National Library of Energy BETA

Sample records for imaging magnetic techniques

  1. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging...

  2. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in...

  3. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    DOE Patents [OSTI]

    Volegov, Petr L.; Matlashov, Andrei N.; Mosher, John C.; Espy, Michelle A.; Kraus, Jr., Robert H.

    2009-08-11

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  4. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism,...

  5. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Lensless Imaging of Magnetic Nanostructures Print Wednesday, 28 March 2012 00:00 Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the

  6. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  7. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  8. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  9. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  10. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the

  11. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the

  12. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  13. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  14. Techniques in diagnostic imaging

    SciTech Connect (OSTI)

    Whitehouse, G.H. ); Worthington, B.S. )

    1989-01-01

    This book provides aspirant radiologists worldwide with a modern international coverage of all imaging modalities, including plan x-ray, CT magnetic resonance imaging and nuclear medicine.

  15. Optically detected magnetic resonance imaging

    SciTech Connect (OSTI)

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-19

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  16. Image compression technique

    DOE Patents [OSTI]

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.

  17. Image compression technique

    DOE Patents [OSTI]

    Fu, C.Y.; Petrich, L.I.

    1997-03-25

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.

  18. Category:Magnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Magnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Magnetic Techniques page? For detailed information on Magnetic...

  19. Magnetic imager and method

    DOE Patents [OSTI]

    Powell, James; Reich, Morris; Danby, Gordon

    1997-07-22

    A magnetic imager 10 includes a generator 18 for practicing a method of applying a background magnetic field over a concealed object, with the object being effective to locally perturb the background field. The imager 10 also includes a sensor 20 for measuring perturbations of the background field to detect the object. In one embodiment, the background field is applied quasi-statically. And, the magnitude or rate of change of the perturbations may be measured for determining location, size, and/or condition of the object.

  20. Magnetic imager and method

    DOE Patents [OSTI]

    Powell, J.; Reich, M.; Danby, G.

    1997-07-22

    A magnetic imager includes a generator for practicing a method of applying a background magnetic field over a concealed object, with the object being effective to locally perturb the background field. The imager also includes a sensor for measuring perturbations of the background field to detect the object. In one embodiment, the background field is applied quasi-statically. And, the magnitude or rate of change of the perturbations may be measured for determining location, size, and/or condition of the object. 25 figs.

  1. Nuclear magnetic resonance imaging

    SciTech Connect (OSTI)

    Young, I.R.

    1984-07-03

    A method of imaging a body by nuclear magnetic resonance wherein volume scanning of a region of the body is achieved by scanning a first planar slice of the region and at least one further slice of the region in the relaxation time for the scan of the first slice.

  2. Three-Dimensional Mapping of Ozone-Induced Injury in the Nasal Airways of Monkeys Using Magnetic Resonance Imaging and Morphometric Techniques

    SciTech Connect (OSTI)

    Carey, Stephen A.; Minard, Kevin R.; Trease, Lynn L.; Wagner, James G.; Garcia, Guilherme M.; Ballinger, Carol A.; Kimbell, Julia; Plopper, Charles G.; Corley, Rick A.; Postlewait, Ed; Harkema, Jack R.

    2007-03-01

    ABSTRACT Age-related changes in gross and microscopic structure of the nasal cavity can alter local tissue susceptibility as well as the dose of inhaled toxicant delivered to susceptible sites. This article describes a novel method for the use of magnetic resonance imaging, 3-dimensional airway modeling, and morphometric techniques to characterize the distribution and magnitude of ozone-induced nasal injury in infant monkeys. Using this method, we are able to generate age-specific, 3-dimensional, epithelial maps of the nasal airways of infant Rhesus macaques. The principal nasal lesions observed in this primate model of ozone-induced nasal toxicology were neutrophilic rhinitis, along with necrosis and exfoliation of the epithelium lining the anterior maxilloturbinate. These lesions, induced by acute or cyclic (episodic) exposures, were examined by light microscopy, quantified by morphometric techniques, and mapped on 3-dimensional models of the nasal airways. Here, we describe the histopathologic, imaging, and computational biology methods developed to efficiently characterize, localize, quantify, and map these nasal lesions. By combining these techniques, the location and severity of the nasal epithelial injury were correlated with epithelial type, nasal airway geometry, and local biochemical and molecular changes on an individual animal basis. These correlations are critical for accurate predictive modeling of exposure-dose-response relationships in the nasal airways, and subsequent extrapolation of nasal findings in animals to humans for developing risk assessment.

  3. Low field magnetic resonance imaging

    DOE Patents [OSTI]

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  4. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Asymmetric Magnetization Reversal Direct Imaging of Asymmetric Magnetization Reversal Print Wednesday, 28 September 2005 00:00 The phenomenon of exchange bias has...

  5. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Asymmetric Magnetization Reversal Print The phenomenon of exchange bias has transformed how data is read on magnetic hard disks and created an explosion in their...

  6. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Asymmetric Magnetization Reversal Print The phenomenon of exchange bias has transformed how data is read on magnetic hard disks and created an explosion in their information storage density. However, it remains poorly understood, and even the fundamental mechanism of magnetic reversal for exchange-biased systems in changing magnetic fields is unclear. By using x-ray photoemission electron microscopy at the ALS to directly image the magnetic structure of an exchange-biased film,

  7. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Asymmetric Magnetization Reversal Print The phenomenon of exchange bias has transformed how data is read on magnetic hard disks and created an explosion in their information storage density. However, it remains poorly understood, and even the fundamental mechanism of magnetic reversal for exchange-biased systems in changing magnetic fields is unclear. By using x-ray photoemission electron microscopy at the ALS to directly image the magnetic structure of an exchange-biased film,

  8. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Asymmetric Magnetization Reversal Print The phenomenon of exchange bias has transformed how data is read on magnetic hard disks and created an explosion in their information storage density. However, it remains poorly understood, and even the fundamental mechanism of magnetic reversal for exchange-biased systems in changing magnetic fields is unclear. By using x-ray photoemission electron microscopy at the ALS to directly image the magnetic structure of an exchange-biased film,

  9. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Asymmetric Magnetization Reversal Print The phenomenon of exchange bias has transformed how data is read on magnetic hard disks and created an explosion in their information storage density. However, it remains poorly understood, and even the fundamental mechanism of magnetic reversal for exchange-biased systems in changing magnetic fields is unclear. By using x-ray photoemission electron microscopy at the ALS to directly image the magnetic structure of an exchange-biased film,

  10. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Asymmetric Magnetization Reversal Print The phenomenon of exchange bias has transformed how data is read on magnetic hard disks and created an explosion in their information storage density. However, it remains poorly understood, and even the fundamental mechanism of magnetic reversal for exchange-biased systems in changing magnetic fields is unclear. By using x-ray photoemission electron microscopy at the ALS to directly image the magnetic structure of an exchange-biased film,

  11. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Asymmetric Magnetization Reversal Direct Imaging of Asymmetric Magnetization Reversal Print Wednesday, 28 September 2005 00:00 The phenomenon of exchange bias has transformed how data is read on magnetic hard disks and created an explosion in their information storage density. However, it remains poorly understood, and even the fundamental mechanism of magnetic reversal for exchange-biased systems in changing magnetic fields is unclear. By using x-ray photoemission electron

  12. Soft X-ray techniques to study mesoscale magnetism

    SciTech Connect (OSTI)

    Kortright, Jeffrey B.

    2003-06-26

    Heterogeneity in magnetization (M) is ubiquitous in modern systems. Even in nominally homogeneous materials, domains or pinning centers typically mediate magnetization reversal. Fundamental lengths determining M structure include the domain wall width and the exchange stiffness length, typically in the 4-400 nm range. Chemical heterogeneity (phase separation, polycrystalline microstructure, lithographic or other patterning, etc.) with length scales from nanometers to microns is often introduced to influence magnetic properties. With 1-2 nm wavelengths {lambda}, soft x-rays in principle can resolve structure down to {lambda}/2, and are well suited to study these mesoscopic length scales [1, 2]. This article highlights recent advances in resonant soft x-ray methods to resolve lateral magnetic structure [3], and discusses some of their relative merits and limitations. Only techniques detecting x-ray photons (rather than photo-electrons) are considered [4], since they are compatible with strong applied fields to probe relatively deeply into samples. The magneto-optical (MO) effects discovered by Faraday and Kerr were observed in the x-ray range over a century later, first at ''hard'' wavelengths in diffraction experiments probing interatomic magnetic structure [5]. In the soft x-ray range, magnetic linear [6] and circular [7] dichroism spectroscopies first developed that average over lateral magnetic structure. These large resonant MO effects enable different approaches to study magnetic structure or heterogeneity that can be categorized as microscopy or scattering [1]. Direct images of magnetic structure result from photo-emission electron microscopes [4, 8] and zone-plate microscopes [9, 10]. Scattering techniques extended into the soft x-ray include familiar specular reflection that laterally averages over structure but can provide depth-resolved information, and diffuse scattering and diffraction that provide direct information about lateral magnetic structure

  13. A TOMOGRAPHIC TECHNIQUE FOR MAGNETIZED BEAM MATCHING.

    SciTech Connect (OSTI)

    MONTAG,C.ET AL.

    2004-07-05

    To maintain low electron beam temperatures in the proposed RHIC electron cooler, careful matching of the magnetized beam from the source to the cooler solenoid is mandatory. We propose a tomographic technique to diagnose matching conditions. First simulation results will be presented.

  14. New technique images nanoparticles in solution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technique images nanoparticles in solution Click to share on Facebook (Opens in new window) Click to share on Twitter (Opens in new window) Click to share on Reddit (Opens in new window) Click to share on Pinterest (Opens in new window) A technique called SINGLE uses in situ transmission electron microscopy imaging of platinum nanocrystals freely rotating in a graphene liquid cell to determine the 3-D structures of individual colloidal nanoparticles. (Image: Berkeley Lab) More » Nanotubes that

  15. Electronic imaging system and technique

    DOE Patents [OSTI]

    Bolstad, J.O.

    1984-06-12

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  16. Electronic imaging system and technique

    DOE Patents [OSTI]

    Bolstad, Jon O.

    1987-01-01

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  17. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOE Patents [OSTI]

    Engelstad, B.L.; Raymond, K.N.; Huberty, J.P.; White, D.L.

    1991-04-23

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided. No Drawings

  18. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOE Patents [OSTI]

    Engelstad, Barry L.; Raymond, Kenneth N.; Huberty, John P.; White, David L.

    1991-01-01

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided.

  19. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOE Patents [OSTI]

    Kraus, Robert H.; Matlashov, Andrei N.; Espy, Michelle A.; Volegov, Petr L.

    2010-03-30

    An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

  20. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies....

  1. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    SciTech Connect (OSTI)

    Lee, Seong-Joo Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-09

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π/2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  2. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and H. Ohldag, "Direct imaging of asymmetric magnetization reversal in exchange-biased FeMnPd bilayers by x-ray photoemission electron microscopy," Phys. Rev. Lett. 94, 107203...

  3. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. Ohldag, "Direct imaging of asymmetric magnetization reversal in exchange-biased FeMnPd bilayers by x-ray photoemission electron microscopy," Phys. Rev. Lett. 94, 107203 (2005...

  4. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering ...

  5. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic...

  6. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gambino, S. Mangin, S. Roy, and P. Fischer, "X-ray diffraction microscopy of magnetic structures," Phys. Rev. Lett. 107, 033904 (2011). ALS Science Highlight 244 ALSNews Vol. 329...

  7. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I. McNulty, R. Gambino, S. Mangin, S. Roy, and P. Fischer, "X-ray diffraction microscopy of magnetic structures," Phys. Rev. Lett. 107, 033904 (2011). ALS Science Highlight 244...

  8. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enabled scientists to apply lensless x-ray imaging for the first time to ... If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a ...

  9. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the...

  10. Magnetic particle imaging of blood coagulation

    SciTech Connect (OSTI)

    Murase, Kenya Song, Ruixiao; Hiratsuka, Samu

    2014-06-23

    We investigated the feasibility of visualizing blood coagulation using a system for magnetic particle imaging (MPI). A magnetic field-free line is generated using two opposing neodymium magnets and transverse images are reconstructed from the third-harmonic signals received by a gradiometer coil, using the maximum likelihood-expectation maximization algorithm. Our MPI system was used to image the blood coagulation induced by adding CaCl{sub 2} to whole sheep blood mixed with magnetic nanoparticles (MNPs). The “MPI value” was defined as the pixel value of the transverse image reconstructed from the third-harmonic signals. MPI values were significantly smaller for coagulated blood samples than those without coagulation. We confirmed the rationale of these results by calculating the third-harmonic signals for the measured viscosities of samples, with an assumption that the magnetization and particle size distribution of MNPs obey the Langevin equation and log-normal distribution, respectively. We concluded that MPI can be useful for visualizing blood coagulation.

  11. Imaging of SCC with Acoustic Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED NDE Solutions Imaging SCC with Acoustic Techniques Marcel Remillieux, TJ Ulrich, Pierre-Yves Le Bas Slide 2 Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED Context * 2014 meeting at EPRI resulted in a 5 year plan to: - Provide point inspection on SCC  once an area of concern has been identified visually (e.g., camera), can we interrogate this

  12. Magnetic Resonance Imaging of Gel-cast Ceramic Composites

    DOE R&D Accomplishments [OSTI]

    Dieckman, S. L.; Balss, K. M.; Waterfield, L. G.; Jendrzejczyk, J. A.; Raptis, A. C.

    1997-01-16

    Magnetic resonance imaging (MRI) techniques are being employed to aid in the development of advanced near-net-shape gel-cast ceramic composites. MRI is a unique nondestructive evaluation tool that provides information on both the chemical and physical properties of materials. In this effort, MRI imaging was performed to monitor the drying of porous green-state alumina - methacrylamide-N.N`-methylene bisacrylamide (MAM-MBAM) polymerized composite specimens. Studies were performed on several specimens as a function of humidity and time. The mass and shrinkage of the specimens were also monitored and correlated with the water content.

  13. Advanced Millimeter-Wave Security Portal Imaging Techniques

    SciTech Connect (OSTI)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-04-01

    Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.

  14. Methods for magnetic resonance analysis using magic angle technique

    DOE Patents [OSTI]

    Hu, Jian Zhi; Wind, Robert A.; Minard, Kevin R.; Majors, Paul D.

    2011-11-22

    Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.

  15. Selective document image data compression technique

    DOE Patents [OSTI]

    Fu, C.Y.; Petrich, L.I.

    1998-05-19

    A method of storing information from filled-in form-documents comprises extracting the unique user information in the foreground from the document form information in the background. The contrast of the pixels is enhanced by a gamma correction on an image array, and then the color value of each of pixel is enhanced. The color pixels lying on edges of an image are converted to black and an adjacent pixel is converted to white. The distance between black pixels and other pixels in the array is determined, and a filled-edge array of pixels is created. User information is then converted to a two-color format by creating a first two-color image of the scanned image by converting all pixels darker than a threshold color value to black. All the pixels that are lighter than the threshold color value to white. Then a second two-color image of the filled-edge file is generated by converting all pixels darker than a second threshold value to black and all pixels lighter than the second threshold color value to white. The first two-color image and the second two-color image are then combined and filtered to smooth the edges of the image. The image may be compressed with a unique Huffman coding table for that image. The image file is also decimated to create a decimated-image file which can later be interpolated back to produce a reconstructed image file using a bilinear interpolation kernel. 10 figs.

  16. Selective document image data compression technique

    DOE Patents [OSTI]

    Fu, Chi-Yung; Petrich, Loren I.

    1998-01-01

    A method of storing information from filled-in form-documents comprises extracting the unique user information in the foreground from the document form information in the background. The contrast of the pixels is enhanced by a gamma correction on an image array, and then the color value of each of pixel is enhanced. The color pixels lying on edges of an image are converted to black and an adjacent pixel is converted to white. The distance between black pixels and other pixels in the array is determined, and a filled-edge array of pixels is created. User information is then converted to a two-color format by creating a first two-color image of the scanned image by converting all pixels darker than a threshold color value to black. All the pixels that are lighter than the threshold color value to white. Then a second two-color image of the filled-edge file is generated by converting all pixels darker than a second threshold value to black and all pixels lighter than the second threshold color value to white. The first two-color image and the second two-color image are then combined and filtered to smooth the edges of the image. The image may be compressed with a unique Huffman coding table for that image. The image file is also decimated to create a decimated-image file which can later be interpolated back to produce a reconstructed image file using a bilinear interpolation kernel.--(235 words)

  17. Magnetic charge crystals imaged in artificial spin ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic charge crystals imaged in artificial spin ice Magnetic charge crystals imaged in artificial spin ice Potential data storage and computational advances could follow August 27, 2013 Potential data storage and computational advances could follow A 3-D depiction of the honeycomb artificial spin ice topography after the annealing and cooling protocols. The light and dark colors represent the north and south magnetic poles of the islands. Image by Ian Gilbert, U. of I. Department of Physics

  18. Magnetic resonance imaging of self-assembled biomaterial scaffolds

    DOE Patents [OSTI]

    Bull, Steve R; Meade, Thomas J; Stupp, Samuel I

    2014-09-16

    Compositions and/or mixtures comprising peptide amphiphile compounds comprising one or more contrast agents, as can be used in a range of magnetic resonance imaging applications.

  19. Development of techniques in magnetic resonance and structural studies of the prion protein

    SciTech Connect (OSTI)

    Bitter, Hans-Marcus L.

    2000-07-01

    Magnetic resonance is the most powerful analytical tool used by chemists today. Its applications range from determining structures of large biomolecules to imaging of human brains. Nevertheless, magnetic resonance remains a relatively young field, in which many techniques are currently being developed that have broad applications. In this dissertation, two new techniques are presented, one that enables the determination of torsion angles in solid-state peptides and proteins, and another that involves imaging of heterogenous materials at ultra-low magnetic fields. In addition, structural studies of the prion protein via solid-state NMR are described. More specifically, work is presented in which the dependence of chemical shifts on local molecular structure is used to predict chemical shift tensors in solid-state peptides with theoretical ab initio surfaces. These predictions are then used to determine the backbone dihedral angles in peptides. This method utilizes the theoretical chemicalshift tensors and experimentally determined chemical-shift anisotropies (CSAs) to predict the backbone and side chain torsion angles in alanine, leucine, and valine residues. Additionally, structural studies of prion protein fragments are described in which conformationally-dependent chemical-shift measurements were made to gain insight into the structural differences between the various conformational states of the prion protein. These studies are of biological and pathological interest since conformational changes in the prion protein are believed to cause prion diseases. Finally, an ultra-low field magnetic resonance imaging technique is described that enables imaging and characterization of heterogeneous and porous media. The notion of imaging gases at ultra-low fields would appear to be very difficult due to the prohibitively low polarization and spin densities as well as the low sensitivities of conventional Faraday coil detectors. However, Chapter 5 describes how gas imaging

  20. X-ray imaging of Nonlinear Resonant Gyrotropic Magnetic Vortex...

    Office of Scientific and Technical Information (OSTI)

    X-ray imaging of Nonlinear Resonant Gyrotropic Magnetic Vortex Core Motion in Circular Permalloy Disks Citation Details In-Document Search Title: X-ray imaging of Nonlinear ...

  1. New Imaging Technique Shows Nanoscale Workings of Rechargeable Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Imaging Technique Shows Nanoscale Workings of Rechargeable Batteries There's a new tool in the push to engineer rechargeable batteries that last longer and charge more quickly. An X-ray microscopy technique recently developed at Advanced Light Source has given scientists the ability to image nanoscale changes inside lithium-ion battery particles as they charge and discharge. ← Previous Next →

  2. Technique for identifying, tracing, or tracking objects in image data

    DOE Patents [OSTI]

    Anderson, Robert J.; Rothganger, Fredrick

    2012-08-28

    A technique for computer vision uses a polygon contour to trace an object. The technique includes rendering a polygon contour superimposed over a first frame of image data. The polygon contour is iteratively refined to more accurately trace the object within the first frame after each iteration. The refinement includes computing image energies along lengths of contour lines of the polygon contour and adjusting positions of the contour lines based at least in part on the image energies.

  3. Magnetic field induced differential neutron phase contrast imaging

    SciTech Connect (OSTI)

    Strobl, M.; Treimer, W.; Walter, P.; Keil, S.; Manke, I.

    2007-12-17

    Besides the attenuation of a neutron beam penetrating an object, induced phase changes have been utilized to provide contrast in neutron and x-ray imaging. In analogy to differential phase contrast imaging of bulk samples, the refraction of neutrons by magnetic fields yields image contrast. Here, it will be reported how double crystal setups can provide quantitative tomographic images of magnetic fields. The use of magnetic air prisms adequate to split the neutron spin states enables a distinction of field induced phase shifts and these introduced by interaction with matter.

  4. Development of neutron tomography and phase contrast imaging technique

    SciTech Connect (OSTI)

    Kashyap, Y. S.; Agrawal, Ashish; Sarkar, P. S.; Shukla, Mayank; Sinha, Amar

    2013-02-05

    This paper presents design and development of a state of art neutron imaging technique at CIRUS reactor with special reference for techniques adopted for tomography and phase contrast imaging applications. Different components of the beamline such as collimator, shielding, sample manipulator, digital imaging system were designed keeping in mind the requirements of data acquisition time and resolution. The collimator was designed in such a way that conventional and phase contrast imaging can be done using same collimator housing. We have done characterization of fuel pins, study of hydride blisters in pressure tubes hydrogen based cells, two phase flow visualization, and online study of locomotive parts etc. using neutron tomography and radiography technique. We have also done some studies using neutron phase contrast imaging technique on this beamline.

  5. Technique to quantitatively measure magnetic properties of thin structures at <10 NM spatial resolution

    DOE Patents [OSTI]

    Bajt, Sasa

    2003-07-08

    A highly sensitive and high resolution magnetic microscope images magnetic properties quantitatively. Imaging is done with a modified transmission electron microscope that allows imaging of the sample in a zero magnetic field. Two images from closely spaced planes, one in focus and one slightly out of focus, are sufficient to calculate the absolute values of the phase change imparted to the electrons, and hence obtain the magnetization vector field distribution.

  6. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    material like iron is itself a tiny magnet represented by a magnetic moment. If the atomic moments are pointing in random directions, they cancel each other out. So, to bring...

  7. New imaging technique provides improved insight into controlling the plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in fusion experiments | Princeton Plasma Physics Lab New imaging technique provides improved insight into controlling the plasma in fusion experiments By John Greenwald December 9, 2013 Tweet Widget Google Plus One Share on Facebook Graphic representation of 2D images of fluctuating electron temperatures in a cross-section of a confined fusion plasma. Graphic representation of 2D images of fluctuating electron temperatures in a cross-section of a confined fusion plasma. A key issue for the

  8. New imaging technique provides improved insight into controlling the plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in fusion experiments | Princeton Plasma Physics Lab New imaging technique provides improved insight into controlling the plasma in fusion experiments By John Greenwald December 9, 2013 Tweet Widget Google Plus One Share on Facebook Graphic representation of 2D images of fluctuating electron temperatures in a cross-section of a confined fusion plasma. Graphic representation of 2D images of fluctuating electron temperatures in a cross-section of a confined fusion plasma. A key issue for the

  9. System and method for magnetic current density imaging at ultra low magnetic fields

    DOE Patents [OSTI]

    Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich

    2016-02-09

    Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.

  10. Imaging Techniques for Relativistic Beams: Issues and Limitations

    SciTech Connect (OSTI)

    Lumpkin, Alex H.; Wendt, Manfred; /Fermilab

    2012-02-01

    Characterizations of transverse profiles for low-power beams in the accelerators of the proposed linear colliders (ILC and CLIC) using imaging techniques are being evaluated. Assessments of the issues and limitations for imaging relativistic beams with intercepting scintillator or optical transition radiation screens are presented based on low-energy tests at the Fermilab A0 photoinjector and are planned for the Advanced Superconducting Test Accelerator at Fermilab. We have described several of the issues and limitations one encounters with the imaging of relativistic electron beams. We have reported our initial tests at the A0PI facility and our plans to extend these studies to the GeV scale at the ASTA facility. We also have plans to test these concepts with 23-GeV beams at the FACET facility at SLAC in the coming year. It appears the future remains bright for imaging techniques in ILC-relevant parameter space.

  11. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Wednesday, 25 November 2009 00:00 Magnetic...

  12. Achieving molecular selectivity in imaging using multiphoton Raman spectroscopy techniques

    SciTech Connect (OSTI)

    Holtom, Gary R. ); Thrall, Brian D. ); Chin, Beek Yoke ); Wiley, H Steven ); Colson, Steven D. )

    2000-12-01

    In the case of most imaging methods, contrast is generated either by physical properties of the sample (Differential Image Contrast, Phase Contrast), or by fluorescent labels that are localized to a particular protein or organelle. Standard Raman and infrared methods for obtaining images are based upon the intrinsic vibrational properties of molecules, and thus obviate the need for attached flurophores. Unfortunately, they have significant limitations for live-cell imaging. However, an active Raman method, called Coherent Anti-Stokes Raman Scattering (CARS), is well suited for microscopy, and provides a new means for imaging specific molecules. Vibrational imaging techniques, such as CARS, avoid problems associated with photobleaching and photo-induced toxicity often associated with the use of fluorescent labels with live cells. Because the laser configuration needed to implement CARS technology is similar to that used in other multiphoton microscopy methods, such as two -photon fluorescence and harmonic generation, it is possible to combine imaging modalities, thus generating simultaneous CARS and fluorescence images. A particularly powerful aspect of CARS microscopy is its ability to selectively image deuterated compounds, thus allowing the visualization of molecules, such as lipids, that are chemically indistinguishable from the native species.

  13. Method for nuclear magnetic resonance imaging

    DOE Patents [OSTI]

    Kehayias, J.J.; Joel, D.D.; Adams, W.H.; Stein, H.L.

    1988-05-26

    A method for in vivo NMR imaging of the blood vessels and organs of a patient characterized by using a dark dye-like imaging substance consisting essentially of a stable, high-purity concentration of D/sub 2/O in a solution with water.

  14. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in...

  15. X-ray imaging of vortex cores in confined magnetic structures

    SciTech Connect (OSTI)

    Fischer, P.; Im, M.-Y.; Kasai, S.; Yamada, K.; Ono, T.; Thiaville, A.

    2011-02-11

    Cores of magnetic vortices in micron-sized NiFe disk structures, with thicknesses between 150 and 50 nm, were imaged and analysed by high resolution magnetic soft X-ray microscopy. A decrease of the vortex core radius was observed, from #24; ~38 to 18 nm with decreasing disk thickness. By comparing with full 3D micromagnetic simulations showing the well-known barrel structure, we obtained excellent agreement taking into account instrumental broadening and a small perpendicular anisotropy. The proven magnetic spatial resolution of better than 25 nm was sufficient to identify a negative dip close to the vortex core, originating from stray fields of the core. Magnetic vortex structures can serve as test objects for evaluating sensitivity and spatial resolution of advanced magnetic microscopy techniques.

  16. Novel nuclear magnetic resonance techniques for studying biological molecules

    SciTech Connect (OSTI)

    Laws, David D.

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone ({phi}/{psi}) dihedral angles by comparing experimentally determined {sup 13}C{sub a}, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of {alpha}-helical and {beta}-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly {beta}-sheet.

  17. Ambient Mass Spectrometry Imaging Using Direct Liquid Extraction Techniques

    SciTech Connect (OSTI)

    Laskin, Julia; Lanekoff, Ingela

    2015-11-13

    Mass spectrometry imaging (MSI) is a powerful analytical technique that enables label-free spatial localization and identification of molecules in complex samples.1-4 MSI applications range from forensics5 to clinical research6 and from understanding microbial communication7-8 to imaging biomolecules in tissues.1, 9-10 Recently, MSI protocols have been reviewed.11 Ambient ionization techniques enable direct analysis of complex samples under atmospheric pressure without special sample pretreatment.3, 12-16 In fact, in ambient ionization mass spectrometry, sample processing (e.g., extraction, dilution, preconcentration, or desorption) occurs during the analysis.17 This substantially speeds up analysis and eliminates any possible effects of sample preparation on the localization of molecules in the sample.3, 8, 12-14, 18-20 Venter and co-workers have classified ambient ionization techniques into three major categories based on the sample processing steps involved: 1) liquid extraction techniques, in which analyte molecules are removed from the sample and extracted into a solvent prior to ionization; 2) desorption techniques capable of generating free ions directly from substrates; and 3) desorption techniques that produce larger particles subsequently captured by an electrospray plume and ionized.17 This review focuses on localized analysis and ambient imaging of complex samples using a subset of ambient ionization methods broadly defined as “liquid extraction techniques” based on the classification introduced by Venter and co-workers.17 Specifically, we include techniques where analyte molecules are desorbed from solid or liquid samples using charged droplet bombardment, liquid extraction, physisorption, chemisorption, mechanical force, laser ablation, or laser capture microdissection. Analyte extraction is followed by soft ionization that generates ions corresponding to intact species. Some of the key advantages of liquid extraction techniques include the ease

  18. Nuclear magnetic resonance imaging with hyper-polarized noble gases

    SciTech Connect (OSTI)

    Schmidt, D.M.; George, J.S.; Penttila, S.I.; Caprihan, A.

    1997-10-01

    This is the final report of a six-month, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The nuclei of noble gases can be hyper polarized through a laser-driven spin exchange to a degree many orders of magnitude larger than that attainable by thermal polarization without requiring a strong magnetic field. The increased polarization from the laser pumping enables a good nuclear magnetic resonance (NMR) signal from a gas. The main goal of this project was to demonstrate diffusion-weighted imaging of such hyper-polarized noble gas with magnetic resonance imaging (MRI). Possible applications include characterizing porosity of materials and dynamically imaging pressure distributions in biological or acoustical systems.

  19. Frontiers in imaging magnetism with polarized x-rays

    SciTech Connect (OSTI)

    Fischer, Peter

    2015-01-08

    Although magnetic imaging with polarized x-rays is a rather young scientific discipline, the various types of established x-ray microscopes have already taken an important role in state-of-the-art characterization of the properties and behavior of spin textures in advanced materials. The opportunities ahead will be to obtain in a unique way indispensable multidimensional information of the structure, dynamics and composition of scientifically interesting and technologically relevant magnetic materials.

  20. 3D and 4D magnetic susceptibility tomography based on complex MR images

    DOE Patents [OSTI]

    Chen, Zikuan; Calhoun, Vince D

    2014-11-11

    Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

  1. Spectrally Resolved Magnetic Resonance Imaging of the XenonBiosensor

    SciTech Connect (OSTI)

    Hilty, Christian; Lowery, Thomas; Wemmer, David; Pines, Alexander

    2005-07-15

    Due to its ability to non-invasively record images, as well as elucidate molecular structure, nuclear magnetic resonance is the method of choice for applications as widespread as chemical analysis and medical diagnostics. Its detection threshold is, however, limited by the small polarization of nuclear spins in even the highest available magnetic fields. This limitation can, under certain circumstances, be alleviated by using hyper-polarized substances. Xenon biosensors make use of the sensitivity gain of hyperpolarized xenon to provide magnetic resonance detection capability for a specific low-concentration target. They consist of a cryptophane cage, which binds one xenon atom, and which has been connected via a linker to a targeting moiety such as a ligand or antibody. Recent work has shown the possibility of using the xenon biosensor to detect small amounts of a substance in a heterogeneous environment by NMR. Here, we demonstrate that magnetic resonance (MR) provides the capability to obtain spectrally and spatially resolved images of the distribution of immobilized biosensor, opening the possibility for using the xenon biosensor for targeted imaging.

  2. Application of Image And X-Ray Microtomography Technique To Quantify...

    Office of Scientific and Technical Information (OSTI)

    Application of Image And X-Ray Microtomography Technique To Quantify Filler Distribution ... Citation Details In-Document Search Title: Application of Image And X-Ray Microtomography ...

  3. Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis

    SciTech Connect (OSTI)

    Erskine, D J; Smith, R F; Bolme, C; Celliers, P; Collins, G

    2011-03-23

    We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISAR optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.

  4. Magnetic resonance imaging of living systems by remote detection

    DOE Patents [OSTI]

    Wemmer, David; Pines, Alexander; Bouchard, Louis; Xu, Shoujun; Harel, Elad; Budker, Dmitry; Lowery, Thomas; Ledbetter, Micah

    2013-10-29

    A novel approach to magnetic resonance imaging is disclosed. Blood flowing through a living system is prepolarized, and then encoded. The polarization can be achieved using permanent or superconducting magnets. The polarization may be carried out upstream of the region to be encoded or at the place of encoding. In the case of an MRI of a brain, polarization of flowing blood can be effected by placing a magnet over a section of the body such as the heart upstream of the head. Alternatively, polarization and encoding can be effected at the same location. Detection occurs at a remote location, using a separate detection device such as an optical atomic magnetometer, or an inductive Faraday coil. The detector may be placed on the surface of the skin next to a blood vessel such as a jugular vein carrying blood away from the encoded region.

  5. Faulted reservoirs characterization by an image processing technique

    SciTech Connect (OSTI)

    Martinez-Angeles, R.

    1994-12-31

    This paper has developed an image processing method for obtaining the discontinuous areal distribution of oil parameters (formation top, porosity, water saturation,...) of faulted heterogeneous oil reservoirs. For its application it requires the previous knowledge of a set of discrete values z(k,l) from well-logs and seismic profiles. Faulted structures were discretized into continuous structures or blocks bounded by faults. The theoretical fundamental assumption of the proposed method establishes that the natural distributions can be considered as the superposition of several elementary brownian distributions, represented by discrete values z(k,l), whose physical model is the diffusion differential equation and its solution associated. This is a technique that allows the representation of a composed brownian distribution as a linear combination of all elementary brownian functions. For illustrating the operational aspect of brownian analysis, two examples are studied. The results are presented as a digital images by means of an image processing software. This method can be applied in mapping, three dimensions interpolation and reserves calculation of faulted reservoirs.

  6. Magnetic nanoparticle imaging using multiple electron paramagnetic resonance activation sequences

    SciTech Connect (OSTI)

    Coene, A. Dupr, L.; Crevecoeur, G.

    2015-05-07

    Magnetic nanoparticles play an important role in several biomedical applications such as hyperthermia, drug targeting, and disease detection. To realize an effective working of these applications, the spatial distribution of the particles needs to be accurately known, in a non-invasive way. Electron Paramagnetic Resonance (EPR) is a promising and sensitive measurement technique for recovering these distributions. In the conventional approach, EPR is applied with a homogeneous magnetic field. In this paper, we employ different heterogeneous magnetic fields that allow to stabilize the solution of the associated inverse problem and to obtain localized spatial information. A comparison is made between the two approaches and our novel adaptation shows an average increase in reconstruction quality by 5% and is 12 times more robust towards noise. Furthermore, our approach allows to speed up the EPR measurements while still obtaining reconstructions with an improved accuracy and noise robustness compared to homogeneous EPR.

  7. Two-dimensional wave-number spectral analysis techniques for phase contrast imaging turbulence imaging data on large helical device

    SciTech Connect (OSTI)

    Michael, C. A.; Tanaka, K.; Kawahata, K.; Vyacheslavov, L.; Sanin, A.

    2015-09-15

    An analysis method for unfolding the spatially resolved wave-number spectrum and phase velocity from the 2D CO{sub 2} laser phase contrast imaging system on the large helical device is described. This is based on the magnetic shear technique which identifies propagation direction from 2D spatial Fourier analysis of images detected by a 6 × 8 detector array. Because the strongest modes have wave-number at the lower end of the instrumental k range, high resolution spectral techniques are necessary to clearly resolve the propagation direction and hence the spatial distribution of fluctuations along the probing laser beam. Multiple-spatial point cross-correlation averaging is applied before calculating the spatial power spectrum. Different methods are compared, and it is found that the maximum entropy method (MEM) gives best results. The possible generation of artifacts from the over-narrowing of spectra are investigated and found not to be a significant problem. The spatial resolution Δρ (normalized radius) around the peak wave-number, for conventional Fourier analysis, is ∼0.5, making physical interpretation difficult, while for MEM, Δρ ∼ 0.1.

  8. USE OF ADVANCED DATA PROCESSING TECHNIQUES IN THE IMAGING OF...

    Open Energy Info (EERE)

    Optim's proprietary nonlinear velocity optimization technique and pre-stack Kirchhoff migration. The nonlinear optimization technique is used to obtain high resolution velocity...

  9. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Wednesday, 25 November 2009 00:00 Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core

  10. Method for high resolution magnetic resonance analysis using magic angle technique

    DOE Patents [OSTI]

    Wind, Robert A.; Hu, Jian Zhi

    2004-12-28

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  11. Method for high resolution magnetic resonance analysis using magic angle technique

    DOE Patents [OSTI]

    Wind, Robert A.; Hu, Jian Zhi

    2003-12-30

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  12. THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION

    SciTech Connect (OSTI)

    Shassere, Benjamin; West, David L; Abdelaziz, Omar; Evans III, Boyd Mccutchen

    2012-01-01

    An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

  13. New alnico magnets fabricated from pre-alloyed gas-atomized powder through diverse consolidation techniques

    SciTech Connect (OSTI)

    Tang, W.; Zhou, L.; Kassen, A. G.; Palasyuk, A.; White, E. M.; Dennis, K. W.; Kramer, M. J.; McCallum, R. W.; Anderson, I. E.

    2015-05-25

    Fine Alnico 8 spherical powder produced by gas atomization was consolidated through hot pressing (HP), hot isostatic pressing (HIP), and compression molding and subsequent sintering (CMS) techniques. The effects of different fabrication techniques and processing parameters on microstructure and magnetic properties were analyzed and compared. The HP, HIP, and CMS magnets exhibited different features in microstructures and magnetic properties. Magnetically annealed at 840°C for 10 min and subsequently tempered at 650°C for 5h and 580°C for 15h, the HIP sample achieved the best coercivity (Hcj =1845 Oe) due to spinodally decomposed (SD) phases with uniform and well-faceted mosaic morphology. As a result, the CMS sample had a lower Hcj than HIP and HP samples, but a higher remanence and thus the best energy product (6.5 MGOe) due to preferential grain alignment induced by abnormal grain growth.

  14. New alnico magnets fabricated from pre-alloyed gas-atomized powder through diverse consolidation techniques

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tang, W.; Zhou, L.; Kassen, A. G.; Palasyuk, A.; White, E. M.; Dennis, K. W.; Kramer, M. J.; McCallum, R. W.; Anderson, I. E.

    2015-05-25

    Fine Alnico 8 spherical powder produced by gas atomization was consolidated through hot pressing (HP), hot isostatic pressing (HIP), and compression molding and subsequent sintering (CMS) techniques. The effects of different fabrication techniques and processing parameters on microstructure and magnetic properties were analyzed and compared. The HP, HIP, and CMS magnets exhibited different features in microstructures and magnetic properties. Magnetically annealed at 840°C for 10 min and subsequently tempered at 650°C for 5h and 580°C for 15h, the HIP sample achieved the best coercivity (Hcj =1845 Oe) due to spinodally decomposed (SD) phases with uniform and well-faceted mosaic morphology. Asmore » a result, the CMS sample had a lower Hcj than HIP and HP samples, but a higher remanence and thus the best energy product (6.5 MGOe) due to preferential grain alignment induced by abnormal grain growth.« less

  15. Thermal Imaging Technique for Measuring Mixing of Fluids - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fluid flow. Current methods rely on different physical principles such as: pressure measurement, particle tracking using images, heat removal from a wire and Doppler shift...

