy Storage and Generation Tech-

  15. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

  16. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Survey of Thermal Energy Storage in Aquifers Coupled withLow Temperature Thermal Energy Storage Program of Oak Ridgefor Seasonal Thermal Energy Storage: An Overview of the DOE-

  17. Pest Management For Grain Storage and Fumigation

    E-Print Network [OSTI]

    Dyer, Bill

    Pest Management For Grain Storage and Fumigation Seed Treatment -Pest Control- Grain Storage & Seed MANAGEMENT FOR GRAIN STORAGE AND FUMIGATION Introduction .................................................................................................................................................................. 12 Resistance Management Issues

  18. EIA - Natural Gas Storage Data & Analysis

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground...

  19. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    Distributed Generation with Heat Recovery and Storage AfzalGeneration with Heat Recovery and Storage Manuscript Numberhere in order to focus on heat recovery and storage) utility

  20. NV Energy Electricity Storage Valuation

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  1. Storage and Infrastructure

    E-Print Network [OSTI]

    Madey, Gregory R.

    ;Cheaper to Collect RFIDs Sensor Nets The WWW, Screen Scraping, Google Searches Life in CyberSpace - Log Files, Digital Traces, MetaData Faster Computers ==> More Data to Study #12;Data Driven Discovery Organizations, Cyberinfrastructure #12;Research Opportunities & Challenges Sensors, Sensor Networks Storage

  2. Chit-based Remote Storage

    E-Print Network [OSTI]

    Paluska, Justin Mazzola

    We propose a model for reliable remote storage founded on contract law. Consumers submit their bits to storage providers in exchange for a chit. A chit is a cryptographically secure, verifiable contract between a consumer ...

  3. Hydrogen Storage Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  4. Status of Hydrogen Storage Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    The current status in terms of weight, volume, and cost of various hydrogen storage technologies is shown below. These values are estimates from storage system developers and the R&D community...

  5. Silo Storage Preconceptual Design

    SciTech Connect (OSTI)

    Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

    2012-09-01

    The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

  6. Nonlinear effects in kinetic resolutions 

    E-Print Network [OSTI]

    Johnson, Derrell W.

    1999-01-01

    The impact of nonlinear effects in the asymmetric catalysis of kinetic resolutions is analyzed. It is found with minimal assumptions that the kinetics of homocompetitive reactions should apply generally to kinetic resolutions involving partially...

  7. High resolution time interval meter

    DOE Patents [OSTI]

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  8. Webinar: Hydrogen Storage Materials Requirements

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

  9. The Power of Energy Storage

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    The Power of Energy Storage How to Increase Deployment in California to Reduce Greenhouse Gas;1Berkeley Law \\ UCLA Law The Power of Energy Storage: How to Increase Deployment in California to Reduce Greenhouse Gas Emissions Executive Summary: Expanding Energy Storage in California Sunshine and wind, even

  10. HIERARCHICAL STORAGE SYSTEMS FOR INTERACTIVE

    E-Print Network [OSTI]

    Chan, Shueng-Han Gary

    HIERARCHICAL STORAGE SYSTEMS FOR INTERACTIVE VIDEO­ON­DEMAND Shueng­Han Gary Chan and Fouad A; Hierarchical Storage Systems for Interactive Video­On­Demand Shueng­Han Gary Chan and Fouad A. Tobagi Technical­9040 pubs@shasta.stanford.edu Abstract On­demand video servers based on hierarchical storage systems

  11. Electrical Energy Storage: Stan Whittingham

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    1 p. 1 Electrical Energy Storage: Stan Whittingham Report of DOE workshop, April 2007 A Cleaner and Energy Independent America through Chemistry Chemical Storage: Batteries, today and tomorrow http needed in Energy Storage Lithium Economy not Hydrogen Economy #12;9 p. 9 Batteries are key to an economy

  12. Acquisition Conflict Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge KiosksAbout Awarded projectsConflict Resolution At the

  13. Optimizing Trading Decisions for Hydro Storage Systems using ...

    E-Print Network [OSTI]

    2012-09-19

    ... the intermittent supply of electricity from renewable power sources such as wind, ... bids, all remaining imbalances are automatically cleared at the balancing

  14. Energy Storage: Current landscape for alternative energy

    E-Print Network [OSTI]

    Energy Storage: Current landscape for alternative energy storage technologies and what the future may hold for multi-scale storage applications Presented by: Dave Lucero, Director Alternative Energy · Industry initiatives · Technology · Energy Storage Market · EaglePicher initiatives · Summary #12

  15. Project Profile: Carbon Dioxide Shuttling Thermochemical Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using Strontium...

  16. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

  17. Combinatorial Approaches for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial Methods at the...

  18. Nanoscale data storage

    E-Print Network [OSTI]

    J. C. Li

    2007-01-29

    The object of this article is to review the development of ultrahigh-density, nanoscale data storage, i.e., nanostorage. As a fundamentally new type of storage system, the recording mechanisms of nanostorage may be completely different to those of the traditional devices. Currently, two types of molecules are being studied for potential application in nanostorage. One is molecular electronic elements including molecular wires, rectifiers, switches, and transistors. The other approach employs nanostructured materials such as nanotubes, nanowires, and nanoparticles. The challenges for nanostorage are not only the materials, ultrahigh data-densities, fabrication-costs, device operating temperatures and large-scale integration, but also the development of the physical principles and models. There are already some breakthroughs obtained, but it is still unclear what kind of nanostorage systems can ultimately replace the current silicon based transistors. A promising candidate may be a molecular-nanostructure hybrid device with sub-5 nm dimensions.

  19. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  20. Maui energy storage study.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  1. Harmonic resolution as a holographic quantum number

    E-Print Network [OSTI]

    Bousso, Raphael

    2009-01-01

    LBNL- 57239 Harmonic resolution as a holographic quantumhep-th/0310223 UCB-PTH-03/26 Harmonic resolution as aquantum number, the harmonic resolution K. The Bekenstein

  2. Environmental Conflict Resolution | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Conflict Resolution Environmental Conflict Resolution ENVIRONMENTAL CONFLICT RESOLUTION In September 2012, the Council on Environmental Quality (CEQ) and the Office...

  3. Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with 3.5 MeV self-ions

    SciTech Connect (OSTI)

    Shao, Lin; Wei, C. -C.; Gigax, J.; Aitkaliyeva, A.; Chen, D.; Sencer, B. H.; Garner, F. A.

    2014-06-10

    Ion irradiation has been widely used to simulate radiation damage induced by neutrons. However, there are a number of features of ion-induced damage that differ from neutron-induced damage, and these differences require investigation before behavior arising from neutron bombardment can be confidently predicted from ion data. In this study 3.5 MeV self-ion irradiation of pure iron was used to study the influence on void swelling of the depth-dependent defect imbalance between vacancies and interstitials that arises from various surface effects, forward scattering of displaced atoms, and especially the injected interstitial effect. The depth dependence of void swelling was observed not to follow the behavior anticipated from the depth dependence of the damage rate. Void nucleation and growth develop first in the lower-dose, near-surface region, and then, during continued irradiation, move to progressively deeper and higher-damage depths. This indicates a strong initial suppression of void nucleation in the peak damage region that continued irradiation eventually overcomes. This phenomenon is shown by the Boltzmann transport equation method to be due to depth-dependent defect imbalances created under ion irradiation. These findings thus demonstrate that void swelling does not depend solely on the local dose level and that this sensitivity of swelling to depth must be considered in extracting and interpreting ion-induced swelling data.

  4. Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with 3.5 MeV self-ions

    SciTech Connect (OSTI)

    Lin Shao; C.-C. Wei; J. Gigax; A. Aitkaliyeva; D. Chen; B.H. Sencer; F.A. Garner

    2014-10-01

    Ion irradiation has been widely used to simulate neutron-induced radiation damage. There are a number of features of ion-induced damage that differ from neutron-induced damage, however, and these differences require investigation before ion data can be confidently used to predict behavior arising from neutron bombardment. In this study 3.5 MeV self-ion irradiation of pure iron was used to study the influence on void swelling of the depth-dependent defect imbalance between vacancies and interstitials that arises from various surface effects, forward scattering of displaced atoms, and especially the injected interstitial effect. It was observed that the depth dependence of void swelling does not follow the behavior anticipated from the depth dependence of the damage rate. Void nucleation and growth develop first in the lower-dose, near-surface region, and then moves to progressively deeper and higher-damage depths during continued irradiation. This indicates a strong initial suppression of void nucleation in the peak damage region that is eventually overcome with continued irradiation. Using the Boltzmann transport equation method, this phenomenon is shown to be due to depth-dependent defect imbalances created under ion irradiation. These findings demonstrate that void swelling does not depend solely on the local dose level and that this sensitivity of swelling to depth must be considered in extraction and interpretation of ion-induced swelling data. 2014 El

  5. Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with 3.5 MeV self-ions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shao, Lin; Wei, C. -C.; Gigax, J.; Aitkaliyeva, A.; Chen, D.; Sencer, B. H.; Garner, F. A.; Radiation Effects Consulting, Richland, WA

    2014-06-10

    Ion irradiation has been widely used to simulate radiation damage induced by neutrons. However, there are a number of features of ion-induced damage that differ from neutron-induced damage, and these differences require investigation before behavior arising from neutron bombardment can be confidently predicted from ion data. In this study 3.5 MeV self-ion irradiation of pure iron was used to study the influence on void swelling of the depth-dependent defect imbalance between vacancies and interstitials that arises from various surface effects, forward scattering of displaced atoms, and especially the injected interstitial effect. The depth dependence of void swelling was observed notmore »to follow the behavior anticipated from the depth dependence of the damage rate. Void nucleation and growth develop first in the lower-dose, near-surface region, and then, during continued irradiation, move to progressively deeper and higher-damage depths. This indicates a strong initial suppression of void nucleation in the peak damage region that continued irradiation eventually overcomes. This phenomenon is shown by the Boltzmann transport equation method to be due to depth-dependent defect imbalances created under ion irradiation. These findings thus demonstrate that void swelling does not depend solely on the local dose level and that this sensitivity of swelling to depth must be considered in extracting and interpreting ion-induced swelling data.« less

  6. Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with 3.5MeV self-ions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shao, Lin; Wei, C. -C.; Gigax, J.; Aitkaliyeva, A.; Chen, D.; Sencer, B. H.; Garner, F. A.

