National Library of Energy BETA

Sample records for imbalance resolution storage

  1. CHARGE IMBALANCE

    SciTech Connect (OSTI)

    Clarke, John

    1980-09-01

    The purpose of this article is to review the theory of charge imbalance, and to discuss its relevance to a number of experimental situations. We introduce the concepts of quasiparticle charge and charge imbalance, and discuss the generation and detection of charge imbalance by tunneling. We describe the relaxation of the injected charge imbalance by inelastic scattering processes, and show how the Boltzmann equation can be solved to obtain the steady state quasiparticle distribution and the charge relaxation rate. Details are given of experiments to measure charge imbalance and the charge relaxation rate when inelastic scattering is the predominant relaxation mechanism. Experiments on and theories of other charge relaxation mechanisms are discussed, namely relaxation via elastic scattering in the presence of energy gap anisotropy, or in the presence of a pair breaking mechanism such as magnetic impurities or an applied supercurrent or magnetic field. We describe three other situations in which charge imbalance occurs, namely the resistance of the NS interface, phase slip centers, and the flow of a supercurrent in the presence of a temperature gradient.

  2. Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  3. Dijet imbalance in hadronic collisions

    SciTech Connect (OSTI)

    Boer, Danieel; Mulders, Piet J.; Pisano, Cristian

    2009-11-01

    The imbalance of dijets produced in hadronic collisions has been used to extract the average transverse momentum of partons inside the hadrons. In this paper we discuss new contributions to the dijet imbalance that could complicate or even hamper this extraction. They are due to polarization of initial state partons inside unpolarized hadrons that can arise in the presence of nonzero parton transverse momentum. Transversely polarized quarks and linearly polarized gluons produce specific azimuthal dependences of the two jets that in principle are not suppressed. Their effects cannot be isolated just by looking at the angular deviation from the back-to-back situation; rather they enter jet broadening observables. In this way they directly affect the extraction of the average transverse momentum of unpolarized partons that is thought to be extracted. We discuss appropriately weighted cross sections to isolate the additional contributions.

  4. NREL: Transmission Grid Integration - Energy Imbalance Markets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Northwest Power Pool is currently ... operating reserves. Flexibility Reserve Reductions From an Energy Imbalance Market With High Levels of Wind Energy ...

  5. Energy Imbalance Markets (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    The anticipated increase in variable renewable generation, such as wind and solar power, over the next several years has raised concerns about how system operators will maintain balance between electricity production and demand in the Western Interconnection, especially in its smaller balancing authority areas (BAAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. Meanwhile, uncertainties about future load growth and challenges siting new transmission and generation resources may add additional stresses on the Western Interconnection of the future. One proposed method of addressing these challenges is an energy imbalance market (EIM). An EIM is a means of supplying and dispatching electricity to balance fluctuations in generation and load. It aggregates the variability of generation and load over multiple balancing areas (BAs).

  6. Frequency dependence of charge imbalance relaxation

    SciTech Connect (OSTI)

    Entin-Wohlman, O.; Orbach, R.

    1980-06-01

    A frequency-dependent charge imbalance relaxation rate near T/sub c/ is calculated in the presence of magnetic impurities in the gap regime (..delta.. >> GAMMA, where GAMMA is the pair-breaking rate) and in the gapless regime (..delta.. << GAMMA). In the former regime without magnetic impurities the results reduce to those of Artemenko, Volkov, and Zaitsev, and of Kadin. We show that their result can conveniently be derived from a Boltzmann equation for the quasiparticles.

  7. Operating a redox flow battery with a negative electrolyte imbalance

    DOE Patents [OSTI]

    Pham, Quoc; Chang, On; Durairaj, Sumitha

    2015-03-31

    Loss of flow battery electrode catalyst layers during self-discharge or charge reversal may be prevented by establishing and maintaining a negative electrolyte imbalance during at least parts of a flow battery's operation. Negative imbalance may be established and/or maintained actively, passively or both. Actively establishing a negative imbalance may involve detecting an imbalance that is less negative than a desired threshold, and processing one or both electrolytes until the imbalance reaches a desired negative level. Negative imbalance may be effectively established and maintained passively within a cell by constructing a cell with a negative electrode chamber that is larger than the cell's positive electrode chamber, thereby providing a larger quantity of negative electrolyte for reaction with positive electrolyte.

  8. Operating Reserve Reductions From a Proposed Energy Imbalance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reserve Reductions From a Proposed Energy Imbalance Market With Wind and Solar Generation in the Western Interconnection J. King and B. Kirby Consultants M. Milligan National ...

  9. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three

  10. Western Interconnection Energy Imbalance Market Status and Prospects (Presentation)

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; King, J.; Beuning, S.

    2011-10-01

    This presentation describes how a new wholesale electricity market for energy imbalance ancillary services could be implemented and operated. Some conclusions of this presentation are: (1) Method for calculating additional reserve requirements due to wind and solar production; (2) EIM results in substantial reduction in reserves requirements and ramping demand; (3) Reduced participation reduces benefits for all but reduces the benefits to non-participants the most; (4) Full participation leads to maximum benefit across the Western Interconnection, up to 42% of total reserve requirement; and (5) Regional EIM implementations have smaller but substantial benefits.

  11. Control and Size Energy Storage for Managing Energy balance of Variable Generation Resources

    SciTech Connect (OSTI)

    Ke, Xinda; Lu, Ning; Jin, Chunlian

    2015-01-01

    This paper presents control algorithms and sizing strategies for using energy storage to manage energy balance for variable generation resources. The control objective is to minimize the hourly generation imbalance between the actual and the scheduled generation of the wind farm. Three control algorithms are compared: tracking power imbalance, post-compensation, and pre-compensation. Measurement data from a wind farm located in South-central Washington State are used in the study. The results show that tracking power imbalance yields the best performance by keeping the hourly energy imbalances zero. However, the energy storage system (ESS) will be significantly oversized. Post-compensation reduces power rating of the ESS but the hourly imbalance may not be kept as zero when large and long-lasting energy imbalances occur. A linear regression forecasting algorithm is developed for the pre-compensation algorithm to pre-charge or pre-discharge the ESS based on predicted energy imbalances. The performance comparison shows that the pre-compensation method significantly reduces the size of the ESS while maintaining satisfactory performance.

  12. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Energy Storage Home/Tag:Energy Storage Energy-Storage-Procurement-Image Permalink Gallery Sandia National Laboratories Develops Guidance Document for Energy Storage Procurement Energy, Energy Storage, News Sandia National Laboratories Develops Guidance Document for Energy Storage Procurement Through a partnership with Clean Energy States Alliance (CESA) and Clean Energy Group, Sandia has created a procurement guideline that offers useful

  13. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy-Storage-Procurement-Image Permalink Gallery Sandia National Laboratories Develops Guidance Document for Energy Storage Procurement Energy, Energy Storage, News Sandia National Laboratories Develops Guidance Document for Energy Storage Procurement Through a partnership with Clean Energy States Alliance (CESA) and Clean Energy Group, Sandia has created a procurement guideline that offers useful information for states, municipalities, project developers, and end users to

  14. Examination of Potential Benefits of an Energy Imbalance Market in the Western Interconnection

    SciTech Connect (OSTI)

    Milligan, M.; Clark, K.; King, J.; Kirby, B.; Guo, T.; Liu, G.

    2013-03-01

    In the Western Interconnection, there is significant interest in improving approaches to wide-area coordinated operations of the bulk electric power system, in part because of the increasing penetration of variable generation. One proposed solution is an energy imbalance market. This study focused on that approach alone, with the goal of identifying the potential benefits of an energy imbalance market in the year 2020.

  15. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Home/Energy Storage DOE-EERE Deputy Assistant Secretary for Renewable Power, Douglas Hollett. (DOE photo) Permalink Gallery DOE-EERE Deputy Assistant Secretary Hollett Visits Sandia Concentrating Solar Power, Customers & Partners, Cyber, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Global Climate & Energy, Global Climate & Energy, Grid Integration, Highlights - Energy Research, Microgrid, National Solar Thermal Test

  16. Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Fact Sheet Research Team Members Key Contacts Carbon Storage Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emissions reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO2. NETL's Carbon Storage Program is readying CCS technologies for widespread commercial deployment by 2020. The program's goals are: By 2015, develop technologies

  17. Storage & Transmission Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & ...

  18. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Home/Energy Storage NM-electric-car-challenge_web Permalink Gallery Electric Car Challenge Sparks Students' STEM Interest Energy, Energy Storage, News, News & Events, Partnership, Transportation Energy Electric Car Challenge Sparks Students' STEM Interest Aspiring automotive engineers from 27 NM middle schools competed in the New Mexico Electric Car Challenge on Saturday, November 22nd at Highland High School in Albuquerque. Forty-six teams participated in a race, a design

  19. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Energy Storage Home/Tag:Energy Storage Energy Storage The contemporary grid limits renewable energy and other distributed energy sources from being economically and reliably integrated into the grid. While a national renewable energy portfolio standard (RPS) has yet to be established, 35 states have forged ahead with their own RPS programs and policies. As this generation becomes a larger portion of a utility's [...] By Tara Camacho-Lopez|

  20. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  1. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  2. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is ... removed the resolution limit imposed by the characteristics of the x-ray optics. ...