  16. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  17. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  18. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  19. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  20. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  1. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  2. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in the film plane and curl around in a closed loop. At the very center of the vortex, a small, stable core exists where the magnetization points either up or down out of the plane. Three years ago, the discovery of an easy core reversal mechanism at the ALS not only made the possibility of using such systems as magnetic

  3. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOE Patents [OSTI]

    Campbell, Ann. N.; Anderson, Richard E.; Cole, Jr., Edward I.

    1995-01-01

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

  4. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOE Patents [OSTI]

    Campbell, A.N.; Anderson, R.E.; Cole, E.I. Jr.

    1995-11-07

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits are disclosed. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits. 17 figs.

  5. Imaging exotic properties of nanoscale magnetic lattices | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy's Office of Basic Energy Sciences, we have shown the signature of magnetic induction associated with a "magnetic monopole" defect for the first time. Some of the most...

  6. Linear beam raster magnet driver based on H-bridge technique

    DOE Patents [OSTI]

    Sinkine, Nikolai I.; Yan, Chen; Apeldoorn, Cornelis; Dail, Jeffrey Glenn; Wojcik, Randolph Frank; Gunning, William

    2006-06-06

    An improved raster magnet driver for a linear particle beam is based on an H-bridge technique. Four branches of power HEXFETs form a two-by-two switch. Switching the HEXFETs in a predetermined order and at the right frequency produces a triangular current waveform. An H-bridge controller controls switching sequence and timing. The magnetic field of the coil follows the shape of the waveform and thus steers the beam using a triangular rather than a sinusoidal waveform. The system produces a raster pattern having a highly uniform raster density distribution, eliminates target heating from non-uniform raster density distributions, and produces higher levels of beam current.

  7. Dynamical cancellation of pulse-induced transients in a metallic shielded room for ultra-low-field magnetic resonance imaging

    SciTech Connect (OSTI)

    Zevenhoven, Koos C. J. Ilmoniemi, Risto J.; Dong, Hui; Clarke, John

    2015-01-19

    Pulse-induced transients such as eddy currents can cause problems in measurement techniques where a signal is acquired after an applied preparatory pulse. In ultra-low-field magnetic resonance imaging, performed in magnetic fields typically of the order of 100 μT, the signal-to-noise ratio is enhanced in part by prepolarizing the proton spins with a pulse of much larger magnetic field and in part by detecting the signal with a Superconducting QUantum Interference Device (SQUID). The pulse turn-off, however, can induce large eddy currents in the shielded room, producing an inhomogeneous magnetic-field transient that both seriously distorts the spin dynamics and exceeds the range of the SQUID readout. It is essential to reduce this transient substantially before image acquisition. We introduce dynamical cancellation (DynaCan), a technique in which a precisely designed current waveform is applied to a separate coil during the later part and turn off of the polarizing pulse. This waveform, which bears no resemblance to the polarizing pulse, is designed to drive the eddy currents to zero at the precise moment that the polarizing field becomes zero. We present the theory used to optimize the waveform using a detailed computational model with corrections from measured magnetic-field transients. SQUID-based measurements with DynaCan demonstrate a cancellation of 99%. Dynamical cancellation has the great advantage that, for a given system, the cancellation accuracy can be optimized in software. This technique can be applied to both metal and high-permeability alloy shielded rooms, and even to transients other than eddy currents.

  8. Magnetic imaging with full-field soft X-ray microscopies (Journal...

    Office of Scientific and Technical Information (OSTI)

    X-ray microscopies Citation Details In-Document Search Title: Magnetic imaging with full-field soft X-ray microscopies You are accessing a document from the Department of ...

  9. A simulation technique for 3D MR-guided acoustic radiation force imaging

    SciTech Connect (OSTI)

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  10. X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print Wednesday, 26 September 2007 00:00 The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray

  11. NEAR-IR IMAGING POLARIMETRY TOWARD A BRIGHT-RIMMED CLOUD: MAGNETIC FIELD IN SFO 74

    SciTech Connect (OSTI)

    Kusune, Takayoshi; Sugitani, Koji [Graduate School of Natural Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-8501 (Japan); Miao, Jingqi [Centre for Astrophysics and Planetary Science, School of Physical Sciences, University of Kent, Canterbury, Kent CT2 7NR (United Kingdom); Tamura, Motohide; Kwon, Jungmi [Department of Astronomy, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sato, Yaeko [National Astronomical Observatory, 2-21-1 Osawa, Mikata, Tokyo 181-8588 (Japan); Watanabe, Makoto [Department of Cosmosciences, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Nishiyama, Shogo [Faculty of Education, Miyagi University of Education, Sendai 980-0845 (Japan); Nagayama, Takahiro [Department of Physics, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Sato, Shuji [Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan)

    2015-01-01

    We have made near-infrared (JHK {sub s}) imaging polarimetry of a bright-rimmed cloud (SFO 74). The polarization vector maps clearly show that the magnetic field in the layer just behind the bright rim is running along the rim, quite different from its ambient magnetic field. The direction of the magnetic field just behind the tip rim is almost perpendicular to that of the incident UV radiation, and the magnetic field configuration appears to be symmetric as a whole with respect to the cloud symmetry axis. We estimated the column and number densities in the two regions (just inside and far inside the tip rim) and then derived the magnetic field strength, applying the Chandrasekhar-Fermi method. The estimated magnetic field strength just inside the tip rim, ?90 ?G, is stronger than that far inside, ?30 ?G. This suggests that the magnetic field strength just inside the tip rim is enhanced by the UV-radiation-induced shock. The shock increases the density within the top layer around the tip and thus increases the strength of the magnetic field. The magnetic pressure seems to be comparable to the turbulent one just inside the tip rim, implying a significant contribution of the magnetic field to the total internal pressure. The mass-to-flux ratio was estimated to be close to the critical value just inside the tip rim. We speculate that the flat-topped bright rim of SFO 74 could be formed by the magnetic field effect.

  12. SU-E-I-74: Image-Matching Technique of Computed Tomography Images...

    Office of Scientific and Technical Information (OSTI)

    between the two-dimensional (2D) or threedimensional (3D) images of the same and different phantoms were evaluated in terms of the normalized cross-correlation value (NCC). ...

  13. Technique for Targeting Arteriovenous Malformations Using Frameless Image-Guided Robotic Radiosurgery

    SciTech Connect (OSTI)

    Hristov, Dimitre; Liu, Lina; Adler, John R.; Gibbs, Iris C.; Moore, Teri; Sarmiento, Marily; Chang, Steve D.; Dodd, Robert; Marks, Michael; Do, Huy M.

    2011-03-15

    Purpose: To integrate three-dimensional (3D) digital rotation angiography (DRA) and two-dimensional (2D) digital subtraction angiography (DSA) imaging into a targeting methodology enabling comprehensive image-guided robotic radiosurgery of arteriovenous malformations (AVMs). Methods and Materials: DRA geometric integrity was evaluated by imaging a phantom with embedded markers. Dedicated DSA acquisition modes with preset C-arm positions were configured. The geometric reproducibility of the presets was determined, and its impact on localization accuracy was evaluated. An imaging protocol composed of anterior-posterior and lateral DSA series in combination with a DRA run without couch displacement between acquisitions was introduced. Software was developed for registration of DSA and DRA (2D-3D) images to correct for: (a) small misalignments of the C-arm with respect to the estimated geometry of the set positions and (b) potential patient motion between image series. Within the software, correlated navigation of registered DRA and DSA images was incorporated to localize AVMs within a 3D image coordinate space. Subsequent treatment planning and delivery followed a standard image-guided robotic radiosurgery process. Results: DRA spatial distortions were typically smaller than 0.3 mm throughout a 145-mm x 145-mm x 145-mm volume. With 2D-3D image registration, localization uncertainties resulting from the achievable reproducibility of the C-arm set positions could be reduced to about 0.2 mm. Overall system-related localization uncertainty within the DRA coordinate space was 0.4 mm. Image-guided frameless robotic radiosurgical treatments with this technique were initiated. Conclusions: The integration of DRA and DSA into the process of nidus localization increases the confidence with which radiosurgical ablation of AVMs can be performed when using only an image-guided technique. Such an approach can increase patient comfort, decrease time pressure on clinical and

  14. Sub-millimeter resolution electrical conductivity images of brain tissues using magnetic resonance-based electrical impedance tomography

    SciTech Connect (OSTI)

    Oh, Tong In; Jeong, Woo Chul; Sajib, Saurav Z. K.; Kim, Hyung Joong Woo, Eung Je; Kim, Hyun Bum; Kyung, Eun Jung; Kwon, Oh In

    2015-07-13

    Recent magnetic resonance (MR)-based electrical impedance tomography (MREIT) of in vivo animal and human subjects enabled the imaging of electromagnetic properties, such as conductivity and permittivity, on tissue structure and function with a few millimeter pixel size. At those resolutions, the conductivity contrast might be sufficient to distinguish different tissue type for certain applications. Since the precise measurement of electrical conductivity under the tissue levels can provide alternative information in a wide range of biomedical applications, it is necessary to develop high-resolution MREIT technique to enhance its availability. In this study, we provide the experimental evaluation of sub-millimeter resolution conductivity imaging method using a 3T MR scanner combined with a multi-echo MR pulse sequence, multi-channel RF coil, and phase optimization method. From the phantom and animal imaging results, sub-millimeter resolution exhibited similar signal-to-noise ratio of MR magnitude and noise levels in magnetic flux density comparing to the existing millimeter resolution. The reconstructed conductivity images at sub-millimeter resolution can distinguish different brain tissues with a pixel size as small as 350 μm.

  15. Magnetic resonance visualization of conductive structures by sequence-triggered direct currents and spin-echo phase imaging

    SciTech Connect (OSTI)

    Eibofner, Frank; Wojtczyk, Hanne; Graf, Hansjrg E-mail: drGraf@t-online.de; Clasen, Stephan

    2014-06-15

    Purpose: Instrument visualization in interventional magnetic resonance imaging (MRI) is commonly performed via susceptibility artifacts. Unfortunately, this approach suffers from limited conspicuity in inhomogeneous tissue and disturbed spatial encoding. Also, susceptibility artifacts are controllable only by sequence parameters. This work presents the basics of a new visualization method overcoming such problems by applying sequence-triggered direct current (DC) pulses in spin-echo (SE) imaging. SE phase images allow for background free current path localization. Methods: Application of a sequence-triggered DC pulse in SE imaging, e.g., during a time period between radiofrequency excitation and refocusing, results in transient field inhomogeneities. Dependent on the additional z-magnetic field from the DC, a phase offset results despite the refocusing pulse. False spatial encoding is avoided by DC application during periods when read-out or slice-encoding gradients are inactive. A water phantom containing a brass conductor (water equivalent susceptibility) and a titanium needle (serving as susceptibility source) was used to demonstrate the feasibility. Artifact dependence on current strength and orientation was examined. Results: Without DC, the brass conductor was only visible due to its water displacement. The titanium needle showed typical susceptibility artifacts. Applying triggered DC pulses, the phase offset of spins near the conductor appeared. Because SE phase images are homogenous also in regions of persistent field inhomogeneities, the position of the conductor could be determined with high reliability. Artifact characteristic could be easily controlled by amperage leaving sequence parameters unchanged. For an angle of 30 between current and static field visualization was still possible. Conclusions: SE phase images display the position of a conductor carrying pulsed DC free from artifacts caused by persistent field inhomogeneities. Magnitude and phase

  16. TEST OF THE HEMISPHERIC RULE OF MAGNETIC HELICITY IN THE SUN USING THE HELIOSEISMIC AND MAGNETIC IMAGER (HMI) DATA

    SciTech Connect (OSTI)

    Liu, Y.; Hoeksema, J. T.; Sun, X.

    2014-03-01

    Magnetic twist in solar active regions (ARs) has been found to have a hemispheric preference in sign (hemisphere rule): negative in the northern hemisphere and positive in the southern. The preference reported in previous studies ranges greatly, from ? 58% to 82%. In this study, we examine this hemispheric preference using vector magnetic field data taken by Helioseismic and Magnetic Imager and find that 75% 7% of 151ARs studied obey the hemisphere rule, well within the preference range in previous studies. If the sample is divided into two groupsARs having magnetic twist and writhe of the same sign and having opposite signsthe strength of the hemispheric preference differs substantially: 64% 11% for the former group and 87% 8% for the latter. This difference becomes even more significant in a sub-sample of 82ARs having a simple bipole magnetic configuration: 56% 16% for theARs having the same signs of twist and writhe, and 93% with lower and upper confidence bounds of 80% and 98% for theARs having the opposite signs. The error reported here is a 95% confidence interval. This may suggest that, prior to emergence of magnetic tubes, either the sign of twist does not have a hemispheric preference or the twist is relatively weak.

  17. Imaging the magnetic nanodomains in Nd2Fe14B

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Lunan; Taufour, Valentin; Lamichhane, T. N.; Schrunk, Benjamin; Bud'ko, Sergei L.; Canfield, P. C.; Kaminski, Adam

    2016-03-08

    Here, we study magnetic domains in Nd2Fe14B single crystals using high resolution magnetic force microscopy (MFM). Previous MFM studies and small angle neutron scattering experiments suggested the presence of nanoscale domains in addition to optically detected micrometer-scale ones. We find, in addition to the elongated, wavy nanodomains reported by a previous MFM study, that the micrometer-sized, star-shaped fractal pattern is constructed of an elongated network of nanodomains ~20 nm in width, with resolution-limited domain walls thinner than 2 nm. While the microscopic domains exhibit significant resilience to an external magnetic field, some of the nanodomains are sensitive to the magneticmore » field of the MFM tip.« less

  18. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques

    SciTech Connect (OSTI)

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.; Mehta, Hardeep S.; Ewing, R. James; Ewing, Thomas; Mueller, Karl T.; Beyenal, Haluk

    2014-03-01

    In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.

  19. Characterization of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy system

    SciTech Connect (OSTI)

    Hu, Yanle; Rankine, Leith; Green, Olga L.; Kashani, Rojano; Li, H. Harold; Li, Hua; Rodriguez, Vivian; Santanam, Lakshmi; Wooten, H. Omar; Mutic, Sasa; Nana, Roger; Shvartsman, Shmaryu; Victoria, James; Dempsey, James F.

    2015-10-15

    Purpose: To characterize the performance of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy (MR-IGRT) system. Methods: The imaging performance characterization included four components: ACR (the American College of Radiology) phantom test, spatial integrity, coil signal to noise ratio (SNR) and uniformity, and magnetic field homogeneity. The ACR phantom test was performed in accordance with the ACR phantom test guidance. The spatial integrity test was evaluated using a 40.8 × 40.8 × 40.8 cm{sup 3} spatial integrity phantom. MR and computed tomography (CT) images of the phantom were acquired and coregistered. Objects were identified around the surfaces of 20 and 35 cm diameters of spherical volume (DSVs) on both the MR and CT images. Geometric distortion was quantified using deviation in object location between the MR and CT images. The coil SNR test was performed according to the national electrical manufacturers association (NEMA) standards MS-1 and MS-9. The magnetic field homogeneity test was measured using field camera and spectral peak methods. Results: For the ACR tests, the slice position error was less than 0.10 cm, the slice thickness error was less than 0.05 cm, the resolved high-contrast spatial resolution was 0.09 cm, the resolved low-contrast spokes were more than 25, the image intensity uniformity was above 93%, and the percentage ghosting was less than 0.22%. All were within the ACR recommended specifications. The maximum geometric distortions within the 20 and 35 cm DSVs were 0.10 and 0.18 cm for high spatial resolution three-dimensional images and 0.08 and 0.20 cm for high temporal resolution two dimensional cine images based on the distance-to-phantom-center method. The average SNR was 12.0 for the body coil, 42.9 for the combined torso coil, and 44.0 for the combined head and neck coil. Magnetic field homogeneities at gantry angles of 0°, 30°, 60°, 90°, and 120° were 23.55, 20.43, 18.76, 19

  20. Combined Néel and Brown rotational Langevin dynamics in magnetic particle imaging, sensing, and therapy

    SciTech Connect (OSTI)

    Reeves, Daniel B.; Weaver, John B.

    2015-11-30

    Magnetic nanoparticles have been studied intensely because of their possible uses in biomedical applications. Biosensing using the rotational freedom of particles has been used to detect biomarkers for cancer, hyperthermia therapy has been used to treat tumors, and magnetic particle imaging is a promising new imaging modality that can spatially resolve the concentration of nanoparticles. There are two mechanisms by which the magnetization of a nanoparticle can rotate, a fact that poses a challenge for applications that rely on precisely one mechanism. The challenge is exacerbated by the high sensitivity of the dominant mechanism to applied fields. Here, we demonstrate stochastic Langevin equation simulations for the combined rotation in magnetic nanoparticles exposed to oscillating applied fields typical to these applications to both highlight the existing relevant theory and quantify which mechanism should occur in various parameter ranges.

  1. Imaging magnetic domain structure in sub-500 nm thin film elements

    SciTech Connect (OSTI)

    Kirk, K. J.; McVitie, S.; Chapman, J. N.; Wilkinson, C. D. W.

    2001-06-01

    Magnetic imaging in the transmission electron microscope (TEM) has been used to examine submicron elements with the aim of discovering down to what element size complex domain patterns can form. The elements were squares, circles, triangles, and pentagons in the size range 100{endash}500 nm and were made from 36 nm Co films or 8 nm Ni{sub 80}Fe{sub 20} (NiFe) with in-plane magnetization. The magnetic domain structures in these elements were imaged at high resolution using the differential phase contrast imaging mode in a TEM. Nonuniform magnetization structures were seen in the images. Vortices were present at remanence in all shapes of 36-nm-thick Co elements down to 100 nm size and in circular NiFe elements down to 116 nm diameter. Triangular NiFe elements did not have a vortex state at remanence, instead the magnetization curved round within the element but did not achieve complete flux closure. In simulations of square and circular NiFe elements, it was found that defects at the edges of the elements encouraged reversal by a vortex mechanism, whereas for simulated elements with no defects, reversal was by rotation and occurred at much lower fields. {copyright} 2001 American Institute of Physics.

  2. X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be

  3. X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be

  4. X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be

  5. X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be

  6. X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be

  7. X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be

  8. X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be

  9. Use of image processing techniques for heat transfer measurements using thermochromic liquid crystals

    SciTech Connect (OSTI)

    Crabtree, J.A.

    1994-06-01

    A Macintosh-based image processing code has been developed for use in making continuous temperature profile measurements using thermochromic liquid crystals. This software is the result of extensive modifications to the public domain software, NIH Image developed by the National Institutes of Health. These modifications primarily include routines to quantify the TLC color changes as temperature measurements while providing a simple user interface. Using these techniques, one can perform literally thousands of temperature measurements over a small area (307,200 temperature measurements in a 640*480 image), thus making continuous profile measurement possible. This technique was developed in support of the Advanced Neutron Source Reactor (a new nuclear fission research reactor being developed at Oak Ridge National Lab.) for use in experiments designed to study the impact of a flow blockage at the inlet to the reactor core.

  10. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron...

  11. Measurement of nonlinear index by a relay-imaged top-hat Z-scan technique

    SciTech Connect (OSTI)

    Shimada, T.; Kurnit, N.A.; Sheik-Bahae, M.

    1996-04-01

    Measurements of the nonlinear index of a number of optical materials of interest for the National Ignition Facility have been performed at 1,064 nm and 355 nm by a modified version of the ``top-hat`` technique and the results compared with the more standard gaussian-beam Z-scan technique. The top-hat technique has the advantages of higher sensitivity and smaller uncertainties introduced by beam-quality considerations. The authors have made what they feel to be an additional improvement by placing the defining aperture for the top hat at the front focal plane of the lens that focuses the beam into the sample and then reimaging the input aperture with a second lens onto a ccd camera. Reimaging eliminates diffraction fringes and provides a stationary image even for a wedged sample; recording the entire image permits minimization of spurious effects such as varying interference fringes.

  12. Magnetic Resonance Imaging of Therapy-Induced Necrosis Using Gadolinium-Chelated Polyglutamic Acids

    SciTech Connect (OSTI)

    Jackson, Edward F.; Esparza-Coss, Emilio; Wen Xiaoxia; Ng, Chaan S.; Daniel, Sherita L.; Price, Roger E.; Rivera, Belinda; Charnsangavej, Chusilp; Gelovani, Juri G.; Li Chun . E-mail: cli@di.mdacc.tmc.edu

    2007-07-01

    Purpose: Necrosis is the most common morphologic alteration found in tumors and surrounding normal tissues after radiation therapy or chemotherapy. Accurate measurement of necrosis may provide an early indication of treatment efficacy or associated toxicity. The purpose of this report is to evaluate the selective accumulation of polymeric paramagnetic magnetic resonance (MR) contrast agents-gadolinium p-aminobenzyl-diethylenetriaminepentaacetic acid-poly(glutamic acid) (L-PG-DTPA-Gd and D-PG-DTPA-Gd)-in necrotic tissue. Methods and Materials: Two different solid tumor models, human Colo-205 xenograft and syngeneic murine OCA-1 ovarian tumors, were used in this study. Necrotic response was induced by treatment with poly(L-glutamic acid)-paclitaxel conjugate (PG-TXL). T{sub 1}-weighted spin-echo images were obtained immediately and up to 4 days after contrast injection and compared with corresponding histologic specimens. Two low-molecular-weight contrast agents, DTPA-Gd and oligomeric(L-glutamic acid)-DTPA-Gd, were used as nonspecific controls. Results: Initially, there was minimal tumor enhancement after injection of either L-PG-DTPA-Gd or D-PG-DTPA-Gd, but rapid enhancement after injection of low-molecular-weight agents. However, polymeric contrast agents, but not low-molecular-weight contrast agents, caused sustained enhancement in regions of tumor necrosis in both tumors treated with PG-TXL and untreated tumors. These data indicate that high molecular weight, rather than in vivo biodegradation, is necessary for the specific localization of polymeric MR contrast agents to necrotic tissue. Moreover, biotinylated L-PG-DTPA-Gd colocalized with macrophages in the tumor necrotic areas, suggesting that selective accumulation of L- and D-PG-DTPA-Gd in necrotic tissue was mediated through residing macrophages. Conclusions: Our data suggest that MR imaging with PG-DTPA-Gd may be a useful technique for noninvasive characterization of treatment-induced necrosis.

  13. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    DOE Patents [OSTI]

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  14. GPU-accelerated denoising of 3D magnetic resonance images

    SciTech Connect (OSTI)

    Howison, Mark; Wes Bethel, E.

    2014-05-29

    The raw computational power of GPU accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. In practice, applying these filtering operations requires setting multiple parameters. This study was designed to provide better guidance to practitioners for choosing the most appropriate parameters by answering two questions: what parameters yield the best denoising results in practice? And what tuning is necessary to achieve optimal performance on a modern GPU? To answer the first question, we use two different metrics, mean squared error (MSE) and mean structural similarity (MSSIM), to compare denoising quality against a reference image. Surprisingly, the best improvement in structural similarity with the bilateral filter is achieved with a small stencil size that lies within the range of real-time execution on an NVIDIA Tesla M2050 GPU. Moreover, inappropriate choices for parameters, especially scaling parameters, can yield very poor denoising performance. To answer the second question, we perform an autotuning study to empirically determine optimal memory tiling on the GPU. The variation in these results suggests that such tuning is an essential step in achieving real-time performance. These results have important implications for the real-time application of denoising to MR images in clinical settings that require fast turn-around times.

  15. An imaging evaluation of the simultaneously integrated boost breast radiotherapy technique

    SciTech Connect (OSTI)

    Turley, Jessica; Claridge Mackonis, Elizabeth

    2015-09-15

    To evaluate in-field megavoltage (MV) imaging of simultaneously integrated boost (SIB) breast fields to determine its feasibility in treatment verification for the SIB breast radiotherapy technique, and to assess whether the current-imaging protocol and treatment margins are sufficient. For nine patients undergoing SIB breast radiotherapy, in-field MV images of the SIB fields were acquired on days that regular treatment verification imaging was performed. The in-field images were matched offline according to the scar wire on digitally reconstructed radiographs. The offline image correction results were then applied to a margin recipe formula to calculate safe margins that account for random and systematic uncertainties in the position of the boost volume when an offline correction protocol has been applied. After offline assessment of the acquired images, 96% were within the tolerance set in the current department-imaging protocol. Retrospectively performing the maximum position deviations on the Eclipse™ treatment planning system demonstrated that the clinical target volume (CTV) boost received a minimum dose difference of 0.4% and a maximum dose difference of 1.4% less than planned. Furthermore, applying our results to the Van Herk margin formula to ensure that 90% of patients receive 95% of the prescribed dose, the calculated CTV margins were comparable to the current departmental procedure used. Based on the in-field boost images acquired and the feasible application of these results to the margin formula the current CTV-planning target volume margins used are appropriate for the accurate treatment of the SIB boost volume without additional imaging.

  16. Uncooled thin film infrared imaging device with aerogel thermal isolation: Deposition and planarization techniques

    SciTech Connect (OSTI)

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A.; Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States); Sriram, C.S. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Bullington, J.A. [AMMPEC, Inc., Albuquerque, NM (United States)

    1998-04-01

    The authors have successfully integrated a thermally insulating silica aerogel thin film into a new uncooled monolithic thin film infrared (IR) imaging device. Compared to other technologies (bulk ceramic and microbridge), use of an aerogel layer provides superior thermal isolation of the pyroelectric imaging element from the relatively massive heat sinking integrated circuit. This results in significantly higher thermal and temporal resolutions. They have calculated noise equivalent temperature differences of 0.04--0.10 C from a variety of Pb{sub x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PZT) and Pb{sub x}La{sub 1{minus}x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PLZT) pyroelectric imaging elements in monolithic structures. In addition, use of aerogels results in an easier, less expensive fabrication process and a more robust device. Fabrication of these monolithic devices entails sol-gel deposition of the aerogel, sputter deposition of the electrodes, and solution chemistry deposition of the pyroelectric imaging elements. Uniform pyroelectric response is achieved across the device by use of appropriate planarization techniques. These deposition and planarization techniques are described. Characterization of the individual layers and monolithic structure using scanning electron microscopy, atomic force microscopy and Byer-Roundy techniques also is discussed.

  17. Passive and Active Neutron Matrix Correction for Heterogeneous Distributions Utilizing the Neutron Imaging Technique

    SciTech Connect (OSTI)

    Villani, M.F.; Croft, St.; Alvarez, E.; Wilkins, C.G.; Stamp, D.; Fisher, J.; Ambrifi, A.; Simone, G.; Bourva, L.C.

    2008-07-01

    Classical Non-Destructive Assay (NDA) Passive Neutron Coincidence Counting (PNCC) and Differential Die-Away (DDA) active neutron interrogation techniques [1, 2] are well suited for determining the gross matrix correction factors for homogenous mass distributions of Special Nuclear Material (SNM) within an interfering waste drum matrix. These measured passive and active matrix correction factors are crucial in quantifying the SNM mass, associated Total Measurement Uncertainty (TMU), and Minimum Detectable Activity (MDA) within the drum. When heterogeneous SNM mass distributions are encountered, the measured SNM mass, TMU and MDA biases introduced may be 100%, or greater, especially for dense hydrogenous matrices. The standard matrix correction factors can be adjusted if a coarse spatial image of the SNM mass, relative to the matrix, is available. The image can then be analyzed to determine the spatially-adjusted, matrix correction factors case by case. This image analysis approach was accomplished by modifying the standard Passive-Active Neutron (PAN) counter design [3] to accommodate a unique data acquisition architecture that supports a newly developed image acquisition and analysis application called the Neutron Imaging Technique (NIT). The NIT functionality supports both PNCC and DDA acquisition and analysis modes and exploits the symmetry between a stored set of factory acquired NIT images with those from the unknown PAN assay. The NIT result is then an adjustment to the classical correction factor reducing, if not removing, the SNM mass bias and revealing the true TMU and MDA values. In this paper we describe the NIT for the PAN design from the software and algorithmic perspectives and how this technique accommodates waste matrix drums that are difficult, from the classical standpoint, if not impossible, to extract meaningful SNM mass, TMU and MDA results. (authors)

  18. High-resolution dichroic imaging of magnetic flux distributions in superconductors with scanning x-ray microscopy

    SciTech Connect (OSTI)

    Ruoß, S. Stahl, C.; Weigand, M.; Schütz, G.; Albrecht, J.

    2015-01-12

    The penetration of magnetic flux into high-temperature superconductors has been observed using a high-resolution technique based on x-ray magnetic circular dichroism. Superconductors coated with thin soft-magnetic layers are observed in a scanning x-ray microscope under the influence of external magnetic fields. Resulting electric currents in the superconductor create an inhomogeneous magnetic field distribution above the superconductor and lead to a local reorientation of the ferromagnetic layer. Measuring the local magnetization of the ferromagnet by x-ray absorption microscopy with circular-polarized radiation allows the analysis of the magnetic flux distribution in the superconductor with a spatial resolution on the nanoscale.

  19. Method and apparatus for magnetic resonance imaging and spectroscopy using microstrip transmission line coils

    DOE Patents [OSTI]

    Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei

    2006-04-04

    Apparatus and method for MRI imaging using a coil constructed of microstrip transmission line (MTL coil) are disclosed. In one method, a target is positioned to be imaged within the field of a main magnetic field of a magnet resonance imaging (MRI) system, a MTL coil is positioned proximate the target, and a MRI image is obtained using the main magnet and the MTL coil. In another embodiment, the MRI coil is used for spectroscopy. MRI imaging and spectroscopy coils are formed using microstrip transmission line. These MTL coils have the advantageous property of good performance while occupying a relatively small space, thus allowing MTL coils to be used inside restricted areas more easily than some other prior art coils. In addition, the MTL coils are relatively simple to construct of inexpensive components and thus relatively inexpensive compared to other designs. Further, the MTL coils of the present invention can be readily formed in a wide variety of coil configurations, and used in a wide variety of ways. Further, while the MTL coils of the present invention work well at high field strengths and frequencies, they also work at low frequencies and in low field strengths as well.

  20. Measuring water velocity using DIDSON and image cross-correlation techniques

    SciTech Connect (OSTI)

    Deng, Zhiqun; Mueller, Robert P.; Richmond, Marshall C.

    2009-08-01

    To design or operate hydroelectric facilities for maximum power generation and minimum ecological impact, it is critical to understand the biological responses of fish to different flow structures. However, information is still lacking on the relationship between fish behavior and flow structures despite many years of research. Existing field characterization approaches conduct fish behavior studies and flow measurements separately and coupled later using statistical analysis. These types of studies, however, lack a way to determine the specific hydraulic conditions or the specific causes of the biological response. The Dual-Frequency Identification Sonar (DIDSON) has been in wide use for fish behavior studies since 1999. The DIDSON can detect acoustic targets at long ranges in dark or turbid dark water. PIV is a state-of-the-art, non-intrusive, whole-flow-field technique, providing instantaneous velocity vector measurements in a whole plane using image cross-correlating techniques. There has been considerable research in the development of image processing techniques associated with PIV. This existing body of knowledge is applicable and can be used to process the images taken by the DIDSON. This study was conducted in a water flume which is 9 m long, 1.2 m wide, and 1.2 m deep when filled with water. A lab jet flow was setup as the benchmark flow to calibrate DIDSON images. The jet nozzle was 6.35 cm in diameter and core jet velocity was 1.52 m/s. Different particles were used to seed the flow. The flow was characterized based on the results using Laser Doppler Velocimetry (LDV). A DIDSON was mounted about 5 meters away from the jet nozzle. Consecutive DIDSON images with known time delay were divided into small interrogation spots after background was subtracted. Across-correlation was then performed to estimate the velocity vector for each interrogation spot. The estimated average velocity in the core zone was comparable to that obtained using a LDV. This proof

  1. Microsoft Word - NETL-TRS-6-2014_Imaging Techniques Applied to Shales_20141202.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Techniques for Analyzing Shale Pores and Minerals 2 December 2014 Office of Fossil Energy NETL-TRS-6-2014 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

  2. Characterization of beam dynamics in the APS injector rings using time-resolved imaging techniques

    SciTech Connect (OSTI)

    Yang, B.X.; Lumpkin, A.H.; Borland, M.

    1997-06-01

    Images taken with streak cameras and gated intensified cameras with both time (longitudinal) and spatial (transverse) resolution reveal a wealth of information about circular accelerators. The authors illustrate a novel technique by a sequence of dual-sweep streak camera images taken at a high dispersion location in the booster synchrotron, where the horizontal coordinate is strongly correlated with the particle energy and the {open_quotes}top-view{close_quotes} of the beam gives a good approximation to the particle density distribution in the longitudinal phase space. A sequence of top-view images taken fight after injection clearly shows the beam dynamics in the phase space. We report another example from the positron accumulator ring for the characterization of its beam compression bunching with the 12th harmonic rf.

  3. Statistical techniques for detecting the intergalactic magnetic field from large samples of extragalactic Faraday rotation data

    SciTech Connect (OSTI)

    Akahori, Takuya; Gaensler, B. M.; Ryu, Dongsu E-mail: bryan.gaensler@sydney.edu.au

    2014-08-01

    Rotation measure (RM) grids of extragalactic radio sources have been widely used for studying cosmic magnetism. However, their potential for exploring the intergalactic magnetic field (IGMF) in filaments of galaxies is unclear, since other Faraday-rotation media such as the radio source itself, intervening galaxies, and the interstellar medium of our Galaxy are all significant contributors. We study statistical techniques for discriminating the Faraday rotation of filaments from other sources of Faraday rotation in future large-scale surveys of radio polarization. We consider a 30° × 30° field of view toward the south Galactic pole, while varying the number of sources detected in both present and future observations. We select sources located at high redshifts and toward which depolarization and optical absorption systems are not observed so as to reduce the RM contributions from the sources and intervening galaxies. It is found that a high-pass filter can satisfactorily reduce the RM contribution from the Galaxy since the angular scale of this component toward high Galactic latitudes would be much larger than that expected for the IGMF. Present observations do not yet provide a sufficient source density to be able to estimate the RM of filaments. However, from the proposed approach with forthcoming surveys, we predict significant residuals of RM that should be ascribable to filaments. The predicted structure of the IGMF down to scales of 0.°1 should be observable with data from the Square Kilometre Array, if we achieve selections of sources toward which sightlines do not contain intervening galaxies and RM errors are less than a few rad m{sup –2}.

  4. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    SciTech Connect (OSTI)

    Almansouri, Hani; Clayton, Dwight A; Kisner, Roger A; Polsky, Yarom; Bouman, Charlie; Santos-Villalobos, Hector J

    2015-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well s health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  5. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    SciTech Connect (OSTI)

    Almansouri, Hani; Clayton, Dwight A; Kisner, Roger A; Polsky, Yarom; Bouman, Charlie; Santos-Villalobos, Hector J

    2016-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  6. Ultrahigh-spatial-resolution chemical and magnetic imaging by laser-based photoemission electron microscopy

    SciTech Connect (OSTI)

    Taniuchi, Toshiyuki Kotani, Yoshinori; Shin, Shik

    2015-02-15

    We report the first experiments carried out on a new chemical and magnetic imaging system, which combines the high spatial resolution of a photoemission electron microscope (PEEM) with a continuous-wave deep-ultraviolet laser. Threshold photoemission is sensitive to the chemical and magnetic structures of the surface of materials. The spatial resolution of PEEM is limited by space charging when using pulsed photon sources as well as aberrations in the electron optics. We show that the use of a continuous-wave laser enabled us to overcome such a limit by suppressing the space-charge effect, allowing us to obtain a resolution of approximately 2.6 nm. With this system, we demonstrated the imaging of surface reconstruction domains on Si(001) by linear dichroism with normal incidence of the laser beam. We also succeeded in magnetic imaging of thin films with the use of magnetic circular dichroism near the Fermi level. The unique features of the ultraviolet laser will give us fast switching of the incident angles and polarizations of the photon source, which will be useful for the characterization of antiferromagnetic materials as well as ferromagnetic materials.

  7. Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of MRI magnet

    SciTech Connect (OSTI)

    Mariappan, Leo; Hu, Gang; He, Bin

    2014-02-15

    Purpose: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. Methods: In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. Results: The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. Conclusions: The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.

  8. Particle Imaging Velocimetry Technique Development for Laboratory Measurement of Fracture Flow Inside a Pressure Vessel Using Neutron Imaging

    SciTech Connect (OSTI)

    Polsky, Yarom; Bingham, Philip R; Bilheux, Hassina Z; Carmichael, Justin R

    2015-01-01

    This paper will describe recent progress made in developing neutron imaging based particle imaging velocimetry techniques for visualizing and quantifying flow structure through a high pressure flow cell with high temperature capability (up to 350 degrees C). This experimental capability has great potential for improving the understanding of flow through fractured systems in applications such as enhanced geothermal systems (EGS). For example, flow structure measurement can be used to develop and validate single phase flow models used for simulation, experimentally identify critical transition regions and their dependence on fracture features such as surface roughness, and study multiphase fluid behavior within fractured systems. The developed method involves the controlled injection of a high contrast fluid into a water flow stream to produce droplets that can be tracked using neutron radiography. A description of the experimental setup will be provided along with an overview of the algorithms used to automatically track droplets and relate them to the velocity gradient in the flow stream. Experimental results will be reported along with volume of fluids based simulation techniques used to model observed flow.

  9. Quantitative prediction of radio frequency induced local heating derived from measured magnetic field maps in magnetic resonance imaging: A phantom validation at 7 T

    SciTech Connect (OSTI)

    Zhang, Xiaotong; Liu, Jiaen; Van de Moortele, Pierre-Francois; Schmitter, Sebastian; He, Bin

    2014-12-15

    Electrical Properties Tomography (EPT) technique utilizes measurable radio frequency (RF) coil induced magnetic fields (B1 fields) in a Magnetic Resonance Imaging (MRI) system to quantitatively reconstruct the local electrical properties (EP) of biological tissues. Information derived from the same data set, e.g., complex numbers of B1 distribution towards electric field calculation, can be used to estimate, on a subject-specific basis, local Specific Absorption Rate (SAR). SAR plays a significant role in RF pulse design for high-field MRI applications, where maximum local tissue heating remains one of the most constraining limits. The purpose of the present work is to investigate the feasibility of such B1-based local SAR estimation, expanding on previously proposed EPT approaches. To this end, B1 calibration was obtained in a gelatin phantom at 7 T with a multi-channel transmit coil, under a particular multi-channel B1-shim setting (B1-shim I). Using this unique set of B1 calibration, local SAR distribution was subsequently predicted for B1-shim I, as well as for another B1-shim setting (B1-shim II), considering a specific set of parameter for a heating MRI protocol consisting of RF pulses plaid at 1% duty cycle. Local SAR results, which could not be directly measured with MRI, were subsequently converted into temperature change which in turn were validated against temperature changes measured by MRI Thermometry based on the proton chemical shift.

  10. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems

    SciTech Connect (OSTI)

    Lai, J.; Domier, C. W.; Luhmann, N. C.

    2014-03-15

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T{sub e} and n{sub e} fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ?60?000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (5075 GHz), significant improvement of noise temperature from the current 60?000 K to measured 4000 K has been obtained.