    2014-06-10

    Ion irradiation has been widely used to simulate neutron-induced radiation damage. There are a number of features of ion-induced damage that differ from neutron-induced damage, however, and these differences require investigation before ion data can be confidently used to predict behavior arising from neutron bombardment. In this study 3.5 MeV self-ion irradiation of pure iron was used to study the influence on void swelling of the depth-dependent defect imbalance between vacancies and interstitials that arises from various surface effects, forward scattering of displaced atoms, and especially the injected interstitial effect. It was observed that the depth dependence of void swellingmore »does not follow the behavior anticipated from the depth dependence of the damage rate. Void nucleation and growth develop first in the lower-dose, near-surface region, and then moves to progressively deeper and higher-damage depths during continued irradiation. This indicates a strong initial suppression of void nucleation in the peak damage region that is eventually overcome with continued irradiation. Using the Boltzmann transport equation method, this phenomenon is shown to be due to depth-dependent defect imbalances created under ion irradiation. As a result, these findings demonstrate that void swelling does not depend solely on the local dose level and that this sensitivity of swelling to depth must be considered in extraction and interpretation of ion-induced swelling data.« less

  7. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    SciTech Connect (OSTI)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially replaces some of the primary oxide cations with selected secondary cations. This causes a lattice charge imbalance and increases the anion vacancy density. Such vacancies enhance the ionic mass transport and lead to faster re-oxidation. Reoxidation fractions of Mn3O4 to Mn2O3 and CoO to Co3O4 were improved by up to 16 fold through the addition of a secondary oxide. However, no improvement was obtained in barium based mixed oxides. In addition to enhancing the short term re-oxidation kinetics, it was found that the use of mixed oxides also help to stabilize or even improve the TES properties after long term thermal cycling. Part of this improvement could be attributed to a reduced grain size in the mixed oxides. Based on the measurement results, manganese-iron, cobalt-aluminum and cobalt iron mixed oxides have been proposed for future engineering scale demonstration. Using the cobalt and manganese mixed oxides, we were able to demonstrate charge and discharge of the TES media in both a bench top fixed bed and a rotary kiln-moving bed reactor. Operations of the fixed bed configuration are straight forward but require a large mass flow rate and higher fluid temperature for charging. The rotary kiln makes direct solar irradiation possible and provides significantly better heat transfer, but designs to transport the TES oxide in and out of the reactor will need to be defined. The final reactor and system design will have to be based on the economics of the CSP plant. A materials compatibility study was also conducted and it identified Inconel 625 as a suitable high temperature engineering material to construct a reactor holding either cobalt or manganese mixed oxides. To assess the economics of such a CSP plant, a packed bed reactor model was established as a baseline. Measured cobalt-aluminum oxide reaction kinetics were applied to the model and the influences of bed properties and process parameters on the overall system design were investigated. The optimal TES system design was found to be a network of eight fixed bed reactors at 18.75 MWth each with charge and

  8. Safe Home Food Storage 

    E-Print Network [OSTI]

    Van Laanen, Peggy

    2002-08-22

    leftovers? The charts in this publication give storage times for many leftover foods. Planning and us- ing leftovers carefully can save money and time. To prevent food-borne illness, it is important to prepare and handle foods properly: a78 Wash your hands.... Cooked fish or shellfish 2-3 days 3 months Canned fish or shellfish (unopened) 12 months (opened) 1 day Surimi seafood 2 weeks 9 months Fruits Fresh Do not wash fruit before storing?mois- Apples 1 month ture encourages spoilage?but wash Apricots, avocados...

  9. Entanglement Storage Units

    E-Print Network [OSTI]

    T. Caneva; T. Calarco; S. Montangero

    2012-09-27

    We introduce a protocol based on optimal control to drive many body quantum systems into long-lived entangled states, protected from decoherence by big energy gaps, without requiring any apriori knowledge of the system. With this approach it is possible to implement scalable entanglement-storage units. We test the protocol in the Lipkin-Meshkov-Glick model, a prototype many-body quantum system that describes different experimental setups, and in the ordered Ising chain, a model representing a possible implementation of a quantum bus.

  10. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

  11. Interim storage study report

    SciTech Connect (OSTI)

    Rawlins, J.K.

    1998-02-01

    High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

  12. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveApril 2,BL4-2StefanLightsource504,103FormulaStorage

  13. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhoton Source Parameters Storage Ring Parameters

  14. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhoton Source Parameters Storage Ring

  15. Storage Trends and Summaries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhoton Source Parameters Storage

  16. Storage by Scientific Discipline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhoton Source Parameters StorageHeat & Cool »

  17. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays3 Prepared by:'!TransportStorage Ring Parameters

  18. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays3 Prepared by:'!TransportStorage Ring

  19. National Energy Storage Strategy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgram | DepartmentEnergy6 3Energy Storage Strategy

  20. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  1. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  2. Cost-Optimal Operation of Energy Storage Units: Benefits of a Problem-Specific Approach

    E-Print Network [OSTI]

    Siemer, Lars; Kleinhans, David

    2015-01-01

    The integration of large shares of electricity produced by non-dispatchable Renewable Energy Sources (RES) leads to an increasingly volatile energy generation side, with temporary local overproduction. The application of energy storage units has the potential to use this excess electricity from RES efficiently and to prevent curtailment. The objective of this work is to calculate cost-optimal charging strategies for energy storage units used as buffers. For this purpose, a new mathematical optimization method is presented that is applicable to general storage-related problems. Due to a tremendous gain in efficiency of this method compared with standard solvers and proven optimality, calculations of complex problems as well as a high-resolution sensitivity analysis of multiple system combinations are feasible within a very short time. As an example technology, Power-to-Heat converters used in combination with thermal storage units are investigated in detail and optimal system configurations, including storage ...

  3. The Petascale Data Storage Institute

    SciTech Connect (OSTI)

    Gibson, Garth; Long, Darrell; Honeyman, Peter; Grider, Gary; Kramer, William; Shalf, John; Roth, Philip; Felix, Evan; Ward, Lee

    2013-07-01

    Petascale computing infrastructures for scientific discovery make petascale demands on information storage capacity, performance, concurrency, reliability, availability, and manageability.The Petascale Data Storage Institute focuses on the data storage problems found in petascale scientific computing environments, with special attention to community issues such as interoperability, community buy-in, and shared tools.The Petascale Data Storage Institute is a collaboration between researchers at Carnegie Mellon University, National Energy Research Scientific Computing Center, Pacific Northwest National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Los Alamos National Laboratory, University of Michigan, and the University of California at Santa Cruz.

  4. Holographic Storage of Biphoton Entanglement

    E-Print Network [OSTI]

    Han-Ning Dai; Han Zhang; Sheng-Jun Yang; Tian-Ming Zhao; Jun Rui; You-Jin Deng; Li Li; Nai-Le Liu; Shuai Chen; Xiao-Hui Bao; Xian-Min Jin; Bo Zhao; Jian-Wei Pan

    2012-04-06

    Coherent and reversible storage of multi-photon entanglement with a multimode quantum memory is essential for scalable all-optical quantum information processing. Although single photon has been successfully stored in different quantum systems, storage of multi-photon entanglement remains challenging because of the critical requirement for coherent control of photonic entanglement source, multimode quantum memory, and quantum interface between them. Here we demonstrate a coherent and reversible storage of biphoton Bell-type entanglement with a holographic multimode atomic-ensemble-based quantum memory. The retrieved biphoton entanglement violates Bell's inequality for 1 microsecond storage time and a memory-process fidelity of 98% is demonstrated by quantum state tomography.

  5. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  6. Automotive Energy Storage Systems 2015

    Broader source: Energy.gov [DOE]

    Automotive Energy Storage Systems 2015, the ITB Group’s 16th annual technical conference, was held from March 4–5, 2015, in Novi, Michigan.

  7. Auroral Ionosphere During Solar Minimum in Very High Time Resolution , T. Turunen1

    E-Print Network [OSTI]

    Ulich, Thomas

    Auroral Ionosphere During Solar Minimum in Very High Time Resolution Th.Ulich1 , T. Turunen1 , E modes of typically one sounding per 15 minutes. Due to the ever-decreasing costs of digital storage deep solar activity minimum provided us with the very rare opportunity to observe the ionosphere in its

  8. Flywheel energy storage workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Carmack, J.

    1995-12-31

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  9. Nano- and Microscale Architectures for Energy Storage Systems

    E-Print Network [OSTI]

    Dudek, Lisa

    2014-01-01

    Host for Emerging Energy Storage Systems Introduction Li-ionStorage Systems …………………………………………………………………………………………………………85Architectures for Energy Storage Systems A dissertation

  10. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  11. Chemical Hydrogen Storage Center Center of Excellence

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Chemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY Barriers Addressed #12;3 Chemical Hydrogen Storage Center Chemical Hydrogen Storage Center National

  12. Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tehachapi Wind Energy Storage Project (May 2014) Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014) The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage...

  13. Grid Storage and the Energy Frontier Research Centers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

  14. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    rates between the gas and the storage unit are specified forcontrol valves. two gas-distribution storage mani- folds andmanifold Main gas compressor Storage manifold Storage flow-

  15. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  16. Cooperative Repair with Minimum-Storage Regenerating Codes for Distributed Storage

    E-Print Network [OSTI]

    Li, Baochun

    Cooperative Repair with Minimum-Storage Regenerating Codes for Distributed Storage Jun Li, Baochun--Distributed storage systems store redundant data to tolerate failures of storage nodes and lost data should be repaired when storage nodes fail. A class of MDS codes, called minimum- storage regenerating (MSR) codes

  17. March 29, 2008 OS: Mass Storage Structure 1 Mass-Storage Structure

    E-Print Network [OSTI]

    Adam, Salah

    March 29, 2008 OS: Mass Storage Structure 1 Mass-Storage Structure Chapter 12 #12;March 29, 2008 OS: Mass Storage Structure 2 Objectives Describe the physical structure of secondary and tertiary storage of mass-storage devices Discuss operating-system services provided for mass storage, including RAID

  18. Core assembly storage structure

    DOE Patents [OSTI]

    Jones, Jr., Charles E. (Northridge, CA); Brunings, Jay E. (Chatsworth, CA)

    1988-01-01

    A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.

  19. Superconducting energy storage

    SciTech Connect (OSTI)

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  20. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  1. On Storage Rings for Short Wavelength FELs

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2010-01-01

    for a hypothetical 144 m long storage ring optimized for FELin the Proceedings On Storage Rings for Short WavelengthLBL-28483 ESG Note-92 ON STORAGE RINGS FOR SHORT WAVELENGTH

  2. Hopper File Storage and I/O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File Storage and IO File Storage and IO Disk Quota Change Request Form Hopper File Systems Hopper has 5 user file systems which provide different degrees of storage, performance...