  3. Using Electric Vehicles to Mitigate Imbalance Requirements Associated with an Increased Penetration of Wind Generation

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-10-10

    The integration of variable renewable generation sources continues to be a significant area of focus for power system planning. Renewable portfolio standards and initiatives to reduce the dependency on foreign energy sources drive much of the deployment. Unfortunately, renewable energy generation sources like wind and solar tend to be highly variable in nature. To counter the energy imbalance caused by this variability, wind generation often requires additional balancing resources to compensate for the variability in the electricity production. With the expected electrification of transportation, electric vehicles may offer a new load resource for meeting all, or part, of the imbalance created by the renewable generation. This paper investigates a regulation-services-based battery charging method on a population of plug-in hybrid electric vehicles to meet the power imbalance requirements associated with the introduction of 11 GW of additional wind generation into the Northwest Power Pool. It quantifies the number of vehicles required to meet the imbalance requirements under various charging assumptions.

  4. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  5. File Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File Storage File Storage Disk Quota Change Request Form Carver File Systems Carver has 3 kinds of file systems available to users: home directories, scratch directories and project directories, all provided by the NERSC Global File system. Each file system serves a different purpose. File System Home Scratch Project Environment Variable Definition $HOME $SCRATCH or $GSCRATCH No environment variable /project/projectdirs/ Description Global homes file system shared by all NERSC systems except

  6. File storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File storage File storage Disk Quota Change Request Form Euclid File Systems Euclid has 3 kinds of file systems available to users: home directories, scratch directories and project directories, all provided by the NERSC Global File system. Each file system serves a different purpose. File System Home Scratch Project Environment Variable Definition $HOME $SCRATCH or $GSCRATCH No environment variable /project/projectdirs/ Description Global homes file system shared by all NERSC systems except

  7. Storage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Trends and Summaries Storage by Scientific Discipline Troubleshooting I/O Resources for Scientific Applications at NERSC Optimizing I/O performance on the Lustre file system I/O Formats Science Databases Sharing Data Transferring Data Unix Groups at NERSC Unix File Permissions Application Performance Data & Analytics Job Logs & Statistics Training & Tutorials Software Policies User Surveys NERSC Users Group Help Staff Blogs Request Repository Mailing List Home » For Users

  8. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Energy Storage Home/Tag:Energy Storage Northrop-Grumman, GE Partnerships Tap a Wide Range of Sandia Labs Experience Sandia has signed a pair of umbrella cooperative research and development agreements (CRADAs) with Northrop Grumman Information Systems and General Electric Global Research that will broadly add to the Labs' research. "These strategic agreements envision long-term partner-ships," said Brooke Garcia, a Sandia business

  9. Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  10. Energy Storage

    SciTech Connect (OSTI)

    Mukundan, Rangachary

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10

  11. Generation of charge imbalance in a superconductor by a temperature gradient

    SciTech Connect (OSTI)

    Entin-Wohlman, O.; Orbach, R.

    1980-11-01

    The charge-imbalance voltage in a superconductor carrying a current in the presence of a temperature gradient is calculated from the Boltzmann equation in the clean limit. We demonstrate why the Green's-function approach in the dirty limit, first performed by Schmid and Schoem, generates the same Boltzmann-like equation for the distribution function. In addition, the charge-imbalance voltage in the absence of an impressed current is calculated. It is shown to depend on del/sup 2/T+(delT)/sup 2//T, and not solely on (delT)/sup 2/. The calculations are limited to the temperature regime near T/sub c/, such that ..delta..<

  12. Hydrogen Storage

    SciTech Connect (OSTI)

    2008-11-01

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well as the technical challenges and research goals for storing hydrogen on board a vehicle.

  13. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Storage, Energy Storage Systems, News, News & Events, Partnership, Renewable Energy, Research & Capabilities, Systems Analysis, Water Power Natural Energy ...

  14. Effects of inelastic electron-electron scattering on branch imbalance relaxation

    SciTech Connect (OSTI)

    Entin-Wohlman, O.; Orbach, R.

    1981-08-01

    The rate for branch-imbalance relaxation in a superconductor associated with inelastic electron-electron (Coulomb) scattering is derived, valid at arbitrary temperatures. The calculation is performed for clean superconductors, and shown to extend to cases where impurity scattering is important, using a technique of Schmid. As expected, for temperatures in the vicinity of T/sub c/ the form for the relaxation rate is identical with that arising from inelastic electron-phonon processes, if one replaces the inelastic electron-phonon scattering time with the inelastic electron-electron scattering time.

  15. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  16. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  17. THERMOELECTRIC GENERATION OF CHARGE IMBALANCE AT A SUPERCONDUCTOR-NORMAL METAL INTERFACE

    SciTech Connect (OSTI)

    Van Harlingen, D. J.

    1981-01-01

    The thermoelectric voltage produced across a superconductor-normal metal-superconductor (SNS) sandwich by an applied heat current has been measured in Pb-Cu-PbBi and In-Al-Sn as a function of temperature. The observed divergence of the thermoelectric voltage near T{sub c} is attributed to a charge imbalance region decaying into the superconductor from the NS interface over the quasiparticle diffusion length {lambda}{sub Q*}. The charge imbalance is generated by thermoelectrically driven quasiparticle currents in the superconductor. It contributes a voltage per unit heat power given by V{sub s}/P = {lambda}{sub Q*}S/{kappa}A, where A is the sample cross-sectional area, and S and {kappa} are the thermopower and the thermal conductivity of quasiparticles in the superconductor. For Pb and In, we find the measured thermopower in the superconducting state to be slowly-varying with temperature near T{sub c} and consistent in magnitude with normal state values. This result is in agreement with theoretical predictions of thermoelectric effects in superconductors but contrary to previous experimental results obtained by other methods.

  18. The parallel I/O architecture of the High Performance Storage System (HPSS)

    SciTech Connect (OSTI)

    Watson, R.W.; Coyne, R.A.

    1995-02-01

    Rapid improvements in computational science, processing capability, main memory sizes, data collection devices, multimedia capabilities and integration of enterprise data are producing very large datasets (10s-100s of gigabytes to terabytes). This rapid growth of data has resulted in a serious imbalance in I/O and storage system performance and functionality. One promising approach to restoring balanced I/O and storage system performance is use of parallel data transfer techniques for client access to storage, device-to-device transfers, and remote file transfers. This paper describes the parallel I/O architecture and mechanisms, Parallel Transport Protocol, parallel FIP, and parallel client Application Programming Interface (API) used by the High Performance Storage System (HPSS). Parallel storage integration issues with a local parallel file system are also discussed.

  19. FAQs about Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    about Storage Capacity How do I determine if my tanks are in operation or idle or ... Do I have to report storage capacity every month? No, only report storage capacity with ...

  20. Sandia Energy Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Participates in Preparation of New Mexico Renewable Energy Storage Report http:energy.sandia.govsandia-participates-in-preparation-of-new-mexico-renewable-energy-storage-...

  1. NREL: Energy Storage - Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Transportation Research Energy Storage Printable Version Awards R&D 100 ... (SAE) Project: Modular Battery Management System for HEVs 2002 TR100 AwardMIT's ...

  2. Alternative Approaches to Calculate Benefits of an Energy Imbalance Market With Wind and Solar Energy: Preprint

    SciTech Connect (OSTI)

    Kirby, B.; King, J.; Milligan, M.

    2012-06-01

    The anticipated increase in variable generation in the Western Interconnection over the next several years has raised concerns about how to maintain system balance, especially in smaller Balancing Authority Areas (BAAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. The consequent increase in variability and uncertainty that must be managed by the conventional generation fleet and responsive loads has resulted in a proposal for an Energy Imbalance Market (EIM). This paper extends prior work to estimate the reserve requirements for regulation, spinning, and non-spinning reserves with and without the EIM. We also discuss alternative approaches to allocating reserve requirements and show that some apparently attractive allocation methods have undesired consequences.

  3. Licensing of spent fuel dry storage and consolidated rod storage: A Review of Issues and Experiences

    SciTech Connect (OSTI)

    Bailey, W.J.

    1990-02-01

    The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs.

  4. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with...

  5. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Record-Setting Microscopy Illuminates Energy Storage Materials Print Thursday, 22 January 2015 12:10 X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with exquisite chemical, electronic, and bond orientation contrast. The development of diffraction-based methods such as ptychography has, in principle, removed the resolution limit imposed by the characteristics of the x-ray optics.

  6. Storage by Scientific Discipline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat & Cool » Water Heating » Storage Water Heaters Storage Water Heaters Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of ©iStockphoto/JulNichols. Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of ©iStockphoto/JulNichols. Conventional storage water heaters remain the most popular type of water heating system

  7. NREL: Energy Storage - Energy Storage Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The lab's performance assessments factor in the design of the thermal management system, the thermal behavior of the cell, battery lifespan, and safety of the energy storage system...

  8. NREL: Energy Storage - Energy Storage Systems Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Systems Evaluation Photo of man standing between two vehicles and plugging the vehicle on the right into a charging station. NREL system evaluation has confirmed ...