  11. Efficient gradient field generation providing a multi-dimensional arbitrary shifted field-free point for magnetic particle imaging

    SciTech Connect (OSTI)

    Kaethner, Christian Ahlborg, Mandy; Buzug, Thorsten M.; Knopp, Tobias; Sattel, Timo F.

    2014-01-28

    Magnetic Particle Imaging (MPI) is a tomographic imaging modality capable to visualize tracers using magnetic fields. A high magnetic gradient strength is mandatory, to achieve a reasonable image quality. Therefore, a power optimization of the coil configuration is essential. In order to realize a multi-dimensional efficient gradient field generator, the following improvements compared to conventionally used Maxwell coil configurations are proposed: (i) curved rectangular coils, (ii) interleaved coils, and (iii) multi-layered coils. Combining these adaptions results in total power reduction of three orders of magnitude, which is an essential step for the feasibility of building full-body human MPI scanners.

  12. Magnetic Resonance Imaging at Princeton, UofV, and UNH | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Magnetic Resonance Imaging at Princeton, UofV, and UNH Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence

  13. Nuclear magnetic resonance contrast agents

    DOE Patents [OSTI]

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  14. Nuclear magnetic resonance contrast agents

    DOE Patents [OSTI]

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  15. Reconstruction of apparent orthotropic conductivity tensor image using magnetic resonance electrical impedance tomography

    SciTech Connect (OSTI)

    Sajib, Saurav Z. K.; Kim, Ji Eun; Jeong, Woo Chul; Kim, Hyung Joong; Woo, Eung Je; Kwon, Oh In

    2015-03-14

    Magnetic resonance electrical impedance tomography visualizes current density and/or conductivity distributions inside an electrically conductive object. Injecting currents into the imaging object along at least two different directions, induced magnetic flux density data can be measured using a magnetic resonance imaging scanner. Without rotating the object inside the scanner, we can measure only one component of the magnetic flux density denoted as B{sub z}. Since the biological tissues such as skeletal muscle and brain white matter show strong anisotropic properties, the reconstruction of anisotropic conductivity tensor is indispensable for the accurate observations in the biological systems. In this paper, we propose a direct method to reconstruct an axial apparent orthotropic conductivity tensor by using multiple B{sub z} data subject to multiple injection currents. To investigate the anisotropic conductivity properties, we first recover the internal current density from the measured B{sub z} data. From the recovered internal current density and the curl-free condition of the electric field, we derive an over-determined matrix system for determining the internal absolute orthotropic conductivity tensor. The over-determined matrix system is designed to use a combination of two loops around each pixel. Numerical simulations and phantom experimental results demonstrate that the proposed algorithm stably determines the orthotropic conductivity tensor.

  16. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    SciTech Connect (OSTI)

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H.; Pagliano, Francesco; Fiore, Andrea; Schuck, P. James; Cabrini, Stefano; Weber-Bargioni, Alexander; Gurioli, Massimo; Intonti, Francesca

    2015-06-05

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. In conclusion, by exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.

  17. Validation of a deformable image registration technique for cone beam CT-based dose verification

    SciTech Connect (OSTI)

    Moteabbed, M. Sharp, G. C.; Wang, Y.; Trofimov, A.; Efstathiou, J. A.; Lu, H.-M.

    2015-01-15

    Purpose: As radiation therapy evolves toward more adaptive techniques, image guidance plays an increasingly important role, not only in patient setup but also in monitoring the delivered dose and adapting the treatment to patient changes. This study aimed to validate a method for evaluation of delivered intensity modulated radiotherapy (IMRT) dose based on multimodal deformable image registration (DIR) for prostate treatments. Methods: A pelvic phantom was scanned with CT and cone-beam computed tomography (CBCT). Both images were digitally deformed using two realistic patient-based deformation fields. The original CT was then registered to the deformed CBCT resulting in a secondary deformed CT. The registration quality was assessed as the ability of the DIR method to recover the artificially induced deformations. The primary and secondary deformed CT images as well as vector fields were compared to evaluate the efficacy of the registration method and it’s suitability to be used for dose calculation. PLASTIMATCH, a free and open source software was used for deformable image registration. A B-spline algorithm with optimized parameters was used to achieve the best registration quality. Geometric image evaluation was performed through voxel-based Hounsfield unit (HU) and vector field comparison. For dosimetric evaluation, IMRT treatment plans were created and optimized on the original CT image and recomputed on the two warped images to be compared. The dose volume histograms were compared for the warped structures that were identical in both warped images. This procedure was repeated for the phantom with full, half full, and empty bladder. Results: The results indicated mean HU differences of up to 120 between registered and ground-truth deformed CT images. However, when the CBCT intensities were calibrated using a region of interest (ROI)-based calibration curve, these differences were reduced by up to 60%. Similarly, the mean differences in average vector field

  18. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Imaging Print The wavelengths of soft x-ray photons (1-15 nm) are very well matched to the creation of "nanoscopes" capable of probing the interior structure of biological cells and inorganic mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron radiation is absolutely essential for the creation of contrast mechanisms. Cell biology CAT scans are performed in

  19. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry

    SciTech Connect (OSTI)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows. A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.

  20. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H.; Pagliano, Francesco; Fiore, Andrea; Schuck, P. James; et al

    2015-06-05

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magneticmore » intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. In conclusion, by exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.« less

  1. Imaging of magnetic DW injection processed in patterened Ni80Fe20 structures

    SciTech Connect (OSTI)

    Bryan, M. T.; Basu, S.; Fry, P. W.; Schrefl, T.; Gibbs, M.R.J.; Allwood, D. A.; Im, M.-Y.; Fischer, P.

    2009-03-23

    Magnetization reversal in patterned ferromagnetic nanowires usually occurs via domain wall (DW) nucleation and propagation from one end (or both ends) of the wire which can be significantly reduced by a large, magnetically soft pad on one of the wire ends. These 'nucleation pads' reverse at lower fields than an isolated nanowire and introduce a DW to the wire from the wire end attached to the pad. Once a critical 'injection' field is reached, the DW sweeps through the wire, reversing its magnetization. Nucleation pads are frequently used as part of nanowire devices and experimental structures. Magnetic-field-driven shift register memory can include an injection pad to write data while those attached to nanowire spiral turn sensors act as both a source and sink of domain walls. Both of these devices use two-dimensional wire circuits and therefore require the use of orthogonal in-plane magnetic fields to drive domain walls through wires of different orientations. These bi-axial fields can significantly alter the fields at which DW injection occurs and control the number of different injection modes. We have used magnetic transmission soft X-ray microscopy (M-TXM) [6] providing 25nm spatial resolution to image the evolution of magnetization configurations in patterned 24nm thick Ni{sub 80}Fe{sub 20} rectangular nucleation pads and attached wires during DW injection. The structures consisted of 2 {micro}m x 3 {micro}m nucleation pads with wires of width 200 nm, 300 nm or 500 nm attached Comparing the magnetic configuration of the injection pads with micromagnetic models, we find that the relative orientation of closure domains in the remanent magnetization configuration of injection pads determines the reversal pathway that follows, although this is further affected by applied transverse fields. Micromagnetic simulations were performed using a hybrid finite element/boundary element code. The magnetic elements were designed with 20 nm thickness and discretized into a

  2. Method for high resolution magnetic resonance analysis using magic angle technique

    DOE Patents [OSTI]

    Wind, Robert A.; Hu, Jian Zhi

    2003-11-25

    A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.

  3. Theoretical analysis of the background intensity distribution in X-ray Birefringence Imaging using synchrotron bending-magnet radiation

    SciTech Connect (OSTI)

    Sutter, John P. Dolbnya, Igor P.; Collins, Stephen P.; Harris, Kenneth D. M.; Edwards-Gau, Gregory R.; Palmer, Benjamin A.

    2015-04-28

    In the recently developed technique of X-ray Birefringence Imaging, molecular orientational order in anisotropic materials is studied by exploiting the birefringence of linearly polarized X-rays with energy close to an absorption edge of an element in the material. In the experimental setup, a vertically deflecting high-resolution double-crystal monochromator is used upstream from the sample to select the appropriate photon energy, and a horizontally deflecting X-ray polarization analyzer, consisting of a perfect single crystal with a Bragg reflection at Bragg angle of approximately 45°, is placed downstream from the sample to measure the resulting rotation of the X-ray polarization. However, if the experiment is performed on a synchrotron bending-magnet beamline, then the elliptical polarization of the X-rays out of the electron orbit plane affects the shape of the output beam. Also, because the monochromator introduces a correlation between vertical position and photon energy to the X-ray beam, the polarization analyzer does not select the entire beam, but instead selects a diagonal stripe, the slope of which depends on the Bragg angles of the monochromator and the polarization analyzer. In the present work, the final background intensity distribution is calculated analytically because the phase space sampling methods normally used in ray traces are too inefficient for this setup. X-ray Birefringence Imaging data measured at the Diamond Light Source beamline B16 agree well with the theory developed here.

  4. Development of Nuclear Magnetic Resonance Imaging/spectroscopy for improved petroleum recovery. Final report

    SciTech Connect (OSTI)

    Barrufet, M.A.; Flumerfelt, F.W.; Walsh, M.P.; Watson, A.T.

    1994-04-01

    The overall objectives of this program are to develop and apply Nuclear Magnetic Resonance Imaging (NMRI) and CT X-Ray Scanning methods for determining rock, fluid, and petrophysical properties and for fundamental studies of multiphase flow behavior in porous media. Specific objectives are divided into four subtasks: (1) development of NMRI and CT scanning for the determination of rock-fluid and petrophysical properties; (2) development of NMRI and CT scanning for characterizing conventional multiphase displacement processes; (3) development of NMR and CT scanning for characterizing dispersed phase processes; and (4) miscible displacement studies.

  5. Phase-locking of magnetic islands diagnosed by ECE-imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tobias, B.; Grierson, B. A.; Muscatello, C. M.; Ren, X.; Domier, C. W.; Luhmann, N. C.; Zemedkun, S. E.; Munsat, T. L.; Classen, I. G. J.

    2014-08-13

    Millimeter-wave imaging diagnostics identify phase-locking and the satisfaction of 3-wave coupling selection criteria amongst multiple magnetic island chains by providing a localized, internal measurement of the 2D power spectral density, S(ω, kpol). In high-confinement tokamak discharges, these interactions impact both plasma rotation and tearing stability. Nonlinear coupling amongst neoclassical tearing modes (NTMs) of different n-number, with islands not satisfying the poloidal mode number selection criterion {m, m ', m - m ' }, contributes to a reduction in core rotation and flow shear in the vicinity of the modes.

  6. Developing new optical imaging techniques for single particle and molecule tracking in live cells

    SciTech Connect (OSTI)

    Sun, Wei

    2010-12-15

    Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian

  7. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uncovered by basic research into the fundamentals of magnetism, one such candidate consists of miniscule magnetic vortices like miniature magnetic whirlpools in nanometer-scale ...

  8. Fielding the magnetically applied pressure-shear technique on the Z accelerator (completion report for MRT 4519).

    SciTech Connect (OSTI)

    Alexander, C. Scott; Haill, Thomas A.; Dalton, Devon Gardner; Rovang, Dean Curtis; Lamppa, Derek C.

    2013-09-01

    The recently developed Magnetically Applied Pressure-Shear (MAPS) experimental technique to measure material shear strength at high pressures on magneto-hydrodynamic (MHD) drive pulsed power platforms was fielded on August 16, 2013 on shot Z2544 utilizing hardware set A0283A. Several technical and engineering challenges were overcome in the process leading to the attempt to measure the dynamic strength of NNSA Ta at 50 GPa. The MAPS technique relies on the ability to apply an external magnetic field properly aligned and time correlated with the MHD pulse. The load design had to be modified to accommodate the external field coils and additional support was required to manage stresses from the pulsed magnets. Further, this represents the first time transverse velocity interferometry has been applied to diagnose a shot at Z. All subsystems performed well with only minor issues related to the new feed design which can be easily addressed by modifying the current pulse shape. Despite the success of each new component, the experiment failed to measure strength in the samples due to spallation failure, most likely in the diamond anvils. To address this issue, hydrocode simulations are being used to evaluate a modified design using LiF windows to minimize tension in the diamond and prevent spall. Another option to eliminate the diamond material from the experiment is also being investigated.

  9. IMAGING AND SPECTROSCOPIC OBSERVATIONS OF MAGNETIC RECONNECTION AND CHROMOSPHERIC EVAPORATION IN A SOLAR FLARE

    SciTech Connect (OSTI)

    Tian, Hui; Reeves, Katharine K.; Raymond, John C.; Chen, Bin; Murphy, Nicholas A.; Li, Gang; Guo, Fan; Liu, Wei

    2014-12-20

    Magnetic reconnection is believed to be the dominant energy release mechanism in solar flares. The standard flare model predicts both downward and upward outflow plasmas with speeds close to the coronal Alfvén speed. Yet, spectroscopic observations of such outflows, especially the downflows, are extremely rare. With observations of the newly launched Interface Region Imaging Spectrograph (IRIS), we report the detection of a greatly redshifted (∼125 km s{sup –1} along the line of sight) Fe XXI 1354.08 Å emission line with a ∼100 km s{sup –1} nonthermal width at the reconnection site of a flare. The redshifted Fe XXI feature coincides spatially with the loop-top X-ray source observed by RHESSI. We interpret this large redshift as the signature of downward-moving reconnection outflow/hot retracting loops. Imaging observations from both IRIS and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory also reveal the eruption and reconnection processes. Fast downward-propagating blobs along these loops are also found from cool emission lines (e.g., Si IV, O IV, C II, Mg II) and images of AIA and IRIS. Furthermore, the entire Fe XXI line is blueshifted by ∼260 km s{sup –1} at the loop footpoints, where the cool lines mentioned above all exhibit obvious redshift, a result that is consistent with the scenario of chromospheric evaporation induced by downward-propagating nonthermal electrons from the reconnection site.

  10. Detection of microcalcifications by characteristic magnetic susceptibility effects using MR phase image cross-correlation analysis

    SciTech Connect (OSTI)

    Baheza, Richard A.; Welch, E. Brian; Gochberg, Daniel F.; Sanders, Melinda; Harvey, Sara; Gore, John C.; Yankeelov, Thomas E.

    2015-03-15

    Purpose: To develop and evaluate a new method for detecting calcium deposits using their characteristic magnetic susceptibility effects on magnetic resonance (MR) images at high fields and demonstrate its potential in practice for detecting breast microcalcifications. Methods: Characteristic dipole signatures of calcium deposits were detected in magnetic resonance phase images by computing the cross-correlation between the acquired data and a library of templates containing simulated phase patterns of spherical deposits. The influence of signal-to-noise ratio and various other MR parameters on the results were assessed using simulations and validated experimentally. The method was tested experimentally for detection of calcium fragments within gel phantoms and calcium-like inhomogeneities within chicken tissue at 7 T with optimized MR acquisition parameters. The method was also evaluated for detection of simulated microcalcifications, modeled from biopsy samples of malignant breast cancer, inserted in silico into breast magnetic resonance imaging (MRIs) of healthy subjects at 7 T. For both assessments of calcium fragments in phantoms and biopsy-based simulated microcalcifications in breast MRIs, receiver operator characteristic curve analyses were performed to determine the cross-correlation index cutoff, for achieving optimal sensitivity and specificity, and the area under the curve (AUC), for measuring the method’s performance. Results: The method detected calcium fragments with sizes of 0.14–0.79 mm, 1 mm calcium-like deposits, and simulated microcalcifications with sizes of 0.4–1.0 mm in images with voxel sizes between (0.2 mm){sup 3} and (0.6 mm){sup 3}. In images acquired at 7 T with voxel sizes of (0.2 mm){sup 3}–(0.4 mm){sup 3}, calcium fragments (size 0.3–0.4 mm) were detected with a sensitivity, specificity, and AUC of 78%–90%, 51%–68%, and 0.77%–0.88%, respectively. In images acquired with a human 7 T scanner, acquisition times below 12

  11. Accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas

    SciTech Connect (OSTI)

    Craciunescu, Oana I.; Stauffer, Paul R.; Soher, Brian J.; Wyatt, Cory R.; Arabe, Omar; Maccarini, Paolo; Das, Shiva K.; Cheng, Kung-Shan; Wong, Terence Z.; Jones, Ellen L.; Dewhirst, Mark W.; Vujaskovic, Zeljko; MacFall, James R.

    2009-11-15

    Purpose: To establish accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas. Methods: Protocol patients with advanced extremity sarcomas were treated with external beam radiation therapy and hyperthermia. Invasive temperature measures were compared to noninvasive magnetic resonance thermal imaging (MRTI) at 1.5 T performed during hyperthermia. Volumetric temperature rise images were obtained using the proton resonance frequency shift (PRFS) technique during heating in a 140 MHz miniannular phased array applicator. MRTI temperature changes were compared to invasive measurements of temperature with a multisensor fiber optic probe inside a no. 15 g catheter in the tumor. Since the PRFS technique is sensitive to drifts in the primary imaging magnetic field, temperature change distributions were corrected automatically during treatment using temperature-stable reference materials to characterize field changes in 3D. The authors analyzed MRT images and compared, in evaluable treatments, MR-derived temperatures to invasive temperatures measured in extremity sarcomas. Small regions of interest (ROIs) were specified near each invasive sensor identified on MR images. Temperature changes in the interstitial sensors were compared to the corresponding ROI PRFS-based temperature changes over the entire treatment and over the steady-state period. Nonevaluable treatments (motion/imaging artifacts, noncorrectable drifts) were not included in the analysis. Results: The mean difference between MRTI and interstitial probe measurements was 0.91 deg. C for the entire heating time and 0.85 deg. C for the time at steady state. These values were obtained from both tumor and normal tissue ROIs. When the analysis is done on just the tumor ROIs, the mean difference for the whole power on time was 0.74 deg. C and during the period of steady state was 0.62 deg. C. Conclusions: The

  12. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Print The wavelengths of soft x-ray photons (1-15 nm) are very well matched to the creation of "nanoscopes" capable of probing the interior structure of biological cells and inorganic mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron radiation is absolutely essential for the creation of contrast mechanisms. Cell biology CAT scans are performed in the

  13. SU-E-I-74: Image-Matching Technique of Computed Tomography Images for Personal Identification: A Preliminary Study Using Anthropomorphic Chest Phantoms

    SciTech Connect (OSTI)

    Matsunobu, Y; Shiotsuki, K; Morishita, J

    2015-06-15

    Purpose: Fingerprints, dental impressions, and DNA are used to identify unidentified bodies in forensic medicine. Cranial Computed tomography (CT) images and/or dental radiographs are also used for identification. Radiological identification is important, particularly in the absence of comparative fingerprints, dental impressions, and DNA samples. The development of an automated radiological identification system for unidentified bodies is desirable. We investigated the potential usefulness of bone structure for matching chest CT images. Methods: CT images of three anthropomorphic chest phantoms were obtained on different days in various settings. One of the phantoms was assumed to be an unidentified body. The bone image and the bone image with soft tissue (BST image) were extracted from the CT images. To examine the usefulness of the bone image and/or the BST image, the similarities between the two-dimensional (2D) or threedimensional (3D) images of the same and different phantoms were evaluated in terms of the normalized cross-correlation value (NCC). Results: For the 2D and 3D BST images, the NCCs obtained from the same phantom assumed to be an unidentified body (2D, 0.99; 3D, 0.93) were higher than those for the different phantoms (2D, 0.95 and 0.91; 3D, 0.89 and 0.80). The NCCs for the same phantom (2D, 0.95; 3D, 0.88) were greater compared to those of the different phantoms (2D, 0.61 and 0.25; 3D, 0.23 and 0.10) for the bone image. The difference in the NCCs between the same and different phantoms tended to be larger for the bone images than for the BST images. These findings suggest that the image-matching technique is more useful when utilizing the bone image than when utilizing the BST image to identify different people. Conclusion: This preliminary study indicated that evaluating the similarity of bone structure in 2D and 3D images is potentially useful for identifying of an unidentified body.

  14. Simulation of High-Resolution Magnetic Resonance Images on the IBM Blue Gene/L Supercomputer Using SIMRI

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baum, K. G.; Menezes, G.; Helguera, M.

    2011-01-01

    Medical imaging system simulators are tools that provide a means to evaluate system architecture and create artificial image sets that are appropriate for specific applications. We have modified SIMRI, a Bloch equation-based magnetic resonance image simulator, in order to successfully generate high-resolution 3D MR images of the Montreal brain phantom using Blue Gene/L systems. Results show that redistribution of the workload allows an anatomically accurate 256 3 voxel spin-echo simulation in less than 5 hours when executed on an 8192-node partition of a Blue Gene/L system.

  15. Measurement and image processing evaluation of surface modifications of dental implants G4 pure titanium created by different techniques

    SciTech Connect (OSTI)

    Bulutsuz, A. G.; Demircioglu, P. Bogrekci, I.; Durakbasa, M. N.

    2015-03-30

    Foreign substances and organic tissue interaction placed into the jaw in order to eliminate tooth loss involves a highly complex process. Many biological reactions take place as well as the biomechanical forces that influence this formation. Osseointegration denotes to the direct structural and functional association between the living bone and the load-bearing artificial implant's surface. Taking into consideration of the requirements in the manufacturing processes of the implants, surface characterizations with high precise measurement techniques are investigated and thus long-term success of dental implant is emphasized on the importance of these processes in this study. In this research, the detailed surface characterization was performed to identify the dependence of the manufacturing techniques on the surface properties by using the image processing methods and using the scanning electron microscope (SEM) for morphological properties in 3D and Taylor Hobson stylus profilometer for roughness properties in 2D. Three implant surfaces fabricated by different manufacturing techniques were inspected, and a machined surface was included into the study as a reference specimen. The results indicated that different surface treatments were strongly influenced surface morphology. Thus 2D and 3D precise inspection techniques were highlighted on the importance for surface characterization. Different image analyses techniques such as Dark-light technique were used to verify the surface measurement results. The computational phase was performed using image processing toolbox in Matlab with precise evaluation of the roughness for the implant surfaces. The relationship between the number of black and white pixels and surface roughness is presented. FFT image processing and analyses results explicitly imply that the technique is useful in the determination of surface roughness. The results showed that the number of black pixels in the image increases with increase in surface

  16. Protection heater design validation for the LARP magnets using thermal imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marchevsky, M.; Turqueti, M.; Cheng, D. W.; Felice, H.; Sabbi, G.; Salmi, T.; Stenvall, A.; Chlachidze, G.; Ambrosio, G.; Ferracin, P.; et al

    2016-03-16

    Protection heaters are essential elements of a quench protection scheme for high-field accelerator magnets. Various heater designs fabricated by LARP and CERN have been already tested in the LARP high-field quadrupole HQ and presently being built into the coils of the high-field quadrupole MQXF. In order to compare the heat flow characteristics and thermal diffusion timescales of different heater designs, we powered heaters of two different geometries in ambient conditions and imaged the resulting thermal distributions using a high-sensitivity thermal video camera. We observed a peculiar spatial periodicity in the temperature distribution maps potentially linked to the structure of themore » underlying cable. Two-dimensional numerical simulation of heat diffusion and spatial heat distribution have been conducted, and the results of simulation and experiment have been compared. Imaging revealed hot spots due to a current concentration around high curvature points of heater strip of varying cross sections and visualized thermal effects of various interlayer structural defects. Furthermore, thermal imaging can become a future quality control tool for the MQXF coil heaters.« less

  17. Diffusion-Weighted Magnetic Resonance Imaging in Monitoring Rectal Cancer Response to Neoadjuvant Chemoradiotherapy

    SciTech Connect (OSTI)

    Barbaro, Brunella; Vitale, Renata; Valentini, Vincenzo; Illuminati, Sonia; Vecchio, Fabio M.; Rizzo, Gianluca; Gambacorta, Maria Antonietta; Coco, Claudio; Crucitti, Antonio; Persiani, Roberto; Sofo, Luigi; Bonomo, Lorenzo

    2012-06-01

    Purpose: To prospectively monitor the response in patients with locally advanced nonmucinous rectal cancer after chemoradiotherapy (CRT) using diffusion-weighted magnetic resonance imaging. The histopathologic finding was the reference standard. Methods and Materials: The institutional review board approved the present study. A total of 62 patients (43 men and 19 women; mean age, 64 years; range, 28-83) provided informed consent. T{sub 2}- and diffusion-weighted magnetic resonance imaging scans (b value, 0 and 1,000 mm{sup 2}/s) were acquired before, during (mean 12 days), and 6-8 weeks after CRT. We compared the median apparent diffusion coefficients (ADCs) between responders and nonresponders and examined the associations with the Mandard tumor regression grade (TRG). The postoperative nodal status (ypN) was evaluated. The Mann-Whitney/Wilcoxon two-sample test was used to evaluate the relationships among the pretherapy ADCs, extramural vascular invasion, early percentage of increases in ADCs, and preoperative ADCs. Results: Low pretreatment ADCs (<1.0 Multiplication-Sign 10{sup -3}mm{sup 2}/s) were correlated with TRG 4 scores (p = .0011) and associated to extramural vascular invasion with ypN+ (85.7% positive predictive value for ypN+). During treatment, the mean percentage of increase in tumor ADC was significantly greater in the responders than in the nonresponders (p < .0001) and a >23% ADC increase had a 96.3% negative predictive value for TRG 4. In 9 of 16 complete responders, CRT-related tumor downsizing prevented ADC evaluations. The preoperative ADCs were significantly different (p = .0012) between the patients with and without downstaging (preoperative ADC {>=}1.4 Multiplication-Sign 10{sup -3}mm{sup 2}/s showed a positive and negative predictive value of 78.9% and 61.8%, respectively, for response assessment). The TRG 1 and TRG 2-4 groups were not significantly different. Conclusion: Diffusion-weighted magnetic resonance imaging seems to be a promising

  18. Rapid and noncontact photoacoustic tomography imaging system using an interferometer with high-speed phase modulation technique

    SciTech Connect (OSTI)

    Liu, Jun; Tang, Zhilie; Wu, Yongbo; Wang, Yi

    2015-04-15

    We designed, fabricated, and tested a rapid and noncontact photoacoustic tomography (PAT) imaging system using a low-coherence interferometer with high-speed phase modulation technique. Such a rapid and noncontact probing system can greatly decrease the time of imaging. The proposed PAT imaging system is experimentally verified by capturing images of a simulated tissue sample and the blood vessels within the ear flap of a mouse (pinna) in vivo. The axial and lateral resolutions of the system are evaluated at 45 and ∼15 μm, respectively. The imaging depth of the system is 1 mm in a special phantom. Our results show that the proposed system opens a promising way to realize noncontact, real-time PAT.

  19. Zero source insertion technique to account for undersampling in GPR imaging

    DOE Patents [OSTI]

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W

    2014-02-25

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  20. Point sensitive NMR imaging system using a magnetic field configuration with a spatial minimum

    DOE Patents [OSTI]

    Eberhard, P.H.

    A point-sensitive NMR imaging system in which a main solenoid coil produces a relatively strong and substantially uniform magnetic field and a pair of perturbing coils powered by current in the same direction superimposes a pair of relatively weak perturbing fields on the main field to produce a resultant point of minimum field strength at a desired location in a direction along the Z-axis. Two other pairs of perturbing coils superimpose relatively weak field gradients on the main field in directions along the X- and Y-axes to locate the minimum field point at a desired location in a plane normal to the Z-axes. An rf generator irradiates a tissue specimen in the field with radio frequency energy so that desired nuclei in a small volume at the point of minimum field strength will resonate.

  1. Point sensitive NMR imaging system using a magnetic field configuration with a spatial minimum

    DOE Patents [OSTI]

    Eberhard, Philippe H.

    1985-01-01

    A point-sensitive NMR imaging system (10) in which a main solenoid coil (11) produces a relatively strong and substantially uniform magnetic field and a pair of perturbing coils (PZ1 and PZ2) powered by current in the same direction superimposes a pair of relatively weak perturbing fields on the main field to produce a resultant point of minimum field strength at a desired location in a direction along the Z-axis. Two other pairs of perturbing coils (PX1, PX2; PY1, PY2) superimpose relatively weak field gradients on the main field in directions along the X- and Y-axes to locate the minimum field point at a desired location in a plane normal to the Z-axes. An RF generator (22) irradiates a tissue specimen in the field with radio frequency energy so that desired nuclei in a small volume at the point of minimum field strength will resonate.

  2. A Comparison of Image Quality Evaluation Techniques for Transmission X-Ray Microscopy

    SciTech Connect (OSTI)

    Bolgert, Peter J; /Marquette U. /SLAC

    2012-08-31

    Beamline 6-2c at Stanford Synchrotron Radiation Lightsource (SSRL) is capable of Transmission X-ray Microscopy (TXM) at 30 nm resolution. Raw images from the microscope must undergo extensive image processing before publication. Since typical data sets normally contain thousands of images, it is necessary to automate the image processing workflow as much as possible, particularly for the aligning and averaging of similar images. Currently we align images using the 'phase correlation' algorithm, which calculates the relative offset of two images by multiplying them in the frequency domain. For images containing high frequency noise, this algorithm will align noise with noise, resulting in a blurry average. To remedy this we multiply the images by a Gaussian function in the frequency domain, so that the algorithm ignores the high frequency noise while properly aligning the features of interest (FOI). The shape of the Gaussian is manually tuned by the user until the resulting average image is sharpest. To automatically optimize this process, it is necessary for the computer to evaluate the quality of the average image by quantifying its sharpness. In our research we explored two image sharpness metrics, the variance method and the frequency threshold method. The variance method uses the variance of the image as an indicator of sharpness while the frequency threshold method sums up the power in a specific frequency band. These metrics were tested on a variety of test images, containing both real and artificial noise. To apply these sharpness metrics, we designed and built a MATLAB graphical user interface (GUI) called 'Blur Master.' We found that it is possible for blurry images to have a large variance if they contain high amounts of noise. On the other hand, we found the frequency method to be quite reliable, although it is necessary to manually choose suitable limits for the frequency band. Further research must be performed to design an algorithm which

  3. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new materials with new switching mechanisms. Uncovered by basic research into the fundamentals of magnetism, one such candidate consists of miniscule magnetic vortices like...

  4. Magnetic Resonance Image Phantom Code System to Calibrate in vivo Measurement Systems.

    Energy Science and Technology Software Center (OSTI)

    1997-07-17

    Version 00 MRIPP provides relative calibration factors for the in vivo measurement of internally deposited photon emitting radionuclides within the human body. The code includes a database of human anthropometric structures (phantoms) that were constructed from whole body Magnetic Resonance Images. The database contains a large variety of human images with varying anatomical structure. Correction factors are obtained using Monte Carlo transport of photons through the voxel geometry of the phantom. Correction factors provided bymore » MRIPP allow users of in vivo measurement systems (e.g., whole body counters) to calibrate these systems with simple sources and obtain subject specific calibrations. Note that the capability to format MRI data for use with this system is not included; therefore, one must use the phantom data included in this package. MRIPP provides a simple interface to perform Monte Carlo simulation of photon transport through the human body. MRIPP also provides anthropometric information (e.g., height, weight, etc.) for individuals used to generate the phantom database. A modified Voxel version of the Los Alamos National Laboratory MCNP4A code is used for the Monte Carlo simulation. The Voxel version Fortran patch to MCNP4 and MCNP4A (Monte Carlo N-Particle transport simulation) and the MCNP executable are included in this distribution, but the MCNP Fortran source is not included. It was distributed by RSICC as CCC-200 but is now obsoleted by the current release MCNP4B.« less

  5. WE-G-17A-08: Electron Gun Operation for in Line MRI-Linac Configurations: An Assessment of Beam Fidelity and Recovery Techniques for Different SIDs and Magnetic Field Strengths

    SciTech Connect (OSTI)

    Whelan, B; Keall, P; Constantin, D; Holloway, L; Kolling, S; Oborn, B; Fahrig, R

    2014-06-15

    Purpose: To test the functionality of medical electron guns within the fringe field of a purpose built superconducting MRI magnet, and to test different recovery techniques for a variety of imaging field strengths and SIDs. Methods: Three different electron guns were simulated using Finite Element Modelling; a standard diode gun, a standard triode gun, and a novel diode gun designed to operate within parallel magnetic fields. The approximate working regime of each gun was established by assessing exit current in constant magnetic fields of varying strength and defining ‘working’ as less than 10% change in injection current. Next, the 1.0T MRI magnet was simulated within Comsol Multiphysics. The coil currents in this model were also scaled to produce field strengths of .5, 1, 1.5 and 3T. Various magnetic shield configurations were simulated, varying the SID from 800 to 1300mm. The average magnetic field within the gun region was assessed together with the distortion in the imaging volume - greater than 150uT distortion was considered unacceptable. Results: The conventional guns functioned in fields of less than 7.5mT. Conversely, the redesigned diode required fields greater than .1T to function correctly. Magnetic shielding was feasible for SIDS of greater than 1000mm for field strengths of .5T and 1T, and 1100mm for 1.5 and 3.0T. Beyond these limits shielding resulted in unacceptable MRI distortion. In contrast, the redesigned diode could perform acceptably for SIDs of less than 812, 896, 931, and 974mm for imaging strengths of 0.5, 1.0, 1.5, 3.0T. Conclusions: For in-line MRIlinac configurations where the electron gun is operating in low field regions, shielding is a straight forward option. However, as magnetic field strength increases and the SID is reduced, shielding results in too great a distortion in the MRI and redesigning the electron optics is the preferable solution. The authors would like to acknowledge funding from the National Health and Research

  6. Elucidation of fundamental properties of helium in metals by nuclear magnetic resonance techniques

    SciTech Connect (OSTI)

    Abell, G.C.

    1990-01-01

    The nuclear magnetic resonance (NMR) properties of very high density {sup 3}He in metals are discussed in the context of the corresponding properties in relatively high density bulk {sup 3}He. In particular, the effects of the {sup 3}He diffusion on the contribution of the {sup 3}He-{sup 3}He dipolar interaction to the lineshape and to the spin-lattice relaxation parameter (T{sub 1}) are described. It is shown that the temperature dependence of the lineshape and of T{sub 1} are independent sources of information about helium density and also about helium diffusivity. Moreover, T{sub 1} is shown to be a sensitive indicator of melting transitions in bulk {sup 3}He. Palladium tritide is presented as a model system for NMR studies of {sup 3}He in metals. Experimental NMR studies of this system reveal behavior analogous to what has been observed for bulk helium. Evidence for a {sup 3}He phase transition near 250 K is provided by the temperature dependence of T{sub 1}. Assuming this to be a melting transition, a density is obtained from the bulk helium EOS that is in good agreement with theory and with swelling measurements on related metal tritides. {sup 3}He NMR measurements have also provided information about the density distribution, helium diffusivity, and mean bubble size in palladium tritide. 22 refs., 8 figs.

  7. Weighted simultaneous algebraic reconstruction technique for tomosynthesis imaging of objects with high-attenuation features

    SciTech Connect (OSTI)

    Levakhina, Y. M.; Mueller, J.; Buzug, T. M.; Duschka, R. L.; Vogt, F.; Barkhausen, J.

    2013-03-15

    Purpose: This paper introduces a nonlinear weighting scheme into the backprojection operation within the simultaneous algebraic reconstruction technique (SART). It is designed for tomosynthesis imaging of objects with high-attenuation features in order to reduce limited angle artifacts. Methods: The algorithm estimates which projections potentially produce artifacts in a voxel. The contribution of those projections into the updating term is reduced. In order to identify those projections automatically, a four-dimensional backprojected space representation is used. Weighting coefficients are calculated based on a dissimilarity measure, evaluated in this space. For each combination of an angular view direction and a voxel position an individual weighting coefficient for the updating term is calculated. Results: The feasibility of the proposed approach is shown based on reconstructions of the following real three-dimensional tomosynthesis datasets: a mammography quality phantom, an apple with metal needles, a dried finger bone in water, and a human hand. Datasets have been acquired with a Siemens Mammomat Inspiration tomosynthesis device and reconstructed using SART with and without suggested weighting. Out-of-focus artifacts are described using line profiles and measured using standard deviation (STD) in the plane and below the plane which contains artifact-causing features. Artifacts distribution in axial direction is measured using an artifact spread function (ASF). The volumes reconstructed with the weighting scheme demonstrate the reduction of out-of-focus artifacts, lower STD (meaning reduction of artifacts), and narrower ASF compared to nonweighted SART reconstruction. It is achieved successfully for different kinds of structures: point-like structures such as phantom features, long structures such as metal needles, and fine structures such as trabecular bone structures. Conclusions: Results indicate the feasibility of the proposed algorithm to reduce typical

  8. Systems and methods for thermal imaging technique for measuring mixing of fluids

    DOE Patents [OSTI]

    Booten, Charles; Tomerlin, Jeff; Winkler, Jon

    2016-06-14

    Systems and methods for thermal imaging for measuring mixing of fluids are provided. In one embodiment, a method for measuring mixing of gaseous fluids using thermal imaging comprises: positioning a thermal test medium parallel to a direction gaseous fluid flow from an outlet vent of a momentum source, wherein when the source is operating, the fluid flows across a surface of the medium; obtaining an ambient temperature value from a baseline thermal image of the surface; obtaining at least one operational thermal image of the surface when the fluid is flowing from the outlet vent across the surface, wherein the fluid has a temperature different than the ambient temperature; and calculating at least one temperature-difference fraction associated with at least a first position on the surface based on a difference between temperature measurements obtained from the at least one operational thermal image and the ambient temperature value.

  9. Parallel-scanning tomosynthesis using a slot scanning technique: Fixed-focus reconstruction and the resulting image quality

    SciTech Connect (OSTI)

    Shibata, Koichi, E-mail: shibatak@suzuka-u.ac.jp [Department of Radiological Technology, Faculty of Health Science, Suzuka University of Medical Science 1001-1, Kishioka-cho, Suzuka 510-0293 (Japan); Notohara, Daisuke; Sakai, Takihito [R and D Department, Medical Systems Division, Shimadzu Corporation 1, Nishinokyo-Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511 (Japan)

    2014-11-01

    Purpose: Parallel-scanning tomosynthesis (PS-TS) is a novel technique that fuses the slot scanning technique and the conventional tomosynthesis (TS) technique. This approach allows one to obtain long-view tomosynthesis images in addition to normally sized tomosynthesis images, even when using a system that has no linear tomographic scanning function. The reconstruction technique and an evaluation of the resulting image quality for PS-TS are described in this paper. Methods: The PS-TS image-reconstruction technique consists of several steps (1) the projection images are divided into strips, (2) the strips are stitched together to construct images corresponding to the reconstruction plane, (3) the stitched images are filtered, and (4) the filtered stitched images are back-projected. In the case of PS-TS using the fixed-focus reconstruction method (PS-TS-F), one set of stitched images is used for the reconstruction planes at all heights, thus avoiding the necessity of repeating steps (1)(3). A physical evaluation of the image quality of PS-TS-F compared with that of the conventional linear TS was performed using a R/F table (Sonialvision safire, Shimadzu Corp., Kyoto, Japan). The tomographic plane with the best theoretical spatial resolution (the in-focus plane, IFP) was set at a height of 100 mm from the table top by adjusting the reconstruction program. First, the spatial frequency response was evaluated at heights of ?100, ?50, 0, 50, 100, and 150 mm from the IFP using the edge of a 0.3-mm-thick copper plate. Second, the spatial resolution at each height was visually evaluated using an x-ray test pattern (Model No. 38, PTW Freiburg, Germany). Third, the slice sensitivity at each height was evaluated via the wire method using a 0.1-mm-diameter tungsten wire. Phantom studies using a knee phantom and a whole-body phantom were also performed. Results: The spatial frequency response of PS-TS-F yielded the best results at the IFP and degraded slightly as the distance

  10. Diagnostic techniques for magnetically confined high-temperature plasmas. II. Magnetic and electric measurements, charge-exchange diagnostics, particle-beam diagnostics, and fusion-product measurements

    SciTech Connect (OSTI)

    Goldston, R.J.