  3. Storage Viability and Optimization Web Service

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    of Heat and Electricity Storage and Reliability on MicrogridEPRI-DOE Handbook of Energy Storage for Transmission andLong- vs. Short-Term Energy Storage Technologies Analysis, A

  4. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Resources Res. 14: 273-280. THERMAL STORAGE OF COLD WATER INR.C. HARE, 1972. Thermal Storage for Eco-Energy Utilities,W.J. MASICA, 1977. "Thermal Storage for Electric Utilities,"

  5. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    R. C. 1 1972 1 Thermal storage for eco=energy utilities: GE-and Harris, w. B. 0 1978 0 Thermal storage of cold water induration EXPERIMENTS Thermal storage radius (m) thickness

  6. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    energy generation and battery storage via the use ofenergy generation and battery storage via the use of nanos-and storage (e.g lithium-ion rechargeable battery)

  7. Storage Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Water Heaters Storage Water Heaters June 15, 2012 - 6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over...

  8. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    20) E. B. Quale. Seasonal storage of thermal energy in waterE.B. , 1976. "Seasonal Storage of Thermal Energy in Water ina truly worthwhile goal. Seasonal Storage of Thermal Energy

  9. Functional Carbon Materials for Electrochemical Energy Storage

    E-Print Network [OSTI]

    Zhou, Huihui

    2015-01-01

    Temperature Dense Phase Hydrogen Storage Materials withinJugroot, Review of hydrogen storage techniques for on boardFigure 1.2 Plot of hydrogen storage materials as a function

  10. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    aquifers for heat storage, solar captors for heat productionZakhidov, R. A. 8 1971, Storage of solar energy in a sandy-thermal energy storage for cogeneration and solar systems,

  11. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    associat~ ed with solar thermal storage. Now this system canand R.A. Zakhidov, "Storage of Solar Energy in a Sandy-Heat as Related to the Storage of Solar Energy. Sharing the

  12. Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report Storage - Challenges and Opportunities Hydro-Pac Inc., A High Pressure Company...

  13. Webinar Presentation: Energy Storage Solutions for Microgrids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) On November 7, 2012,...

  14. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Energy Savers [EERE]

    More Documents & Publications Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) Energy Storage Systems 2014 Peer Review Presentations - Session 11...

  15. Integrated Renewable Energy and Energy Storage Systems

    E-Print Network [OSTI]

    Integrated Renewable Energy and Energy Storage Systems Prepared for the U.S. Department of Energy and Energy Storage Systems TABLE OF CONTENTS 1

  16. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference Presentations - Day 1, Session 1 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 1 The U.S. DOE Energy Storage Systems Program (ESS)...

  17. Analytic Challenges to Valuing Energy Storage

    SciTech Connect (OSTI)

    Ma, Ookie; O'Malley, Mark; Cheung, Kerry; Larochelle, Philippe; Scheer, Rich

    2011-10-25

    Electric grid energy storage value. System-level asset focus for mechanical and electrochemical energy storage. Analysis questions for power system planning, operations, and customer-side solutions.

  18. National Hydrogen Storage Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Hydrogen Storage Project National Hydrogen Storage Project In July 2003, the Department of Energy (DOE) issued a "Grand Challenge" to the global scientific community for...

  19. Hydrogen Storage Materials Workshop Proceedings Workshop, October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings Workshop, October 16th, 2002 Hydrogen Storage Materials Workshop Proceedings Workshop, October 16th, 2002 A workshop on compressed and liquefied hydrogen storage was a...

  20. Overview of Gridscale Rampable Intermittent Dispatchable Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Washington, DC. flowcells2012johnson.pdf More Documents & Publications Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 1 Energy Storage Systems...

  1. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    A New Concept in Electric Generation and Energy Storage,"A New Concept in Electric Generation and Energy Storage,"of Solar Energy for Electric Power Generation," Proceedings

  2. Hydrogen Storage - Current Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen...

  3. DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...

    Energy Savers [EERE]

    Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

  4. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    Superconducting Magnetic Bearing - Mike Strasik, Boeing.pdf More Documents & Publications Energy Storage Systems 2006 Peer Review - Day 1 morning presentations Energy Storage...

  5. EIA - Analysis of Natural Gas Storage

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry....

  6. Combinatorial Approach for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach for Hydrogen Storage Materials (presentation) Combinatorial Approach for Hydrogen Storage Materials (presentation) Presented at the U.S. Department of Energy's Hydrogen...

  7. Energy Storage Systems 2010 Update Conference Presentations ...

    Energy Savers [EERE]

    Electricity Storage - Sanjoy Banerjee, CUNY.pdf PDF icon ESS 2010 Update Conference - Hydrogen-Bromine Flow Batteries for Grid-Scale Energy Storage - Venkat Srinivasan,...

  8. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Scale Thermal Energy Storage for Cogeneration and Solarsolar captors, thermal effluents, low cost energy duringSeale Thermal Energy Storage for Cogeneration and Solar

  9. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01

    2.1 Cloud Providers . . . . . . . . . . . .2.1.1 Cloud Storage . . . . . . . . .2.1.2 Cloud Computation . . . . . . 2.2 Enterprise Storage

  10. RESOLUTION REVOLUTION The super microscopes

    E-Print Network [OSTI]

    New South Wales, University of

    Cooper. Proofreading: Pam Dunne. HANK HAeUSleR is fascinated by the power of light to transform buildings fellow 17 Without the faces of men 18 fEaTURES Market leader ­ Chris Styles 7 Resolution revolution 8

  11. Carbon Capture and Storage

    SciTech Connect (OSTI)

    Friedmann, S

    2007-10-03

    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

  12. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    SciTech Connect (OSTI)

    Miller, Michael A.; Page, Richard A.

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to established and qualified standards. Working with industry, academia, and the U.S. government, SwRI set out to develop an accepted set of evaluation standards and analytical methodologies. Critical measurements of hydrogen sorption properties in the Laboratory have been based on three analytical capabilities: 1) a high-pressure Sievert-type volumetric analyzer, modified to improve low-temperature isothermal analyses of physisorption materials and permit in situ mass spectroscopic analysis of the sample’s gas space; 2) a static, high-pressure thermogravimetric analyzer employing an advanced magnetic suspension electro-balance, glove-box containment, and capillary interface for in situ mass spectroscopic analysis of the sample’s gas space; and 3) a Laser-induced Thermal Desorption Mass Spectrometer (LTDMS) system for high thermal-resolution desorption and mechanistic analyses. The Laboratory has played an important role in down-selecting materials and systems that have emerged from the MCoEs.

  13. High resolution digital delay timer

    DOE Patents [OSTI]

    Martin, Albert D. (Los Alamos, NM)

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  14. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect (OSTI)

    1998-09-01

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

  15. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Chung, Sung-Yoon; Bloking, Jason T; Andersson, Anna M

    2014-10-07

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z, or (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries.

  16. Thermal energy storage apparatus

    SciTech Connect (OSTI)

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  17. Production, Storage, and FC Analysis

    Broader source: Energy.gov [DOE]

    Presentation on Production, Storage, and FC Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

  18. Efficient storage of versioned matrices

    E-Print Network [OSTI]

    Seering, Adam B

    2011-01-01

    Versioned-matrix storage is increasingly important in scientific applications. Various computer-based scientific research, from astronomy observations to weather predictions to mechanical finite-element analyses, results ...

  19. Device-transparent personal storage

    E-Print Network [OSTI]

    Strauss, Jacob A. (Jacob Alo), 1979-

    2010-01-01

    Users increasingly store data collections such as digital photographs on multiple personal devices, each of which typically presents the user with a storage management interface isolated from the contents of all other ...

  20. A Successful Cool Storage Rate 

    E-Print Network [OSTI]

    Ahrens, A. C.; Sobey, T. M.

    1994-01-01

    local natural gas distribution company. The end result is a very successful cool storage program with 52 projects and 31 megawatts of demand reduction in the first three and one-half years of program implementation....

  1. Hydrogen Storage "Think Tank" Report

    Broader source: Energy.gov [DOE]

    This report is a compilation of information exchanged at a forum on March 14, 2003 in Washington, DC. The forum was assembled for innovative and non-conventional brainstorming on this issue of hydrogen storage technologies.

  2. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  3. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  4. FAFCO Ice Storage test report

    SciTech Connect (OSTI)

    Stovall, T.K.

    1993-11-01

    The Ice Storage Test Facility (ISTF) is designed to test commercial ice storage systems. FAFCO provided a storage tank equipped with coils designed for use with a secondary fluid system. The FAFCO ice storage system was tested over a wide range of operating conditions. Measured system performance during charging showed the ability to freeze the tank fully, storing from 150 to 200 ton-h. However, the charging rate showed significant variations during the latter portion of the charge cycle. During discharge cycles, the storage tank outlet temperature was strongly affected by the discharge rate and tank state of charge. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. Based on these tests, storage tank selection must depend on both charge and discharge conditions. This report describes FAFCO system performance fully under both charging and discharging conditions. While the test results reported here are accurate for the prototype 1990 FAFCO Model 200, currently available FAFCO models incorporate significant design enhancements beyond the Model 200. At least one major modification was instituted as a direct result of the ISTF tests. Such design improvements were one of EPRI`s primary goals in founding the ISTF.

  5. Thermal storage module for solar dynamic receivers

    DOE Patents [OSTI]

    Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

    1991-01-01

    A thermal energy storage system comprising a germanium phase change material and a graphite container.

  6. Hydrogen Storage Technologies Roadmap, November 2005

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing plan for research into and development of hydrogen storage technology for transportation applications.

  7. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    microgrid can be fuel cells, PV, solar thermal, stationary storage, absorption cooling, combined heat and power,

  8. 1 Files and Databases mass storage

    E-Print Network [OSTI]

    Verschelde, Jan

    Outline 1 Files and Databases mass storage hash functions 2 Dictionaries logical key values nested Jan Verschelde, 28 January 2015 Intro to Computer Science (MCS 260) mass storage and dictionaries L-7 28 January 2015 1 / 32 #12;mass storage dictionaries in Python 1 Files and Databases mass storage

  9. Addressing the Grand Challenges in Energy Storage

    SciTech Connect (OSTI)

    Liu, Jun

    2013-02-25

    The editorial summarizes the contents of the special issue for energy storage in Advanced Functional Materials.

  10. Optimize Storage Placement in Sensor Networks

    E-Print Network [OSTI]

    Li, Qun

    of limited storage, communication capacity, and battery power is ameliorated. Placing storage nodesOptimize Storage Placement in Sensor Networks Bo Sheng, Member, IEEE, Qun Li, Member, IEEE, and Weizhen Mao Abstract--Data storage has become an important issue in sensor networks as a large amount

  11. Hydrogen Storage at Lawrence Berkeley National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

  12. Energy Storage Management for VG Integration (Presentation)

    SciTech Connect (OSTI)

    Kirby, B.

    2011-10-01

    This presentation describes how you economically manage integration costs of storage and variable generation.

  13. New York's Energy Storage System Gets Recharged

    Broader source: Energy.gov [DOE]

    Jonathan Silver and Matt Rogers on a major breakthrough for New York state's energy storage capacity.