  9. NREL: Energy Storage - Energy Storage Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Li-ion) devices used for EDV energy storage never exhibit problems, safety issues ... a fault signal and confining the fault locally in a system are extremely challenging. ...

  10. Spent fuel storage alternatives

    SciTech Connect (OSTI)

    O'Connell, R.H.; Bowidowicz, M.A.

    1983-01-01

    This paper compares a small onsite wet storage pool to a dry cask storage facility in order to determine what type of spent fuel storage alternatives would best serve the utilities in consideration of the Nuclear Waste Policy Act of 1982. The Act allows the DOE to provide a total of 1900 metric tons (MT) of additional spent fuel storage capacity to utilities that cannot reasonably provide such capacity for themselves. Topics considered include the implementation of the Act (DOE away-from reactor storage), the Act's impact on storage needs, and an economic evaluation. The Waste Act mandates schedules for the determination of several sites, the licensing and construction of a high-level waste repository, and the study of a monitored retrievable storage facility. It is determined that a small wet pool storage facility offers a conservative and cost-effective approach for many stations, in comparison to dry cask storage.

  11. Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's <a href="http://arpa-e.energy.gov/">Advanced Research Projects Agency-Energy (ARPA-E)</a>, energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. <a href="http://energy.gov/articles/energy-storage-key-reliable-clean-electricity-supply">Learn more</a>. Energy storage

  12. Spectroscopy of the soliton lattice formation in quasi-one-dimensional fermionic superfluids with population imbalance

    SciTech Connect (OSTI)

    Lutchyn, Roman M.; Dzero, Maxim; Yakovenko, Victor M.

    2011-09-15

    Motivated by recent experiments in low-dimensional trapped fermionic superfluids, we study a quasi-one-dimensional (quasi-1D) superfluid with a population imbalance between two hyperfine states using an exact mean-field solution for the order parameter. When an effective 'magnetic field' exceeds a critical value, the superfluid order parameter develops spatial inhomogeneity in the form of a soliton lattice. The soliton lattice generates a band of quasiparticle states inside the energy gap, which originate from the Andreev bound states localized at the solitons. Emergence of the soliton lattice is accompanied by formation of a spin-density wave, with the majority fermions residing at the points in space where the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) order parameter vanishes. We discuss possibilities for experimental detection of the quasi-1D FFLO state using elastic and inelastic optical Bragg scattering and radiofrequency spectroscopy. We show that these measurements can provide necessary information for unambiguous identification of the spatially inhomogeneous quasi-1D FFLO state and the soliton lattice formation.

  13. ,"Underground Natural Gas Storage by Storage Type"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground Storage ...

  14. National Energy Storage Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Grid Energy Storage Strategy Offered by the Energy Storage Subcommittee of the Electricity Advisory Committee Executive Summary Since 2008, there has been substantial progress in the development of electric storage technologies and greater clarity around their role in renewable resource integration, ancillary service markets, time arbitrage, capital deferral as well as other applications and services. These developments, coupled with the increased deployment of storage technologies

  15. Chemical Hydrogen Storage Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Troy A. Semelsberger Los Alamos National Laboratory Hydrogen Storage Summit Jan 27-29, 2015 Denver, CO Chemical Hydrogen Storage Materials 2 Objectives 1. Assess chemical hydrogen storage materials that can exceed 700 bar compressed hydrogen tanks 2. Status (state-of-the-art) of chemical hydrogen storage materials 3. Identify key material characteristics 4. Identify obstacles, challenges and risks for the successful deployment of chemical hydrogen materials in a practical on-board hydrogen

  16. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Safety Strategic Plan Now Available Energy Storage Safety Strategic Plan Now Available December 23, 2014 - 10:25am Addthis The Office of Electricity Delivery and Energy Reliability (OE) has worked with industry and other stakeholders to develop the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations. The Plan, which is now available for downloading,

  17. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with exquisite chemical, electronic, and bond orientation contrast. The development of diffraction-based methods such as ptychography has, in principle, removed the resolution limit imposed by the characteristics of the x-ray optics. Using soft x-ray ptychography, researchers at the ALS have demonstrated the highest-resolution

  18. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with exquisite chemical, electronic, and bond orientation contrast. The development of diffraction-based methods such as ptychography has, in principle, removed the resolution limit imposed by the characteristics of the x-ray optics. Using soft x-ray ptychography, researchers at the ALS have demonstrated the highest-resolution

  19. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with exquisite chemical, electronic, and bond orientation contrast. The development of diffraction-based methods such as ptychography has, in principle, removed the resolution limit imposed by the characteristics of the x-ray optics. Using soft x-ray ptychography, researchers at the ALS have demonstrated the highest-resolution

  20. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with exquisite chemical, electronic, and bond orientation contrast. The development of diffraction-based methods such as ptychography has, in principle, removed the resolution limit imposed by the characteristics of the x-ray optics. Using soft x-ray ptychography, researchers at the ALS have demonstrated the highest-resolution

  1. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with exquisite chemical, electronic, and bond orientation contrast. The development of diffraction-based methods such as ptychography has, in principle, removed the resolution limit imposed by the characteristics of the x-ray optics. Using soft x-ray ptychography, researchers at the ALS have demonstrated the highest-resolution

  2. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with exquisite chemical, electronic, and bond orientation contrast. The development of diffraction-based methods such as ptychography has, in principle, removed the resolution limit imposed by the characteristics of the x-ray optics. Using soft x-ray ptychography, researchers at the ALS have demonstrated the highest-resolution

  3. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with exquisite chemical, electronic, and bond orientation contrast. The development of diffraction-based methods such as ptychography has, in principle, removed the resolution limit imposed by the characteristics of the x-ray optics. Using soft x-ray ptychography, researchers at the ALS have demonstrated the highest-resolution

  4. Analysis of Benefits of an Energy Imbalance Market in the NWPP

    SciTech Connect (OSTI)

    Samaan, Nader A.; Bayless, Rich; Symonds, Mark; Nguyen, Tony B.; Jin, Chunlian; Wu, Di; Diao, Ruisheng; Makarov, Yuri V.; Kannberg, Landis D.; Guo, Tao; Dennison-Leonard , Sarah; Goodenough, Mike; Schellberg, Ron; Conger, Sid; Harris, Kevin; Rarity, Matt; Wallace, Steven; Austin, Jamie; Noteboom, Rod; Van Blaricom , Tim; McRunnel, Kim; Apperson, John; Empey, Marshall; Etingov, Pavel V.; Warady, Debra; Brush, Ray; Newkirk, Joshua; Williams, Peter; Landauer, Marv; Owen, Hugh; Morter, Wayne; Haraguchi, Keli; Portouw, Jim; Downey, kathryn; Sorey, Steve; Williams, Stan; Gossa, Teyent; Kalich, Clint; Damiano, Patrick; Macarthur, Clay; Martin, Tom; Hoerner, Joe; Knudsen, Steve; Johnson, Anders; Link, Rick; Holcomb, Dennis

    2013-10-18

    The Northwest Power Pool (NWPP) Market Assessment Committee (MC) Initiative, which was officially launched on March 19, 2012, set out to explore a range of alternatives that could help the Balancing Authorities and scheduling utilities in the NWPP area address growing operational and commercial challenges affecting the regional power system. The MC formed an Analytical Team with technical representatives from each of the member Balancing Areas in the NWPP and with staff of Pacific Northwest National Laboratory (PNNL). This Analytical Team was instructed to conduct extensive studies of intra-hour operation of the NWPP system in the year 2020 and of the NWPP region with 14,671 MW of wind penetration. The effort utilized a sub-hourly production cost model (the PLEXOS® computer model) that inputs data from the Western Electricity Coordinating Council (WECC)-wide Production Cost Model (PCM) to evaluate potential production cost savings. The Analytical Team was given two general options to evaluate: •Energy Imbalance Market (EIM): establishment of an automated, organized NWPP area market for economically supplying energy imbalance within the hour. •Enhanced Market-Operational Tools (EMT) that might augment or replace an EIM. The Analytical The Analytical Team built on the WECC-wide PCM data from prior work done in the WECC and carried forward the evolution of the original WECC Transmission Expansion Planning Policy Committee (TEPPC) 2020 PC0 data base. A large number of modifications and improvements were made to this case and the data were subjected to extensive review by the team members to improve the model representation of the Northwest (NW). MC meetings that were open to the public were held for interested parties to review and provide input to the study. Results for the test, base, and sensitivity case studies performed by the MC Initiative Analytical Team indicate that there are a wide range of benefits that could be obtained from the operation of an EIM in

  5. Storage - Challenges and Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nitin Natesan Chicago, IL - Argonne National Laboratory March 20-21, 2013 Storage - Challenges and Opportunities. Workshop on forecourt compression, storage and dispensing RD&D to enable cost reduction. 3/24/2013 Fußzeile 2 Linde Covers The Entire Hydrogen Value Chain LH2 storage On-site Supply & Storage Compression/Transfer Dispenser CGH2 storage Onsite SMR 350 bar Ionic compressor Cryo pump Large-Scale Production Conventional (e.g. SMR) Green (e.g. BTH) 700 bar Onsite Electrolyzer

  6. Hydrogen Storage Materials Database Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES ... 12132011 Hydrogen Storage Materials Database Marni Lenahan December 13, 2011 Database ...