    1982-07-01

    A general overview of the four diagnostic techniques is given. Prospects for each technique are discussed. (MOW)

  11. Radiation-Induced Liver Damage: Correlation of Histopathology with Hepatobiliary Magnetic Resonance Imaging, a Feasibility Study

    SciTech Connect (OSTI)

    Seidensticker, Max; Burak, Miroslaw; Kalinski, Thomas; Garlipp, Benjamin; Koelble, Konrad; Wust, Peter; Antweiler, Kai; Seidensticker, Ricarda; Mohnike, Konrad; Pech, Maciej; Ricke, Jens

    2015-02-15

    PurposeRadiotherapy of liver malignancies shows promising results (radioembolization, stereotactic irradiation, interstitial brachytherapy). Regardless of the route of application, a certain amount of nontumorous liver parenchyma will be collaterally damaged by radiation. The functional reserve may be significantly reduced with an impact on further treatment planning. Monitoring of radiation-induced liver damage by imaging is neither established nor validated. We performed an analysis to correlate the histopathological presence of radiation-induced liver damage with functional magnetic resonance imaging (MRI) utilizing hepatobiliary contrast media (Gd-BOPTA).MethodsPatients undergoing local high-dose-rate brachytherapy for whom a follow-up hepatobiliary MRI within 120 days after radiotherapy as well as an evaluable liver biopsy from radiation-exposed liver tissue within 7 days before MRI were retrospectively identified. Planning computed tomography (CT)/dosimetry was merged to the CT-documentation of the liver biopsy and to the MRI. Presence/absence of radiation-induced liver damage (histopathology) and Gd-BOPTA uptake (MRI) as well as the dose applied during brachytherapy at the site of tissue sampling was determined.ResultsFourteen biopsies from eight patients were evaluated. In all cases with histopathological evidence of radiation-induced liver damage (n = 11), no uptake of Gd-BOPTA was seen. In the remaining three, cases no radiation-induced liver damage but Gd-BOPTA uptake was seen. Presence of radiation-induced liver damage and absence of Gd-BOPTA uptake was correlated with a former high-dose exposition.ConclusionsAbsence of hepatobiliary MRI contrast media uptake in radiation-exposed liver parenchyma may indicate radiation-induced liver damage. Confirmatory studies are warranted.

  12. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    SciTech Connect (OSTI)

    Cao Yue; Wang Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  13. Resolving the Impact of Biological Processes on Water Transport in Unsaturated Porous Media Through Nuclear Magnetic Resonance Micro-Imaging

    SciTech Connect (OSTI)

    Seymour, Joseph D.

    2005-06-01

    The magnetic resonance microscopy (MRM) work at Montana State University has extended the imaging of a single biofilm in a 1 mm capillary reactor to correlate T2 magnetic relaxation maps displaying biofilm structure with the corresponding velocity patterns in three dimensions in a Staphylococcus epidermidis biofilm fouled square capillary. A square duct geometry is chosen to provide correlation with existing experiments and simulations, as research bioreactors tend to be of square or rectangular cross section for optical or microelectrode access. The spatially resolved velocity data provide details on the impact of biofilm induced advection on mass transport from the bulk fluid to the biofilm and through the capillary bioreactor.

  14. Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging

    DOE Patents [OSTI]

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Wind, Robert A.

    2009-05-19

    Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

  15. Advanced slow-magic angle spinning probe for magnetic resonance imaging and spectroscopy

    DOE Patents [OSTI]

    Wind, Robert A.; Hu, Jian Zhi; Minard, Kevin R.; Rommereim, Donald N.

    2006-01-24

    The present invention relates to a probe and processes useful for magnetic resonance imaging and spectroscopy instruments. More particularly, the invention relates to a MR probe and processes for obtaining resolution enhancements of fluid objects, including live specimens, using an ultra-slow (magic angle) spinning (MAS) of the specimen combined with a modified phase-corrected magic angle turning (PHORMAT) pulse sequence. Proton NMR spectra were measured of the torso and the top part of the belly of a female BALBc mouse in a 2T field, while spinning the animal at a speed of 1.5 Hz. Results show that even in this relatively low field with PHORMAT, an isotropic spectrum is obtained with line widths that are a factor 4.6 smaller than those obtained in a stationary mouse. Resolution of 1H NMR metabolite spectra are thus significantly enhanced. Results indicate that PHORMAT has the potential to significantly increase the utility of 1H NMR spectroscopy for in vivo biochemical, biomedical and/or medical applications involving large-sized biological objects such as mice, rats and even humans within a hospital setting. For small-sized objects, including biological objects, such as excised tissues, organs, live bacterial cells, and biofilms, use of PASS at a spinning rate of 30 Hz and above is preferred.

  16. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    SciTech Connect (OSTI)

    Gazdzinski, Lisa M.; Cormier, Kyle; Lu, Fred G.; Lerch, Jason P.; Department of Medical Biophysics, University of Toronto, Toronto ; Wong, C. Shun; Department of Medical Biophysics, University of Toronto, Toronto; Department of Radiation Oncology, University of Toronto, Toronto ; Nieman, Brian J.

    2012-12-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  17. Direct Numerical Simulation of Pore-Scale Flow in a Bead Pack: Comparison with Magnetic Resonance Imaging Observations

    SciTech Connect (OSTI)

    Yang, Xiaofan; Scheibe, Timothy D.; Richmond, Marshall C.; Perkins, William A.; Vogt, Sarah J.; Codd, Sarah L.; Seymour, Joseph D.; Mckinley, Matthew I.

    2013-04-01

    A significant body of current research is aimed at developing methods for numerical simulation of flow and transport in porous media that explicitly resolve complex pore and solid geometries, and at utilizing such models to study the relationships between fundamental pore-scale processes and macroscopic manifestations at larger (i.e., Darcy) scales. A number of different numerical methods for pore-scale simulation have been developed, and have been extensively tested and validated for simplified geometries. However, validation of pore-scale simulations of fluid velocity for complex, three-dimensional (3D) pore geometries that are representative of natural porous media is challenging due to our limited ability to measure pore-scale velocity in such systems. Recent advances in magnetic resonance imaging (MRI) offer the opportunity to measure not only the pore geometry, but also local fluid velocities under steady-state flow conditions in 3D and with high spatial resolution. In this paper, we present a 3D velocity field measured at sub-pore resolution (tens of micrometers) over a centimeter-scale 3D domain using MRI methods. We have utilized the measured pore geometry to perform 3D simulations of Navier-Stokes flow over the same domain using direct numerical simulation techniques. We present a comparison of the numerical simulation results with the measured velocity field. It is shown that the numerical results match the observed velocity patterns well overall except for a variance and small systematic scaling which can be attributed to the known experimental error in the MRI measurements. The comparisons presented here provide strong validation of the pore-scale simulation methods and new insights for interpretation of uncertainty in MRI measurements of pore-scale velocity. This study also provides a potential benchmark for future comparison of other pore-scale simulation methods.

  18. MAGNETS

    DOE Patents [OSTI]

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  19. X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    One of these, called racetrack memory, involves no rotating disk at all. Instead, it is based on wires made of a magnetic ... by applying and releasing an external magnetic field (Hext). ...

  20. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in nanometer-scale magnetic films. At the core of each vortex, the magnetization can point vertically up or down out of the film, thereby providing a possible new data storage...

  1. Investigation of Backscatter X-ray imaging techniques for Uranium Dioxide Fuel Rods

    SciTech Connect (OSTI)

    Jackson, Timothy D; Hollenbach, Daniel F; Shedlock, Daniel

    2011-01-01

    Radiography by Selective Detection (RSD), was investigated for its ability to determine the presence and types of defects in a UO{sub 2} fuel rod surrounded by zirconium cladding. Images created using a Monte Carlo model compared favorably with actual X-ray backscatter images from mock fuel rods. A fuel rod was modeled as a rectangular parallelepiped with zirconium cladding, and pencil beam X-ray sources of 160 kVp (79 keV avg) and 480 kVp (218 keV avg) were generated using the Monte Carlo N-Particle Transport Code to attempt to image void and palladium (Pd) defects in the interior and on the surface of the fuel pellet. It was found that the 160 kVp spectrum was unable to detect the presence of interior defects, whereas the 480 kVp spectrum detected them with both the standard and the RSD backscatter methods, though the RSD method was very inefficient. It was also found that both energy spectra were able to detect void and Pd defects on the surface using both imaging methods. Additionally, two mock fuel rods were imaged using a backscatter X-ray imaging system, one consisting of hafnium pellets in a Zircaloy-4 cladding and the other consisting of steel pellets in a Zircalloy-4 cladding which was then encased in a steel cladding (a double encapsulation configuration employed in irradiation and experiments). It was found that the system was capable of detecting individual HfO{sub 2} pellets in a Zircaloy-4 cladding and may be capable of detecting individual steel pellets in the double-encapsulated sample. It is expected that the system would also be capable of detecting individual UO{sub 2} pellets in a Zircaloy-4 cladding, though no UO{sub 2} fuel rod was available for imaging.

  2. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements

    SciTech Connect (OSTI)

    Lin, L. Ding, W. X.; Brower, D. L.

    2014-11-15

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.

  3. Images of gravitational and magnetic phenomena derived from two-dimensional back-projection Doppler tomography of interacting binary stars

    SciTech Connect (OSTI)

    Richards, Mercedes T.; Cocking, Alexander S.; Fisher, John G.; Conover, Marshall J. E-mail: asc5097@psu.edu

    2014-11-10

    We have used two-dimensional back-projection Doppler tomography as a tool to examine the influence of gravitational and magnetic phenomena in interacting binaries that undergo mass transfer from a magnetically active star onto a non-magnetic main-sequence star. This multitiered study of over 1300 time-resolved spectra of 13 Algol binaries involved calculations of the predicted dynamical behavior of the gravitational flow and the dynamics at the impact site, analysis of the velocity images constructed from tomography, and the influence on the tomograms of orbital inclination, systemic velocity, orbital coverage, and shadowing. The H? tomograms revealed eight sources: chromospheric emission, a gas stream along the gravitational trajectory, a star-stream impact region, a bulge of absorption or emission around the mass-gaining star, a Keplerian accretion disk, an absorption zone associated with hotter gas, a disk-stream impact region, and a hot spot where the stream strikes the edge of a disk. We described several methods used to extract the physical properties of the emission sources directly from the velocity images, including S-wave analysis, the creation of simulated velocity tomograms from hydrodynamic simulations, and the use of synthetic spectra with tomography to sequentially extract the separate sources of emission from the velocity image. In summary, the tomography images have revealed results that cannot be explained solely by gravitational effects: chromospheric emission moving with the mass-losing star, a gas stream deflected from the gravitational trajectory, and alternating behavior between stream state and disk state. Our results demonstrate that magnetic effects cannot be ignored in these interacting binaries.

  4. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    SciTech Connect (OSTI)

    Abdulbaqi, Hayder Saad; Jafri, Mohd Zubir Mat; Omar, Ahmad Fairuz; Mustafa, Iskandar Shahrim Bin; Abood, Loay Kadom

    2015-04-24

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introduce a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.

  5. Final Report on Development of Optimized Field-Reversed Configuration Plasma Formation Techniques for Magnetized Target Fusion

    SciTech Connect (OSTI)

    Lynn, Alan

    2013-11-01

    The University of New Mexico (UNM) proposed a collaboration with Los Alamos National Laboratory (LANL) to develop and test methods for improved formation of field-reversed configuration (FRC) plasmas relevant to magnetized target fusion (MTF) energy research. MTF is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. LANL is currently pursing demonstration of the MTF concept via compression of an FRC plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC's ultimate success as an MTF target lies in the initial pre-ionization (PI) stage. The PI plasma sets the initial conditions from which the FRC is created. In particular, the PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. A ringing theta pinch ionization (RTPI) technique, such as currently used by the FRX-L device at LANL, has the advantages of high ionization fraction, simplicity (since no additional coils are required), and does not require internal electrodes which can introduce impurities into the plasma. However RTPI has been shown to only trap 50% of the initial bias flux at best and imposes additional engineering constraints on the capacitor banks. The amount of trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties, and provides increased ohmic heating of the FRC through induced currents as the magnetic field decays. Increasing the trapped flux also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we initially planned to develop and test a microwave break- down system to improve the initial PI plasma formation. The UNM team would

  6. Nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOE Patents [OSTI]

    Fukushima, Eiichi; Roeder, Stephen B. W.; Assink, Roger A.; Gibson, Atholl A. V.

    1986-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio-frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  7. SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast

    DOE Patents [OSTI]

    Jesse, Stephen [Knoxville, TN; Geohegan, David B. [Knoxville, TN; Guillorn, Michael [Brooktondale, NY

    2009-02-17

    Methods and apparatus are described for SEM imaging and measuring electronic transport in nanocomposites based on electric field induced contrast. A method includes mounting a sample onto a sample holder, the sample including a sample material; wire bonding leads from the sample holder onto the sample; placing the sample holder in a vacuum chamber of a scanning electron microscope; connecting leads from the sample holder to a power source located outside the vacuum chamber; controlling secondary electron emission from the sample by applying a predetermined voltage to the sample through the leads; and generating an image of the secondary electron emission from the sample. An apparatus includes a sample holder for a scanning electron microscope having an electrical interconnect and leads on top of the sample holder electrically connected to the electrical interconnect; a power source and a controller connected to the electrical interconnect for applying voltage to the sample holder to control the secondary electron emission from a sample mounted on the sample holder; and a computer coupled to a secondary electron detector to generate images of the secondary electron emission from the sample.

  8. Magnetic imaging with full-field soft x-ray microscopies (Journal...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Science (SC) Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE X-ray magnetic dichroism; Soft X-ray ...

  9. Soft x-ray microscopy - a powerful analytical tool to image magnetism...

    Office of Scientific and Technical Information (OSTI)

    This article reviews the recent achievements of magnetic soft X-ray microscopy by selected examples of spin torque phenomena, stochastical behavior on the nanoscale and spin ...

  10. Magnetic Resonance Flow Velocity and Temperature Mapping of a...

    Office of Scientific and Technical Information (OSTI)

    A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal ...

  11. New Imaging Technique Sees Elements that Are "Invisible" to Common

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ideas Spring from the SunShot Incubator New Ideas Spring from the SunShot Incubator February 21, 2012 - 1:36pm Addthis The SunShot Incubator program invested $17.5 million in seven companies in its first round of funding -- and those companies have gone on to attract more than $1.6 billion of private financing as they develop and manufacture innovative solar technologies. | Image source: U.S. Securities and Exchange Commission public filings. The SunShot Incubator program invested $17.5 million

  12. Multiattribute probabilistic prostate elastic registration (MAPPER): Application to fusion of ultrasound and magnetic resonance imaging

    SciTech Connect (OSTI)

    Sparks, Rachel Barratt, Dean; Nicolas Bloch, B.; Feleppa, Ernest; Moses, Daniel; Ponsky, Lee; Madabhushi, Anant

    2015-03-15

    Purpose: Transrectal ultrasound (TRUS)-guided needle biopsy is the current gold standard for prostate cancer diagnosis. However, up to 40% of prostate cancer lesions appears isoechoic on TRUS. Hence, TRUS-guided biopsy has a high false negative rate for prostate cancer diagnosis. Magnetic resonance imaging (MRI) is better able to distinguish prostate cancer from benign tissue. However, MRI-guided biopsy requires special equipment and training and a longer procedure time. MRI-TRUS fusion, where MRI is acquired preoperatively and then aligned to TRUS, allows for advantages of both modalities to be leveraged during biopsy. MRI-TRUS-guided biopsy increases the yield of cancer positive biopsies. In this work, the authors present multiattribute probabilistic postate elastic registration (MAPPER) to align prostate MRI and TRUS imagery. Methods: MAPPER involves (1) segmenting the prostate on MRI, (2) calculating a multiattribute probabilistic map of prostate location on TRUS, and (3) maximizing overlap between the prostate segmentation on MRI and the multiattribute probabilistic map on TRUS, thereby driving registration of MRI onto TRUS. MAPPER represents a significant advancement over the current state-of-the-art as it requires no user interaction during the biopsy procedure by leveraging texture and spatial information to determine the prostate location on TRUS. Although MAPPER requires manual interaction to segment the prostate on MRI, this step is performed prior to biopsy and will not substantially increase biopsy procedure time. Results: MAPPER was evaluated on 13 patient studies from two independent datasets—Dataset 1 has 6 studies acquired with a side-firing TRUS probe and a 1.5 T pelvic phased-array coil MRI; Dataset 2 has 7 studies acquired with a volumetric end-firing TRUS probe and a 3.0 T endorectal coil MRI. MAPPER has a root-mean-square error (RMSE) for expert selected fiducials of 3.36 ± 1.10 mm for Dataset 1 and 3.14 ± 0.75 mm for Dataset 2. State

  13. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry. Final report, September 1988--November 1992

    SciTech Connect (OSTI)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows. A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.

  14. 4 Tesla Magnet Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Tesla Magnet Facility 4 Tesla Magnet Facility Argonne researchers recently acquired two decommissioned magnets from magnetic resonance imaging (MRI) scanners from hospitals in ...

  15. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the

  16. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the

  17. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the

  18. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Now, a Belgian-German-ALS collaboration has used high-resolution, time-resolved, magnetic x-ray microscopy to experimentally reveal the first step of the reversal process: the...

  19. Application of the optically stimulated luminescence (OSL) technique for mouse dosimetry in micro-CT imaging

    SciTech Connect (OSTI)

    Vrigneaud, Jean-Marc; Courteau, Alan; Oudot, Alexandra; Collin, Bertrand; Ranouil, Julien; Morgand, Loïc; Raguin, Olivier; Walker, Paul; Brunotte, François

    2013-12-15

    Purpose: Micro-CT is considered to be a powerful tool to investigate various models of disease on anesthetized animals. In longitudinal studies, the radiation dose delivered by the micro-CT to the same animal is a major concern as it could potentially induce spurious effects in experimental results. Optically stimulated luminescence dosimeters (OSLDs) are a relatively new kind of detector used in radiation dosimetry for medical applications. The aim of this work was to assess the dose delivered by the CT component of a micro-SPECT (single-photon emission computed tomography)/CT camera during a typical whole-body mouse study, using commercially available OSLDs based on Al{sub 2}O{sub 3}:C crystals.Methods: CTDI (computed tomography dose index) was measured in micro-CT with a properly calibrated pencil ionization chamber using a rat-like phantom (60 mm in diameter) and a mouse-like phantom (30 mm in diameter). OSLDs were checked for reproducibility and linearity in the range of doses delivered by the micro-CT. Dose measurements obtained with OSLDs were compared to those of the ionization chamber to correct for the radiation quality dependence of OSLDs in the low-kV range. Doses to tissue were then investigated in phantoms and cadavers. A 30 mm diameter phantom, specifically designed to insert OSLDs, was used to assess radiation dose over a typical whole-body mouse imaging study. Eighteen healthy female BALB/c mice weighing 27.1 ± 0.8 g (1 SD) were euthanized for small animal measurements. OLSDs were placed externally or implanted internally in nine different locations by an experienced animal technician. Five commonly used micro-CT protocols were investigated.Results: CTDI measurements were between 78.0 ± 2.1 and 110.7 ± 3.0 mGy for the rat-like phantom and between 169.3 ± 4.6 and 203.6 ± 5.5 mGy for the mouse-like phantom. On average, the displayed CTDI at the operator console was underestimated by 1.19 for the rat-like phantom and 2.36 for the mouse

  20. Novel Imaging Techniques, Integrated with Mineralogical, Geochemical and Microbiological Characterization to Determine the Biogeochemical Controls....

    SciTech Connect (OSTI)

    Lloyd, Jonathan R.

    2005-06-01

    Tc(VII) will be reduced and precipitated in FRC sediments under anaerobic conditions in batch experiments (progressive microcosms). The complementary microcosm experiments using low pH/nigh nitrate sediments from 3 (near FW 009) are imminent, with the sediment cores already shipped to Manchester. HYPOTHESIS 2. Tc(VII) reduction and precipitation can be visualized in discrete biogeochemical zones in sediment columns using 99mTc and a gamma-camera. Preliminary experiments testing the use of 99mTc as a radiotracer to address hypotheses 2 and 3 have suggested that the 99mTc associates with Fe(II)-bearing sediments in microcosms and stratified columns containing FRC sediments. Initial proof of concept microcosms containing Fe(II)-bearing, microbially-reduced FRC sediments were spiked with 99mTc and imaged using a gamma-camera. In comparison with oxic controls, 99mTc was significantly partitioned in the solid phase in Fe(III)-reducing sediments in batch experiments. Column experiments using FRC background area soil with stratified biogeochemical zones after stimulation of anaerobic processes through nutrient supplementation, suggested that 99mTc transport was retarded through areas of Fe(III) reduction. HYPOTHESIS 3. Sediment-bound reduced 99mTc can be solubilized by perturbations including oxidation coupled to biological nitrate reduction, and mobilization visualized in real-time using a gamma-camera. Significant progress has been made focusing on the impact of nitrate on the biogeochemical behavior of technetium. Additions of 100 mM nitrate to FRC sediment microcosms, which could potentially compete for electrons during metal reduction, inhibited the reduction of both Fe(III) and Tc(VII) completely. Experiments have also addressed the impact of high nitrate concentrations on Fe(II) and Tc(IV) in pre-reduced sediments, showing no significant resolubilization of Tc with the addition of 25 mM nitrate. A parallel set of experiments addressing the impact of aerobic

  1. Method for nuclear magnetic resonance imaging using deuterum as a contrast agent

    DOE Patents [OSTI]

    Kehayias, Joseph J.; Joel, Darrel D.; Adams, William H.; Stein, Harry L.

    1990-01-01

    A method for in vivo NMR imaging of the blood vessels and organs of a patient characterized by using a dark dye-like imaging substance consisting essentially of a stable, high-purity concentration of D.sub.2 O in a solution with water.

  2. Three dimensional imaging and analysis of a single nano-device at the ultimate scale using correlative microscopy techniques

    SciTech Connect (OSTI)

    Grenier, A.; Barnes, J. P.; Serra, R.; Audoit, G.; Cooper, D.; Duguay, S.; Rolland, N.; Blavette, D.; Vurpillot, F.; Morin, P.; Gouraud, P.

    2015-05-25

    The analysis of a same sample using nanometre or atomic-scale techniques is fundamental to fully understand device properties. This is especially true for the dopant distribution within last generation nano-transistors such as MOSFET or FINFETs. In this work, the spatial distribution of boron in a nano-transistor at the atomic scale has been investigated using a correlative approach combining electron and atom probe tomography. The distortions present in the reconstructed volume using atom probe tomography have been discussed by simulations of surface atoms using a cylindrical symmetry taking into account the evaporation fields. Electron tomography combined with correction of atomic density was used so that to correct image distortions observed in atom probe tomography reconstructions. These corrected atom probe tomography reconstructions then enable a detailed boron doping analysis of the device.

  3. Diagnostics and Control of Natural Gas-Fired furnaces via Flame Image Analysis using Machine Vision & Artificial Intelligence Techniques

    SciTech Connect (OSTI)

    Shahla Keyvan

    2005-12-01

    A new approach for the detection of real-time properties of flames is used in this project to develop improved diagnostics and controls for natural gas fired furnaces. The system utilizes video images along with advanced image analysis and artificial intelligence techniques to provide virtual sensors in a stand-alone expert shell environment. One of the sensors is a flame sensor encompassing a flame detector and a flame analyzer to provide combustion status. The flame detector can identify any burner that has not fired in a multi-burner furnace. Another sensor is a 3-D temperature profiler. One important aspect of combustion control is product quality. The 3-D temperature profiler of this on-line system is intended to provide a tool for a better temperature control in a furnace to improve product quality. In summary, this on-line diagnostic and control system offers great potential for improving furnace thermal efficiency, lowering NOx and carbon monoxide emissions, and improving product quality. The system is applicable in natural gas-fired furnaces in the glass industry and reheating furnaces used in steel and forging industries.

  4. Pulsed Gradient Spin Echo Nuclear Magnetic Resonance Imaging of Diffusion in Granular Flow

    SciTech Connect (OSTI)

    Seymour, Joseph D.; Caprihan, Arvind; Altobelli, Stephen A.; Fukushima, Eiichi

    2000-01-10

    We derive the formalism to obtain spatial distributions of collisional correlation times for macroscopic particles undergoing granular flow from pulsed gradient spin echo nuclear magnetic resonance diffusion data. This is demonstrated with an example of axial motion in the shear flow regime of a 3D granular flow in a horizontal rotating cylinder at one rotation rate. (c) 2000 The American Physical Society.

  5. Film vs. magnetic tape recording for IRLS AN/AAD-5 for open skies imaging

    SciTech Connect (OSTI)

    Kumar, V.; Saatzer, P.; Goede, W.

    1996-11-01

    The United States Government (USG) Full Operational Capability (FOC) Open Skies aircraft (OC-135) will be equipped with an Infrared Line Scanner AN/AAD-5, fully compliant with the treaty requirements. An extensive trade study is conducted to explore the possibility of switching from film recording to either analog or digital magnetic tape recording when the AAD-5 IRLS is flown in the Open Skies Aircraft. This paper presents preliminary trade study results and the overall conclusions and recommendations based on the analysis. A flight measurement program is now being carried out under the Follow On Sensor Evaluation Program (FOSEP) to evaluate the digital magnetic recording as compared to the film recording and the results of these fight measurement will be presented at a later date. 6 figs., 4 tabs.

  6. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer

    SciTech Connect (OSTI)

    Rondin, L.; Tetienne, J.-P.; Spinicelli, P.; Roch, J.-F.; Jacques, V.; Dal Savio, C.; Karrai, K.; Dantelle, G.; Thiaville, A.; Rohart, S.

    2012-04-09

    We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.

  7. Magnetization of neutron matter

    SciTech Connect (OSTI)

    Bigdeli, M.

    2011-09-21

    In this paper, we compute magnetization of neutron matter at strong magnetic field using the lowest order constrained variational (LOCV) technique.

  8. SU-E-J-229: Magnetic Resonance Imaging of Small Fiducial Markers for Proton Beam Therapy

    SciTech Connect (OSTI)

    Hu, Y; James, J; Panda, A; Vargas, C; Silva, A; Liu, W; Shen, J; Ding, X; Paden, R; Hanson, J; Wong, W; Schild, S; Bues, M

    2015-06-15

    Purpose: For proton beam therapy, small fiducial markers are preferred for patient alignment due to less interference with the proton beam. Visualizing small fiducial markers can be challenging in MRI. This study intends to investigate MRI imaging protocols for better visualization of small fiducial markers. Methods: Two carbon and two coil-shaped gold markers were placed into a gel phantom. Both carbon markers had a diameter of 1mm and a length of 3mm. Both gold markers had a length of 5mm. One gold marker had a diameter of 0.5mm and the other had a diameter of 0.75mm. T1 VIBE, T2 SPACE, TrueFISP and susceptibility weighted (SW) images were acquired. To improve marker contrast, high spatial resolution was used to reduce partial volume effect. Slice thickness was 1.5mm for all four sequences and in-plane resolution was 0.6mm for TrueFISP, 0.7mm for T1 VIBE, and 0.8mm for T2 SPACE and SW. For comparison purpose, a 3D T1 VIBE image set at 3mm slice thickness and 1.2mm in-plane resolution was also acquired. Results: All markers were visible in all high-resolution image sets. In each image set, marker-induced signal void was the smallest (in diameter) for carbon markers, followed by the 0.5mm gold marker and the largest for the 0.75mm gold marker. The SW images had the largest marker-induced signal void. However, those might be confused by susceptibility-gradient-induced signal voids. T1 VIBE had good visualization of markers with nicely defined edges. T2 SPACE had reasonable visualization of markers but edges were slightly blurred. TrueFISP had good visualization of markers only if they were not masked by banding artifacts. As a comparison, all markers were hardly visible in the standard resolution T1 VIBE images. Conclusion: 3D high-resolution T1 VIBE and SW have great potential in providing good visualization of small fiducial markers for proton beam therapy.

  9. Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856).

    SciTech Connect (OSTI)

    Lamppa, Derek C.; Haill, Thomas A.; Alexander, C. Scott; Asay, James Russell

    2010-09-01

    A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.

  10. Study of hydrogen in coals, polymers, oxides, and muscle water by nuclear magnetic resonance; extension of solid-state high-resolution techniques. [Hydrogen molybdenum bronze

    SciTech Connect (OSTI)

    Ryan, L.M.

    1981-10-01

    Nuclear magnetic resonance (NMR) spectroscopy has been an important analytical and physical research tool for several decades. One area of NMR which has undergone considerable development in recent years is high resolution NMR of solids. In particular, high resolution solid state /sup 13/C NMR spectra exhibiting features similar to those observed in liquids are currently achievable using sophisticated pulse techniques. The work described in this thesis develops analogous methods for high resolution /sup 1/H NMR of rigid solids. Applications include characterization of hydrogen aromaticities in fossil fuels, and studies of hydrogen in oxides and bound water in muscle.

  11. Classification System for Identifying Women at Risk for Altered Partial Breast Irradiation Recommendations After Breast Magnetic Resonance Imaging

    SciTech Connect (OSTI)

    Kowalchik, Kristin V.; Vallow, Laura A.; McDonough, Michelle; Thomas, Colleen S.; Heckman, Michael G.; Peterson, Jennifer L.; Adkisson, Cameron D.; Serago, Christopher; McLaughlin, Sarah A.

    2013-09-01

    Purpose: To study the utility of preoperative breast MRI for partial breast irradiation (PBI) patient selection, using multivariable analysis of significant risk factors to create a classification rule. Methods and Materials: Between 2002 and 2009, 712 women with newly diagnosed breast cancer underwent preoperative bilateral breast MRI at Mayo Clinic Florida. Of this cohort, 566 were retrospectively deemed eligible for PBI according to the National Surgical Adjuvant Breast and Bowel Project Protocol B-39 inclusion criteria using physical examination, mammogram, and/or ultrasound. Magnetic resonance images were then reviewed to determine their impact on patient eligibility. The patient and tumor characteristics were evaluated to determine risk factors for altered PBI eligibility after MRI and to create a classification rule. Results: Of the 566 patients initially eligible for PBI, 141 (25%) were found ineligible because of pathologically proven MRI findings. Magnetic resonance imaging detected additional ipsilateral breast cancer in 118 (21%). Of these, 62 (11%) had more extensive disease than originally noted before MRI, and 64 (11%) had multicentric disease. Contralateral breast cancer was detected in 28 (5%). Four characteristics were found to be significantly associated with PBI ineligibility after MRI on multivariable analysis: premenopausal status (P=.021), detection by palpation (P<.001), first-degree relative with a history of breast cancer (P=.033), and lobular histology (P=.002). Risk factors were assigned a score of 0-2. The risk of altered PBI eligibility from MRI based on number of risk factors was 0:18%; 1:22%; 2:42%; 3:65%. Conclusions: Preoperative bilateral breast MRI altered the PBI recommendations for 25% of women. Women who may undergo PBI should be considered for breast MRI, especially those with lobular histology or with 2 or more of the following risk factors: premenopausal, detection by palpation, and first-degree relative with a history of

  12. Determination of hydrogen diffusion coefficients in F82H by hydrogen depth profiling with a tritium imaging plate technique

    SciTech Connect (OSTI)

    Higaki, M.; Otsuka, T.; Hashizume, K.; Tokunaga, K.; Ezato, K.; Suzuki, S.; Enoeda, M.; Akiba, M.

    2015-03-15

    Hydrogen diffusion coefficients in a reduced activation ferritic/martensitic steel (F82H) and an oxide dispersion strengthened F82H (ODS-F82H) have been determined from depth profiles of plasma-loaded hydrogen with a tritium imaging plate technique (TIPT) in the temperature range from 298 K to 523 K. Data on hydrogen diffusion coefficients, D, in F82H, are summarized as D [m{sup 2}*s{sup -1}] =1.1*10{sup -7}exp(-16[kJ mol{sup -1}]/RT). The present data indicate almost no trapping effect on hydrogen diffusion due to an excess entry of energetic hydrogen by the plasma loading, which results in saturation of the trapping sites at the surface and even in the bulk. In the case of ODS-F82H, data of hydrogen diffusion coefficients are summarized as D [m{sup 2}*s{sup -1}] =2.2*10{sup -7}exp(-30[kJ mol{sup -1}]/RT) indicating a remarkable trapping effect on hydrogen diffusion caused by tiny oxide particles (Y{sub 2}O{sub 3}) in the bulk of F82H. Such oxide particles introduced in the bulk may play an effective role not only on enhancement of mechanical strength but also on suppression of hydrogen penetration by plasma loading.

  13. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: A postmortem study

    SciTech Connect (OSTI)

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee

    2013-12-15

    Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The leftright correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson'sr, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In leftright comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The leftright breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson'sr increased from 0.86 to 0.92 with the bias field correction

  14. Intensity inhomogeneity correction for magnetic resonance imaging of human brain at 7T

    SciTech Connect (OSTI)

    Uwano, Ikuko; Yamashita, Fumio; Higuchi, Satomi; Ito, Kenji; Sasaki, Makoto; Kudo, Kohsuke Goodwin, Jonathan; Harada, Taisuke; Ogawa, Akira

    2014-02-15

    Purpose: To evaluate the performance and efficacy for intensity inhomogeneity correction of various sequences of the human brain in 7T MRI using the extended version of the unified segmentation algorithm. Materials: Ten healthy volunteers were scanned with four different sequences (2D spin echo [SE], 3D fast SE, 2D fast spoiled gradient echo, and 3D time-of-flight) by using a 7T MRI system. Intensity inhomogeneity correction was performed using the “New Segment” module in SPM8 with four different values (120, 90, 60, and 30 mm) of full width at half maximum (FWHM) in Gaussian smoothness. The uniformity in signals in the entire white matter was evaluated using the coefficient of variation (CV); mean signal intensities between the subcortical and deep white matter were compared, and contrast between subcortical white matter and gray matter was measured. The length of the lenticulostriate (LSA) was measured on maximum intensity projection (MIP) images in the original and corrected images. Results: In all sequences, the CV decreased as the FWHM value decreased. The differences of mean signal intensities between subcortical and deep white matter also decreased with smaller FWHM values. The contrast between white and gray matter was maintained at all FWHM values. LSA length was significantly greater in corrected MIP than in the original MIP images. Conclusions: Intensity inhomogeneity in 7T MRI can be successfully corrected using SPM8 for various scan sequences.

  15. Difference between healthy children and ADHD based on wavelet spectral analysis of nuclear magnetic resonance images

    SciTech Connect (OSTI)

    González Gómez Dulce, I. E-mail: emoreno@fcfm.buap.mx E-mail: joserm84@gmail.com; Moreno Barbosa, E. E-mail: emoreno@fcfm.buap.mx E-mail: joserm84@gmail.com; Hernández, Mario Iván Martínez E-mail: emoreno@fcfm.buap.mx E-mail: joserm84@gmail.com; Méndez, José Ramos E-mail: emoreno@fcfm.buap.mx E-mail: joserm84@gmail.com; Silvia, Hidalgo Tobón; Pilar, Dies Suarez E-mail: neurodoc@prodigy.net.mx; Eduardo, Barragán Pérez E-mail: neurodoc@prodigy.net.mx; Benito, De Celis Alonso

    2014-11-07

    The main goal of this project was to create a computer algorithm based on wavelet analysis of region of homogeneity images obtained during resting state studies. Ideally it would automatically diagnose ADHD. Because the cerebellum is an area known to be affected by ADHD, this study specifically analysed this region. Male right handed volunteers (infants with ages between 7 and 11 years old) were studied and compared with age matched controls. Statistical differences between the values of the absolute integrated wavelet spectrum were found and showed significant differences (p<0.0015) between groups. This difference might help in the future to distinguish healthy from ADHD patients and therefore diagnose ADHD. Even if results were statistically significant, the small size of the sample limits the applicability of this methods as it is presented here, and further work with larger samples and using freely available datasets must be done.

  16. A Prospective Study of the Utility of Magnetic Resonance Imaging in Determining Candidacy for Partial Breast Irradiation

    SciTech Connect (OSTI)

    Dorn, Paige L.; Al-Hallaq, Hania A.; Haq, Farah; Goldberg, Mira; Abe, Hiroyuki; Hasan, Yasmin; Chmura, Steven J.

    2013-03-01

    Purpose: Retrospective data have demonstrated that breast magnetic resonance imaging (MRI) may change a patient's eligibility for partial breast irradiation (PBI) by identifying multicentric, multifocal, or contralateral disease. The objective of the current study was to prospectively determine the frequency with which MRI identifies occult disease and to establish clinical factors associated with a higher likelihood of MRI prompting changes in PBI eligibility. Methods and Materials: At The University of Chicago, women with breast cancer uniformly undergo MRI in addition to mammography and ultrasonography. From June 2009 through May 2011, all patients were screened prospectively in a multidisciplinary conference for PBI eligibility based on standard imaging, and the impact of MRI on PBI eligibility according to National Surgical Adjuvant Breast and Bowel Project protocol B-39/Radiation Therapy Oncology Group protocol 0413 entry criteria was recorded. Univariable analysis was performed using clinical characteristics in both the prospective cohort and in a separate cohort of retrospectively identified patients. Pooled analysis was used to derive a scoring index predictive of the risk that MRI would identify additional disease. Results: A total of 521 patients were screened for PBI eligibility, and 124 (23.8%) patients were deemed eligible for PBI based on standard imaging. MRI findings changed PBI eligibility in 12.9% of patients. In the pooled univariable analysis, tumor size ?2 cm on mammography or ultrasonography (P=.02), age <50 years (P=.01), invasive lobular histology (P=.01), and HER-2/neu amplification (P=.01) were associated with a higher likelihood of MRI changing PBI eligibility. A predictive score was generated by summing the number of significant risk factors. Patients with a score of 0, 1, 2, and 3 had changes to eligibility based on MRI findings in 2.8%, 13.2%, 38.1%, and 100%, respectively (P<.0001). Conclusions: MRI identified additional disease in a

  17. Minimally Invasive Magnetic Resonance Imaging-Guided Free-Hand Aspiration of Symptomatic Nerve Route Compressing Lumbosacral Cysts Using a 1.0-Tesla Open Magnetic Resonance Imaging System

    SciTech Connect (OSTI)

    Bucourt, Maximilian de Streitparth, Florian Collettini, Federico; Guettler, Felix; Rathke, Hendrik; Lorenz, Britta; Rump, Jens; Hamm, Bernd; Teichgraeber, U. K.