  14. AQUIFER STORAGE SITE EVALUATION AND MONITORING

    E-Print Network [OSTI]

    Edwards, Mike

    on the market sectors of electricity transmission, gas transmission, storage and distribution and process

  15. Investigations in cool thermal storage: storage process optimization and glycol sensible storage enhancement 

    E-Print Network [OSTI]

    Abraham, Michaela Marie

    1993-01-01

    of 10'F, the irreversibility developed from the heat transfer between the tank water and the refrigerant increases with lower freezing temperatures. The second part of this study presents a simplified optimization method for a pure water, ice storage...

  16. Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher and Yongdae Kim

    E-Print Network [OSTI]

    Kim, Yongdae

    Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher and Yongdae are witnessing a revival of Storage Service Providers in the form of new vendors as well as traditional players. While storage outsourcing is cost-effective, many compa- nies are hesitating to outsource their storage

  17. Remote I/O Optimization and Evaluation for Tertiary Storage Systems through Storage Resource Broker

    E-Print Network [OSTI]

    Liao, Wei-keng

    Remote I/O Optimization and Evaluation for Tertiary Storage Systems through Storage Resource Broker storage systems emerge as a popular place to hold them. SRB, a uniform interface to various storage systems including tertiary storage systems such as HPSS, UniTree etc., becomes an important and convenient

  18. SPEK: A Storage Performance Evaluation Kernel Module for Block Level Storage Systems under

    E-Print Network [OSTI]

    Yang, Qing "Ken"

    1 SPEK: A Storage Performance Evaluation Kernel Module for Block Level Storage Systems under Faulty), for evaluating the performance of block-level storage systems in the presence of faults as well as under normal operations. SPEK can work on both Direct Attached Storage (DAS) and block level networked storage systems

  19. SPEK: A Storage Performance Evaluation Kernel Module for Block Level Storage Systems

    E-Print Network [OSTI]

    He, Xubin "Ben"

    SPEK: A Storage Performance Evaluation Kernel Module for Block Level Storage Systems Ming Zhang storage systems at block level. It can be used for both DAS (Direct Attached Storage) and block level networked storage systems. Each SPEK tool consists of a controller, several workers, and one or more probers

  20. Routing, Storage Management and Caching, and Security of Peer-to-Peer Storage Systems

    E-Print Network [OSTI]

    Zhu, Yingwu "Jason"

    Routing, Storage Management and Caching, and Security of Peer-to-Peer Storage Systems Yingwu Zhu such as Napster, Gnutella and Freenet, has inspired a whole new breed of P2P storage systems, which aims-tolerant, and highly-available storage without centralized servers. Many P2P storage systems have been proposed

  1. Dielectric microscopy with submillimeter resolution

    E-Print Network [OSTI]

    Nathan S. Greeney; John A. Scales

    2007-06-20

    In analogy with optical near-field scanning methods, we use tapered dielectric waveguides as probes for a millimeter wave vector network analyzer. By scanning thin samples between two such probes we are able to map the spatially varying dielectric properties of materials with sub-wavelength resolution; using a 150 GHz probe in transmision mode we see spatial resolution of around 500 microns. We have applied this method to a variety of highly heterogeneous materials. Here we show dielectric maps of granite and oil shale.

  2. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

    2008-03-18

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  3. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

    2012-04-03

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  4. OPERATIONAL AND LABORATORY CAPABILITIES "JOIDES RESOLUTION"

    E-Print Network [OSTI]

    Resolution, was originally built as a joint venture between SEDCO and British Petroleum. It was designed

  5. Grid Applications for Energy Storage Flow Cells for Energy Storage Workshop

    E-Print Network [OSTI]

    Storage #12;Competitive Electric Market Structure Power Generation Distributed Generation Grid Management Power Mkts. & Reliability Micro-Grids Power Quality Grid Reliability Competitive State Regulated FERCGrid Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7

  6. Thermal Storage Options for HVAC Systems 

    E-Print Network [OSTI]

    Weston, R. F.; Gidwani, B. N.

    1986-01-01

    is based on the specific heat of water rather than the latent 'heat of fusion of ice as in ice storage, it requires about 4 times the storage capacity of an equivalent ice storage system. ? Salt Storage: This system utilizes eutectic salts which... freeze and melt around 47 o F. Exist ing chillers can be easily retrofitted for salt storage or chilled water storage. For ice stor age systems, a direct refrigerant system or glycol chillers are suitable. This paper discusses the details of each...

  7. Carbon Capture and Storage, 2008

    SciTech Connect (OSTI)

    2009-03-19

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  8. Image Storage in Hot Vapors

    E-Print Network [OSTI]

    L. Zhao; T. Wang; Y. Xiao; S. F. Yelin

    2007-10-22

    We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

  9. Carbon Capture and Storage, 2008

    ScienceCinema (OSTI)

    None

    2010-01-08

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  10. Catalyzed borohydrides for hydrogen storage

    DOE Patents [OSTI]

    Au, Ming (Augusta, GA)

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  11. Prestressed elastomer for energy storage

    DOE Patents [OSTI]

    Hoppie, Lyle O. (Birmingham, MI); Speranza, Donald (Canton, MI)

    1982-01-01

    Disclosed is a regenerative braking device for an automotive vehicle. The device includes a power isolating assembly (14), an infinitely variable transmission (20) interconnecting an input shaft (16) with an output shaft (18), and an energy storage assembly (22). The storage assembly includes a plurality of elastomeric rods (44, 46) mounted for rotation and connected in series between the input and output shafts. The elastomeric rods are prestressed along their rotational or longitudinal axes to inhibit buckling of the rods due to torsional stressing of the rods in response to relative rotation of the input and output shafts.

  12. Storage Ring | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays3 Prepared by:'!TransportStorage RingStorage

  13. Virtual Center of Excellence for Hydrogen Storage - Chemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Center of Excellence for Hydrogen Storage - Chemical Hydrides Virtual Center of Excellence for Hydrogen Storage - Chemical Hydrides Presentation from the Hydrogen Storage...

  14. Recommended Best Practices for the Characterization of Storage...

    Energy Savers [EERE]

    Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials - Section 6 Thermal Properties of Hydrogen Storage Materials Recommended...

  15. US DRIVE Electrochemical Energy Storage Technical Team Roadmap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrochemical Energy Storage Technical Team Roadmap US DRIVE Electrochemical Energy Storage Technical Team Roadmap This U.S. DRIVE electrochemical energy storage roadmap...

  16. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01

    of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

  17. Automatic Learning of Block Storage Access Time Models

    E-Print Network [OSTI]

    Crume, Adam

    2015-01-01

    3 Storage devices 3.1 Scope ofedge-on . . . . . . . . Queueing in a storage device with noAUTOMATIC LEARNING OF BLOCK STORAGE ACCESS TIME MODELS A

  18. Hierarchical Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Wang, Xiaolei

    2013-01-01

    and long life energy storage devices for many applications,portable electronics, EVs and grid-scale energy storage.2011). [28] Telcordia Energy Storage Research Group, http://

  19. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01

    in Electrochemical Energy Storage. Science 334, (6058), 917-with supercapacitors storage energy system. Electr. Pow.energy conversion and storage devices. Nat. Mater. 2005,

  20. Covered Product Category: Residential Gas Storage Water Heaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Water Heaters Covered Product Category: Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for gas storage...

  1. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01

    portable electronics, EVs and grid-scale energy storage.electronics, EVs and grid-scale energy storage. v Thevehicles and smart grid energy storage, are highly dependent

  2. Energy Storage Systems 2010 Update Conference | Department of...

    Office of Environmental Management (EM)

    Energy Storage Systems 2010 Update Conference Energy Storage Systems 2010 Update Conference The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update...

  3. Energy Storage Safety Strategic Plan - December 2014 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Safety Strategic Plan - December 2014 Energy Storage Safety Strategic Plan - December 2014 Energy storage is emerging as an integral component to a resilient and efficient...

  4. Energy Storage Activities in the United States Electricity Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Activities in the United States Electricity Grid. May 2011 Energy Storage Activities in the United States Electricity Grid. May 2011 Energy storage technologies...

  5. Energy Storage Systems 2012 Peer Review and Update Meeting |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Systems 2012 Peer Review and Update Meeting Energy Storage Systems 2012 Peer Review and Update Meeting OE's Energy Storage Systems Program (ESS) conducted a peer...

  6. Fact Sheet: Energy Storage Database (October 2012) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Database (October 2012) Fact Sheet: Energy Storage Database (October 2012) DOE and Sandia National Laboratories are developing a database of energy storage projects...

  7. Energy Storage Systems 2014 Peer Review and Update Meeting |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Systems 2014 Peer Review and Update Meeting Energy Storage Systems 2014 Peer Review and Update Meeting OE's Energy Storage Systems (ESS) Program conducted a peer...

  8. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01

    23) Knipp, R. "Marketing Thermal Storage," In Proceedings:1986. Tejl, D.S. , "Thermal Storage Strategies for Energy14) Ott, V,J. , "Thermal Storage Air Conditioning with

  9. ENERGY STORAGE IN AQUIFERS - - A SURVEY OF RECENT THEORETICAL STUDIES

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2013-01-01

    temperature underground thermal energy storage. In Proc. Th~al modeling of thermal energy storage in aquifers. In ~~-Mathematical modeling; thermal energy storage; aquifers;

  10. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    ADVANCED THERMAL ENERGY STORAGE CONCEPT DEFINITION STUDY FORSchilling. F. E. , Thermal Energy Storage Using PrestressedNo ~cumulate thermal energy storage. Estimate ESTrof2(

  11. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  12. Integrated Building Energy Systems Design Considering Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    r a n c e References Electricity Storage Association, MorganEffect of Heat and Electricity Storage and Reliability onAssociation (see also Electricity Storage Association). The

  13. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    estimated cost of electricity for storage units having areaswith "ideal" storage produces electricity for $59 per MW -hrwith "idear' storage produces electricity at a lower cost

  14. Electric Power Industry Needs for Grid-Scale Storage Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Industry Needs for Grid-Scale Storage Applications Electric Power Industry Needs for Grid-Scale Storage Applications Stationary energy storage technologies will...

  15. Estimating the Value of Electricity Storage Resources in Electricity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    understanding the role electricity storage resources (storage) can play in wholesale and retail electricity markets, 2) assessing the value of electricity storage in a variety of...

  16. Integrated Building Energy Systems Design Considering Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    solar thermal, and storage systems can be complex, dependingElectricity Only active storage systems are considered. Noto assess the value of storage systems, a run was performed

  17. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01

    capacity. 5. EXPERIENCE WITH THERMAL COOL STORAGE SYSTEMSCool storage systems in commercial buildings are beneficialpenetratlop of cool storage systems has been slowed because

  18. Incorporating solid state drives into distributed storage systems

    E-Print Network [OSTI]

    Wacha, Rosie

    2012-01-01

    27 Low Power Storage Systems . . . . . . . . . . . . . . .Drives into Distributed Storage Systems Rosie Wacha Big dataINTO DISTRIBUTED STORAGE SYSTEMS A dissertation submitted in

  19. Channel Coding Strategies for Emerging Data Storage Systems

    E-Print Network [OSTI]

    Gabrys, Ryan C.