  7. Thermochemical Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Energy Storage Overview on German, and European R&D Programs and the work carried out at the German Aerospace Center DLR Dr. Christian Sattler christian.sattler@dlr.de Dr. Antje Wörner antje.woerner@dlr.de Thermochemical Energy Storage > 8 January 2013 www.DLR.de * Chart 1 Contents - Short Introduction of the DLR - Energy Program - Thermochemical Storage - Strategic basis: Germany and European Union - Processes - CaO/Ca(OH) 2 - Metal oxides (restructure) - Sulfur -

  8. Energy Storage Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Program Overview State Energy Advisory Board to EERE (STEAB) Mtg April 8, 2008 Georgianne H. Peek, PE Sandia National Laboratories 505-844-9855, ghpeek@sandia.gov www.sandia.gov/ess Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE AC04-94AL85000. DOE Energy Storage Program Mission: Develop advanced electricity storage and PE

  9. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  10. Transportation Storage Interface

    Office of Environmental Management (EM)

    of Future Extended Storage and Transportation Transportation-Storage Interface James Rubenstone Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission National Transportation Stakeholders Forum May 2012 ♦ Knoxville, Tennessee Overview * Changing policy environment * Regulatory framework-current and future * Extended storage and transportation-technical information needs * Next Steps 2 Current Policy Environment * U.S. national policy for disposition of spent

  11. energy storage development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  12. energy storage deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  13. Energy Storage Systems

    SciTech Connect (OSTI)

    Conover, David R.

    2013-12-01

    Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

  14. Warehouse and Storage Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    belongings. Basic Characteristics See also: Equipment | Activity Subcategories | Energy Use Warehouse and Storage Buildings... While the idea of a warehouse may bring to...

  15. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  16. Storage and Handling

    Broader source: Energy.gov [DOE]

    Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management Business Center RETIREMENT OF RECORDS:

  17. Storage- Challenges and Opportunities

    Broader source: Energy.gov [DOE]

    This presentation by Nitin Natesan of Linde was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013.

  18. Transmission and Storage Operations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission and Storage Operations Natural Gas Infrastructure R&D and Methane Mitigation Workshop Mary Savalle, PMP, LSSGB Compression Reliability Engineer November 12, 2014 ...

  19. Materials for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Energy Storage - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... where stringent system requirements exist for size, performance, and safety. ...

  20. Electric Storage Water Heaters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  1. advanced hydrogen storage materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  2. electric energy storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  3. compressed-gas storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage ...

  4. Carbon Capture, Utilization & Storage

    Broader source: Energy.gov [DOE]

    Learn about the Energy Department's work to advance capture and safe, sustainable storage of carbon dioxide emissions in underground geologic formations.

  5. Sorption Storage Technology Summary

    Broader source: Energy.gov [DOE]

    Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

  6. A new storage-ring light source

    SciTech Connect (OSTI)

    Chao, Alex

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  7. Operating Reserve Reductions from a Proposed Energy Imbalance Market with Wind and Solar Generation in the Western Interconnection

    SciTech Connect (OSTI)

    King, J.; Kirby, B.; Milligan, M.; Beuning, S.

    2012-05-01

    This paper considers several alternative forms of an energy imbalance market (EIM) proposed in the nonmarket areas of the Western Interconnection. The proposed EIM includes two changes in operating practices that independently reduce variability and increase access to responsive resources: balancing authority cooperation and sub-hourly dispatch. As the penetration of variable generation increases on the power system, additional interest in coordination would likely occur. Several alternative approaches could be used, but consideration of any form of coordinated unit commitment is beyond the scope of this analysis. This report examines the benefits of several possible EIM implementations--both separately and in concert.

  8. ,"Underground Natural Gas Storage by Storage Type"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

  9. Underground Natural Gas Storage by Storage Type

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 Apr-16 View History All Operators Natural Gas in Storage 8,305,034 8,039,759 7,308,692 6,905,104 6,846,051 7,007,671 1973-2016 Base Gas 4,367,380 ...

  10. Storage resource manager

    SciTech Connect (OSTI)

    Perelmutov, T.; Bakken, J.; Petravick, D.; /Fermilab

    2004-12-01

    Storage Resource Managers (SRMs) are middleware components whose function is to provide dynamic space allocation and file management on shared storage components on the Grid[1,2]. SRMs support protocol negotiation and reliable replication mechanism. The SRM standard supports independent SRM implementations, allowing for a uniform access to heterogeneous storage elements. SRMs allow site-specific policies at each location. Resource Reservations made through SRMs have limited lifetimes and allow for automatic collection of unused resources thus preventing clogging of storage systems with ''orphan'' files. At Fermilab, data handling systems use the SRM management interface to the dCache Distributed Disk Cache [5,6] and the Enstore Tape Storage System [15] as key components to satisfy current and future user requests [4]. The SAM project offers the SRM interface for its internal caches as well.

  11. Plutonium storage criteria

    SciTech Connect (OSTI)

    Chung, D.; Ascanio, X.

    1996-05-01

    The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less than 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.

  12. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-07-06

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer

  13. Electricity storage using a thermal storage scheme

    SciTech Connect (OSTI)

    White, Alexander

    2015-01-22

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on “sensible heat” storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round-trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.

  14. ,"Underground Natural Gas Storage - Salt Cavern Storage Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Salt Cavern Storage Fields",8,"Monthly","42016","01151994" ,"Release ...

  15. ,"Underground Natural Gas Storage - Storage Fields Other than...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Storage Fields Other than Salt Caverns",8,"Monthly","42016","01151994" ...

  16. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  17. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison

    2005-09-14

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  18. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-05-10

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  19. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-03-31

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  20. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  1. Conflict Resolution Day

    Broader source: Energy.gov [DOE]

    Conflict Resolution Day takes a look at mediation, conciliation, negotiation, arbitration, the ombudsman, and facilitation to resolve conflict in the workplace. Employees and contractors are...

  2. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage The challenge of creating new advanced batteries and energy storage ... We develop more robust, safer and higher-energy density lithium-ion batteries, while using ...

  3. Sorption Storage Technology Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 g) andor micropore volume (mlg) of the adsorbent - Adsorption increases with: P, T -1 0 20 40 60 80 100 120 0 2 4 6 8 Stored mass gkg Pressure (MPa) Storage on AX-21 at ...

  4. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  5. Monitored Retrievable Storage Background

    Broader source: Energy.gov [DOE]

    `The U.S. Government is seeking a site for a monitored retrievable storage facility (MRS). Employing proven technologies used in this country and abroad, the MRS will be an Integral part of the...

  6. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  7. Hydrogen Storage Basics

    Broader source: Energy.gov [DOE]

    Developing safe, reliable, compact, and cost-effective hydrogen storage technologies is one of the most technically challenging barriers to the widespread use of hydrogen as a form of energy. To be...

  8. APS Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    next up previous Next: Main Parameters APS Storage Ring Parameters M. Borland, G. Decker, L. Emery, W. Guo, K. Harkay, V. Sajaev, C.-Y. Yao Advanced Photon Source September 8, 2010...

  9. NREL: Energy Storage - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A complete collection of NREL's transportation and energy storage publications can be found in ... Multi-Node Thermal System Model for Lithium-Ion Battery Packs Paper Preprint Source: ...

  10. Analog storage integrated circuit

    DOE Patents [OSTI]

    Walker, J.T.; Larsen, R.S.; Shapiro, S.L.

    1989-03-07

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.

  11. Analog storage integrated circuit

    DOE Patents [OSTI]

    Walker, J. T.; Larsen, R. S.; Shapiro, S. L.

    1989-01-01

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks.

  12. Materials for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Energy Storage - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  13. Secure Storage Architectures

    SciTech Connect (OSTI)

    Aderholdt, Ferrol; Caldwell, Blake A; Hicks, Susan Elaine; Koch, Scott M; Naughton, III, Thomas J; Pogge, James R; Scott, Stephen L; Shipman, Galen M; Sorrillo, Lawrence

    2015-01-01

    The purpose of this report is to clarify the challenges associated with storage for secure enclaves. The major focus areas for the report are: - review of relevant parallel filesystem technologies to identify assets and gaps; - review of filesystem isolation/protection mechanisms, to include native filesystem capabilities and auxiliary/layered techniques; - definition of storage architectures that can be used for customizable compute enclaves (i.e., clarification of use-cases that must be supported for shared storage scenarios); - investigate vendor products related to secure storage. This study provides technical details on the storage and filesystem used for HPC with particular attention on elements that contribute to creating secure storage. We outline the pieces for a a shared storage architecture that balances protection and performance by leveraging the isolation capabilities available in filesystems and virtualization technologies to maintain the integrity of the data. Key Points: There are a few existing and in-progress protection features in Lustre related to secure storage, which are discussed in (Chapter 3.1). These include authentication capabilities like GSSAPI/Kerberos and the in-progress work for GSSAPI/Host-keys. The GPFS filesystem provides native support for encryption, which is not directly available in Lustre. Additionally, GPFS includes authentication/authorization mechanisms for inter-cluster sharing of filesystems (Chapter 3.2). The limitations of key importance for secure storage/filesystems are: (i) restricting sub-tree mounts for parallel filesystem (which is not directly supported in Lustre or GPFS), and (ii) segregation of hosts on the storage network and practical complications with dynamic additions to the storage network, e.g., LNET. A challenge for VM based use cases will be to provide efficient IO forwarding of the parallel filessytem from the host to the guest (VM). There are promising options like para-virtualized filesystems to

  14. Operating Reserve Implication of Alternative Implementations of an Energy Imbalance Service on Wind Integration in the Western Interconnection: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; King, J.; Beuning, S.