    2012-02-15

    Purpose: To evaluate the feasibility of minimally invasive magnetic resonance imaging (MRI)-guided free-hand aspiration of symptomatic nerve route compressing lumbosacral cysts in a 1.0-Tesla (T) open MRI system using a tailored interactive sequence. Materials and Methods: Eleven patients with MRI-evident symptomatic cysts in the lumbosacral region and possible nerve route compressing character were referred to a 1.0-T open MRI system. For MRI interventional cyst aspiration, an interactive sequence was used, allowing for near real-time position validation of the needle in any desired three-dimensional plane. Results: Seven of 11 cysts in the lumbosacral region were successfully aspirated (average 10.1 mm [SD {+-} 1.9]). After successful cyst aspiration, each patient reported speedy relief of initial symptoms. Average cyst size was 9.6 mm ({+-}2.6 mm). Four cysts (8.8 {+-} 3.8 mm) could not be aspirated. Conclusion: Open MRI systems with tailored interactive sequences have great potential for cyst aspiration in the lumbosacral region. The authors perceive major advantages of the MR-guided cyst aspiration in its minimally invasive character compared to direct and open surgical options along with consecutive less trauma, less stress, and also less side-effects for the patient.

  18. Optimizing 4-Dimensional Magnetic Resonance Imaging Data Sampling for Respiratory Motion Analysis of Pancreatic Tumors

    SciTech Connect (OSTI)

    Stemkens, Bjorn; Tijssen, Rob H.N.; Senneville, Baudouin D. de

    2015-03-01

    Purpose: To determine the optimum sampling strategy for retrospective reconstruction of 4-dimensional (4D) MR data for nonrigid motion characterization of tumor and organs at risk for radiation therapy purposes. Methods and Materials: For optimization, we compared 2 surrogate signals (external respiratory bellows and internal MRI navigators) and 2 MR sampling strategies (Cartesian and radial) in terms of image quality and robustness. Using the optimized protocol, 6 pancreatic cancer patients were scanned to calculate the 4D motion. Region of interest analysis was performed to characterize the respiratory-induced motion of the tumor and organs at risk simultaneously. Results: The MRI navigator was found to be a more reliable surrogate for pancreatic motion than the respiratory bellows signal. Radial sampling is most benign for undersampling artifacts and intraview motion. Motion characterization revealed interorgan and interpatient variation, as well as heterogeneity within the tumor. Conclusions: A robust 4D-MRI method, based on clinically available protocols, is presented and successfully applied to characterize the abdominal motion in a small number of pancreatic cancer patients.

  19. Magnetic resonance imaging of DNP enhancements in a rotor spinning at the magic angle

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek

    2016-02-23

    Simulations performed on model, static, samples have shown that the microwave power is non-uniformly distributed in the magic angle spinning (MAS) rotor when using conventional dynamic nuclear polarization (DNP) instrumentation. Here, we applied the stray-field magic angle spinning imaging (STRAFI–MAS) experiment to generate a spatial map of the DNP enhancements in a full rotor, which is spun at a low rate in a commercial DNP–MAS NMR system. Notably, we observed that the enhancement factors produced in the center of the rotor can be twice as large as those produced at the top of the rotor. Surprisingly, we observed that themore » largest enhancement factors are observed along the axis of the rotor as opposed to against its walls, which are most directly irradiated by the microwave beam. We lastly observed that the distribution of enhancement factors can be moderately improved by degassing the sample and increasing the microwave power. The inclusion of dielectric particles greatly amplifies the enhancement factors throughout the rotor. Furthermore, the STRAFI–MAS approach can provide useful guidance for optimizing the access of microwave power to the sample, and thereby lead to further increases in sensitivity of DNP–MAS NMR.« less

  20. Scalable subsurface inverse modeling of huge data sets with an application to tracer concentration breakthrough data from magnetic resonance imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Jonghyun; Yoon, Hongkyu; Kitanidis, Peter K.; Werth, Charles J.; Valocchi, Albert J.

    2016-06-09

    When characterizing subsurface properties is crucial for reliable and cost-effective groundwater supply management and contaminant remediation. With recent advances in sensor technology, large volumes of hydro-geophysical and geochemical data can be obtained to achieve high-resolution images of subsurface properties. However, characterization with such a large amount of information requires prohibitive computational costs associated with “big data” processing and numerous large-scale numerical simulations. To tackle such difficulties, the Principal Component Geostatistical Approach (PCGA) has been proposed as a “Jacobian-free” inversion method that requires much smaller forward simulation runs for each iteration than the number of unknown parameters and measurements needed inmore » the traditional inversion methods. PCGA can be conveniently linked to any multi-physics simulation software with independent parallel executions. In our paper, we extend PCGA to handle a large number of measurements (e.g. 106 or more) by constructing a fast preconditioner whose computational cost scales linearly with the data size. For illustration, we characterize the heterogeneous hydraulic conductivity (K) distribution in a laboratory-scale 3-D sand box using about 6 million transient tracer concentration measurements obtained using magnetic resonance imaging. Since each individual observation has little information on the K distribution, the data was compressed by the zero-th temporal moment of breakthrough curves, which is equivalent to the mean travel time under the experimental setting. Moreover, only about 2,000 forward simulations in total were required to obtain the best estimate with corresponding estimation uncertainty, and the estimated K field captured key patterns of the original packing design, showing the efficiency and effectiveness of the proposed method. This article is protected by copyright. All rights reserved.« less

  1. A Signal-Inducing Bone Cement for Magnetic Resonance Imaging-Guided Spinal Surgery Based on Hydroxyapatite and Polymethylmethacrylate

    SciTech Connect (OSTI)

    Wichlas, Florian, E-mail: florian.wichlas@charite.de; Seebauer, Christian J.; Schilling, Rene [University Charite, Center for Musculoskeletal Surgery (Germany); Rump, Jens [University Charite, Department of Radiology (Germany); Chopra, Sascha S. [University Charite, Center for Musculoskeletal Surgery (Germany); Walter, Thula; Teichgraeber, Ulf K. M. [University Charite, Department of Radiology (Germany); Bail, Hermann J. [University Charite, Center for Musculoskeletal Surgery (Germany)

    2012-06-15

    The aim of this study was to develop a signal-inducing bone cement for magnetic resonance imaging (MRI)-guided cementoplasty of the spine. This MRI cement would allow precise and controlled injection of cement into pathologic lesions of the bone. We mixed conventional polymethylmethacrylate bone cement (PMMA; 5 ml methylmethacrylate and 12 g polymethylmethacrylate) with hydroxyapatite (HA) bone substitute (2-4 ml) and a gadolinium-based contrast agent (CA; 0-60 {mu}l). The contrast-to-noise ratio (CNR) of different CA doses was measured in an open 1.0-Tesla scanner for fast T1W Turbo-Spin-Echo (TSE) and T1W TSE pulse sequences to determine the highest signal. We simulated MRI-guided cementoplasty in cadaveric spines. Compressive strength of the cements was tested. The highest CNR was (1) 87.3 (SD 2.9) in fast T1W TSE for cements with 4 {mu}l CA/ml HA (4 ml) and (2) 60.8 (SD 2.4) in T1W TSE for cements with 1 {mu}l CA/ml HA (4 ml). MRI-guided cementoplasty in cadaveric spine was feasible. Compressive strength decreased with increasing amounts of HA from 46.7 MPa (2 ml HA) to 28.0 MPa (4 ml HA). An MRI-compatible cement based on PMMA, HA, and CA is feasible and clearly visible on MRI images. MRI-guided spinal cementoplasty using this cement would permit direct visualization of the cement, the pathologic process, and the anatomical surroundings.

  2. Kinetic effects on double hysteresis in spin crossover molecular magnets analyzed with first order reversal curve diagram technique

    SciTech Connect (OSTI)

    Stan, Raluca-Maria; Gaina, Roxana; Enachescu, Cristian E-mail: radu.tanasa@uaic.ro; Stancu, Alexandru; Tanasa, Radu E-mail: radu.tanasa@uaic.ro; Bronisz, Robert

    2015-05-07

    In this paper, we analyze two types of hysteresis in spin crossover molecular magnets compounds in the framework of the First Order Reversal Curve (FORC) method. The switching between the two stable states in these compounds is accompanied by hysteresis phenomena if the intermolecular interactions are higher than a threshold. We have measured the static thermal hysteresis (TH) and the kinetic light induced thermal hysteresis (LITH) major loops and FORCs for the polycrystalline Fe(II) spin crossover compound [Fe{sub 1−x}Zn{sub x}(bbtr){sub 3}](ClO{sub 4}){sub 2} (bbtr = 1,4-di(1,2,3-triazol-1-yl)butane), either in a pure state (x = 0) or doped with Zn ions (x = 0.33) considering different sweeping rates. Here, we use this method not only to infer the domains distribution but also to disentangle between kinetic and static components of the LITH and to estimate the changes in the intermolecular interactions introduced by dopants. We also determined the qualitative relationship between FORC distributions measured for TH and LITH.

  3. User Science Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a Field Reverse Configuration (FRC) magnetic field. Magnetic separatrix denoted by green surface. Spheres are colored by azimuthal velocity. Image courtesy of Charlson Kim,...

  4. Following the Transient Reactions in Lithium-Sulfur Batteries Using In an In Situ Nuclear Magnetic Resonance Technique

    SciTech Connect (OSTI)

    Xiao, Jie; Hu, Jian Z.; Chen, Honghao; Vijayakumar, M.; Zheng, Jianming; Pan, Huilin; Walter, Eric D.; Hu, Mary Y.; Deng, Xuchu; Feng, Ju; Liaw, Bor Yann; Gu, Meng; Deng, Zhiqun; Lu, Dongping; Xu, Suochang; Wang, Chong M.; Liu, Jun

    2015-05-13

    Li-S batteries hold great potential for next-generation, large-format power source applications; yet, the fundamental understanding of the electrochemical reaction pathways remains lacking to enable their functionality as promised. Here, in situ NMR technique employing a specially designed cylindrical micro battery was used to monitor the chemical environments around Li+ ions during repetitive charge-discharge process and track the transient electrochemical and chemical reactions occurring in the whole Li-S system. The in situ NMR provides real time, quantitative information related to the temporal concentration variations of the polysulfides with various chain lengths, providing important clues for the reaction pathways during both discharge and charge processes. The in-situ technique also reveals that redox reactions may involve transient species that are difficult to detect in ex-situ NMR study. Intermediate species such as charged free radicals may play an important role in the formation of the polysulfide products. Additionally, in situ NMR measurement simultaneously reveals vital information on the 7Li chemical environments in the electrochemical and parasitic reactions on the lithium anode that promotes the understanding of the failure mechanism in the Li-S system. These new insights could help design effective strategies to accelerate the development of Li-S battery technology.

  5. Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Physical Properties See Electrical Techniques Electromagnetic techniques utilize EM induction processes to measure one or more electric or magnetic field components resulting...

  6. 1,2-Hydroxypyridonates as Contrast Agents for Magnetic ResonanceImaging: TREN-1,2-HOPO

    SciTech Connect (OSTI)

    Jocher, Christoph J.; Moore, Evan G.; Xu, Jide; Avedano, Stefano; Botta, Mauro; Aime, Silvio; Raymond, Kenneth N.

    2007-05-08

    1,2-Hydroxypyridinones (1,2-HOPO) form very stable lanthanide complexes that may be useful as contrast agents for Magnetic Resonance Imaging (MRI). X-ray diffraction of single crystals established that the solid state structures of the Eu(III) and the previously reported [Inorg. Chem. 2004, 43, 5452] Gd(III) complex are identical. The recently discovered sensitizing properties of 1,2-HOPO chelates for Eu(III) luminescence allow direct measurement of the number if water molecules in the metal complex. Fluorescence measurements of the Eu(III) complex corroborate that in solution two water molecules coordinate the lanthanide (q = 2) as proposed from the analysis of NMRD profiles. In addition, fluorescence measurements have verified the anion binding interactions of lanthanide TREN-1,2-HOPO complexes in solution, studied by relaxivity, revealing only very weak oxalate binding (K{sub A} = 82.7 {+-} 6.5 M{sup -1}). Solution thermodynamic studies of the metal complex and free ligand have been carried out using potentiometry, spectrophotometry and fluorescence spectroscopy. The metal ion selectivity of TREN-1,2-HOPO supports the feasibility of using 1,2-HOPO ligands for selective lanthanide binding [pGd = 19.3 (2); pZn = 15.2 (2), pCa = 8.8 (3)].

  7. Advancements in Orthopedic Intervention: Retrograde Drilling and Bone Grafting of Osteochondral Lesions of the Knee Using Magnetic Resonance Imaging Guidance

    SciTech Connect (OSTI)

    Seebauer, Christian J.; Bail, Hermann J.; Rump, Jens C. Walter, Thula Teichgraeber, Ulf K. M.

    2010-12-15

    Computer-assisted surgery is currently a novel challenge for surgeons and interventional radiologists. Magnetic resonance imaging (MRI)-guided procedures are still evolving. In this experimental study, we describe and assess an innovative passive-navigation method for MRI-guided treatment of osteochondritis dissecans of the knee. A navigation principle using a passive-navigation device was evaluated in six cadaveric knee joint specimens for potential applicability in retrograde drilling and bone grafting of osteochondral lesions using MRI guidance. Feasibility and accuracy were evaluated in an open MRI scanner (1.0 T Philips Panorama HFO MRI System). Interactive MRI navigation allowed precise drilling and bone grafting of osteochondral lesions of the knee. All lesions were hit with an accuracy of 1.86 mm in the coronal plane and 1.4 mm the sagittal plane. Targeting of all lesions was possible with a single drilling. MRI allowed excellent assessment of correct positioning of the cancellous bone cylinder during bone grafting. The navigation device and anatomic structures could be clearly identified and distinguished throughout the entire drilling procedure. MRI-assisted navigation method using a passive navigation device is feasible for the treatment of osteochondral lesions of the knee under MRI guidance and allows precise and safe drilling without exposure to ionizing radiation. This method may be a viable alternative to other navigation principles, especially for pediatric and adolescent patients. This MRI-navigated method is also potentially applicable in many other MRI-guided interventions.

  8. Image

    Energy Science and Technology Software Center (OSTI)

    2007-08-31

    The computer side of the IMAGE project consists of a collection of Perl scripts that perform a variety of tasks; scripts are available to insert, update and delete data from the underlying Oracle database, download data from NCBI's Genbank and other sources, and generate data files for download by interested parties. Web scripts make up the tracking interface, and various tools available on the project web-site (image.llnl.gov) that provide a search interface to the database.

  9. Neuroimaging Techniques: a Conceptual Overview of Physical Principles, Contribution and History

    SciTech Connect (OSTI)

    Minati, Ludovico

    2006-06-08

    This paper is meant to provide a brief overview of the techniques currently used to image the brain and to study non-invasively its anatomy and function. After a historical summary in the first section, general aspects are outlined in the second section. The subsequent six sections survey, in order, computed tomography (CT), morphological magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion-tensor magnetic resonance imaging (DWI/DTI), positron emission tomography (PET), and electro- and magneto-encephalography (EEG/MEG) based imaging. Underlying physical principles, modelling and data processing approaches, as well as clinical and research relevance are briefly outlined for each technique. Given the breadth of the scope, there has been no attempt to be comprehensive. The ninth and final section outlines some aspects of active research in neuroimaging.

  10. Differences in Supratentorial Damage of White Matter in Pediatric Survivors of Posterior Fossa Tumors With and Without Adjuvant Treatment as Detected by Magnetic Resonance Diffusion Tensor Imaging

    SciTech Connect (OSTI)

    Rueckriegel, Stefan Mark; Driever, Pablo Hernaiz; Blankenburg, Friederike; Luedemann, Lutz; Henze, Guenter; Bruhn, Harald

    2010-03-01

    Purpose: To elucidate morphologic correlates of brain dysfunction in pediatric survivors of posterior fossa tumors by using magnetic resonance diffusion tensor imaging (DTI) to examine neuroaxonal integrity in white matter. Patients and Methods: Seventeen medulloblastoma (MB) patients who had received surgery and adjuvant treatment, 13 pilocytic astrocytoma (PA) patients who had been treated only with surgery, and age-matched healthy control subjects underwent magnetic resonance imaging on a 3-Tesla system. High-resolution conventional T1- and T2-weighted magnetic resonance imaging and DTI data sets were obtained. Fractional anisotropy (FA) maps were analyzed using tract-based spatial statistics, a part of the Functional MRI of the Brain Software Library. Results: Compared with control subjects, FA values of MB patients were significantly decreased in the cerebellar midline structures, in the frontal lobes, and in the callosal body. Fractional anisotropy values of the PA patients were not only decreased in cerebellar hemispheric structures as expected, but also in supratentorial parts of the brain, with a distribution similar to that in MB patients. However, the amount of significantly decreased FA was greater in MB than in PA patients, underscoring the aggravating neurotoxic effect of the adjuvant treatment. Conclusions: Neurotoxic mechanisms that are present in PA patients (e.g., internal hydrocephalus and damaged cerebellar structures affecting neuronal circuits) contribute significantly to the alteration of supratentorial white matter in pediatric posterior fossa tumor patients.

  11. Pretreatment Evaluation of Microcirculation by Dynamic Contrast-Enhanced Magnetic Resonance Imaging Predicts Survival in Primary Rectal Cancer Patients

    SciTech Connect (OSTI)

    DeVries, Alexander Friedrich; Piringer, Gudrun; Kremser, Christian; Judmaier, Werner; Saely, Christoph Hubert; Lukas, Peter; Öfner, Dietmar

    2014-12-01

    Purpose: To investigate the prognostic value of the perfusion index (PI), a microcirculatory parameter estimated from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which integrates information on both flow and permeability, to predict overall survival and disease-free survival in patients with primary rectal cancer. Methods and Materials: A total of 83 patients with stage cT3 rectal cancer requiring neoadjuvant chemoradiation were investigated with DCE-MRI before start of therapy. Contrast-enhanced dynamic T{sub 1} mapping was obtained, and a simple data analysis strategy based on the calculation of the maximum slope of the tissue concentration–time curve divided by the maximum of the arterial input function was used as a measure of tumor microcirculation (PI), which integrates information on both flow and permeability. Results: In 39 patients (47.0%), T downstaging (ypT0-2) was observed. During a mean (±SD) follow-up period of 71 ± 29 months, 58 patients (69.9%) survived, and disease-free survival was achieved in 45 patients (54.2%). The mean PI (PImean) averaged over the group of nonresponders was significantly higher than for responders. Additionally, higher PImean in age- and gender-adjusted analyses was strongly predictive of therapy nonresponse. Most importantly, PImean strongly and significantly predicted disease-free survival (unadjusted hazard ratio [HR], 1.85 [ 95% confidence interval, 1.35-2.54; P<.001)]; HR adjusted for age and sex, 1.81 [1.30-2.51]; P<.001) as well as overall survival (unadjusted HR 1.42 [1.02-1.99], P=.040; HR adjusted for age and sex, 1.43 [1.03-1.98]; P=.034). Conclusions: This analysis identifies PImean as a novel biomarker that is predictive for therapy response, disease-free survival, and overall survival in patients with primary locally advanced rectal cancer.

  12. Dynamic contrast-enhanced magnetic resonance imaging of radiation therapy-induced microcirculation changes in rectal cancer

    SciTech Connect (OSTI)

    Lussanet, Quido G. de . E-mail: qdlu@rdia.azm.nl; Backes, Walter H.; Griffioen, Arjan W.; Padhani, Anwar R.; Baeten, Coen I.; Baardwijk, Angela van; Lambin, Philippe; Beets, Geerard L.; Engelshoven, Jos van; Beets-Tan, Regina G.H.

    2005-12-01

    Purpose: Dynamic contrast-enhanced T1-weighted magnetic resonance imaging (DCE-MRI) allows noninvasive evaluation of tumor microvasculature characteristics. This study evaluated radiation therapy related microvascular changes in locally advanced rectal cancer by DCE-MRI and histology. Methods and Materials: Dynamic contrast-enhanced-MRI was performed in 17 patients with primary rectal cancer. Seven patients underwent 25 fractions of 1.8 Gy radiation therapy (RT) (long RT) before DCE-MRI and 10 did not. Of these 10, 3 patients underwent five fractions of 5 Gy RT (short RT) in the week before surgery. The RT treated and nontreated groups were compared in terms of endothelial transfer coefficient (K{sup PS}, measured by DCE-MRI), microvessel density (MVD) (scored by immunoreactivity to CD31 and CD34), and tumor cell and endothelial cell proliferation (scored by immunoreactivity to Ki67). Results: Tumor K{sup PS} was 77% (p = 0.03) lower in the RT-treated group. Histogram analyses showed that RT reduced both magnitude and intratumor heterogeneity of K{sup PS} (p = 0.01). MVD was significantly lower (37%, p 0.03) in tumors treated with long RT than in nonirradiated tumors, but this was not the case with short RT. Endothelial cell proliferation was reduced with short RT (81%, p = 0.02) just before surgery, but not with long RT (p > 0.8). Tumor cell proliferation was reduced with both long (57%, p < 0.001) and short RT (52%, p = 0.002). Conclusion: Dynamic contrast-enhanced-MRI-derived K{sup PS} values showed significant radiation therapy related reductions in microvessel blood flow in locally advanced rectal cancer. These findings may be useful in evaluating effects of radiation combination therapies (e.g., chemoradiation or RT combined with antiangiogenesis therapy), to account for effects of RT alone.

  13. Improved nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOE Patents [OSTI]

    Fukushima, E.; Roeder, S.B.W.; Assink, R.A.; Gibson, A.A.V.

    1984-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  14. Research Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Techniques Research Techniques Print Coming Soon

  15. Magnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    in the vicinity of hydrothermal activity and indicate the presence of the geothermal reservoir and conduit structures such as faults or dikes. 3 In addition, it is possible...

  16. Imaging dirac-mass disorder from magnetic dopant-atoms in the ferromagnetic topological insulator Crx(Bi?.?Sb?.?)??xTe?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J. L.; Zhong, Ruidan D.; Schneeloch, John A.; Liu, Tiansheng S.; Valla, Tonica; Tranquada, John M.; Gu, Genda; et al

    2015-01-20

    To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a Dirac-mass gap in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in themoreferromagnetic TI Cr?.??(Bi?.?Sb?.?)?.??Te?. Simultaneous visualization of the Dirac-mass gap ?(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of ?(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship ?(r)?n(r) is confirmed throughout and exhibits an electrondopant interaction energy J* = 145 meVnm. These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.less

  17. Allan Cormack, Computerized Axial Tomography (CAT), and Magnetic...

    Office of Scientific and Technical Information (OSTI)

    Allan M. Cormack, Computerized Axial Tomography (CAT) and Magnetic Resonance Imaging (MRI) Resources with Additional Information magnetic resonance imaging system Computed axial...

  18. Electrical Techniques | Open Energy Information

    Open Energy Info (EERE)

    fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Electrical Techniques: Electrical techniques aim to image the...

  19. TH-C-17A-07: Visualizing and Quantifying Radiation Therapy in Real-Time Using a Novel Beam Imaging Technique

    SciTech Connect (OSTI)

    Jenkins, C; Naczynski, D; Xing, L

    2014-06-15

    Purpose: Radiation therapy uses invisible high energy X-rays to treat an invisible tumor. Proper positioning of the treatment beam relative to the patient's anatomy during dose delivery is critically important to the success of treatment. We develop and characterize a novel radiation therapy beam visualization technique for real-time monitoring of patient treatment. Methods: Custom made flexible scintillator sheets were fabricated from gadolinium oxysulfide (GOS) particles that had been doped with terbium within a silicone elastomer matrix. Sheets of several thicknesses ranging from 0.3 to 1mm were prepared and tested. Sheets were exposed to megavoltage X-ray and electron beams from a Varian linac and the resulting optical signal was collected by multiple CMOS cameras placed in the treatment room. Real-time images were collected for different beam energies and dose rates. Signal intensity and SNR were calculated by processing the acquired images. Results: All signals were detectable in the presence of full room lighting and at an integration time of 45ms. Average signal intensity and SNR increased with both sheet thickness and dose rate and decreased with beam energy and incident light. For a given sheet thickness and beam energy the correlation between dose rate and signal intensity was highly linear. Increased sheet thickness or dose rate results in a linear increase in the detected signal. All results are consistent with analytical approximations. Conclusion: The technique offers a means of accurately visualizing a radiation therapy beam shape and fluence in real time. The effects of salient parameters have been characterized and will enable further optimization of the technique as it is implemented into the clinical workflow. The project described was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health through UL1 TR001085.

  20. Magnetic Damping For Maglev

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, S.; Cai, Y.; Rote, D. M.; Chen, S. S.

    1998-01-01

    Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  1. Graphene oxide-Fe{sub 3}O{sub 4} nanoparticle composite with high transverse proton relaxivity value for magnetic resonance imaging

    SciTech Connect (OSTI)

    Venkatesha, N.; Srivastava, Chandan; Poojar, Pavan; Geethanath, Sairam; Qurishi, Yasrib

    2015-04-21

    The potential of graphene oxideFe{sub 3}O{sub 4} nanoparticle (GO-Fe{sub 3}O{sub 4}) composite as an image contrast enhancing material in magnetic resonance imaging has been investigated. Proton relaxivity values were obtained in three different homogeneous dispersions of GO-Fe{sub 3}O{sub 4} composites synthesized by precipitating Fe{sub 3}O{sub 4} nanoparticles in three different reaction mixtures containing 0.01?g, 0.1?g, and 0.2?g of graphene oxide. A noticeable difference in proton relaxivity values was observed between the three cases. A comprehensive structural and magnetic characterization revealed discrete differences in the extent of reduction of the graphene oxide and spacing between the graphene oxide sheets in the three composites. The GO-Fe{sub 3}O{sub 4} composite framework that contained graphene oxide with least extent of reduction of the carboxyl groups and largest spacing between the graphene oxide sheets provided the optimum structure for yielding a very high transverse proton relaxivity value. It was found that the GO-Fe{sub 3}O{sub 4} composites possessed good biocompatibility with normal cell lines, whereas they exhibited considerable toxicity towards breast cancer cells.

  2. Development of radiohalogenated muscarinic ligands for the in vivo imaging of m-AChR by nuclear medicine techniques

    SciTech Connect (OSTI)

    McPherson, D.W.; Luo, H.; Knapp, F.F. Jr.

    1994-06-01

    Alterations in the density of acetylcholinergic muscarinic receptors (m-AChR) have been observed in various dementias. This has spurred interest in the development of radiohalogenated ligands which can be used for the non-invasive in vivo detection of m-AChR by nuclear medicine techniques. We have developed a new ligand 1-azabicyclo[2.2.2]oct-3-yl ({alpha}-hydroxy-{alpha}-(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (IQNP,12) which demonstrates high affinity for the muscarinic receptor. When labeled with radioiodine it has been shown to be selective and specific for m-ACHR. Initial studies on the separation and in vivo evaluation of the various isomers of IQNP have shown that the stereochemistry of the chiral centers and the configuration around the double bond play an important role in m-AChR subtype specificity. In vivo evaluation of these stereoisomers demonstrate that E-(R,R)-IQNP has a high affinity for the M{sub 1} muscarinic subtype while Z-(R,R)-IQNP demonstrate a high affinity for M{sub 1} and M{sub 2} receptor subtypes. These data demonstrate IQNP (12) has potential for use in the non-evasive in vivo detection of m-AChR by single photon emission computed tomography (SPECT). A brominated analogue, ``BrQNP,`` in which the iodine has been replaced by a bromine atom, has also been prepared and was shown to block the in vivo uptake of IQNP in the brain and heart and therefore has potential for positron emission tomographic (PET) studies of m-AChR.

  3. 3-Dimensional Magnetic Resonance Spectroscopic Imaging at 3 Tesla for Early Response Assessment of Glioblastoma Patients During External Beam Radiation Therapy

    SciTech Connect (OSTI)

    Muruganandham, Manickam; Clerkin, Patrick P.; Smith, Brian J.; Anderson, Carryn M.; Morris, Ann; Capizzano, Aristides A.; Magnotta, Vincent; McGuire, Sarah M.; Smith, Mark C.; Bayouth, John E.; Buatti, John M.

    2014-09-01

    Purpose: To evaluate the utility of 3-dimensional magnetic resonance (3D-MR) proton spectroscopic imaging for treatment planning and its implications for early response assessment in glioblastoma multiforme. Methods and Materials: Eighteen patients with newly diagnosed, histologically confirmed glioblastoma had 3D-MR proton spectroscopic imaging (MRSI) along with T2 and T1 gadolinium-enhanced MR images at simulation and at boost treatment planning after 17 to 20 fractions of radiation therapy. All patients received standard radiation therapy (RT) with concurrent temozolomide followed by adjuvant temozolomide. Imaging for response assessment consisted of MR scans every 2 months. Progression-free survival was defined by the criteria of MacDonald et al. MRSI images obtained at initial simulation were analyzed for choline/N-acetylaspartate ratios (Cho/NAA) on a voxel-by-voxel basis with abnormal activity defined as Cho/NAA ≥2. These images were compared on anatomically matched MRSI data collected after 3 weeks of RT. Changes in Cho/NAA between pretherapy and third-week RT scans were tested using Wilcoxon matched-pairs signed rank tests and correlated with progression-free survival, radiation dose and location of recurrence using Cox proportional hazards regression. Results: After a median follow-up time of 8.6 months, 50% of patients had experienced progression based on imaging. Patients with a decreased or stable mean or median Cho/NAA values had less risk of progression (P<.01). Patients with an increase in mean or median Cho/NAA values at the third-week RT scan had a significantly greater chance of early progression (P<.01). An increased Cho/NAA at the third-week MRSI scan carried a hazard ratio of 2.72 (95% confidence interval, 1.10-6.71; P=.03). Most patients received the prescription dose of RT to the Cho/NAA ≥2 volume, where recurrence most often occurred. Conclusion: Change in mean and median Cho/NAA detected at 3 weeks was a significant predictor of

  4. Near-electrode imager

    DOE Patents [OSTI]

    Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, II, Rex E.

    2000-01-01

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager uses the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  5. Velocity and concentration studies of flowing suspensions by nuclear magnetic resonance imaging. Technical progress report, April--June 1996

    SciTech Connect (OSTI)

    1997-05-01

    Our search for a suitable combination of imageable particles in a carrier liquid which will not dissolve the particles has led us to try pharmaceutical particles in silicon oil. This combination doses not seem to last long enough for adequate NMR measurements. Results are discussed.

  6. A finite elements method to solve the Bloch–Torrey equation applied to diffusion magnetic resonance imaging

    SciTech Connect (OSTI)

    Nguyen, Dang Van; Li, Jing-Rebecca; Grebenkov, Denis; Le Bihan, Denis

    2014-04-15

    The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium can be modeled by the multiple compartment Bloch–Torrey partial differential equation (PDE). In addition, steady-state Laplace PDEs can be formulated to produce the homogenized diffusion tensor that describes the diffusion characteristics of the medium in the long time limit. In spatial domains that model biological tissues at the cellular level, these two types of PDEs have to be completed with permeability conditions on the cellular interfaces. To solve these PDEs, we implemented a finite elements method that allows jumps in the solution at the cell interfaces by using double nodes. Using a transformation of the Bloch–Torrey PDE we reduced oscillations in the searched-for solution and simplified the implementation of the boundary conditions. The spatial discretization was then coupled to the adaptive explicit Runge–Kutta–Chebyshev time-stepping method. Our proposed method is second order accurate in space and second order accurate in time. We implemented this method on the FEniCS C++ platform and show time and spatial convergence results. Finally, this method is applied to study some relevant questions in diffusion MRI.

  7. Magnetic nanoparticles for medical applications: Progress and challenges

    SciTech Connect (OSTI)

    Doaga, A.; Cojocariu, A. M.; Constantin, C. P.; Caltun, O. F.; Hempelmann, R.

    2013-11-13

    Magnetic nanoparticles present unique properties that make them suitable for applications in biomedical field such as magnetic resonance imaging (MRI), hyperthermia and drug delivery systems. Magnetic hyperthermia involves heating the cancer cells by using magnetic particles exposed to an alternating magnetic field. The cell temperature increases due to the thermal propagation of the heat induced by the nanoparticles into the affected region. In order to increase the effectiveness of the treatment hyperthermia can be combined with drug delivery techniques. As a spectroscopic technique MRI is used in medicine for the imaging of tissues especially the soft ones and diagnosing malignant or benign tumors. For this purpose Zn{sub x}Co{sub 1?x}Fe{sub 2}O{sub 4} ferrite nanoparticles with x between 0 and 1 have been prepared by co-precipitation method. The cristallite size was determined by X-ray diffraction, while the transmission electron microscopy illustrates the spherical shape of the nanoparticles. Magnetic characterizations of the nanoparticles were carried out at room temperature by using a vibrating sample magnetometer. The specific absorption rate (SAR) was measured by calorimetric method at different frequencies and it has been observed that this value depends on the chemical formula, the applied magnetic fields and the frequency. The study consists of evaluating the images, obtained from an MRI facility, when the nanoparticles are dispersed in agar phantoms compared with the enhanced ones when Omniscan was used as contrast agent. Layer-by-layer technique was used to achieve the necessary requirement of biocompatibility. The surface of the magnetic nanoparticles was modified by coating it with oppositely charged polyelectrolites, making it possible for the binding of a specific drug.

  8. Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A Novel Statistical Shape Model for Treatment Planning of Retinoblastoma

    SciTech Connect (OSTI)

    Ciller, Carlos; De Zanet, Sandro I.; Rüegsegger, Michael B.; Pica, Alessia; Sznitman, Raphael; Thiran, Jean-Philippe; Maeder, Philippe; Munier, Francis L.; Kowal, Jens H.; and others

    2015-07-15

    Purpose: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Methods and Materials: Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.

  9. Secondary lift for magnetically levitated vehicles

    DOE Patents [OSTI]

    Cooper, Richard K.

    1976-01-01

    A high-speed terrestrial vehicle that is magnetically levitated by means of magnets which are used to induce eddy currents in a continuous electrically conductive nonferromagnetic track to produce magnetic images that repel the inducing magnet to provide primary lift for the vehicle. The magnets are arranged so that adjacent ones have their fields in opposite directions and the magnets are spaced apart a distance that provides a secondary lift between each magnet and the adjacent magnet's image, the secondary lift being maximized by optimal spacing of the magnets.

  10. Technical Note: Phantom study to evaluate the dose and image quality effects of a computed tomography organ-based tube current modulation technique

    SciTech Connect (OSTI)

    Gandhi, Diksha; Schmidt, Taly Gilat; Crotty, Dominic J.; Stevens, Grant M.

    2015-11-15

    Purpose: This technical note quantifies the dose and image quality performance of a clinically available organ-dose-based tube current modulation (ODM) technique, using experimental and simulation phantom studies. The investigated ODM implementation reduces the tube current for the anterior source positions, without increasing current for posterior positions, although such an approach was also evaluated for comparison. Methods: Axial CT scans at 120 kV were performed on head and chest phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, heart, spine, eye lens, and brain regions for ODM and 3D-modulation (SmartmA) settings. Monte Carlo simulations, validated with experimental data, were performed on 28 voxelized head phantoms and 10 chest phantoms to quantify organ dose and noise standard deviation. The dose and noise effects of increasing the posterior tube current were also investigated. Results: ODM reduced the dose for all experimental dosimeters with respect to SmartmA, with average dose reductions across dosimeters of 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% (brain), with similar results for the simulation validation study. In the phantom library study, the average dose reduction across all phantoms was 34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). ODM increased the noise standard deviation in reconstructed images by 6%–20%, with generally greater noise increases in anterior regions. Increasing the posterior tube current provided similar dose reduction as ODM for breast and eye lens, increased dose to the spine, with noise effects ranging from 2% noise reduction to 16% noise increase. At noise equal to SmartmA, ODM increased the estimated effective dose by 4% and 8% for chest and head scans, respectively. Increasing the posterior tube current further increased the effective dose by 15% (chest) and 18% (head

  11. Comparison of 17 Ice Nucleation Measurement Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 Ice Nucleation Measurement Techniques for Immersion Freezing For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research...

  12. Noninvasive Monitoring of Microvascular Changes With Partial Irradiation Using Dynamic Contrast-Enhanced and Blood Oxygen Level-Dependent Magnetic Resonance Imaging

    SciTech Connect (OSTI)

    Lin, Yu-Chun; Department of Electrical Engineering, Chang Gung University, Linkou, Taiwan; Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan ; Wang, Jiun-Jie; Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan ; Hong, Ji-Hong; Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan ; Lin, Yi-Ping; Lee, Chung-Chi; Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan ; Wai, Yau-Yau; Ng, Shu-Hang; Wu, Yi-Ming; Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan ; Wang, Chun-Chieh; Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan

    2013-04-01

    Purpose: The microvasculature of a tumor plays an important role in its response to radiation therapy. Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) and blood oxygen level-dependent (BOLD) MRI are both sensitive to vascular characteristics. The present study proposed a partial irradiation approach to a xenograft tumor to investigate the intratumoral response to radiation therapy using DCE and BOLD MRI. Methods and Materials: TRAMP-C1 tumors were grown in C57BL/6J mice. Partial irradiation was performed on the distal half of the tumor with a single dose of 15 Gy. DCE MRI was performed to derive the endothelium transfer constant, K{sup trans}, using pharmacokinetic analysis. BOLD MRI was performed using quantitative R2* measurements with carbogen breathing. The histology of the tumor was analyzed using hematoxylin and eosin staining and CD31 staining to detect endothelial cells. The differences between the irradiated and nonirradiated regions of the tumor were assessed using K{sup trans} values, ?R2* values in response to carbogen and microvascular density (MVD) measurements. Results: A significantly increased K{sup trans} and reduced BOLD response to carbogen were found in the irradiated region of the tumor compared with the nonirradiated region (P<.05). Histologic analysis showed a significant aggregation of giant cells and a reduced MVD in the irradiated region of the tumor. The radiation-induced difference in the BOLD response was associated with differences in MVD and K{sup trans}. Conclusions: We demonstrated that DCE MRI and carbogen-challenge BOLD MRI can detect differential responses within a tumor that may potentially serve as noninvasive imaging biomarkers to detect microvascular changes in response to radiation therapy.

  13. Electromagnetic imaging of dynamic brain activity

    SciTech Connect (OSTI)

    Mosher, J.; Leahy, R.; Lewis, P.; Lewine, J.; George, J.; Singh, M.

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  14. Ground Magnetics | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Magnetics Details Activities (25) Areas (19) Regions (0) NEPA(1) Exploration...

  15. Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy

    SciTech Connect (OSTI)

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou; DeWees, Todd A.; Fowler, Kathryn J.; Narra, Vamsi; Garcia-Ramirez, Jose L.; Schwarz, Julie K.; Grigsby, Perry W.

    2014-11-15

    Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodes by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.

  16. Magnetic spectroscopy and microscopy of functional materials

    SciTech Connect (OSTI)

    Jenkins, C.A.