    2014-01-01

    CHAPTER 1 Introduction Storage systems have become almostHIT14] Hitachi Global Storage Systems, “Patterned Magneticapplications to dig- ital storage systems,” IEEE Information

  20. Nano- and Microscale Architectures for Energy Storage Systems

    E-Print Network [OSTI]

    Dudek, Lisa

    2014-01-01

    electrospun PIM-1 for energy storage applications. J. Mater.necessary for electrical energy storage on the nanoscale andnanoarchitectures for energy storage and conversion. Chem.

  1. De Novo Nanostructures and Their Applications in Energy Storage

    E-Print Network [OSTI]

    Wang, Wei

    2014-01-01

    candidates for alternative energy storage applications sincetowards high performance energy storage devices. ReferencesApplications in Energy Storage A Dissertation submitted in

  2. Hierarchical Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Wang, Xiaolei

    2013-01-01

    high power, and long life energy storage devices for manyportable electronics, EVs and grid-scale energy storage.2011). [28] Telcordia Energy Storage Research Group, http://

  3. Modeling and simulations of electrical energy storage in electrochemical capacitors

    E-Print Network [OSTI]

    Wang, Hainan

    2013-01-01

    3D nanoarchitec- tures for energy storage and conversion,”functionality in energy storage materials and devices byto electrochemical energy storage in TiO 2 (anatase)

  4. Energy Storage Systems 2007 Peer Review - Power Electronics Presentati...

    Broader source: Energy.gov (indexed) [DOE]

    Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems International Energy Storage Programs Innovations in Energy Storage...

  5. Fact Sheet: Advanced Implementation of Energy Storage Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Implementation of Energy Storage Technologies - Community Energy Storage for Grid Support (August 2013) Fact Sheet: Advanced Implementation of Energy Storage Technologies...

  6. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01

    Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," Seminar25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF COMMERCIAL

  7. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01

    in Electrochemical Energy Storage. Science 334, (6058), 917-for electrochemical energy storage. Adv. Funct. Mater. 2009,electrochemical capacitive energy storage. Angew. Chem. Int.

  8. EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2011-01-01

    Department of Energy, Energy Storage Division through thegeneration and energy storage, Presented at Frontiers ofIn Proceed- ings of Thermal Energy Storage in Aquifers Work-

  9. The 'Supply-of-Storage' for Natural Gas in California

    E-Print Network [OSTI]

    Uria, Rocio; Williams, Jeffrey

    2005-01-01

    Natural Gas Prices and the Gas Storage Report: Public NewsAbstract: Do natural gas storage decisions in CaliforniaCHARACTERISTICS OF NATURAL GAS STORAGE FACILITIES Apart from

  10. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01

    Interpretation of Aquifer Gas Storage Conditions from Waterthe re- lated problem of gas storage in aquifers and devel-1967) for aquifer gas storage. The other issue discussed in

  11. Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design

    E-Print Network [OSTI]

    Ogden, Joan M; Yang, Christopher

    2005-01-01

    impact of improved hydrogen storage may be through makingand M. Gardiner, Hydrogen Storage Options: Technologies andReducing the liquid hydrogen storage dewar cost has only a

  12. Explorations of Novel Energy Conversion and Storage Systems

    E-Print Network [OSTI]

    Duffin, Andrew Mark

    2010-01-01

    Vehicular Hydrogen Storage http://www.hydrogen.energy.gov/et al. , Reversible hydrogen storage in calcium borohydridereversible hydrogen storage. Chemical Communications, 2010.

  13. Hydrogen Storage Materials Requirements to Meet the 2017 On Board...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements to Meet the 2017 On Board Hydrogen Storage Technical Targets Hydrogen Storage Materials Requirements to Meet the 2017 On Board Hydrogen Storage Technical Targets...

  14. Fundamental Studies of Diffusion and Reactions in Hydrogen Storage Materials

    E-Print Network [OSTI]

    Van de Walle, Chris G; Peles, Amra; Janotti, Anderson; Wilson-Short, Gareth

    2008-01-01

    novel reversible hydrogen storage materials”, J. Alloysrelationship to enhanced hydrogen storage properties”, J.on the reversi- ble hydrogen storage properties of the

  15. Agenda for the Hydrogen Delivery and Onboard Storage Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery and Onboard Storage Analysis Workshop Agenda for the Hydrogen Delivery and Onboard Storage Analysis Workshop Agenda for the Hydrogen Delivery and Onboard Storage...

  16. The U.S. National Hydrogen Storage Project Overview (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The U.S. National Hydrogen Storage Project Overview (presentation) The U.S. National Hydrogen Storage Project Overview (presentation) Status of Hydrogen Storage Materials R&D...

  17. Recommended Best Practices for the Characterization of Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials Recommended Best Practices for the Characterization of Storage Properties of...

  18. Hydrogen storage compositions (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Hydrogen storage compositions Citation Details In-Document Search Title: Hydrogen storage compositions Compositions for hydrogen storage and methods of making such...

  19. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    with Sensible- Heat Storage Solar Power Plant with Sulfurof the Solar Power Plant Storage-Vessel Design, . . . . .System for Chemical Storage of Solar Energy. UC Berkeley,

  20. Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material Modular Thermal Energy Storage System Acciona Solar: Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module City College of New York: A Novel Storage Method...

  1. Developing a Regulatory Framework for Extended Storage and Transportat...

    Office of Environmental Management (EM)

    Final Test Plan Gap Analysis to Support Extended Storage of Used Nuclear Fuel Managing Aging Effects on Dry Cask Storage Systems for Extended Long Term Storage and Transportation...

  2. High resolution time interval counter

    DOE Patents [OSTI]

    Condreva, K.J.

    1994-07-26

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.

  3. High resolution time interval counter

    DOE Patents [OSTI]

    Condreva, Kenneth J. (Livermore, CA)

    1994-01-01

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.

  4. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T. (Ann Arbor, MI); Li, Yingwel (Ann Arbor, MI); Lachawiec, Jr., Anthony J. (Ann Arbor, MI)

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  5. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  6. Flashing up the storage hierarchy 

    E-Print Network [OSTI]

    Koltsidas, Ioannis

    2010-01-01

    The focus of this thesis is on systems that employ both flash and magnetic disks as storage media. Considering the widely disparate I/O costs of flash disks currently on the market, our approach is a cost-aware one: we ...

  7. Breakthrough materials for energy storage

    E-Print Network [OSTI]

    Breakthrough materials for energy storage November 4, 2009 #12;#12;This revolution is happening;Electronics: our early market 5 hours #12;Progress on energy density... #12;Has reached a limit #12;Battery basics Anode Cathode #12;Battery basics Anode Cathode #12;Silicon leads in energy density

  8. Short seed extractors against quantum storage

    E-Print Network [OSTI]

    Amnon Ta-Shma

    2008-10-10

    Some, but not all, extractors resist adversaries with limited quantum storage. In this paper we show that Trevisan's extractor has this property, thereby showing an extractor against quantum storage with logarithmic seed length.

  9. Increasing renewable energy system value through storage

    E-Print Network [OSTI]

    Mueller, Joshua M. (Joshua Michael), 1982-

    2015-01-01

    Intermittent renewable energy sources do not always provide power at times of greatest electricity demand or highest prices. To do so reliably, energy storage is likely required. However, no single energy storage technology ...

  10. Thermal Storage with Conventional Cooling Systems 

    E-Print Network [OSTI]

    Kieninger, R. T.

    1994-01-01

    simple thermal energy storage system that already exists in almost every structure - concrete. Thermal storage calculations simulate sub-cooling of a building's structure during unoccupied times. During occupied times, the sub-cooled concrete reduces peak...

  11. Underground Storage Tanks: New Fuels and Compatibility

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

  12. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    HAUSZ, W. , 1977. "Seasonal Storage in District Heating,"District Heating, July-August-September, 1977, pp. 5-11.aquifer storage for district heating and cooling. C. W.

  13. Small Fuel Cell Systems with Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing R&D Workshop Renaissance Hotel, Washington, DC August 11-12, 2011 Small Fuel Cell Systems with Hydrogen Storage Ned T. Stetson, Ph.D. Team Lead, Hydrogen Storage...

  14. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Storage in District Heating," District Heating, July-August-aquifer storage for district heating and cooling. C. W.fully, whether it is for district heating on a large scale,

  15. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Key to Large-Scale Cogeneration?" Public Power, v, 35, no.Thermal Energy Storage for Cogeneration and Solar Systems,"Energy Storage for Cogeneration and Solar Systems, tion from

  16. Energy Storage Systems 2010 Update Conference Presentations ...

    Energy Savers [EERE]

    2, Session 2 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update...

  17. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  18. Post regulation circuit with energy storage

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA)

    1992-01-01

    A charge regulation circuit provides regulation of an unregulated voltage supply and provides energy storage. The charge regulation circuit according to the present invention provides energy storage without unnecessary dissipation of energy through a resistor as in prior art approaches.

  19. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Heat Wind Power Grid Solar Power ENERGY STORAGE P2G (HES) THE NEED THE MARKET RE curtailment is a growing occurrence Storage is required not just for hours but...

  20. Successfully Marketing Thermal Storage in Commercial Buildings 

    E-Print Network [OSTI]

    McDonald, C.

    1988-01-01

    This paper first reviews the key hurdles to thermal energy storage. Next, case studies of three electric utility thermal storage marketing programs are reviewed. The results of these case studies. as well as advice and experiences from other...

  1. Thermal Storage with Ice Harvesting Systems 

    E-Print Network [OSTI]

    Knebel, D. E.

    1986-01-01

    Application of Harvesting Ice Storage Systems. Thermal storage systems are becoming widely accepted techniques for utility load management. This paper discusses the principles of ice harvesting equipment and their application to the multi...

  2. Chemical Hydrogen Storage Research and Development

    Broader source: Energy.gov [DOE]

    DOE's chemical hydrogen storage R&D is focused on developing low-cost energy-efficient regeneration systems for these irreversible hydrogen storage systems. Significant technical issues remain...

  3. Hydrogen Storage Research and Development Activities

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's hydrogen storage research and development (R&D) activities are aimed at increasing the gravimetric and volumetric energy density and reducing the cost of hydrogen storage systems for...

  4. Matt Rogers on AES Energy Storage

    Broader source: Energy.gov [DOE]

    The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide...