    2011-07-01

    During the past few years, there has been significant interest in alternative ways to manage power systems over a larger effective electrical footprint. Large regional transmission organizations in the Eastern Interconnection have effectively consolidated balancing areas, achieving significant economies of scale that result in a reduction in required reserves. Conversely, in the Western Interconnection there are many balancing areas, which will result in challenges if there is significant wind and solar energy development in the region. A recent proposal to the Western Electricity Coordinating Council suggests a regional energy imbalance service (EIS). To evaluate this EIS, a number of analyses are in process or are planned. This paper describes one part of an analysis of the EIS's implication on operating reserves under several alternative scenarios of the market footprint and participation. We improve on the operating reserves method utilized in the Eastern Wind Integration and Transmission Study and apply this modified approach to data from the Western Wind and Solar Integration Study.

  15. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-09-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology

  16. GAS STORAGE TECHNOLGOY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-04-23

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  17. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-04-17

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  18. Working Gas in Underground Storage Figure

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph...

  19. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  20. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOEs Sandia National Laboratories, and has been operating since January 2012.

  1. Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Hydrogen Storage The Fuel Cell Technologies Office (FCTO) is developing onboard automotive hydrogen storage systems that allow for a driving range of more than 300 miles while meeting cost, safety, and performance requirements. Why Study Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies in applications including stationary power, portable power, and transportation. Hydrogen has the highest energy per mass of any

  2. storage | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geologic Storage Technologies & Simulation & Risk Assessment The Carbon Storage Program's Geologic Storage and Simulation and Risk Assessment (GSRA) Technology Area supports research to develop technologies that can improve containment and injection operations, increase reservoir storage efficiency, and prevent and mitigate unwanted migration of CO2 in all types of storage formations. Research conducted in the near and long term will augment existing technologies to ensure permanent

  3. 2016 Carbon Storage Project Portfolio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Carbon Storage Project Portfolio Carbon Storage Project Portfolio Cover The 2016 Carbon Storage Project Portfolio provides a comprehensive overview of the NETL Carbon Storage Program's current and recently completed work. The portfolio includes division personnel contact information, technology area introductions, project communication products for projects active on or after 10/1/2016, papers and technical reports, best practices manuals, and access to all archived projects. Carbon Storage

  4. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-10-18

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing

  5. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-07-15

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with

  6. Energy storage connection system

    DOE Patents [OSTI]

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  7. Radioactive waste storage issues

    SciTech Connect (OSTI)

    Kunz, D.E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  8. Berkeley Storage Manager

    Energy Science and Technology Software Center (OSTI)

    2007-03-01

    Storage Resource Managers (SRMs) are middleware components whose function is to provide dynamic space allocation and file management of shared storage components on the Grid, They provide storage availability for the planning and execution of a Grid job. SRMs manage two types of resources: space and files. When managing space, SRMs negotiate space allocation with the requesting client, andlor assign default space quotas. When managing files, SRMs allocate space for files, invoke file transfer servicesmore » to move files into the space. phi files for a certain lifetime, release files upon the clients’ request, and use file replacement policies to optimize the use of the shared space. SPMs can be designed to provide effective sharing of files, by monitoring the activity of shared files, and make dynamic decisions on which files to replace when space is needed. In addition, SRMs perform automatic gathage collection of unused files by removing selected files whose lifetime has expired when space is needed. BeStMan is a Java implementation of SRM functionality by the Scientific Data Management Group at LBNL. It manages multiple disks as well as the HPSS mass storage system, and can be adapted to other storage systems. The BeStMan package contains the SRM server, the SRM client tools, and SRM testing tools.« less

  9. Conflict Prevention & Resolution

    Broader source: Energy.gov [DOE]

    OHA's Office of Conflict Prevention and Resolution (OCPR) serves as a resource to all DOE components and contractors to explore efficient and cost-effective means of preventing conflicts and...

  10. Ultra high resolution tomography

    SciTech Connect (OSTI)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  11. Understanding I/O workload characteristics of a Peta-scale storage system

    SciTech Connect (OSTI)

    Kim, Youngjae; Gunasekaran, Raghul

    2015-01-01

    Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the I/O workloads of scientific applications of one of the world s fastest high performance computing (HPC) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). OLCF flagship petascale simulation platform, Titan, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize the system utilization, the demands of reads and writes, idle time, storage space utilization, and the distribution of read requests to write requests for the Peta-scale Storage Systems. From this study, we develop synthesized workloads, and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution. We also study the I/O load imbalance problems using I/O performance data collected from the Spider storage system.

  12. Plutonium storage phenomenology

    SciTech Connect (OSTI)

    Szempruch, R.

    1995-12-01

    Plutonium has been produced, handled, and stored at Department of Energy (DOE) facilities since the 1940s. Many changes have occurred during the last 40 years in the sources, production demands, and end uses of plutonium. These have resulted in corresponding changes in the isotopic composition as well as the chemical and physical forms of the processed and stored plutonium. Thousands of ordinary food pack tin cans have been used successfully for many years to handle and store plutonium. Other containers have been used with equal success. This paper addressees the exceptions to this satisfactory experience. To aid in understanding the challenges of handling plutonium for storage or immobilization the lessons learned from past storage experience and the necessary countermeasures to improve storage performance are discussed.

  13. Inertial energy storage device

    DOE Patents [OSTI]

    Knight, Jr., Charles E.; Kelly, James J.; Pollard, Roy E.

    1978-01-01

    The inertial energy storage device of the present invention comprises a composite ring formed of circumferentially wound resin-impregnated filament material, a flanged hollow metal hub concentrically disposed in the ring, and a plurality of discrete filament bandsets coupling the hub to the ring. Each bandset is formed of a pair of parallel bands affixed to the hub in a spaced apart relationship with the axis of rotation of the hub being disposed between the bands and with each band being in the configuration of a hoop extending about the ring along a chordal plane thereof. The bandsets are disposed in an angular relationship with one another so as to encircle the ring at spaced-apart circumferential locations while being disposed in an overlapping relationship on the flanges of the hub. The energy storage device of the present invention has the capability of substantial energy storage due to the relationship of the filament bands to the ring and the flanged hub.

  14. Storage tracking refinery trends

    SciTech Connect (OSTI)

    Saunders, J.

    1996-05-01

    Regulatory and marketplace shakeups have made the refining and petrochemical industries highly competitive. The fight to survive has forced refinery consolidations, upgrades and companywide restructurings. Bulk liquid storage terminals are following suit. This should generate a flurry of engineering and construction by the latter part of 1997. A growing petrochemical industry translates into rising storage needs. Industry followers forecasted flat petrochemical growth in 1996 due to excessive expansion in 1994 and 1995. But expansion is expected to continue throughout this year on the strength of several products.

  15. Storage Trends and Summaries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summaries Storage Trends and Summaries Total Bytes Utilized The growth in NERSC's storage systems amounts to roughly 1.7x per year. Total Bytes Utilized Number of Files Stored The growth in the number of files stored is less than the growth in the number of bytes stored as the average file size has increased over time. The average file size as of August 2003 is about 30 MB. The median file size is closer to 1 MB. Number of Files Monthly I/O The growth rate of I/O is roughly the same as the

  16. CHEMICAL STORAGE: MYTHS VERSUS REALITY

    SciTech Connect (OSTI)

    Simmons, F

    2007-03-19

    A large number of resources explaining proper chemical storage are available. These resources include books, databases/tables, and articles that explain various aspects of chemical storage including compatible chemical storage, signage, and regulatory requirements. Another source is the chemical manufacturer or distributor who provides storage information in the form of icons or color coding schemes on container labels. Despite the availability of these resources, chemical accidents stemming from improper storage, according to recent reports (1) (2), make up almost 25% of all chemical accidents. This relatively high percentage of chemical storage accidents suggests that these publications and color coding schemes although helpful, still provide incomplete information that may not completely mitigate storage risks. This manuscript will explore some ways published storage information may be incomplete, examine the associated risks, and suggest methods to help further eliminate chemical storage risks.

  17. Underground Natural Gas Storage by Storage Type

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History All Operators Net Withdrawals -17,009 -347,562 -7,279 545,848 -252,958 -538,421 1967-2015 Injections 3,291,395 3,421,813 2,825,427 3,155,661 3,838,826 3,639,015 1935-2015 Withdrawals 3,274,385 3,074,251 2,818,148 3,701,510 3,585,867 3,100,594 1944-2015 Salt Cavern Storage Fields Net Withdrawals -58,295 -92,413 -19,528 28,713 -81,890 -56,052 1994-2015 Injections 510,691 532,893 465,005 492,143 634,045 607,148 1994-2015 Withdrawals 452,396 440,480 445,477

  18. Spent-fuel-storage alternatives

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  19. UFD Storage and Transportation - Transportation Working Group Report

    SciTech Connect (OSTI)

    Maheras, Steven J.; Ross, Steven B.

    2011-08-01

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011). Other sources of information surveyed to develop the list of SSCs and their degradation mechanisms included references such as Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel (NWTRB 2010), Transportation, Aging and Disposal Canister System Performance Specification, Revision 1 (OCRWM 2008), Data Needs for Long-Term Storage of LWR Fuel (EPRI 1998), Technical Bases for Extended Dry Storage of Spent Nuclear Fuel (EPRI 2002), Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program (EPRI 2010a), Industry Spent Fuel Storage Handbook (EPRI 2010b), and Transportation of Commercial Spent Nuclear Fuel, Issues Resolution (EPRI 2010c). SSCs include items such as the fuel, cladding, fuel baskets, neutron poisons, metal canisters, etc. Potential degradation mechanisms (FEPs) included mechanical, thermal, radiation and chemical stressors, such as fuel fragmentation, embrittlement of cladding by hydrogen, oxidation of cladding, metal fatigue, corrosion, etc. These degradation mechanisms are discussed in Section 2 of this report. The degradation mechanisms have been evaluated to determine if they would be influenced by extended storage or high burnup, the need for additional data, and their importance to transportation. These categories were used to identify the most significant transportation degradation mechanisms. As expected, for the most part, the

  20. Sorbent Storage Materials

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office's sorbent storage materials research focuses on increasing the dihydrogen binding energies and improving the hydrogen volumetric capacity by optimizing the material's pore size, pore volume, and surface area, as well as investigating effects of material densification.

  1. Storage material for hydrogen

    SciTech Connect (OSTI)

    Bernauer, O.; Zlegler, K.

    1984-05-01

    A storage material for hydrogen comprising an alloy with the following composition: Ti(V/sub 1//sub -/ /SUB a/ /sub -/ /SUB b/ Fe /SUB a/ Al /SUB b/) /SUB x/ Cr /SUB y/ Mn/sub 2//sub -/ /SUB x/ /sub -/ /SUB y/, wherein: x = greater than 1, less than 2 y = 0 to approximately 0.2 x + y = not greater than 2 a = 0 to approximately 0.25 b = 0 to approximately 0.33 a + b = not greater than approximately 0.35 (1 - a - b) . x = not less than 1 This storage material for hydrogen can, in the cold state, absorb a maximum of 3.2% by weight of H/sub 2/ and already possesses, at low temperatures, a high reaction speed for the absorption of hydrogen. During the absorption of hydrogen, the storage material exhibits self-heating to high temperatures. Thus, in addition to its use for storing hydrogen, it is also particularly suitable for use in preheating systems for hydride-type storage units of motor vehicles.

  2. Underground pumped hydroelectric storage

    SciTech Connect (OSTI)

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  3. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV (1.0-1.9 GeV possible)...

  4. Transportation Storage Interface | Department of Energy

    Office of Environmental Management (EM)

    Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. Transportation Storage Interface (891.2 KB) More Documents & Publications Gap Analysis to Support Extended Storage of Used Nuclear Fuel Status Update: Extended Storage and Transportation Waste Confidence Activities Related to Storage of Spent Nuclear Fuel

  5. Silo Storage Preconceptual Design

    SciTech Connect (OSTI)

    Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

    2012-09-01

    The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

  6. NV Energy Electricity Storage Valuation

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  7. Working Gas in Underground Storage Figure

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas in Underground Storage Figure Working Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph....

  8. Smart Storage Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Storage Pty Ltd Jump to: navigation, search Name: Smart Storage Pty Ltd Place: Australia Product: Australia-based developer of hybrid battery storage solutions. References: Smart...

  9. EnStorage Inc | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: EnStorage Inc Place: Israel Zip: 30900 Product: Israel-based energy storage technology developer, developing a regenerative fuel cell energy storage...

  10. Recommendation 212: Evaluate additional storage and disposal...

    Office of Environmental Management (EM)

    2: Evaluate additional storage and disposal options Recommendation 212: Evaluate additional storage and disposal options The ORSSAB encourages DOE to evaluate additional storage...

  11. Frontiers in Advanced Storage Technologies (FAST) project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage R&D Frontiers in Advanced Storage Technologies (FAST) project Working with vendors to develop new functionality in storage technologies generally not yet available to ...

  12. Storage Water Heaters | Department of Energy

    Energy Savers [EERE]

    Storage Water Heaters Storage Water Heaters Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy ...

  13. EIA - Natural Gas Storage Data & Analysis

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground...

  14. Storage Ring | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Electron Storage Ring The 7-GeV electrons are injected into the 1104-m-circumference storage ring, a circle of more than 1,000 electromagnets and associated equipment, located...

  15. Hydrogen Storage Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  16. Con Edison Energy Storage Activities

    U.S. Energy Information Administration (EIA) Indexed Site

    Con Edison Energy Storage Activities June 15, 2015 EIA Conference Con Edison Energy Storage (ES) 2 Presentation Overview * Introduction to Con Edison * Potential benefits of storage on our system * Unique urban challenges * Con Edison storage related activities * Going forward Con Edison: Overview 3 Customers Infrastructure Service Territory Electric 3.4 million One of the worlds largest underground electric systems All 5 boroughs of NYC and Westchester County Gas 1.1 million 4,333 miles of gas

  17. Flexibility Reserve Reductions from an Energy Imbalance Market with High Levels of Wind Energy in the Western Interconnection

    SciTech Connect (OSTI)

    King, J.; Kirby, B.; Milligan, M.; S. Beuning

    2011-10-01

    The anticipated increase in variable generation in the Western Interconnection (WI) over the next several years has raised concerns about how to maintain system balance, especially in smaller Balancing Areas (BAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts (GW) of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. The consequent increase in variability and uncertainty that must be managed by the conventional generation fleet and responsive load make it attractive to consider ways in which Balancing Area Authorities (BAAs) can pool their variability and response resources, thus taking advantage of geographic and temporal diversity to increase overall operational efficiency. Our analysis considers several alternative forms of an Energy Imbalance Market (EIM) that have been proposed in the non-market areas of the WI. The proposed EIM includes two changes in operating practices that independently reduce variability and increase access to responsive resources: BAA cooperation and sub-hourly dispatch. As proposed, the EIM does not consider any form of coordinated unit commitment; however, over time it is possible that BAAs would develop formal or informal coordination plans. This report examines the benefits of several possible EIM implementations, both separately and in concert.

  18. Energy Storage & Power Electronics 2008 Peer Review- Energy Storage Systems (ESS) Presentations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Storage Systems (ESS) Presentations from the 2008 Energy Storage and Power Electronics peer review.

  19. Energy Storage Systems 2007 Peer Review- International Energy Storage Program Presentations

    Office of Energy Efficiency and Renewable Energy (EERE)

    International energy storage program presentations from the 2007 Energy Storage Systems (ESS) peer review.

  20. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Ring Parameters Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV (1.0-1.9 GeV possible) Beam current (all operation is in top-off with ΔI/I ≤ 0.3%) 500 mA in multibunch mode 2 x 17.5 mA in two-bunch mode Filling pattern (multibunch mode) 256-320 bunches; possibility of one or two 5- to 6-mA "camshaft" bunches in filling gaps Bunch spacing: multibunch mode 2 ns Bunch

  1. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  2. Transmission and Storage Operations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission and Storage Operations Natural Gas Infrastructure R&D and Methane Mitigation Workshop Mary Savalle, PMP, LSSGB Compression Reliability Engineer November 12, 2014 Agenda * DTE Gas Snapshot * NOx & CO - Combustion stability * Methane - Packing - Blowdowns * Capture vs Flare 2 SNAPSHOT * DTE Gas - 41 Units * Age Range: 8-59yrs (Average 45yrs) - 118,200HP * 1,000-15,000HP - 7 different manufacturers * Cooper-Bessemer, Solar, Waukesha, DeLaval, IR, CAT, Ariel - Complete Mixture *

  3. NREL: Energy Storage - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Energy Storage Home Thermal Management Computer-Aided Battery Engineering Safety Lifespan Systems Evaluation Materials Synthesis Publications News Awards Facilities Working with Us Did

  4. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  5. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  6. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  7. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. Carbon Capture & Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page 2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  9. Maui energy storage study.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  10. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership ...

  11. High resolution data acquisition

    DOE Patents [OSTI]

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  12. High resolution data acquisition

    DOE Patents [OSTI]

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  13. Particle detector spatial resolution

    DOE Patents [OSTI]

    Perez-Mendez, V.

    1992-12-15

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.

  14. Particle detector spatial resolution

    DOE Patents [OSTI]

    Perez-Mendez, Victor

    1992-01-01

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector.

  15. High resolution telescope

    DOE Patents [OSTI]

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  16. Automatic voltage imbalance detector

    DOE Patents [OSTI]

    Bobbett, Ronald E.; McCormick, J. Byron; Kerwin, William J.

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  17. Energy Imbalance Market Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in CAISO Market Jim Price, Senior Advisor, Market Development & Analysis California ISO CAISO Public Market minimizes bid costs, while accounting for multiple transmission...

  18. Interim storage study report

    SciTech Connect (OSTI)

    Rawlins, J.K.

    1998-02-01

    High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

  19. Hydrogen Storage System Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Challenges Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles October 29 th , 2015 Mike Veenstra Ford Research & Advanced Engineering Production fuel cell vehicles are being produced or planned by every major automotive OEM Toyota Honda Hyundai (credit: SA / ANL) Customer Expectations Driving Range Refueling Time Cargo Space Vehicle Weight Durability Cost Safety 0.0 2.0 4.0 6.0 8.0 10.0 Gasoline Hydrogen (700 bar) Natural

  20. NIAGARA FALLS STORAGE SITE

    Office of Legacy Management (LM)

    :i" _,, ' _~" ORISE 95/C-70 :E : i:; :' l,J : i.: RADIOLOGICAL SURVEY Op BUILDINGS 401, ' 403, AND ' m HITTMAN BUILDING $ <,' 2:. NIAGARA FALLS STORAGE SITE I .~~ ; " LEWISTON, ' NEW YORK : f? j:,:i I ,.J- ;b f" /: Li _e.*. ~,, I ,,~, ,:,,;:, Prepared by T. .I. Vitkus i,c Environmental Survey and Site Assessment Program Energy/Environment Systems Division ;>::; Oak Ridge Institute for Science and Education .,:, "Oak Ridge, Temressee 37831-0117 .F P ., ? :_ &,d

  1. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host

  2. NREL: Energy Storage - Energy Storage Modeling and Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As battery size increases to meet EDVs' energy storage system demands, macroscopic design factors and highly dynamic environmental conditions significantly influence the ...

  3. Canister Storage Building and Interim Storage Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Canister Storage Building and Interim Storage Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental

  4. Flywheel energy storage workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Carmack, J.

    1995-12-31

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  5. Grid Applications for Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7-8 March 2012 Joe Eto jheto@lbl.gov (510) 486-7284 Referencing a Recent Sandia Study,* This Talk Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost management Demand charge management Load following Area Regulation Renewables energy time shift Renewables capacity firming Compare Sandia's estimates of the economic value of these applications to the Electricity

  6. Forecourt Storage and Compression Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecourt Storage and Compression Options DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop DOE Headquarters 25 January 2006 Mark E. Richards Gas Technology Institute 2 Overview > Project objectives > Gaseous delivery configurations > Analysis tool: CASCADE H2 Pro > Station demand profiles > Operational analysis results - Compressor-storage relationships - Vehicle fueling times - Temperature effects > Cost profiles >

  7. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O.

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  8. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  9. Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over short periods of time, although demand for electricity fluctuates throughout the day. Developing technology to store electrical energy so it can be available to meet demand whenever needed would represent a major breakthrough in electricity distribution. Helping to try and meet this goal, electricity storage devices can

  10. High resolution time interval meter

    DOE Patents [OSTI]

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  11. Energy Storage | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Thus, energy storage and power electronics hold substantial promise for transforming the electric power industry. High voltage power electronics, such as switches, inverters, and ...

  12. LPG storage vessel cracking experience

    SciTech Connect (OSTI)

    Cantwell, J.E. )

    1988-10-01

    In order to evaluate liquefied petroleum gas (LPG) handling and storage hazards, Caltex Petroleum Corp. (Dallas) surveyed several installations for storage vessel cracking problems. Cracking was found in approximately one-third of the storage vessels. In most cases, the cracking appeared to be due to original fabrication problems and could be removed without compromising the pressure containment. Several in-service cracking problems found were due to exposure to wet hydrogen sulfide. Various procedures were tried in order to minimize the in-service cracking potential. One sphere was condemned because of extensive subsurface cracking. This article's recommendations concern minimizing cracking on new and existing LPG storage vessels.

  13. LPG storage vessel cracking experience

    SciTech Connect (OSTI)

    Cantwell, J.E.

    1988-01-01

    As part of an overall company program to evaluate LPG handling and storage hazards the authors surveyed several installations for storage vessel cracking problems. Cracking was found in approximately one third of the storage vessels. In most cases the cracking appeared due to original fabrication problems and could be removed without compromising the pressure containment. Several in-service cracking problems due to exposure to wet hydrogen sulfide were found. Various procedures were tried in order to minimize the in-service cracking potential. One sphere was condemned because of extensive subsurface cracking. Recommendations are made to minimize cracking on new and existing LPG storage vessels.

  14. The Petascale Data Storage Institute

    SciTech Connect (OSTI)

    Gibson, Garth; Long, Darrell; Honeyman, Peter; Grider, Gary; Kramer, William; Shalf, John; Roth, Philip; Felix, Evan; Ward, Lee

    2013-07-01

    Petascale computing infrastructures for scientific discovery make petascale demands on information storage capacity, performance, concurrency, reliability, availability, and manageability.The Petascale Data Storage Institute focuses on the data storage problems found in petascale scientific computing environments, with special attention to community issues such as interoperability, community buy-in, and shared tools.The Petascale Data Storage Institute is a collaboration between researchers at Carnegie Mellon University, National Energy Research Scientific Computing Center, Pacific Northwest National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Los Alamos National Laboratory, University of Michigan, and the University of California at Santa Cruz.

  15. The Fermilab data storage infrastructure

    SciTech Connect (OSTI)

    Jon A Bakken et al.

    2003-02-06

    Fermilab, in collaboration with the DESY laboratory in Hamburg, Germany, has created a petabyte scale data storage infrastructure to meet the requirements of experiments to store and access large data sets. The Fermilab data storage infrastructure consists of the following major storage and data transfer components: Enstore mass storage system, DCache distributed data cache, ftp and Grid ftp for primarily external data transfers. This infrastructure provides a data throughput sufficient for transferring data from experiments' data acquisition systems. It also allows access to data in the Grid framework.

  16. EPRI Energy Storage Talking Points

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generation such as renewables, and reducing the strain on conventional generators. * Energy storage may provide fast ... providing temporary local sources of electricity, augmenting ...

  17. Grid Applications for Energy Storage

    Broader source: Energy.gov [DOE]

    Presentation by Joe Eto, Lawrence Berkeley National Laboratory, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC.

  18. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  19. Powertech: Hydrogen Expertise Storage Needs

    Broader source: Energy.gov [DOE]

    This presentation by Angela Das of Powertech was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013.

  20. Non-Treaty Storage Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doing Business Skip navigation links Initiatives Columbia River Treaty Non Treaty Storage Agreement 2012 Long Term NTSA Previous Agreements NEPA Planning and Review Documents...

  1. Automotive Energy Storage Systems 2015

    Broader source: Energy.gov [DOE]

    Automotive Energy Storage Systems 2015, the ITB Group’s 16th annual technical conference, was held from March 4–5, 2015, in Novi, Michigan.

  2. NREL: Energy Storage - Battery Lifespan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and cost tradeoffs Excess power, energy, and thermal management system requirements Warranty, second ... Complicating matters, storage and cycling patterns can trigger varied ...

  3. Energy Storage | Open Energy Information

    Open Energy Info (EERE)

    around the clock. Some of the major issues concerning energy storage include cost, efficiency, and size. Benefits Make Renewable Energy Viable Allow for intermittent energy...

  4. 2013 Electricity Storage Handbook Published

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Storage Handbook Published - Sandia Energy Energy Search Icon Sandia Home ... Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy ...

  5. Chemical Hydrogen Storage Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage » Materials-Based Storage » Chemical Hydrogen Storage Materials Chemical Hydrogen Storage Materials The Fuel Cell Technologies Office's (FCTO's) chemical hydrogen storage materials research focuses on improving the volumetric and gravimetric capacity, transient performance, and efficient, cost-effective regeneration of the spent storage material. Technical Overview The category of chemical hydrogen storage materials generally refers to covalently bound hydrogen in either solid or

  6. CHARGE-IMBALANCE RELAXATION IN THE PRESENCE OF A PAIR-BREAKING INTERACTION IN SUPERCONDUCTING AlEr FILMS

    SciTech Connect (OSTI)

    Lemberger, T.R.; Clarke, J.

    1980-07-01

    The charge-imbalance relaxation rate, 1/F*{sub T{sub Q*}}, has been measured in dirty superconducting AlEr films in which Er is a pair-breaking magnetic impurity that induces charge relaxation through elastic exchange scattering. Measurements were made in the range 0.1 {approx}< {Delta}(T)/k{sub B}T{sub c} {approx}< 1.4 for Er concentrations varying from 21 to 1660 at. ppm that produced estimated exchange scattering rates, {tau}{sub S}{sup -1}, from about 10{sup 9} sec{sup -1} to 5 x 10{sup 10} sec{sup -1}. Measured values of 1/F*{sub T{sub Q*}} were in good agreement with the Schmid-Schoen expression, 1/F*{sub T{sub Q*}}=({pi}{Delta}/4k{sub B}T{sub c}{tau}{sub E}) x (1+2{tau}{sub E}/{tau}{sub S}){sup 1/2}, for {Delta}/k{sub B}T{sub c} {approx}< 0.8, where {tau}{sub E}{sup -1} is the electron-phonon scattering rate estimated from the measured transition temperature. For larger values of {Delta}/k{sub B}T{sub c}, the relaxation rate increased less rapidly with {Delta}. The appropriate Boltzmann equation was solved on a computer to obtain values for 1/F*{sub T{sub Q*}} in the range 0.5 {approx}< T/T{sub c} {approx}< 0.999999. The computed values of 1/F*{sub T{sub Q*}} agreed with several analytic expressions valid for {Delta}/k{sub B}T{sub c} << 1, but not with the experimental data: The computed curves increased more rapidly than linearly with {Delta}/k{sub B}T{sub c} near T{sub c}, and the shape of the 1/F*{sub T{sub Q*}} vs {Delta}/k{sub B}T{sub c} curves was qualitatively different. This discrepancy suggests that either the generally accepted expression for exchange charge relaxation is incorrect, or that the Boltzmann equation is inappropriate for these calculations.

  7. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV (1.0-1.9 GeV possible) Beam current (all operation is in top-off with ΔI/I ≤ 0.3%) 500 mA in multibunch mode 2 x 17.5 mA in two-bunch mode Filling pattern (multibunch mode) 256-320 bunches; possibility of one or two 5- to 6-mA "camshaft" bunches in filling gaps Bunch spacing: multibunch mode 2 ns Bunch spacing: two-bunch mode 328

  8. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A.; Wang, Tao; Ebner, Armin D.; Holland, Charles E.

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  9. Insulated solar storage tanks

    SciTech Connect (OSTI)

    Eldighidy, S.M. )

    1991-01-01

    This paper presents the theoretical and experimental investigation of an insulated parallelepiped, outdoor solar, water-filled storage tank of size 1 m {times} 0.5 m {times} 0.3 m, that is made from galvanized iron. The absorption coefficient of the insulating material has been determined. The effects of plastic covers and insulation thickness on the water temperature and the energy gained or lost by water are investigated. Moreover, the effects of insulation thickness on the temperature profiles of the insulating material are discussed. The results show that the absorption coefficient decreases as the insulation thickness increases. Also, it is found that the glass wool insulation of 2.5 cm thickness has the best results compared with the other thicknesses (5 cm, 7.5 cm, and 10 cm) as far as the water temperature and the energy gained by water are concerned.

  10. Core assembly storage structure

    DOE Patents [OSTI]

    Jones, Jr., Charles E.; Brunings, Jay E.

    1988-01-01

    A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.

  11. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV (1.0-1.9 GeV possible) Beam current (all operation is in top-off with ΔI/I ≤ 0.3%) 500 mA in multibunch mode 2 x 17.5 mA in two-bunch mode Filling pattern (multibunch mode) 256-320 bunches; possibility of one or two 5- to 6-mA "camshaft" bunches in filling gaps Bunch spacing: multibunch mode 2 ns Bunch spacing: two-bunch mode 328

  12. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV (1.0-1.9 GeV possible) Beam current (all operation is in top-off with ΔI/I ≤ 0.3%) 500 mA in multibunch mode 2 x 17.5 mA in two-bunch mode Filling pattern (multibunch mode) 256-320 bunches; possibility of one or two 5- to 6-mA "camshaft" bunches in filling gaps Bunch spacing: multibunch mode 2 ns Bunch spacing: two-bunch mode 328

  13. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV (1.0-1.9 GeV possible) Beam current (all operation is in top-off with ΔI/I ≤ 0.3%) 500 mA in multibunch mode 2 x 17.5 mA in two-bunch mode Filling pattern (multibunch mode) 256-320 bunches; possibility of one or two 5- to 6-mA "camshaft" bunches in filling gaps Bunch spacing: multibunch mode 2 ns Bunch spacing: two-bunch mode 328

  14. Superconducting energy storage

    SciTech Connect (OSTI)

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  15. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  16. Hydrogen Storage Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. Hydrogen Storage (955.88 KB) More Documents & Publications US DRIVE Hydrogen Storage Technical Team Roadmap Hydrogen & Our Energy Future

  17. NETL's 2015 Carbon Storage Atlas Shows Increase in U.S. CO2 Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NETL's 2015 Carbon Storage Atlas Shows Increase in U.S. CO2 Storage Potential NETL's 2015 Carbon Storage Atlas Shows Increase in U.S. CO2 Storage Potential September 28, 2015 - ...

  18. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  19. Carbon Capture and Storage

    SciTech Connect (OSTI)

    Friedmann, S

    2007-10-03

    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several

  20. Environmental Conflict Resolution | Department of Energy

    Energy Savers [EERE]

    Environmental Conflict Resolution Environmental Conflict Resolution PDF icon Environmental Conflict Resolution More Documents & Publications Final ECR 2008 Report 2009 ECR FINAL...

  1. Grid Storage and the Energy Frontier Research Centers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

  2. Fact Sheet: Advanced Implementation of Energy Storage Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Technologies - Community Energy Storage for Grid Support (August 2013) Fact Sheet: Advanced Implementation of Energy Storage Technologies - Community Energy Storage for ...

  3. Energy Storage Systems 2007 Peer Review - International Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems ...

  4. Executive Summaries for the Hydrogen Storage Materials Center...

    Broader source: Energy.gov (indexed) [DOE]

    storage materials in the areas of Chemical Hydrogen Storage Materials, Hydrogen ... Storage Materials Center of Excellence - Chemical Hydrogen Storage CoE, Hydrogen Sorption ...

  5. FE Carbon Capture and Storage News

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DC 20585202-586-6660 en NETL's 2015 Carbon Storage Atlas Shows Increase in U.S. CO2 Storage Potential http:energy.govfearticlesnetl-s-2015-carbon-storage-atlas-shows-...

  6. Fermilab | Science at Fermilab | Computing | Mass Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data is stored on tapes in Central Mass Storage. Data is stored on tapes in Central Mass Storage. Computing Mass Storage Fermilab stores tens of petabytes of scientific data in its ...

  7. Hopper File Storage and I/O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File Storage and IO File Storage and IO Disk Quota Change Request Form Hopper File Systems Hopper has 5 user file systems which provide different degrees of storage, performance...

  8. Storage Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Water Heaters Storage Water Heaters June 15, 2012 - 6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over...

  9. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Chung, Sung-Yoon; Bloking, Jason T; Andersson, Anna M

    2014-10-07

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z, or (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries.

  10. Thermal energy storage apparatus

    SciTech Connect (OSTI)

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  11. Nuclear materials management storage study

    SciTech Connect (OSTI)

    Becker, G.W. Jr.

    1994-02-01

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs` Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites.

  12. Hydrogen Storage - Current Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage - Current Technology Hydrogen Storage - Current Technology Hydrogen storage is a significant challenge for the development and viability of hydrogen-powered vehicles. On-board hydrogen storage in the range of approximately 5-13 kg is required to enable a driving range of greater than 300 miles for the full platform of light-duty automotive vehicles using fuel cell power plants. Hydrogen Storage Technologies Current on-board hydrogen storage approaches involve compressed hydrogen gas

  13. STEAB Resolution 12-01

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States Department of Energy State Energy Advisory Board (STEAB) Resolution 12-01 Subject: Recommendation to enact the Resolutions from the Energy Efficiency and Conservation Block Grant (EECBG) Sub-committee as compiled since June of 2010. Background: On June 10, 2010, the STEAB adopted a resolution to form the Energy Efficiency and Conservation Block Grant Sub-committee (EECBG Sub-committee). The EECBG Sub-committee was to operate under the oversight of STEAB and was intended to enable

  14. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect (OSTI)

    1998-09-01

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered

  15. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Leading the charge in energy storage R&D Argonne National Laboratory is a global leader in the development of advanced energy storage technologies and has a portfolio of more than 125 patented advanced cathode, anode, electrolyte and additive components for lithium-ion, llithium-air, lithium-sulfur, sodium-ion, and flow batteries. Employing some of the most respected and cited battery researchers in the world, Argonne is the U.S. Department of Energy's lead laboratory for

  16. Storage containers for radioactive material

    DOE Patents [OSTI]

    Groh, E.F.; Cassidy, D.A.; Dates, L.R.

    1980-07-31

    A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

  17. ,"Minnesota Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:41 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Minnesota Natural Gas in ...

  18. ,"Michigan Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:40 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Michigan Natural Gas in ...

  19. ,"Louisiana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:38 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Louisiana Natural Gas in ...

  20. ,"Oklahoma Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:50 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Oklahoma Natural Gas in ...

  1. ,"Tennessee Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:54 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Tennessee Natural Gas in ...

  2. ,"Alaska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:26 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Alaska Natural Gas in ...

  3. ,"Missouri Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:43 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Missouri Natural Gas in ...

  4. ,"Arkansas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:28 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Arkansas Natural Gas in ...

  5. ,"Maryland Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:40 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Maryland Natural Gas in ...

  6. ,"Ohio Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:49 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Ohio Natural Gas in ...

  7. ,"Illinois Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:34 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Illinois Natural Gas in ...

  8. ,"Nebraska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:46 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Nebraska Natural Gas in ...

  9. ,"Wyoming Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:30:00 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Wyoming Natural Gas in ...

  10. ,"Utah Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:56 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Utah Natural Gas in ...