    2011-01-28

    Heusler intermetallics Mn{sub 2}Y Ga and X{sub 2}MnGa (X; Y =Fe, Co, Ni) undergo tetragonal magnetostructural transitions that can result in half metallicity, magnetic shape memory, or the magnetocaloric effect. Understanding the magnetism and magnetic behavior in functional materials is often the most direct route to being able to optimize current materials for todays applications and to design novel ones for tomorrow. Synchrotron soft x-ray magnetic spectromicroscopy techniques are well suited to explore the the competing effects from the magnetization and the lattice parameters in these materials as they provide detailed element-, valence-, and site-specifc information on the coupling of crystallographic ordering and electronic structure as well as external parameters like temperature and pressure on the bonding and exchange. Fundamental work preparing the model systems of spintronic, multiferroic, and energy-related compositions is presented for context. The methodology of synchrotron spectroscopy is presented and applied to not only magnetic characterization but also of developing a systematic screening method for future examples of materials exhibiting any of the above effects. The chapter progression is as follows: an introduction to the concepts and materials under consideration (Chapter 1); an overview of sample preparation techniques and results, and the kinds of characterization methods employed (Chapter 2); spectro- and microscopic explorations of X{sub 2}MnGa/Ge (Chapter 3); spectroscopic investigations of the composition series Mn{sub 2}Y Ga to the logical Mn{sub 3}Ga endpoint (Chapter 4); and a summary and overview of upcoming work (Chapter 5). Appendices include the results of a Think Tank for the Graduate School of Excellence MAINZ (Appendix A) and details of an imaging project now in progress on magnetic reversal and domain wall observation in the classical Heusler material Co{sub 2}FeSi (Appendix B).

  17. Accurate reservoir evaluation from borehole imaging techniques and thin bed log analysis: Case studies in shaly sands and complex lithologies in Lower Eocene Sands, Block III, Lake Maracaibo, Venezuela

    SciTech Connect (OSTI)

    Coll, C.; Rondon, L.

    1996-08-01

    Computer-aided signal processing in combination with different types of quantitative log evaluation techniques is very useful for predicting reservoir quality in complex lithologies and will help to increase the confidence level to complete and produce a reservoir. The Lower Eocene Sands in Block III are one of the largest reservoirs in Block III and it has produced light oil since 1960. Analysis of Borehole Images shows the reservoir heterogeneity by the presence of massive sands with very few shale laminations and thinnly bedded sands with a lot of laminations. The effect of these shales is a low resistivity that has been interpreted in most of the cases as water bearing sands. A reduction of the porosity due to diagenetic processes has produced a high-resistivity behaviour. The presence of bed boundaries and shales is detected by the microconductivity curves of the Borehole Imaging Tools allowing the estimation of the percentage of shale on these sands. Interactive computer-aided analysis and various image processing techniques are used to aid in log interpretation for estimating formation properties. Integration between these results, core information and production data was used for evaluating producibility of the reservoirs and to predict reservoir quality. A new estimation of the net pay thickness using this new technique is presented with the consequent improvement on the expectation of additional recovery. This methodology was successfully applied in a case by case study showing consistency in the area.

  18. Mass production of magnetic nickel nanoparticle in thermal plasma reactor

    SciTech Connect (OSTI)

    Kanhe, Nilesh S.; Nawale, Ashok B.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K.

    2014-04-24

    We report the mass production of Ni metal nanoparticles using dc transferred arc thermal plasma reactor by homogeneous gas phase condensation process. To increase the evaporation rate and purity of Ni nanoparticles small amount of hydrogen added along with argon in the plasma. Crystal structure analysis was done by using X-ray diffraction technique. The morphology of as synthesized nanoparticles was carried out using FESEM images. The magnetic properties were measured by using vibrating sample magnetometer at room temperature.

  19. Magnetic resonance imaging and computational fluid dynamics (CFD) simulations of rabbit nasal airflows for the development of hybrid CFD/PBPK models

    SciTech Connect (OSTI)

    Corley, Richard A.; Minard, Kevin R.; Kabilan, Senthil; Einstein, Daniel R.; Kuprat, Andrew P.; harkema, J. R.; Kimbell, Julia; Gargas, M. L.; Kinzell, John H.

    2009-06-01

    The percentages of total air?ows over the nasal respiratory and olfactory epithelium of female rabbits were cal-culated from computational ?uid dynamics (CFD) simulations of steady-state inhalation. These air?ow calcula-tions, along with nasal airway geometry determinations, are critical parameters for hybrid CFD/physiologically based pharmacokinetic models that describe the nasal dosimetry of water-soluble or reactive gases and vapors in rabbits. CFD simulations were based upon three-dimensional computational meshes derived from magnetic resonance images of three adult female New Zealand White (NZW) rabbits. In the anterior portion of the nose, the maxillary turbinates of rabbits are considerably more complex than comparable regions in rats, mice, mon-keys, or humans. This leads to a greater surface area to volume ratio in this region and thus the potential for increased extraction of water soluble or reactive gases and vapors in the anterior portion of the nose compared to many other species. Although there was considerable interanimal variability in the ?ne structures of the nasal turbinates and air?ows in the anterior portions of the nose, there was remarkable consistency between rabbits in the percentage of total inspired air?ows that reached the ethmoid turbinate region (~50%) that is presumably lined with olfactory epithelium. These latter results (air?ows reaching the ethmoid turbinate region) were higher than previous published estimates for the male F344 rat (19%) and human (7%). These di?erences in regional air?ows can have signi?cant implications in interspecies extrapolations of nasal dosimetry.

  20. Modifications in Dynamic Contrast-Enhanced Magnetic Resonance Imaging Parameters After α-Particle-Emitting {sup 227}Th-trastuzumab Therapy of HER2-Expressing Ovarian Cancer Xenografts

    SciTech Connect (OSTI)

    Heyerdahl, Helen; Røe, Kathrine; Brevik, Ellen Mengshoel; Dahle, Jostein

    2013-09-01

    Purpose: The purpose of this study was to investigate the effect of α-particle-emitting {sup 227}Th-trastuzumab radioimmunotherapy on tumor vasculature to increase the knowledge about the mechanisms of action of {sup 227}Th-trastuzumab. Methods and Materials: Human HER2-expressing SKOV-3 ovarian cancer xenografts were grown bilaterally in athymic nude mice. Mice with tumor volumes 253 ± 36 mm{sup 3} (mean ± SEM) were treated with a single injection of either {sup 227}Th-trastuzumab at a dose of 1000 kBq/kg body weight (treated group, n=14 tumors) or 0.9% NaCl (control group, n=10 tumors). Dynamic T1-weighted contrast-enhanced magnetic resonance imaging (DCEMRI) was used to study the effect of {sup 227}Th-trastuzumab on tumor vasculature. DCEMRI was performed before treatment and 1, 2, and 3 weeks after therapy. Tumor contrast-enhancement curves were extracted voxel by voxel and fitted to the Brix pharmacokinetic model. Pharmacokinetic parameters for the tumors that underwent radioimmunotherapy were compared with the corresponding parameters of control tumors. Results: Significant increases of k{sub ep}, the rate constant of diffusion from the extravascular extracellular space to the plasma (P<.05), and k{sub el,} the rate of clearance of contrast agent from the plasma (P<.01), were seen in the radioimmunotherapy group 2 and 3 weeks after injection, compared with the control group. The product of k{sub ep} and the amplitude parameter A, associated with increased vessel permeability and perfusion, was also significantly increased in the radioimmunotherapy group 2 and 3 weeks after injection (P<.01). Conclusions: Pharmacokinetic modeling of MRI contrast-enhancement curves evidenced significant alterations in parameters associated with increased tumor vessel permeability and tumor perfusion after {sup 227}Th-trastuzumab treatment of HER2-expressing ovarian cancer xenografts.

  1. SU-E-J-39: Comparison of PTV Margins Determined by In-Room Stereoscopic Image Guidance and by On-Board Cone Beam Computed Tomography Technique for Brain Radiotherapy Patients

    SciTech Connect (OSTI)

    Ganesh, T; Paul, S; Munshi, A; Sarkar, B; Krishnankutty, S; Sathya, J; George, S; Jassal, K; Roy, S; Mohanti, B

    2014-06-01

    Purpose: Stereoscopic in room kV image guidance is a faster tool in daily monitoring of patient positioning. Our centre, for the first time in the world, has integrated such a solution from BrainLAB (ExacTrac) with Elekta's volumetric cone beam computed tomography (XVI). Using van Herk's formula, we compared the planning target volume (PTV) margins calculated by both these systems for patients treated with brain radiotherapy. Methods: For a total of 24 patients who received partial or whole brain radiotherapy, verification images were acquired for 524 treatment sessions by XVI and for 334 sessions by ExacTrac out of the total 547 sessions. Systematic and random errors were calculated in cranio-caudal, lateral and antero-posterior directions for both techniques. PTV margins were then determined using van Herk formula. Results: In the cranio-caudal direction, systematic error, random error and the calculated PTV margin were found to be 0.13 cm, 0.12 cm and 0.41 cm with XVI and 0.14 cm, 0.13 cm and 0.44 cm with ExacTrac. The corresponding values in lateral direction were 0.13 cm 0.1 cm and 0.4 cm with XVI and 0.13 cm, 0.12 cm and 0.42 cm with ExacTrac imaging. The same parameters for antero-posterior were for 0.1 cm, 0.11 cm and 0.34 cm with XVI and 0.13 cm, 0.16 cm and 0.43 cm with ExacTrac imaging. The margins estimated with the two imaging modalities were comparable within ± 1 mm limit. Conclusion: Verification of setup errors in the major axes by two independent imaging systems showed the results are comparable and within ± 1 mm. This implies that planar imaging based ExacTrac can yield equal accuracy in setup error determination as the time consuming volumetric imaging which is considered as the gold standard. Accordingly PTV margins estimated by this faster imaging technique can be confidently used in clinical setup.

  2. Allan Cormack, Computerized Axial Tomography (CAT), and Magnetic...

    Office of Scientific and Technical Information (OSTI)

    Magnetic Resonance Imaging (MRI) is used to localize brain activity during sensory or cognitive stimulation of the subject. Images of the subject's brain at rest and then during ...

  3. Bioinspired synthesis of magnetic nanoparticles

    SciTech Connect (OSTI)

    David, Anand

    2009-05-26

    The synthesis of magnetic nanoparticles has long been an area of active research. Magnetic nanoparticles can be used in a wide variety of applications such as magnetic inks, magnetic memory devices, drug delivery, magnetic resonance imaging (MRI) contrast agents, and pathogen detection in foods. In applications such as MRI, particle uniformity is particularly crucial, as is the magnetic response of the particles. Uniform magnetic particles with good magnetic properties are therefore required. One particularly effective technique for synthesizing nanoparticles involves biomineralization, which is a naturally occurring process that can produce highly complex nanostructures. Also, the technique involves mild conditions (ambient temperature and close to neutral pH) that make this approach suitable for a wide variety of materials. The term 'bioinspired' is important because biomineralization research is inspired by the naturally occurring process, which occurs in certain microorganisms called 'magnetotactic bacteria'. Magnetotactic bacteria use biomineralization proteins to produce magnetite crystals having very good uniformity in size and morphology. The bacteria use these magnetic particles to navigate according to external magnetic fields. Because these bacteria synthesize high quality crystals, research has focused on imitating aspects of this biomineralization in vitro. In particular, a biomineralization iron-binding protein found in a certain species of magnetotactic bacteria, magnetospirillum magneticum, AMB-1, has been extracted and used for in vitro magnetite synthesis; Pluronic F127 gel was used to increase the viscosity of the reaction medium to better mimic the conditions in the bacteria. It was shown that the biomineralization protein mms6 was able to facilitate uniform magnetite synthesis. In addition, a similar biomineralization process using mms6 and a shorter version of this protein, C25, has been used to synthesize cobalt ferrite particles. The overall

  4. Carbon Joins the Magnetic Club

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Release 29 May 2007 Carbon Joins the Magnetic Club summary written by Brad Plummer, SLAC Communication Office The exclusive club of magnetic elements officially has a new member-carbon. Using a proton beam and advanced x-ray techniques, SLAC researchers in collaboration with colleagues from LBNL and the University of Leipzig in Germany have finally put to rest doubts about carbon's ability to be made magnetic. "In the past, some groups thought they had discovered magnetic

  5. Improvement of lateral resolution of spectral domain optical coherence tomography images in out-of-focus regions with holographic data processing techniques

    SciTech Connect (OSTI)

    Moiseev, A A; Gelikonov, G V; Terpelov, D A; Shilyagin, P A; Gelikonov, V M

    2014-08-31

    An analogy between spectral-domain optical coherence tomography (SD OCT) data and broadband digital holography data is considered. Based on this analogy, a method for processing SD OCT data, which makes it possible to construct images with a lateral resolution in the whole investigated volume equal to the resolution in the in-focus region, is developed. Several issues concerning practical application of the proposed method are discussed. (laser biophotonics)

  6. Cosmic magnetism

    SciTech Connect (OSTI)

    Seymour, P.

    1986-01-01

    This book deals with the cosmic magnetism in a non-mathematical way. It uses Faraday's very powerful and highly pictorial concept of lines of magnetic force and their associated physical properties to explain the structure and behavior of magnetic fields in extraterrestrial objects. Contents include: forces of nature; magnetic field of earth; solar and interplanetary magnetic fields; magnetic fields in the solar system; stars and pulsars; and magnetic fields of the milky way and other galaxies.

  7. Writing magnetic patterns with surface acoustic waves

    SciTech Connect (OSTI)

    Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi

    2014-05-07

    A novel patterning technique that creates magnetization patterns in a continuous magnetostrictive film with surface acoustic waves is demonstrated. Patterns of 10 μm wide stripes of alternating magnetization and a 3 μm dot of reversed magnetization are written using standing and focusing acoustic waves, respectively. The magnetization pattern is size-tunable, erasable, and rewritable by changing the magnetic field and acoustic power. This versatility, along with its solid-state implementation (no moving parts) and electronic control, renders it as a promising technique for application in magnetic recording, magnonic signal processing, magnetic particle manipulation, and spatial magneto-optical modulation.

  8. Tunable exchange bias-like effect in patterned hard-soft two-dimensional lateral composites with perpendicular magnetic anisotropy

    SciTech Connect (OSTI)

    Hierro-Rodriguez, A. Alvarez-Prado, L. M.; Martín, J. I.; Alameda, J. M.; Teixeira, J. M.; Vélez, M.

    2014-09-08

    Patterned hard-soft 2D magnetic lateral composites have been fabricated by e-beam lithography plus dry etching techniques on sputter-deposited NdCo{sub 5} thin films with perpendicular magnetic anisotropy. Their magnetic behavior is strongly thickness dependent due to the interplay between out-of-plane anisotropy and magnetostatic energy. Thus, the spatial modulation of thicknesses leads to an exchange coupled system with hard/soft magnetic regions in which rotatable anisotropy of the thicker elements provides an extra tool to design the global magnetic behavior of the patterned lateral composite. Kerr microscopy studies (domain imaging and magneto-optical Kerr effect magnetometry) reveal that the resulting hysteresis loops exhibit a tunable exchange bias-like shift that can be switched on/off by the applied magnetic field.

  9. Innovative biomagnetic imaging sensors for breast cancer: A model-based study

    SciTech Connect (OSTI)

    Deng, Y.; Golkowski, M.

    2012-04-01

    Breast cancer is a serious potential health problem for all women and is the second leading cause of cancer deaths in the United States. The current screening procedures and imaging techniques, including x-ray mammography, clinical biopsy, ultrasound imaging, and magnetic resonance imaging, provide only 73% accuracy in detecting breast cancer. This gives the impetus to explore alternate techniques for imaging the breast and detecting early stage tumors. Among the complementary methods, the noninvasive biomagnetic breast imaging is attractive and promising, because both ionizing radiation and breast compressions that the prevalent x-ray mammography suffers from are avoided. It furthermore offers very high contrast because of the significant electromagnetic properties' differences between the cancerous, benign, and normal breast tissues. In this paper, a hybrid and accurate modeling tool for biomagnetic breast imaging is developed, which couples the electromagnetic and ultrasonic energies, and initial validations between the model predication and experimental findings are conducted.

  10. Imaging systems

    SciTech Connect (OSTI)

    Young, I.R.

    1981-08-18

    In an imaging apparatus using nuclear magnetic resonance, first and second gradient field pulses are applied, the second being of opposite sense to the first. It is preferable to match these so that they entirely cancel. However it is shown to be sufficient if they are as close as possible to the same magnitude and a further 'glitch' pulse is used to reduce the total gradient field over the pulse sequence substantially to zero.

  11. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the

  12. Direct torsional actuation of microcantilevers using magnetic excitation

    SciTech Connect (OSTI)

    Gosvami, Nitya Nand; Nalam, Prathima C.; Tam, Qizhan; Carpick, Robert W.; Exarhos, Annemarie L.; Kikkawa, James M.

    2014-09-01

    Torsional mode dynamic force microscopy can be used for a wide range of studies including mapping lateral contact stiffness, torsional frequency or amplitude modulation imaging, and dynamic friction measurements of various materials. Piezo-actuation of the cantilever is commonly used, but it introduces spurious resonances, limiting the frequency range that can be sampled, and rendering the technique particularly difficult to apply in liquid medium where the cantilever oscillations are significantly damped. Here, we demonstrate a method that enables direct torsional actuation of cantilevers with high uniformity over wide frequency ranges by attaching a micrometer-scale magnetic bead on the back side of the cantilever. We show that when beads are magnetized along the width of the cantilever, efficient torsional actuation of the cantilevers can be achieved using a magnetic field produced from a solenoid placed underneath the sample. We demonstrate the capability of this technique by imaging atomic steps on graphite surfaces in tapping mode near the first torsional resonance of the cantilever in dodecane. The technique is also applied to map the variations in the lateral contact stiffness on the surface of graphite and polydiacetylene monolayers.

  13. Household magnets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Household magnets Chances are very good that you have experimented with magnets. People have been fascinated with magnetism for thousands of years. As familiar to us as they may be, magnets still have some surprises for us. Here is a small collection of some of our favorite magnet experiments. What happens when we break a magnet in half? Radio Shack sells cheap ceramic magnets in several shapes. Get a ring shaped magnet and break it with pliers or a tap with a hammer. Try to put it back

  14. SU-E-J-100: The Combination of Deformable Image Registration and Regions-Of-Interest Mapping Technique to Accomplish Accurate Dose Calculation On Cone Beam Computed Tomography for Esophageal Cancer

    SciTech Connect (OSTI)

    Huang, B-T; Lu, J-Y

    2015-06-15

    Purpose: We introduce a new method combined with the deformable image registration (DIR) and regions-of-interest mapping (ROIM) technique to accurately calculate dose on daily CBCT for esophageal cancer. Methods: Patients suffered from esophageal cancer were enrolled in the study. Prescription was set to 66 Gy/30 F and 54 Gy/30 F to the primary tumor (PTV66) and subclinical disease (PTV54) . Planning CT (pCT) were segmented into 8 substructures in terms of their differences in physical density, such as gross target volume (GTV), venae cava superior (SVC), aorta, heart, spinal cord, lung, muscle and bones. The pCT and its substructures were transferred to the MIM software to readout their mean HU values. Afterwards, a deformable planning CT to daily KV-CBCT image registration method was then utilized to acquire a new structure set on CBCT. The newly generated structures on CBCT were then transferred back to the treatment planning system (TPS) and its HU information were overridden manually with mean HU values obtained from pCT. Finally, the treatment plan was projected onto the CBCT images with the same beam arrangements and monitor units (MUs) to accomplish dose calculation. Planning target volume (PTV) and organs at risk (OARs) from both of the pCT and CBCT were compared to evaluate the dose calculation accuracy. Results: It was found that the dose distribution in the CBCT showed little differences compared to the pCT, regardless of whether PTV or OARs were concerned. Specifically, dose variation in GTV, PTV54, PTV66, SVC, lung and heart were within 0.1%. The maximum dose variation was presented in the spinal cord, which was up to 2.7% dose difference. Conclusion: The proposed method combined with DIR and ROIM technique to accurately calculate dose distribution on CBCT for esophageal cancer is feasible.

  15. Plated lamination structures for integrated magnetic devices

    DOE Patents [OSTI]

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  16. Chemical Imaging Analysis of Environmental Particles Using the Focused Ion Beam/Scanning Electron Microscopy Technique: Microanalysis Insights into Atmospheric Chemistry of Fly Ash

    SciTech Connect (OSTI)

    Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.; Laskin, Alexander

    2013-01-21

    Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior of individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.

  17. Novel imaging techniques, integrated with mineralogical, geochemical and microbiological characterizations to determine the biogeochemical controls on technetium mobility in FRC sediments

    SciTech Connect (OSTI)

    Jonathan R. Lloyd

    2009-02-03

    The objective of this research program was to take a highly multidisciplinary approach to define the biogeochemical factors that control technetium (Tc) mobility in FRC sediments. The aim was to use batch and column studies to probe the biogeochemical conditions that control the mobility of Tc at the FRC. Background sediment samples from Area 2 (pH 6.5, low nitrate, low {sup 99}Tc) and Area 3 (pH 3.5, high nitrate, relatively high {sup 99}Tc) of the FRC were selected (http://www.esd.ornl.gov/nabirfrc). For the batch experiments, sediments were mixed with simulated groundwater, modeled on chemical constituents of FRC waters and supplemented with {sup 99}Tc(VII), both with and without added electron donor (acetate). The solubility of the Tc was monitored, alongside other biogeochemical markers (nitrate, nitrite, Fe(II), sulfate, acetate, pH, Eh) as the 'microcosms' aged. At key points, the microbial communities were also profiled using both cultivation-dependent and molecular techniques, and results correlated with the geochemical conditions in the sediments. The mineral phases present in the sediments were also characterized, and the solid phase associations of the Tc determined using sequential extraction and synchrotron techniques. In addition to the batch sediment experiments, where discrete microbial communities with the potential to reduce and precipitate {sup 99}Tc will be separated in time, we also developed column experiments where biogeochemical processes were spatially separated. Experiments were conducted both with and without amendments proposed to stimulate radionuclide immobilization (e.g. the addition of acetate as an electron donor for metal reduction), and were also planned with and without competing anions at high concentration (e.g. nitrate, with columns containing Area 3 sediments). When the columns had stabilized, as determined by chemical analysis of the effluents, we used a spike of the short-lived gamma emitter {sup 99m}Tc (50-200 MBq; half

  18. Magnetic reconnection | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic reconnection Subscribe to RSS - Magnetic reconnection Magnetic reconnection (henceforth called "reconnection") refers to the breaking and reconnecting of oppositely directed magnetic field lines in a plasma. In the process, magnetic field energy is converted to plasma kinetic and thermal energy. Physicist Fatima Ebrahimi conducts computer simulations that indicate the efficiency of an innovative fusion start-up technique Physicist Fatima Ebrahimi at the U.S. Department of

  19. SU-E-J-233: A Facility for Radiobiological Experiments in a Large Magnetic Field

    SciTech Connect (OSTI)

    Carlone, M; Heaton, R; Keller, H; Wouters, B; Jaffray, D

    2014-06-01

    Purpose: There is considerable interest in developing medical linear accelerators with integrated image guidance by MRI. Less work has been done on the fundamental biology of cell survival in the presence of a strong magnetic field. The purpose of this work is to describe an experimental system capable of measuring cell survival response in the types of MRI-linac systems currently under development. Methods: We have integrated a cobalt irradiator with a solenoid magnet. The solenoid magnet has inner diameter of 10 cm. To enable measurement of the biological effects as a function of depth, we are utilizing the sliced gel technique, in which cells are embedded and fixed within a gelatin matrix. Irradiated cells at defined positions (sub mm resolution) can subsequently be recovered and assessed for cell survival or other biological effects. Results: The magnetic field profile in the solenoid has a peak magnetic field 36 cm below the top edge of the magnet bore and can be placed at and SAD of 100 cm. At a solenoid current of 35 A, the peak magnetic field is 0.25 T. The dose rate of the cobalt irradiator is 16 cGy/min at 100 cm SAD. EBT3 film was used to demonstrate the system functionality. It was irradiated at 1 cm depth at 100 cm SSD with a 44 field to 1.5 Gy in a 0.25 T magnetic field. The dose profile was similar between this film and the control exposure without magnetic field. Conclusion: Integrating a cobalt irradiator with a high field magnet is demonstrated. The magnetic field at the cobalt defining head was minimal and did not interfere with the functioning of this unit. Cell survival experiments can be reproduced exactly in the presence or absence of a magnetic field since a resistive magnet is used.

  20. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J. L.; Zhong, Ruidan D.; Schneeloch, John A.; Liu, Tiansheng S.; Valla, Tonica; Tranquada, John M.; Gu, Genda D.; et al

    2015-01-20

    To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a “Dirac-mass gap” in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in themore » ferromagnetic TI Cr₀.₀₈(Bi₀.₁Sb₀.₉)₁.₉₂Te₃. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship Δ(r)∝n(r) is confirmed throughout and exhibits an electron–dopant interaction energy J* = 145 meV·nm². In addition, these observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.« less

  1. Predicting Magnetic Behavior in Copper Oxide Superconductors...

    Office of Science (SC) Website

    Predicting Magnetic Behavior in Copper Oxide Superconductors New theoretical techniques ... Accurate theoretical calculations could open the door for discovery of new materials in ...

  2. Electronic & Magnetic Materials & Devices Capabilities | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic & Magnetic Materials & Devices Capabilities Synthesis Colloidal chemistry and self-assembly techniques Complex oxide film synthesis via molecular beam epitaxy (DCA R450...

  3. Promising technique improves hydrogen production of affordable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Materialscientist, Wikipedia) (click image to enlarge) Promising technique improves hydrogen production of affordable alternative to platinum By Angela Hardin * October 26, 2015...

  4. MAGNETIC NEUTRON SCATTERING

    SciTech Connect (OSTI)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science

  5. Discovery of a new class of coronal structures in white light eclipse images

    SciTech Connect (OSTI)

    Druckmller, Miloslav; Habbal, Shadia Rifai; Morgan, Huw

    2014-04-10

    White light images of the solar corona, taken during total solar eclipses, capture the complex dynamic relationship between the coronal plasma and the magnetic field. This relationship can be recorded on timescales of seconds to minutes, within a few solar radii above the solar surface. Rays, large-scale loops, and streamers, which are the brightest structures in these images, have shaped current models of the coronal magnetic field and solar wind flow. We show in this work how the application of novel image processing techniques to unique high-resolution white light eclipse images reveals the presence of a new class of structures, reminiscent of smoke rings, faint nested expanding loops, expanding bubbles, and twisted helical structures. These features are interpreted as snapshots of the dynamical evolution of instabilities developing at prominence-corona interfaces and propagating outward with the solar wind.

  6. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  7. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  8. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  9. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  10. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  11. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  12. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  13. Contactless Electroluminescence Imaging for Cell and ModuleCharacteri...

    Office of Scientific and Technical Information (OSTI)

    Electroluminescence (EL) images, which are useful to detect many types of defects such as ... Here, a contactless EL imaging technique is proposed, which provides an EL image without ...

  14. Tumor Metabolism and Perfusion in Head and Neck Squamous Cell Carcinoma: Pretreatment Multimodality Imaging With {sup 1}H Magnetic Resonance Spectroscopy, Dynamic Contrast-Enhanced MRI, and [{sup 18}F]FDG-PET

    SciTech Connect (OSTI)

    Jansen, Jacobus F.A.; Schoeder, Heiko; Lee, Nancy Y.; Stambuk, Hilda E.; Wang Ya; Fury, Matthew G.; Patel, Senehal G.; Pfister, David G.; Shah, Jatin P.; Koutcher, Jason A.; Shukla-Dave, Amita

    2012-01-01

    Purpose: To correlate proton magnetic resonance spectroscopy ({sup 1}H-MRS), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and {sup 18}F-labeled fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG PET) of nodal metastases in patients with head and neck squamous cell carcinoma (HNSCC) for assessment of tumor biology. Additionally, pretreatment multimodality imaging was evaluated for its efficacy in predicting short-term response to treatment. Methods and Materials: Metastatic neck nodes were imaged with {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET in 16 patients with newly diagnosed HNSCC, before treatment. Short-term patient radiological response was evaluated at 3 to 4 months. Correlations among {sup 1}H-MRS (choline concentration relative to water [Cho/W]), DCE-MRI (volume transfer constant [K{sup trans}]; volume fraction of the extravascular extracellular space [v{sub e}]; and redistribution rate constant [k{sub ep}]), and [{sup 18}F]FDG PET (standard uptake value [SUV] and total lesion glycolysis [TLG]) were calculated using nonparametric Spearman rank correlation. To predict short-term responses, logistic regression analysis was performed. Results: A significant positive correlation was found between Cho/W and TLG ({rho} = 0.599; p = 0.031). Cho/W correlated negatively with heterogeneity measures of standard deviation std(v{sub e}) ({rho} = -0.691; p = 0.004) and std(k{sub ep}) ({rho} = -0.704; p = 0.003). Maximum SUV (SUVmax) values correlated strongly with MRI tumor volume ({rho} = 0.643; p = 0.007). Logistic regression indicated that std(K{sup trans}) and SUVmean were significant predictors of short-term response (p < 0.07). Conclusion: Pretreatment multimodality imaging using {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET is feasible in HNSCC patients with nodal metastases. Additionally, combined DCE-MRI and [{sup 18}F]FDG PET parameters were predictive of short-term response to treatment.

  15. Lensless imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Lensless Imaging of Magnetic Nanostructures by X-ray Spectro-Holography J. Lüning, W. F. Schlotter and J. Stöhr (SSRL) The unprecedented properties of X-ray free electron lasers (X-FELs) under development world wide will open the door for entirely new classes of experiments. The ultra-short time structure of the ultra-bright x-ray pulses will revolutionize the field of femtosecond x-ray science, since it will become possible to obtain sufficient information about a system from probing it

  16. Multispectral Imaging At Yellowstone Region (Hellman & Ramsey...

    Open Energy Info (EERE)

    Region Exploration Technique Multispectral Imaging Activity Date Spectral Imaging Sensor ASTER Usefulness useful DOE-funding Unknown Notes ASTER References Melanie J. Hellman,...

  17. Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey...

    Open Energy Info (EERE)

    Region Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes AVIRIS airborne hyperspectral...

  18. Rotating copper plasmoid in external magnetic field

    SciTech Connect (OSTI)

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  19. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ordering of spins that gives rise to chiral vortex phases ("skyrmions") in magnetic systems. The ability to directly image the Bragg planes or surfaces where such order...

  20. Summary report for nanoscale magnetics

    SciTech Connect (OSTI)

    Tobin, J.G.; Waddill, G.D.; Jankowski, A.F.; Tamura, E.; Sterne, P.A.; Pappas, D.P.; Tong, S.Y.

    1993-09-23

    We have probed the electronic, geometric, and magnetic nanoscale structure of ultrathin magnetic films, both monolayers and multilayers (Fe/Cu(001), FePt, FeCoPt, UFe{sub 2}, U-S). Techniques used included the MCD (magnetic circular dichroism)-variants of of x-ray absorption, core-level photoemission, and photoelectron diffraction. Progress has been made on nanoscale structure-property relations, in part of coupling of world-class experimentation and theoretical modeling. Feasibility of investigations of 5f magnetism using bulk uranium samples also has been demonstrated.

  1. Magnetic hydrogel with high coercivity

    SciTech Connect (OSTI)

    Szeri, H.; Alvero?lu, E.; Kurtan, U.; ?enel, M.; Baykal, A.

    2013-08-01

    Highlights: Polyacrylamide (PAAm) hydrogels containing magnetic BaFe{sub 12}O{sub 19} nanoparticles have been prepared. Magnetization measurements reveal that hydrogels have hard magnetic properties with high coercivity. Magnetic nanoparticles makes the gel more homogeneous and do not diffuse out of the gel during water intake. These gels are useful in applications as wastewater treatment once gels are magnetized before its usage. - Abstract: This study investigates the synthesis and characterization of polyacrylamide (PAAm) hydrogels containing magnetic BaFe{sub 12}O{sub 19} nanoparticles. Structural, electrical, and magnetic characterization of the gels have been performed with X-ray powder diffractometry, scanning electron microscopy, DC conductivity, magnetization and fluorescence spectroscopy techniques. The preparation and characterization of polyacrylamide (PAAm) hydrogels that contain 5 and 10 mg BaFe{sub 12}O{sub 19} (16 and 21 nm diameter) nanoparticles are described herein. It is seen from the fluorescence spectra that, nanoparticles surrounded to pyranine molecules so that some of pyranine molecules could not bound to the polymer strands. Electrical measurements show that presence of nanoparticles make the gel more homogeneous. Magnetization measurements reveal that hydrogels have hard magnetic properties with quite high coercivity of 4.2 kOe, which does not change with swelling. This feature makes these gels useful in applications as wastewater treatment if they are magnetized before use.

  2. Imaging and sensing based on muon tomography

    DOE Patents [OSTI]

    Morris, Christopher L; Saunders, Alexander; Sossong, Michael James; Schultz, Larry Joe; Green, J. Andrew; Borozdin, Konstantin N; Hengartner, Nicolas W; Smith, Richard A; Colthart, James M; Klugh, David C; Scoggins, Gary E; Vineyard, David C

    2012-10-16

    Techniques, apparatus and systems for detecting particles such as muons for imaging applications. Subtraction techniques are described to enhance the processing of the muon tomography data.

  3. Electrochemical Techniques

    SciTech Connect (OSTI)

    Chen, Gang; Lin, Yuehe

    2008-07-20

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  4. Verification of Anderson superexchange in MnO via magnetic pair...

    Office of Scientific and Technical Information (OSTI)

    and magnetic pair distribution function (PDF) analysis of neutron total scattering ... techniques, confirming the reliability of the newly developed magnetic PDF method. ...

  5. Three-dimensional medical image analysis using local dynamic algorithm selection on a multiple-instruction, multiple-data architecture. Doctoral thesis

    SciTech Connect (OSTI)

    Stytz, M.R.

    1989-01-01

    The dissertation outlines development of a medical imaging machine which renders 3D images from voxel data within a MIMD multiprocessor architecture at interactive rates. Interactive performance is achieved using local dynamic selection of the optimum adaptive recursive hidden-surface removal algorithm. A survey of the medical imaging, graphics, and medical imaging modality literature is provided. A description of Computerized Technology, Magnetic Resonance Imaging, Positron Emission Tomography, Single Photon Emission Computed Tomography, and Ultrasound imaging modalities is presented Previous work in 3D volume rendering graphics techniques and data models is introduced. Eleven medical imaging machines are examined with emphasis on characterization of the major innovation(s) and performance of each machine. A five stage image processing pipeline is described.

  6. Threshold Doses for Focal Liver Reaction After Stereotactic Ablative Body Radiation Therapy for Small Hepatocellular Carcinoma Depend on Liver Function: Evaluation on Magnetic Resonance Imaging With Gd-EOB-DTPA

    SciTech Connect (OSTI)

    Sanuki, Naoko; Takeda, Atsuya; Oku, Yohei; Eriguchi, Takahisa; Nishimura, Shuichi; Aoki, Yosuke; Mizuno, Tomikazu; Iwabuchi, Shogo; Kunieda, Etsuo

    2014-02-01

    Purpose: Focal liver reaction (FLR) appears on radiographic images after stereotactic ablative body radiation therapy (SABR) in patients with hepatocellular carcinoma (HCC) and chronic liver disease. We investigated the threshold dose (TD) of FLR and possible factors affecting the TD on gadoxetate acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). Methods and Materials: In 50 patients who were treated with SABR for small HCC and followed up by MRI for >6 months, FLR, seen as a hypointense area, was evaluated on the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI. The follow-up MRI with the largest extent of FLR was fused to the planning computed tomography (CT) image, and patients with good image fusion concordance were eligible. After delineating the border of the FLR manually, a dosevolume histogram was used to identify the TD for the FLR. Clinical and volumetric factors were analyzed for correlation with the TD. Results: A total of 45 patients were eligible for analysis with a median image fusion concordance of 84.9% (range, 71.6-95.4%). The median duration between SABR and subsequent hepatobiliary phase MRI with the largest extent of FLR was 3 months (range, 1-6 months). The median TD for FLR was 28.0 Gy (range, 22.3-36.4 Gy). On univariate analysis, pre-treatment Child-Pugh (CP) score and platelet count were significantly correlated with the TD. On multiple linear regression analysis, CP score was the only parameter that predicted TD. Median TDs were 30.5 Gy (range, 26.2.3-36.4 Gy) and 25.2 Gy (range, 22.3-27.5 Gy) for patients with CP-A and CP-B disease, respectively. Conclusion: The TD was significantly correlated with baseline liver function. We propose 30 Gy for CP-A disease and 25 Gy for CP-B disease in 5 fractions as TDs for FLR after SABR for patients with HCC and chronic liver disease. Use of these TDs will help to predict potential loss of liver tissue after SABR.

  7. Magnetic Resonance Imaging Assessment of Squamous Cell Carcinoma of the Anal Canal Before and After Chemoradiation: Can MRI Predict for Eventual Clinical Outcome?

    SciTech Connect (OSTI)

    Goh, Vicky; Gollub, Frank K.; Liaw, Jonathan; Wellsted, David; Przybytniak, Izabela; Padhani, Anwar R.; Glynne-Jones, Rob

    2010-11-01

    Purpose: To describe the MRI appearances of squamous cell carcinoma of the anal canal before and after chemoradiation and to assess whether MRI features predict for clinical outcome. Methods and Materials: Thirty-five patients (15 male, 20 female; mean age 60.8 years) with histologically proven squamous cell cancer of the anal canal underwent MRI before and 6-8 weeks after definitive chemoradiation. Images were reviewed retrospectively by two radiologists in consensus blinded to clinical outcome: tumor size, signal intensity, extent, and TNM stage were recorded. Following treatment, patients were defined as responders by T and N downstaging and Response Evaluation Criteria in Solid Tumors (RECIST). Final clinical outcome was determined by imaging and case note review: patients were divided into (1) disease-free and (2) with relapse and compared using appropriate univariate methods to identify imaging predictors; statistical significance was at 5%. Results: The majority of tumors were {<=}T2 (23/35; 65.7%) and N0 (21/35; 60%), mean size 3.75cm, and hyperintense (++ to +++, 24/35 patients; 68%). Following chemoradiation, there was a size reduction in all cases (mean 73.3%) and a reduction in signal intensity in 26/35 patients (74.2%). The majority of patients were classified as responders (26/35 (74.2%) patients by T and N downstaging; and 30/35 (85.7%) patients by RECIST). At a median follow-up of 33.5 months, 25 patients (71.4%) remained disease-free; 10 patients (28.6%) had locoregional or metastatic disease. Univariate analysis showed that no individual MRI features were predictive of eventual outcome. Conclusion: Early assessment of response by MRI at 6-8 weeks is unhelpful in predicting future clinical outcome.

  8. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Work performed on ALS Beamline 12.0.2.2 Citation: J.J. Turner et al., "X-Ray Diffraction Microscopy of Magnetic Structures," Phys....

  9. Nonuniform radiation damage in permanent magnet quadrupoles

    SciTech Connect (OSTI)

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.

    2014-08-15

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  10. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, John A.; Stone, Roger R.; Fabyan, Joseph

    1987-01-01

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  11. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1987-10-06

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines. 3 figs.

  12. CHANDRA AND HST IMAGING OF THE QUASARS PKS B0106+013 AND 3C 345: INVERSE COMPTON X-RAYS AND MAGNETIZED JETS

    SciTech Connect (OSTI)

    Kharb, P.; Lister, M. L.; Hogan, B. S.; Marshall, H. L.