  5. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    Systems Security Publications Library Energy Storage Power Electronics Advanced Modeling Grid Research Transmission Reliability Renewable Energy Integration Small Business...

  6. Project Profile: Thermochemical Storage with Anhydrous Ammonia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: Thermochemical Storage with Anhydrous Ammonia: Optimizing the Synthesis Reactor for Direct Production of Supercritical Steam Project Profile: Thermochemical...

  7. Webinar: Hydrogen Storage Materials Database Demonstration

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar, Hydrogen Storage Materials Database Demonstration, originally presented on December 13, 2011.

  8. Electrochemical Energy Storage Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  9. Secure Pesticide Storage: Workspace Features of a Pesticide Storage Facility 1

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    PI31 Secure Pesticide Storage: Workspace Features of a Pesticide Storage Facility 1 Thomas W. Dean2. Larry Arrington, Dean This document identifies and discusses three key features of a pesticide storage. Introduction Secure storage of pesticide involves more than just protecting your pesticide products from

  10. TIMING-ACCURATE STORAGE EMULATION: EVALUATING HYPOTHETICAL STORAGE COMPONENTS IN REAL COMPUTER SYSTEMS

    E-Print Network [OSTI]

    TIMING-ACCURATE STORAGE EMULATION: EVALUATING HYPOTHETICAL STORAGE COMPONENTS IN REAL COMPUTER;ABSTRACT Timing-accurate storage emulation offers a unique performance evaluation capability to experiment with not-yet-existing storage components in the context of real systems executing real

  11. Secure Pesticide Storage: Security and Safety-promoting Features of Pesticide Storage Facilities1

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    PI32 Secure Pesticide Storage: Security and Safety-promoting Features of Pesticide Storage pesticide storage facility security and safety. Introduction In actual practice, the fundamental goal of "security" is always the same: effective safeguard. Therefore, certain features of a pesticide storage

  12. Secure Pesticide Storage: Essential Structural Features of a Storage Building1

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    PI30 Secure Pesticide Storage: Essential Structural Features of a Storage Building1 Thomas W. Dean2 be present in any building constructed for pesticide storage. Introduction The main job of a pesticide storage facility is to suitably house and protect packages of pesticide. To do this in Florida

  13. Dynamic and scalable storage management architecture for Grid Oriented Storage devices

    E-Print Network [OSTI]

    Kent, University of

    Dynamic and scalable storage management architecture for Grid Oriented Storage devices Yuhui Deng a nodes. This paper proposes a Dynamic and Scalable Storage Management (DSSM) architecture for Grid Oriented Storage (GOS) devices. Since large-scale data intensive applications frequently involve a high

  14. Time-Based Storage Bandwidth Allocation in Hybrid Storage Systems Rice University

    E-Print Network [OSTI]

    Time-Based Storage Bandwidth Allocation in Hybrid Storage Systems Hui Wang Rice University Peter for a hybrid storage system made up of both HDs and SSDs. To continue the example, suppose the HD has slicing treats the storage system as a black box and dedicates the system to a client for its time slice

  15. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    Space-Heating Supply Hour Load (kW) Storage CHP NG Fig. 14Space-Heating Supply Load (kW) Storage Hour CHP NG Fig. 15Supply Load (kW) Storage CHP NG Hour Fig. 16 July Weekday

  16. STORAGE CAPACITY ALLOCATION ALGORITHMS FOR HIERARCHICAL

    E-Print Network [OSTI]

    Stavrakakis, Ioannis

    STORAGE CAPACITY ALLOCATION ALGORITHMS FOR HIERARCHICAL CONTENT DISTRIBUTION Nikolaos Laoutaris of Athens, 15784 Athens, Greece {laoutaris,vassilis,istavrak}@di.uoa.gr Abstract The addition of storage storage budget to the nodes of a hierarchical con- tent distribution system is formulated; optimal

  17. Kiwifruitsize influences softening rate during storage

    E-Print Network [OSTI]

    Crisosto, Carlos H.

    Kiwifruitsize influences softening rate during storage Carlos H. Crisosto o David Garner D Katia)at 32*F for 16 weeks. Un- der both storage conditions,large fruit had a slower rate of softening than fruit size and the rate of softening under air and CA conditions will help cold storage managerssafely

  18. Legal Implications of CO2 Ocean Storage

    E-Print Network [OSTI]

    Legal Implications of CO2 Ocean Storage Jason Heinrich Working Paper Laboratory for Energy the deployment of CO2 storage technologies used in the marine environment. This paper will address some of the legal issues involved in ocean storage of carbon dioxide from a US perspective. The following paragraphs

  19. S-STORAGE OPERATORS Karim NOUR 1

    E-Print Network [OSTI]

    Nour, Karim

    S-STORAGE OPERATORS Karim NOUR 1 LAMA - Equipe de Logique, Universit´e de Savoie - 73376 Le Bourget du Lac cedex 2 Abstract In 1990, J.L. Krivine introduced the notion of storage operator to simulate define, for every -term S which realizes the successor function on Church integers, the notion of S-storage

  20. Automated Storage Reclamation Using Temporal Importance Annotations

    E-Print Network [OSTI]

    Gehani, Ashish

    Automated Storage Reclamation Using Temporal Importance Annotations Surendar Chandra, Ashish.edu Abstract This work focuses on scenarios that require the storage of large amounts of data. Such sys- tems require the ability to either continuously increase the storage space or reclaim space by deleting

  1. On Storage Operators LAMA -Equipe de Logique

    E-Print Network [OSTI]

    Nour, Karim

    On Storage Operators Karim NOUR LAMA - Equipe de Logique Universit´e de Savoie 73376 Le Bourget du Lac e-mail nour@univ-savoie.fr Abstract In 1990 Krivine (1990b) introduced the notion of storage shown that there is a very simple type in the AF2 type system for storage operators using Godel

  2. hz.genium.com Proper Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Lab Safety 1 hz.genium.com #12;Proper Chemical Storage · Store in compatible groups. Consult above flammables and reactives. · Label storage areas, and label all chemicals being stored. · Store hazardous with contents. · Lids should be tightly closed. · Secondary containment for floor storage. · Do not store

  3. Energy Storage Structural Composites: TONY PEREIRA

    E-Print Network [OSTI]

    Guo, John Zhanhu

    Energy Storage Structural Composites: a Review TONY PEREIRA 1, *, ZHANHU GUO 1 , S. NiEH 2 , J: This study demonstrates the construction of a multifunctional composite structure capable of energy storage) composites were laminated with energy storage all-solid-state thin- film lithium cells. The processes

  4. Nanotubular metalinsulatormetal capacitor arrays for energy storage

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Nanotubular metal­insulator­metal capacitor arrays for energy storage Parag Banerjee1,2 , Israel be possible to scale devices fabricated with this approach to make viable energy storage systems that provide, with speeds limited only by external circuit RCs. However, energy storage is limited because only surface

  5. Multiresolution Storage and Search in Sensor Networks

    E-Print Network [OSTI]

    Heidemann, John

    battery-operated nodes. Constructing a storage and search system that satisfies the requirements of dataMultiresolution Storage and Search in Sensor Networks DEEPAK GANESAN University of Massachusetts in wireless sensor networks: in-network storage and distributed search. The need for these techniques arises

  6. Underground Energy Storage Program. 1983 annual summary

    SciTech Connect (OSTI)

    Kannberg, L.D.

    1984-06-01

    The Underground Energy Storage Program approach, structure, history, and milestones are described. Technical activities and progress in the Seasonal Thermal Energy Storage and Compressed Air Energy Storage components of the program are then summarized, documenting the work performed and progress made toward resolving and eliminating technical and economic barriers associated with those technologies. (LEW)

  7. Storage Solutions for Hawaii's Smart Energy

    E-Print Network [OSTI]

    Storage Solutions for Hawaii's Smart Energy Future Presented to CMRU August 12, 2012 University of Hawaii at Manoa Hawaii Natural Energy Institute #12;Current Energy Storage Projects in Hawaii · 15 (2) · Spinning reserve/reserve support (2) #12;· Select and deploy Grid-scale energy storage systems

  8. A Real-time Distributed Storage System for Multi-Resolution Virtual Synchrophasor

    E-Print Network [OSTI]

    Mueller, Frank

    @renci.org Abstract--With the continuing large-scale deployment of Pha- sor Measurement Units (PMU), the Wide sets of distributed Phasor Data Concentrators (PDCs) collectively process PMU data to achieve real communication and computing infrastructure. To address this problem, we present a novel virtual PMU (vPMU

  9. Neutrino oscillations and electron-capture storage-ring experiments

    E-Print Network [OSTI]

    Walter Potzel

    2015-01-20

    Oscillations in the electron-capture (EC) decay rate observed in storage-ring experiments are reconsidered in connection with the neutrino mass difference. Taking into account that - according to Relativity Theory - time is slowed down in the reference frame of the orbiting charged particles as compared to the neutral particles (neutrinos) moving on a rectilinear path after the EC decay, we derive a value of $\\Delta m^{2}_{21}=(0.768\\pm0.012)\\cdot10^{-4} eV^{2}$ for the neutrino mass-squared difference which fully agrees with that observed in other neutrino-oscillation experiments. To further check the connection between EC-decay oscillations and $\\Delta m^{2}_{21}$ we suggest experiments with different orbital speeds, i.e., different values of the Lorentz factor.

  10. Neutrino oscillations and electron-capture storage-ring experiments

    E-Print Network [OSTI]

    Potzel, Walter

    2014-01-01

    Oscillations in the electron-capture (EC) decay rate observed in storage-ring experiments are reconsidered in connection with the neutrino mass difference. Taking into account that - according to Relativity Theory - time is slowed down in the reference frame of the orbiting charged particles as compared to the neutral particles (neutrinos) moving on a rectilinear path after the EC decay, we derive a value of $\\Delta m^{2}_{21}=(0.768\\pm0.012)\\cdot10^{-4} eV^{2}$ for the neutrino mass-squared difference which fully agrees with that observed in other neutrino-oscillation experiments. To further check the connection between EC-decay oscillations and $\\Delta m^{2}_{21}$ we suggest experiments with different orbital speeds, i.e., different values of the Lorentz factor.

  11. Compact and mobile high resolution PET brain imager

    DOE Patents [OSTI]

    Majewski, Stanislaw (Yorktown, VA); Proffitt, James (Newport News, VA)

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  12. Developing the Incongruity-Resolution Theory 

    E-Print Network [OSTI]

    Ritchie, Graeme

    The idea of incongruity-resolution has frequently been suggested as an account of many types of joke. However, there is no precise statement either of this ``theory'' nor of its main concepts (incongruity and resolution), ...