    2012-04-01

    }13 Degree-Sign are obtained for the two quasars. Broadband (radio-optical-X-ray) spectral energy distribution (SED) modeling of individual jet components in both quasars suggests that the optical emission is from the synchrotron mechanism, while the X-rays are produced via the inverse Compton mechanism from relativistically boosted cosmic microwave background seed photons. The locations of the upstream X-ray termination peaks strongly suggest that the sites of bulk jet deceleration lie upstream (by a few kiloparsecs) of the radio hot spots in these quasars. These regions are also the sites of shocks or magnetic field dissipation, which reaccelerate charged particles and produce high-energy optical and X-ray photons. This is consistent with the best-fit SED modeling parameters of magnetic field strength and electron power-law indices being higher in the jet termination regions compared to the cores. The shocked jet regions upstream of the radio hot spots, the kiloparsec-scale jet wiggles and a 'nose cone'-like jet structure in 0106+013, and the V-shaped radio structure in 3C 345, are all broadly consistent with instabilities associated with Poynting-flux-dominated jets. A greater theoretical understanding and more sensitive numerical simulations of jets spanning parsec to kiloparsec scales are needed, however, to make direct quantitative comparisons.

  13. SU-E-T-442: Sensitivity of Quality Assurance Tools to Delivery Errors On a Magnetic Resonance-Imaging Guided Radiation Therapy (MR-IGRT) System

    SciTech Connect (OSTI)

    Rodriguez, V; Li, H; Yang, D; Kashani, R; Wooten, H; Mutic, S; Green, O; Dempsey, J

    2014-06-01

    Purpose: To test the sensitivity of the quality assurance (QA) tools actively used on a clinical MR-IGRT system for potential delivery errors. Methods: Patient-specific QA procedures have been implemented for a commercially available Cobalt-60 MR-IGRT system. The QA tools utilized were a MR-compatible cylindrical diode-array detector (ArcCHECK) with a custom insert which positions an ionization chamber (Exradin A18) in the middle of the device, as well as an in-house treatment delivery verification program. These tools were tested to investigate their sensitivity to delivery errors. For the ArcCHECK and ion chamber, a baseline was established with a static field irradiation to a known dose. Variations of the baseline were investigated which included rotated gantry, altered field size, directional shifts, and different delivery time. In addition, similar variations were tested with the automated delivery verification program that compared the treatment parameters in the machine delivery logs to the ones in the plan. To test the software, a 3-field conformal plan was generated as the baseline. Results: ArcCHECK noted at least a 13% decrease in passing rate from baseline in the following scenarios: gantry rotation of 1 degree from plan, 5mm change in field size, 2mm lateral shift, and delivery time decrease. Ion chamber measurements remained consistent for these variations except for the 5 second decrease in delivery time scenario which resulted in an 8% difference from baseline. The delivery verification software was able to detect and report the simulated errors such as when the gantry was rotated by 0.6 degrees, the beam weighting was changed by a percent, a single multileaf collimator was moved by 1cm, and the dose was changed from 2 to 1.8Gy. Conclusion: The results show that the current tools used for patient specific QA are capable of detecting small errors in RT delivery with presence of magnetic field.

  14. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    SciTech Connect (OSTI)

    Aslian, Hossein; Sadeghi, Mahdi; Mahdavi, Seied Rabie; Babapour Mofrad, Farshid; Astarakee, Mahdi; Khaledi, Navid; Fadavi, Pedram

    2013-09-01

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer.

  15. G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Collins, Liam; Belianinov, Alex; Proksch, Roger; Zuo, Tingting; Zhang, Yong; Liaw, Peter K.; Kalinin, Sergei V.; Jesse, Stephen

    2016-05-09

    We develop a full information capture approach for Magnetic Force Microscopy (MFM), referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data stream from the photodetector at sampling rates approaching the intrinsic photodiode limit. The data can be subsequently compressed, denoised, and analyzed, without information loss. Also, 3 G-Mode MFM is implemented and compared to traditional heterodyne based MFM on model systems including domain structures in ferromagnetic Yttrium Iron Garnet (YIG) and electronically and magnetically inhomogeneous high entropy alloy, CoFeMnNiSn. We investigate the use of information theory to mine the G-Mode MFM data and demonstratemore » its usefulness for extracting information which may be hidden in traditional MFM modes, including signatures of nonlinearities and mode coupling phenomena. Finally we demonstrate detection and separation of magnetic and electrostatic tip-sample interactions from a single G-Mode image, by analyzing the entire frequency response of the cantilever. G-Mode MFM is immediately implementable on any AFM platform and as such is expected to be a useful technique for probing spatiotemporal cantilever dynamics and mapping material properties as well as their mutual interactions.« less

  16. Magnetic filtration process, magnetic filtering material, and...

    Office of Scientific and Technical Information (OSTI)

    The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically ...

  17. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1985-02-12

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  18. Platinum dendritic nanoparticles with magnetic behavior

    SciTech Connect (OSTI)

    Li, Wenxian; Sun, Ziqi; Nevirkovets, Ivan P.; Dou, Shi-Xue; Tian, Dongliang

    2014-07-21

    Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ?4?nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.

  19. Magnetic nanotubes

    DOE Patents [OSTI]

    Matsui, Hiroshi; Matsunaga, Tadashi

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  20. Video Toroid Cavity Imager

    DOE Patents [OSTI]

    Gerald, II, Rex E.; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  1. TRACING ELECTRON BEAMS IN THE SUN'S CORONA WITH RADIO DYNAMIC IMAGING SPECTROSCOPY

    SciTech Connect (OSTI)

    Chen Bin; Bastian, T. S.; White, S. M.; Gary, D. E.; Perley, R.; Rupen, M.; Carlson, B.

    2013-01-20

    We report observations of type III radio bursts at decimeter wavelengths (type IIIdm bursts)-signatures of suprathermal electron beams propagating in the low corona-using the new technique of radio dynamic imaging spectroscopy provided by the recently upgraded Karl G. Jansky Very Large Array. For the first time, type IIIdm bursts were imaged with high time and frequency resolution over a broad frequency band, allowing electron beam trajectories in the corona to be deduced. Together with simultaneous hard X-ray and extreme ultraviolet observations, we show that these beams emanate from an energy release site located in the low corona at a height below {approx}15 Mm, and propagate along a bundle of discrete magnetic loops upward into the corona. Our observations enable direct measurements of the plasma density along the magnetic loops, and allow us to constrain the diameter of these loops to be less than 100 km. These overdense and ultra-thin loops reveal the fundamentally fibrous structure of the Sun's corona. The impulsive nature of the electron beams, their accessibility to different magnetic field lines, and the detailed structure of the magnetic release site revealed by the radio observations indicate that the localized energy release is highly fragmentary in time and space, supporting a bursty reconnection model that involves secondary magnetic structures for magnetic energy release and particle acceleration.

  2. Reciprocity and gyrotropism in magnetic resonance transduction

    SciTech Connect (OSTI)

    Tropp, James

    2006-12-15

    We give formulas for transduction in magnetic resonance - i.e., the appearance of an emf due to Larmor precession of spins - based upon the modified Lorentz reciprocity principle for gyrotropic (also called 'nonreciprocal') media, i.e., in which a susceptibility tensor is carried to its transpose by reversal of an external static field [cf., R. F. Harrington and A. T. Villeneuve IRE Trans. Microwave Theory and Technique MTT6, 308 (1958)]. Prior applications of reciprocity to magnetic resonance, despite much success, have ignored the gyrotropism which necessarily arises due to nuclear and/or unpaired electronic spins. For detection with linearly polarized fields, oscillating at the Larmor frequency, the emf is written in terms of a volume integral containing a product of two factors which we define as the antenna patterns, i.e. (H{sub 1x}{+-}iH{sub 1y}), where, e.g., for a single transceive antenna, the H's are just the spatially dependent oscillatory magnetic field strengths, per the application of some reference current at the antenna terminals, with the negative sign obtaining for transmission, and the positive for reception. Similar expressions hold for separate transmit and receive antennas; expressions are also given for circular polarization of the fields. We then exhibit a receive-only array antenna of two elements for magnetic resonance imaging of protons, which, due an intensity artifact arising from stray reactive coupling of the elements, produces, despite its own bilateral symmetry, asymmetric proton NMR images of a symmetric cylindrical phantom containing aqueous saline solution [J. Tropp and T. Schirmer, J. Magn. Reson. 151, 146 (2001)]. Modification of this two-port antenna, to function in transmit-receive mode, allows us to demonstrate highly nonreciprocal behavior: that is, to record images (of cylindrical test phantoms containing aqueous saline solution) whose appearance dramatically changes, when the roles of transmission and reception are

  3. Magnetic monopoles

    SciTech Connect (OSTI)

    Fryberger, D.

    1984-12-01

    In this talk on magnetic monopoles, first the author briefly reviews some historical background; then, the author describes what several different types of monopoles might look like; and finally the author discusses the experimental situation. 81 references.

  4. Mineral Magnetism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 8, 2016 Small piles of rare earth elements In the United States, rare-earth elements used in strong magnets, such as neodymium and samarium, are scarce due to limits on ...

  5. CRYOGENIC MAGNETS

    DOE Patents [OSTI]

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  6. Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2004)...

    Open Energy Info (EERE)

    Technique Ground Magnetics Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  7. Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al...

    Open Energy Info (EERE)

    Technique Ground Magnetics Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  8. Diffusion Tensor Magnetic Resonance Imaging Finding of Discrepant Fractional Anisotropy Between the Frontal and Parietal Lobes After Whole-Brain Irradiation in Childhood Medulloblastoma Survivors: Reflection of Regional White Matter Radiosensitivity?

    SciTech Connect (OSTI)

    Qiu Deqiang; Kwong, Dora; Chan, Godfrey; Leung, Lucullus; Khong, P.-L.

    2007-11-01

    Purpose: To test the hypothesis that fractional anisotropy (FA) is more severely reduced in white matter of the frontal lobe compared with the parietal lobe after receiving the same whole-brain irradiation dose in a cohort of childhood medulloblastoma survivors. Methods and Materials: Twenty-two medulloblastoma survivors (15 male, mean [{+-} SD] age = 12.1 {+-} 4.6 years) and the same number of control subjects (15 male, aged 12.0 {+-} 4.2 years) were recruited for diffusion tensor magnetic resonance imaging scans. Using an automated tissue classification method and the Talairach Daemon atlas, FA values of frontal and parietal lobes receiving the same radiation dose, and the ratio between them were quantified and denoted as FFA, PFA, and FA{sub f/p}, respectively. The Mann-Whitney U test was used to test for significant differences of FFA, PFA, and FA{sub f/p} between medulloblastoma survivors and control subjects. Results: Frontal lobe and parietal lobe white matter FA were found to be significantly less in medulloblastoma survivors compared with control subjects (frontal p = 0.001, parietal p = 0.026). Moreover, these differences were found to be discrepant, with the frontal lobe having a significantly larger difference in FA compared with the parietal lobe. The FA{sub f/p} of control and medulloblastoma survivors was 1.110 and 1.082, respectively (p = 0.029). Conclusion: Discrepant FA changes after the same irradiation dose suggest radiosensitivity of the frontal lobe white matter compared with the parietal lobe. Special efforts to address the potentially vulnerable frontal lobe after treatment with whole-brain radiation may be needed so as to balance disease control and treatment-related morbidity.

  9. Multispectral Imaging At Salton Sea Area (Reath, Et Al., 2010...

    Open Energy Info (EERE)

    Sea Area Exploration Technique Multispectral Imaging Activity Date Spectral Imaging Sensor ASTER Usefulness not indicated DOE-funding Unknown Notes ASTER References K. A. Reath,...

  10. Hyperspectral Imaging At Salton Sea Area (Reath, Et Al., 2010...

    Open Energy Info (EERE)

    Sea Area Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor SEBASS Usefulness useful DOE-funding Unknown Notes SEBASS References K. A. Reath, M....

  11. Hyperspectral Imaging At Dixie Valley Geothermal Field Area ...

    Open Energy Info (EERE)

    Field Area Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of...

  12. Multispectral Imaging At Buffalo Valley Hot Springs Area (Littlefield...

    Open Energy Info (EERE)

    Area Exploration Technique Multispectral Imaging Activity Date Spectral Imaging Sensor ASTER Usefulness useful DOE-funding Unknown Notes ASTER airborne remote sensing....

  13. Adjustable permanent magnet assembly for NMR and MRI

    DOE Patents [OSTI]

    Pines, Alexander; Paulsen, Jeffrey; Bouchard, Louis S; Blumich, Bernhard

    2013-10-29

    System and methods for designing and using single-sided magnet assemblies for magnetic resonance imaging (MRI) are disclosed. The single-sided magnet assemblies can include an array of permanent magnets disposed at selected positions. At least one of the permanent magnets can be configured to rotate about an axis of rotation in the range of at least +/-10 degrees and can include a magnetization having a vector component perpendicular to the axis of rotation. The single-sided magnet assemblies can further include a magnet frame that is configured to hold the permanent magnets in place while allowing the at least one of the permanent magnets to rotate about the axis of rotation.

  14. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underlying the magnetocaloric effect is the idea that magnetism is the result of the ... with the magnetic field, the magnetic entropy (disorder) of the system decreases; if ...

  15. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Underlying the magnetocaloric effect is the idea that magnetism is the result of the ... with the magnetic field, the magnetic entropy (disorder) of the system decreases; if ...

  16. Superconductive imaging surface magnetometer

    DOE Patents [OSTI]

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  17. Hyperspectral image reconstruction for X-ray fluorescence tomography...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groups Imaging Data Science Related People Doga Gursoy Tekin Bicer Next article: Iterative reconstruction of magnetic induction using Lorentz transmission electron tomography...

  18. Techniques for preventing accidental damage to pipelines

    SciTech Connect (OSTI)

    Lothon, A.; Akel, S.

    1996-12-31

    Following a survey of all of the techniques capable of preventing third-party damage to its gas transmission pipelines, Gaz de France has selected two of them, Electromagnetic Detection and Positioning by Satellite. The first technique is based on detection of the magnetic field existing around transmission pipes excited by a driving current. A receiver is mounted on the excavation equipment to detect the magnetic field, thereby preventing any risk of hitting the pipe. The second technique consists in locating excavators by satellite. Each excavator needs to be equipped with a GPS beacon to know its position. Using the map of the transmission network stored in data-base form, i.e., digitized, the system calculates the position of the excavator relative to the pipes buried in its vicinity so as to avoid any accidental contact. The main features, advantages and drawbacks of the two techniques are presented in this paper.

  19. Stochastic Domain-Wall Depinning in Magnetic Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that

  20. Stochastic Domain-Wall Depinning in Magnetic Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that

  1. Stochastic Domain-Wall Depinning in Magnetic Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that

  2. Stochastic Domain-Wall Depinning in Magnetic Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that

  3. Stochastic Domain-Wall Depinning in Magnetic Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that

  4. Stochastic Domain-Wall Depinning in Magnetic Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that

  5. Stochastic Domain-Wall Depinning in Magnetic Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that

  6. Magnet measurement workshop

    SciTech Connect (OSTI)

    1986-12-01

    This report covers the deliberations of the participants the workshop and some subsequent contributions. Section III, the report of the rotating coil group, includes a summary table of the major measuring systems in use today, with separate sections on each. Section IV is the summary report of the group that addressed other measuring techniques. Because one of the limits of all the techniques being considered is electronic data acquisition, Section V addresses this topic. A set of issues relevant to magnetic field measurements of SSC dipoles was raised and addressed during the workshop. These are included as Section VI. Section VII includes a complete list of attendees with their addresses and a separate list of the members of the two working groups.

  7. Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation

    SciTech Connect (OSTI)

    Akhbardeh, Alireza; Jacobs, Michael A.

    2012-04-15

    Purpose: Visualization of anatomical structures using radiological imaging methods is an important tool in medicine to differentiate normal from pathological tissue and can generate large amounts of data for a radiologist to read. Integrating these large data sets is difficult and time-consuming. A new approach uses both supervised and unsupervised advanced machine learning techniques to visualize and segment radiological data. This study describes the application of a novel hybrid scheme, based on combining wavelet transform and nonlinear dimensionality reduction (NLDR) methods, to breast magnetic resonance imaging (MRI) data using three well-established NLDR techniques, namely, ISOMAP, local linear embedding (LLE), and diffusion maps (DfM), to perform a comparative performance analysis. Methods: Twenty-five breast lesion subjects were scanned using a 3T scanner. MRI sequences used were T1-weighted, T2-weighted, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging. The hybrid scheme consisted of two steps: preprocessing and postprocessing of the data. The preprocessing step was applied for B{sub 1} inhomogeneity correction, image registration, and wavelet-based image compression to match and denoise the data. In the postprocessing step, MRI parameters were considered data dimensions and the NLDR-based hybrid approach was applied to integrate the MRI parameters into a single image, termed the embedded image. This was achieved by mapping all pixel intensities from the higher dimension to a lower dimensional (embedded) space. For validation, the authors compared the hybrid NLDR with linear methods of principal component analysis (PCA) and multidimensional scaling (MDS) using synthetic data. For the clinical application, the authors used breast MRI data, comparison was performed using the postcontrast DCE MRI image and evaluating the congruence of the segmented lesions. Results: The NLDR-based hybrid approach was able to define and segment

  8. The effect of diffusion in internal gradients on nuclear magnetic resonance transverse relaxation measurements

    SciTech Connect (OSTI)

    Muncaci, S.; Ardelean, I.; Boboia, S.

    2013-11-13

    In the present work we study the internal gradient effects on diffusion attenuation of the echo train appearing in the well-known Carr-Purcell-Meiboom-Gill (CPMG) technique, extensively used for transverse relaxation measurements. Our investigations are carried out on two porous ceramics, prepared with the same amount of magnetic impurities (Fe{sub 2}O{sub 3}) but different pore sizes. It is shown that diffusion effects on the CPMG echo train attenuation are strongly influenced by the pore size for the same magnetic susceptibility of the two samples. The experimental results were compared with a theoretical model taking into account the limit of free or restricted diffusion on echo train attenuation. The NMR experiments were performed on water filled samples using a low-field NMR instrument. The porous ceramics were prepared using both the replica technique and the powder compression technique. Magnetic susceptibility measurements indicated close values of the susceptibility constant for the two samples whereas the SEM images indicated different pore sizes. The results reported here may have impact in the interpretation of NMR relaxation measurements of water in soils or concrete samples.

  9. Magnetic Reconnection

    SciTech Connect (OSTI)

    Masaaki Yamada, Russell Kulsrud and Hantao Ji

    2009-09-17

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

  10. SSRL Imaging Group | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Beam line 14-3 is a bending magnet side station dedicated to X-ray imaging and micro X-ray absorption spectroscopy of biological, biomedical, materials, and geological samples. BL ...

  11. Polarization transfer NMR imaging

    DOE Patents [OSTI]

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  12. Efficient Graffiti Image Retrieval

    SciTech Connect (OSTI)

    Yang, Chunlei; Wong, Pak C.; Ribarsky, William; Fan, Jianping

    2012-07-05

    Research of graffiti character recognition and retrieval, as a branch of traditional optical character recognition (OCR), has started to gain attention in recent years. We have investigated the special challenge of the graffiti image retrieval problem and propose a series of novel techniques to overcome the challenges. The proposed bounding box framework locates the character components in the graffiti images to construct meaningful character strings and conduct image-wise and semantic-wise retrieval on the strings rather than the entire image. Using real world data provided by the law enforcement community to the Pacific Northwest National Laboratory, we show that the proposed framework outperforms the traditional image retrieval framework with better retrieval results and improved computational efficiency.

  13. Oblique Aerial & Ground Visible Band & Thermographic Imaging...

    Open Energy Info (EERE)

    definition has been provided for this term. Add a Definition Related Techniques Passive Sensors Aerial Photography FLIR Geodetic Survey Hyperspectral Imaging Long-Wave Infrared...

  14. Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Image Gallery News & Publications ESnet News Publications and Presentations Galleries Image Gallery Video Gallery ESnet Awards and Honors Contact Us Media Jon Bashor, ...

  15. PPPL physicists find clue to formation of magnetic fields around stars and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    galaxies | Princeton Plasma Physics Lab physicists find clue to formation of magnetic fields around stars and galaxies By Raphael Rosen November 6, 2015 Tweet Widget Google Plus One Share on Facebook An image of coronal loops on the sun that are linked to magnetic fields (Photo by NASA/Solar Dynamics Observatory) An image of coronal loops on the sun that are linked to magnetic fields An enduring astronomical mystery is how stars and galaxies acquire their magnetic fields. Physicists Jonathan

  16. PPPL physicists find clue to formation of magnetic fields around stars and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    galaxies | Princeton Plasma Physics Lab physicists find clue to formation of magnetic fields around stars and galaxies By Raphael Rosen November 6, 2015 Tweet Widget Google Plus One Share on Facebook An image of coronal loops on the sun that are linked to magnetic fields (Photo by NASA/Solar Dynamics Observatory) An image of coronal loops on the sun that are linked to magnetic fields An enduring astronomical mystery is how stars and galaxies acquire their magnetic fields. Physicists Jonathan

  17. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Direct Imaging of Antiferromagnetic Vortex States Print Wednesday, 28 September 2011 00:00 Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around

  18. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study

  19. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study

  20. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study

  1. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study

  2. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study

  3. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Antiferromagnetic Vortex States Print Magnetic materials are characterized by the ordering of electron spins, with nearest-neighbor spins parallel to each other in ferromagnetic (FM) materials and antiparallel to each other in antiferromagnetic (AFM) materials. As the size of a magnetic system is reduced to micron scale, it has been shown that the spins in an FM microstructure can curl around to form a magnetic vortex state. While there has been intensive activity in the study

  4. Iterative electromagnetic Born inversion applied to earth conductivity imaging

    SciTech Connect (OSTI)

    Alumbaugh, D.L.

    1993-08-01

    This thesis investigates the use of a fast imaging technique to deduce the spatial conductivity distribution in the earth from low frequency (< 1 MHz), cross well electromagnetic (EM) measurements. The theory embodied in this work is the extension of previous strategies and is based on the Born series approximation to solve both the forward and inverse problem. Nonlinear integral equations are employed to derive the series expansion which accounts for the scattered magnetic fields that are generated by inhomogeneities embedded in either a homogenous or a layered earth. A sinusoidally oscillating, vertically oriented magnetic dipole is employed as a source, and it is assumed that the scattering bodies are azimuthally symmetric about the source dipole axis. The use of this model geometry reduces the 3-D vector problem to a more manageable 2-D scalar form. The validity of the cross well EM method is tested by applying the imaging scheme to two sets of field data. Images of the data collected at the Devine, Texas test site show excellent correlation with the well logs. Unfortunately there is a drift error present in the data that limits the accuracy of the results. A more complete set of data collected at the Richmond field station in Richmond, California demonstrates that cross well EM can be successfully employed to monitor the position of an injected mass of salt water. Both the data and the resulting images clearly indicate the plume migrates toward the north-northwest. The plausibility of these conclusions is verified by applying the imaging code to synthetic data generated by a 3-D sheet model.

  5. Tests of a Prototype for Assessing the Field Homogeneity of the Iseult/Inumac 11.7T Whole Body MRI Magnet

    SciTech Connect (OSTI)

    Quettier, Lionel

    2010-06-01

    A neuroscience research center with very high field MRI equipments has been opened in November 2006 by the CEA life science division. One of the imaging systems will require a 11.75 T magnet with a 900 mm warm bore, the so-call Iseult/Inumac magnet. Regarding the large aperture and field strength, this magnet is a challenge as compared to the largest MRI systems ever built, and is then developed within an ambitious R&D program. With the objective of demonstrating the possibility of achieving field homogeneity better than 1 ppm using double pancake windings, a 24 double pancakes model coil, working at 1.5 T has been designed. This model magnet has been manufactured by Alstom MSA and tested at CEA. It has been measured with a very high precision, in order to fully characterize the field homogeneity, and then to investigate and discriminate the parameters that influence the field map. This magnet has reached the bare magnet field homogeneity specification expected for Iseult and thus successfully demonstrated the feasibility of building a homogenous magnet with the double pancake winding technique.

  6. Magnetic and Superconducting Materials at High Pressures

    SciTech Connect (OSTI)

    Struzhkin, Viktor V.

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  7. Superconducting magnet

    DOE Patents [OSTI]

    Satti, John A. (Naperville, IL)

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  8. Image compression/decompression based on mathematical transform, reduction/expansion, and image sharpening

    DOE Patents [OSTI]

    Fu, C.Y.; Petrich, L.I.

    1997-12-30

    An image represented in a first image array of pixels is first decimated in two dimensions before being compressed by a predefined compression algorithm such as JPEG. Another possible predefined compression algorithm can involve a wavelet technique. The compressed, reduced image is then transmitted over the limited bandwidth transmission medium, and the transmitted image is decompressed using an algorithm which is an inverse of the predefined compression algorithm (such as reverse JPEG). The decompressed, reduced image is then interpolated back to its original array size. Edges (contours) in the image are then sharpened to enhance the perceptual quality of the reconstructed image. Specific sharpening techniques are described. 22 figs.

  9. Image compression/decompression based on mathematical transform, reduction/expansion, and image sharpening

    DOE Patents [OSTI]

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image represented in a first image array of pixels is first decimated in two dimensions before being compressed by a predefined compression algorithm such as JPEG. Another possible predefined compression algorithm can involve a wavelet technique. The compressed, reduced image is then transmitted over the limited bandwidth transmission medium, and the transmitted image is decompressed using an algorithm which is an inverse of the predefined compression algorithm (such as reverse JPEG). The decompressed, reduced image is then interpolated back to its original array size. Edges (contours) in the image are then sharpened to enhance the perceptual quality of the reconstructed image. Specific sharpening techniques are described.

  10. Permanent magnet assembly

    DOE Patents [OSTI]

    Chell, Jeremy; Zimm, Carl B.

    2006-12-12

    A permanent magnet assembly is disclosed that is adapted to provide a magnetic field across an arc-shaped gap. Such a permanent magnet assembly can be used, for example, to provide a time-varying magnetic field to an annular region for use in a magnetic refrigerator.

  11. Imaging vector fields using Line Integral Convolution

    SciTech Connect (OSTI)

    Cabral, B.; Leedom, L.C.

    1993-03-01

    Imaging vector fields has applications in science, art, image processing and special effects. An effective new approach is to use linear and curvilinear filtering techniques to locally blur textures along a vector field. This approach builds on several previous texture generation and filtering techniques. It is, however, unique because it is local, one-dimensional and independent of any predefined geometry or texture. The technique is general and capable of imaging arbitrary two- and three-dimensional vector fields. The local one-dimensional nature of the algorithm lends itself to highly parallel and efficient implementations. Furthermore, the curvilinear filter is capable of rendering detail on very intricate vector fields. Combining this technique with other rendering and image processing techniques -- like periodic motion filtering -- results in richly informative and striking images. The technique can also produce novel special effects.

  12. Radiochemical technique for intensification of underexposed autoradiographs

    SciTech Connect (OSTI)

    Owunwanne, A.

    1984-04-01

    A radiochemical technique has been used to recover images of underexposed and developed autoradiographs. The underexposed image was radioactivated in a solution of (/sup 35/S)thiourea, air-dried, and reexposed to Kodak NMC film which was developed and processed in a Kodak X-Omat processor. Features which were not discernible in the underexposed autoradiographs were well distinguished in the intensified autoradiograph.

  13. Simultaneous measurement of the surface and bulk magnetization in thin magnetic films

    SciTech Connect (OSTI)

    Teplin, Charles W.; Rogers, Charles T.

    2001-06-01

    We describe an apparatus for the simultaneous measurement of the transverse and longitudinal linear magneto-optic Kerr effects and the transverse second-harmonic magneto-optic Kerr effect. We have used this system to study low frequency bulk and surface magnetization loops, and high frequency response to 100 ps impulse fields for 70 nm thick Ni{sub 80}Fe{sub 20} films. Magnetization loops show that the surface and bulk magnetization fields in these films respond essentially identically to external fields. Similarly, the dynamic response of the films to 100 ps magnetic field impulses also shows simultaneous rotation of the surface and bulk magnetization. Finally, we use the system to produce 8 {mu}m resolution (at the diffraction limit for our ellipsometric optical geometry) images of the magnetization spatial and temporal response. {copyright} 2001 American Institute of Physics.

  14. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas

    SciTech Connect (OSTI)

    Lynn, Alan G. Gilmore, Mark

    2014-11-15

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10{sup 4} T (100 Megagauss) over small volumes (∼10{sup −10}m{sup 3}) at high plasma densities (∼10{sup 28}m{sup −3}) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  15. Temperature and magnetic-field driven dynamics in artificial magnetic square ice

    SciTech Connect (OSTI)

    Sophie A. Morley; Stein, Aaron; Rosamond, Mark C.; Venero, Diego Alba; Hrabec, Ales; Shepley, Philippa M.; Im, Mi -Young; Fischer, Peter; Bryan, Matthew T.; Allwood, Dan A.; Steadman, Paul; Langridge, Sean; Marrows, Christopher H.

    2015-08-09

    Artificial spin ices are often spoken of as being realisations of some of the celebrated vertex models of statistical mechanics, where the exact microstate of the system can be imaged using advanced magnetic microscopy methods. The fact that a stable image can be formed means that the system is in fact athermal and not undergoing the usual finite-temperature fluctuations of a statistical mechanical system. In this paper we report on the preparation of artificial spin ices with islands that are thermally fluctuating due to their very small size. The relaxation rate of these islands was determined using variable frequency focused magneto-optic Kerr measurements. We performed magnetic imaging of artificial spin ice under varied temperature and magnetic field using X-ray transmission microscopy which uses X-ray magnetic circular dichroism to generate magnetic contrast. Furthermore, we have developed an on-membrane heater in order to apply temperatures in excess of 700 K and have shown increased dynamics due to higher temperature. Due to the ‘photon-in, photon-out' method employed here, it is the first report where it is possible to image the microstates of an ASI system under the simultaneous application of temperature and magnetic field, enabling the determination of relaxation rates, coercivties, and the analysis of vertex population during reversal.

  16. Temperature and magnetic-field driven dynamics in artificial magnetic square ice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sophie A. Morley; Stein, Aaron; Rosamond, Mark C.; Venero, Diego Alba; Hrabec, Ales; Shepley, Philippa M.; Im, Mi -Young; Fischer, Peter; Bryan, Matthew T.; Allwood, Dan A.; et al

    2015-08-09

    Artificial spin ices are often spoken of as being realisations of some of the celebrated vertex models of statistical mechanics, where the exact microstate of the system can be imaged using advanced magnetic microscopy methods. The fact that a stable image can be formed means that the system is in fact athermal and not undergoing the usual finite-temperature fluctuations of a statistical mechanical system. In this paper we report on the preparation of artificial spin ices with islands that are thermally fluctuating due to their very small size. The relaxation rate of these islands was determined using variable frequency focusedmore » magneto-optic Kerr measurements. We performed magnetic imaging of artificial spin ice under varied temperature and magnetic field using X-ray transmission microscopy which uses X-ray magnetic circular dichroism to generate magnetic contrast. Furthermore, we have developed an on-membrane heater in order to apply temperatures in excess of 700 K and have shown increased dynamics due to higher temperature. Due to the ‘photon-in, photon-out' method employed here, it is the first report where it is possible to image the microstates of an ASI system under the simultaneous application of temperature and magnetic field, enabling the determination of relaxation rates, coercivties, and the analysis of vertex population during reversal.« less

  17. Fluorescent microthermographic imaging

    SciTech Connect (OSTI)

    Barton, D.L.

    1993-09-01

    In the early days of microelectronics, design rules and feature sizes were large enough that sub-micron spatial resolution was not needed. Infrared or IR thermal techniques were available that calculated the object`s temperature from infrared emission. There is a fundamental spatial resolution limitation dependent on the wavelengths of light being used in the image formation process. As the integrated circuit feature sizes began to shrink toward the one micron level, the limitations imposed on IR thermal systems became more pronounced. Something else was needed to overcome this limitation. Liquid crystals have been used with great success, but they lack the temperature measurement capabilities of other techniques. The fluorescent microthermographic imaging technique (FMI) was developed to meet this need. This technique offers better than 0.01{degrees}C temperature resolution and is diffraction limited to 0.3 {mu}m spatial resolution. While the temperature resolution is comparable to that available on IR systems, the spatial resolution is much better. The FMI technique provides better spatial resolution by using a temperature dependent fluorescent film that emits light at 612 nm instead of the 1.5 {mu}m to 12 {mu}m range used by IR techniques. This tutorial starts with a review of blackbody radiation physics, the process by which all heated objects emit radiation to their surroundings, in order to understand the sources of information that are available to characterize an object`s surface temperature. The processes used in infrared thermal imaging are then detailed to point out the limitations of the technique but also to contrast it with the FMI process. The FMI technique is then described in detail, starting with the fluorescent film physics and ending with a series of examples of past applications of FMI.

  18. Try This: Household Magnets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Now which is stronger, gravity or magnetism? What is going on? How do flexible refrigerator magnets work? Get two of these magnets, they are often the size of a business card....

  19. Allan Cormack, Computerized Axial Tomography (CAT), and Magnetic Resonance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging (MRI) Allan M. Cormack, Computerized Axial Tomography (CAT) and Magnetic Resonance Imaging (MRI) Resources with Additional Information magnetic resonance imaging system Computed axial tomography, commonly known as CAT scanning, was introduced in 1972. During a CAT scan, a large coil of x-ray tubes rotates around the patient's body, taking x-rays from all angles. A computer integrates all of these x-rays into a single, three-dimensional image on a television screen. The data can be

  20. Dynamic Switching of the Spin Circulation in Tapered Magnetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which allows to record an image of the in-plane circulation of the magnetic vortex. The topology of vortices-areas where there is a spinning motion around an imaginary axis-is a...

  1. Technique for ship/wake detection

    DOE Patents [OSTI]

    Roskovensky, John K.

    2012-05-01

    An automated ship detection technique includes accessing data associated with an image of a portion of Earth. The data includes reflectance values. A first portion of pixels within the image are masked with a cloud and land mask based on spectral flatness of the reflectance values associated with the pixels. A given pixel selected from the first portion of pixels is unmasked when a threshold number of localized pixels surrounding the given pixel are not masked by the cloud and land mask. A spatial variability image is generated based on spatial derivatives of the reflectance values of the pixels which remain unmasked by the cloud and land mask. The spatial variability image is thresholded to identify one or more regions within the image as possible ship detection regions.

  2. Associated Particle Tagging (APT) in Magnetic Spectrometers

    SciTech Connect (OSTI)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the

  3. A magnetically switched kicker for proton extraction

    SciTech Connect (OSTI)

    Dinkel, J.; Biggs, J.

    1989-03-01

    The application of magnetic current amplification and switching techniques to the generation of precise high current pulses for switching magnets is described. The square loop characteristic of Metglas tape wound cores at high excitation levels provides excellent switching characteristics for microsecond pulses. The rugged and passive nature of this type pulser makes it possible to locate the final stages of amplification at the load for maximum efficiency. 12 refs., 8 figs.

  4. Frontiers in Planetary and Stellar Magnetism through High-Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing | Argonne Leadership Computing Facility image is a schematic of Earth interior and some magnetic field lines from a model This image is a schematic of Earth interior and some magnetic field lines from a model of planetary dynamo action. We will be carrying out super high res simulations of such processes via our INCITE award, allowing us for the first time to simulate planetary and astrophysical dynamo action in turbulent fluids with realistic fluid properties. Credit: Lorraine

  5. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3

    SciTech Connect (OSTI)

    Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J. L.; Zhong, Ruidan D.; Schneeloch, John A.; Liu, Tiansheng S.; Valla, Tonica; Tranquada, John M.; Gu, Genda D.; Davis, J. C. Séamus

    2015-01-20

    To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a “Dirac-mass gap” in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr₀.₀₈(Bi₀.₁Sb₀.₉)₁.₉₂Te₃. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship Δ(r)∝n(r) is confirmed throughout and exhibits an electron–dopant interaction energy J* = 145 meV·nm². In addition, these observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.

  6. Sandia Energy - Sandia Magnetized Fusion Technique Produces Significan...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an automobile's cylinders firing. Sandia researchers Paul Schmit, left, and Patrick Knapp discuss equations and graphs that describe aspects of Sandia's Z Machine. (Photo by...

  7. Measuring the strong electrostatic and magnetic fields with proton radiography for ultra-high intensity laser channeling on fast ignition

    SciTech Connect (OSTI)

    Uematsu, Y.; Iwawaki, T.; Habara, H. Tanaka, K. A.; Ivancic, S.; Theobald, W.; Lei, A. L.

    2014-11-15

    In order to investigate the intense laser propagation and channel formation in dense plasma, we conducted an experiment with proton deflectometry on the OMEGA EP Laser facility. The proton image was analyzed by tracing the trajectory of mono-energetic protons, which provides understanding the electric and magnetic fields that were generated around the channel. The estimated field strengths (E ∼ 10{sup 11} V/m and B ∼ 10{sup 8} G) agree with the predictions from 2D-Particle-in-cell (PIC) simulations, indicating the feasibility of the proton deflectometry technique for over-critical density plasma.

  8. Imaging Liquids Using Microfluidic Cells

    SciTech Connect (OSTI)

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li

    2013-05-10

    Chemistry occurring in the liquid and liquid surface is important in many applications. Chemical imaging of liquids using vacuum based analytical techniques is challenging due to the difficulty in working with liquids with high volatility. Recent development in microfluidics enabled and increased our capabilities to study liquid in situ using surface sensitive techniques such as electron microscopy and spectroscopy. Due to its small size, low cost, and flexibility in design, liquid cells based on microfluidics have been increasingly used in studying and imaging complex phenomena involving liquids. This paper presents a review of microfluidic cells that were developed to adapt to electron microscopes and various spectrometers for in situ chemical analysis and imaging of liquids. The following topics will be covered including cell designs, fabrication techniques, unique technical features for vacuum compatible cells, and imaging with electron microscopy and spectroscopy. Challenges are summarized and recommendations for future development priority are proposed.

  9. MAGNETIC DENSITOMETER

    DOE Patents [OSTI]

    McCann, J.A.; Jones, R.H.

    1961-08-15

    A magnetic densitometer for locating defects and metallic inclusions in materials is described. The apparatus consists of two primary coils connected in series opposition and adapted te be placed in inductive relation to the material under test, a source of constant frequency alternating current coupled across the primary coil combination, a pick-up coil disposed in symmetrical inductive relationship with said primary coils, a phase-shifter coupled to the output of the energizing source. The output of the phase-shifter is coupled in series with the pick-up coil. An amplifier is provided selective to the third harmonic of the energizing source frequency. The series combination of the pick-up coil and the phase-shifter output are connected across the input of the amplifier, and an amplitude comparitor is coupled to the output of the amplifier and the energizing source for comparing the instantaneous amplitude of the amplifier output and the instantaneous output of the energizing source and producing an output proportional to the difference in amplitude. A recorder is coupled to the output of the amplitude comparison means to give an indication of the amplitude difference, thereby providing a permanent presentation of the character of the changes in characteristics exhibited by the material under test. (AEC)

  10. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied ScienceTechniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class...

  11. Image alignment

    DOE Patents [OSTI]

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  12. Magnetic multilayer structure

    DOE Patents [OSTI]

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  13. Magnetic Membrane System

    DOE Patents [OSTI]

    McElfresh, Michael W.; ; Lucas, Matthew S.