  13. Energy Storage Systems 2007 Peer Review - International Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesyEducationNevada |Storage ActivitiesDepartment

  14. Explorations of Novel Energy Conversion and Storage Systems

    E-Print Network [OSTI]

    Duffin, Andrew Mark

    2010-01-01

    Energy Conversion and Storage Systems By Andrew Mark DuffinEnergy Conversion and Storage Systems by Andrew Mark Duffin

  15. Resolution on Demand Bianka BuschbeckWolf

    E-Print Network [OSTI]

    Reyle, Uwe

    Resolution on Demand Bianka Buschbeck­Wolf Universit¨at Stuttgart Report 196 May 1997 #12; May 1997¨ur den Inhalt dieser Arbeit liegt bei der Autorin. #12; Resolution on Demand Abstract Following the strategy of resolution on demand, the transfer component triggers inference processes in analysis

  16. High resolution 20 GHz wideband delay generator

    E-Print Network [OSTI]

    Rodwell, Mark J. W.

    High resolution 20 GHz wideband delay generator S.L. Morton, K. Elliott and M. Rodwell A digitally resolution beamsteering applications, a delay generator is required to have a resolution better than 0.25 ps for a signal of 1.8 GHz. In 1989, Otsuji and Narumi [3] fabricated delay lines for delay generation, using

  17. Resolution of the Hanford site ferrocyanide safety issue

    SciTech Connect (OSTI)

    Cash, R.J.; Lilga, M.A.; Babad, H., Fluor Daniel Hanford

    1997-02-27

    The Ferrocyanide Safety Issue at the Hanford Site was officially resolved in December 1996. This paper summarizes the key activities that led to final resolution of this safety hazard, a process that began in 1990 after it and other safety concerns were identified for the underground high-level waste storage tanks at the Hanford Site. At the time little was known about ferrocyanide-nitrate/nitrite reactions and their potential to cause offsite releases of radioactivity. The ferrocyanide hazard was a perceived problem, but it took six years of intense studies and analyses of tank samples to prove that the problem no longer exists. The issue revolved around the fact that ferrocyanide and nitrate mixtures can be made to explode violently if concentrated, dry, and heated to temperatures of at least 250 {degrees}C. The studies conducted over the last six years have shown that the combined effects of temperature, radiation, and pH during 40 or more years of storage have destroyed almost all of the ferrocyanide originally added to tanks. This was shown in laboratory experiments using simulant wastes and confirmed by actual samples taken from the ferrocyanide tanks. The tank waste sludges are now too dilute to support a sustained exothermic reaction, even if dried out and heated to high temperatures. 2 tabs., 18 refs.

  18. Compressed gas fuel storage system

    DOE Patents [OSTI]

    Wozniak, John J. (Columbia, MD); Tiller, Dale B. (Lincoln, NE); Wienhold, Paul D. (Baltimore, MD); Hildebrand, Richard J. (Edgemere, MD)

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  19. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  20. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  1. Inspection of Used Fuel Dry Storage Casks

    SciTech Connect (OSTI)

    Dennis C. Kunerth; Tim McJunkin; Mark McKay; Sasan Bakhtiari

    2012-09-01

    ABSTRACT The U.S. Nuclear Regulatory Commission (NRC) regulates the storage of used nuclear fuel, which is now and will be increasingly placed in dry storage systems. Since a final disposition pathway is not defined, the fuel is expected to be maintained in dry storage well beyond the time frame originally intended. Due to knowledge gaps regarding the viability of current dry storage systems for long term use, efforts are underway to acquire the technical knowledge and tools required to understand the issues and verify the integrity of the dry storage system components. This report summarizes the initial efforts performed by researchers at Idaho National Laboratory and Argonne National Laboratory to identify and evaluate approaches to in-situ inspection dry storage casks. This task is complicated by the design of the current storage systems that severely restrict access to the casks.

  2. Reinventing Batteries for Grid Storage

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2012-01-01

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  3. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  4. Reinventing Batteries for Grid Storage

    ScienceCinema (OSTI)

    Banerjee, Sanjoy

    2013-05-29

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  5. The Storage of Shelled Pecans. 

    E-Print Network [OSTI]

    Brison, Fred R. (Fred Robert)

    1945-01-01

    .. ......... Bulk. .......... Sealed can.. .... Plain Cellophane Variety 208 Bulk. .......... Bulk.. ......... Bulk ........... Bulk. .......... Sealed can. ..... Plain Cellophane Types of Package for Successful Storage It was early observed... other years kernels were stored in 5 to 20 lb. lots with no eff make the packages airtight, in cloth bags, and sealed in No. 10 ca :allon cans, and 40-gallon cans. Results given in Tables 3 and obe tions made throughout the test show that: ZllU 'am...

  6. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, Mark P. (Knoxville, TN); Kedl, Robert J. (Oak Ridge, TN)

    1985-01-01

    This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.

  7. Complex hydrides for hydrogen storage

    DOE Patents [OSTI]

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  8. Hydrogen storage and generation system

    DOE Patents [OSTI]

    Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  9. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM)

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  10. Investigating leaking underground storage tanks 

    E-Print Network [OSTI]

    Upton, David Thompson

    1989-01-01

    general methodology for many geologic regions where stratigraphic and hydrogeologic conditions are likely to be similar. Ultimately, the goal of any investigator or owner is to obtain the necessary information in order to satisfy the concerns... INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1989...

  11. AB Levitator and Electricity Storage

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-03-01

    The author researched this new idea - support of flight by any aerial vehicles at significant altitude solely by the magnetic field of the planet. It is shown that current technology allows humans to create a light propulsion (AB engine) which does not depend on air, water or ground terrain. Simultaniosly, this revolutionary thruster is a device for the storage of electricity which is extracted and is replenished (during braking) from/into the storage with 100 percent efficiency. The relative weight ratio of this engine is 0.01 - 0.1 (from thrust). For some types of AB engine (toroidal form) the thrust easily may be changed in any direction without turning of engine. The author computed many projects using different versions of offered AB engine: small device for levitation-flight of a human (including flight from Earth to Outer Space), fly VTOL car (track), big VTOL aircrat, suspended low altitude stationary satellite, powerful Space Shuttle-like booster for travel to the Moon and Mars without spending energy (spended energy is replenished in braking when ship returns from other planet to its point of origin), using AB-devices in military, in sea-going ships (submarimes), in energy industry (for example. as small storage of electric energy) and so on. The vehicles equipped with AB propulsion can take flight for days and cover distances of tens thousands of kilometers at hypersonic or extra-atmosphere space speeds. The work contains tens of inventions and innovations which solves problems and breaks limitations which appear in solution of these very complex revolutionary ideas. Key word: AB levitator, levitation, non-rocket outer space flight, electric energy storage, AB propulsion, AB engine, Bolonkin.

  12. Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyInformationVulnerabilities to Climate ChangeAugustEnergy Storage

  13. Storage option an Analytic approach

    E-Print Network [OSTI]

    Dmitry Lesnik

    2012-05-28

    The mathematical problem of the static storage optimisation is formulated and solved by means of a variational analysis. The solution obtained in implicit form is shedding light on the most important features of the optimal exercise strategy. We show how the solution depends on different constraint types including carry cost and cycling constraint. We investigate the relation between intrinsic and stochastic solutions. In particular we give another proof that the stochastic problem has a "bang-bang" optimal exercise strategy. We also show why the optimal stochastic exercise decision is always close to the intrinsic one. In the second half we develop a perturbation analysis to solve the stochastic optimisation problem. The obtained approximate solution allows us to estimate the time value of the storage option. In particular we find an answer to rather academic question of asymptotic time value for the mean reversion parameter approaching zero or infinity. We also investigate the differences between swing and storage problems. The analytical results are compared with numerical valuations and found to be in a good agreement.

  14. Energy Conversion and Storage Program

    SciTech Connect (OSTI)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  15. hStorage-DB: Heterogeneity-aware Data Management to Exploit the Full Capability of Hybrid Storage Systems

    E-Print Network [OSTI]

    Chen, Feng

    .a.chen}@intel.com ABSTRACT As storage systems become increasingly heterogeneous and complex, it adds burdens on DBAs, causing storage system, so that every request will be served with a suitable storage device. With hStorage-DB, we but is particularly impor- tant for a hybrid storage system. To show the effectiveness of hStorage-DB, we have

  16. Influence of Ceria on the NOx Storage/Reduction Behavior of Lean NOx Trap Catalysts

    SciTech Connect (OSTI)

    Ji, Yaying; Choi, Jae-Soon; Toops, Todd J; Crocker, Dr. Mark; Naseri, Mojghan

    2008-01-01

    The effect of La2O3-stabilized ceria incorporation on the functioning of fully formulated lean NOx trap catalysts was investigated. Monolithic catalysts were prepared, corresponding to loadings of 0, 50 and 100 g CeO2/L, together with a catalyst containing 100 g/L of ceria-zirconia (Ce0.7Zr0.3O2). Loadings of the other main components (Pt, Rh and BaO) were held constant. Catalyst evaluation was performed on a bench flow reactor under simulated diesel exhaust conditions, employing NOx storage/reduction cycles. NOx storage efficiency in the temperature range 150-350 C was observed to increase with ceria loading, resulting in higher NOx conversion levels. At 150 C, high rich phase NOx slip was observed for all of the catalysts, resulting from an imbalance in the rates of nitrate decomposition and NOx reduction. Optimal NOx conversion was obtained in the range 250-350 C for all the catalysts, while at 450 C high rich phase NOx slip from the most highly loaded ceria-containing catalyst resulted in lower NOx conversion than for the ceria-free formulation. N2O was the major NOx reduction product at 150 C over all of the catalysts, although low NOx conversion levels limited the N2O yield. At higher temperatures N2 was the main product of NOx reduction, although NH3 formation was also observed. Selectivity to NH3 decreased with increasing ceria loading, indicating that NH3 is consumed by reaction with stored oxygen in the rear of the catalyst.

  17. Canister Storage Building and Interim Storage Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013,Cafe ScientifiqueCanister Storage Building and

  18. Example-Based Single-Image Super-Resolution

    E-Print Network [OSTI]

    Yang, Chih-Yuan

    2015-01-01

    Frame Super-Resolution, Asian Conference on Computer VisionExample-based super-resolution. IEEE Computer Graphics andSuper-Resolution: A Benchmark, European Conference on Computer

  19. Test report : Milspray Scorpion energy storage device.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage system that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.

  20. STORAGE OF CHILLED NATURAL GAS IN BEDDED SALT STORAGE CAVERNS

    SciTech Connect (OSTI)

    JOel D. Dieland; Kirby D. Mellegard

    2001-11-01

    This report provides the results of a two-phase study that examines the economic and technical feasibility of converting a conventional natural gas storage facility in bedded salt into a refrigerated natural gas storage facility for the purpose of increasing the working gas capacity of the facility. The conceptual design used to evaluate this conversion is based on the design that was developed for the planned Avoca facility in Steuben County, New York. By decreasing the cavern storage temperature from 43 C to -29 C (110 F to -20 F), the working gas capacity of the facility can be increased by about 70 percent (from 1.2 x 10{sup 8} Nm{sup 3} or 4.4 billion cubic feet (Bcf) to 2.0 x 10{sup 8} Nm{sup 3} or 7.5 Bcf) while maintaining the original design minimum and maximum cavern pressures. In Phase I of the study, laboratory tests were conducted to determine the thermal conductivity of salt at low temperatures. Finite element heat transfer calculations were then made to determine the refrigeration loads required to maintain the caverns at a temperature of -29 C (-20 F). This was followed by a preliminary equipment design and a cost analysis for the converted facility. The capital cost of additional equipment and its installation required for refrigerated storage is estimated to be about $13,310,000 or $160 per thousand Nm{sup 3} ($4.29 per thousand cubic feet (Mcf)) of additional working gas capacity. The additional operating costs include maintenance refrigeration costs to maintain the cavern at -29 C (-20 F) and processing costs to condition the gas during injection and withdrawal. The maintenance refrigeration cost, based on the current energy cost of about $13.65 per megawatt-hour (MW-hr) ($4 per million British thermal units (MMBtu)), is expected to be about $316,000 after the first year and to decrease as the rock surrounding the cavern is cooled. After 10 years, the cost of maintenance refrigeration based on the $13.65 per MW-hr ($4 per MMBtu) energy cost is estimated to be $132,000. The gas processing costs are estimated to be $2.05 per thousand Nm{sup 3} ($0.055 per Mcf) of gas injected into and withdrawn from the facility based on the $13.65 per MW-hr ($4 per MMBtu) energy cost. In Phase II of the study, laboratory tests were conducted to determine mechanical properties of salt at low temperature. This was followed by thermomechanical finite element simulations to evaluate the structural stability of the cavern during refrigerated storage. The high thermal expansion coefficient of salt is expected to result in tensile stresses leading to tensile failure in the roof, walls, and floor of the cavern as it is cooled. Tensile fracturing of the cavern roof may result in loss of containment of the gas and/or loss of integrity of the casing shoe, deeming the conversion of this facility not technically feasible.

  1. Storage Ring Synchrotron Radiation Sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhoton Source Parameters Storage Ringsrlogo_t.gif

  2. PASIG_LBNL_Storage.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access toOctoberConsumptionPoweredE Contract No.No. 330 J.2-1JM,Storage

  3. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES October 27th, 2010 Thanks forEnergy ScienceEnergyStorage

  4. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOEEnergy Storage Management for VG

  5. Energy Storage | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOEEnergy Storage Management for VGTechnology

  6. Sandia Energy - Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjectsCyberNotLEDPhase Field modelStorage Systems

  7. Primer on lead-acid storage batteries

    SciTech Connect (OSTI)

    1995-09-01

    This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

  8. Commercial Storage and Handling of Sorghum Grain. 

    E-Print Network [OSTI]

    Brown, Charles W.; Moore, Clarence A.

    1963-01-01

    relative humidity and relatively hot summer and cold winter temperatures. M7inter temperatures below freezing are common. Since harvest occurs from September through November, the temperature of new grain moving into storage is not high. Sorghum grain... a cross section of physical and economic conditions under which sorghum grain is produced, handled and stored were selected for study of storage and handling facilities and practices by commercial grain storage operators. The High Plains...

  9. Thermodynamic analysis of pumped thermal electricity storage

    E-Print Network [OSTI]

    White, Alexander; Parks, Geoffrey T.; Markides, Christos N.

    2012-03-24

    Energy Storage (CAES), Superconducting Magnetic Energy Storage (SMES) and Thermal Energy Storage (TES) in its various forms. A review of many of these technologies is given by Chen et al. [3]. Some (e.g., flywheels and super capacitors) have very high... and frequency support during rapid supply or demand swings. For energy management applications – e.g., levelling daily demand fluctuations and smoothing the output from intermittent renewable sources – CAES is probably the leading competitor to Pumped Hydro...

  10. Electrochemically controlled charging circuit for storage batteries

    DOE Patents [OSTI]

    Onstott, E.I.

    1980-06-24

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  11. Pumped Storage and Potential Hydropower from Conduits

    SciTech Connect (OSTI)

    none,

    2015-02-25

    Th is Congressional Report, Pumped Storage Hydropower and Potential Hydropower from Conduits, addresses the technical flexibility that existing pumped storage facilities can provide to support intermittent renewable energy generation. This study considered potential upgrades or retrofit of these facilities, the technical potential of existing and new pumped storage facilities to provide grid reliability benefits, and the range of conduit hydropower opportunities available in the United States.

  12. Water Heaters (Storage Electric) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE rulemakings, and enforcement of the federal energy conservation standards. waterheaterstorageelectricv1.0.xlsx More Documents & Publications Water Heaters (Storage...

  13. Carbon Storage Monitoring, Verification and Accounting Research...

    Office of Environmental Management (EM)

    closure, and post-closure monitoring activities at the storage site, as well as risk assessment and development of flexible operational plans, and mitigation strategies that can be...

  14. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    Battery, Hybrid and Fuel Cell Electric Vehicle Symposium &progress in batteries, fuel cells, and hydrogen storage foronsite energy production (e.g. fuel cells, PV) at different

  15. Compressed Air Storage Strategies; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Technologies Program Suggested Actions * Review the plant's compressed air demand patterns to determine whether storage would be beneficial. * Examine the compressed...

  16. Canister storage building natural phenomena hazards

    SciTech Connect (OSTI)

    Tallman, A.M.

    1996-06-01

    This document specifies the natural phenomena loads for the canister storage building in the 200 East Area of the Hanford Site.

  17. ,"Arkansas Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  18. ,"Maryland Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  19. ,"Nevada Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  20. ,"Nebraska Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  1. ,"Wisconsin Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  2. ,"Wisconsin Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  3. ,"Connecticut Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  4. ,"Idaho Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  5. ,"Tennessee Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  6. ,"Indiana Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  7. ,"Missouri Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  8. ,"Pennsylvania Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  9. ,"Minnesota Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  10. ,"Nevada Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  11. ,"Pennsylvania Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  12. ,"Alaska Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Additions (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska...

  13. ,"California Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  14. ,"Georgia Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  15. ,"Washington Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  16. ,"Oregon Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  17. ,"Connecticut Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  18. ,"Delaware Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  19. ,"Tennessee Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  20. ,"Maryland Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  1. ,"Arkansas Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  2. ,"Louisiana Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  3. ,"Alaska Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Natural Gas LNG Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  4. ,"Missouri Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  5. ,"Texas Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  6. ,"Colorado Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  7. ,"Washington Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  8. ,"Alabama Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  9. ,"Georgia Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  10. ,"Virginia Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  11. ,"California Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  12. ,"Virginia Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  13. ,"Indiana Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  14. ,"Massachusetts Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  15. ,"Louisiana Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  16. ,"Minnesota Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  17. ,"Oregon Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  18. ,"Idaho Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  19. ,"Delaware Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  20. ,"Nebraska Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  1. ,"Alabama Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  2. ,"Massachusetts Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  3. Storage Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    also want to consider some less conventional storage water heaters -- heat pump water heaters and solar water heaters. These water heaters are usually more expensive but they...

  4. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Environmental Management (EM)

    ESS 2010 Update Conference - Seneca Advanced CAES 150 MW Plant Using an Existing Salt Cavern - James Rettberg, NYSEG.pdf More Documents & Publications Energy Storage...

  5. ,"Maine Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  6. ,"Maine Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015"...

  7. SIMULATION OF CARBON DIOXIDE STORAGE APPLYING ...

    E-Print Network [OSTI]

    Capture and storage of Carbon dioxide in aquifers and reservoirs is one of the solutions to mitigate the greenhouse effect. Geophysical methods can be used to

  8. Nitrogen oxides storage catalysts containing cobalt

    DOE Patents [OSTI]

    Lauterbach, Jochen (Newark, DE); Snively, Christopher M. (Clarks Summit, PA); Vijay, Rohit (Annandale, NJ); Hendershot, Reed (Breinigsville, PA); Feist, Ben (Newark, DE)

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  9. Analytic Challenges to Valuing Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    analytical task. Market Conditions - Markets are continually evolving, and the long-term value of energy storage is difficult to capture. Niche markets have emerged, but...

  10. Electrochemical Energy Storage | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrochemical Energy Storage Apr 16 2014 08:00 AM - 05:00 PM Multiple Speakers, in multiple disciplines, from multiple institutions ASM International, Oak Ridge Chapter,...

  11. ,"Washington Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Underground Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release...

  12. ,"Washington Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Underground Storage Capacity (MMcf)",1,"Annual",2014 ,"Release...

  13. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    80, 34, The inland site of power station will be remote fromStorage Problems in Power Stations Serving District Heatingelec- tricity producing power stations with equal electric

  14. 2015 Carbon Storage final.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from prominent storage efforts both domestic and international including the Regional Carbon Sequestration Partnership's large-scale field projects. Additional plenary sessions...

  15. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

  16. Energy Storage for the Power Grid

    ScienceCinema (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-06-12

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  17. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-04-23

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  18. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    energy storage for cogeneration and solar systems, inTwin City district cogeneration system, in Proceedings,proposed system, based on cogeneration of power and heat by

  19. Station Footprint: Separation Distances, Storage Options, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol H2FIRST Reference Station Design Task: Project Deliverable 2-2 On-Board Storage Systems Analysis...

  20. Hydrogen Storage Engineering Center of Excellence

    Broader source: Energy.gov (indexed) [DOE]

    S. By-ProductSpent Material Removal 2 3 HSECoE Technical Objectives Using systems engineering concepts, design innovative material-based hydrogen storage system architectures...

  1. Hydrogen Storage Engineering Center of Excellence | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Review and Peer Evaluation Meeting, provide an overview of the Hydrogen Storage Engineering Center of Excellence (HSECoE), including projects to design innovative...

  2. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    ESS 2010 Update Conference - Dynamic Islanding, Improving Service Reliability with Energy Storage - Emeka Okafor, AEP.pdf More Documents & Publications Overview of Gridscale...

  3. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  4. Energy Storage - Advanced Technology Development Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Development Merit Review Energy Storage - Advanced Technology Development Merit Review This document is a summary of the evaluation and comments provided by the...

  5. ,"Ohio Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  6. ,"California Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  7. ,"Kentucky Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  8. ,"Maryland Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  9. ,"Nebraska Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  10. ,"Oregon Natural Gas Underground Storage Withdrawals (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  11. ,"Pennsylvania Natural Gas Underground Storage Withdrawals ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  12. ,"Tennessee Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  13. ,"Minnesota Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  14. ,"Texas Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  15. ,"Wyoming Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  16. ,"Colorado Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  17. ,"Alabama Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  18. ,"Missouri Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  19. ,"Arkansas Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  20. ,"Virginia Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...