    2004-12-30

    The present invention provides a membrane with magnetic particles. In one embodiment the membrane is created by mixing particles in a non-magnetic base. The membrane may act as an actuator, a sensor, a pump, a valve, or other device. A magnet is operatively connected to the membrane. The magnet acts on and changes the shape of the membrane.

  14. Recycling Magnets | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recycling Magnets Recycling Magnets July 15, 2013 The cost of a nuclear or particle physics experiment can be enormous, several hundred million dollars for the Large Hadron Collider Experiments, ATLAS and CMS at CERN, several tens of millions of dollars for an experiment like our GlueX experiment in Hall D, being built as part of our upgrade project. Among the expensive components of many experiments is a large magnet or sometimes more than one magnet. Sometimes the magnets have interesting

  15. Atomic magnetic gradiometer for room temperature high sensitivity magnetic field detection

    DOE Patents [OSTI]

    Xu,Shoujun; Lowery, Thomas L.; Budker, Dmitry; Yashchuk, Valeriy V.; Wemmer, David E.; Pines, Alexander

    2009-08-11

    A laser-based atomic magnetometer (LBAM) apparatus measures magnetic fields, comprising: a plurality of polarization detector cells to detect magnetic fields; a laser source optically coupled to the polarization detector cells; and a signal detector that measures the laser source after being coupled to the polarization detector cells, which may be alkali cells. A single polarization cell may be used for nuclear magnetic resonance (NMR) by prepolarizing the nuclear spins of an analyte, encoding spectroscopic and/or spatial information, and detecting NMR signals from the analyte with a laser-based atomic magnetometer to form NMR spectra and/or magnetic resonance images (MRI). There is no need of a magnetic field or cryogenics in the detection step, as it is detected through the LBAM.

  16. Single-Well And Cross-Well Seismic Imaging | Open Energy Information

    Open Energy Info (EERE)

    Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details...

  17. Advanced Millimeter-Wave Imaging Enhances Security Screening

    SciTech Connect (OSTI)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-01-12

    Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.

  18. Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets

    SciTech Connect (OSTI)

    2010-10-01

    Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.

  19. Science Drivers and Technical Challenges for Advanced Magnetic Resonance

    SciTech Connect (OSTI)

    Mueller, Karl T.; Pruski, Marek; Washton, Nancy M.; Lipton, Andrew S.

    2013-03-07

    This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field.

  20. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing...

  1. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing ...

  2. Magnetic switch coupling to synchronize magnetic modulators

    DOE Patents [OSTI]

    Reed, K.W.; Kiekel, P.

    1999-04-27

    Apparatus for synchronizing the output pulses from a pair of magnetic switches is disclosed. An electrically conductive loop is provided between the pair of switches with the loop having windings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself. 13 figs.

  3. Magnetic switch coupling to synchronize magnetic modulators

    DOE Patents [OSTI]

    Reed, Kim W.; Kiekel, Paul

    1999-01-01

    Apparatus for synchronizing the output pulses from a pair of magnetic switches. An electrically conductive loop is provided between the pair of switches with the loop having windlings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself.

  4. Magnetic infrasound sensor

    DOE Patents [OSTI]

    Mueller, Fred M. (Los Alamos, NM); Bronisz, Lawrence (Los Alamos, NM); Grube, Holger (Los Alamos, NM); Nelson, David C. (Santa Fe, NM); Mace, Jonathan L. (Los Alamos, NM)

    2006-11-14

    A magnetic infrasound sensor is produced by constraining a permanent magnet inside a magnetic potential well above the surface of superconducting material. The magnetic infrasound sensor measures the position or movement of the permanent magnet within the magnetic potential well, and interprets the measurements. Infrasound sources can be located and characterized by combining the measurements from one or more infrasound sensors. The magnetic infrasound sensor can be tuned to match infrasound source types, resulting in better signal-to-noise ratio. The present invention can operate in frequency modulation mode to improve sensitivity and signal-to-noise ratio. In an alternate construction, the superconductor can be levitated over a magnet or magnets. The system can also be driven, so that time resolved perturbations are sensed, resulting in a frequency modulation version with improved sensitivity and signal-to-noise ratio.

  5. Advanced Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design » Design for Efficiency » Advanced House Framing Advanced House Framing Two-story home using advanced framing techniques. Two-story home using advanced framing techniques. Advanced house framing, sometimes called optimum value engineering (OVE), refers to framing techniques designed to reduce the amount of lumber used and waste generated in the construction of a wood-framed house. These techniques boost energy efficiency by replacing lumber with insulation material while maintaining the

  6. SDO OBSERVATIONS OF MAGNETIC RECONNECTION AT CORONAL HOLE BOUNDARIES

    SciTech Connect (OSTI)

    Yang Shuhong; Zhang Jun; Li Ting; Liu Yang E-mail: zjun@nao.cas.cn E-mail: yliu@quake.stanford.edu

    2011-05-01

    With the observations from the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we investigate the coronal hole boundaries (CHBs) of an equatorial extension of the polar coronal hole. At the CHBs, many extreme-ultraviolet jets, which appear to be the signatures of magnetic reconnection, are observed in the 193 A images, and some jets occur repetitively at the same sites. The evolution of the jets is associated with the emergence and cancellation of magnetic fields. We note that both the east and west CHBs shift westward, and the shift velocities are close to the velocities of rigid rotation compared with those of the photospheric differential rotation. This indicates that magnetic reconnection at CHBs results in the evolution of CHBs and maintains the rigid rotation of coronal holes.

  7. Excited state reaction dynamics of Ti(a{sup 5}F{sub J}) + O{sub 2} → TiO(A{sup 3}Φ, B{sup 3}Π, C{sup 3}Δ) + O studied by a crossed-beam velocity map imaging technique

    SciTech Connect (OSTI)

    Honma, Kenji Tanaka, Yuhki

    2015-04-21

    Oxidation reactions of the gas-phase titanium atom in its excited state with oxygen molecule, Ti(a{sup 5}F{sub J}) + O{sub 2} → TiO(A{sup 3}Φ, B{sup 3}Π, C{sup 3}Δ) + O, were studied by a crossed-beam velocity map imaging technique at 14.3 kJ/mol of collision energy. Metastable excited Ti, Ti(a{sup 5}F{sub J}), was generated by an optical pumping method and the reaction products were detected by single photon-ionization followed by a time-of-flight mass analysis and a two dimensional detection. Three wavelengths were selected to ionize electronically excited TiO{sup ∗}, TiO(A{sup 3}Φ, B{sup 3}Π, C{sup 3}Δ). Time sliced images were measured, and angular and speed distributions of TiO{sup ∗} were determined. In all three ionization wavelengths, the angular distributions showed a forward-backward symmetry with low intensity at the sideway direction. The speed distributions were represented by the distributions based on the statistical energy partition into products. These results suggested that the reaction of Ti(a{sup 5}F{sub J}) to form TiO(B) and TiO(C) proceeds via a long-lived intermediate and confirmed that the mechanism proposed by the previous chemiluminescence study.

  8. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Spectroscopic Technique Reveals the Dynamics of Operating Battery Electrodes ... The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Laser ...

  9. Microbial Cell Imaging

    SciTech Connect (OSTI)

    Doktycz, Mitchel John; Sullivan, Claretta; Mortensen, Ninell P; Allison, David P

    2011-01-01

    Atomic force microscopy (AFM) is finding increasing application in a variety of fields including microbiology. Until the emergence of AFM, techniques for ivnestigating processes in single microbes were limited. From a biologist's perspective, the fact that AFM can be used to generate high-resolution images in buffers or media is its most appealing feature as live-cell imaging can be pursued. Imaging living cells by AFM allows dynamic biological events to be studied, at the nanoscale, in real time. Few areas of biological research have as much to gain as microbiology from the application of AFM. Whereas the scale of microbes places them near the limit of resolution for light microscopy. AFM is well suited for the study of structures on the order of a micron or less. Although electron microscopy techniques have been the standard for high-resolution imaging of microbes, AFM is quickly gaining favor for several reasons. First, fixatives that impair biological activity are not required. Second, AFM is capable of detecting forces in the pN range, and precise control of the force applied to the cantilever can be maintained. This combination facilitates the evaluation of physical characteristics of microbes. Third, rather than yielding the composite, statistical average of cell populations, as is the case with many biochemical assays, the behavior of single cells can be monitored. Despite the potential of AFM in microbiology, there are several limitations that must be considered. For example, the time required to record an image allows for the study of gross events such as cell division or membrane degradation from an antibiotic but precludes the evaluation of biological reactions and events that happen in just fractions of a second. Additionally, the AFM is a topographical tool and is restricted to imaging surfaces. Therefore, it cannot be used to look inside cells as with opticla and transmission electron microscopes. other practical considerations are the limitation on

  10. A REVIEW OF NON-INVASIVE IMAGING METHODS AND APPLICATIONS IN CONTAMINANT HYDROGEOLOGY RESEARCH

    SciTech Connect (OSTI)

    Werth, Charles J.; Zhang, Changyong; Brusseau, M. L.; Oostrom, Martinus; Baumann, T.

    2010-03-08

    Contaminant hydrogeological processes occurring in porous media are typically not amenable to direct observation. As a result, indirect measurements (e.g., contaminant breakthrough at a fixed location) are often used to infer processes occurring at different scales, locations, or times. To overcome this limitation, non-invasive imaging methods are increasingly being used in contaminant hydrogeology research. The most common methods, and the subjects of this review, are optical imaging using UV or visible light, dual-energy gamma-radiation, X-ray microtomography, and magnetic resonance imaging (MRI). Non-invasive imaging techniques have provided valuable insights into a variety of complex systems and processes, including porous media characterization, multiphase fluid distribution, fluid flow, solute transport and mixing, colloidal transport and deposition, and reactions. In this paper we review the theory underlying these methods, applications of these methods to contaminant hydrogeology research, and methods advantages and disadvantages. As expected, there is no perfect method or tool for non-invasive imaging. However, optical methods generally present the least expensive and easiest options for imaging fluid distribution, solute and fluid flow, colloid transport, and reactions in artificial two-dimensional (2D) porous media. Gamma radiation methods present the best opportunity for characterization of fluid distributions in 2D at the Darcy scale. X-ray methods present the highest resolution and flexibility for three-dimensional (3D) natural porous media characterization, and 3D characterization of fluid distributions in natural porous media. And MRI presents the best option for 3D characterization of fluid distribution, fluid flow, colloid transport, and reaction in artificial porous media. Obvious deficiencies ripe for method development are the ability to image transient processes such as fluid flow and colloid transport in natural porous media in three

  11. Fidelity imaging for atomic force microscopy

    SciTech Connect (OSTI)

    Ghosal, Sayan Salapaka, Murti

    2015-01-05

    Atomic force microscopy is widely employed for imaging material at the nanoscale. However, real-time measures on image reliability are lacking in contemporary atomic force microscopy literature. In this article, we present a real-time technique that provides an image of fidelity for a high bandwidth dynamic mode imaging scheme. The fidelity images define channels that allow the user to have additional authority over the choice of decision threshold that facilitates where the emphasis is desired, on discovering most true features on the sample with the possible detection of high number of false features, or emphasizing minimizing instances of false detections. Simulation and experimental results demonstrate the effectiveness of fidelity imaging.

  12. Tamper resistant magnetic stripes

    DOE Patents [OSTI]

    Naylor, Richard Brian; Sharp, Donald J.

    1999-01-01

    This invention relates to a magnetic stripe comprising a medium in which magnetized particles are suspended and in which the encoded information is recorded by actual physical rotation or alignment of the previously magnetized particles within the flux reversals of the stripe which are 180.degree. opposed in their magnetic polarity. The magnetized particles are suspended in a medium which is solid, or physically rigid, at ambient temperatures but which at moderately elevated temperatures, such as 40.degree. C., is thinable to a viscosity permissive of rotation of the particles therein under applications of moderate external magnetic field strengths within acceptable time limits.

  13. Method for the detection of a magnetic field utilizing a magnetic vortex

    DOE Patents [OSTI]

    Novosad, Valentyn; Buchanan, Kristen

    2010-04-13

    The determination of the strength of an in-plane magnetic field utilizing one or more magnetically-soft, ferromagnetic member, having a shape, size and material whereas a single magnetic vortex is formed at remanence in each ferromagnetic member. The preferred shape is a thin circle, or dot. Multiple ferromagnetic members can also be stacked on-top of each other and separated by a non-magnetic spacer. The resulting sensor is hysteresis free. The sensor's sensitivity, and magnetic saturation characteristics may be easily tuned by simply altering the material, size, shape, or a combination thereof to match the desired sensitivity and saturation characteristics. The sensor is self-resetting at remanence and therefore does not require any pinning techniques.

  14. Ground Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information...

  15. Contamination Control Techniques

    SciTech Connect (OSTI)

    EBY, J.L.

    2000-05-16

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

  16. Magnets for Muon 6D Cooling Channels

    SciTech Connect (OSTI)

    Johnson, Rolland; Flanagan, Gene

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  17. Active magnetic regenerator

    DOE Patents [OSTI]

    Barclay, John A.; Steyert, William A.

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  18. Electromagnetic Sounding Techniques | Open Energy Information

    Open Energy Info (EERE)

    Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock...

  19. Electromagnetic Profiling Techniques | Open Energy Information

    Open Energy Info (EERE)

    Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock...

  20. Magnetic monopoles: a status report

    SciTech Connect (OSTI)

    Carrigan, R.A. Jr.; Trower, W.P.

    1983-03-01

    A solitary, uncorroborated Stanford candidate event is the only evidence that magnetic monpoles derives from Dirac's assertion that monopoles could explain charge quantization and the 't Hooft-Polyakov demonstration that monopoles are an inevitable consequence of many gauge theories currently being used to unify the electroweak (photon-lepton) and nuclear (quark) interactions. The monopole abundance implied by the Stanford event is in clear contradiction to bounds on their number from astronomical data. Fortunately, the already considerable and expanding arsenal of detection techniques are being fashioned to experimentally test the many open questions surrounding monopoles.

  1. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Cool Magnetic Molecules Print Wednesday, 25 May 2011 00:00 Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost

  2. RAPID CHANGES OF PHOTOSPHERIC MAGNETIC FIELD AFTER TETHER-CUTTING RECONNECTION AND MAGNETIC IMPLOSION

    SciTech Connect (OSTI)

    Liu Chang; Deng Na; Liu Rui; Jing Ju; Xu Yan; Wang Shuo; Wang Haimin; Lee, Jeongwoo; Wiegelmann, Thomas

    2012-01-20

    The rapid, irreversible change of the photospheric magnetic field has been recognized as an important element of the solar flare process. This Letter reports such a rapid change of magnetic fields during the 2011 February 13 M6.6 flare in NOAA AR 11158 that we found from the vector magnetograms of the Helioseismic and Magnetic Imager (HMI) with 12 minute cadence. High-resolution magnetograms of Hinode that are available at {approx}-5.5, -1.5, 1.5, and 4 hr relative to the flare maximum are used to reconstruct a three-dimensional coronal magnetic field under the nonlinear force-free field (NLFFF) assumption. UV and hard X-ray images are also used to illuminate the magnetic field evolution and energy release. The rapid change is mainly detected by HMI in a compact region lying in the center of the magnetic sigmoid, where the mean horizontal field strength exhibited a significant increase of 28%. The region lies between the initial strong UV and hard X-ray sources in the chromosphere, which are cospatial with the central feet of the sigmoid according to the NLFFF model. The NLFFF model further shows that strong coronal currents are concentrated immediately above the region, and that, more intriguingly, the coronal current system underwent an apparent downward collapse after the sigmoid eruption. These results are discussed in favor of both the tether-cutting reconnection producing the flare and the ensuing implosion of the coronal field resulting from the energy release.

  3. Correlation between magnetism and “dark stripes” in strained La{sub 1−x}Sr{sub x}CoO{sub 3} epitaxial films (0 ≤ x ≤ 0.1)

    SciTech Connect (OSTI)

    Lan, Q. Q.; Shen, X.; Yang, H. W.; Zhang, H. R.; Zhang, J.; Guan, X. X.; Yao, Y.; Wang, Y. G.; Yu, R. C. Sun, J. R.; Peng, Y.

    2015-12-14

    Using the technique of aberration-corrected scanning transmission electron microscopy, we performed a systematic analysis for the atomic lattice of the strained La{sub 1−x}Sr{sub x}CoO{sub 3} (0 ≤ x ≤ 0.1) epitaxial films, which have drawn a great attention in recent years because of their anomalous magnetism. Superstructures characterized by dark stripes are observed in the lattice image, evolving with combined Sr-doping and lattice strains. Fascinatingly, we found a close relation between the proportion of the Co ions in dark stripes and the saturation magnetization of the film: the latter grows linearly with the former. This result implies that the magnetism could be exclusively ascribed to the Co ions in dark stripes.

  4. Noble gas magnetic resonator

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  5. Magnetic nanohole superlattices

    DOE Patents [OSTI]

    Liu, Feng

    2013-05-14

    A magnetic material is disclosed including a two-dimensional array of carbon atoms and a two-dimensional array of nanoholes patterned in the two-dimensional array of carbon atoms. The magnetic material has long-range magnetic ordering at a temperature below a critical temperature Tc.

  6. Iron dominated magnets

    SciTech Connect (OSTI)

    Fischer, G.E.

    1985-07-01

    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided.

  7. X-ray imaging reveals secrets in battery materials | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray imaging reveals secrets in battery materials June 22, 2015 Tweet EmailPrint Imaging and data analysis techniques offer new approach to probing material properties In a new...

  8. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema (OSTI)

    Zhang, Song

    2012-08-29

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  9. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOE Patents [OSTI]

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  10. Nanoscale, multidimensional artificial magnet created

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an array of magnetic nano-islands along a geometry that is not found in natural magnets. ... an array of magnetic nano-islands along a geometry that is not found in natural magnets. ...

  11. Brushed permanent magnet DC MLC motor operation in an external magnetic field

    SciTech Connect (OSTI)

    Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G.

    2010-05-15

    Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450{+-}10 G. The carriage motor tolerated up to 2000{+-}10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600{+-}10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the

  12. Multiphase imaging of gas flow in a nanoporous material usingremote detection NMR

    SciTech Connect (OSTI)

    Harel, Elad; Granwehr, Josef; Seeley, Juliette A.; Pines, Alex

    2005-10-03

    Pore structure and connectivity determine how microstructured materials perform in applications such as catalysis, fluid storage and transport, filtering, or as reactors. We report a model study on silica aerogel using a recently introduced time-of-flight (TOF) magnetic resonance imaging technique to characterize the flow field and elucidate the effects of heterogeneities in the pore structure on gas flow and dispersion with Xe-129 as the gas-phase sensor. The observed chemical shift allows the separate visualization of unrestricted xenon and xenon confined in the pores of the aerogel. The asymmetrical nature of the dispersion pattern alludes to the existence of a stationary and a flow regime in the aerogel. An exchange time constant is determined to characterize the gas transfer between them. As a general methodology, this technique provides new insights into the dynamics of flow in porous media where multiple phases or chemical species may be present.

  13. Career Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Career Images Career Images Explore a dimensional career at Los Alamos Lab: Take a look at who is working here and what they are doing to have a fulfilling career and balanced work/life. Diversity and Inclusion» Career Options» Our Workplace» Employee, Retiree Resources» Career Stories» Career Images» Career Videos» Click thumbnails to enlarge. Photos arranged by most recent first, horizontal formats before vertical. See Flickr for more sizes and details. Advanced wireless sensing systems

  14. Fundamental Scientific Problems in Magnetic Recording

    SciTech Connect (OSTI)

    Schulthess, T.C.; Miller, M.K.

    2007-06-27

    Magnetic data storage technology is presently leading the high tech industry in advancing device integration--doubling the storage density every 12 months. To continue these advancements and to achieve terra bit per inch squared recording densities, new approaches to store and access data will be needed in about 3-5 years. In this project, collaboration between Oak Ridge National Laboratory (ORNL), Center for Materials for Information Technology (MINT) at University of Alabama (UA), Imago Scientific Instruments, and Seagate Technologies, was undertaken to address the fundamental scientific problems confronted by the industry in meeting the upcoming challenges. The areas that were the focus of this study were to: (1) develop atom probe tomography for atomic scale imaging of magnetic heterostructures used in magnetic data storage technology; (2) develop a first principles based tools for the study of exchange bias aimed at finding new anti-ferromagnetic materials to reduce the thickness of the pinning layer in the read head; (3) develop high moment magnetic materials and tools to study magnetic switching in nanostructures aimed at developing improved writers of high anisotropy magnetic storage media.

  15. Magnetically attached sputter targets

    DOE Patents [OSTI]

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  16. Dental diagnostics using optical coherence techniques

    SciTech Connect (OSTI)

    Nathel, H.; Colston, B.; Armitage, G.

    1994-11-15

    Optical radiation can be used for diagnostic purposes in oral medicine. However, due to the turbid, amorphous, and inhomogeneous nature of dental tissue conventional techniques used to transilluminate materials are not well suited to dental tissues. Optical coherence techniques either in the time- of frequency-domain offer the capabilities of discriminating scattered from unscattered light, thus allowing for imaging through turbid tissue. Currently, using optical time-domain reflectometry we are able to discriminate specular from diffuse reflections occurring at tissue boundaries. We have determined the specular reflectivity of enamel and dentin to be approximately 6.6 x 10{sup -5} and 1.3 x 10{sup -6}, respectively. Implications to periodontal imaging will be discussed.

  17. New techniques for the scientific visualization of three-dimensional multi-variate and vector fields

    SciTech Connect (OSTI)

    Crawfis, R.A.

    1995-10-01

    Volume rendering allows us to represent a density cloud with ideal properties (single scattering, no self-shadowing, etc.). Scientific visualization utilizes this technique by mapping an abstract variable or property in a computer simulation to a synthetic density cloud. This thesis extends volume rendering from its limitation of isotropic density clouds to anisotropic and/or noisy density clouds. Design aspects of these techniques are discussed that aid in the comprehension of scientific information. Anisotropic volume rendering is used to represent vector based quantities in scientific visualization. Velocity and vorticity in a fluid flow, electric and magnetic waves in an electromagnetic simulation, and blood flow within the body are examples of vector based information within a computer simulation or gathered from instrumentation. Understand these fields can be crucial to understanding the overall physics or physiology. Three techniques for representing three-dimensional vector fields are presented: Line Bundles, Textured Splats and Hair Splats. These techniques are aimed at providing a high-level (qualitative) overview of the flows, offering the user a substantial amount of information with a single image or animation. Non-homogenous volume rendering is used to represent multiple variables. Computer simulations can typically have over thirty variables, which describe properties whose understanding are useful to the scientist. Trying to understand each of these separately can be time consuming. Trying to understand any cause and effect relationships between different variables can be impossible. NoiseSplats is introduced to represent two or more properties in a single volume rendering of the data. This technique is also aimed at providing a qualitative overview of the flows.

  18. WE-G-17A-09: Novel Magnetic Shielding Design for Inline and Perpendicular Integrated 6 MV Linac and 1.0 T MRI Systems

    SciTech Connect (OSTI)

    Li, X; Ma, B; Kuang, Y; Diao, X

    2014-06-15

    Purpose: The influence of fringe magnetic fields delivered by magnetic resonance imaging (MRI) on the beam generation and transportation in Linac is still a major challenge for the integration of linear accelerator and MRI (Linac-MRI). In this study, we investigated an optimal magnetic shielding design for Linac-MRI and further characterized the beam trajectory in electron gun. Methods: Both inline and perpendicular configurations were analyzed in this study. The configurations, comprising a Linac-MRI with a 100cm SAD and an open 1.0 T superconductive magnet, were simulated by the 3D finite element method (FEM). The steel shielding around the Linac was included in the 3D model, the thickness of which was varied from 1mm to 20mm, and magnetic field maps were acquired with and without additional shielding. The treatment beam trajectory in electron gun was evaluated using OPERA 3d SCALA with and without shielding cases. Results: When Linac was not shielded, the uniformity of diameter sphere volume (DSV) (30cm) was about 5 parts per million (ppm) and the fringe magnetic fields in electron gun were more than 0.3 T. With shielding, the magnetic fields in electron gun were reduced to less than 0.01 T. For the inline configuration, the radial magnetic fields in the Linac were about 0.02T. A cylinder steel shield used (5mm thick) altered the uniformity of DSV to 1000 ppm. For the perpendicular configuration, the Linac transverse magnetic fields were more than 0.3T, which altered the beam trajectory significantly. A 8mm-thick cylinder steel shield surrounding the Linac was used to compensate the output losses of Linac, which shifted the magnetic fields' uniformity of DSV to 400 ppm. Conclusion: For both configurations, the Linac shielding was used to ensure normal operation of the Linac. The effect of magnetic fields on the uniformity of DSV could be modulated by the shimming technique of the MRI magnet. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship.

  19. Lensless Imaging of Atomic Surface Structures via Ptychography...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Division, Argonne National Laboratory, Argonne, IL Coherent x-ray diffraction imaging (CDI) is a lensless technique, which has been in rapid progress recently...

  20. Hyperspectral Imaging At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area Exploration Technique Hyperspectral Imaging Activity Date 2003 - 2003 Usefulness useful DOE-funding Unknown Exploration Basis This Study was...

  1. Accurate Identification, Imaging and Monitoring of Fluid-Saturated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    so that the imaging procedure can be adapted to each case depending on the geology, data quality, frequency content, etc. This technique will find applications in the...

  2. Multispectral Imaging (Monaster And Coolbaugh, 2007) | Open Energy...

    Open Energy Info (EERE)

    Unspecified Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown References Francis C. Monastero, Mark F. Coolbaugh (2007) Advances...

  3. Mass Spectrometry imaging of plant metabolites | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We are developing and applying mass spectrometry imaging technique to understand plant metabolic biology down to cellular and eventually subcellular level high-spatial...

  4. Fast Company: Satellite imaging startup takes step forward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 6, 2015 Fast Company covers "Just Your Typical New Mexico Image Recognition Startup ... covers new technique that may make solar panel production less expensive The ...

  5. Fast Company covers "Just Your Typical New Mexico Image Recognition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fast Company covers "Just Your Typical New Mexico Image Recognition Startup Spun Off From A ... covers new technique that may make solar panel production less expensive The ...

  6. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  7. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  8. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  9. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  10. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  11. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  12. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems New ALS Technique Gives Nanoscale Views of Complex Systems Print Wednesday, 28 May 2014 00:00 Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks

  13. New characterization techniques for LSST sensors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nomerotski, A.

    2015-06-18

    Fully depleted, thick CCDs with extended infra-red response have become the sensor of choice for modern sky surveys. The charge transport effects in the silicon and associated astrometric distortions could make mapping between the sky coordinates and sensor coordinates non-trivial, and limit the ultimate precision achievable with these sensors. Two new characterization techniques for the CCDs, which both could probe these issues, are discussed: x-ray flat fielding and imaging of pinhole arrays.

  14. A Radiographic Technique With Heavy Ion Microbeams

    SciTech Connect (OSTI)

    Muscio, J.; Somacal, H.; Burlon, A. A.; Debray, M. E.; Valda, A. A.; Kreiner, A. J.; Kesque, J. M.; Minsky, D. M.

    2007-02-12

    In this work, we introduce a new technique to perform densitometric and multielemental analysis of samples at the same time using a simple detector with heavy ion micro-beams. It consists in the simultaneous analysis of X-rays induced in the sample and in a secondary target arranged behind the specimen. The X-rays originated in the secondary target are attenuated when crossing the specimen producing a radiographic image with a monochromatic source.

  15. New imaging technique provides improved insight into controlling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Read the abstract: http:iopscience.iop.org0741-3335559095006 Contact Info PPPL Office of Communications Email: PPPLOOC@pppl.gov Phone: 609-243-2755 Download Select and View ...

  16. CNEEC - Synchrotron Techniques Tutorial by Profs. Pianetta and Toney

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Techniques

  17. Reaction product imaging

    SciTech Connect (OSTI)

    Chandler, D.W.

    1993-12-01

    Over the past few years the author has investigated the photochemistry of small molecules using the photofragment imaging technique. Bond energies, spectroscopy of radicals, dissociation dynamics and branching ratios are examples of information obtained by this technique. Along with extending the technique to the study of bimolecular reactions, efforts to make the technique as quantitative as possible have been the focus of the research effort. To this end, the author has measured the bond energy of the C-H bond in acetylene, branching ratios in the dissociation of HI, the energetics of CH{sub 3}Br, CD{sub 3}Br, C{sub 2}H{sub 5}Br and C{sub 2}H{sub 5}OBr dissociation, and the alignment of the CD{sub 3} fragment from CD{sub 3}I photolysis. In an effort to extend the technique to bimolecular reactions the author has studied the reaction of H with HI and the isotopic exchange reaction between H and D{sub 2}.

  18. Permanent magnet with MgB{sub 2} bulk superconductor

    SciTech Connect (OSTI)

    Yamamoto, Akiyasu; Ishihara, Atsushi; Tomita, Masaru; Kishio, Kohji

    2014-07-21

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB{sub 2}) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB{sub 2} permanent bulk magnet was determined. Because MgB{sub 2} is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB{sub 2} bulks promising for the next generation of Tesla-class permanent-magnet applications.

  19. Imaging Heterogeneous Ion Transfer: Lithium Ion Quantification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantitative micro- and nano- probes were used for the in situ imaging of alkaline ion ... Implementation of technique onto a 120 nm nano-Hg electrode shows promising for battery ...

  20. Developing stereo image based robot control system

    SciTech Connect (OSTI)

    Suprijadi,; Pambudi, I. R.; Woran, M.; Naa, C. F; Srigutomo, W.

    2015-04-16

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  1. Thermal and high magnetic field treatment of materials and associated apparatus

    DOE Patents [OSTI]

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2010-06-29

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  2. Thermal and high magnetic field treatment of materials and associated apparatus

    DOE Patents [OSTI]

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2007-01-09

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  3. Sensitive magnetic force detection with a carbon nanotube resonator

    SciTech Connect (OSTI)

    Willick, Kyle; Haapamaki, Chris; Baugh, Jonathan

    2014-03-21

    We propose a technique for sensitive magnetic point force detection using a suspended carbon nanotube (CNT) mechanical resonator combined with a magnetic field gradient generated by a ferromagnetic gate electrode. Numerical calculations of the mechanical resonance frequency show that single Bohr magneton changes in the magnetic state of an individual magnetic molecule grafted to the CNT can translate to detectable frequency shifts, on the order of a few kHz. The dependences of the resonator response to device parameters such as length, tension, CNT diameter, and gate voltage are explored and optimal operating conditions are identified. A signal-to-noise analysis shows that, in principle, magnetic switching at the level of a single Bohr magneton can be read out in a single shot on timescales as short as 10??s. This force sensor should enable new studies of spin dynamics in isolated single molecule magnets, free from the crystalline or ensemble settings typically studied.

  4. THE CONNECTION BETWEEN INTERNETWORK MAGNETIC ELEMENTS AND SUPERGRANULAR FLOWS

    SciTech Connect (OSTI)

    Orozco Suarez, D.; Katsukawa, Y.; Bellot Rubio, L. R.

    2012-10-20

    The advection of internetwork magnetic elements by supergranular convective flows is investigated using high spatial resolution, high cadence, and high signal-to-noise ratio Na I D1 magnetograms obtained with the Hinode satellite. The observations show that magnetic elements appear everywhere across the quiet Sun surface. We calculate the proper motion of these magnetic elements with the aid of a feature tracking algorithm. The results indicate that magnetic elements appearing in the interior of supergranules tend to drift toward the supergranular boundaries with a non-constant velocity. The azimuthally averaged radial velocities of the magnetic elements and of the supergranular flow, calculated from a local correlation tracking technique applied to Dopplergrams, are very similar. This suggests that, in the long term, surface magnetic elements are advected by supergranular flows, although on short timescales their very chaotic motions are driven mostly by granular flows and other processes.

  5. Conventional magnetic superconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less

  6. MAGNETIC LOOPS IN THE QUIET SUN

    SciTech Connect (OSTI)

    Wiegelmann, T.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Borrero, J. M.; Schmidt, W.; Pillet, V. MartInez; Bonet, J. A.; Domingo, V.; Knoelker, M.; Title, A. M.

    2010-11-10

    We investigate the fine structure of magnetic fields in the atmosphere of the quiet Sun. We use photospheric magnetic field measurements from SUNRISE/IMaX with unprecedented spatial resolution to extrapolate the photospheric magnetic field into higher layers of the solar atmosphere with the help of potential and force-free extrapolation techniques. We find that most magnetic loops that reach into the chromosphere or higher have one footpoint in relatively strong magnetic field regions in the photosphere. Ninety-one percent of the magnetic energy in the mid-chromosphere (at a height of 1 Mm) is in field lines, whose stronger footpoint has a strength of more than 300 G, i.e., above the equipartition field strength with convection. The loops reaching into the chromosphere and corona are also found to be asymmetric in the sense that the weaker footpoint has a strength B < 300 G and is located in the internetwork (IN). Such loops are expected to be strongly dynamic and have short lifetimes, as dictated by the properties of the IN fields.

  7. High-Energy Composite Permanent Magnets: High-Energy Permanent Magnets for Hybrid Vehicles and Alternative Energy

    SciTech Connect (OSTI)

    2010-02-15

    Broad Funding Opportunity Announcement Project: The University of Delaware is developing permanent magnets that contain less rare earth material and produce twice the energy of the strongest rare earth magnets currently available. The University of Delaware is creating these magnets by mixing existing permanent magnet materials with those that are more abundant, like iron. Both materials are first prepared in the form of nanoparticles via techniques ranging from wet chemistry to ball milling. After that, the nanoparticles must be assembled in a 3-D array and consolidated at low temperatures to form a magnet. With small size particles and good contact between these two materials, the best qualities of each allow for the development of exceptionally strong composite magnets.

  8. What is the center of the image?

    SciTech Connect (OSTI)

    Willson, R.G.; Shafer, S.A.

    1994-11-01

    To model the way that cameras project the three-dimensional world into a two-dimensional image we need to know the camera`s image center. First-order models of lens behavior, such as the pinhole-camera model and the thin-lens model, suggest that the image center is a single, fixed, and intrinsic parameter of the lens. On closer inspection, however, we find that there are many possible definitions for image center. Most image centers do not have the same coordinates and, moreover, move as lens parameters are changed. We present a taxonomy that includes 15 techniques for measuring image center. Several techniques are applied to a precision automated zoom lens, and experimental results are shown.

  9. COAL AND CHAR STUDIES BY ADVANCED EMR TECHNIQUES

    SciTech Connect (OSTI)

    R. Linn Belford; Robert B. Clarkson; Mark J. Nilges; Boris M. Odintsov; Alex I. Smirnov

    2001-04-30

    Advanced electronic magnetic resonance (EMR) as well as nuclear magnetic resonance (NMR) methods have been used to examine properties of coals, chars, and molecular species related to constituents of coal. During the span of this grant, progress was made on construction and applications to coals and chars of two high frequency EMR systems particularly appropriate for such studies--48 GHz and 95 GHz electron magnetic resonance spectrometer, on new low-frequency dynamic nuclear polarization (DNP) experiments to examine the interaction between water and the surfaces of suspended char particulates in slurries, and on a variety of proton nuclear magnetic resonance (NMR) techniques to measure characteristics of the water directly in contact with the surfaces and pore spaces of carbonaceous particulates.

  10. Nanoscale, multidimensional artificial magnet created

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale, multidimensional artificial magnet created Nanoscale, multidimensional artificial magnet created Applications might range from general magnetism, such as developing sensors, to information encoding. October 26, 2015 Researchers have created a nanoscale, artificial magnet by arranging an array of magnetic nano-islands along a geometry that is not found in natural magnets. As temperature is reduced, magnetic nanoislands (in blue) reach a one-dimensional static, ordered state, while

  11. Passive magnetic bearing system

    DOE Patents [OSTI]

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  12. Nanodomain induced anomalous magnetic and electronic transport properties of LaBaCo{sub 2}O{sub 5.5+?} highly epitaxial thin films

    SciTech Connect (OSTI)

    Ruiz-Zepeda, F.; Ma, C.; Bahena Uribe, D.; Cantu-Valle, J.; Wang, H.; Xu, Xing; Yacaman, M. J.; Ponce, A.; Chen, C.; Lorenz, B.; Jacobson, A. J.; Chu, P. C. W.

    2014-01-14

    A giant magnetoresistance effect (?46% at 20?K under 7?T) and anomalous magnetic properties were found in a highly epitaxial double perovskite LaBaCo{sub 2}O{sub 5.5+?} (LBCO) thin film on (001) MgO. Aberration-corrected Electron Microscopy and related analytical techniques were employed to understand the nature of these unusual physical properties. The as-grown film is epitaxial with the c-axis of the LBCO structure lying in the film plane and with an interface relationship given by (100){sub LBCO} || (001){sub MgO} and [001]{sub LBCO} || [100]{sub MgO} or [010]{sub MgO}. Orderly oxygen vacancies were observed by line profile electron energy loss spectroscopy and by atomic resolution imaging. Especially, oxygen vacancy and nanodomain structures were found to have a crucial effect on the electronic transport and magnetic properties.

  13. The attribute measurement technique

    SciTech Connect (OSTI)

    Macarthur, Duncan W; Langner, Diana; Smith, Morag; Thron, Jonathan; Razinkov, Sergey; Livke, Alexander

    2010-01-01

    Any verification measurement performed on potentially classified nuclear material must satisfy two seemingly contradictory constraints. First and foremost, no classified information can be released. At the same time, the monitoring party must have confidence in the veracity of the measurement. An information barrier (IB) is included in the measurement system to protect the potentially classified information while allowing sufficient information transfer to occur for the monitoring party to gain confidence that the material being measured is consistent with the host's declarations, concerning that material. The attribute measurement technique incorporates an IB and addresses both concerns by measuring several attributes of the nuclear material and displaying unclassified results through green (indicating that the material does possess the specified attribute) and red (indicating that the material does not possess the specified attribute) lights. The attribute measurement technique has been implemented in the AVNG, an attribute measuring system described in other presentations at this conference. In this presentation, we will discuss four techniques used in the AVNG: (1) the 1B, (2) the attribute measurement technique, (3) the use of open and secure modes to increase confidence in the displayed results, and (4) the joint design as a method for addressing both host and monitor needs.

  14. Magnetic latching solenoid

    DOE Patents [OSTI]

    Marts, Donna J.; Richardson, John G.; Albano, Richard K.; Morrison, Jr., John L.

    1995-01-01

    This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized.

  15. Magnetic latching solenoid

    DOE Patents [OSTI]

    Marts, D.J.; Richardson, J.G.; Albano, R.K.; Morrison, J.L. Jr.

    1995-11-28

    This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized. 2 figs.

  16. Pulse magnetic welder

    DOE Patents [OSTI]

    Christiansen, D.W.; Brown, W.F.

    1984-01-01

    A welder is described for automated closure of fuel pins by a pulsed magnetic process in which the open end of a length of cladding is positioned within a complementary tube surrounded by a pulsed magnetic welder. Seals are provided at each end of the tube, which can be evacuated or can receive tag gas for direct introduction to the cladding interior. Loading of magnetic rings and end caps is accomplished automatically in conjunction with the welding steps carried out within the tube.

  17. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  18. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  19. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  20. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability