Sample records for imaging magnetic techniques

  1. Magnetic Imaging Wolfgang Kuch

    E-Print Network [OSTI]

    Kuch, Wolfgang

    Magnetic Imaging Wolfgang Kuch Freie Universit¨at Berlin, Institut f¨ur Experimentalphysik, Arnimallee 14, 14195 Berlin, Germany kuch@physik.fu-berlin.de Abstract. Imaging of magnetic domains has- ern techniques is used nowadays routinely for magnetic imaging of magnetic ma- terials

  2. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    DOE Patents [OSTI]

    Volegov, Petr L. (Los Alamos, NM); Matlashov, Andrei N. (Los Alamos, NM); Mosher, John C. (Los Alamos, NM); Espy, Michelle A. (Los Alamos, NM); Kraus, Jr., Robert H. (Los Alamos, NM)

    2009-08-11T23:59:59.000Z

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  3. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this technique has been especially popular in imaging such complex structures as aerogels and yeast cells. When applying the CDI technique to a magnetic system, the same...

  4. An iterative technique for refinement of selective excitations for magnetic resonance imaging

    E-Print Network [OSTI]

    Lebsack, Eliot Todd

    1999-01-01T23:59:59.000Z

    Selective RF pulses are needed or many application in magnetic resonance imaging (MRI). The desired excitation profile is omen used as the spectrum of the applied RF pulse; the modulation waveform of the RF pulse which approximately excites...

  5. Model-based reconstruction of magnetic resonance spectroscopic imaging

    E-Print Network [OSTI]

    Chatnuntawech, Itthi

    2013-01-01T23:59:59.000Z

    Magnetic resonance imaging (MRI) is a medical imaging technique that is used to obtain images of soft tissue throughout the body. Since its development in the 1970s, MRI has gained tremendous importance in clinical practice ...

  6. Enlarge Image Peer pressure. Magnetic

    E-Print Network [OSTI]

    Thywissen, Joseph

    to stick it to your refrigerator, but an ultra-cold gas magnetizes itself just as do metals such as ironEnlarge Image Peer pressure. Magnetic domains in steel (vertical bans) arise when neighboring electrons point their magnetic poles in the same direction. CREDIT: ZUREKS, CHRIS VARDON

  7. Low field magnetic resonance imaging

    DOE Patents [OSTI]

    Pines, Alexander (Berkeley, CA); Sakellariou, Dimitrios (Billancourt, FR); Meriles, Carlos A. (Fort Lee, NJ); Trabesinger, Andreas H. (London, GB)

    2010-07-13T23:59:59.000Z

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  8. RF Pulse Design for Parallel Excitation in Magnetic Resonance Imaging

    E-Print Network [OSTI]

    Liu, Yinan

    2012-07-16T23:59:59.000Z

    Parallel excitation is an emerging technique to improve or accelerate multi-dimensional spatially selective excitations in magnetic resonance imaging (MRI) using multi-channel transmit arrays. The technique has potential in many applications...

  9. Dissertation Imaging as Characterization Techniques

    E-Print Network [OSTI]

    Sites, James R.

    Telluride Photovoltaics The goal of increasing the efficiency of solar cell devices is a universal oneDissertation Imaging as Characterization Techniques for Thin-Film Cadmium Telluride Photovoltaics. Increased photovoltaic (PV) performance means an increase in competition with other energy tech- nologies

  10. Enlarge Image Peer pressure. Magnetic

    E-Print Network [OSTI]

    Enlarge Image Peer pressure. Magnetic domains in steel (vertical bans) arise when neighboring electrons point their magnetic poles in the same direction. CREDIT: ZUREKS, CHRIS VARDON/WIKIMEDIA By Adrian Cho ScienceNOW Daily News 18 September 2009 It would be tough to stick it to your refrigerator

  11. Soft X-ray techniques to study mesoscale magnetism

    E-Print Network [OSTI]

    Kortright, Jeffrey B.

    2003-01-01T23:59:59.000Z

    X-Ray Techniques to Study Mesoscale Magnetism Jeffrey B.X-Ray Techniques to Study Mesoscale Magnetism Jeffrey B.

  12. Chapter 20. Magnetic Resonance Imaging Magnetic Resonance Imaging

    E-Print Network [OSTI]

    , and software training from Siemens Medical Solutions; research funding through the Siemens-MIT Alliance and Technology (HST). 2 Siemens Medical Solutions, Erlangen, Germany. #12;Chapter 20. Magnetic Resonance Imaging, Siemens Medical Solutions, Siemens-MIT Alliance, HST Martinos Catalyst Fund. Project Staff: Audrey P. Fan

  13. Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine

    E-Print Network [OSTI]

    Shapiro, Mikhail G.

    The development of molecular probes that allow in vivo imaging of neural signaling processes with high temporal and spatial resolution remains challenging. Here we applied directed evolution techniques to create magnetic ...

  14. Instrumentation for parallel magnetic resonance imaging

    E-Print Network [OSTI]

    Brown, David Gerald

    2007-04-25T23:59:59.000Z

    Parallel magnetic resonance (MR) imaging may be used to increase either the throughput or the speed of the MR imaging experiment. As such, parallel imaging may be accomplished either through a "parallelization" of the MR experiment, or by the use...

  15. Magnetic Resonance Imaging System Based on Earth's Magnetic Field

    E-Print Network [OSTI]

    Stepi?nik, Janez

    Magnetic Resonance Imaging System Based on Earth's Magnetic Field Ales Mohoric,1,* Gorazd Planinsic magnetic field can be partly compensated by the receiving coil design and shielding of electromagnetic pick and must be monitored accurately.[8 10] The importance of NMR in a non-uniform magnetic field

  16. Techniques calm fear of imaging machine

    SciTech Connect (OSTI)

    Van Pelt, D.

    1990-04-02T23:59:59.000Z

    Magnetic resonance imaging has become a valuable tool in diagnosing diseases, and the imaging devices are now used as often as 2 million times a year in the United States. But as many as 10 percent of patients advised to undergo the procedure cannot because they become overwhelmed with claustrophobialike fear triggered by having to lie motionless in the machine's tunnel-like cylinder for about 45 minutes. To counteract this fear, several hospitals now practice various techniques to help reduce the feelings of confinement. One popular method is to give a patient special eyeglasses that allow him to look beyond his feet and see the tunnel opening. Other glasses use mirrors to direct the patient's vision out the back of the unit to large wilderness photographs or murals that simulate a sense of spaciousness. Even a basic item like a set of headphones that plays music can often distract a patient, and technicians frequently hold a patient's hand or foot during the procedure. Another trick is to invite family members and friends to remain with the patient during the scan to provide company and reassurance.

  17. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless Imaging of Magnetic

  18. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless Imaging of MagneticLensless

  19. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOE Patents [OSTI]

    Engelstad, B.L.; Raymond, K.N.; Huberty, J.P.; White, D.L.

    1991-04-23T23:59:59.000Z

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided. No Drawings

  20. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOE Patents [OSTI]

    Kraus, Robert H. (Los Alamos, NM); Matlashov, Andrei N. (Los Alamos, NM); Espy, Michelle A. (Los Alamos, NM); Volegov, Petr L. (Los Alamos, NM)

    2010-03-30T23:59:59.000Z

    An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

  1. Electronic imaging system and technique

    DOE Patents [OSTI]

    Bolstad, J.O.

    1984-06-12T23:59:59.000Z

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  2. Abstract--Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform diagnostic, curative

    E-Print Network [OSTI]

    Mavroidis, Constantinos

    groups have employed magnetized micro/ nanoparticles and have implemented magnetic propulsion techniquesAbstract-- Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform on the use of a MRI scanner to induce the required external driving forces to guide magnetic nanocapsules

  3. Technique Recovers Atomic Resolution in Spectrum Images | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Spectrum Images April 08, 2015 Raw Fe L-shell spectrum image data, which indicate magnetic properties of the material, were acquired using scanning transmission electron...

  4. Ultra-fast Imaging of Two-Phase Flow in Structured Monolith Reactors; Techniques and Data Analysis

    E-Print Network [OSTI]

    Heras, Jonathan Jaime

    This thesis will address the use of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) techniques to probe the monolith reactor, which consists of a structured catalyst over which reactions may occur. This reactor has emerged...

  5. Single echo acquisition magnetic resonance imaging

    E-Print Network [OSTI]

    McDougall, Mary Preston

    2006-04-12T23:59:59.000Z

    The dramatic improvement in magnetic resonance imaging (MRI) scan time over the past fifteen years through gradient-based methods that sample k-space more efficiently and quickly cannot be sustained, as thresholds regarding ...

  6. Magnetic field imaging with atomic Rb vapor

    E-Print Network [OSTI]

    Eugeniy E. Mikhailov; I. Novikova; M. D. Havey; F. A. Narducci

    2009-07-27T23:59:59.000Z

    We demonstrate the possibility of dynamic imaging of magnetic fields using electromagnetically induced transparency in an atomic gas. As an experimental demonstration we employ an atomic Rb gas confined in a glass cell to image the transverse magnetic field created by a long straight wire. In this arrangement, which clearly reveals the essential effect, the field of view is about 2 x 2 mm^2 and the field detection uncertainty is 0.14 mG per 10 um x 10 um image pixel.

  7. Imaging techniques utilizing optical fibers and tomography

    SciTech Connect (OSTI)

    Wilke, M.; King, N.S.P.; Gray, N.; Johnson, D.; Esquibel, D.; Nedrow, P.; Ishiwata, S.

    1985-01-01T23:59:59.000Z

    Two-dimensional, time-dependent images generated by neutrons, gamma rays, and x-rays incident on fast scintillators are relayed to streak and video cameras over optical fibers. Three dimensions, two spatial and one temporal, have been reduced to two, one in space and time utilizing sampling methods permitting reconstruction of a time-dependent, two-dimensional image subsequent to data recording. The manner in which the sampling is done optimized the ability to reconstruct the image via a maximization of entropy algorithm. This method uses four linear fiber optic arrays typically 30 meters long and up to 35 elements each. A further refinement of this technique collapses the linear array information into four single fibers by wavelength multiplexing. This permits economical transmission of the data over kilometer distances to the recording equipment.

  8. advanced imaging techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Image restoration Lfdahl, Mats 8 Advanced Penning-type ion source development and passive beam focusing techniques for an associated particle imaging neutron generator. Open...

  9. Magnetic particle imaging of blood coagulation

    SciTech Connect (OSTI)

    Murase, Kenya, E-mail: murase@sahs.med.osaka-u.ac.jp; Song, Ruixiao; Hiratsuka, Samu [Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Graduate School of Medicine, Osaka University, Osaka 565-0871 (Japan)

    2014-06-23T23:59:59.000Z

    We investigated the feasibility of visualizing blood coagulation using a system for magnetic particle imaging (MPI). A magnetic field-free line is generated using two opposing neodymium magnets and transverse images are reconstructed from the third-harmonic signals received by a gradiometer coil, using the maximum likelihood-expectation maximization algorithm. Our MPI system was used to image the blood coagulation induced by adding CaCl{sub 2} to whole sheep blood mixed with magnetic nanoparticles (MNPs). The MPI value was defined as the pixel value of the transverse image reconstructed from the third-harmonic signals. MPI values were significantly smaller for coagulated blood samples than those without coagulation. We confirmed the rationale of these results by calculating the third-harmonic signals for the measured viscosities of samples, with an assumption that the magnetization and particle size distribution of MNPs obey the Langevin equation and log-normal distribution, respectively. We concluded that MPI can be useful for visualizing blood coagulation.

  10. Development of integrated imaging techniques for investigating biomarkers in glioblastoma

    E-Print Network [OSTI]

    Kim, Heisoog

    2011-01-01T23:59:59.000Z

    Cancer is a diverse disease with many manifestations. Various imaging modalities including magnetic resonance imaging (MRI) and positron emission tomography (PET) have been used to study human cancer. In this study, we ...

  11. Magnetic Resonance Imaging (MRI) of PEM Dehydration and Gas Manifold...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonance Imaging (MRI) of PEM Dehydration and Gas Manifold Flooding During Continuous Fuel Cell Operation. Magnetic Resonance Imaging (MRI) of PEM Dehydration and Gas Manifold...

  12. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News ReleasesDepartmentLending a HandImaging of

  13. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News ReleasesDepartmentLending a HandImaging

  14. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless Imaging of

  15. Slew-rate dependence of tracer magnetization response in magnetic particle imaging

    SciTech Connect (OSTI)

    Shah, Saqlain A.; Krishnan, K. M., E-mail: kannanmk@uw.edu [Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States); Ferguson, R. M. [LodeSpin Labs, P.O. Box 95632, Seattle, Washington 98145 (United States)

    2014-10-28T23:59:59.000Z

    Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25?kHz and 20?mT/?{sub 0} excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude (H{sub o}) and frequency (?). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particle Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2?kHz, with field amplitudes ranging from 7 to 52?mT/?{sub 0}. For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Nel reversal. Furthermore, we observed that the peak slew-rate (?H{sub o}) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories.

  16. The characterization of particle clouds using optical imaging techniques

    E-Print Network [OSTI]

    Bruce, Elizabeth J. (Elizabeth Jane), 1972-

    1998-01-01T23:59:59.000Z

    Optical imaging techniques can be used to provide a better understanding of the physical properties of particle clouds. The purpose of this thesis is to design, perform and evaluate a set of experiments using optical imaging ...

  17. Respiratory Amplitude Guided 4-Dimensional Magnetic Resonance Imaging

    SciTech Connect (OSTI)

    Hu, Yanle, E-mail: yhu@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States)] [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Caruthers, Shelton D. [Department of Medicine, Washington University School of Medicine, St. Louis, Missouri (United States)] [Department of Medicine, Washington University School of Medicine, St. Louis, Missouri (United States); Low, Daniel A. [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California (United States)] [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California (United States); Parikh, Parag J.; Mutic, Sasa [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States)] [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States)

    2013-05-01T23:59:59.000Z

    Purpose: To evaluate the feasibility of prospectively guiding 4-dimensional (4D) magnetic resonance imaging (MRI) image acquisition using triggers at preselected respiratory amplitudes to achieve T{sub 2} weighting for abdominal motion tracking. Methods and Materials: A respiratory amplitude-based triggering system was developed and integrated into a commercial turbo spin echo MRI sequence. Initial feasibility tests were performed on healthy human study participants. Four respiratory states, the middle and the end of inhalation and exhalation, were used to trigger 4D MRI image acquisition of the liver. To achieve T{sub 2} weighting, the echo time and repetition time were set to 75 milliseconds and 4108 milliseconds, respectively. Single-shot acquisition, together with parallel imaging and partial k-space imaging techniques, was used to improve image acquisition efficiency. 4D MRI image sets composed of axial or sagittal slices were acquired. Results: Respiratory data measured and logged by the MRI scanner showed that the triggers occurred at the appropriate respiratory levels. Liver motion could be easily observed on both 4D MRI image datasets by sensing either the change of liver in size and shape (axial) or diaphragm motion (sagittal). Both 4D MRI image datasets were T{sub 2}-weighted as expected. Conclusions: This study demonstrated the feasibility of achieving T{sub 2}-weighted 4D MRI images using amplitude-based respiratory triggers. With the aid of the respiratory amplitude-based triggering system, the proposed method is compatible with most MRI sequences and therefore has the potential to improve tumor-tissue contrast in abdominal tumor motion imaging.

  18. Neutron Imaging Explored as Complementary Technique for Improving...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Imaging Explored as Complementary Technique for Improving Cancer Detection August 05, 2013 Researcher Maria Cekanova analyzes the neutron radiographs of a canine breast...

  19. Wavelet smoothing of functional magnetic resonance images: A ...

    E-Print Network [OSTI]

    1910-30-72T23:59:59.000Z

    The two types of images are then compared; the regions where there are significant ... techniques at various stages in the production of the magnitude images.

  20. Madonne: Document Image Analysis Techniques for Cultural Heritage Documents

    E-Print Network [OSTI]

    Boyer, Edmond

    Madonne: Document Image Analysis Techniques for Cultural Heritage Documents Jean-Marc Ogier and Karl Tombre Abstract. This paper presents the Madonne project, a French initiative to use document image anal- ysis techniques for the purpose of preserving and exploiting heritage documents. 1

  1. Review of Parallel Computing Techniques for Computed Tomography Image Reconstruction

    E-Print Network [OSTI]

    Wang, Ge

    Review of Parallel Computing Techniques for Computed Tomography Image Reconstruction Jun Ni1, 3 representative analytic and iterative reconstruction algorithms for X-ray computed tomography (CT), we address X-ray computed tomography (CT) is one of the most important non-invasive medical imaging techniques

  2. Selective document image data compression technique

    DOE Patents [OSTI]

    Fu, C.Y.; Petrich, L.I.

    1998-05-19T23:59:59.000Z

    A method of storing information from filled-in form-documents comprises extracting the unique user information in the foreground from the document form information in the background. The contrast of the pixels is enhanced by a gamma correction on an image array, and then the color value of each of pixel is enhanced. The color pixels lying on edges of an image are converted to black and an adjacent pixel is converted to white. The distance between black pixels and other pixels in the array is determined, and a filled-edge array of pixels is created. User information is then converted to a two-color format by creating a first two-color image of the scanned image by converting all pixels darker than a threshold color value to black. All the pixels that are lighter than the threshold color value to white. Then a second two-color image of the filled-edge file is generated by converting all pixels darker than a second threshold value to black and all pixels lighter than the second threshold color value to white. The first two-color image and the second two-color image are then combined and filtered to smooth the edges of the image. The image may be compressed with a unique Huffman coding table for that image. The image file is also decimated to create a decimated-image file which can later be interpolated back to produce a reconstructed image file using a bilinear interpolation kernel. 10 figs.

  3. SQUID-Detected Magnetic Resonance Imaging in MicroteslaFields

    SciTech Connect (OSTI)

    Moessle, Michael; Hatridge, Michael; Clarke, John

    2006-08-14T23:59:59.000Z

    Magnetic resonance imaging (MRI) has developed into a powerful clinical tool for imaging the human body (1). This technique is based on nuclear magnetic resonance (NMR) of protons (2, 3) in a static magnetic field B{sub 0}. An applied radiofrequency pulse causes the protons to precess about B{sub 0} at their Larmor frequency {nu}{sub 0} = ({gamma}/2{pi})B{sub 0}, where {gamma} is the gyromagnetic ratio; {gamma}/2{pi} = 42.58 MHz/tesla. The precessing protons generate an oscillating magnetic field and hence a voltage in a nearby coil that is amplified and recorded. The application of three-dimensional magnetic field gradients specifies a unique magnetic field and thus an NMR frequency in each voxel of the subject, so that with appropriate encoding of the signals one can acquire a complete image (4). Most clinical MRI systems involve magnetic fields generated by superconducting magnets, and the current trend is to higher magnetic fields than the widely used 1.5-T systems (5). Nonetheless, there is ongoing interest in the development of less expensive imagers operating at lower fields. Commercially available 0.2-T systems based on permanent magnets offer both lower cost and a more open access than their higher-field counterparts, at the expense of signal-to-noise-ratio (SNR) and spatial resolution. At the still lower field of 0.03 mT maintained by a conventional, room-temperature solenoid, Connolly and co-workers (6, 7) obtain good spatial resolution and signal-to-noise ratio (SNR) by prepolarizing the protons in a field B{sub p} of 0.3 T. Prepolarization (8) enhances the magnetic moment of an ensemble of protons over that produced by the lower precession field; after the polarizing field is removed, the higher magnetic moment produces a correspondingly larger signal during its precession in B{sub 0}. Using the same method, Stepisnik et al. (9) obtained MR images in the Earth's magnetic field ({approx} 50 {micro}T). Alternatively, one can enhance the signal amplitude in MRI using laser polarized noble gases such as {sup 3}He or {sup 129}Xe (10-12). Hyperpolarized gases were used successfully to image the human lung in fields on the order of several mT (13-15). To overcome the sensitivity loss of Faraday detection at low frequencies, ultrasensitive magnetometers based on the Superconducting QUantum Interference Device (SQUID) (16) are used to detect NMR and MRI signals (17-24). Recently, SQUID-based MRI systems capable of acquiring in vivo images have appeared. For example, in the 10-mT system of Seton et al. (18) signals are coupled to a SQUID via a superconducting tuned circuit, while Clarke and coworkers (22, 25, 26) developed a system at 132 {micro}T with an untuned input circuit coupled to a SQUID. In a quite different approach, atomic magnetometers have been used recently to detect the magnetization (27) and NMR signal (28) of hyperpolarized gases. This technique could potentially be used for low-field MRI in the future. The goal of this review is to summarize the current state-of-the-art of MRI in microtesla fields detected with SQUIDs. The principles of SQUIDs and NMR are briefly reviewed. We show that very narrow NMR linewidths can be achieved in low magnetic fields that are quite inhomogeneous, with illustrative examples from spectroscopy. After describing our ultralow-field MRI system, we present a variety of images. We demonstrate that in microtesla fields the longitudinal relaxation T{sub 1} is much more material dependent than is the case in high fields; this results in a substantial improvement in 'T{sub 1}-weighted contrast imaging'. After outlining the first attempts to combine microtesla NMR with magnetoencephalography (MEG) (29), we conclude with a discussion of future directions.

  4. Magnetic resonance imaging of self-assembled biomaterial scaffolds

    SciTech Connect (OSTI)

    Bull, Steve R; Meade, Thomas J; Stupp, Samuel I

    2014-09-16T23:59:59.000Z

    Compositions and/or mixtures comprising peptide amphiphile compounds comprising one or more contrast agents, as can be used in a range of magnetic resonance imaging applications.

  5. Development of techniques in magnetic resonance and structural studies of the prion protein

    SciTech Connect (OSTI)

    Bitter, Hans-Marcus L.

    2000-07-01T23:59:59.000Z

    Magnetic resonance is the most powerful analytical tool used by chemists today. Its applications range from determining structures of large biomolecules to imaging of human brains. Nevertheless, magnetic resonance remains a relatively young field, in which many techniques are currently being developed that have broad applications. In this dissertation, two new techniques are presented, one that enables the determination of torsion angles in solid-state peptides and proteins, and another that involves imaging of heterogenous materials at ultra-low magnetic fields. In addition, structural studies of the prion protein via solid-state NMR are described. More specifically, work is presented in which the dependence of chemical shifts on local molecular structure is used to predict chemical shift tensors in solid-state peptides with theoretical ab initio surfaces. These predictions are then used to determine the backbone dihedral angles in peptides. This method utilizes the theoretical chemicalshift tensors and experimentally determined chemical-shift anisotropies (CSAs) to predict the backbone and side chain torsion angles in alanine, leucine, and valine residues. Additionally, structural studies of prion protein fragments are described in which conformationally-dependent chemical-shift measurements were made to gain insight into the structural differences between the various conformational states of the prion protein. These studies are of biological and pathological interest since conformational changes in the prion protein are believed to cause prion diseases. Finally, an ultra-low field magnetic resonance imaging technique is described that enables imaging and characterization of heterogeneous and porous media. The notion of imaging gases at ultra-low fields would appear to be very difficult due to the prohibitively low polarization and spin densities as well as the low sensitivities of conventional Faraday coil detectors. However, Chapter 5 describes how gas imaging at ultra-low fields is realized by incorporating the high sensitivities of a dc superconducting quantum interference device (SQUID) with the high polarizations attainable through optica11y pumping {sup 129}Xe gas.

  6. Designing and characterizing hyperpolarizable silicon nanoparticles for magnetic resonance imaging

    E-Print Network [OSTI]

    Anahtar, Melis Nuray

    2008-01-01T23:59:59.000Z

    Magnetic Resonance Imaging (MRI) is one of the most powerful noninvasive tools for diagnosing human disease, but its utility is limited because current contrast agents are ineffective when imaging air-tissue interfaces, ...

  7. Magnetic resonance spectroscopic imaging using parallel transmission at 7T

    E-Print Network [OSTI]

    Gagoski, Borjan Aleksandar

    2011-01-01T23:59:59.000Z

    Conventional magnetic resonance spectroscopic imaging (MRSI), also known as phase-encoded (PE) chemical shift imaging (CSI), suffers from both low signal-to-noise ratio (SNR) of the brain metabolites, as well as inflexible ...

  8. Methods for magnetic resonance analysis using magic angle technique

    DOE Patents [OSTI]

    Hu, Jian Zhi (Richland, WA); Wind, Robert A. (Kennewick, WA); Minard, Kevin R. (Kennewick, WA); Majors, Paul D. (Kennewick, WA)

    2011-11-22T23:59:59.000Z

    Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.

  9. CMOS passive pixel image design techniques

    E-Print Network [OSTI]

    Fujimori, Iliana L. (Iliana Lucia)

    2002-01-01T23:59:59.000Z

    CMOS technology provides an attractive alternative to the currently dominant CCD technology for implementing low-power, low-cost imagers with high levels of integration. Two pixel configurations are possible in CMOS ...

  10. Magnetic Microscopy and Imaging II John Chapman, Chairman Study of in-plane magnetic domains with magnetic transmission

    E-Print Network [OSTI]

    Bayreuther, Günther

    with magnetic transmission x-ray microscopy P. Fischer,a) T. Eimu¨ller, and G. Schu¨tz University of Wu be designed by en- gaging, e.g., the different magnetic couplings between each layers. Due to a balanceMagnetic Microscopy and Imaging II John Chapman, Chairman Study of in-plane magnetic domains

  11. USE OF ADVANCED DATA PROCESSING TECHNIQUES IN THE IMAGING OF...

    Open Energy Info (EERE)

    OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: USE OF ADVANCED DATA PROCESSING TECHNIQUES IN THE IMAGING...

  12. Study of microfluidic measurement techniques using novel optical imaging diagnostics

    E-Print Network [OSTI]

    Park, Jaesung

    2007-04-25T23:59:59.000Z

    is applied for a 3-D vector field mapping in a microscopic flow and a Brownian motion tracking of nanoparticles. This technique modifies OSSM system for a micro-fluidic experiment, and the imaging system captures a diffracted particle image having numerous...

  13. Distortion-free magnetic resonance imaging in the zero-field limit

    SciTech Connect (OSTI)

    Kelso, Nathan; Lee, Seung-Kyun; Bouchard, Louis-S.; Demas, Vasiliki; Muck, Michael; Pines, Alexander; Clarke, John

    2009-07-09T23:59:59.000Z

    MRI is a powerful technique for clinical diagnosis and materials characterization. Images are acquired in a homogeneous static magnetic field much higher than the fields generated across the field of view by the spatially encoding field gradients. Without such a high field, the concomitant components of the field gradient dictated by Maxwell's equations lead to severe distortions that make imaging impossible with conventional MRI encoding. In this paper, we present a distortion-free image of a phantom acquired with a fundamentally different methodology in which the applied static field approaches zero. Our technique involves encoding with pulses of uniform and gradient field, and acquiring the magnetic field signals with a SQUID. The method can be extended to weak ambient fields, potentially enabling imaging in the Earth's field without cancellation coils or shielding. Other potential applications include quantum information processing and fundamental studies of long-range ferromagnetic interactions.

  14. NMR imaging techniques and applications in the flow behavior of fluids in porous media

    E-Print Network [OSTI]

    Halimi, Hassan I

    1990-01-01T23:59:59.000Z

    proton magnetic resonance technique can be used to determine the oil saturation in the pores of a rock. The NMR system can produce images of the molecules under investigation because the signals recorded are obtained directly from fluids contained... in liquids as well. This should enable us to obtain additional information about the fluids in the rock '4. Spin-spin relaxation has a characteristic time T~. T~ is the time constant for the decay of the precessing R-Zo component of the magnetization...

  15. Improvements in magnetic resonance imaging excitation pulse design

    E-Print Network [OSTI]

    Zelinski, Adam Charles

    2008-01-01T23:59:59.000Z

    This thesis focuses on the design of magnetic resonance imaging (MRI) radio-frequency (RF) excitation pulses, and its primary contributions are made through connections with the novel multiple-system single-output (MSSO) ...

  16. Design algorithms for parallel transmission in magnetic resonance imaging

    E-Print Network [OSTI]

    Setsompop, Kawin

    2008-01-01T23:59:59.000Z

    The focus of this dissertation is on the algorithm design, implementation, and validation of parallel transmission technology in Magnetic Resonance Imaging (MRI). Novel algorithms are proposed which yield excellent excitation ...

  17. Solid-Cryogen Cooling Technique for Superconducting Magnets of NMR and MRI

    E-Print Network [OSTI]

    Iwasa, Yukikazu

    This paper describes a solid-cryogen cooling technique currently being developed at the M.I.T. Francis Bitter Magnet Laboratory for application to superconducting magnets of NMR and MRI. The technique is particularly ...

  18. Self-imaging-based laser collimation testing technique

    SciTech Connect (OSTI)

    Mudassar, Asloob A.; Butt, Saira

    2010-11-01T23:59:59.000Z

    Laser collimation is required in many experiments based on lasers. Some laser experiments demand a high quality of collimation, e.g., the optical coherent processor, image transformer, and Fourier transform generator. A device is required to test the collimation of lasers in such experiments. We have suggested a modification in existing collimation testing techniques by which sensitivity can be improved. Theoretical analysis and experimental results demonstrate twice the improvement in sensitivity when used with previous techniques.

  19. Surface-Based Analysis of Functional Magnetic Resonance Imaging Data

    E-Print Network [OSTI]

    Thompson, Paul

    Surface-Based Analysis of Functional Magnetic Resonance Imaging Data Theo G.M. van Erp1, Vikas Y School of Medicine, Los Angeles, CA 90095, USA Abstract. Surface-based visualization, atlases the integration of surface-based tech- niques with functional imaging data, combining surface-based nonlinear

  20. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new information storage and sensing devices. There are two basic energies involved in the manipulation and control of the magnetic properties of materials. Exchange controls...

  1. He Lung Imaging in an Open Access, Very-Low-Field Human Magnetic Resonance Imaging System

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    3 He Lung Imaging in an Open Access, Very-Low-Field Human Magnetic Resonance Imaging System R. W. Butler,6 F. W. Hersman,4 and R. L. Walsworth1 The human lung and its functions are extremely sensitive lung restrict sub- jects to lying horizontally. Imaging of human lungs using inhaled laser-polarized 3

  2. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in...

  3. Method for nuclear magnetic resonance imaging

    DOE Patents [OSTI]

    Kehayias, J.J.; Joel, D.D.; Adams, W.H.; Stein, H.L.

    1988-05-26T23:59:59.000Z

    A method for in vivo NMR imaging of the blood vessels and organs of a patient characterized by using a dark dye-like imaging substance consisting essentially of a stable, high-purity concentration of D/sub 2/O in a solution with water.

  4. 3D and 4D magnetic susceptibility tomography based on complex MR images

    DOE Patents [OSTI]

    Chen, Zikuan; Calhoun, Vince D

    2014-11-11T23:59:59.000Z

    Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

  5. Application of Parallel Imaging to Murine Magnetic Resonance Imaging

    E-Print Network [OSTI]

    Chang, Chieh-Wei 1980-

    2012-09-21T23:59:59.000Z

    . This dissertation describes foundational level work to enable parallel imaging of mice on a 4.7 Tesla/40 cm bore research scanner. Reducing the size of the hardware setup associated with typical parallel imaging was an integral part of achieving the work, as animal...

  6. Parallel magnetic resonance imaging: characterization and comparison

    E-Print Network [OSTI]

    Rane, Swati Dnyandeo

    2005-11-01T23:59:59.000Z

    [Sodickson, 1997], GRAPPA [Griswold, 2002] and SPACE RIP [Kyriakos, 2000]; developed in the past decade have been studied, simulated and compared in this research. Because of the dependence of the parallel imaging methods on numerous factors such as receiver...

  7. Portable low-cost magnetic resonance imaging

    E-Print Network [OSTI]

    Cooley, Clarissa Zimmerman

    2014-01-01T23:59:59.000Z

    Purpose: As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as intensive care units (ICUs), physician ...

  8. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    SciTech Connect (OSTI)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob, E-mail: ihahn@caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)

    2014-09-15T23:59:59.000Z

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  9. Novel nuclear magnetic resonance techniques for studying biological molecules

    SciTech Connect (OSTI)

    Laws, David D.

    2000-06-01T23:59:59.000Z

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone ({phi}/{psi}) dihedral angles by comparing experimentally determined {sup 13}C{sub a}, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of {alpha}-helical and {beta}-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly {beta}-sheet.

  10. Nuclear Magnetic Resonance (NMR) is the only logging technique available to estimate pore-size

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    1 ABSTRACT Nuclear Magnetic Resonance (NMR) is the only logging technique available to estimate, Nuclear Magnetic Resonance (NMR) logging has been used to assess a handful of key petrophysical parameters

  11. Original Research Magnetic Resonance Image-Guided Trans-Septal

    E-Print Network [OSTI]

    Atalar, Ergin

    vasculature. Key Words: interventional; magnetic resonance imaging; trans-septal catheterization; cardiac; MR with a pigtail catheter in the aorta and the use of His bundle/coronary sinus catheters (1), and, more recently from a percutaneous femoral vein ap- proach. MATERIALS AND METHODS Animal Model The Institutional

  12. Blood Flow Magnetic Resonance Imaging of Retinal Degeneration

    E-Print Network [OSTI]

    Duong, Timothy Q.

    Blood Flow Magnetic Resonance Imaging of Retinal Degeneration Yingxia Li,1 Haiying Cheng,1 Qiang. Duong1,2,3,4,5,6,7 PURPOSE. This study aims to investigate quantitative basal blood flow as well as hypercapnia- and hyperoxia-induced blood flow changes in the retinas of the Royal College of Surgeons (RCS

  13. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal Financial InterventionsDirect Imaging of

  14. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal Financial InterventionsDirect Imaging

  15. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal Financial InterventionsDirect ImagingDirect

  16. Magnetic Resonance Imaging 1 A new global optimization algorithm and its application to a

    E-Print Network [OSTI]

    Neumaier, Arnold

    Magnetic Resonance Imaging 1 A new global optimization algorithm and its application to a Magnetic-cost, low-field multipolar magnet for Magnetic Resonance Imaging with a high field uniformity, the proposed method em- ploys, as local search engine, a derivative free procedure. Under reasonable

  17. Soft x-ray microscopy - a powerful analytical tool to image magnetism down to fundamental length and times scales

    E-Print Network [OSTI]

    Fischer, Peter

    2008-01-01T23:59:59.000Z

    analytical tool to image magnetism down to fundamentalmicroscopies Research of magnetism in low dimensions has notnanoscience [3]. Solid state magnetism is also a showcase in

  18. Overlap Technique for End-Cap Seals on Cylindrical Magnetic Shields

    E-Print Network [OSTI]

    Malkowski, S; Boissevain, J; Daurer, C; Filippone, B W; Hona, B; Plaster, B; Woods, D; Yan, H

    2013-01-01T23:59:59.000Z

    We present results from studies of the effectiveness of an overlap technique for forming a magnetic seal across a gap at the boundary between a cylindrical magnetic shield and an end-cap. In this technique a thin foil of magnetic material overlaps the two surfaces, thereby spanning the gap across the cylinder and the end-cap, with the magnetic seal then formed by clamping the thin magnetic foil to the surfaces of the cylindrical shield and the end-cap on both sides of the gap. In studies with a prototype 31-cm diameter, 91-cm long, 0.16-cm thick cylindrical magnetic shield and flared end-cap, the magnetic shielding performance of our overlap technique is comparable to that obtained with the conventional method in which the end-cap is placed in direct lapped contact with the cylindrical shield via through bolts or screws.

  19. Three dimensional nuclear magnetic resonance spectroscopic imaging of sodium ions using stochastic excitation and oscillating gradients

    SciTech Connect (OSTI)

    Frederick, B.deB. [California Univ., Berkeley, CA (United States)]|[Lawrence Berkeley Lab., CA (United States)

    1994-12-01T23:59:59.000Z

    Nuclear magnetic resonance (NMR) spectroscopic imaging of {sup 23}Na holds promise as a non-invasive method of mapping Na{sup +} distributions, and for differentiating pools of Na{sup +} ions in biological tissues. However, due to NMR relaxation properties of {sup 23}Na in vivo, a large fraction of Na{sup +} is not visible with conventional NMR imaging methods. An alternate imaging method, based on stochastic excitation and oscillating gradients, has been developed which is well adapted to measuring nuclei with short T{sub 2}. Contemporary NMR imaging techniques have dead times of up to several hundred microseconds between excitation and sampling, comparable to the shortest in vivo {sup 23}Na T{sub 2} values, causing significant signal loss. An imaging strategy based on stochastic excitation has been developed which greatly reduces experiment dead time by reducing peak radiofrequency (RF) excitation power and using a novel RF circuit to speed probe recovery. Continuously oscillating gradients are used to eliminate transient eddy currents. Stochastic {sup 1}H and {sup 23}Na spectroscopic imaging experiments have been performed on a small animal system with dead times as low as 25{mu}s, permitting spectroscopic imaging with 100% visibility in vivo. As an additional benefit, the encoding time for a 32x32x32 spectroscopic image is under 30 seconds. The development and analysis of stochastic NMR imaging has been hampered by limitations of the existing phase demodulation reconstruction technique. Three dimensional imaging was impractical due to reconstruction time, and design and analysis of proposed experiments was limited by the mathematical intractability of the reconstruction method. A new reconstruction method for stochastic NMR based on Fourier interpolation has been formulated combining the advantage of a several hundredfold reduction in reconstruction time with a straightforward mathematical form.

  20. Magnetic resonance imaging of living systems by remote detection

    DOE Patents [OSTI]

    Wemmer, David; Pines, Alexander; Bouchard, Louis; Xu, Shoujun; Harel, Elad; Budker, Dmitry; Lowery, Thomas; Ledbetter, Micah

    2013-10-29T23:59:59.000Z

    A novel approach to magnetic resonance imaging is disclosed. Blood flowing through a living system is prepolarized, and then encoded. The polarization can be achieved using permanent or superconducting magnets. The polarization may be carried out upstream of the region to be encoded or at the place of encoding. In the case of an MRI of a brain, polarization of flowing blood can be effected by placing a magnet over a section of the body such as the heart upstream of the head. Alternatively, polarization and encoding can be effected at the same location. Detection occurs at a remote location, using a separate detection device such as an optical atomic magnetometer, or an inductive Faraday coil. The detector may be placed on the surface of the skin next to a blood vessel such as a jugular vein carrying blood away from the encoded region.

  1. Novel nuclear magnetic resonance techniques for studying biological molecules

    E-Print Network [OSTI]

    Laws, David D.

    2010-01-01T23:59:59.000Z

    parameters by solid-state nuclear magnetic resonance." J.and R. V. Pound. "Nuclear audiofrequency spectroscopy byresonant heating of the nuclear spin system." Phys. Rev. ,

  2. A Review of Image-based Rendering Techniques Heung-Yeung Shum and Sing Bing Kang

    E-Print Network [OSTI]

    Pang, Alex

    A Review of Image-based Rendering Techniques Heung-Yeung Shum and Sing Bing Kang Microsoft Research hshum, sbkang @microsoft.com Abstract In this paper, we survey the techniques for image-based rendering. Unlike traditional 3D computer graphics in which 3D geometry of the scene is known, image-based rendering

  3. Cryogenic techniques for large superconducting magnets in space

    SciTech Connect (OSTI)

    Green, M.A.

    1988-12-01T23:59:59.000Z

    A large superconducting magnet is proposed for use in a particle astrophysics experiment, ASTROMAG, which is to be mounted on the United States Space Station. This experiment will have a two-coil superconducting magnet with coils which are 1.3 to 1.7 meters in diameter. The two-coil magnet will have zero net magnetic dipole moment. The field 15 meters from the magnet will approach earth's field in low earth orbit. The issue of high Tc superconductor will be discussed in the paper. The reasons for using conventional niobium-titanium superconductor cooled with superfluid helium will be presented. Since the purpose of the magnet is to do particle astrophysics, the superconducting coils must be located close to the charged particle detectors. The trade off between the particle physics possible and the cryogenic insulation around the coils is discussed. As a result, the ASTROMAG magnet coils will be operated outside of the superfluid helium storage tank. The fountain effect pumping system which will be used to cool the coil is described in the report. Two methods for extending the operating life of the superfluid helium dewar are discussed. These include: operation with a third shield cooled to 90 K with a sterling cycle cryocooler, and a hybrid cryogenic system where there are three hydrogen-cooled shields and cryostat support heat intercept points. Both of these methods will extend the ASTROMAG cryogenic operating life from 2 years to almost 4 years. 14 refs., 8 figs., 4 tabs.

  4. Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry,

    E-Print Network [OSTI]

    Krishnan, Kannan M.

    Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry, magnetorelaxometry and magnetic particle spectroscopy Frank Ludwig a , Hilke. Krishnan b,n a Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig

  5. Implementation of State Transfer Hamiltonians in Spin Chains with Magnetic Resonance Techniques

    E-Print Network [OSTI]

    Cappellaro, Paola

    2014-01-01T23:59:59.000Z

    Nuclear spin systems and magnetic resonance techniques have provided a fertile platform for experimental investigation of quantum state transfer in spin chains. From the first observation of polarization transfer, predating ...

  6. 18th Annual International Conference of the IEEE Engineering in MIedicineand BiollogySociety, Amsterdam 1996 3.3.1: MR Imaging Systems and Reconstruction Techniques

    E-Print Network [OSTI]

    Ider, Yusuf Ziya

    Society, Amsterdam 1996 3.3.1: MR Imaging Systems and Reconstruction Techniques MEASURINGAC MAGNETIC FIELD is given in Fig.1. In the absence of an applied AC current, this pulse sequence is the same asthe one used by Maudsley A.A. et.al. to calculate the DC magnetic field inhomo se RP .,A_ II I f 0Gz I " v - who & - Fig.1

  7. MRI Magnetic Signature Imaging, Tracking and Navigation for Targeted Micro/Nano-capsule Therapeutics

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    - back for the microdevice and a propulsion sequence to enable interleaved magnetic propulsionMRI Magnetic Signature Imaging, Tracking and Navigation for Targeted Micro J. Nelson, Antoine Ferreira and Sergej Fatikow Abstract-- The propulsion of nano

  8. Techniques on Analysis of Photo Phase Shift Imaging

    E-Print Network [OSTI]

    Terry, Robin 1990-

    2012-04-12T23:59:59.000Z

    . Real-time MRI temperature mapping was evaluated using the magnitude and phase difference DICOM images. To reduce noise on the temperature maps, a mask was created using the magnitude images and eliminating pixel values greater than a set threshold...

  9. Infrared Optical Imaging Techniques for Gas Visualization and Measurement

    E-Print Network [OSTI]

    Safitri, Anisa

    2012-07-16T23:59:59.000Z

    Advancement in infrared imaging technology has allowed the thermal imaging to detect and visualize several gases, mostly hydrocarbon gases. In addition, infrared cameras could potentially be used as a non-contact temperature measurement for gas...

  10. Magnetically-Assisted Statistical Assembly - a new heterogeneous integration technique

    E-Print Network [OSTI]

    Fonstad, Clifton G. Jr.

    This paper presents a new technique for the monolithic heterogeneous integration of compound semiconductor devices with silicon integrated circuits, and establishes the theoretical foundation for a key element of the ...

  11. Can Images Obtained With High Field Strength Magnetic Resonance Imaging Reduce Contouring Variability of the Prostate?

    SciTech Connect (OSTI)

    Usmani, Nawaid, E-mail: Nawaid.Usmani@albertahealthservices.ca [Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB (Canada); Department of Oncology, University of Alberta, Edmonton, AB (Canada); Sloboda, Ron [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Department of Medical Physics, Cross Cancer Institute, Edmonton, AB (Canada); Kamal, Wafa [Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB (Canada); Ghosh, Sunita [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Department of Experimental Oncology, Cross Cancer Institute, Edmonton, AB (Canada); Pervez, Nadeem; Pedersen, John; Yee, Don; Danielson, Brita; Murtha, Albert; Amanie, John [Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB (Canada); Department of Oncology, University of Alberta, Edmonton, AB (Canada); Monajemi, Tara [Department of Medical Physics, Cross Cancer Institute, Edmonton, AB (Canada)

    2011-07-01T23:59:59.000Z

    Purpose: The objective of this study is to determine whether there is less contouring variability of the prostate using higher-strength magnetic resonance images (MRI) compared with standard MRI and computed tomography (CT). Methods and Materials: Forty patients treated with prostate brachytherapy were accrued to a prospective study that included the acquisition of 1.5-T MR and CT images at specified time points. A subset of 10 patients had additional 3.0-T MR images acquired at the same time as their 1.5-T MR scans. Images from each of these patients were contoured by 5 radiation oncologists, with a random subset of patients repeated to quantify intraobserver contouring variability. To minimize bias in contouring the prostate, the image sets were placed in folders in a random order with all identifiers removed from the images. Results: Although there was less interobserver contouring variability in the overall prostate volumes in 1.5-T MRI compared with 3.0-T MRI (p < 0.01), there was no significant differences in contouring variability in the different regions of the prostate between 1.5-T MRI and 3.0-T MRI. MRI demonstrated significantly less interobserver contouring variability in both 1.5-T and 3.0-T compared with CT in overall prostate volumes (p < 0.01, p = 0.01), with the greatest benefits being appreciated in the base of the prostate. Overall, there was less intraobserver contouring variability than interobserver contouring variability for all of the measurements analyzed. Conclusions: Use of 3.0-T MRI does not demonstrate a significant improvement in contouring variability compared with 1.5-T MRI, although both magnetic strengths demonstrated less contouring variability compared with CT.

  12. THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION

    SciTech Connect (OSTI)

    Shassere, Benjamin [ORNL] [ORNL; West, David L [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Evans III, Boyd Mccutchen [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

  13. An Efficient, General-Purpose Technique to Identify Storm Cells in Geospatial Images

    E-Print Network [OSTI]

    Lakshmanan, Valliappa

    An Efficient, General-Purpose Technique to Identify Storm Cells in Geospatial Images Valliappa and are not transferrable between different types of geospatial images. Yet, with the multitude of remote sensing on different types of geospatial radar and satel- lite images. Pointers are provided on the effective choice

  14. Method for high resolution magnetic resonance analysis using magic angle technique

    DOE Patents [OSTI]

    Wind, Robert A.; Hu, Jian Zhi

    2003-12-30T23:59:59.000Z

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  15. Method for high resolution magnetic resonance analysis using magic angle technique

    DOE Patents [OSTI]

    Wind, Robert A.; Hu, Jian Zhi

    2004-12-28T23:59:59.000Z

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  16. Image-Based Monitoring of Magnetic Resonance-Guided Thermoablative Therapies for Liver Tumors

    SciTech Connect (OSTI)

    Rempp, Hansjoerg, E-mail: hansjoerg.rempp@med.uni-tuebingen.de; Clasen, Stephan [Eberhard Karls University of Tuebingen, Department of Diagnostic and Interventional Radiology (Germany); Pereira, Philippe L. [SLK-Kliniken, Clinic for Radiology, Nuclear Medicine, and Minimal Invasive Therapies (Germany)

    2012-12-15T23:59:59.000Z

    Minimally invasive treatment options for liver tumor therapy have been increasingly used during the last decade because their benefit has been proven for primary and inoperable secondary liver tumors. Among these, radiofrequency ablation has gained widespread consideration. Optimal image-guidance offers precise anatomical information, helps to position interventional devices, and allows for differentiation between already-treated and remaining tumor tissue. Patient safety and complete ablation of the entire tumor are the overriding objectives of tumor ablation. These may be achieved most elegantly with magnetic resonance (MR)-guided therapy, where monitoring can be performed based on precise soft-tissue imaging and additional components, such as diffusion-weighted imaging and temperature mapping. New MR scanner types and newly developed sequence techniques have enabled MR-guided intervention to move beyond the experimental phase. This article reviews the current role of MR imaging in guiding radiofrequency ablation. Signal characteristics of primary and secondary liver tumors are identified, and signal alteration during therapy is described. Diffusion-weighted imaging (DWI) and temperature mapping as special components of MR therapy monitoring are introduced. Practical information concerning coils, sequence selection, and parameters, as well as sequence gating, is given. In addition, sources of artifacts are identified and techniques to decrease them are introduced, and the characteristic signs of residual tumor in T1-, T2-, and DWI are described. We hope to enable the reader to choose MR sequences that allow optimal therapy monitoring depending on the initial signal characteristics of the tumor as well as its size and location in the liver.

  17. Combined Illumination Cylindrical Millimeter-Wave Imaging Technique for Concealed Weapon Detection

    SciTech Connect (OSTI)

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2000-04-01T23:59:59.000Z

    A novel millimeter-wave imaging technique has been developed for personnel surveillance applications, including the detection of concealed weapons, explosives, drugs, and other contraband material. Millimeter-waves are high-frequency radio waves in the frequency band of 30-300 GHz, and pose no health threat to humans at moderate power levels. These waves readily penetrate common clothing materials, and are reflected by the human body and by concealed items. The combined illumination cylindrical imaging concept consists of a vertical, high-resolution, millimeter-wave array of antennas which is scanned in a cylindrical manner about the person under surveillance. Using a computer, the data from this scan is mathematically reconstructed into a series of focused 3-D images of the person. After reconstruction, the images are combined into a single high-resolution three-dimensional image of the person under surveillance. This combined image is then rendered using 3-D computer graphics techniques. The combined cylindrical illumination is critical as it allows the display of information from all angles. This is necessary because millimeter-waves do not penetrate the body. Ultimately, the images displayed to the operator will be icon-based to protect the privacy of the person being screened. Novel aspects of this technique include the cylindrical scanning concept and the image reconstruction algorithm, which was developed specifically for this imaging system. An engineering prototype based on this cylindrical imaging technique has been fabricated and tested. This work has been sponsored by the Federal Aviation Administration (FAA).

  18. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOE Patents [OSTI]

    Campbell, Ann. N. (13170-B Central SE #188, Albuquerque, NM 87123); Anderson, Richard E. (2800 Tennessee NE, Albuquerque, NM 87110); Cole, Jr., Edward I. (2116 White Cloud NE, Albuquerque, NM 87112)

    1995-01-01T23:59:59.000Z

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

  19. Application of L1 Minimization Technique to Image Super-Resolution and Surface Reconstruction

    E-Print Network [OSTI]

    Talavatifard, Habiballah

    2013-05-06T23:59:59.000Z

    A surface reconstruction and image enhancement non-linear finite element technique based on minimization of L1 norm of the total variation of the gradient is introduced. Since minimization in the L1 norm is computationally expensive, we seek...

  20. 2D electron temperature diagnostic using soft x-ray imaging technique

    SciTech Connect (OSTI)

    Nishimura, K., E-mail: nishim11@nuclear.es.kit.ac.jp; Sanpei, A., E-mail: sanpei@kit.ac.jp; Tanaka, H.; Ishii, G.; Kodera, R.; Ueba, R.; Himura, H.; Masamune, S. [Department of Electronics, Kyoto Institute of Technology, Kyoto 606-8585 (Japan)] [Department of Electronics, Kyoto Institute of Technology, Kyoto 606-8585 (Japan); Ohdachi, S.; Mizuguchi, N. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)] [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)

    2014-03-15T23:59:59.000Z

    We have developed a two-dimensional (2D) electron temperature (T{sub e}) diagnostic system for thermal structure studies in a low-aspect-ratio reversed field pinch (RFP). The system consists of a soft x-ray (SXR) camera with two pin holes for two-kinds of absorber foils, combined with a high-speed camera. Two SXR images with almost the same viewing area are formed through different absorber foils on a single micro-channel plate (MCP). A 2D T{sub e} image can then be obtained by calculating the intensity ratio for each element of the images. We have succeeded in distinguishing T{sub e} image in quasi-single helicity (QSH) from that in multi-helicity (MH) RFP states, where the former is characterized by concentrated magnetic fluctuation spectrum and the latter, by broad spectrum of edge magnetic fluctuations.

  1. A WAVELET-BASED IMAGE DENOISING TECHNIQUE USING SPATIAL PRIORS Aleksandra PIZURICA 1

    E-Print Network [OSTI]

    Pizurica, Aleksandra

    A WAVELET-BASED IMAGE DENOISING TECHNIQUE USING SPATIAL PRIORS Aleksandra PIZURICA 1 , Wilfried, Belgium ABSTRACT We propose a new wavelet-based method for image denoising that applies the Bayesian framework, using prior knowledge about the spatial clustering of the wavelet coefficients. Local spatial

  2. Revisiting the Rigidly Rotating Magnetosphere model for $\\sigma$ Ori E - II. Magnetic Doppler imaging, arbitrary field RRM, and light variability

    E-Print Network [OSTI]

    Oksala, M E; Krticka, J; Townsend, R H D; Wade, G A; Prvak, M; Mikulasek, Z; Silvester, J; Owocki, S P

    2015-01-01T23:59:59.000Z

    The initial success of the Rigidly Rotating Magnetosphere (RRM) model application to the B2Vp star sigma OriE by Townsend, Owocki & Groote (2005) triggered a renewed era of observational monitoring of this archetypal object. We utilize high-resolution spectropolarimetry and the magnetic Doppler imaging (MDI) technique to simultaneously determine the magnetic configuration, which is predominately dipolar, with a polar strength Bd = 7.3-7.8 kG and a smaller non-axisymmetric quadrupolar contribution, as well as the surface distribution of abundance of He, Fe, C, and Si. We describe a revised RRM model that now accepts an arbitrary surface magnetic field configuration, with the field topology from the MDI models used as input. The resulting synthetic Ha emission and broadband photometric observations generally agree with observations, however, several features are poorly fit. To explore the possibility of a photospheric contribution to the observed photometric variability, the MDI abundance maps were used to ...

  3. Developing novel polymer architectures for applications In magnetic resonance imaging and self-assembly

    E-Print Network [OSTI]

    McCombs, Jessica R. (Jessica Rose)

    2013-01-01T23:59:59.000Z

    Macromolecular scaffolds for drug delivery, self-assembly, and imaging applications have attracted significant attention over the last several decades. As polymerization techniques become more sophisticated, it becomes ...

  4. Abstract-In this study, imaging of electrical current density in conducting objects, which contain nuclear magnetic resonance

    E-Print Network [OSTI]

    Eybolu, Murat

    nuclear magnetic resonance (NMR) active nuclei is planned using 0.15T Magnetic Resonance Imaging (MRI at each cycle within the object. The applied current pulse creates a measurable magnetic flux density. The component of magnetic flux density parallel to the main magnetic field accumulates an additional phase

  5. REMOTE SENSING TECHNIQUES FOR LAND USE CLASSIFICATION OF RIO JAUCA WATERSHED USING IKONOS IMAGES

    E-Print Network [OSTI]

    Gilbes, Fernando

    REMOTE SENSING TECHNIQUES FOR LAND USE CLASSIFICATION OF RIO JAUCA WATERSHED USING IKONOS IMAGES-Mayagez E-mail: edwinmm80@yahoo.com Key words: GIS, remote sensing, land use, supervised classification resource and supplies water to the metropolitan area. Remote sensing techniques can be used to assess

  6. Pulmonary Hemorrhage: Imaging with a New Magnetic Resonance Blood Pool Agent in Conjunction with Breathheld Three-Dimensional Magnetic Resonance Angiography

    SciTech Connect (OSTI)

    Weishaupt, Dominik; Hilfiker, Paul R.; Schmidt, Michaela; Debatin, Joerg F. [Institute of Diagnostic Radiology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich (Switzerland)

    1999-07-15T23:59:59.000Z

    Purpose: To describe the three-dimensional magnetic resonance angiography (3D MRA) imaging appearance of the pulmonary arteries following administration of a superparamagnetic iron oxide blood pool agent to human volunteers, and to demonstrate in an animal model (pigs) how this technique can be used to detect pulmonary parenchymal hemorrhage. Methods: Two volunteers were examined following the intravenous administration of a superparamagnetic iron oxide blood pool agent (NC100150 Injection, Nycomed Amersham Imaging, Wayne, PA, USA). T1-weighted 3D gradient recalled echo (GRE) image sets (TR/TE 5.1/1.4 msec, flip angle 30 deg.) were acquired breathheld over 24 sec. To assess the detectability of pulmonary bleeding with intravascular MR contrast, pulmonary parenchymal injuries were created in two animals under general anesthesia, and fast T1-weighted 3D GRE image sets collected before and after the injury. Results: Administration of the intravascular contrast in the two volunteers resulted in selective enhancement of the pulmonary vasculature permitting complete visualization and excellent delineation of central, segmental, and subsegmental arteries. Following iatrogenic injury in the two animals, pulmonary hemorrhage was readily detected on the 3D image sets. Conclusion: The data presented illustrate that ultrafast 3D GRE MR imaging in conjunction with an intravenously administered intravascular blood pool agent can be used to perform high-quality pulmonary MRA as well as to detect pulmonary hemorrhage.

  7. HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis, Fall 2006

    E-Print Network [OSTI]

    Gollub, Randy L.

    This team taught, multidisciplinary course covers the fundamentals of magnetic resonance imaging relevant to the conduct and interpretation of human brain mapping studies. The challenges inherent in advancing our knowledge ...

  8. A 16-Channel Receive Array Insert for Magnetic Resonance Imaging of the Breast at 7T

    E-Print Network [OSTI]

    By, Samantha

    2014-04-01T23:59:59.000Z

    Breast cancer is the second leading cause of cancer death among females in the United States. Magnetic resonance imaging (MRI) has emerged as a powerful tool for detecting and evaluating the disease, with notable advantages over other modalities...

  9. T2*-weighted magnetic resonance imaging used to detect coagulative necrosis in tissue

    E-Print Network [OSTI]

    Van Hyfte, John Bruce

    1997-01-01T23:59:59.000Z

    to prevent unnecessary collateral damage to surrounding healthy tissue. This research focuses on using T2*-weighted FLASH magnetic resonance imaging to detect irreversible changes in i . n vitro bovine liver tissue and tissuesimulating polyacrylamide gel...

  10. Eight-Channel Head Array and Control System for Parallel Transmit/Receive Magnetic Resonance Imaging

    E-Print Network [OSTI]

    Moody, Katherine

    2014-08-11T23:59:59.000Z

    Interest in magnetic resonance imaging (MRI) at high fields strengths (3 Tesla and above) is driven by the associated improvements in signal-to-noise ratio and spectral resolution. In practice, however, technical challenges prevent these benefits...

  11. Multimodal neuroimaging with simultaneous electroencephalogram and high-field functional magnetic resonance imaging

    E-Print Network [OSTI]

    Purdon, Patrick L. (Patrick Lee), 1974-

    2005-01-01T23:59:59.000Z

    Simultaneous recording of electroencephalogram (EEG) and functional magnetic resonance imaging (tMRI) is an important emerging tool in functional neuroimaging with the potential to reveal new mechanisms for brain function ...

  12. Nuclear magnetic resonance imaging of water content in the subsurface

    SciTech Connect (OSTI)

    J. Hendricks; T. Yao; A. Kearns

    1999-01-21T23:59:59.000Z

    Previous theoretical and experimental studies indicated that surface nuclear magnetic resonance (NMR) has the potential to provide cost-effective water content measurements in the subsurface and is a technology ripe for exploitation in practice. The objectives of this investigation are (a) to test the technique under a wide range of hydrogeological conditions and (b) to generalize existing NMR theories in order to correctly model NMR response from conductive ground and to assess properties of the inverse problem. Twenty-four sites with different hydrogeologic settings were selected in New Mexico and Colorado for testing. The greatest limitation of surface NMR technology appears to be the lack of understanding in which manner the NMR signal is influenced by soil-water factors such as pore size distribution, surface-to-volume ratio, paramagnetic ions dissolved in the ground water, and the presence of ferromagnetic minerals. Although the theoretical basis is found to be sound, several advances need to be made to make surface NMR a viable technology for hydrological investigations. There is a research need to investigate, under controlled laboratory conditions, how the complex factors of soil-water systems affect NMR relaxation times.

  13. Linear beam raster magnet driver based on H-bridge technique

    DOE Patents [OSTI]

    Sinkine, Nikolai I.; Yan, Chen; Apeldoorn, Cornelis; Dail, Jeffrey Glenn; Wojcik, Randolph Frank; Gunning, William

    2006-06-06T23:59:59.000Z

    An improved raster magnet driver for a linear particle beam is based on an H-bridge technique. Four branches of power HEXFETs form a two-by-two switch. Switching the HEXFETs in a predetermined order and at the right frequency produces a triangular current waveform. An H-bridge controller controls switching sequence and timing. The magnetic field of the coil follows the shape of the waveform and thus steers the beam using a triangular rather than a sinusoidal waveform. The system produces a raster pattern having a highly uniform raster density distribution, eliminates target heating from non-uniform raster density distributions, and produces higher levels of beam current.

  14. Classification of brain compartments and head injury lesions by neural networks applied to magnetic resonance images

    E-Print Network [OSTI]

    Kischell, Eric Robert

    1993-01-01T23:59:59.000Z

    ' (Member) A. D. Patton ( ead of epartment) August 1993 Major Subject: Electrical Engineering ABSTRACT Classification of Brain Compartments and Head Injury Lesions by Neural Networks Applied to Magnetic Resonance Images. (August 1993) Eric Robert... Kischell, B. S. , Northeastern University Chair of Advisory Committee: Dr. Nasser Kehtarnavaz An automatic neural network-based approach was ap- plied to segment brain compartments and closed-head-injury lesions in magnetic resonance (MR) images Two...

  15. The development of magnetic resonance imaging for the determination of porosity in reservoir core samples

    E-Print Network [OSTI]

    Sherman, Byron Blake

    1991-01-01T23:59:59.000Z

    THE DEVELOPMENT OF MAGNETIC RESONANCE IMAGING FOR THE DETERMINATION OF POROSITY IN RESERVOIR CORE SAMPLES A Thesis by BYRON BLAKE SHERMAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1991 Major Subject: Petroleum Engineering THE DEVELOPMENT OF MAGNETIC RESONANCE IMAGING FOR THE DETERMINATION OF POROSITY IN RESERVOIR CORE SAMPLES A Thesis by BYRON BLAKE SHERMAN Approved...

  16. Application of nuclear magnetic resonance imaging and spectroscopy to fluids in porous media

    E-Print Network [OSTI]

    Mandava, Shanthi Sree

    1991-01-01T23:59:59.000Z

    APPLICATION OF NUCLEAR MAGNETIC RESONANCE IMAGING AND SPECTROSCOPY TO FLUIDS IN POROUS MEDIA A Thesis by SHANTHI SREE MANDAVA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1991 Major Subject: Chemical Engineering APPLICATION OF NUCLEAR MAGNETIC RESONANCE IMAGING AND SPECTROSCOPY TO FLUIDS IN POROUS MEDIA A Thesis by SHANTHI SREE MANDAVA Approved as to style and content by: A. Ted...

  17. A REAL TIME 3D VISUALIZATION PROTOTYPE FOR INTERVENTIONAL MAGNETIC RESONANCE IMAGING

    E-Print Network [OSTI]

    Schumann, Heidrun

    A REAL TIME 3D VISUALIZATION PROTOTYPE FOR INTERVENTIONAL MAGNETIC RESONANCE IMAGING JENS FISCHER­invasive examinations. This prototype allows simultaneous visualization of three different types of data: a 3D­Magnetic@informatik.uni­rostock.de Abstract: This paper describes a prototype of a visualization system which is designed to support

  18. Optimization Digital Image Watermarking Technique for Patent Protection

    E-Print Network [OSTI]

    Elnajjar, Mahmoud; Zaidan, B B; Sharif, Mohamed Elhadi M; Alanazi, Hamdan O

    2010-01-01T23:59:59.000Z

    The rapid development of multimedia and internet allows for wide distribution of digital media data. It becomes much easier to edit, modify and duplicate digital information besides that, digital documents are also easy to copy and distribute, therefore it will be faced by many threats. It is a big security and privacy issue. Another problem with digital document and video is that undetectable modifications can be made with very simple and widely available equipment, which put the digital material for evidential purposes under question With the large flood of information and the development of the digital format, it become necessary to find appropriate protection because of the significance, accuracy and sensitivity of the information, therefore multimedia technology and popularity of internet communications they have great interest in using digital watermarks for the purpose of copy protection and content authentication. Digital watermarking is a technique used to embed a known piece of digital data within a...

  19. Journal of Magnetism and Magnetic Materials 286 (2005) 324328 Light-free magnetic resonance force microscopy for studies of

    E-Print Network [OSTI]

    Journal of Magnetism and Magnetic Materials 286 (2005) 324­328 Light-free magnetic resonance force for Physical Sciences, College Park, MD, USA Available online 4 November 2004 Abstract Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its

  20. Blood-flow magnetic resonance imaging of the retina Yingxia Li,a,1

    E-Print Network [OSTI]

    Duong, Timothy Q.

    Blood-flow magnetic resonance imaging of the retina Yingxia Li,a,1 Haiying Cheng,a,1 and Timothy Q 1 November 2007 This study describes a novel MRI application to image basal blood flow, physiologically induced blood-flow changes, and the effects of isoflurane concentration on blood flow

  1. Task-based strategy for optimized contrast enhanced breast imaging: Analysis of six imaging techniques for mammography and tomosynthesis

    SciTech Connect (OSTI)

    Ikejimba, Lynda C., E-mail: lci@duke.edu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Kiarashi, Nooshin [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States)] [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States); Ghate, Sujata V. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States)] [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States) [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27705 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705 (United States); Lo, Joseph Y. [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States) [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705 (United States)

    2014-06-15T23:59:59.000Z

    Purpose: The use of contrast agents in breast imaging has the capability of enhancing nodule detectability and providing physiological information. Accordingly, there has been a growing trend toward using iodine as a contrast medium in digital mammography (DM) and digital breast tomosynthesis (DBT). Widespread use raises concerns about the best way to use iodine in DM and DBT, and thus a comparison is necessary to evaluate typical iodine-enhanced imaging methods. This study used a task-based observer model to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: unsubtracted mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Methods: Imaging performance was characterized using a detectability index d{sup ?}, derived from the system task transfer function (TTF), an imaging task, iodine signal difference, and the noise power spectrum (NPS). The task modeled a 10 mm diameter lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d{sup ?} was generated as a function of dose and iodine concentration. Results: For all iodine concentrations and dose, temporal subtraction techniques for mammography and tomosynthesis yielded the highest d{sup ?}, while dual energy techniques for both modalities demonstrated the next best performance. Unsubtracted imaging resulted in the lowest d{sup ?} values for both modalities, with unsubtracted mammography performing the worst out of all six paradigms. Conclusions: At any dose, temporal subtraction imaging provides the greatest detectability, with temporally subtracted DBT performing the highest. The authors attribute the successful performance to excellent cancellation of inplane structures and improved signal difference in the lesion.

  2. Magnetism at spinel thin film interfaces probed through soft x-ray spectroscopy techniques

    E-Print Network [OSTI]

    Chopdekar, R.V.

    2010-01-01T23:59:59.000Z

    Magnetism at spinel thin ?lm interfaces probed through softachievable in bulk form. Magnetism at the interface regionand the origin of the magnetism from multiple magnetic

  3. Magnetic resonance visualization of conductive structures by sequence-triggered direct currents and spin-echo phase imaging

    SciTech Connect (OSTI)

    Eibofner, Frank; Wojtczyk, Hanne; Graf, Hansjrg, E-mail: hansjoerg.graf@med.uni-tuebingen.de, E-mail: drGraf@t-online.de [Section on Experimental Radiology, University Hospital Tbingen, Tbingen D-72076 (Germany)] [Section on Experimental Radiology, University Hospital Tbingen, Tbingen D-72076 (Germany); Clasen, Stephan [Department of Diagnostic and Interventional Radiology, University Hospital Tbingen, Tbingen D-72076 (Germany)] [Department of Diagnostic and Interventional Radiology, University Hospital Tbingen, Tbingen D-72076 (Germany)

    2014-06-15T23:59:59.000Z

    Purpose: Instrument visualization in interventional magnetic resonance imaging (MRI) is commonly performed via susceptibility artifacts. Unfortunately, this approach suffers from limited conspicuity in inhomogeneous tissue and disturbed spatial encoding. Also, susceptibility artifacts are controllable only by sequence parameters. This work presents the basics of a new visualization method overcoming such problems by applying sequence-triggered direct current (DC) pulses in spin-echo (SE) imaging. SE phase images allow for background free current path localization. Methods: Application of a sequence-triggered DC pulse in SE imaging, e.g., during a time period between radiofrequency excitation and refocusing, results in transient field inhomogeneities. Dependent on the additional z-magnetic field from the DC, a phase offset results despite the refocusing pulse. False spatial encoding is avoided by DC application during periods when read-out or slice-encoding gradients are inactive. A water phantom containing a brass conductor (water equivalent susceptibility) and a titanium needle (serving as susceptibility source) was used to demonstrate the feasibility. Artifact dependence on current strength and orientation was examined. Results: Without DC, the brass conductor was only visible due to its water displacement. The titanium needle showed typical susceptibility artifacts. Applying triggered DC pulses, the phase offset of spins near the conductor appeared. Because SE phase images are homogenous also in regions of persistent field inhomogeneities, the position of the conductor could be determined with high reliability. Artifact characteristic could be easily controlled by amperage leaving sequence parameters unchanged. For an angle of 30 between current and static field visualization was still possible. Conclusions: SE phase images display the position of a conductor carrying pulsed DC free from artifacts caused by persistent field inhomogeneities. Magnitude and phase images are acquired simultaneously under the same conditions without the use of extra measurement time. The presented technique offers many advantages for precise instrument localization in interventional MRI.

  4. Image-Based Modeling and Rendering Techniques: A Survey Manuel M. Oliveira1

    E-Print Network [OSTI]

    Oliveira, Manuel M.

    Image-Based Modeling and Rendering Techniques: A Survey Manuel M. Oliveira1 Resumo: A recente denominadas modelagem e rendering baseados em imagens (MRBI). Modelagem baseada em imagens se refere ao processo de utilizao de imagens para reconstruo de modelos geomtricos 3D. Rendering baseado em imagens

  5. NREL scientists develop near-field optical microscopy techniques for imaging solar cell junctions and identify

    E-Print Network [OSTI]

    Solar cell producers are facing urgent pressures to lower module production cost.This achievementNREL scientists develop near-field optical microscopy techniques for imaging solar cell junctions is an increasingly important issue for silicon solar cells. The issue has taken center stage now that the solar

  6. Microfluidically Cryo-Cooled Planar Coils for Magnetic Resonance Imaging

    E-Print Network [OSTI]

    Koo, Chiwan

    2013-08-09T23:59:59.000Z

    is approximately the same as the diameters of the microcoils. Here microfluidic technology is utilized to locally cryo-cool the microcoils and minimize the thermal isolation gap so that the imaging surface is within the imaging depth of the microcoils. The first...

  7. Motion of free spins and NMR imaging without a radio-frequency magnetic field

    E-Print Network [OSTI]

    Kees van Schenk Brill; Jassem Lahfadi; Tarek Khalil; Daniel Grucker

    2015-04-19T23:59:59.000Z

    NMR imaging without any radio-frequency magnetic field is explained by a quantum treatment of independent spin~$\\tfrac 12$. The total magnetization is determined by means of their individual wave function. The theoretical treatment, based on fundamental axioms of quantum mechanics and solving explicitly the Schr\\"{o}dinger equation with the kinetic energy part which gives the motion of free spins, is recalled. It explains the phase shift of the spin noise spectrum with its amplitude compared to the conventional NMR spectrum. Moreover it explains also the relatively good signal to noise ratio of NMR images obtained without a RF pulse. This derivation should be helpful for new magnetic resonance imaging sequences or for developing quantum computing by NMR.

  8. Coil performance evaluation based on electrodynamics : tools for hardware design and validation in magnetic resonance imaging

    E-Print Network [OSTI]

    Lattanzi, Riccardo

    2008-01-01T23:59:59.000Z

    Parallel MRI techniques allow acceleration of MR imaging beyond traditional speed limits. In parallel MRI, radiofrequency (RF) detector coil arrays are used to perform some degree of spatial encoding which complements ...

  9. Simultaneous Electroencephalography and Functional Magnetic Resonance Imaging of General Anesthesia

    E-Print Network [OSTI]

    Purdon, Patrick Lee

    It has been long appreciated that anesthetic drugs induce stereotyped changes in electroencephalogram (EEG), but the relationships between the EEG and underlying brain function remain poorly understood. Functional imaging ...

  10. RF Pulse Design for Parallel Excitation in Magnetic Resonance Imaging

    E-Print Network [OSTI]

    Liu, Yinan

    2012-07-16T23:59:59.000Z

    , such as accelerating imaging speed, mitigating field inhomogeneity in high-field MRI, and alleviating the susceptibility artifact in functional MRI (fMRI). In these applications, controlling radiofrequency (RF) power deposition (quantified by Specific Absorption Rate...

  11. Magnetic charge crystals imaged in artificial spin ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love YouTokamak| NationalMagneticMagnetic

  12. Uncooled thin film infrared imaging device with aerogel thermal isolation: Deposition and planarization techniques

    SciTech Connect (OSTI)

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A.; Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States); Sriram, C.S. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Bullington, J.A. [AMMPEC, Inc., Albuquerque, NM (United States)

    1998-04-01T23:59:59.000Z

    The authors have successfully integrated a thermally insulating silica aerogel thin film into a new uncooled monolithic thin film infrared (IR) imaging device. Compared to other technologies (bulk ceramic and microbridge), use of an aerogel layer provides superior thermal isolation of the pyroelectric imaging element from the relatively massive heat sinking integrated circuit. This results in significantly higher thermal and temporal resolutions. They have calculated noise equivalent temperature differences of 0.04--0.10 C from a variety of Pb{sub x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PZT) and Pb{sub x}La{sub 1{minus}x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PLZT) pyroelectric imaging elements in monolithic structures. In addition, use of aerogels results in an easier, less expensive fabrication process and a more robust device. Fabrication of these monolithic devices entails sol-gel deposition of the aerogel, sputter deposition of the electrodes, and solution chemistry deposition of the pyroelectric imaging elements. Uniform pyroelectric response is achieved across the device by use of appropriate planarization techniques. These deposition and planarization techniques are described. Characterization of the individual layers and monolithic structure using scanning electron microscopy, atomic force microscopy and Byer-Roundy techniques also is discussed.

  13. Potential Applications of Microtesla Magnetic Resonance ImagingDetected Using a Superconducting Quantum Interference Device

    SciTech Connect (OSTI)

    Myers, Whittier R.

    2006-05-18T23:59:59.000Z

    This dissertation describes magnetic resonance imaging (MRI) of protons performed in a precession field of 132 {micro}T. In order to increase the signal-to-noise ratio (SNR), a pulsed 40-300 mT magnetic field prepolarizes the sample spins and an untuned second-order superconducting gradiometer coupled to a low transition temperature superconducting quantum interference device (SQUID) detects the subsequent 5.6-kHz spin precession. Imaging sequences including multiple echoes and partial Fourier reconstruction are developed. Calculating the SNR of prepolarized SQUID-detected MRI shows that three-dimensional Fourier imaging yields higher SNR than slice-selection imaging. An experimentally demonstrated field-cycling pulse sequence and post-processing algorithm mitigate image artifacts caused by concomitant gradients in low-field MRI. The magnetic field noise of SQUID untuned detection is compared to the noise of SQUID tuned detection, conventional Faraday detection, and the Nyquist noise generated by conducting biological samples. A second-generation microtesla MRI system employing a low-noise SQUID is constructed to increase SNR. A 2.4-m cubic, eddy-current shield with 6-mm thick aluminum walls encloses the experiment to attenuate external noise. The measured noise is 0.75 fT Hz{sup -1/2} referred to the bottom gradiometer loop. Solenoids wound from 30-strand braided wire to decrease Nyquist noise and cooled by either liquid nitrogen or water polarize the spins. Copper wire coils wound on wooden supports produce the imaging magnetic fields and field gradients. Water phantom images with 0.8 x 0.8 x 10 mm{sup 3} resolution have a SNR of 6. Three-dimensional 1.6 x 1.9 x 14 mm{sup 3} images of bell peppers and 3 x 3 x 26 mm{sup 3} in vivo images of the human arm are presented. Since contrast based on the transverse spin relaxation rate (T{sub 1}) is enhanced at low magnetic fields, microtesla MRI could potentially be used for tumor imaging. The measured T{sub 1} of ex vivo normal and cancerous prostate tissue differ significantly at 132 {micro}T. A single-sided MRI system designed for prostate imaging could achieve 3 x 3 x 5 mm{sup 3} resolution in 8 minutes. Existing SQUID-based magnetoencephalography (MEG) systems could be used as microtesla MRI detectors. A commercial 275-channel MEG system could acquire 6-minute brain images with (4 mm){sup 3} resolution and SNR 16.

  14. X-ray imaging of extended magnetic domain walls in Ni80Fe20 wires

    SciTech Connect (OSTI)

    Basu, S.; Fry, P. W.; Allwood, D. A.; Bryan, M. T.; Gibbs, M. R. J.; Schrefl, T.; Im, M.-Y.; Fischer, P.

    2009-06-20T23:59:59.000Z

    We have used magnetic transmission X-ray microscopy to image magnetization configurations in 700 nm wide Ni{sub 80}Fe{sub 20} planar wires attached to 'nucleation' pads Domain walls were observed to inject only across half of the wire width but extend to several micrometers in length. Magnetostatic interactions with adjacent wires caused further unusual domain wall behavior. Micromagnetic modeling suggests the extended walls have Neel-like structure along their length and indicates weaker exchange coupling than is often assumed. These observations explain previous measurements of domain wall injection and demonstrate that magnetic domain walls in larger nanowires cannot always be considered as localized entities.

  15. Extreme Ultraviolet Imaging of Three-dimensional Magnetic Reconnection in a Solar Eruption

    E-Print Network [OSTI]

    Sun, J Q; Ding, M D; Guo, Y; Priest, E R; Parnell, C E; Edwards, S J; Zhang, J; Chen, P F; Fang, C

    2015-01-01T23:59:59.000Z

    Magnetic reconnection, a change of magnetic field connectivity, is a fundamental physical process in which magnetic energy is released explosively. It is responsible for various eruptive phenomena in the universe. However, this process is difficult to observe directly. Here, the magnetic topology associated with a solar reconnection event is studied in three dimensions (3D) using the combined perspectives of two spacecraft. The sequence of extreme ultraviolet (EUV) images clearly shows that two groups of oppositely directed and non-coplanar magnetic loops gradually approach each other, forming a separator or quasi-separator and then reconnecting. The plasma near the reconnection site is subsequently heated from $\\sim$1 to $\\ge$5 MK. Shortly afterwards, warm flare loops ($\\sim$3 MK) appear underneath the hot plasma. Other observational signatures of reconnection, including plasma inflows and downflows, are unambiguously revealed and quantitatively measured. These observations provide direct evidence of magneti...

  16. Three dimension temperature field reconstruction with image processing technique on pulverized coal boiler furnace

    SciTech Connect (OSTI)

    Shen Peihua; Qi Guoshui; Ma Zengyi [and others

    1999-07-01T23:59:59.000Z

    Temperature field distribution measurement is important for combustion diagnostics. With CCD camera, the authors can obtain abundance digital data of flame image instantaneous. Every data represent radiation heat transfer along projection beam. Based on Optic geometric and heat transfer theory, they develop a 3-d flame temperature field reconstruction technique, which can calculate a 3-d zone temperature using two perspectives CCD camera. The optical geometric relation of CCD's image formation and flame radiation heat transfer model is deduced, they establish the reconstruction equation group from radiation heat transfer, and optimization is introduced to solve these equation. The result of a PC boiler is presented.

  17. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques

    SciTech Connect (OSTI)

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.; Mehta, Hardeep S.; Ewing, R. James; Ewing, Thomas; Mueller, Karl T.; Beyenal, Haluk

    2014-01-30T23:59:59.000Z

    In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.

  18. IEEE TRANSACTIONS ON MAGNETICS, VOL. XX, NO. X, MONTH 2009 1 Machine Learning Techniques for the Analysis

    E-Print Network [OSTI]

    Reilly, James P.

    ) technique is commonly used for non-destructive testing of oil and gas pipelines. This testing involves of installed oil and natural gas pipelines using inline magnetic flux leakage (MFL) inspection techniques that could result from a pipeline leak or catastrophic fail- ure, pipelines must be routinely evaluated

  19. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Magnetohydrodynamics Simulation Module for the Global Solar Corona

    E-Print Network [OSTI]

    Hayashi, Keiji; Liu, Yang; Bobra, Monica G; Sun, Xudong D; Norton, Aimee A

    2015-01-01T23:59:59.000Z

    Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of polytropic gas with specific heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on daily basis. The MHD data available in the JSOC database are three-dimen...

  20. Bayesian Experimental Design of Magnetic Resonance Imaging Sequences

    E-Print Network [OSTI]

    Seeger, Matthias

    Nickisch, Rolf Pohmann and Bernhard Scholkopf Max Planck Institute for Biological Cybernetics research of the brain. Without applying any harmful ioniz- ing radiation, this technique stands out by its

  1. Layer resolved magnetic domain imaging of epitaxial heterostructures in large applied magnetic fields

    E-Print Network [OSTI]

    Zohar, S.; Choi, Y.; Love, D. M.; Mansell, R.; Barnes, C. H. W.; Keavney, D. J.; Rosenberg, R. A.

    2015-02-19T23:59:59.000Z

    We use X-ray Excited Luminescence Microscopy to investigate the elemental and layer resolved magnetic reversal in an interlayer exchange coupled (IEC) epitaxial Fe/Cr wedge/Co heterostructure. The transition from strongly coupled parallel Co...

  2. Measuring water velocity using DIDSON and image cross-correlation techniques

    SciTech Connect (OSTI)

    Deng, Zhiqun; Mueller, Robert P.; Richmond, Marshall C.

    2009-08-01T23:59:59.000Z

    To design or operate hydroelectric facilities for maximum power generation and minimum ecological impact, it is critical to understand the biological responses of fish to different flow structures. However, information is still lacking on the relationship between fish behavior and flow structures despite many years of research. Existing field characterization approaches conduct fish behavior studies and flow measurements separately and coupled later using statistical analysis. These types of studies, however, lack a way to determine the specific hydraulic conditions or the specific causes of the biological response. The Dual-Frequency Identification Sonar (DIDSON) has been in wide use for fish behavior studies since 1999. The DIDSON can detect acoustic targets at long ranges in dark or turbid dark water. PIV is a state-of-the-art, non-intrusive, whole-flow-field technique, providing instantaneous velocity vector measurements in a whole plane using image cross-correlating techniques. There has been considerable research in the development of image processing techniques associated with PIV. This existing body of knowledge is applicable and can be used to process the images taken by the DIDSON. This study was conducted in a water flume which is 9 m long, 1.2 m wide, and 1.2 m deep when filled with water. A lab jet flow was setup as the benchmark flow to calibrate DIDSON images. The jet nozzle was 6.35 cm in diameter and core jet velocity was 1.52 m/s. Different particles were used to seed the flow. The flow was characterized based on the results using Laser Doppler Velocimetry (LDV). A DIDSON was mounted about 5 meters away from the jet nozzle. Consecutive DIDSON images with known time delay were divided into small interrogation spots after background was subtracted. Across-correlation was then performed to estimate the velocity vector for each interrogation spot. The estimated average velocity in the core zone was comparable to that obtained using a LDV. This proof-of-principle project demonstrated the feasibility of extracting water flow velocity information from underwater DIDSON images using image cross-correlation techniques.

  3. " Rotating, In Plane Magnetization and Magneto-Optic Imaging of Cracks in Thick-Section Steel Under Stainless-Steel Cladding".

    SciTech Connect (OSTI)

    Gerald Fitzpatrick & Richard Skaugset

    2000-10-13T23:59:59.000Z

    The nondestructive inspection (NDI) of thick-section steel nuclear reactor pressure vessels (RPV'S) is rendered difficult by rough stainless steel cladding. Because the cladding condition is poorly known in most RPV's, an NDI technique that is unaffected by cladding roughness would be a major advance. Magneto-optic imaging is one such technique. The purpose of this project was to develop a novel method to induce rotating, in-plane magnetization, and to combine this capability with magneto-optic imaging to produce a self-contained inspection system. Imaging of cracks under thick cladding (0.250 inches) was demonstrated using a system capable, in principle, of performing robotic inspections, both inside & outside a typical boiling water reactor (BWR) RPV. This report, together publications listed, constitutes a comprehensive account of this work.

  4. Characterization of beam dynamics in the APS injector rings using time-resolved imaging techniques

    SciTech Connect (OSTI)

    Yang, B.X.; Lumpkin, A.H.; Borland, M. [and others

    1997-06-01T23:59:59.000Z

    Images taken with streak cameras and gated intensified cameras with both time (longitudinal) and spatial (transverse) resolution reveal a wealth of information about circular accelerators. The authors illustrate a novel technique by a sequence of dual-sweep streak camera images taken at a high dispersion location in the booster synchrotron, where the horizontal coordinate is strongly correlated with the particle energy and the {open_quotes}top-view{close_quotes} of the beam gives a good approximation to the particle density distribution in the longitudinal phase space. A sequence of top-view images taken fight after injection clearly shows the beam dynamics in the phase space. We report another example from the positron accumulator ring for the characterization of its beam compression bunching with the 12th harmonic rf.

  5. GPU-accelerated denoising of 3D magnetic resonance images

    SciTech Connect (OSTI)

    Howison, Mark; Wes Bethel, E.

    2014-05-29T23:59:59.000Z

    The raw computational power of GPU accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. In practice, applying these filtering operations requires setting multiple parameters. This study was designed to provide better guidance to practitioners for choosing the most appropriate parameters by answering two questions: what parameters yield the best denoising results in practice? And what tuning is necessary to achieve optimal performance on a modern GPU? To answer the first question, we use two different metrics, mean squared error (MSE) and mean structural similarity (MSSIM), to compare denoising quality against a reference image. Surprisingly, the best improvement in structural similarity with the bilateral filter is achieved with a small stencil size that lies within the range of real-time execution on an NVIDIA Tesla M2050 GPU. Moreover, inappropriate choices for parameters, especially scaling parameters, can yield very poor denoising performance. To answer the second question, we perform an autotuning study to empirically determine optimal memory tiling on the GPU. The variation in these results suggests that such tuning is an essential step in achieving real-time performance. These results have important implications for the real-time application of denoising to MR images in clinical settings that require fast turn-around times.

  6. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    DOE Patents [OSTI]

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21T23:59:59.000Z

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  7. Modeling Left Ventricle Wall Motion Using Tagged Magnetic Resonance Imaging

    E-Print Network [OSTI]

    Alenezy, Mohammed D.

    2009-04-17T23:59:59.000Z

    can be calculated as M = ?nullN 2 tanh( ?nullB 0 2kT ) (2.3) In a biological sample that contains about 1mL of water, there are about 10 22 hydrogen nuclei, and at the room... population that is frequently in need of quality tomographic images for the assessment of congenital heart defects. MRI can characterize myocardial function through the use of cine MRI and tagged MRI. The latter provides a means to assess wall motion...

  8. Nuclear magnetic resonance contrast agents

    DOE Patents [OSTI]

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30T23:59:59.000Z

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  9. Novel Hall sensors developed for magnetic field imaging systems.

    SciTech Connect (OSTI)

    Cambel, V.; Karapetrov, G.; Novosad, V.; Bartolome, E.; Gregusova, D.; Fedor, J.; Kudela, R.; Soltys, J.; Materials Science Division; Slovak Academy of Sciences; Univ. Autonoma de Barcelona

    2007-09-01T23:59:59.000Z

    We report here on the fabrication and application of novel planar Hall sensors based on shallow InGaP/AlGaAs/GaAs heterostructure with a two-dimensional electron gas (2DEG) as an active layer. The sensors are developed for two kinds of experiments. In the first one, magnetic samples are placed directly on the Hall sensor. Room temperature experiments of permalloy objects evaporated onto the sensor are presented. In the second experiment, the sensor scans close over a multigranular superconducting sample prepared on a YBCO thin film. Large-area and high-resolution scanning experiments were performed at 4.2 K with the Hall probe scanning system in a liquid helium flow cryostat.

  10. Single-Shot Magnetic Resonance Spectroscopic Imaging with Partial Parallel Imaging

    E-Print Network [OSTI]

    spectroscopic imaging (MRSI) pulse se- quence based on protonecho-planar-spectroscopic-imaging (PEPSI. Comparison with conventional PEPSI and PEPSI with fourfold SENSE accelera- tion demonstrated comparable-acetyl-aspartate (NAA) in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE

  11. Application of Image And X-Ray Microtomography Technique To Quantify Filler Distribution In Thermoplastic-Natural Rubber Blend Composites

    SciTech Connect (OSTI)

    Ahmad, Sahrim; Rasid, Rozaidi; Mouad, A. T. [Faculty of Applied Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bandar Baru Bangi, 43000 Kajang (Malaysia); Aziz Mohamed, A.; Abdullah, Jaafar; Dahlan, M.; Mohamad, Mahathir; Jamro, Rafhayudi; Hamzah Harun, M. [Malaysian Nuclear Agency, Bangi, 43000 Kajang (Malaysia); Yazid, Hafizal [Faculty of Applied Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bandar Baru Bangi, 43000 Kajang (Malaysia); Hafizal Yazid, Faculty of Applied Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bandar Baru Bangi, 43000 Kajang (Malaysia); Abdullah, W. Saffiey W.

    2010-01-05T23:59:59.000Z

    X-ray microtomography and ImageJ 1.39 u is used as a tool to quantify volume percentage of B{sub 4}C as fillers in thermoplastic-natural rubber blend composites. The use of percentage of area occupied by fillers as obtain from ImageJ from the microtomography sliced images enables the proposed technique to easily obtain the amount volume percentage of B{sub 4}C in the composite non-destructively. Comparison with other technique such as density measurement and chemical analysis proves the proposed technique as one of the promising approach.

  12. A novel millimeter-wave beam-steering technique using a dielectric-image-line-fed grating film

    E-Print Network [OSTI]

    Rodenbeck, Christopher Timothy

    2001-01-01T23:59:59.000Z

    This thesis introduces a novel, broadband, low-cost technique for beam steering at millimeter-wave frequencies using a moveable grating film fed by dielectric image line. An excellent radiation pattern is maintained over wide scan angles across...

  13. Image-Guided Techniques Improve the Short-term Outcome of Autologous Osteochondral Cartilage Repair Surgeries -An

    E-Print Network [OSTI]

    Stewart, James

    Image-Guided Techniques Improve the Short-term Outcome of Autologous Osteochondral Cartilage Repair and deliver osteochondral grafts remains problematic. We investigated whether image-guided methods (optically-guided and template-guided) can improve the outcome of mo- saic arthroplasty procedures. Methods: Fifteen sheep were

  14. Characterization of Porosity Development in Oxidized Graphite using Automated Image Analysis Techniques

    SciTech Connect (OSTI)

    Contescu, Cristian I [ORNL; Burchell, Timothy D [ORNL

    2009-09-01T23:59:59.000Z

    This document reports on initial activities at ORNL aimed at quantitative characterization of porosity development in oxidized graphite specimens using automated image analysis (AIA) techniques. A series of cylindrical shape specimens were machined from nuclear-grade graphite (type PCEA, from GrafTech International). The specimens were oxidized in air to various levels of weight loss (between 5 and 20 %) and at three oxidation temperatures (between 600 and 750 oC). The procedure used for specimen preparation and oxidation was based on ASTM D-7542-09. Oxidized specimens were sectioned, resin-mounted and polished for optical microscopy examination. Mosaic pictures of rectangular stripes (25 mm x 0.4 mm) along a diameter of sectioned specimens were recorded. A commercial software (ImagePro) was evaluated for automated analysis of images. Because oxidized zones in graphite are less reflective in visible light than the pristine, unoxidized material, the microstructural changes induced by oxidation can easily be identified and analyzed. Oxidation at low temperatures contributes to development of numerous fine pores (< 100 m2) distributed more or less uniformly over a certain depth (5-6 mm) from the surface of graphite specimens, while causing no apparent external damage to the specimens. In contrast, oxidation at high temperatures causes dimensional changes and substantial surface damage within a narrow band (< 1 mm) near the exposed graphite surface, but leaves the interior of specimens with little or no changes in the pore structure. Based on these results it appears that weakening and degradation of mechanical properties of graphite materials produced by uniform oxidation at low temperatures is related to the massive development of fine pores in the oxidized zone. It was demonstrated that optical microscopy enhanced by AIA techniques allows accurate determination of oxidant penetration depth and of distribution of porosity in oxidized graphite materials.

  15. K-space reconstruction of magnetic resonance inverse imaging (K-InI) of human visuomotor systems

    E-Print Network [OSTI]

    MRI InI Visual MRI Neuroimaging K-InI Inverse solution MEG EEG Electroencephalography channels of a radio-frequency coil array, magnetic resonance inverse imaging (InI) can achieve ultra. Mathematically, the InI reconstruction is a generalization of parallel MRI (pMRI), which includes image space

  16. Simultaneous PET/fMRI for imaging neuroreceptor dynamics

    E-Print Network [OSTI]

    Sander, Christin Y. (Christin Yen-Ming)

    2014-01-01T23:59:59.000Z

    Whole-brain neuroimaging is a key technique for studying brain function and connectivity. Recent advances in combining two imaging modalities - magnetic resonance imaging (MRI) and positron emission tomography (PET) - into ...

  17. A Simple and Fast Iterative Soft-thresholding Algorithm for Tight Frames in Compressed Sensing Magnetic Resonance Imaging

    E-Print Network [OSTI]

    Liu, Yunsong; Cai, Jian-Feng; Guo, Di; Chen, Zhong; Qu, Xiaobo

    2015-01-01T23:59:59.000Z

    Compressed sensing has shown great potentials in accelerating magnetic resonance imaging. Fast image reconstruction and high image quality are two main issues faced by this new technology. It has been shown that, redundant image representations, e.g. tight frames, can significantly improve the image quality. But how to efficiently solve the reconstruction problem with these redundant representation systems is still challenging. This paper attempts to address the problem of applying fast iterative soft-thresholding algorithm (FISTA) to tight frames based magnetic resonance image reconstruction. By introducing the canonical dual frame, we construct an orthogonal projection operator on the range of the analysis sparsity operator and propose a new algorithm, called the projected FISTA (pFISTA). We theoretically prove that pFISTA converges to the minimum of a function with a balanced tight frame sparsity. One major advantage of pFISTA is that only one extra parameter, the step size, is introduced and the numerical...

  18. Developing new optical imaging techniques for single particle and molecule tracking in live cells

    SciTech Connect (OSTI)

    Sun, Wei

    2010-12-15T23:59:59.000Z

    Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian cells. New rotational information was obtained: (1) during endocytosis, cargoes lost their rotation freedom at the late stage of internalization; (2) cargoes performed train-like motion when they were transported along the microtubule network by motor proteins inside live cells; (3) During the pause stage of fast axonal transport, cargoes were still bound to the microtubule tracks by motor proteins. Total internal reflection fluorescence microscopy (TIRFM) is another non-invasive and far-field optical imaging technique. Because of its near-field illumination mechanism, TIRFM has better axial resolution than epi-fluorescence microscopy and confocal microscopy. In this work, an auto-calibrated, prism type, angle-scanning TIRFM instrument was built. The incident angle can range from subcritical angles to nearly 90{sup o}, with an angle interval less than 0.2{sup o}. The angle precision of the new instrument was demonstrated through the finding of the surface plasmon resonance (SPR) angle of metal film coated glass slide. The new instrument improved significantly the precision in determining the axial position. As a result, the best obtained axial resolution was {approx} 8 nm, which is better than current existing instruments similar in function. The instrument was further modified to function as a pseudo TIRF microscope. The illumination depth can be controlled by changing the incident angle of the excitation laser beam or adjusting the horizontal position of the illumination laser spot on the prism top surface. With the new technique, i.e., variable-illumination-depth pseudo TIRF microscopy, the whole cell body from bottom to top was scanned.

  19. NMR (nuclear magnetic resonance) imaging for detecting binder/plasticizers in green-state structural ceramics. [SiC, Al/sub 2/O/sub 3/, and Si/sub 3/N/sub 4/

    SciTech Connect (OSTI)

    Ellingson, W.A.; Ackerman, J.L.; Gronemeyer, S.; Garrido, L.

    1987-06-01T23:59:59.000Z

    We have explored both a small-bore (<10 cm) experimental imaging system as well as a state-of-the-art medical imaging system relative to detection of the soft-solid (wax-like) binders used in ceramics. The ability to detect binders was evaluated on a 1.5-T medical MRI imager (Siemens Magnetom) using T/sub 1/-weighted imaging techniques and a 10-cm eye coil standard with the system. The ability to detect binders was also studied with a modified small-bore coil Technicare Facility using special rf and gradient coils. The initial results show that a medical system may not be able to detect binders unless elevated temperatures are used, whereas the experimental small-bore system shows the distribution quite well. In addition, higher magnetic field strength should be better for ceramics, since proton signal strength increases rapidly with the magnetic field strength. 11 refs., 9 figs., 3 tabs.

  20. Noise-Produced Patterns in Images Constructed from Magnetic Flux Leakage Data

    E-Print Network [OSTI]

    Pimenova, Anastasiya V; Levesley, Jeremy; Elkington, Peter; Bacciarelli, Mark

    2015-01-01T23:59:59.000Z

    Magnetic flux leakage measurements help identify the position, size and shape of corrosion-related defects in steel casings used to protect boreholes drilled into oil and gas reservoirs. Images constructed from magnetic flux leakage data contain patterns related to noise inherent in the method. We investigate the patterns and their scaling properties for the case of delta-correlated input noise, and consider the implications for the method's ability to resolve defects. The analytical evaluation of the noise-produced patterns is made possible by model reduction facilitated by large-scale approximation. With appropriate modification, the approach can be employed to analyze noise-produced patterns in other situations where the data of interest are not measured directly, but are related to the measured data by a complex linear transform involving integrations with respect to spatial coordinates.

  1. Development of Nuclear Magnetic Resonance Imaging/spectroscopy for improved petroleum recovery. Final report

    SciTech Connect (OSTI)

    Barrufet, M.A.; Flumerfelt, F.W.; Walsh, M.P.; Watson, A.T.

    1994-04-01T23:59:59.000Z

    The overall objectives of this program are to develop and apply Nuclear Magnetic Resonance Imaging (NMRI) and CT X-Ray Scanning methods for determining rock, fluid, and petrophysical properties and for fundamental studies of multiphase flow behavior in porous media. Specific objectives are divided into four subtasks: (1) development of NMRI and CT scanning for the determination of rock-fluid and petrophysical properties; (2) development of NMRI and CT scanning for characterizing conventional multiphase displacement processes; (3) development of NMR and CT scanning for characterizing dispersed phase processes; and (4) miscible displacement studies.

  2. Imaging and spectroscopic observations of magnetic reconnection and chromospheric evaporation in a solar flare

    E-Print Network [OSTI]

    Tian, Hui; Reeves, Katharine K; Raymond, John C; Guo, Fan; Liu, Wei; Chen, Bin; Murphy, Nicholas A

    2014-01-01T23:59:59.000Z

    Magnetic reconnection is believed to be the dominant energy release mechanism in solar flares. The standard flare model predicts both downward and upward outflow plasmas with speeds close to the coronal Alfv\\'{e}n speed. Yet, spectroscopic observations of such outflows, especially the downflows, are extremely rare. With observations of the newly launched Interface Region Imaging Spectrograph (IRIS), we report the detection of greatly redshifted ($\\sim$125 km s$^{-1}$ along line of sight) Fe {\\sc{xxi}} 1354.08\\AA{} emission line with a $\\sim$100 km s$^{-1}$ nonthermal width at the reconnection site of a flare. The redshifted Fe {\\sc{xxi}} feature coincides spatially with the loop-top X-Ray source observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). We interpret this large redshift as the signature of downward-moving reconnection outflow/hot retracting loops. Imaging observations from both IRIS and the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) also...

  3. Method for high resolution magnetic resonance analysis using magic angle technique

    DOE Patents [OSTI]

    Wind, Robert A.; Hu, Jian Zhi

    2003-11-25T23:59:59.000Z

    A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.

  4. Calculation methods and detection techniques for electric and magnetic fields from power lines with measurement verification

    E-Print Network [OSTI]

    Mamishev, Alexander V

    1994-01-01T23:59:59.000Z

    of extremely low frequency magnetic fields in the direct proximity of the conductors of power lines, situated well above the ground level. Conventional approximation of a sagged wire as a straight horizontal conductor of infinite length has been substituted...

  5. Zero source insertion technique to account for undersampling in GPR imaging

    DOE Patents [OSTI]

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W

    2014-02-25T23:59:59.000Z

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  6. Fielding the magnetically applied pressure-shear technique on the Z accelerator (completion report for MRT 4519).

    SciTech Connect (OSTI)

    Alexander, C. Scott; Haill, Thomas A.; Dalton, Devon Gardner; Rovang, Dean Curtis; Lamppa, Derek C.

    2013-09-01T23:59:59.000Z

    The recently developed Magnetically Applied Pressure-Shear (MAPS) experimental technique to measure material shear strength at high pressures on magneto-hydrodynamic (MHD) drive pulsed power platforms was fielded on August 16, 2013 on shot Z2544 utilizing hardware set A0283A. Several technical and engineering challenges were overcome in the process leading to the attempt to measure the dynamic strength of NNSA Ta at 50 GPa. The MAPS technique relies on the ability to apply an external magnetic field properly aligned and time correlated with the MHD pulse. The load design had to be modified to accommodate the external field coils and additional support was required to manage stresses from the pulsed magnets. Further, this represents the first time transverse velocity interferometry has been applied to diagnose a shot at Z. All subsystems performed well with only minor issues related to the new feed design which can be easily addressed by modifying the current pulse shape. Despite the success of each new component, the experiment failed to measure strength in the samples due to spallation failure, most likely in the diamond anvils. To address this issue, hydrocode simulations are being used to evaluate a modified design using LiF windows to minimize tension in the diamond and prevent spall. Another option to eliminate the diamond material from the experiment is also being investigated.

  7. Development of algorithms for capacitance imaging techniques for fluidized bed flow fields

    SciTech Connect (OSTI)

    Loudin, W.J.

    1991-01-01T23:59:59.000Z

    The objective of this research is to provide support for the instrumentation concept of a High Resolution Capacitance Imaging System (HRCIS). The work involves the development and evaluation of the mathematical theory and associated models and algorithms which reduce the electronic measurements to valid physical characterizations. The research and development require the investigation of techniques to solve large systems of equations based on capacitance measurements for various electrode configurations in order to estimate densities of materials in a cross-section of a fluidized bed. Capacitance measurements are made for 400 connections of the 32-electrode system; 400 corresponding electric-field curves are constructed by solving a second order partial differential equation. These curves are used to partition the circular disk into 193 regions called pixels, and the density of material in each pixel is to be estimated. Two methods of approximating densities have been developed and consideration of a third method has been initiated. One method (Method 1) is based on products of displacement currents for intersecting electric-field curves on a cross section. For each pixel one point of intersection is chosen, and the product of the capacitance measurements is found. Both the product and the square-root-of-product seem to yield good relative distribution of densities.

  8. Development of algorithms for capacitance imaging techniques for fluidized bed flow fields. 1990 Annual report

    SciTech Connect (OSTI)

    Loudin, W.J.

    1991-01-01T23:59:59.000Z

    The objective of this research is to provide support for the instrumentation concept of a High Resolution Capacitance Imaging System (HRCIS). The work involves the development and evaluation of the mathematical theory and associated models and algorithms which reduce the electronic measurements to valid physical characterizations. The research and development require the investigation of techniques to solve large systems of equations based on capacitance measurements for various electrode configurations in order to estimate densities of materials in a cross-section of a fluidized bed. Capacitance measurements are made for 400 connections of the 32-electrode system; 400 corresponding electric-field curves are constructed by solving a second order partial differential equation. These curves are used to partition the circular disk into 193 regions called pixels, and the density of material in each pixel is to be estimated. Two methods of approximating densities have been developed and consideration of a third method has been initiated. One method (Method 1) is based on products of displacement currents for intersecting electric-field curves on a cross section. For each pixel one point of intersection is chosen, and the product of the capacitance measurements is found. Both the product and the square-root-of-product seem to yield good relative distribution of densities.

  9. (110) Orientation growth of magnetic metal nanowires with face-centered cubic structure using template synthesis technique

    SciTech Connect (OSTI)

    Wang Xuewei, E-mail: xwwang@tjut.edu.cn [School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Tianjin Key Lab for Photoelectric Materials and Devices, Tianjin 300384 (China); Yuan Zhihao [School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Key Laboratory of Display Materials and Photoelectric Devices (Tianjin University of Technology), Ministry of Education, Tianjin 300384 (China); Li Jushan [School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2011-06-15T23:59:59.000Z

    A template-assisted assembly technique has been used to synthesize magnetic metal nanowire arrays. Fe, Co, Ni nanowires are fabricated using direct-current electrodeposition in the pores of anodic alumina membranes. The morphology and the crystal structure of the samples are characterized by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffractometer. The results indicate that Fe, Co, and Ni nanowires all have face-centered cubic (FCC) structure and a preferred orientation along the [110] direction. The ability to prepare well-defined orientation growth of magnetic metal nanowires with FCC structure opens up new opportunities for both fundamental studies and nanodevice applications. - Research Highlights: {yields} Fe, Co, and Ni nanowires are fabricated in the AAM templates by electrodeposition. {yields} Well-defined orientation growth of the nanowires with FCC structure were investigated. {yields} The electrodeposition parameters affect the crystal structure and growth orientation.

  10. Probing nonlinear magnetization dynamics in Fe/MgO(001) film by all optical pump-probe technique

    SciTech Connect (OSTI)

    He, Wei; Hu, Bo; Zhang, Xiang-Qun; Cheng, Zhao-Hua, E-mail: zhcheng@iphy.ac.cn [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhan, Qing-Feng [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China)

    2014-04-07T23:59:59.000Z

    An all-optical pump-probe technique has been employed to investigate the nonlinear magnetization dynamics of a 10?nm Fe/MgO(001) thin film in time domain. The magnetization precession was excited by pump-laser pulses and modulated by laser fluence variations. With increasing the laser fluence up to 7.1 mJ/cm{sup 2}, in addition to the uniform precession mode, a second harmonic signal was detected. The time evolution of the second harmonic signal was obtained in time-frequency domain. Based on the Landau-Lifshitz-Gilbert equation, the numerical simulation was performed to reproduce the observed the frequency doubling behaviors in Fe/MgO(001) film.

  11. A Design-Oriented Framework to Determine the Parasitic Parameters of High Frequency Magnetics in Switching Power Supplies using Finite Element Analysis Techniques

    E-Print Network [OSTI]

    Shadmand, Mohammad

    2012-07-16T23:59:59.000Z

    A DESIGN-ORIENTED FRAMEWORK TO DETERMINE THE PARASITIC PARAMETERS OF HIGH FREQUENCY MAGNETICS IN SWITCING POWER SUPPLIES USING FINITE ELEMENT ANALYSIS TECHNIQUES A Thesis by MOHAMMAD BAGHER SHADMAND Submitted to the Office... to Determine the Parasitic Parameters of High Frequency Magnetics in Switching Power Supplies using Finite Element Analysis Techniques Copyright 2012 Mohammad Bagher Shadmand A DESIGN-ORIENTED FRAMEWORK TO DETERMINE THE PARASITIC PARAMETERS OF HIGH...

  12. Ground-Based Demonstration of Imaging Fourier Transform Spectrometry and Techniques

    SciTech Connect (OSTI)

    Wurtz, R; Cook,K H; Bennett, C L; Bixler, J; Carr, D; Wishnow, E H

    1999-10-26T23:59:59.000Z

    We present results from a four-port Michelson interferometer built to demonstrate imaging Fourier transform spectroscopy for astronomical applications.

  13. Neuroimaging at 1.5 T and 3.0 T: Comparison of Oxygenation-Sensitive Magnetic Resonance Imaging

    E-Print Network [OSTI]

    Glover, Gary H.

    Neuroimaging at 1.5 T and 3.0 T: Comparison of Oxygenation-Sensitive Magnetic Resonance Imaging of the human brain at 1.5 and 3.0 T. At the higher field spiral gradient-echo (GRE) brain images revealed and becomes a larger fraction of the total noise at 3.0 T. Activation of the primary motor and visual cortex

  14. Magnetic Field Effect: An Efficient Tool To Investigate The Mechanism Of Reactions Using Laser Flash Photolysis Technique

    SciTech Connect (OSTI)

    Basu, Samita; Bose, Adity; Dey, Debarati [Chemical Sciences Division, S aha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata--700 064 (India)

    2008-04-24T23:59:59.000Z

    Magnetic field effect combined with laser flash photolysis technique have been used to study the mechanism of interactions between two drug-like quinone molecules, Menadione (1,4-naphthoquinone, MQ) and 9, 10 Anthraquinone (AQ) with one of the DNA bases, Adenine in homogeneous acetonitrile/water and heterogeneous micellar media. A switchover in reaction mode from electron transfer to hydrogen abstraction is observed with MQ on changing the solvent from acetonitrile/water to micelle; whereas, AQ retains its mode of interaction towards Adenine as electron transfer in both the media due to its bulky structure compared to MQ.

  15. One dimensional electron spin imaging for single spin detection and manipulation using a gradient field

    E-Print Network [OSTI]

    Shin, Chang-Seok

    2009-05-15T23:59:59.000Z

    magnetic field gradients. These fabricated devices are used to demonstrate this subwavelength imaging technique by imaging single electron spins of the nitrogen-vacancy (NV) defect in diamond. In this demonstration, multiple NV defects, unresolved in a...

  16. One dimensional electron spin imaging for single spin detection and manipulation using a gradient field

    E-Print Network [OSTI]

    Shin, Chang-Seok

    2009-05-15T23:59:59.000Z

    magnetic field gradients. These fabricated devices are used to demonstrate this subwavelength imaging technique by imaging single electron spins of the nitrogen-vacancy (NV) defect in diamond. In this demonstration, multiple NV defects, unresolved in a...

  17. Microsoft Word - NETL-TRS-6-2014_Imaging Techniques Applied to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    those of the United States Government or any agency thereof. Cover Illustration: Scanning electron microscopy (SEM) image of organic grain in Marcellus Shale taken with...

  18. Development of a Navigator and Imaging Techniques for the Cryogenic Dark Matter Search Detectors

    SciTech Connect (OSTI)

    Wilen, Chris; /Carleton Coll. /KIPAC, Menlo Park

    2011-06-22T23:59:59.000Z

    This project contributes to the detection of flaws in the germanium detectors for the Cryogenic Dark Matter Search (CDMS) experiment. Specifically, after imaging the detector surface with a precise imaging and measuring device, they developed software to stitch the resulting images together, applying any necessary rotations, offsets, and averaging, to produce a smooth image of the whole detector that can be used to detect flaws on the surface of the detector. These images were also tiled appropriately for the Google Maps API to use as a navigation tool, allowing viewers to smoothly zoom and pan across the detector surface. Automated defect identification can now be implemented, increasing the scalability of the germanium detector fabrication.

  19. Abstract--Conventional ultrasound B-mode imaging is mainly qualitative in nature. While conventional imaging techniques,

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    and assessment of thermal therapy on solid tumors. Index Terms--Backscatter coefficients, envelope statistics including spectral-based parameterization, elastography, flow estimation and envelope statistics will be discussed in this paper. Specifically, spectral-based techniques and envelope statistics at clinical

  20. A 64-channel personal computer based image reconstruction system and applications in single echo acquisition magnetic resonance elastography and ultra-fast magnetic resonance imaging.

    E-Print Network [OSTI]

    Yallapragada, Naresh

    2009-05-15T23:59:59.000Z

    , this value is 2? x 42.5759 MHz/Tesla. This translates to a Larmor frequency of 200.238 MHz for the 4.7T magnet situated in the Magnetic Resonance Systems Lab (MRSL). In the presence of the static ????the proton population aligns itself according...

  1. Automatic Landmarking of Magnetic Resonance brain Images Camille Izard*a,b, Bruno M. Jedynaka,b and Craig E.L. Starkc

    E-Print Network [OSTI]

    Jedynak, Bruno M.

    Automatic Landmarking of Magnetic Resonance brain Images Camille Izard*a,b, Bruno M. JedynakaDepartment of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD ABSTRACT Landmarking MR images is crucial in registering brain structures from different images. It consists in locating the voxel

  2. Radiation exposure in X-ray-based imaging techniques used in osteoporosis

    E-Print Network [OSTI]

    Damilakis, John; Adams, Judith E.; Guglielmi, Giuseppe; Link, Thomas M.

    2010-01-01T23:59:59.000Z

    techniques used in osteoporosis Received: 10 December 2009vertebral fracture in osteoporosis. Osteoporos Int 5.for postmenopausal osteoporosis: a review of the evidence

  3. How to Find More Supernovae with Less Work: Object Classification Techniques for Difference Imaging

    E-Print Network [OSTI]

    Bailey, Stephen; Aragon, Cecilia; Romano, Raquel; Thomas, Rollin C.; Weaver, Benjamin A.; Wong, Daniel

    2007-01-01T23:59:59.000Z

    How to Find More Supernovae with Less Work: Object Classi?methods: statistical supernovae: general techniques:for objects such as supernovae, active galactic nuclei,

  4. Fatigue testing of high-density polyethylene and polycarbonate with crack length measurement using image processing techniques

    SciTech Connect (OSTI)

    Riemslag, A.C. (Delft Univ. of Technology (Netherlands). Lab. of Materials Science)

    1994-09-01T23:59:59.000Z

    A new automated method of measuring fatigue cracks in polymers is discussed. The new method is based on a video signal of the crack which is analyzed with image processing techniques. With this technique the crack length is measured every 20 s during a fatigue test. The accuracy of one single measurement is about 0.05 mm, but this can be increased by averaging a large number of measurements. The applied automated data collection and subsequent data processing is discussed in relation to the recommendations given in ASTM E 647, Test method for Measurement of Fatigue Crack Growth Rates. The use of the new technique is illustrated on the basis of fatigue tests performed on transparent polycarbonate (PC) and nontransparent polyethylene (PE). The fatigue behavior of PE and PC is briefly discussed.

  5. Capabilities and limitations of Phase Contrast Imaging techniques with X-rays and neutrons

    E-Print Network [OSTI]

    Damato, Antonio Leonardo

    2009-01-01T23:59:59.000Z

    Phase Contrast Imaging (PCI) was studied with the goal of understanding its relevance and its requirements. Current literature does not provide insight on the effect of a relaxation in coherence requirements on the PCI ...

  6. 2-D Stellar Evolution Code Including Arbitrary Magnetic Fields. I. Mathematical Techniques and Test Cases

    E-Print Network [OSTI]

    L. H. Li; P. Ventura; S. Basu; S. Sofia; P. Demarque

    2006-01-27T23:59:59.000Z

    A high-precision two-dimensional stellar evolution code has been developed for studying solar variability due to structural changes produced by varying internal magnetic fields of arbitrary configurations. Specifically, we are interested in modeling the effects of a dynamo-type field on the detailed internal structure and on the global parameters of the Sun. The high precision is required both to model very small solar changes (of order of $10^{-4}$) and short time scales (or order of one year). It is accomplished by using the mass coordinate to replace the radial coordinate, by using fixed and adjustable time steps, a realistic stellar atmosphere, elements diffusion, and by adjusting the grid points. We have also built into the code the potential to subsequently include rotation and turbulence. The current code has been tested for several cases, including its ability to reproduce the 1-D results.

  7. The Mathematics of the Imaging Techniques of MEG, CT, PET and SPECT

    E-Print Network [OSTI]

    Fokas, A. S.

    of 10 -9 of the earth's geomagnetic field. Currently, the only detector that can measure these tiny. The measurement of this field outside the brain and the estimation of the current density distribution part of the current can be determined by measuring the magnetic field outside the brain. We have

  8. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    SciTech Connect (OSTI)

    Cao Yue, E-mail: yuecao@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Wang Hesheng [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Johnson, Timothy D. [Department of Biostatistics, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Biostatistics, University of Michigan, Ann Arbor, Michigan (United States); Pan, Charlie [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Hussain, Hero [Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2013-01-01T23:59:59.000Z

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which could aid in individualizing therapy, particularly for patients at risk for liver injury after RT.

  9. Cardiac Magnetic Resonance Imaging Findings in 20-year Survivors of Mediastinal Radiotherapy for Hodgkin's Disease

    SciTech Connect (OSTI)

    Machann, Wolfram; Beer, Meinrad [Department of Radiology, University of Wuerzburg (Germany); Breunig, Margret; Stoerk, Stefan; Angermann, Christiane [Department of Cardiology, University of Wuerzburg (Germany); Seufert, Ines; Schwab, Franz; Koelbl, Oliver; Flentje, Michael [Department of Radiation Oncology, University of Wuerzburg (Germany); Vordermark, Dirk, E-mail: dirk.vordermark@medizin.uni-halle.d [Department of Radiation Oncology, University of Wuerzburg (Germany); Department of Radiation Oncology, Martin Luther University Halle-Wittenberg (Germany)

    2011-03-15T23:59:59.000Z

    Purpose: The recognition of the true prevalence of cardiac toxicity after mediastinal radiotherapy requires very long follow-up and a precise diagnostic procedure. Cardiac magnetic resonance imaging (MRI) permits excellent quantification of cardiac function and identification of localized myocardial defects and has now been applied to a group of 20-year Hodgkin's disease survivors. Methods and materials: Of 143 patients treated with anterior mediastinal radiotherapy (cobalt-60, median prescribed dose 40 Gy) for Hodgkin's disease between 1978 and 1985, all 53 survivors were invited for cardiac MRI. Of those, 36 patients (68%) presented for MRI, and in 31 patients (58%) MRI could be performed 20-28 years (median, 24) after radiotherapy. The following sequences were acquired on a 1.5-T MRI: transversal T1-weighted TSE and T2-weighted half-fourier acquisition single-shot turbo-spin-echo sequences, a steady-state free precession (SSFP) cine sequence in the short heart axis and in the four-chamber view, SSFP perfusion sequences under rest and adenosine stress, and a SSFP inversion recovery sequence for late enhancement. The MRI findings were correlated with previously reconstructed doses to cardiac structures. Results: Clinical characteristics and reconstructed doses were not significantly different between survivors undergoing and not undergoing MRI. Pathologic findings were reduced left ventricular function (ejection fraction <55%) in 7 (23%) patients, hemodynamically relevant valvular dysfunction in 13 (42%), late myocardial enhancement in 9 (29%), and any perfusion deficit in 21 (68%). An association of regional pathologic changes and reconstructed dose to cardiac structures could not be established. Conclusions: In 20-year survivors of Hodgkin's disease, cardiac MRI detects pathologic findings in approximately 70% of patients. Cardiac MRI has a potential role in cardiac imaging of Hodgkin's disease patients after mediastinal radiotherapy.

  10. Potential Applications of Microtesla Magnetic Resonance Imaging Detected Using a Superconducting Quantum Interference Device

    E-Print Network [OSTI]

    Myers, Whittier R.

    2006-01-01T23:59:59.000Z

    Cooling techniques.J = NI/A C . 5.1.2. Cooling techniques The first polarizingI call this technique internal cooling as opposed to

  11. Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging

    DOE Patents [OSTI]

    Hu, Jian Zhi (Richland, WA); Sears, Jr., Jesse A. (Kennewick, WA); Hoyt, David W. (Richland, WA); Wind, Robert A. (Kennewick, WA)

    2009-05-19T23:59:59.000Z

    Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

  12. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    SciTech Connect (OSTI)

    Gazdzinski, Lisa M.; Cormier, Kyle [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada)] [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Lu, Fred G. [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada)] [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Lerch, Jason P. [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada) [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Wong, C. Shun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada) [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Nieman, Brian J., E-mail: bjnieman@phenogenomics.ca [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada)

    2012-12-01T23:59:59.000Z

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  13. Advanced slow-magic angle spinning probe for magnetic resonance imaging and spectroscopy

    DOE Patents [OSTI]

    Wind, Robert A.; Hu, Jian Zhi; Minard, Kevin R.; Rommereim, Donald N.

    2006-01-24T23:59:59.000Z

    The present invention relates to a probe and processes useful for magnetic resonance imaging and spectroscopy instruments. More particularly, the invention relates to a MR probe and processes for obtaining resolution enhancements of fluid objects, including live specimens, using an ultra-slow (magic angle) spinning (MAS) of the specimen combined with a modified phase-corrected magic angle turning (PHORMAT) pulse sequence. Proton NMR spectra were measured of the torso and the top part of the belly of a female BALBc mouse in a 2T field, while spinning the animal at a speed of 1.5 Hz. Results show that even in this relatively low field with PHORMAT, an isotropic spectrum is obtained with line widths that are a factor 4.6 smaller than those obtained in a stationary mouse. Resolution of 1H NMR metabolite spectra are thus significantly enhanced. Results indicate that PHORMAT has the potential to significantly increase the utility of 1H NMR spectroscopy for in vivo biochemical, biomedical and/or medical applications involving large-sized biological objects such as mice, rats and even humans within a hospital setting. For small-sized objects, including biological objects, such as excised tissues, organs, live bacterial cells, and biofilms, use of PASS at a spinning rate of 30 Hz and above is preferred.

  14. Magnetic Resonance Imaging at Princeton, UofV, and UNH | U.S...

    Office of Science (SC) Website

    supported by: NIH, NASA Impactbenefit to spin-off field: Static & dynamic imaging of lungs, heart, and possibly the brain, possible imaging of astronauts 'Hyperpolarized gas...

  15. Development of Automatic Techniques for Segmentation of Brain Tissues fromMultispectral MR Images

    E-Print Network [OSTI]

    by radiofrequency inhomogeneity acrossfield-of-view; (2) strip- ping away image pixels which represent skull. 0-7803-2544-3195 $4.00 0 1995 IEEE 1453 matters, in addition to low radiation and multispectral is extended to investigate the automation of (a) correc- tion for radiofrequency (RF)inhomogeneity across

  16. A STEREO-BASED TECHNIQUE FOR THE REGISTRATION OF COLOR AND LADAR IMAGES

    E-Print Network [OSTI]

    Abidi, Mongi A.

    In many remote robotic tasks involving tele-operation, operator performance is enhanced by integrating difficulty in designing such a multi-sensor system is the development of methods for combining the various position in the Imaging, Robotics and Intelligent Systems laboratory and to Dr. R. C. Gonzales for choosing

  17. DERIVATION OF THE MAGNETIC FIELD IN A CORONAL MASS EJECTION CORE VIA MULTI-FREQUENCY RADIO IMAGING

    SciTech Connect (OSTI)

    Tun, Samuel D. [The Naval Research Laboratory, Washington, DC 20375 (United States)] [The Naval Research Laboratory, Washington, DC 20375 (United States); Vourlidas, A. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)] [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2013-04-01T23:59:59.000Z

    The magnetic field within the core of a coronal mass ejection (CME) on 2010 August 14 is derived from analysis of multi-wavelength radio imaging data. This CME's core was found to be the source of a moving type IV radio burst, whose emission is here determined to arise from the gyrosynchrotron process. The CME core's true trajectory, electron density, and line-of-sight depth are derived from stereoscopic observations, constraining these parameters in the radio emission models. We find that the CME carries a substantial amount of mildly relativistic electrons (E < 100 keV) in a strong magnetic field (B < 15 G), and that the spectra at lower heights are preferentially suppressed at lower frequencies through absorption from thermal electrons. We discuss the results in light of previous moving type IV burst studies, and outline a plan for the eventual use of radio methods for CME magnetic field diagnostics.

  18. Magnetic Imaging of Micrometer and Nanometer-size Magnetic Structures and Their Flux-Pinning Effects on Superconducting Thin Films

    E-Print Network [OSTI]

    Ozmetin, Ali E.

    2010-07-14T23:59:59.000Z

    to various ferromagnetic structures. These magnetic structures include: (i) alternating iron-brass shims of 275 mu m period, (ii) an array of 4 mu m wide Co stripes with smaller period (9 mu m), (iii) a square array of 50nm diameter, high aspect ratio (5...

  19. SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast

    DOE Patents [OSTI]

    Jesse, Stephen (Knoxville, TN) [Knoxville, TN; Geohegan, David B. (Knoxville, TN) [Knoxville, TN; Guillorn, Michael (Brooktondale, NY) [Brooktondale, NY

    2009-02-17T23:59:59.000Z

    Methods and apparatus are described for SEM imaging and measuring electronic transport in nanocomposites based on electric field induced contrast. A method includes mounting a sample onto a sample holder, the sample including a sample material; wire bonding leads from the sample holder onto the sample; placing the sample holder in a vacuum chamber of a scanning electron microscope; connecting leads from the sample holder to a power source located outside the vacuum chamber; controlling secondary electron emission from the sample by applying a predetermined voltage to the sample through the leads; and generating an image of the secondary electron emission from the sample. An apparatus includes a sample holder for a scanning electron microscope having an electrical interconnect and leads on top of the sample holder electrically connected to the electrical interconnect; a power source and a controller connected to the electrical interconnect for applying voltage to the sample holder to control the secondary electron emission from a sample mounted on the sample holder; and a computer coupled to a secondary electron detector to generate images of the secondary electron emission from the sample.

  20. Evaluating imaging biomarkers for neurodegeneration in pre-symptomatic Huntington's disease using machine learning techniques

    E-Print Network [OSTI]

    Aron, Adam

    data, we applied multivariate pattern analysis techniques to several derived voxel-based and segmented e, a Department of Neuroscience, University of California Los Angeles, Los Angeles, CA, USA b of Psychology, University of California Los Angeles, Los Angeles, CA, USA d Department of Psychology, University

  1. Prediction-Based Compression Ratio Boundaries for Medical Images

    E-Print Network [OSTI]

    Qi, Xiaojun

    Prediction-Based Compression Ratio Boundaries for Medical Images Xiaojun Qi Computer Science present prediction-based image compression techniques take advantage of either intra- or inter function. The prediction-based compression technique has been applied on some magnetic resonance (MR) brain

  2. Nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOE Patents [OSTI]

    Fukushima, Eiichi (Los Alamos, NM); Roeder, Stephen B. W. (La Mesa, CA); Assink, Roger A. (Albuquerque, NM); Gibson, Atholl A. V. (Bryan, TX)

    1986-01-01T23:59:59.000Z

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio-frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  3. Magnetic Resonance Imaging-Guided Osseous Biopsy in Children With Chronic Recurrent Multifocal Osteomyelitis

    SciTech Connect (OSTI)

    Fritz, Jan, E-mail: jfritz9@jhmi.edu [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science (United States); Tzaribachev, Nikolay [University Children's Hospital, Eberhard-Karls-University Tuebingen, Division of Pediatric Rheumatology (Germany); Thomas, Christoph [Eberhard-Karls-University Tuebingen, Department of Diagnostic and Interventional Radiology (Germany); Wehrmann, Manfred [Eberhard-Karls-University Tuebingen, Department of Pathology (Germany); Horger, Marius S. [Eberhard-Karls-University Tuebingen, Department of Diagnostic and Interventional Radiology (Germany); Carrino, John A. [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science (United States); Koenig, Claudius W.; Pereira, Philippe L. [Eberhard-Karls-University Tuebingen, Department of Diagnostic and Interventional Radiology (Germany)

    2012-02-15T23:59:59.000Z

    Purpose: To report the safety and diagnostic performance of magnetic resonance (MRI)-guided core biopsy of osseous lesions in children with chronic recurrent multifocal osteomyelitis (CRMO) that were visible on MRI but were occult on radiography and computed tomography (CT). Materials and Methods: A retrospective analysis of MRI-guided osseous biopsy performed in seven children (four girls and three boys; mean age 13 years (range 11 to 14) with CRMO was performed. Indication for using MRI guidance was visibility of lesions by MRI only. MRI-guided procedures were performed with 0.2-Tesla (Magnetom Concerto; Siemens, Erlangen, Germany; n = 5) or 1.5-T (Magnetom Espree; Siemens; n = 2) open MRI systems. Core needle biopsy was obtained using an MRI-compatible 4-mm drill system. Conscious sedation or general anesthesia was used. Parameters evaluated were lesion visibility, technical success, procedure time, complications and microbiology, cytology, and histopathology findings. Results: Seven of seven (100%) targeted lesions were successfully visualized and sampled. All obtained specimens were sufficient for histopathological analysis. Length of time of the procedures was 77 min (range 64 to 107). No complications occurred. Histopathology showed no evidence of malignancy, which was confirmed at mean follow-up of 50 months (range 28 to 78). Chronic nonspecific inflammation characteristic for CRMO was present in four of seven (58%) patients, and edema with no inflammatory cells was found in three of seven (42%) patients. There was no evidence of infection in any patient. Conclusion: MRI-guided osseous biopsy is a safe and accurate technique for the diagnosis of pediatric CRMO lesions that are visible on MRI only.

  4. HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis, Fall 2002

    E-Print Network [OSTI]

    Gollub, Randy L.

    Provides information relevant to the conduct and interpretation of human brain mapping studies. Provides in-depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for ...

  5. HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis, Fall 2004

    E-Print Network [OSTI]

    Gollub, Randy L.

    Provides information relevant to the conduct and interpretation of human brain mapping studies. Provides in-depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for ...

  6. A Voluntary Breath-Hold Treatment Technique for the Left Breast With Unfavorable Cardiac Anatomy Using Surface Imaging

    SciTech Connect (OSTI)

    Gierga, David P., E-mail: dgierga@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States); Turcotte, Julie C. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)] [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Sharp, Gregory C. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States) [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States); Sedlacek, Daniel E.; Cotter, Christopher R. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)] [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Taghian, Alphonse G. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States) [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States)

    2012-12-01T23:59:59.000Z

    Purpose: Breath-hold (BH) treatments can be used to reduce cardiac dose for patients with left-sided breast cancer and unfavorable cardiac anatomy. A surface imaging technique was developed for accurate patient setup and reproducible real-time BH positioning. Methods and Materials: Three-dimensional surface images were obtained for 20 patients. Surface imaging was used to correct the daily setup for each patient. Initial setup data were recorded for 443 fractions and were analyzed to assess random and systematic errors. Real time monitoring was used to verify surface placement during BH. The radiation beam was not turned on if the BH position difference was greater than 5 mm. Real-time surface data were analyzed for 2398 BHs and 363 treatment fractions. The mean and maximum differences were calculated. The percentage of BHs greater than tolerance was calculated. Results: The mean shifts for initial patient setup were 2.0 mm, 1.2 mm, and 0.3 mm in the vertical, longitudinal, and lateral directions, respectively. The mean 3-dimensional vector shift was 7.8 mm. Random and systematic errors were less than 4 mm. Real-time surface monitoring data indicated that 22% of the BHs were outside the 5-mm tolerance (range, 7%-41%), and there was a correlation with breast volume. The mean difference between the treated and reference BH positions was 2 mm in each direction. For out-of-tolerance BHs, the average difference in the BH position was 6.3 mm, and the average maximum difference was 8.8 mm. Conclusions: Daily real-time surface imaging ensures accurate and reproducible positioning for BH treatment of left-sided breast cancer patients with unfavorable cardiac anatomy.

  7. High-speed spiral imaging technique for an atomic force microscope using a linear quadratic Gaussian controller

    SciTech Connect (OSTI)

    Habibullah, H., E-mail: h.habib@student.adfa.edu.au; Pota, H. R., E-mail: h.pota@adfa.edu.au; Petersen, I. R., E-mail: i.petersen@adfa.edu.au [School of Engineering and Information Technology, University of New South Wales, Canberra, Australian Capital Territory 2612 (Australia)

    2014-03-15T23:59:59.000Z

    This paper demonstrates a high-speed spiral imaging technique for an atomic force microscope (AFM). As an alternative to traditional raster scanning, an approach of gradient pulsing using a spiral line is implemented and spirals are generated by applying single-frequency cosine and sine waves of slowly varying amplitudes to the X and Y-axes of the AFMs piezoelectric tube scanner (PTS). Due to these single-frequency sinusoidal input signals, the scanning process can be faster than that of conventional raster scanning. A linear quadratic Gaussian controller is designed to track the reference sinusoid and a vibration compensator is combined to damp the resonant mode of the PTS. An internal model of the reference sinusoidal signal is included in the plant model and an integrator for the system error is introduced in the proposed control scheme. As a result, the phase error between the input and output sinusoids from the X and Y-PTSs is reduced. The spirals produced have particularly narrow-band frequency measures which change slowly over time, thereby making it possible for the scanner to achieve improved tracking and continuous high-speed scanning rather than being restricted to the back and forth motion of raster scanning. As part of the post-processing of the experimental data, a fifth-order Butterworth filter is used to filter noises in the signals emanating from the position sensors and a Gaussian image filter is used to filter the images. A comparison of images scanned using the proposed controller (spiral) and the AFM PI controller (raster) shows improvement in the scanning rate using the proposed method.

  8. Final Report on Development of Optimized Field-Reversed Configuration Plasma Formation Techniques for Magnetized Target Fusion

    SciTech Connect (OSTI)

    Lynn, Alan

    2013-11-01T23:59:59.000Z

    The University of New Mexico (UNM) proposed a collaboration with Los Alamos National Laboratory (LANL) to develop and test methods for improved formation of field-reversed configuration (FRC) plasmas relevant to magnetized target fusion (MTF) energy research. MTF is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. LANL is currently pursing demonstration of the MTF concept via compression of an FRC plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC's ultimate success as an MTF target lies in the initial pre-ionization (PI) stage. The PI plasma sets the initial conditions from which the FRC is created. In particular, the PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. A ringing theta pinch ionization (RTPI) technique, such as currently used by the FRX-L device at LANL, has the advantages of high ionization fraction, simplicity (since no additional coils are required), and does not require internal electrodes which can introduce impurities into the plasma. However RTPI has been shown to only trap #24;50% of the initial bias flux at best and imposes additional engineering constraints on the capacitor banks. The amount of trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties, and provides increased ohmic heating of the FRC through induced currents as the magnetic field decays. Increasing the trapped flux also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we initially planned to develop and test a microwave break- down system to improve the initial PI plasma formation. The UNM team would design the microwave optics and oversee the fabrication and assembly of all components and assist with integration into the FRX-L machine control system. LANL would provide a preexisting 65 kW X-band microwave source and some associated waveguide hardware. Once constructed and installed, UNM would take the lead in operating the microwave breakdown system and conducting studies to optimize its use in FRC PI formation in close cooperation with the needs of the LANL MTF team. In conjunction with our LANL collaborators, we decided after starting the project to switch from a microwave plasma breakdown approach to a plasma gun technology to use for enhanced plasma formation in the FRX-L field-reversed configuration experiment at LANL. Plasma guns would be able to provide significantly higher density plasma with greater control over its distribution in time and space within the experiment. This would allow greater control and #12;ne-tuning of the PI plasma formed in the experiment. Multiple plasma guns would be employed to fill a Pyrex glass test chamber (built at UNM) with plasma which would then be characterized and optimized for the MTF effort.

  9. Imaging and Spectroscopic Diagnostics on the Formation of Two Magnetic Flux Ropes Revealed by SDO/AIA and IRIS

    E-Print Network [OSTI]

    Cheng, X; Fang, C

    2015-01-01T23:59:59.000Z

    Helical magnetic flux rope (MFR) is a fundamental structure of corona mass ejections (CMEs) and has been discovered recently to exist as a sigmoidal channel structure prior to its eruption in the extreme ultraviolet (EUV) high temperature passbands of the Atmospheric Imaging Assembly (AIA). However, when and where the MFR is built up are still elusive. In this paper, we investigate two MFRs (MFR1 and MFR2) in detail, whose eruptions produced two energetic solar flares and CMEs on 2014 April 18 and 2014 September 10, respectively. The AIA EUV images reveal that for a long time prior to their eruption, both MFR1 and MFR2 are under formation, which is probably through magnetic reconnection between two groups of sheared arcades driven by the shearing and converging flows in the photosphere near the polarity inversion line. At the footpoints of the MFR1, the \\textit{Interface Region Imaging Spectrograph} Si IV, C II, and Mg II lines exhibit weak to moderate redshifts and a non-thermal broadening in the pre-flare p...

  10. Evaluating Swallowing Muscles Essential for Hyolaryngeal Elevation by Using Muscle Functional Magnetic Resonance Imaging

    SciTech Connect (OSTI)

    Pearson, William G., E-mail: bp1@bu.edu [Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts (United States); Hindson, David F. [Department of Radiology, Boston Medical Center, Boston, Massachusetts (United States)] [Department of Radiology, Boston Medical Center, Boston, Massachusetts (United States); Langmore, Susan E. [Department of Otolaryngology, Boston Medical Center, Boston, Massachusetts (United States) [Department of Otolaryngology, Boston Medical Center, Boston, Massachusetts (United States); Speech and Hearing Sciences, Boston University, Boston, Massachusetts (United States); Zumwalt, Ann C. [Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts (United States)] [Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts (United States)

    2013-03-01T23:59:59.000Z

    Purpose: Reduced hyolaryngeal elevation, a critical event in swallowing, is associated with radiation therapy. Two muscle groups that suspend the hyoid, larynx, and pharynx have been proposed to elevate the hyolaryngeal complex: the suprahyoid and longitudinal pharyngeal muscles. Thought to assist both groups is the thyrohyoid, a muscle intrinsic to the hyolaryngeal complex. Intensity modulated radiation therapy guidelines designed to preserve structures important to swallowing currently exclude the suprahyoid and thyrohyoid muscles. This study used muscle functional magnetic resonance imaging (mfMRI) in normal healthy adults to determine whether both muscle groups are active in swallowing and to test therapeutic exercises thought to be specific to hyolaryngeal elevation. Methods and Materials: mfMRI data were acquired from 11 healthy subjects before and after normal swallowing and after swallowing exercise regimens (the Mendelsohn maneuver and effortful pitch glide). Whole-muscle transverse relaxation time (T2 signal, measured in milliseconds) profiles of 7 test muscles were used to evaluate the physiologic response of each muscle to each condition. Changes in effect size (using the Cohen d measure) of whole-muscle T2 profiles were used to determine which muscles underlie swallowing and swallowing exercises. Results: Post-swallowing effect size changes (where a d value of >0.20 indicates significant activity during swallowing) for the T2 signal profile of the thyrohyoid was a d value of 0.09; a d value of 0.40 for the mylohyoid, 0.80 for the geniohyoid, 0.04 for the anterior digastric, and 0.25 for the posterior digastric-stylohyoid in the suprahyoid muscle group; and d values of 0.47 for the palatopharyngeus and 0.28 for the stylopharyngeus muscles in the longitudinal pharyngeal muscle group. The Mendelsohn maneuver and effortful pitch glide swallowing exercises showed significant effect size changes for all muscles tested, except for the thyrohyoid. Conclusions: Muscles of both the suprahyoid and the longitudinal pharyngeal muscle groups are active in swallowing, and both swallowing exercises effectively target muscles elevating the hyolaryngeal complex. mfMRI is useful in testing swallowing muscle function.

  11. Application of the optically stimulated luminescence (OSL) technique for mouse dosimetry in micro-CT imaging

    SciTech Connect (OSTI)

    Vrigneaud, Jean-Marc; Courteau, Alan; Oudot, Alexandra; Collin, Bertrand [Department of Nuclear Medicine, Centre Georges-Franois Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex (France)] [Department of Nuclear Medicine, Centre Georges-Franois Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex (France); Ranouil, Julien [Landauer Europe, 33 avenue du Gnral Leclerc, Fontenay-aux-Roses 92266 Cedex (France)] [Landauer Europe, 33 avenue du Gnral Leclerc, Fontenay-aux-Roses 92266 Cedex (France); Morgand, Loc; Raguin, Olivier [Oncodesign, 20 rue Jean Mazen, Dijon 21076 Cedex (France)] [Oncodesign, 20 rue Jean Mazen, Dijon 21076 Cedex (France); Walker, Paul [LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France)] [LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France); Brunotte, Franois [Department of Nuclear Medicine, Centre Georges-Franois Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex, France and LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France)] [Department of Nuclear Medicine, Centre Georges-Franois Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex, France and LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France)

    2013-12-15T23:59:59.000Z

    Purpose: Micro-CT is considered to be a powerful tool to investigate various models of disease on anesthetized animals. In longitudinal studies, the radiation dose delivered by the micro-CT to the same animal is a major concern as it could potentially induce spurious effects in experimental results. Optically stimulated luminescence dosimeters (OSLDs) are a relatively new kind of detector used in radiation dosimetry for medical applications. The aim of this work was to assess the dose delivered by the CT component of a micro-SPECT (single-photon emission computed tomography)/CT camera during a typical whole-body mouse study, using commercially available OSLDs based on Al{sub 2}O{sub 3}:C crystals.Methods: CTDI (computed tomography dose index) was measured in micro-CT with a properly calibrated pencil ionization chamber using a rat-like phantom (60 mm in diameter) and a mouse-like phantom (30 mm in diameter). OSLDs were checked for reproducibility and linearity in the range of doses delivered by the micro-CT. Dose measurements obtained with OSLDs were compared to those of the ionization chamber to correct for the radiation quality dependence of OSLDs in the low-kV range. Doses to tissue were then investigated in phantoms and cadavers. A 30 mm diameter phantom, specifically designed to insert OSLDs, was used to assess radiation dose over a typical whole-body mouse imaging study. Eighteen healthy female BALB/c mice weighing 27.1 0.8 g (1 SD) were euthanized for small animal measurements. OLSDs were placed externally or implanted internally in nine different locations by an experienced animal technician. Five commonly used micro-CT protocols were investigated.Results: CTDI measurements were between 78.0 2.1 and 110.7 3.0 mGy for the rat-like phantom and between 169.3 4.6 and 203.6 5.5 mGy for the mouse-like phantom. On average, the displayed CTDI at the operator console was underestimated by 1.19 for the rat-like phantom and 2.36 for the mouse-like phantom. OSLDs exhibited a reproducibility of 2.4% and good linearity was found between 60 and 450 mGy. The energy scaling factor was calculated to be between 1.80 0.16 and 1.86 0.16, depending on protocol used. In phantoms, mean doses to tissue over a whole-body CT examination were ranging from 186.4 7.6 to 234.9 7.1 mGy. In mice, mean doses to tissue in the mouse trunk (thorax, abdomen, pelvis, and flanks) were between 213.0 17.0 and 251.2 13.4 mGy. Skin doses (3 OSLDs) were much higher with average doses between 350.6 25.3 and 432.5 34.1 mGy. The dose delivered during a topogram was found to be below 10 mGy. Use of the multimouse bed of the system gave a significantly 20%40% lower dose per animal (p < 0.05).Conclusions: Absorbed doses in micro-CT were found to be relatively high. In micro-SPECT/CT imaging, the micro-CT unit is mainly used to produce a localization frame. As a result, users should pay attention to adjustable CT parameters so as to minimize the radiation dose and avoid any adverse radiation effects which may interfere with biological parameters studied.

  12. Transmit field pattern control for high field magnetic resonance imaging with integrated RF current sources

    E-Print Network [OSTI]

    Kurpad, Krishna Nagaraj

    2005-11-01T23:59:59.000Z

    The primary design criterion for RF transmit coils for MRI is uniform transverse magnetic (B1) field. Currently, most high frequency transmit coils are designed as periodic, symmetric structures that are resonant at the ...

  13. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer

    SciTech Connect (OSTI)

    Rondin, L.; Tetienne, J.-P.; Spinicelli, P.; Roch, J.-F.; Jacques, V. [Laboratoire de Photonique Quantique et Moleculaire, Ecole Normale Superieure de Cachan and CNRS UMR 8537, 94235 Cachan Cedex (France); Dal Savio, C.; Karrai, K. [Attocube systems AG, Koeniginstrasse 11A RGB, Munich 80539 (Germany); Dantelle, G. [Laboratoire de Physique de la Matiere Condensee, Ecole Polytechnique and CNRS UMR 7643, 91128 Palaiseau (France); Thiaville, A.; Rohart, S. [Laboratoire de Physique des Solides, Universite Paris-Sud and CNRS UMR 8502, 91405 Orsay (France)

    2012-04-09T23:59:59.000Z

    We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.

  14. Method for nuclear magnetic resonance imaging using deuterum as a contrast agent

    DOE Patents [OSTI]

    Kehayias, Joseph J. (Chestnut Hill, MA); Joel, Darrel D. (Setauket, NY); Adams, William H. (Eastport, NY); Stein, Harry L. (Glen Head, NY)

    1990-01-01T23:59:59.000Z

    A method for in vivo NMR imaging of the blood vessels and organs of a patient characterized by using a dark dye-like imaging substance consisting essentially of a stable, high-purity concentration of D.sub.2 O in a solution with water.

  15. Investigation of the Degradation Mechanisms of a Variety of Organic Photovoltaic Devices by Combination of Imaging Techniques - The ISOS-3 Inter-Laboratory Collaboration

    SciTech Connect (OSTI)

    Rosch, R.; Tanenbaum, D. M.; Jrgensen, M.; Seeland, M.; Barenklau, M.; Hermenau, M.; Voroshazi, E.; Lloyd, M. T.; Galagan, Y.; Zimmermann, B.; Wurfel, U.; Hosel, M.; Dam, H. F.; Gevorgyan, S. A.; Kudret, S.; Maes, W.; Lutsen, L.; Vanderzande, D.; Andriessen, R.; Teran-Escobar, G.

    2012-04-01T23:59:59.000Z

    The investigation of degradation of seven distinct sets (with a number of individual cells of n {>=} 12) of state of the art organic photovoltaic devices prepared by leading research laboratories with a combination of imaging methods is reported. All devices have been shipped to and degraded at Riso DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. Imaging of device function at different stages of degradation was performed by laser-beam induced current (LBIC) scanning; luminescence imaging, specifically photoluminescence (PLI) and electroluminescence (ELI); as well as by lock-in thermography (LIT). Each of the imaging techniques exhibits its specific advantages with respect to sensing certain degradation features, which will be compared and discussed here in detail. As a consequence, a combination of several imaging techniques yields very conclusive information about the degradation processes controlling device function. The large variety of device architectures in turn enables valuable progress in the proper interpretation of imaging results -- hence revealing the benefits of this large scale cooperation in making a step forward in the understanding of organic solar cell aging and its interpretation by state-of-the-art imaging methods.

  16. Investigation of the Degradation Mechanisms of a Variety of Organic Photovoltaic Devices by Combination of Imaging Techniquesthe ISOS-3Inter-laboratory Collaboration

    SciTech Connect (OSTI)

    Germack D.; Rosch, R.; Tanenbaum, D.M.; Jorgensen, M.; Seeland, M.; Barenklau, M.; Hermenau, M.; Voroshazi, E.; Lloyd, M.T.; Galagan, Y.; Zimmermann, B.; Wurfel, U.; Hosel, M.; Dam, H.F.; Gevorgyan, S.A.; Kudret, S.; Maes, W.; Lutsen, L.; Vanderzande, D.; Andriessen, R.; Teran-Escobar, G.; Lira-Cantu, M.; Rivaton, A.; Uzunoglu, G.Y.; Andreasen, B.; Madsen, M.V.; Norrman, K.; Hoppe, H.; Krebs, F.C.

    2012-04-01T23:59:59.000Z

    The investigation of degradation of seven distinct sets (with a number of individual cells of n {ge} 12) of state of the art organic photovoltaic devices prepared by leading research laboratories with a combination of imaging methods is reported. All devices have been shipped to and degraded at Risoe DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. Imaging of device function at different stages of degradation was performed by laser-beam induced current (LBIC) scanning; luminescence imaging, specifically photoluminescence (PLI) and electroluminescence (ELI); as well as by lock-in thermography (LIT). Each of the imaging techniques exhibits its specific advantages with respect to sensing certain degradation features, which will be compared and discussed here in detail. As a consequence, a combination of several imaging techniques yields very conclusive information about the degradation processes controlling device function. The large variety of device architectures in turn enables valuable progress in the proper interpretation of imaging results - hence revealing the benefits of this large scale cooperation in making a step forward in the understanding of organic solar cell aging and its interpretation by state-of-the-art imaging methods.

  17. A Survey of Prostate Segmentation Methodologies in Ultrasound, Magnetic Resonance and Computed Tomography Images

    E-Print Network [OSTI]

    Boyer, Edmond

    A Survey of Prostate Segmentation Methodologies in Ultrasound, Magnetic Resonance and Computed@gmail.com (Soumya Ghose), aoliver@eia.udg.edu (Arnau Oliver), marly@eia.udg.edu (Robert Marti), llado@eia.udg.edu (Xavier Llado), jordif@eia.udg.edu (Jordi Freixenet), jhimlimitra@yahoo.com (Jhimli Mitra), desire

  18. Solar nebula magnetic fields recorded in the Semarkona meteorite

    E-Print Network [OSTI]

    Fu, Roger R.; Weiss, Benjamin P.; Lima, Eduardo A.; Harrison, Richard J.; Bai, Xue-Ning; Desch, Steven J.; Ebel, Denton S.; Suavet, Clement; Wang, Huapei; Glenn, David; Le Sage, David; Kasama, Takeshi; Walsworth, Ronald L.; Kuan, Aaron T.

    2014-11-13T23:59:59.000Z

    images of all three vector 492 components of the magnetic field produced by the sample in the plane of NV sensors using 493 optically-detected magnetic resonance (ODMR) spectroscopy. In this technique, described by 494 Le Sage et al. (74... Figure 1. Dusty olivine-bearing chondrules from the Semarkona meteorite. (A) Optical 224 photomicrograph of chondrule DOC4 showing the location of dusty olivine grains. Image taken 225 in reflected light with crossed polarizers. (B) Annular...

  19. Fast and contrast-enhanced phase-sensitive magnetic resonance imaging

    E-Print Network [OSTI]

    Son, Jong Bum

    2009-05-15T23:59:59.000Z

    two signals if the resonance frequencies are close. For example, in MR mammography, it is difficult to separate silicone breast implants signals (4.0 ppm) from fat signals (3.5 ppm); (2) the signal dynamic range of images acquired using Dixon...

  20. An analysis of the PERL Magnetic Resonance Imaging theory and implementation

    E-Print Network [OSTI]

    Kremkus, Mark Christian

    2013-02-22T23:59:59.000Z

    The goal of PERL MRI in its most basic form is single shot imaging without the need to rapidly switch gradients to encode spatial information into the signal. PERL MRI incorporates the application of the PERL field into the standard spin echo...

  1. Highly Parallel Magnetic Resonance Imaging with a Fourth Gradient Channel for Compensation of RF Phase Patterns

    E-Print Network [OSTI]

    Bosshard, John 1983-

    2012-08-20T23:59:59.000Z

    70% increase in SNR [62]. The same group used an array of four arc shaped coils around a cylinder for microscopy for SENSE and GRAPPA accelerated imaging [63]. The greater field of view provided by an array of small coils was noted by Laistler et...

  2. Classification System for Identifying Women at Risk for Altered Partial Breast Irradiation Recommendations After Breast Magnetic Resonance Imaging

    SciTech Connect (OSTI)

    Kowalchik, Kristin V. [Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida (United States); Vallow, Laura A., E-mail: vallow.laura@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida (United States); McDonough, Michelle [Department of Radiology, Mayo Clinic, Jacksonville, Florida (United States); Thomas, Colleen S.; Heckman, Michael G. [Section of Biostatistics, Mayo Clinic, Jacksonville, Florida (United States); Peterson, Jennifer L. [Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida (United States); Adkisson, Cameron D. [Department of General Surgery, Mayo Clinic, Jacksonville, Florida (United States); Serago, Christopher [Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida (United States); McLaughlin, Sarah A. [Department of General Surgery, Mayo Clinic, Jacksonville, Florida (United States)

    2013-09-01T23:59:59.000Z

    Purpose: To study the utility of preoperative breast MRI for partial breast irradiation (PBI) patient selection, using multivariable analysis of significant risk factors to create a classification rule. Methods and Materials: Between 2002 and 2009, 712 women with newly diagnosed breast cancer underwent preoperative bilateral breast MRI at Mayo Clinic Florida. Of this cohort, 566 were retrospectively deemed eligible for PBI according to the National Surgical Adjuvant Breast and Bowel Project Protocol B-39 inclusion criteria using physical examination, mammogram, and/or ultrasound. Magnetic resonance images were then reviewed to determine their impact on patient eligibility. The patient and tumor characteristics were evaluated to determine risk factors for altered PBI eligibility after MRI and to create a classification rule. Results: Of the 566 patients initially eligible for PBI, 141 (25%) were found ineligible because of pathologically proven MRI findings. Magnetic resonance imaging detected additional ipsilateral breast cancer in 118 (21%). Of these, 62 (11%) had more extensive disease than originally noted before MRI, and 64 (11%) had multicentric disease. Contralateral breast cancer was detected in 28 (5%). Four characteristics were found to be significantly associated with PBI ineligibility after MRI on multivariable analysis: premenopausal status (P=.021), detection by palpation (P<.001), first-degree relative with a history of breast cancer (P=.033), and lobular histology (P=.002). Risk factors were assigned a score of 0-2. The risk of altered PBI eligibility from MRI based on number of risk factors was 0:18%; 1:22%; 2:42%; 3:65%. Conclusions: Preoperative bilateral breast MRI altered the PBI recommendations for 25% of women. Women who may undergo PBI should be considered for breast MRI, especially those with lobular histology or with 2 or more of the following risk factors: premenopausal, detection by palpation, and first-degree relative with a history of breast cancer.

  3. Assessment of Wall Shear Stress Changes in Arteries and Veins of Arteriovenous Polytetrafluoroethylene Grafts Using Magnetic Resonance Imaging

    SciTech Connect (OSTI)

    Misra, Sanjay, E-mail: Misra.sanjay@mayo.edu; Woodrum, David A. [Mayo Clinic, Department of Radiology (United States); Homburger, Jay [Medical College of Georgia, Department of Vascular Surgery (United States); Elkouri, Stephane [Centre Hospitalier de I'Universite de Montreal, Department of Vascular Surgery (Canada); Mandrekar, Jayawant N. [Mayo Clinic, Division of Biostatistics (United States); Barocas, Victor [University of Minnesota, Department of Biomedical Engineering (United States); Glockner, James F. [Mayo Clinic, Department of Radiology (United States); Rajan, Dheeraj K. [Toronto General Hospital, University Health Network, Department of Medical Imaging, Division of Vascular and Interventional Radiology (Canada); Mukhopadhyay, Debabrata [Mayo Clinic, Department of Biochemistry and Molecular Biology (United States)

    2006-08-15T23:59:59.000Z

    The purpose of the study was to determine simultaneously the temporal changes in luminal vessel area, blood flow, and wall shear stress (WSS) in both the anastomosed artery (AA) and vein (AV) of arteriovenous polytetrafluoroethylene (PTFE) grafts. PTFE grafts were placed from the iliac artery to the ipsilateral iliac vein in 12 castrated juvenile male pigs. Contrast-enhanced magnetic resonance angiograpgy with cine phase-contrast magnetic resonance imaging was performed. Luminal vessel area, blood flow, and WSS in the aorta, AA, AV, and inferior vena cava were determined at 3 days (D3), 7 days (D7), and 14 days (D14) after graft placement. Elastin von Gieson staining of the AV was performed. The average WSS of the AA was highest at D3 and then decreased by D7 and D14. In contrast, the average WSS and intima-to-media ratio of the AV increased from D3 to D7 and peaked by D14. Similarly, the average area of the AA was highest by D7 and began to approximate the control artery by D14. The average area of the AV had decreased to its lowest by D7. High blood flows through the AA causes a decrease in average WSS and increase in the average luminal vessel area, whereas at the AV, the average WSS and intima-to-media ratio both increase while the average luminal vessel area decreases.

  4. Prediction of the reversibility of the ultrasound-induced blood-brain barrier opening using passive cavitation detection with magnetic resonance imaging

    E-Print Network [OSTI]

    Konofagou, Elisa E.

    cavitation detection with magnetic resonance imaging validation Tao Sun1 , Gesthimani Samiotaki1 and Elisa E (diameters: 1-2, 4-5, or 6-8 m). A 10-MHz passive cavitation detector was used to acquire cavitation signals that the stable cavitation dose increased with the number of days required for closing while it reached a plateau

  5. Intensity inhomogeneity correction for magnetic resonance imaging of human brain at 7T

    SciTech Connect (OSTI)

    Uwano, Ikuko; Yamashita, Fumio; Higuchi, Satomi; Ito, Kenji; Sasaki, Makoto [Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate 028-3694 (Japan)] [Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate 028-3694 (Japan); Kudo, Kohsuke, E-mail: kkudo@huhp.hokudai.ac.jp; Goodwin, Jonathan; Harada, Taisuke [Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate 028-3694, Japan and Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648 (Japan)] [Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate 028-3694, Japan and Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648 (Japan); Ogawa, Akira [Department of Neurosurgery, Iwate Medical University, Morioka, Iwate 020-8505 (Japan)] [Department of Neurosurgery, Iwate Medical University, Morioka, Iwate 020-8505 (Japan)

    2014-02-15T23:59:59.000Z

    Purpose: To evaluate the performance and efficacy for intensity inhomogeneity correction of various sequences of the human brain in 7T MRI using the extended version of the unified segmentation algorithm. Materials: Ten healthy volunteers were scanned with four different sequences (2D spin echo [SE], 3D fast SE, 2D fast spoiled gradient echo, and 3D time-of-flight) by using a 7T MRI system. Intensity inhomogeneity correction was performed using the New Segment module in SPM8 with four different values (120, 90, 60, and 30 mm) of full width at half maximum (FWHM) in Gaussian smoothness. The uniformity in signals in the entire white matter was evaluated using the coefficient of variation (CV); mean signal intensities between the subcortical and deep white matter were compared, and contrast between subcortical white matter and gray matter was measured. The length of the lenticulostriate (LSA) was measured on maximum intensity projection (MIP) images in the original and corrected images. Results: In all sequences, the CV decreased as the FWHM value decreased. The differences of mean signal intensities between subcortical and deep white matter also decreased with smaller FWHM values. The contrast between white and gray matter was maintained at all FWHM values. LSA length was significantly greater in corrected MIP than in the original MIP images. Conclusions: Intensity inhomogeneity in 7T MRI can be successfully corrected using SPM8 for various scan sequences.

  6. Lensless Imaging of Magnetic Nanostructures by X-ray Spectro-Holography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless Imaging of4 J. Lüning, W.

  7. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more toConsensusX-RayX-Ray Imaging of the

  8. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more toConsensusX-RayX-Ray Imaging of

  9. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more toConsensusX-RayX-Ray Imaging ofX-Ray

  10. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat isJoin theanniversaryI 1 0 3 P 0 d dX-Ray Imaging

  11. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat isJoin theanniversaryI 1 0 3 P 0 dX-Ray Imaging

  12. Masked-backlighter technique used to simultaneously image x-ray absorption and x-ray emission from an inertial confinement fusion plasma

    SciTech Connect (OSTI)

    Marshall, F. J., E-mail: fredm@lle.rochester.edu; Radha, P. B. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-11-15T23:59:59.000Z

    A method to simultaneously image both the absorption and the self-emission of an imploding inertial confinement fusion plasma has been demonstrated on the OMEGA Laser System. The technique involves the use of a high-Z backlighter, half of which is covered with a low-Z material, and a high-speed x-ray framing camera aligned to capture images backlit by this masked backlighter. Two strips of the four-strip framing camera record images backlit by the high-Z portion of the backlighter, while the other two strips record images aligned with the low-Z portion of the backlighter. The emission from the low-Z material is effectively eliminated by a high-Z filter positioned in front of the framing camera, limiting the detected backlighter emission to that of the principal emission line of the high-Z material. As a result, half of the images are of self-emission from the plasma and the other half are of self-emission plus the backlighter. The advantage of this technique is that the self-emission simultaneous with backlighter absorption is independently measured from a nearby direction. The absorption occurs only in the high-Z backlit frames and is either spatially separated from the emission or the self-emission is suppressed by filtering, or by using a backlighter much brighter than the self-emission, or by subtraction. The masked-backlighter technique has been used on the OMEGA Laser System to simultaneously measure the emission profiles and the absorption profiles of polar-driven implosions.

  13. Minimally Invasive Magnetic Resonance Imaging-Guided Free-Hand Aspiration of Symptomatic Nerve Route Compressing Lumbosacral Cysts Using a 1.0-Tesla Open Magnetic Resonance Imaging System

    SciTech Connect (OSTI)

    Bucourt, Maximilian de, E-mail: mdb@charite.de; Streitparth, Florian, E-mail: florian.streitparth@charite.de; Collettini, Federico [Charite-University Medicine, Department of Radiology (Germany); Guettler, Felix [Jena University, Department of Radiology (Germany); Rathke, Hendrik; Lorenz, Britta; Rump, Jens; Hamm, Bernd [Charite-University Medicine, Department of Radiology (Germany); Teichgraeber, U. K. [Jena University, Department of Radiology (Germany)

    2012-02-15T23:59:59.000Z

    Purpose: To evaluate the feasibility of minimally invasive magnetic resonance imaging (MRI)-guided free-hand aspiration of symptomatic nerve route compressing lumbosacral cysts in a 1.0-Tesla (T) open MRI system using a tailored interactive sequence. Materials and Methods: Eleven patients with MRI-evident symptomatic cysts in the lumbosacral region and possible nerve route compressing character were referred to a 1.0-T open MRI system. For MRI interventional cyst aspiration, an interactive sequence was used, allowing for near real-time position validation of the needle in any desired three-dimensional plane. Results: Seven of 11 cysts in the lumbosacral region were successfully aspirated (average 10.1 mm [SD {+-} 1.9]). After successful cyst aspiration, each patient reported speedy relief of initial symptoms. Average cyst size was 9.6 mm ({+-}2.6 mm). Four cysts (8.8 {+-} 3.8 mm) could not be aspirated. Conclusion: Open MRI systems with tailored interactive sequences have great potential for cyst aspiration in the lumbosacral region. The authors perceive major advantages of the MR-guided cyst aspiration in its minimally invasive character compared to direct and open surgical options along with consecutive less trauma, less stress, and also less side-effects for the patient.

  14. A Signal-Inducing Bone Cement for Magnetic Resonance Imaging-Guided Spinal Surgery Based on Hydroxyapatite and Polymethylmethacrylate

    SciTech Connect (OSTI)

    Wichlas, Florian, E-mail: florian.wichlas@charite.de; Seebauer, Christian J.; Schilling, Rene [University Charite, Center for Musculoskeletal Surgery (Germany); Rump, Jens [University Charite, Department of Radiology (Germany); Chopra, Sascha S. [University Charite, Center for Musculoskeletal Surgery (Germany); Walter, Thula; Teichgraeber, Ulf K. M. [University Charite, Department of Radiology (Germany); Bail, Hermann J. [University Charite, Center for Musculoskeletal Surgery (Germany)

    2012-06-15T23:59:59.000Z

    The aim of this study was to develop a signal-inducing bone cement for magnetic resonance imaging (MRI)-guided cementoplasty of the spine. This MRI cement would allow precise and controlled injection of cement into pathologic lesions of the bone. We mixed conventional polymethylmethacrylate bone cement (PMMA; 5 ml methylmethacrylate and 12 g polymethylmethacrylate) with hydroxyapatite (HA) bone substitute (2-4 ml) and a gadolinium-based contrast agent (CA; 0-60 {mu}l). The contrast-to-noise ratio (CNR) of different CA doses was measured in an open 1.0-Tesla scanner for fast T1W Turbo-Spin-Echo (TSE) and T1W TSE pulse sequences to determine the highest signal. We simulated MRI-guided cementoplasty in cadaveric spines. Compressive strength of the cements was tested. The highest CNR was (1) 87.3 (SD 2.9) in fast T1W TSE for cements with 4 {mu}l CA/ml HA (4 ml) and (2) 60.8 (SD 2.4) in T1W TSE for cements with 1 {mu}l CA/ml HA (4 ml). MRI-guided cementoplasty in cadaveric spine was feasible. Compressive strength decreased with increasing amounts of HA from 46.7 MPa (2 ml HA) to 28.0 MPa (4 ml HA). An MRI-compatible cement based on PMMA, HA, and CA is feasible and clearly visible on MRI images. MRI-guided spinal cementoplasty using this cement would permit direct visualization of the cement, the pathologic process, and the anatomical surroundings.

  15. Clinical Evaluation of Spatial Accuracy of a Fusion Imaging Technique Combining Previously Acquired Computed Tomography and Real-Time Ultrasound for Imaging of Liver Metastases

    SciTech Connect (OSTI)

    Hakime, Antoine, E-mail: thakime@yahoo.com; Deschamps, Frederic; Garcia Marques de Carvalho, Enio; Teriitehau, Christophe; Auperin, Anne; De Baere, Thierry [Gustave Roussy Institute (France)

    2011-04-15T23:59:59.000Z

    Purpose: This study was designed to evaluate the spatial accuracy of matching volumetric computed tomography (CT) data of hepatic metastases with real-time ultrasound (US) using a fusion imaging system (VNav) according to different clinical settings. Methods: Twenty-four patients with one hepatic tumor identified on enhanced CT and US were prospectively enrolled. A set of three landmarks markers was chosen on CT and US for image registration. US and CT images were then superimposed using the fusion imaging display mode. The difference in spatial location between the tumor visible on the CT and the US on the overlay images (reviewer no. 1, comment no. 2) was measured in the lateral, anterior-posterior, and vertical axis. The maximum difference (Dmax) was evaluated for different predictive factors.CT performed 1-30 days before registration versus immediately before. Use of general anesthesia for CT and US versus no anesthesia.Anatomic landmarks versus landmarks that include at least one nonanatomic structure, such as a cyst or a calcificationResultsOverall, Dmax was 11.53 {+-} 8.38 mm. Dmax was 6.55 {+-} 7.31 mm with CT performed immediately before VNav versus 17.4 {+-} 5.18 with CT performed 1-30 days before (p < 0.0001). Dmax was 7.05 {+-} 6.95 under general anesthesia and 16.81 {+-} 6.77 without anesthesia (p < 0.0015). Landmarks including at least one nonanatomic structure increase Dmax of 5.2 mm (p < 0.0001). The lowest Dmax (1.9 {+-} 1.4 mm) was obtained when CT and VNav were performed under general anesthesia, one immediately after the other. Conclusions: VNav is accurate when adequate clinical setup is carefully selected. Only under these conditions (reviewer no. 2), liver tumors not identified on US can be accurately targeted for biopsy or radiofrequency ablation using fusion imaging.

  16. Technique and application of a non-invasive three dimensional image matching method for the study of total shoulder arthroplasty

    E-Print Network [OSTI]

    Massimini, Daniel Frank

    2009-01-01T23:59:59.000Z

    Knowledge of in-vivo glenohumeral joint biomechanics after total shoulder arthroplasty are important for the improvement of patient function, implant longevity and surgical technique. No data has been published on the ...

  17. Bacterial protein complexes studied by single-molecule imaging and single-cell micromanipulation techniques in microfluidic devices

    E-Print Network [OSTI]

    Reuter, Marcel

    2010-06-28T23:59:59.000Z

    Biological systems of bacteria were investigated at the single-cell and single-molecule level. Additionally, aspects of the techniques employed were studied. A unifying theme in each project is the reliance on optical ...

  18. Development and application of a high speed digital data acquisition technique to study steam bubble collapse using particle image velocimetry

    E-Print Network [OSTI]

    Schmidl, William Daniel

    1992-01-01T23:59:59.000Z

    John Poston ( Head of Department ) ABSTRACT Development anil Appl&cat&on of a. H&vh Speed D&g&tal Data A?qu&s&t&on Techn&que to Study Steam Bubble & 'ollapse us&ng Part&cle Image L'elo imetry I August 1090) K&)liam Dan&el Schr&n Jl. B S . 1&nited... vnth the practical applicatloils of the hardware used in this prelect. TABLE OF CONTENTS CHAPTER Page I INTRODUCTION I 1 Background I 9 Background for Pulsed Laser Velocimetry I 3 tlethodnlogy for Particle Image Velocimetry 14 Background...

  19. Applications of Remote Sensing Techniques to Identify Major Faults in the Island of Puerto Rico using SAR and SLAR images

    E-Print Network [OSTI]

    Gilbes, Fernando

    Rico using SAR and SLAR images Ashlyann Arana Morales1 , Daniel J. Mercado Rosario2 1 Bo Tanama 1B Calle 1 Arecibo P.R, 00612-5578, ashlyann.arana@upr.edu 2 #15 Calle Iglesia Quebradilla P.R, 00678

  20. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventyTechnologiesfacilityImaging

  1. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITERBuilding EnergyImaging Print The

  2. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITERBuilding EnergyImaging Print

  3. Magnets & Magnet Condensed Matter Science

    E-Print Network [OSTI]

    McQuade, D. Tyler

    18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials Pressure 9 Metal to Insulator Transition on the N=0 Landau Level in Graphene 10 Evidence for Fractional Quantum Hall States in Suspended Bilayer and Trilayer Graphene 11 Fractional Quantum Hall Effect

  4. Simulations of magnetic nanoparticle Brownian motion

    E-Print Network [OSTI]

    Daniel B Reeves; John B Weaver

    2014-03-25T23:59:59.000Z

    Magnetic nanoparticles are useful in many medical applications because they interact with biology on a cellular level thus allowing microenvironmental investigation. An enhanced understanding of the dynamics of magnetic particles may lead to advances in imaging directly in magnetic particle imaging (MPI) or through enhanced MRI contrast and is essential for nanoparticle sensing as in magnetic spectroscopy of Brownian motion (MSB). Moreover, therapeutic techniques like hyperthermia require information about particle dynamics for effective, safe, and reliable use in the clinic. To that end, we have developed and validated a stochastic dynamical model of rotating Brownian nanoparticles from a Langevin equation approach. With no field, the relaxation time toward equilibrium matches Einstein's model of Brownian motion. In a static field, the equilibrium magnetization agrees with the Langevin function. For high frequency or low amplitude driving fields, behavior characteristic of the linearized Debye approximation is reproduced. In a higher field regime where magnetic saturation occurs, the magnetization and its harmonics compare well with the effective field model. On another level, the model has been benchmarked against experimental results, successfully demonstrating that harmonics of the magnetization carry enough information to infer environmental parameters like viscosity and temperature.

  5. Improved nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOE Patents [OSTI]

    Fukushima, E.; Roeder, S.B.W.; Assink, R.A.; Gibson, A.A.V.

    1984-01-01T23:59:59.000Z

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  6. Imaging dirac-mass disorder from magnetic dopant-atoms in the ferromagnetic topological insulator Crx(Bi?.?Sb?.?)??xTe?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Inhee [Brookhaven National Lab. (BNL), Upton, NY (United States); Kim, Chung Koo [Brookhaven National Lab. (BNL), Upton, NY (United States); Lee, Jinho [Brookhaven National Lab. (BNL), Upton, NY (United States); Seoul National Univ., Seoul (Korea); Billinge, Simon J. L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Columbia Univ., New York, NY (United States); Zhong, Ruidan D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., Stony Brook, NY (United States); Schneeloch, John A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., Stony Brook, NY (United States); Liu, Tiansheng S. [Brookhaven National Lab. (BNL), Upton, NY (United States); North Univ. of China, Shanxi (China); Valla, Tonica [Brookhaven National Lab. (BNL), Upton, NY (United States); Tranquada, John M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gu, Genda [Brookhaven National Lab. (BNL), Upton, NY (United States); Davis, J. C. Seamus [Brookhaven National Lab. (BNL), Upton, NY (United States); Cornell Univ., Ithaca, NY (United States); Univ. of St. Andrews, Fife (Scotland)

    2015-02-03T23:59:59.000Z

    To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a Dirac-mass gap in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr?.??(Bi?.?Sb?.?)?.??Te?. Simultaneous visualization of the Dirac-mass gap ?(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of ?(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship ?(r)?n(r) is confirmed throughout and exhibits an electrondopant interaction energy J* = 145 meVnm. These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.

  7. Imaging dirac-mass disorder from magnetic dopant-atoms in the ferromagnetic topological insulator Crx(Bi?.?Sb?.?)??xTe?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J. L.; Zhong, Ruidan D.; Schneeloch, John A.; Liu, Tiansheng S.; Valla, Tonica; Tranquada, John M.; Gu, Genda; et al

    2015-02-03T23:59:59.000Z

    To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a Dirac-mass gap in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in themoreferromagnetic TI Cr?.??(Bi?.?Sb?.?)?.??Te?. Simultaneous visualization of the Dirac-mass gap ?(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of ?(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship ?(r)?n(r) is confirmed throughout and exhibits an electrondopant interaction energy J* = 145 meVnm. These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.less

  8. Observation of the structural phase transition in manganite films by magneto-optical imaging.

    SciTech Connect (OSTI)

    Crabtree, G. W.; Lin, Y.; Miller, D. J.; Nikitenko, V. I.; Vlasko-Vlasov, V. K.; Welp, U.

    1999-08-31T23:59:59.000Z

    A high-resolution magneto-optical imaging technique is used to reveal the formation of twins occurring during a martensitic phase transition at {approximately}105K in LCMO films grown on STO substrates. The magnetic contrast arises due to the magneto-elastic tilts of the Mn - magnetic moments in the twins. Different magnetic structures are found in LCMO films grown on MgO, NGO, and LAO substrates showing the importance of the substrate material for the manganite film properties.

  9. Modeling sickle cell vasoocculsion in the rat leg: Quantification of trapped sickle cells and correlation with sup 31 P metabolic and sup 1 H magnetic resonance imaging changes

    SciTech Connect (OSTI)

    Fabry, M.E.; Rajanayagam, V.; Fine, E.; Holland, S.; Gore, J.C.; Nagel, R.L.; Kaul, D.K. (Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY (USA))

    1989-05-01T23:59:59.000Z

    The authors have developed an animal model to elucidate the acute effects of perfusion abnormalities on muscle metabolism induced by different density-defined classes of erythrocytes isolated from sickle cell anemia patients. Technetium-99m ({sup 99m}Tc)-labeled, saline-washed normal (AA), homozygous sickle (SS), or high-density SS (SS4) erythrocytes were injected into the femoral artery of the rat and quantitative {sup 99m}Tc imaging, {sup 31}P magnetic resonance spectroscopy by surface coil at 2 teslas, and {sup 1}H magnetic resonance imaging at 0.15 tesla were performed. Between 5 and 25 {mu}l of SS4 cells was trapped in the microcirculation of the thigh. In contrast, fewer SS discocytes (SS2) or AA cells were trapped. After injection of SS4 cells an initial increase in inorganic phosphate was observed in the region of the thigh served by the femoral artery, intracellular pH decreased, and subsequently the proton relaxation time T{sub 1} reached a broad maximum at 18-28 hr. When T{sub 1} obtained at this time was plotted against the volume of cells trapped, an increase of T{sub 1} over the control value of 411 {plus minus} 48 msec was found that was proportional to the number of cells trapped. They conclude that the densest SS cells are most effective at producing vasoocclusion. The extent of the change detected by {sup 1}H magnetic resonance imaging is dependent on the amount of cells trapped in the microcirculation and the magnitude of the initial increase of inorganic phosphate.

  10. Performance of a static-anode/flat-panel x-ray fluoroscopy system in a diagnostic strength magnetic field: A truly hybrid x-ray/MR imaging system

    SciTech Connect (OSTI)

    Fahrig, R.; Wen, Z.; Ganguly, A.; DeCrescenzo, G.; Rowlands, J.A.; Stevens, G.M.; Saunders, R.F.; Pelc, N.J. [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology and Department of Physics, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States); Sunnybrook and Women's Health Sciences Center and Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); GE Healthcare, Schenectady, Wisconsin (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2005-06-15T23:59:59.000Z

    Minimally invasive procedures are increasing in variety and frequency, facilitated by advances in imaging technology. Our hybrid imaging system (GE Apollo{sup TM} flat panel, custom Brand x-ray static anode x-ray tube, GE Lunar high-frequency power supply and 0.5 T Signa SP{sup TM}) provides both x-ray and MR imaging capability to guide complex procedures without requiring motion of the patient between two distant gantries. The performance of the x-ray tube in this closely integrated system was evaluated by modeling and measuring both the response of the filament to an externally applied field and the behavior of the electron beam for field strengths and geometries of interest. The performance of the detector was assessed by measuring the slanted-edge modulation transfer function (MTF) and when placed at zero field and at 0.5 T. Measured resonant frequencies of filaments can be approximated using a modified vibrating beam model, and were at frequencies well below the 25 kHz frequency of our generator for our filament geometry. The amplitude of vibration was not sufficient to cause shorting of the filament during operation within the magnetic field. A simple model of electrons in uniform electric and magnetic fields can be used to estimate the deflection of the electron beam on the anode for the fields of interest between 0.2 and 0.5 T. The MTF measured at the detector and the DQE showed no significant difference inside and outside of the magnetic field. With the proper modifications, an x-ray system can be fully integrated with a MR system, with minimal loss of image quality. Any x-ray tube can be assessed for compatibility when placed at a particular location within the field using the models. We have also concluded that a-Si electronics are robust against magnetic fields. Detailed knowledge of the x-ray system installation is required to provide estimates of system operation.

  11. Calibration of a thin metal foil for infrared imaging video bolometer to estimate the spatial variation of thermal diffusivity using a photo-thermal technique

    SciTech Connect (OSTI)

    Pandya, Shwetang N., E-mail: pandya.shwetang@LHD.nifs.ac.jp; Sano, Ryuichi [The Graduate University of Advanced Studies, 322-6 Oroshi-cho, Toki 509-5292 (Japan)] [The Graduate University of Advanced Studies, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Peterson, Byron J.; Mukai, Kiyofumi; Akiyama, Tsuyoshi; Watanabe, Takashi [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)] [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Drapiko, Evgeny A. [Fusion Centre, 1, Akademika Kurchatova pl., Moscow 123182 (Russian Federation)] [Fusion Centre, 1, Akademika Kurchatova pl., Moscow 123182 (Russian Federation); Alekseyev, Andrey G. [Kurchatov Institute, 1, Akademika Kurchatova pl., Moscow 123182 (Russian Federation)] [Kurchatov Institute, 1, Akademika Kurchatova pl., Moscow 123182 (Russian Federation); Itomi, Muneji [Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)] [Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)

    2014-05-15T23:59:59.000Z

    A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil. The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.53 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.

  12. Element-specific imaging of magnetic domains at 25 nm spatial resolution using soft x-ray microscopy

    E-Print Network [OSTI]

    Bayreuther, Gnther

    magnetic transmission x-ray microscopy M-TXM . This was first demonstrated at the synchrotron facility BESSY I in Berlin.810 In this article experiments with M-TXM obtained at the XM-1 beamline

  13. Near-electrode imager

    DOE Patents [OSTI]

    Rathke, Jerome W. (Lockport, IL); Klingler, Robert J. (Westmont, IL); Woelk, Klaus (Wachtberg, DE); Gerald, II, Rex E. (Brookfield, IL)

    2000-01-01T23:59:59.000Z

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager uses the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  14. Magnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to:Macquarie Energy LLC JumpMadkiniMagnetek

  15. Utility of spatially-resolved atmospheric pressure surface sampling and ionization techniques as alternatives to mass spectrometric imaging (MSI) in drug metabolism

    SciTech Connect (OSTI)

    Blatherwick, Eleanor Q. [University of Warwick, UK; Van Berkel, Gary J [ORNL; Pickup, Kathryn [AstraZeneca R& D Sweden; Johansson, Maria K. [AstraZeneca R& D Sweden; Beaudoin, Marie-Eve [AstraZeneca, USA; Cole, Roderic [ORNL; Day, Jennifer M. [AstraZeneca R& D, UK; Iverson, Suzanne [AstraZeneca R& D Sweden; Wilson, Ian D. [AstraZeneca R& D, UK; Scrivens, James H. [University of Warwick, UK; Weston, Daniel J. [AstraZeneca R& D, UK

    2011-01-01T23:59:59.000Z

    1. Tissue distribution studies of drug molecules play an essential role in the pharmaceutical industry and are commonly undertaken using quantitative whole body autoradiography (QWBA) methods. 2. The growing need for complementary methods to address some scientific gaps around radiography methods has led to increased use of mass spectrometric imaging (MSI) technology over the last 5 to 10 years. More recently, the development of novel mass spectrometric techniques for ambient surface sampling has redefined what can be regarded as fit-for-purpose for MSI in a drug metabolism and disposition arena. 3. Together with a review of these novel alternatives, this paper details the use of two liquid microjunction (LMJ)- based mass spectrometric surface sampling technologies. These approaches are used to provide qualitative determination of parent drug in rat liver tissue slices using liquid extraction surface analysis (LESA) and to assess the performance of a LMJ surface sampling probe (LMJ-SSP) interface for quantitative assessment of parent drug in brain, liver and muscle tissue slices. 4. An assessment of the utility of these spatially-resolved sampling methods is given, showing interdependence between mass spectrometric and QWBA methods, in particular there emerges a reason to question typical MSI workflows for drug metabolism; suggesting the expedient use of profile or region analysis may be more appropriate, rather than generating time-intensive molecular images of the entire tissue section.

  16. Magnetic fields, spots and weather in chemically peculiar stars

    E-Print Network [OSTI]

    O. Kochukhov

    2007-11-30T23:59:59.000Z

    New observational techniques and sophisticated modelling methods has led to dramatic breakthroughs in our understanding of the interplay between the surface magnetism, atomic diffusion and atmospheric dynamics in chemically peculiar stars. Magnetic Doppler images, constructed using spectropolarimetric observations of Ap stars in all four Stokes parameters, reveal the presence of small-scale field topologies. Abundance Doppler mapping has been perfected to the level where distributions of many different chemical elements can be deduced self-consistently for one star. The inferred chemical spot structures are diverse and do not always trace underlying magnetic field geometry. Moreover, horizontal chemical inhomogeneities are discovered in non-magnetic CP stars and evolving chemical spots are observed for the first time in the bright mercury-manganese star alpha And. These results show that in addition to magnetic fields, another important non-magnetic structure formation mechanism acts in CP stars.

  17. Development of radiohalogenated muscarinic ligands for the in vivo imaging of m-AChR by nuclear medicine techniques

    SciTech Connect (OSTI)

    McPherson, D.W.; Luo, H.; Knapp, F.F. Jr.

    1994-06-01T23:59:59.000Z

    Alterations in the density of acetylcholinergic muscarinic receptors (m-AChR) have been observed in various dementias. This has spurred interest in the development of radiohalogenated ligands which can be used for the non-invasive in vivo detection of m-AChR by nuclear medicine techniques. We have developed a new ligand 1-azabicyclo[2.2.2]oct-3-yl ({alpha}-hydroxy-{alpha}-(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (IQNP,12) which demonstrates high affinity for the muscarinic receptor. When labeled with radioiodine it has been shown to be selective and specific for m-ACHR. Initial studies on the separation and in vivo evaluation of the various isomers of IQNP have shown that the stereochemistry of the chiral centers and the configuration around the double bond play an important role in m-AChR subtype specificity. In vivo evaluation of these stereoisomers demonstrate that E-(R,R)-IQNP has a high affinity for the M{sub 1} muscarinic subtype while Z-(R,R)-IQNP demonstrate a high affinity for M{sub 1} and M{sub 2} receptor subtypes. These data demonstrate IQNP (12) has potential for use in the non-evasive in vivo detection of m-AChR by single photon emission computed tomography (SPECT). A brominated analogue, ``BrQNP,`` in which the iodine has been replaced by a bromine atom, has also been prepared and was shown to block the in vivo uptake of IQNP in the brain and heart and therefore has potential for positron emission tomographic (PET) studies of m-AChR.

  18. Magnetic Stereoscopy

    E-Print Network [OSTI]

    Thomas Wiegelmann; Bernd Inhester

    2006-12-21T23:59:59.000Z

    The space mission STEREO will provide images from two viewpoints. An important aim of the STEREO mission is to get a 3D view of the solar corona. We develop a program for the stereoscopic reconstruction of 3D coronal loops from images taken with the two STEREO spacecraft. A pure geometric triangulation of coronal features leads to ambiguities because the dilute plasma emissions complicates the association of features in image 1 with features in image 2. As a consequence of these problems the stereoscopic reconstruction is not unique and multiple solutions occur. We demonstrate how these ambiguities can be resolved with the help of different coronal magnetic field models (potential, linear and non-linear force-free fields). The idea is that, due to the high conductivity in the coronal plasma, the emitting plasma outlines the magnetic field lines. Consequently the 3D coronal magnetic field provides a proxy for the stereoscopy which allows to eliminate inconsistent configurations. The combination of stereoscopy and magnetic modelling is more powerful than one of these tools alone. We test our method with the help of a model active region and plan to apply it to the solar case as soon as STEREO data become available.

  19. A 200-MHz fully-differential CMOS front-end with an on-chip inductor for magnetic resonance imaging

    E-Print Network [OSTI]

    Ayala, Julio Enqrique, II

    2007-04-25T23:59:59.000Z

    with an observed liquid sample. In [5], an implantable solenoidal microcoil is designed to be 5 used in NMR microspectroscopy experiments in a 2-Tesla magnet (85.13-MHz). The outer diameter of the coil was approximately 200 ?m and the length was 580 ?m. The coil... microspec- troscopy. Liquid samples were loaded into a fused silica capillary positioned 50 ?m above a 3.5-turn microcoil so that approximately 1 nL of the sample was present above the sensitive region of the microcoil. At 5.9-Tesla magnet (250-MHz), NMR...

  20. Prostate Postbrachytherapy Seed Distribution: Comparison of High-Resolution, Contrast-Enhanced, T1- and T2-Weighted Endorectal Magnetic Resonance Imaging Versus Computed Tomography: Initial Experience

    SciTech Connect (OSTI)

    Bloch, B. Nicolas [Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (United States); Department of Radiology, General Hospital Vienna, Medical University Vienna, Vienna (Austria)], E-mail: nbloch@bidmc.harvard.edu; Lenkinski, Robert E. [Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (United States); Helbich, Thomas H. [Department of Radiology, General Hospital Vienna, Medical University Vienna, Vienna (Austria); Ngo, Long [Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (United States); Oismueller, Renee [Institute for Radio-Oncology, Danube Hospital, Vienna (Austria); Jaromi, Silvia; Kubin, Klaus [Department of Radiology, General Hospital Vienna, Medical University Vienna, Vienna (Austria); Hawliczek, Robert [Institute for Radio-Oncology, Danube Hospital, Vienna (Austria); Kaplan, Irving D. [Department of Radiation Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (United States); Rofsky, Neil M. [Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (United States)

    2007-09-01T23:59:59.000Z

    Purpose: To compare contrast-enhanced, T1-weighted, three-dimensional magnetic resonance imaging (CEMR) and T2-weighted magnetic resonance imaging (T2MR) with computed tomography (CT) for prostate brachytherapy seed location for dosimetric calculations. Methods and Materials: Postbrachytherapy prostate MRI was performed on a 1.5 Tesla unit with combined surface and endorectal coils in 13 patients. Both CEMR and T2MR used a section thickness of 3 mm. Spiral CT used a section thickness of 5 mm with a pitch factor of 1.5. All images were obtained in the transverse plane. Two readers using CT and MR imaging assessed brachytherapy seed distribution independently. The dependency of data read by both readers for a specific subject was assessed with a linear mixed effects model. Results: The mean percentage ({+-} standard deviation) values of the readers for seed detection and location are presented. Of 1205 implanted seeds, CEMR, T2MR, and CT detected 91.5% {+-} 4.8%, 78.5% {+-} 8.5%, and 96.1% {+-} 2.3%, respectively, with 11.8% {+-} 4.5%, 8.5% {+-} 3.5%, 1.9% {+-} 1.0% extracapsular, respectively. Assignment to periprostatic structures was not possible with CT. Periprostatic seed assignments for CEMR and T2MR, respectively, were as follows: neurovascular bundle, 3.5% {+-} 1.6% and 2.1% {+-} 0.9%; seminal vesicles, 0.9% {+-} 1.8% and 0.3% {+-} 0.7%; periurethral, 7.1% {+-} 3.3% and 5.8% {+-} 2.9%; penile bulb, 0.6% {+-} 0.8% and 0.3% {+-} 0.6%; Denonvillier's Fascia/rectal wall, 0.5% {+-} 0.6% and 0%; and urinary bladder, 0.1% {+-} 0.3% and 0%. Data dependency analysis showed statistical significance for the type of imaging but not for reader identification. Conclusion: Both enumeration and localization of implanted seeds are readily accomplished with CEMR. Calculations with MRI dosimetry do not require CT data. Dose determinations to specific extracapsular sites can be obtained with MRI but not with CT.

  1. Magnetic nanoparticles for medical applications: Progress and challenges

    SciTech Connect (OSTI)

    Doaga, A.; Cojocariu, A. M.; Constantin, C. P.; Caltun, O. F. [Faculty of Physics, Alexandru Ioan Cuza University, Bd. Carol I. Nr. 11, Iasi, 700506 (Romania); Hempelmann, R. [Physical Chemistry Department, Saarland University, 66123 Saarbrcken (Germany)

    2013-11-13T23:59:59.000Z

    Magnetic nanoparticles present unique properties that make them suitable for applications in biomedical field such as magnetic resonance imaging (MRI), hyperthermia and drug delivery systems. Magnetic hyperthermia involves heating the cancer cells by using magnetic particles exposed to an alternating magnetic field. The cell temperature increases due to the thermal propagation of the heat induced by the nanoparticles into the affected region. In order to increase the effectiveness of the treatment hyperthermia can be combined with drug delivery techniques. As a spectroscopic technique MRI is used in medicine for the imaging of tissues especially the soft ones and diagnosing malignant or benign tumors. For this purpose Zn{sub x}Co{sub 1?x}Fe{sub 2}O{sub 4} ferrite nanoparticles with x between 0 and 1 have been prepared by co-precipitation method. The cristallite size was determined by X-ray diffraction, while the transmission electron microscopy illustrates the spherical shape of the nanoparticles. Magnetic characterizations of the nanoparticles were carried out at room temperature by using a vibrating sample magnetometer. The specific absorption rate (SAR) was measured by calorimetric method at different frequencies and it has been observed that this value depends on the chemical formula, the applied magnetic fields and the frequency. The study consists of evaluating the images, obtained from an MRI facility, when the nanoparticles are dispersed in agar phantoms compared with the enhanced ones when Omniscan was used as contrast agent. Layer-by-layer technique was used to achieve the necessary requirement of biocompatibility. The surface of the magnetic nanoparticles was modified by coating it with oppositely charged polyelectrolites, making it possible for the binding of a specific drug.

  2. Development of accelerator based spatially resolved ion beam analysis techniques for the study of plasma materials interactions in magnetic fusion devices

    E-Print Network [OSTI]

    Barnard, Harold Salvadore

    2014-01-01T23:59:59.000Z

    Plasma-material interactions (PMI) in magnetic fusion devices pose significant scientific and engineering challenges for the development of steady-state fusion power reactors. Understanding PMI is crucial for the develpment ...

  3. Pellet imaging techniques on ASDEX

    SciTech Connect (OSTI)

    Wurden, G.A. (Los Alamos National Lab., NM (USA)); Buechl, K.; Hofmann, J.; Lang, R.; Loch, R.; Rudyj, A.; Sandmann, W. (Max-Planck-Institut fuer Plasmaphysik, Garching (Germany, F.R.))

    1990-01-01T23:59:59.000Z

    As part of a USDOE/ASDEX collaboration, a detailed examination of pellet ablation in ASDEX with a variety of diagnostics has allowed a better understanding of a number of features of hydrogen ice pellet ablation in a plasma. In particular, fast gated photos with an intensified Xybion CCD video camera allow in-situ velocity measurements of the pellet as it penetrates the plasma. With time resolution of typically 100 nanoseconds and exposures every 50 microseconds, the evolution of each pellet in a multi-pellet ASDEX tokamak plasma discharge can be followed. When the pellet cloud track has striations, the light intensity profile through the cloud is hollow (dark near the pellet), whereas at the beginning or near the end of the pellet trajectory the track is typically smooth (without striations) and has a gaussian-peaked light emission profile. New, single pellet Stark broadened D{sub {alpha}}D{sub {beta}}, and D{sub {gamma}} spectra, obtained with a tangentially viewing scanning mirror/spectrometer with Reticon array readout, are consistent with cloud densities of 2 {times} 10{sup 17}cm{sup {minus}3} or higher in the regions of strongest light emission. A spatially resolved array of D{sub {alpha}} detectors shows that the light variations during the pellet ablation are not caused solely by a modulation of the incoming energy flux as the pellet crosses rational q-surfaces, but instead are a result of a dynamic, non-stationary, ablation process. 20 refs., 4 figs.

  4. Abstract--This study presents a system designed to assist the surgeon during interventional procedures performed by Magnetic Resonance Imaging (MRI). In order to reach the target during guidance in a double obliquity trajectory, this

    E-Print Network [OSTI]

    Boyer, Edmond

    on the instrument are detected [4]. Two commercial solutions have recently appeared on the market: a robotic system of ionizing radiations, Magnetic Resonance Imaging is a well adapted modality for interventional practice. MRI stiff and short, enabling the use of passive detection and/or optical localisation. Passive tracking

  5. Real-Time Color-Flow Magnetic ResonanceImaging of Congenital Heart Disease E. De La Pena-Almaguer, K. S. Nayak, M. Terashima, P.C. Yang,

    E-Print Network [OSTI]

    Southern California, University of

    Real-Time Color-Flow Magnetic ResonanceImaging of Congenital Heart Disease E. De La Pena used for the diagnosis of congenital heart disease (CHD), although it has limitations. Conventional MRI flow pulse sequence.A low flip- angle water selective spectral-spatial excitation is followed

  6. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. SIAM J. IMAGING SCIENCES c 2010 Society for Industrial and Applied Mathematics

    E-Print Network [OSTI]

    Bertozzi, Andrea L.

    forces we use total variationbased inverse scale-space techniques on the input data. Furthermore, we use process is the external data, which can be images of any kind, such as photographs or magnetic resonance of California, Los Angeles, Los Angeles, CA 90095. Current address: Mental Images, Fasanenstr. 81, 10623 Berlin

  7. Magnetic Resonance Imaging of Acute Reperfused Myocardial Infarction: Intraindividual Comparison of ECIII-60 and Gd-DTPA in a Swine Model

    SciTech Connect (OSTI)

    Jin Jiyang; Teng Gaojun [Zhongda Hospital of Southeast University, Department of Radiology (China); Feng Yi; Wu Yanping [Zhongda Hospital of Southeast University, Department of Cardiology (China); Jin Qindi [Zhongda Hospital of Southeast University, Department of Radiology (China); Wang Yu [Zhongda Hospital of Southeast University, Department of Cardiology (China); Wang Zhen [Zhongda Hospital of Southeast University, Department of Anaesthesiology (China); Lu Qin [Zhongda Hospital of Southeast University, Department of Radiology (China); Jiang Yibo [Zhongda Hospital of Southeast University, Department of Cardiology (China); Wang Shengqi; Chen Feng [Zhongda Hospital of Southeast University, Department of Radiology (China); Marchal, Guy; Ni Yicheng [University Hospitals, University of Leuven, Department of Radiology (Belgium)], E-mail: yicheng.ni@med.kuleuven.ac.be

    2007-04-15T23:59:59.000Z

    Purpose. To compare a necrosis-avid contrast agent (NACA) bis-Gd-DTPA-pamoic acid derivative (ECIII-60) after intracoronary delivery with an extracellular agent Gd-DTPA after intravenous injection on magnetic resonance imaging (MRI) in a swine model of acute reperfused myocardial infarction (MI). Methods. Eight pigs underwent 90 min of transcatheter coronary balloon occlusion and 60 min of reperfusion. After intravenous injection of Gd-DTPA at a dose of 0.2 mmol/kg, all pigs were scanned with T1-weighted MRI until the delayed enhancement of MI disappeared. Then they were intracoronarily infused with ECIII-60 at 0.0025 mmol/kg and imaged for 5 hr. Signal intensity, infarct-over-normal contrast ratio and relative infarct size were quantified, compared, and correlated with the results of postmortem MRI and triphenyltetrazolium chloride (TTC) histochemical staining. Results. A contrast ratio over 3.0 was induced by both Gd-DTPA and ECIII-60. However, while the delayed enhancement with Gd-DTPA virtually vanished in 1 hr, ECIII-60 at an 80x smaller dose depicted the MI accurately over 5 hr as proven by ex vivo MRI and TTC staining. Conclusion. Both Gd-DTPA and ECIII-60 strongly enhanced acute MI. Comparing with fading contrast in a narrow time window with intravenous Gd-DTPA, intracoronary ECIII-60 persistently demarcated the acute MI, indicating a potential method for postprocedural assessment of myocardial viability after coronary interventions.

  8. Relation between photospheric flow fields and the magnetic field distribution on the solar surface

    SciTech Connect (OSTI)

    Simon, G.W.; Title, A.M.; Topka, K.P.; Tarbell, T.D.; Shine, R.A.

    1988-04-01T23:59:59.000Z

    Using the technique of local correlation tracking on a 28 minute time sequence of white-light images of solar granulation, the horizontal flow field on the solar surface is measured. The time series was obtained by the Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 (Space Shuttle flight 51-F) and is free from atmospheric blurring and distortion. The SOUP flow fields have been compared with carefully aligned magnetograms taken over a nine hour period at the Big Bear Solar Observatory before, during, and after the SOUP images. The flow field and the magnetic field agree in considerable detail: vectors which define the flow of the white-light intensity pattern (granulation) point toward magnetic field regions, magnetic fields surround flow cells, and magnetic features move along the flow arrows. The projected locations of free particles (corks) in the measured flow field congregate at the same locations where the magnetic field is observed. 31 references.

  9. Correlated Biofilm Imaging, Transport and Metabolism Measurements...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofilm Imaging, Transport and Metabolism Measurements via Combined Nuclear Magnetic Resonance and Confocal Correlated Biofilm Imaging, Transport and Metabolism Measurements via...

  10. Image 2006 DESY A Beamline Simulation

    E-Print Network [OSTI]

    Gollin, George

    precise #12;Image 2006 DESY A Zero Schematic BPM BPM BPM BPM BPM Yellow Magnet Kicker Corrector Magnet Spectrometer Magnet 1 2 3 4 5 BPM: Beam Position Monitor Yellow Magnet: Not part of experiment, suppose BPM resolution Time step Yellow Magnet field strength Kicker field strength Corrector Magnet

  11. Use of T2-weighted magnetic resonance imaging of the optic nerve sheath to detect raised intracranial pressure

    E-Print Network [OSTI]

    Geeraerts, Thomas; Newcombe, Virginia F J; Coles, Jonathan P; Abate, Maria Giulia; Perkes, Iain E; Hutchinson, Peter J A; Outtrim, Jo G; Chatfield, Dot A; Menon, David K

    2008-09-11T23:59:59.000Z

    is accurate at measuring ONSD [27,28] and has been proposed to detect raised ICP in idiopathic hydrocephalus and to diagnose shunt malfunction [12,14,29,30]. On T2-weighted sequences, water (and CSF) exhibits a high signal (white). Fat and grey matter appear... as light grey, and white matter as dark grey. The perioptic CSF is surrounded by orbital fat. Contrast between CSF and orbital fat can be improved with fat suppression, increasing the image resolution for the ONSD measurement [12,13]. We have con- firmed...

  12. Nondestructive NMR technique for moisture determination in radioactive materials.

    SciTech Connect (OSTI)

    Aumeier, S.; Gerald, R.E. II; Growney, E.; Nunez, L.; Kaminski, M.

    1998-12-04T23:59:59.000Z

    This progress report focuses on experimental and computational studies used to evaluate nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) for detecting, quantifying, and monitoring hydrogen and other magnetically active nuclei ({sup 3}H, {sup 3}He, {sup 239}Pu, {sup 241}Pu) in Spent nuclear fuels and packaging materials. The detection of moisture by using a toroid cavity NMR imager has been demonstrated in SiO{sub 2} and UO{sub 2} systems. The total moisture was quantified by means of {sup 1}H NMR detection of H{sub 2}O with a sensitivity of 100 ppm. In addition, an MRI technique that was used to determine the moisture distribution also enabled investigators to discriminate between bulk and stationary water sorbed on the particles. This imaging feature is unavailable in any other nondestructive assay (NDA) technique. Following the initial success of this program, the NMR detector volume was scaled up from the original design by a factor of 2000. The capacity of this detector exceeds the size specified by DOE-STD-3013-96.

  13. SU-E-T-136: Dosimetric Robustness of a Magnetic Resonance Imaging Guided Radiation Therapy (MR-IGRT) System

    SciTech Connect (OSTI)

    Rodriguez, V; Green, O; Wooten, H; Kashani, R; Mutic, S; Li, H [Washington University School of Medicine, St. Louis, MO (United States); Dempsey, J [View Ray Incorporated, Oakwood Village, OH (United States)

    2014-06-01T23:59:59.000Z

    Purpose: To test the radiation delivery robustness of the first MR-IGRT system using a commercial cylindrical diode array detector (ArcCHECK) and an ionization thimble chamber (Exradin A18). Methods: The MR-IGRT system is composed of three evenly spaced Co-60 sources on a rotating gantry located between two magnet halves. The collimator for each source consists of 30 doubly-focused leaf pairs that allow the system to deliver both conformal and intensity modulated (IMRT) treatment plans. The system's delivery robustness was tested over a span of 6 months from September 2013 through February 2014. This was achieved by repeatedly delivering 10 patient plans. These plans consisted of 2 conformal prostates, 2 IMRT prostates, 2 IMRT head and neck, 2 IMRT breast, 1 IMRT pancreas, and 1 IMRT bladder. The plans were generated with the system's treatment planning software. Once the plans were generated, quality assurance plans were created on a digital ArcCHECK dataset. The ArcCHECK used for testing was specially designed to be MR-compatible by moving the power supply outside of the magnetic field. The A18 ionization chamber was placed in a custom plastic plug insert in the center of the ArcCHECK. Gamma analysis was used with the ArcCHECK for relative dose evaluating both 3%/3mm and 2%/2mm. Absolute point dose was compared between ion chamber measurement and treatment plan. Results: The ArcCHECK passing rate remained constant over the 6 month period. The average passing rate for 3%/3mm and 2%/2mm analysis was 98.6% 0.7 and 88.8% 2.9, respectively. The ion chamber measurements showed little variation with an average percent difference between planned dose verses measured dose of 0.9% 0.7. Conclusion: Minimal differences were noted in the delivery of the 10 patient plans. Over a period that included acceptance testing, commissioning, and clinical deliveries, the MR-IGRT system remained consistent in radiation delivery.

  14. Real-time high-resolution X-ray imaging and nuclear magnetic resonance study of the hydration of pure and Na-doped C3A in the presence of sulfates

    SciTech Connect (OSTI)

    Kirchheim,, A. P.; Dal Molin, D.C.; Emwas, Abdul-Hamid; Provis, J.L.; Fischer, P.; Monteiro, P.J.M.

    2010-12-01T23:59:59.000Z

    This study details the differences in real-time hydration between pure tricalcium aluminate (cubic C{sub 3}A or 3CaO {center_dot} Al{sub 2}O{sub 3}) and Na-doped tricalcium aluminate (orthorhombic C{sub 3}A or Na{sub 2}Ca{sub 8}Al{sub 6}O{sub 18}), in aqueous solutions containing sulfate ions. Pure phases were synthesized in the laboratory to develop an independent benchmark for the reactions, meaning that their reactions during hydration in a simulated early age cement pore solution (saturated with respect to gypsum and lime) were able to be isolated. Because the rate of this reaction is extremely rapid, most microscopy methods are not adequate to study the early phases of the reactions in the early stages. Here, a high-resolution full-field soft X-ray imaging technique operating in the X-ray water window, combined with solution analysis by {sup 27}Al nuclear magnetic resonance (NMR) spectroscopy, was used to capture information regarding the mechanism of C{sub 3}A hydration during the early stages. There are differences in the hydration mechanism between the two types of C{sub 3}A, which are also dependent on the concentration of sulfate ions in the solution. The reactions with cubic C{sub 3}A (pure) seem to be more influenced by higher concentrations of sulfate ions, forming smaller ettringite needles at a slower pace than the orthorhombic C{sub 3}A (Na-doped) sample. The rate of release of aluminate species into the solution phase is also accelerated by Na doping.

  15. DEEP RADIO CONTINUUM IMAGING OF THE DWARF IRREGULAR GALAXY IC 10: TRACING STAR FORMATION AND MAGNETIC FIELDS

    SciTech Connect (OSTI)

    Heesen, V.; Brinks, E. [Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Rau, U.; Rupen, M. P. [NRAO, P.V.D. Science Operations Center, National Radio Astronomy Observatory, 1003 Lopezville Road, Socorro, NM 87801 (United States); Hunter, D. A. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2011-09-20T23:59:59.000Z

    We exploit the vastly increased sensitivity of the Expanded Very Large Array to study the radio continuum and polarization properties of the post-starburst, dwarf irregular galaxy IC 10 at 6 cm, at a linear resolution of {approx}50 pc. We find close agreement between radio continuum and H{alpha} emission, from the brightest H II regions to the weaker emission in the disk. A quantitative analysis shows a strictly linear correlation, where the thermal component contributes 50% to the total radio emission, the remainder being due to a non-thermal component with a surprisingly steep radio spectral index of between -0.7 and -1.0 suggesting substantial radiation losses of the cosmic-ray electrons. We confirm and clearly resolve polarized emission at the 10%-20% level associated with a non-thermal superbubble, where the ordered magnetic field is possibly enhanced due to the compression of the expanding bubble. A fraction of the cosmic-ray electrons has likely escaped because the measured radio emission is a factor of three lower than what is suggested by the H{alpha}-inferred star formation rate.

  16. Cerebral edema induced in mice by a convulsive dose of soman. Evaluation through diffusion-weighted magnetic resonance imaging and histology

    SciTech Connect (OSTI)

    Testylier, Guy [Centre de Recherches du Service Sante des Armees, Departement de Toxicologie, BP87, F-38702 La Tronche cedex (France)]. E-mail: guytestylier@crssa.net; Lahrech, Hana [Inserm, UMR-S 836-Grenoble Institut des Neurosciences, Grenoble, F-38043 (France); Universite Joseph Fourier, Grenoble, F-38043 (France); Montigon, Olivier [Inserm, UMR-S 836-Grenoble Institut des Neurosciences, Grenoble, F-38043 (France); Universite Joseph Fourier, Grenoble, F-38043 (France); Foquin, Annie [Centre de Recherches du Service Sante des Armees, Departement de Toxicologie, BP87, F-38702 La Tronche cedex (France); Delacour, Claire [Centre de Recherches du Service Sante des Armees, Departement de Toxicologie, BP87, F-38702 La Tronche cedex (France); Bernabe, Denis [Centre de Recherches du Service Sante des Armees, Departement de Toxicologie, BP87, F-38702 La Tronche cedex (France); Segebarth, Christoph [Inserm, UMR-S 836-Grenoble Institut des Neurosciences, Grenoble, F-38043 (France); Universite Joseph Fourier, Grenoble, F-38043 (France); Dorandeu, Frederic [Centre de Recherches du Service Sante des Armees, Departement de Toxicologie, BP87, F-38702 La Tronche cedex (France); Carpentier, Pierre [Centre de Recherches du Service Sante des Armees, Departement de Toxicologie, BP87, F-38702 La Tronche cedex (France)

    2007-04-15T23:59:59.000Z

    Purpose: In the present study, diffusion-weighted magnetic resonance imaging (DW-MRI) and histology were used to assess cerebral edema and lesions in mice intoxicated by a convulsive dose of soman, an organophosphate compound acting as an irreversible cholinesterase inhibitor. Methods: Three hours and 24 h after the intoxication with soman (172 {mu}g/kg), the mice were anesthetized with an isoflurane/N{sub 2}O mixture and their brain examined with DW-MRI. After the imaging sessions, the mice were sacrificed for histological analysis of their brain. Results: A decrease in the apparent diffusion coefficient (ADC) was detected as soon as 3 h after the intoxication and was found strongly enhanced at 24 h. A correlation was obtained between the ADC change and the severity of the overall brain damage (edema and cellular degeneration): the more severe the damage, the stronger the ADC drop. Anesthesia was shown to interrupt soman-induced seizures and to attenuate edema and cell change in certain sensitive brain areas. Finally, brain water content was assessed using the traditional dry/wet weight method. A significant increase of brain water was observed following the intoxication. Conclusions: The ADC decrease observed in the present study suggests that brain edema in soman poisoning is mainly intracellular and cytotoxic. Since entry of water into Brain was also evidenced, this type of edema is certainly mixed with others (vasogenic, hydrostatic, osmotic). The present study confirms the potential of DW-MRI as a non-invasive tool for monitoring the acute neuropathological consequences (edema and neurodegeneration) of soman-induced seizures.

  17. A Design-Oriented Framework to Determine the Parasitic Parameters of High Frequency Magnetics in Switching Power Supplies using Finite Element Analysis Techniques

    E-Print Network [OSTI]

    Shadmand, Mohammad

    2012-07-16T23:59:59.000Z

    ____________ This thesis follows the style of IEEE Transactions on Power Electronics. 2 such as multi-winding transformers. More complex geometries indicate that it is almost impossible to derive the analytical equations that describe the behavior of magnetic... is the resistance of the winding, and Cs is the equivalent * Part of this chapter is taken with permission from ?FEA Tool Approach for Determination of Parasitic Capacitance of the Windings in High Frequency Coupled Inductors Filters? in IEEE Power...

  18. Ultra-high-resolution Observations of MHD Waves in Photospheric Magnetic Structures

    E-Print Network [OSTI]

    Jess, David B

    2015-01-01T23:59:59.000Z

    Here we review the recent progress made in the detection, examination, characterisation and interpretation of oscillations manifesting in small-scale magnetic elements in the solar photosphere. This region of the Sun's atmosphere is especially dynamic, and importantly, permeated with an abundance of magnetic field concentrations. Such magnetic features can span diameters of hundreds to many tens of thousands of km, and are thus commonly referred to as the `building blocks' of the magnetic solar atmosphere. However, it is the smallest magnetic elements that have risen to the forefront of solar physics research in recent years. Structures, which include magnetic bright points, are often at the diffraction limit of even the largest of solar telescopes. Importantly, it is the improvements in facilities, instrumentation, imaging techniques and processing algorithms during recent years that have allowed researchers to examine the motions, dynamics and evolution of such features on the smallest spatial and temporal ...

  19. angle lipomas magnetic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of ambient magnetic field because it is almost insensitive to the downstream distribution of magnetic field and emitting electrons. We apply our method to a new radio image...

  20. assessing dynamic magnetic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Assessment of Carotid Flow Using Magnetic Resonance Imaging and Computational Fluid Dynamics) direct, model-independent velocity mapping using flow-encoded magnetic resonance...

  1. Use of Non-Invasive Phase Contrast Magnetic Resonance Imaging for Estimation of Atrial Septal Defect Size and Morphology: A Comparison with Transesophageal Echo

    SciTech Connect (OSTI)

    Piaw, Chin Sze; Kiam, Ong Tiong [Sarawak General Hospital, Department of Cardiology (Malaysia); Rapaee, Annuar [University of Malaysia Sarawak (Malaysia)], E-mail: rannuar@fmhs.unimas.myp; Khoon, Liew Chee; Bang, Liew Houng; Ling, Chan Wei [Sarawak General Hospital, Department of Cardiology (Malaysia); Samion, Hasri [National Heart Institute, Pediatric of Cardiology (Malaysia); Hian, Sim Kui [Sarawak General Hospital, Department of Cardiology (Malaysia)

    2006-04-15T23:59:59.000Z

    Background: Transesophageal echocardiography (TEE) is a trusted method of sizing atrial septal defect (ASD) prior to percutaneous closure but is invasive, uncomfortable, and may carry a small risk of morbidity and mortality. Magnetic resonance imaging (MRI) may be useful non-invasive alternative in such patients who refuse or are unable to tolerate TEE and may provide additional information on the shape of the A0SD. Purpose: To validate the accuracy of ASD sizing by MRI compared with TEE.Method: Twelve patients (mean age 30 years; range 11-60 years) scheduled for ASD closure underwent TEE, cine balanced fast field echo MRI (bFFE-MRI) in four-chamber and sagittal views and phase-contrast MRI (PC-MRI) with reconstruction using the two orthogonal planes of T2-weighted images as planning. The average of the three longest measurements for all imaging modalities was calculated for each patient. Results: Mean maximum ASD length on TEE was 18.8 {+-} 4.6 mm, mean length by bFFE-MRI was 20.0 {+-} 5.0 mm, and mean length by PC-MRI was 18.3 {+-} 3.6 mm. The TEE measurement was significantly correlated with the bFFE-MRI and PC-MRI measurements (Pearson r = 0.69, p = 0.02 and r = 0.59, p = 0.04, respectively). The mean difference between TEE and bFFE-MRI measurements was -1.2mm (95% CI: -3.7, 1.3) and between TEE and PC-MRI was 0.5 mm (95% CI: -1.9, 2.9). Bland-Altman analysis also determined general agreement between both MRI methods and TEE. The ASDs were egg-shaped in two cases, circular in 1 patient and oval in the remaining patients. Conclusion: ASD sizing by MRI using bFFE and phase-contrast protocols correlated well with TEE estimations. PC-MRI provided additional information on ASD shapes and proximity to adjacent structures.

  2. SU-E-J-39: Comparison of PTV Margins Determined by In-Room Stereoscopic Image Guidance and by On-Board Cone Beam Computed Tomography Technique for Brain Radiotherapy Patients

    SciTech Connect (OSTI)

    Ganesh, T; Paul, S; Munshi, A; Sarkar, B; Krishnankutty, S; Sathya, J; George, S; Jassal, K; Roy, S; Mohanti, B [Fortis Memorial Research Institute, Gurgaon (India)

    2014-06-01T23:59:59.000Z

    Purpose: Stereoscopic in room kV image guidance is a faster tool in daily monitoring of patient positioning. Our centre, for the first time in the world, has integrated such a solution from BrainLAB (ExacTrac) with Elekta's volumetric cone beam computed tomography (XVI). Using van Herk's formula, we compared the planning target volume (PTV) margins calculated by both these systems for patients treated with brain radiotherapy. Methods: For a total of 24 patients who received partial or whole brain radiotherapy, verification images were acquired for 524 treatment sessions by XVI and for 334 sessions by ExacTrac out of the total 547 sessions. Systematic and random errors were calculated in cranio-caudal, lateral and antero-posterior directions for both techniques. PTV margins were then determined using van Herk formula. Results: In the cranio-caudal direction, systematic error, random error and the calculated PTV margin were found to be 0.13 cm, 0.12 cm and 0.41 cm with XVI and 0.14 cm, 0.13 cm and 0.44 cm with ExacTrac. The corresponding values in lateral direction were 0.13 cm 0.1 cm and 0.4 cm with XVI and 0.13 cm, 0.12 cm and 0.42 cm with ExacTrac imaging. The same parameters for antero-posterior were for 0.1 cm, 0.11 cm and 0.34 cm with XVI and 0.13 cm, 0.16 cm and 0.43 cm with ExacTrac imaging. The margins estimated with the two imaging modalities were comparable within 1 mm limit. Conclusion: Verification of setup errors in the major axes by two independent imaging systems showed the results are comparable and within 1 mm. This implies that planar imaging based ExacTrac can yield equal accuracy in setup error determination as the time consuming volumetric imaging which is considered as the gold standard. Accordingly PTV margins estimated by this faster imaging technique can be confidently used in clinical setup.

  3. Magnetic spectroscopy and microscopy of functional materials

    SciTech Connect (OSTI)

    Jenkins, C.A.

    2011-01-28T23:59:59.000Z

    Heusler intermetallics Mn{sub 2}Y Ga and X{sub 2}MnGa (X; Y =Fe, Co, Ni) undergo tetragonal magnetostructural transitions that can result in half metallicity, magnetic shape memory, or the magnetocaloric effect. Understanding the magnetism and magnetic behavior in functional materials is often the most direct route to being able to optimize current materials for todays applications and to design novel ones for tomorrow. Synchrotron soft x-ray magnetic spectromicroscopy techniques are well suited to explore the the competing effects from the magnetization and the lattice parameters in these materials as they provide detailed element-, valence-, and site-specifc information on the coupling of crystallographic ordering and electronic structure as well as external parameters like temperature and pressure on the bonding and exchange. Fundamental work preparing the model systems of spintronic, multiferroic, and energy-related compositions is presented for context. The methodology of synchrotron spectroscopy is presented and applied to not only magnetic characterization but also of developing a systematic screening method for future examples of materials exhibiting any of the above effects. The chapter progression is as follows: an introduction to the concepts and materials under consideration (Chapter 1); an overview of sample preparation techniques and results, and the kinds of characterization methods employed (Chapter 2); spectro- and microscopic explorations of X{sub 2}MnGa/Ge (Chapter 3); spectroscopic investigations of the composition series Mn{sub 2}Y Ga to the logical Mn{sub 3}Ga endpoint (Chapter 4); and a summary and overview of upcoming work (Chapter 5). Appendices include the results of a Think Tank for the Graduate School of Excellence MAINZ (Appendix A) and details of an imaging project now in progress on magnetic reversal and domain wall observation in the classical Heusler material Co{sub 2}FeSi (Appendix B).

  4. Evaluation of electric and magnetic fields distribution and SAR induced in 3D models of water containers by radiofrequency radiation using FDTD and FEM simulation techniques

    E-Print Network [OSTI]

    Abdelsamie, Maher A A; Mustafa, Shuhaimi; Hashim, Dzulkifly

    2014-01-01T23:59:59.000Z

    In this study, two software packages using different numerical techniques FEKO 6.3 with Finite-Element Method (FEM) and XFDTD 7 with Finite Difference Time Domain Method (FDTD) were used to assess exposure of 3D models of square, rectangular, and pyramidal shaped water containers to electromagnetic waves at 300, 900, and 2400 MHz frequencies. Using the FEM simulation technique, the peak electric field of 25, 4.5, and 2 V/m at 300 MHz and 15.75, 1.5, and 1.75 V/m at 900 MHz were observed in pyramidal, rectangular, and square shaped 3D container models, respectively. The FDTD simulation method confirmed a peak electric field of 12.782, 10.907, and 10.625 V/m at 2400 MHz in the pyramidal, square, and rectangular shaped 3D models, respectively. The study demonstrated an exceptionally high level of electric field in the water in the two identical pyramid shaped 3D models analyzed using the two different simulation techniques. Both FEM and FDTD simulation techniques indicated variations in the distribution of elect...

  5. An Atlas-Based Electron Density Mapping Method for Magnetic Resonance Imaging (MRI)-Alone Treatment Planning and Adaptive MRI-Based Prostate Radiation Therapy

    SciTech Connect (OSTI)

    Dowling, Jason A., E-mail: jason.dowling@csiro.au [Australian e-Health Research Center, CSIRO ICT Commonwealth Scientific and Industrial Research Organisation Information and Communication Technologies Centre, Queensland (Australia); Lambert, Jonathan [Calvary Mater Newcastle Hospital, New South Wales (Australia); University of Newcastle, New South Wales (Australia); Parker, Joel [Calvary Mater Newcastle Hospital, New South Wales (Australia); Salvado, Olivier; Fripp, Jurgen [Australian e-Health Research Center, CSIRO ICT Commonwealth Scientific and Industrial Research Organisation Information and Communication Technologies Centre, Queensland (Australia); Capp, Anne; Wratten, Chris; Denham, James W.; Greer, Peter B. [Calvary Mater Newcastle Hospital, New South Wales (Australia); University of Newcastle, New South Wales (Australia)

    2012-05-01T23:59:59.000Z

    Purpose: Prostate radiation therapy dose planning directly on magnetic resonance imaging (MRI) scans would reduce costs and uncertainties due to multimodality image registration. Adaptive planning using a combined MRI-linear accelerator approach will also require dose calculations to be performed using MRI data. The aim of this work was to develop an atlas-based method to map realistic electron densities to MRI scans for dose calculations and digitally reconstructed radiograph (DRR) generation. Methods and Materials: Whole-pelvis MRI and CT scan data were collected from 39 prostate patients. Scans from 2 patients showed significantly different anatomy from that of the remaining patient population, and these patients were excluded. A whole-pelvis MRI atlas was generated based on the manually delineated MRI scans. In addition, a conjugate electron-density atlas was generated from the coregistered computed tomography (CT)-MRI scans. Pseudo-CT scans for each patient were automatically generated by global and nonrigid registration of the MRI atlas to the patient MRI scan, followed by application of the same transformations to the electron-density atlas. Comparisons were made between organ segmentations by using the Dice similarity coefficient (DSC) and point dose calculations for 26 patients on planning CT and pseudo-CT scans. Results: The agreement between pseudo-CT and planning CT was quantified by differences in the point dose at isocenter and distance to agreement in corresponding voxels. Dose differences were found to be less than 2%. Chi-squared values indicated that the planning CT and pseudo-CT dose distributions were equivalent. No significant differences (p > 0.9) were found between CT and pseudo-CT Hounsfield units for organs of interest. Mean {+-} standard deviation DSC scores for the atlas-based segmentation of the pelvic bones were 0.79 {+-} 0.12, 0.70 {+-} 0.14 for the prostate, 0.64 {+-} 0.16 for the bladder, and 0.63 {+-} 0.16 for the rectum. Conclusions: The electron-density atlas method provides the ability to automatically define organs and map realistic electron densities to MRI scans for radiotherapy dose planning and DRR generation. This method provides the necessary tools for MRI-alone treatment planning and adaptive MRI-based prostate radiation therapy.

  6. Oldest Known Magnet's Secrets Revealed Under High Pressures ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dichroism technique is readily applied to most magnetic materials without the need for isotope enrichment, and provides a true measure of long-range magnetic order." Other...

  7. Ground Magnetics At Neal Hot Springs Geothermal Area (Colwell...

    Open Energy Info (EERE)

    Technique Ground Magnetics Activity Date 2011 - 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Magnetic surveys were conducted to gain a better...

  8. Tunable exchange bias-like effect in patterned hard-soft two-dimensional lateral composites with perpendicular magnetic anisotropy

    SciTech Connect (OSTI)

    Hierro-Rodriguez, A., E-mail: ahierro@fc.up.pt; Alvarez-Prado, L. M.; Martn, J. I.; Alameda, J. M. [Departamento de Fsica, Universidad de Oviedo, C/Calvo Sotelo S/N, 33007 Oviedo (Spain); Centro de Investigacin en Nanomateriales y NanotecnologaCINN (CSICUniversidad de OviedoPrincipado de Asturias), Parque Tecnolgico de Asturias, 33428 Llanera (Spain); Teixeira, J. M. [IN-IFIMUP, Departamento de Fsica e Astronomia, Faculdade de Cincias, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto (Portugal); Vlez, M. [Departamento de Fsica, Universidad de Oviedo, C/Calvo Sotelo S/N, 33007 Oviedo (Spain)

    2014-09-08T23:59:59.000Z

    Patterned hard-soft 2D magnetic lateral composites have been fabricated by e-beam lithography plus dry etching techniques on sputter-deposited NdCo{sub 5} thin films with perpendicular magnetic anisotropy. Their magnetic behavior is strongly thickness dependent due to the interplay between out-of-plane anisotropy and magnetostatic energy. Thus, the spatial modulation of thicknesses leads to an exchange coupled system with hard/soft magnetic regions in which rotatable anisotropy of the thicker elements provides an extra tool to design the global magnetic behavior of the patterned lateral composite. Kerr microscopy studies (domain imaging and magneto-optical Kerr effect magnetometry) reveal that the resulting hysteresis loops exhibit a tunable exchange bias-like shift that can be switched on/off by the applied magnetic field.

  9. activation analysis technique: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Geography 478 Techniques of Remote Sensing Image Analysis (Earth Observation System Science) Dr of Remote Sensing Image Analysis (Earth Observation System Science) Remote...

  10. activation analysis techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Geography 478 Techniques of Remote Sensing Image Analysis (Earth Observation System Science) Dr of Remote Sensing Image Analysis (Earth Observation System Science) Remote...

  11. The magnetic resonance force microscope: A new microscopic probe of magnetic materials

    SciTech Connect (OSTI)

    Hammel, P.C.; Zhang, Z. [Los Alamos National Lab., NM (United States); Midzor, M.; Roukes, M.L. [California Inst. of Tech., Pasadena, CA (United States); Wigen, P.E. [Ohio State Univ., Columbus, OH (United States); Childress, J.R. [Univ. of Florida, Gainesville, FL (United States)

    1997-08-06T23:59:59.000Z

    The magnetic resonance force microscope (MRFM) marries the techniques of magnetic resonance imaging (MRI) and atomic force microscopy (AFM), to produce a three-dimensional imaging instrument with high, potentially atomic-scale, resolution. The principle of the MRFM has been successfully demonstrated in numerous experiments. By virtue of its unique capabilities the MRFM shows promise to make important contributions in fields ranging from three-dimensional materials characterization to bio-molecular structure determination. Here the authors focus on its application to the characterization and study of layered magnetic materials; the ability to illuminate the properties of buried interfaces in such materials is a particularly important goal. While sensitivity and spatial resolution are currently still far from their theoretical limits, they are nonetheless comparable to or superior to that achievable in conventional MRI. Further improvement of the MRFM will involve operation at lower temperature, application of larger field gradients, introduction of advanced mechanical resonators and improved reduction of the spurious coupling when the magnet is on the resonator.

  12. Bioinspired synthesis of magnetic nanoparticles

    SciTech Connect (OSTI)

    David, Anand

    2009-05-26T23:59:59.000Z

    The synthesis of magnetic nanoparticles has long been an area of active research. Magnetic nanoparticles can be used in a wide variety of applications such as magnetic inks, magnetic memory devices, drug delivery, magnetic resonance imaging (MRI) contrast agents, and pathogen detection in foods. In applications such as MRI, particle uniformity is particularly crucial, as is the magnetic response of the particles. Uniform magnetic particles with good magnetic properties are therefore required. One particularly effective technique for synthesizing nanoparticles involves biomineralization, which is a naturally occurring process that can produce highly complex nanostructures. Also, the technique involves mild conditions (ambient temperature and close to neutral pH) that make this approach suitable for a wide variety of materials. The term 'bioinspired' is important because biomineralization research is inspired by the naturally occurring process, which occurs in certain microorganisms called 'magnetotactic bacteria'. Magnetotactic bacteria use biomineralization proteins to produce magnetite crystals having very good uniformity in size and morphology. The bacteria use these magnetic particles to navigate according to external magnetic fields. Because these bacteria synthesize high quality crystals, research has focused on imitating aspects of this biomineralization in vitro. In particular, a biomineralization iron-binding protein found in a certain species of magnetotactic bacteria, magnetospirillum magneticum, AMB-1, has been extracted and used for in vitro magnetite synthesis; Pluronic F127 gel was used to increase the viscosity of the reaction medium to better mimic the conditions in the bacteria. It was shown that the biomineralization protein mms6 was able to facilitate uniform magnetite synthesis. In addition, a similar biomineralization process using mms6 and a shorter version of this protein, C25, has been used to synthesize cobalt ferrite particles. The overall goal of this project is to understand the mechanism of magnetite particle synthesis in the presence of the biomineralization proteins, mms6 and C25. Previous work has hypothesized that the mms6 protein helps to template magnetite and cobalt ferrite particle synthesis and that the C25 protein templates cobalt ferrite formation. However, the effect of parameters such as the protein concentration on the particle formation is still unknown. It is expected that the protein concentration significantly affects the nucleation and growth of magnetite. Since the protein provides iron-binding sites, it is expected that magnetite crystals would nucleate at those sites. In addition, in the previous work, the reaction medium after completion of the reaction was in the solution phase, and magnetic particles had a tendency to fall to the bottom of the medium and aggregate. The research presented in this thesis involves solid Pluronic gel phase reactions, which can be studied readily using small-angle x-ray scattering, which is not possible for the solution phase experiments. In addition, the concentration effect of both of the proteins on magnetite crystal formation was studied.

  13. Magnetic Resonance Imaging of concrete

    E-Print Network [OSTI]

    Burgoyne, Chris

    velocity Relates Elastic modulus to speed of sound Assumes Concrete heterogeneous Can be affected by steel Modulus related to speed of sound Strength of concrete related to modulus Location of flaws structure In both cases procedure is destructive Systems to monitor concrete modulus Ultra-sonic pulse

  14. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News ReleasesDepartmentLending a Hand

  15. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News ReleasesDepartmentLending a

  16. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearning from1-1Administration

  17. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearning from1-1AdministrationLensless

  18. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearning

  19. advanced imaging catheter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Image segmentation is very essential and critical to image processing and pattern recognition. This survey provides a summary of color image segmentation techniques...

  20. angiographic image segmentation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Image segmentation is very essential and critical to image processing and pattern recognition. This survey provides a summary of color image segmentation techniques...

  1. automatic image segmentation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Image segmentation is very essential and critical to image processing and pattern recognition. This survey provides a summary of color image segmentation techniques...

  2. On the Dynamics of Magnetic Fluids in Magnetic Resonance Padraig J. Cantillon-Murphy

    E-Print Network [OSTI]

    in Magnetic Resonance Imaging by Padraig J. Cantillon-Murphy B.E., Electrical and Electronic EngineeringOn the Dynamics of Magnetic Fluids in Magnetic Resonance Imaging by Padraig J. Cantillon-Murphy Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment

  3. Direct torsional actuation of microcantilevers using magnetic excitation

    SciTech Connect (OSTI)

    Gosvami, Nitya Nand; Nalam, Prathima C.; Tam, Qizhan; Carpick, Robert W., E-mail: carpick@seas.upenn.edu [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Exarhos, Annemarie L.; Kikkawa, James M. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2014-09-01T23:59:59.000Z

    Torsional mode dynamic force microscopy can be used for a wide range of studies including mapping lateral contact stiffness, torsional frequency or amplitude modulation imaging, and dynamic friction measurements of various materials. Piezo-actuation of the cantilever is commonly used, but it introduces spurious resonances, limiting the frequency range that can be sampled, and rendering the technique particularly difficult to apply in liquid medium where the cantilever oscillations are significantly damped. Here, we demonstrate a method that enables direct torsional actuation of cantilevers with high uniformity over wide frequency ranges by attaching a micrometer-scale magnetic bead on the back side of the cantilever. We show that when beads are magnetized along the width of the cantilever, efficient torsional actuation of the cantilevers can be achieved using a magnetic field produced from a solenoid placed underneath the sample. We demonstrate the capability of this technique by imaging atomic steps on graphite surfaces in tapping mode near the first torsional resonance of the cantilever in dodecane. The technique is also applied to map the variations in the lateral contact stiffness on the surface of graphite and polydiacetylene monolayers.

  4. Treatment of Locally Advanced Vaginal Cancer With Radiochemotherapy and Magnetic Resonance Image-Guided Adaptive Brachytherapy: Dose-Volume Parameters and First Clinical Results

    SciTech Connect (OSTI)

    Dimopoulos, Johannes C.A. [Department of Radiation Oncology, Metropolitan Hospital, Athens (Greece); Schmid, Maximilian P., E-mail: maximilian.schmid@akhwien.at [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria); Fidarova, Elena; Berger, Daniel; Kirisits, Christian; Poetter, Richard [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria)

    2012-04-01T23:59:59.000Z

    Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45-50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planning and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model ({alpha}/{beta} = 10 Gy for tumor; {alpha}/{beta} = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV ({+-} 1 standard deviation) at diagnosis was 45.3 ({+-}30) cm{sup 3}, and the mean GTV at brachytherapy was 10 ({+-}14) cm{sup 3}. The mean D90 for the HRCTV was 86 ({+-}13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 ({+-}20) Gy, 76 ({+-}16) Gy, 70 ({+-}9) Gy, and 60 ({+-}9) Gy, respectively. After a median follow-up of 43 months (range, 19-87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for HRCTV and organs at risk are in a comparable range. First clinical results indicate excellent LC. Further prospective multicenter studies are needed to establish this method and to confirm these results.

  5. Writing magnetic patterns with surface acoustic waves

    SciTech Connect (OSTI)

    Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi, E-mail: dhagat@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331 (United States)

    2014-05-07T23:59:59.000Z

    A novel patterning technique that creates magnetization patterns in a continuous magnetostrictive film with surface acoustic waves is demonstrated. Patterns of 10??m wide stripes of alternating magnetization and a 3??m dot of reversed magnetization are written using standing and focusing acoustic waves, respectively. The magnetization pattern is size-tunable, erasable, and rewritable by changing the magnetic field and acoustic power. This versatility, along with its solid-state implementation (no moving parts) and electronic control, renders it as a promising technique for application in magnetic recording, magnonic signal processing, magnetic particle manipulation, and spatial magneto-optical modulation.

  6. A Small Scale Magnetic Particle Relaxometer

    E-Print Network [OSTI]

    El Ghamrawy, Ahmed

    2013-12-09T23:59:59.000Z

    Magnetic Particle Imaging (MPI) is a newly found imaging modality. It utilizes superparamagnetic materials as tracers in the blood stream to obtain very high resolutions. MPI promises to have high sensitivity, high spatial resolution...

  7. Cancellation of TorqueRipple Due to Nonidealitiesof PermanentMagnet SynchronousMachine Drives

    E-Print Network [OSTI]

    Chapman, Patrick

    -magnet synchronous application than the predecessors. Further, the technique is machine (PMSM) drives dictates

  8. Efficient MR image reconstruction for compressed MR imaging Junzhou Huang

    E-Print Network [OSTI]

    Huang, Junzhou

    to be very powerful for the MR image reconstruction. First, we decompose the original problem into L1 and TV.V. All rights reserved. 1. Introduction Magnetic Resonance (MR) imaging has been widely used in medical. Computation became the bottleneck that prevented this good model (1) from being used in practical MR image

  9. Efficient MR Image Reconstruction for Compressed MR Imaging

    E-Print Network [OSTI]

    Huang, Junzhou

    demonstrate the superior performance of the proposed algorithm for com- pressed MR image reconstruction. 1 [1][2] show that it is possi- ble to accurately reconstruct the Magnetic Resonance (MR) images from for real MR images. Computation became the bottleneck that prevented this good model (1) from being used

  10. Imaging and sensing based on muon tomography

    DOE Patents [OSTI]

    Morris, Christopher L; Saunders, Alexander; Sossong, Michael James; Schultz, Larry Joe; Green, J. Andrew; Borozdin, Konstantin N; Hengartner, Nicolas W; Smith, Richard A; Colthart, James M; Klugh, David C; Scoggins, Gary E; Vineyard, David C

    2012-10-16T23:59:59.000Z

    Techniques, apparatus and systems for detecting particles such as muons for imaging applications. Subtraction techniques are described to enhance the processing of the muon tomography data.

  11. Imaging with Scattered Neutrons

    E-Print Network [OSTI]

    H. Ballhausen; H. Abele; R. Gaehler; M. Trapp; A. Van Overberghe

    2006-10-30T23:59:59.000Z

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-resolution images by scattered neutron radiography and tomography are presented.

  12. SU-E-J-233: A Facility for Radiobiological Experiments in a Large Magnetic Field

    SciTech Connect (OSTI)

    Carlone, M; Heaton, R; Keller, H [Princess Margaret Hospital, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada); Wouters, B [Ontario Cancer Institute, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada); Jaffray, D [Princess Margaret Hospital, Toronto, ON (Canada); Ontario Cancer Institute, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada)

    2014-06-01T23:59:59.000Z

    Purpose: There is considerable interest in developing medical linear accelerators with integrated image guidance by MRI. Less work has been done on the fundamental biology of cell survival in the presence of a strong magnetic field. The purpose of this work is to describe an experimental system capable of measuring cell survival response in the types of MRI-linac systems currently under development. Methods: We have integrated a cobalt irradiator with a solenoid magnet. The solenoid magnet has inner diameter of 10 cm. To enable measurement of the biological effects as a function of depth, we are utilizing the sliced gel technique, in which cells are embedded and fixed within a gelatin matrix. Irradiated cells at defined positions (sub mm resolution) can subsequently be recovered and assessed for cell survival or other biological effects. Results: The magnetic field profile in the solenoid has a peak magnetic field 36 cm below the top edge of the magnet bore and can be placed at and SAD of 100 cm. At a solenoid current of 35 A, the peak magnetic field is 0.25 T. The dose rate of the cobalt irradiator is 16 cGy/min at 100 cm SAD. EBT3 film was used to demonstrate the system functionality. It was irradiated at 1 cm depth at 100 cm SSD with a 44 field to 1.5 Gy in a 0.25 T magnetic field. The dose profile was similar between this film and the control exposure without magnetic field. Conclusion: Integrating a cobalt irradiator with a high field magnet is demonstrated. The magnetic field at the cobalt defining head was minimal and did not interfere with the functioning of this unit. Cell survival experiments can be reproduced exactly in the presence or absence of a magnetic field since a resistive magnet is used.

  13. Chemical Imaging Analysis of Environmental Particles Using the Focused Ion Beam/Scanning Electron Microscopy Technique: Microanalysis Insights into Atmospheric Chemistry of Fly Ash

    SciTech Connect (OSTI)

    Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.; Laskin, Alexander

    2013-01-21T23:59:59.000Z

    Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior of individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.

  14. Plated lamination structures for integrated magnetic devices

    SciTech Connect (OSTI)

    Webb, Bucknell C.

    2014-06-17T23:59:59.000Z

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  15. Category:Magnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo Back to PV

  16. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    SciTech Connect (OSTI)

    Parra, J.O.

    2001-01-26T23:59:59.000Z

    The objective of this project was to develop an advanced imaging method, including pore scale imaging, to integrate magnetic resonance (MR) techniques and acoustic measurements to improve predictability of the pay zone in two hydrocarbon reservoirs. This was accomplished by extracting the fluid property parameters using MR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurements were compared with petrographic analysis results to determine the relative roles of petrographic elements such as porosity type, mineralogy, texture, and distribution of clay and cement in creating permeability heterogeneity.

  17. Tumor Metabolism and Perfusion in Head and Neck Squamous Cell Carcinoma: Pretreatment Multimodality Imaging With {sup 1}H Magnetic Resonance Spectroscopy, Dynamic Contrast-Enhanced MRI, and [{sup 18}F]FDG-PET

    SciTech Connect (OSTI)

    Jansen, Jacobus F.A. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Radiology, Maastricht University Medical Center, Maastricht (Netherlands); Schoeder, Heiko [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Lee, Nancy Y. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Stambuk, Hilda E. [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wang Ya [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Fury, Matthew G. [Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Patel, Senehal G. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Pfister, David G. [Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Shah, Jatin P. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Koutcher, Jason A. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Shukla-Dave, Amita, E-mail: davea@mskcc.org [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2012-01-01T23:59:59.000Z

    Purpose: To correlate proton magnetic resonance spectroscopy ({sup 1}H-MRS), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and {sup 18}F-labeled fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG PET) of nodal metastases in patients with head and neck squamous cell carcinoma (HNSCC) for assessment of tumor biology. Additionally, pretreatment multimodality imaging was evaluated for its efficacy in predicting short-term response to treatment. Methods and Materials: Metastatic neck nodes were imaged with {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET in 16 patients with newly diagnosed HNSCC, before treatment. Short-term patient radiological response was evaluated at 3 to 4 months. Correlations among {sup 1}H-MRS (choline concentration relative to water [Cho/W]), DCE-MRI (volume transfer constant [K{sup trans}]; volume fraction of the extravascular extracellular space [v{sub e}]; and redistribution rate constant [k{sub ep}]), and [{sup 18}F]FDG PET (standard uptake value [SUV] and total lesion glycolysis [TLG]) were calculated using nonparametric Spearman rank correlation. To predict short-term responses, logistic regression analysis was performed. Results: A significant positive correlation was found between Cho/W and TLG ({rho} = 0.599; p = 0.031). Cho/W correlated negatively with heterogeneity measures of standard deviation std(v{sub e}) ({rho} = -0.691; p = 0.004) and std(k{sub ep}) ({rho} = -0.704; p = 0.003). Maximum SUV (SUVmax) values correlated strongly with MRI tumor volume ({rho} = 0.643; p = 0.007). Logistic regression indicated that std(K{sup trans}) and SUVmean were significant predictors of short-term response (p < 0.07). Conclusion: Pretreatment multimodality imaging using {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET is feasible in HNSCC patients with nodal metastases. Additionally, combined DCE-MRI and [{sup 18}F]FDG PET parameters were predictive of short-term response to treatment.

  18. Video Toroid Cavity Imager

    DOE Patents [OSTI]

    Gerald, Rex E. II; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10T23:59:59.000Z

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  19. Pretreatment Endorectal Coil Magnetic Resonance Imaging Findings Predict Biochemical Tumor Control in Prostate Cancer Patients Treated With Combination Brachytherapy and External-Beam Radiotherapy

    SciTech Connect (OSTI)

    Riaz, Nadeem [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Afaq, Asim; Akin, Oguz [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Pei Xin; Kollmeier, Marisa A.; Cox, Brett [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Hricak, Hedvig [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Zelefsky, Michael J., E-mail: zelefskm@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2012-11-01T23:59:59.000Z

    Purpose: To investigate the utility of endorectal coil magenetic resonance imaging (eMRI) in predicting biochemical relapse in prostate cancer patients treated with combination brachytherapy and external-beam radiotherapy. Methods and Materials: Between 2000 and 2008, 279 men with intermediate- or high-risk prostate cancer underwent eMRI of their prostate before receiving brachytherapy and supplemental intensity-modulated radiotherapy. Endorectal coil MRI was performed before treatment and retrospectively reviewed by two radiologists experienced in genitourinary MRI. Image-based variables, including tumor diameter, location, number of sextants involved, and the presence of extracapsular extension (ECE), were incorporated with other established clinical variables to predict biochemical control outcomes. The median follow-up was 49 months (range, 1-13 years). Results: The 5-year biochemical relapse-free survival for the cohort was 92%. Clinical findings predicting recurrence on univariate analysis included Gleason score (hazard ratio [HR] 3.6, p = 0.001), PSA (HR 1.04, p = 0.005), and National Comprehensive Cancer Network risk group (HR 4.1, p = 0.002). Clinical T stage and the use of androgen deprivation therapy were not correlated with biochemical failure. Imaging findings on univariate analysis associated with relapse included ECE on MRI (HR 3.79, p = 0.003), tumor size (HR 2.58, p = 0.04), and T stage (HR 1.71, p = 0.004). On multivariate analysis incorporating both clinical and imaging findings, only ECE on MRI and Gleason score were independent predictors of recurrence. Conclusions: Pretreatment eMRI findings predict for biochemical recurrence in intermediate- and high-risk prostate cancer patients treated with combination brachytherapy and external-beam radiotherapy. Gleason score and the presence of ECE on MRI were the only significant predictors of biochemical relapse in this group of patients.

  20. Influence of Cobalt Nanoparticles' Incorporation on the Magnetic Properties of the Nickel Nanofibers: Cobalt-Doped Nickel Nanofibers Prepared by Electrospinning

    E-Print Network [OSTI]

    Kim, Bongsoo

    , magnetic refrigeration systems, and contrast enhancement in magnetic resonance imaging carriers for drugsInfluence of Cobalt Nanoparticles' Incorporation on the Magnetic Properties of the Nickel, 2009 Among the common ferromagnetic metals, cobalt has distinct magnetic properties, so incorporation

  1. Electrochemical Techniques

    SciTech Connect (OSTI)

    Chen, Gang; Lin, Yuehe

    2008-07-20T23:59:59.000Z

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  2. Nonuniform radiation damage in permanent magnet quadrupoles

    SciTech Connect (OSTI)

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    2014-08-15T23:59:59.000Z

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANLs pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  3. Argonne scientists discover new magnetic phase in iron-based...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neutron diffraction image giving evidence for the new magnetic phase in iron-based superconductors discovered by Argonne scientists. It shows the scattering results from a sample...

  4. Chemical Imaging Analysis of Environmental Particles Using the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Analysis of Environmental Particles Using the Focused Ion BeamScanning Electron Microscopy Technique: Chemical Imaging Analysis of Environmental Particles Using the...

  5. Minimally invasive diagnostic imaging using high resolution Optical Coherence Tomography

    E-Print Network [OSTI]

    Herz, Paul Richard, 1972-

    2004-01-01T23:59:59.000Z

    Advances in medical imaging have given researchers unprecedented capabilities to visualize, characterize and understand biological systems. Optical Coherence Tomography (OCT) is a high speed, high resolution imaging technique ...

  6. REVIEW OF SUPERCONDUCTING MAGNETOMETERS AND CRYOGENIC REFRIGERATION TECHNIQUES

    E-Print Network [OSTI]

    Boyer, Edmond

    3. REVIEW OF SUPERCONDUCTING MAGNETOMETERS AND CRYOGENIC REFRIGERATION TECHNIQUES By W. S. GOREE to devices for shielding, stabilizing, measuring and producing magnetic fields. The zero resistance property of superconductors has been used to construct magnets capable of producing magnetic fields up to 140 kgauss

  7. Magnetic Field Measurement System

    SciTech Connect (OSTI)

    Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar [Advanced Design Consulting USA, 126 Ridge Road, P.O. Box 187, Lansing, NY 14882 (United States); Dunn, Jonathan Hunter [MAX-lab, SE-221 00 Lund (Sweden)

    2007-01-19T23:59:59.000Z

    A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.

  8. A laser speckle based position sensing technique

    E-Print Network [OSTI]

    Shilpiekandula, Vijay, 1979-

    2004-01-01T23:59:59.000Z

    This thesis presents the design and development of a novel laser-speckle-based position sensing technique. In our prototype implementation, a He-Ne laser beam is directed at the surface of an air-bearing spindle. An imaging ...

  9. Magnetic Barcoded Hydrogel Microparticles for Multiplexed Detection

    E-Print Network [OSTI]

    Bong, Ki Wan

    Magnetic polymer particles have been used in a wide variety of applications ranging from targeting and separation to diagnostics and imaging. Current synthesis methods have limited these particles to spherical or deformations ...

  10. Magnetic Resonance Pulse Sequences for Fluorine-19

    E-Print Network [OSTI]

    Terry, Robin

    2014-07-11T23:59:59.000Z

    . Magnetic resonance imaging (MRI) has the ability to noninvasively track the transplanted cells to ensure they are in the desired destination. Unlike other MRI contrast agents, fluorine-19 has the ability to provide unambiguous cell tracking for two reasons...

  11. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    SciTech Connect (OSTI)

    Aslian, Hossein [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sadeghi, Mahdi [Agricultural, Medical and Industrial Research School, Karaj (Iran, Islamic Republic of); Mahdavi, Seied Rabie [Department of Medical Physics, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Babapour Mofrad, Farshid [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Astarakee, Mahdi, E-mail: M-Astarakee@Engineer.com [Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khaledi, Navid [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Fadavi, Pedram [Department of Radiation Oncology, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-09-01T23:59:59.000Z

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (SD) of 12.33 2.47 minutes, whereas it was 3.254 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 0.02, 2.05 0.66 cm, and 0.78 0.15 cm, and they were 0.82 0.03, 1.91 0.65 cm, and 0.7 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer.

  12. ADAPTIVE AND ROBUST TECHNIQUES (ART) FOR THERMOACOUSTIC TOMOGRAPHY

    E-Print Network [OSTI]

    Xie, Yao

    ADAPTIVE AND ROBUST TECHNIQUES (ART) FOR THERMOACOUSTIC TOMOGRAPHY By YAO XIE A DISSERTATION.1 Thermoacoustic Tomography . . . . . . . . . . . . . . . . . . . . . 1 1.2 Image Reconstruction Algorithms for TAT

  13. Platinum dendritic nanoparticles with magnetic behavior

    SciTech Connect (OSTI)

    Li, Wenxian, E-mail: wl240@uowmail.edu.au [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); Solar Energy Technologies, School of Computing, Engineering, and Mathematics, University of Western Sydney, Penrith NSW 2751 (Australia); Sun, Ziqi; Nevirkovets, Ivan P.; Dou, Shi-Xue [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); Tian, Dongliang [Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and the Environment, Beihang University, Beijing 100191 (China)

    2014-07-21T23:59:59.000Z

    Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ?4?nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.

  14. High-Grade Glioma Radiation Therapy Target Volumes and Patterns of Failure Obtained From Magnetic Resonance Imaging and {sup 18}F-FDOPA Positron Emission Tomography Delineations From Multiple Observers

    SciTech Connect (OSTI)

    Kosztyla, Robert, E-mail: rkosztyla@bccancer.bc.ca [Department of Medical Physics, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Chan, Elisa K.; Hsu, Fred [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Wilson, Don [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Department of Functional Imaging, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Ma, Roy; Cheung, Arthur [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Zhang, Susan [Department of Medical Physics, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Department of Functional Imaging, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Benard, Francois [Department of Functional Imaging, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Nichol, Alan [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, British Columbia (Canada)

    2013-12-01T23:59:59.000Z

    Purpose: The objective of this study was to compare recurrent tumor locations after radiation therapy with pretreatment delineations of high-grade gliomas from magnetic resonance imaging (MRI) and 3,4-dihydroxy-6-[{sup 18}F]fluoro-L-phenylalanine ({sup 18}F-FDOPA) positron emission tomography (PET) using contours delineated by multiple observers. Methods and Materials: Nineteen patients with newly diagnosed high-grade gliomas underwent computed tomography (CT), gadolinium contrast-enhanced MRI, and {sup 18}F-FDOPA PET/CT. The image sets (CT, MRI, and PET/CT) were registered, and 5 observers contoured gross tumor volumes (GTVs) using MRI and PET. Consensus contours were obtained by simultaneous truth and performance level estimation (STAPLE). Interobserver variability was quantified by the percentage of volume overlap. Recurrent tumor locations after radiation therapy were contoured by each observer using CT or MRI. Consensus recurrence contours were obtained with STAPLE. Results: The mean interobserver volume overlap for PET GTVs (42% 22%) and MRI GTVs (41% 22%) was not significantly different (P=.67). The mean consensus volume was significantly larger for PET GTVs (58.6 52.4 cm{sup 3}) than for MRI GTVs (30.8 26.0 cm{sup 3}, P=.003). More than 95% of the consensus recurrence volume was within the 95% isodose surface for 11 of 12 (92%) cases with recurrent tumor imaging. Ten (91%) of these cases extended beyond the PET GTV, and 9 (82%) were contained within a 2-cm margin on the MRI GTV. One recurrence (8%) was located outside the 95% isodose surface. Conclusions: High-grade glioma contours obtained with {sup 18}F-FDOPA PET had similar interobserver agreement to volumes obtained with MRI. Although PET-based consensus target volumes were larger than MRI-based volumes, treatment planning using PET-based volumes may not have yielded better treatment outcomes, given that all but 1 recurrence extended beyond the PET GTV and most were contained by a 2-cm margin on the MRI GTV.

  15. Magnetic investigations

    SciTech Connect (OSTI)

    Bath, G.D.; Jahren, C.E.; Rosenbaum, J.G. [Geological Survey, Denver, CO (USA); Baldwin, M.J. [Fenix and Scisson, Inc., Mercury, NV (USA)

    1983-12-31T23:59:59.000Z

    Air and ground magnetic anomalies in the Climax stock area of the NTS help define the gross configuration of the stock and detailed configuration of magnetized rocks at the Boundary and Tippinip faults that border the stock. Magnetizations of geologic units were evaluated by measurements of magnetic properties of drill core, minimum estimates of magnetizations from ground magnetic anomalies for near surface rocks, and comparisons of measured anomalies with anomalies computed by a three-dimensional forward program. Alluvial deposits and most sedimentary rocks are nonmagnetic, but drill core measurements reveal large and irregular changes in magnetization for some quartzites and marbles. The magnetizations of quartz monzonite and granodiorite near the stock surface are weak, about 0.15 A/m, and increase at a rate of 0.00196 A/m/m to 1.55 A/m, at depths greater than 700 m (2300 ft). The volcanic rocks of the area are weakly magnetized. Aeromagnetic anomalies 850 m (2800 ft) above the stock are explained by a model consisting of five vertical prisms. Prisms 1, 2, and 3 represent the near surface outline of the stock, prism 4 is one of the models developed by Whitehill (1973), and prism 5 is modified from the model developed by Allingham and Zietz (1962). Most of the anomaly comes from unsampled and strongly-magnetized deep sources that could be either granite or metamorphosed sedimentary rocks. 48 refs., 23 figs., 3 tabs.

  16. National High Magnetic Field Laboratory 2010 ANNUAL REPORTFlorida State University University of Florida Los Alamos National Lab

    E-Print Network [OSTI]

    Weston, Ken

    RESEARCH HIGHLIGHTS: CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic tenth year of operation, continued its essential role in graphene exploration. Interest has also

  17. Image fusion for a nighttime driving display

    E-Print Network [OSTI]

    Herrington, William Frederick

    2005-01-01T23:59:59.000Z

    An investigation into image fusion for a nighttime driving display application was performed. Most of the image fusion techniques being investigated in this application were developed for other purposes. When comparing the ...

  18. Master Thesis Proposal Eddy Current Imaging of Electrically Conducting Media

    E-Print Network [OSTI]

    Vuik, Kees

    Master Thesis Proposal Eddy Current Imaging of Electrically Conducting Media Domenico Lahaye and optimization techniques en- abling the eddy current imaging of electrically conducting media. Examples: perform a literature study into topics such as eddy current imaging, inverse problems including

  19. Magnetic Field Safety Magnetic Field Safety

    E-Print Network [OSTI]

    McQuade, D. Tyler

    Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic

  20. Strange Magnetism

    E-Print Network [OSTI]

    Thomas R. Hemmert; Ulf-G. Meissner; Sven Steininger

    1998-11-09T23:59:59.000Z

    We present an analytic and parameter-free expression for the momentum dependence of the strange magnetic form factor of the nucleon and its corresponding radius which has been derived in Heavy Baryon Chiral Perturbation Theory. We also discuss a model-independent relation between the isoscalar magnetic and the strange magnetic form factors of the nucleon based on chiral symmetry and SU(3) only. These limites are used to derive bounds on the strange magnetic moment of the proton from the recent measurement by the SAMPLE collaboration.

  1. Superconductive imaging surface magnetometer

    DOE Patents [OSTI]

    Overton, Jr., William C. (Los Alamos, NM); van Hulsteyn, David B. (Santa Fe, NM); Flynn, Edward R. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  2. Ground Magnetics At San Francisco Volcanic Field Area (Warpinski...

    Open Energy Info (EERE)

    Area Exploration Technique Ground Magnetics Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration...

  3. Magnetic Beads-based Bioelectrochemical Immunoassay of Polycyclic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of this bioelectrochemical magnetic immunoassay was successfully evaluated with tap water spiked with PAHs, indicating that this convenient and sensitive technique offers...

  4. Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation

    SciTech Connect (OSTI)

    Akhbardeh, Alireza; Jacobs, Michael A. [Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 (United States); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 (United States) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 (United States)

    2012-04-15T23:59:59.000Z

    Purpose: Visualization of anatomical structures using radiological imaging methods is an important tool in medicine to differentiate normal from pathological tissue and can generate large amounts of data for a radiologist to read. Integrating these large data sets is difficult and time-consuming. A new approach uses both supervised and unsupervised advanced machine learning techniques to visualize and segment radiological data. This study describes the application of a novel hybrid scheme, based on combining wavelet transform and nonlinear dimensionality reduction (NLDR) methods, to breast magnetic resonance imaging (MRI) data using three well-established NLDR techniques, namely, ISOMAP, local linear embedding (LLE), and diffusion maps (DfM), to perform a comparative performance analysis. Methods: Twenty-five breast lesion subjects were scanned using a 3T scanner. MRI sequences used were T1-weighted, T2-weighted, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging. The hybrid scheme consisted of two steps: preprocessing and postprocessing of the data. The preprocessing step was applied for B{sub 1} inhomogeneity correction, image registration, and wavelet-based image compression to match and denoise the data. In the postprocessing step, MRI parameters were considered data dimensions and the NLDR-based hybrid approach was applied to integrate the MRI parameters into a single image, termed the embedded image. This was achieved by mapping all pixel intensities from the higher dimension to a lower dimensional (embedded) space. For validation, the authors compared the hybrid NLDR with linear methods of principal component analysis (PCA) and multidimensional scaling (MDS) using synthetic data. For the clinical application, the authors used breast MRI data, comparison was performed using the postcontrast DCE MRI image and evaluating the congruence of the segmented lesions. Results: The NLDR-based hybrid approach was able to define and segment both synthetic and clinical data. In the synthetic data, the authors demonstrated the performance of the NLDR method compared with conventional linear DR methods. The NLDR approach enabled successful segmentation of the structures, whereas, in most cases, PCA and MDS failed. The NLDR approach was able to segment different breast tissue types with a high accuracy and the embedded image of the breast MRI data demonstrated fuzzy boundaries between the different types of breast tissue, i.e., fatty, glandular, and tissue with lesions (>86%). Conclusions: The proposed hybrid NLDR methods were able to segment clinical breast data with a high accuracy and construct an embedded image that visualized the contribution of different radiological parameters.

  5. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1985-02-12T23:59:59.000Z

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  6. Magnetic nanotubes

    DOE Patents [OSTI]

    Matsui, Hiroshi (Glen Rock, NJ); Matsunaga, Tadashi (Tokyo, JP)

    2010-11-16T23:59:59.000Z

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  7. Image compression/decompression based on mathematical transform, reduction/expansion, and image sharpening

    DOE Patents [OSTI]

    Fu, C.Y.; Petrich, L.I.

    1997-12-30T23:59:59.000Z

    An image represented in a first image array of pixels is first decimated in two dimensions before being compressed by a predefined compression algorithm such as JPEG. Another possible predefined compression algorithm can involve a wavelet technique. The compressed, reduced image is then transmitted over the limited bandwidth transmission medium, and the transmitted image is decompressed using an algorithm which is an inverse of the predefined compression algorithm (such as reverse JPEG). The decompressed, reduced image is then interpolated back to its original array size. Edges (contours) in the image are then sharpened to enhance the perceptual quality of the reconstructed image. Specific sharpening techniques are described. 22 figs.

  8. Image compression/decompression based on mathematical transform, reduction/expansion, and image sharpening

    DOE Patents [OSTI]

    Fu, Chi-Yung (San Francisco, CA); Petrich, Loren I. (Livermore, CA)

    1997-01-01T23:59:59.000Z

    An image represented in a first image array of pixels is first decimated in two dimensions before being compressed by a predefined compression algorithm such as JPEG. Another possible predefined compression algorithm can involve a wavelet technique. The compressed, reduced image is then transmitted over the limited bandwidth transmission medium, and the transmitted image is decompressed using an algorithm which is an inverse of the predefined compression algorithm (such as reverse JPEG). The decompressed, reduced image is then interpolated back to its original array size. Edges (contours) in the image are then sharpened to enhance the perceptual quality of the reconstructed image. Specific sharpening techniques are described.

  9. 128 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 1, JANUARY 2006 Unwrapping of MR Phase Images Using a

    E-Print Network [OSTI]

    Koetter, Ralf

    128 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 1, JANUARY 2006 Unwrapping of MR Phase of blood flow [1], [2]. Extracting the phase image from its measured complex MR image is nontrivial because, phase unwrapping. I. INTRODUCTION A. Background Magnetic resonance (MR) phase images often contain

  10. 106 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 1, JANUARY 2010 Feature Based Nonrigid Brain MR Image Registration

    E-Print Network [OSTI]

    Chung, Albert C. S.

    106 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 1, JANUARY 2010 Feature Based Nonrigid Brain MR Image Registration With Symmetric Alpha Stable Filters Shu Liao* and Albert C. S. Chung Abstract--A new feature based nonrigid image registration method for magnetic resonance (MR) brain images

  11. Test Images

    E-Print Network [OSTI]

    Test Images. I hope to have a set of test images for the course soon. Some images are available now; some will have to wait until I can find another 100-200

  12. Low dimensional magnetism

    E-Print Network [OSTI]

    Kjall, Jonas Alexander

    2012-01-01T23:59:59.000Z

    Magnetism in Ultracold Gases 4 Magnetic phase diagram of aMagnetism . . . . . . . . . . . .1.3 Magnetism in condensedIntroduction 1 Brief introduction to magnetism 1.1 Classic

  13. Adjustable permanent magnet assembly for NMR and MRI

    DOE Patents [OSTI]

    Pines, Alexander; Paulsen, Jeffrey; Bouchard, Louis S; Blumich, Bernhard

    2013-10-29T23:59:59.000Z

    System and methods for designing and using single-sided magnet assemblies for magnetic resonance imaging (MRI) are disclosed. The single-sided magnet assemblies can include an array of permanent magnets disposed at selected positions. At least one of the permanent magnets can be configured to rotate about an axis of rotation in the range of at least +/-10 degrees and can include a magnetization having a vector component perpendicular to the axis of rotation. The single-sided magnet assemblies can further include a magnet frame that is configured to hold the permanent magnets in place while allowing the at least one of the permanent magnets to rotate about the axis of rotation.

  14. Remote Sensing Ayman F. Habib Image Registration & Rectification

    E-Print Network [OSTI]

    Habib, Ayman

    Remote Sensing Ayman F. Habib 1 Chapter 5 Image Registration & Rectification #12;Remote Sensing: Resampling techniques. #12;Remote Sensing Ayman F. Habib 3 Image Registration #12;Remote Sensing Ayman F be integrated/fused. Object Space Left Image Right Image Image Registration: Objective #12;Remote Sensing Ayman

  15. Remote Sensing Ayman F. Habib Image Registration & Rectification

    E-Print Network [OSTI]

    Habib, Ayman

    1 Remote Sensing Ayman F. Habib 1 Chapter 5 Image Registration & Rectification Remote Sensing Ayman: Resampling techniques. #12;2 Remote Sensing Ayman F. Habib 3 Image Registration Remote Sensing Ayman F. Habib be integrated/fused. Object Space Left Image Right Image Image Registration: Objective #12;3 Remote Sensing

  16. Image Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recognition Image Analysis and Recognition Snapshot1498121slicesqResedison Fibers permeating imaged material (Courtesy: Bale, Loring, Perciano and Ushizima) Imagery coming from...

  17. Image texture analysis of elastograms

    E-Print Network [OSTI]

    Hussain, Fasahat

    1999-01-01T23:59:59.000Z

    generated elastograms to obtain effective texture features. Four image analysis techniques, co-occurrence statistics, wavelet decomposition, fractal analysis and granulomeay are used to extract a number of features from each image. The inclusions...-RESOLUTION FRACTAL ANALYSIS . . . . . . E. GRANULOMETRIC FEATURES . . F. DATA NORMALIZATION . G. SEPARABILITY MEASURE 13 13 . . . . . 14 . . . . . 20 . . . . . 29 33 36 36 IV TEXTURE ANALYSIS OF SIMULATED ELASTOGRAMS. . . . . . . . . . . 38 A. SIMULATION...

  18. Controlling Magnetism at the Nanoscale

    E-Print Network [OSTI]

    Wong, Jared

    2012-01-01T23:59:59.000Z

    Manipulation of Magnetism - External148 Conclusion A The Magnetism Cheat Sheet A.1 Magnetic157 A.2 Magnetism Unit Conversion

  19. Magnet Coil Shorted Turn Detector

    SciTech Connect (OSTI)

    Dinkel, J.A.; Biggs, J.E.

    1994-03-01T23:59:59.000Z

    The Magnet Coil Shorted Turn Detector has been developed to facilitate the location of shorted turns in magnet coils. Finding these shorted turns is necessary to determine failure modes that are a necessary step in developing future production techniques. Up to this point, coils with shorted turns had the insulation burned off without the fault having been located. This disassembly process destroyed any chance of being able to find the fault. In order to maintain a flux balance in a coupled system such as a magnet coil, the current in a shorted turn must be opposed to the incident current. If the direction of the current in each conductor can be measured relative to the incident current, then the exact location of the short can be determined. In this device, an AC voltage is applied to the magnet under test. A small hand held B-dot pickup coil monitors the magnetic field produced by current in the individual magnet conductors. The relative phase of this pickup coil voltage is compared to a reference signal derived from the input current to detect a current reversal as the B-dot pickup coil is swept over the conductors of the coil under test. This technique however, is limited to only those conductors that are accessible to the hand held probe.

  20. IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 32, NO. 7, JULY 2013 1 Deformable Medical Image Registration: A Survey

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    recent advances in the domain. Additional emphasis has been given to techniques applied to medical imagesIEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 32, NO. 7, JULY 2013 1 Deformable Medical Image Paragios, Fellow, IEEE Abstract--Deformable image registration is a fundamental task in medical image

  1. Phase-space representation of digital holographic and light field imaging with application to two-phase flows

    E-Print Network [OSTI]

    Tian, Lei, Ph. D. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    In this thesis, two computational imaging techniques used for underwater research, in particular, two-phase flows measurements, are presented. The techniques under study, digital holographic imaging and light field imaging, ...

  2. Enhanced magnetocaloric effect in frustrated magnets M. E. Zhitomirsky

    E-Print Network [OSTI]

    Chandra, Premi

    applicability of the magnetic cooling technique for room-temperature refrigeration as well.5­7 Paramagnetic salts, which are standard refrigerant materi- als for the low-temperature magnetic cooling, containEnhanced magnetocaloric effect in frustrated magnets M. E. Zhitomirsky SPSMS, De´partement de

  3. Neutrino magnetic moment in a magnetized plasma

    E-Print Network [OSTI]

    N. V. Mikheev; E. N. Narynskaya

    2010-11-08T23:59:59.000Z

    The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.

  4. Single echo acquisition magnetic resonance imaging

    E-Print Network [OSTI]

    McDougall, Mary Preston

    2006-04-12T23:59:59.000Z

    ) for comparison to quasi- static field pattern modeling .................................................................................................37 3.25 Coil pattern with the appropriate signal and noise calculation areas marked for SNR evaluation...

  5. Nanoscale magnetic resonance imaging C. L. Degena

    E-Print Network [OSTI]

    Leonardo, Degiorgi

    tobacco mosaic virus particles sitting on a nanometer-thick layer of ad- sorbed hydrocarbons. This result, which represents a 100 million- fold improvement in volume resolution over conventional MRI considerable effort, attempts to push the spatial resolution of conventional MRI into the realm of high

  6. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDiesel pricesDiesel28, 2007,Dirac

  7. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal Financial Interventions

  8. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal Financial InterventionsDirect

  9. Array combination for parallel imaging in Magnetic Resonance Imaging

    E-Print Network [OSTI]

    Spence, Dan Kenrick

    2007-09-17T23:59:59.000Z

    ......................................103 Figure 51. Diagram of geometry used...........................................................................104 Figure 52. 64 element 8x8 grid array SNR map using 64 receivers. ............................105 Figure 53. 64 element 8x8 grid...-factor maps for point combined array......................................................117 Figure 63. SENSE reconstructions using point combined array...................................118 Figure 64. Grid array geometry used for simulation...

  10. Turbulence in the Solar Atmosphere: Manifestations and Diagnostics via Solar Image Processing

    E-Print Network [OSTI]

    Manolis K. Georgoulis

    2005-11-15T23:59:59.000Z

    Intermittent magnetohydrodynamical turbulence is most likely at work in the magnetized solar atmosphere. As a result, an array of scaling and multi-scaling image-processing techniques can be used to measure the expected self-organization of solar magnetic fields. While these techniques advance our understanding of the physical system at work, it is unclear whether they can be used to predict solar eruptions, thus obtaining a practical significance for space weather. We address part of this problem by focusing on solar active regions and by investigating the usefulness of scaling and multi-scaling image-processing techniques in solar flare prediction. Since solar flares exhibit spatial and temporal intermittency, we suggest that they are the products of instabilities subject to a critical threshold in a turbulent magnetic configuration. The identification of this threshold in scaling and multi-scaling spectra would then contribute meaningfully to the prediction of solar flares. We find that the fractal dimension of solar magnetic fields and their multi-fractal spectrum of generalized correlation dimensions do not have significant predictive ability. The respective multi-fractal structure functions and their inertial-range scaling exponents, however, probably provide some statistical distinguishing features between flaring and non-flaring active regions. More importantly, the temporal evolution of the above scaling exponents in flaring active regions probably shows a distinct behavior starting a few hours prior to a flare and therefore this temporal behavior may be practically useful in flare prediction. The results of this study need to be validated by more comprehensive works over a large number of solar active regions.

  11. Image Compression by Back Propagation

    E-Print Network [OSTI]

    Cottrell, Garrison W.

    CHAPTER 9 Image Compression by Back Propagation: An Example of Extensional Programming* GARRISON W the case with the computatiolls associated with basic cognitive pro- cesses such as vision and audition techniques. The technique we employ is known as back propagation. developed by l1umelhart, Hinton

  12. Petroglyphs, Lighting, and Magnetism

    E-Print Network [OSTI]

    Walker, Merle F

    2007-01-01T23:59:59.000Z

    1950 Electricity and Magnetism: Theory and Applications.I Petroglyphs, Lightning, and Magnetism | Walker Figure 8.I Petroglyphs, Lightning, and Magnetism | Walker Figure IL

  13. Imaging Liquids Using Microfluidic Cells

    SciTech Connect (OSTI)

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li

    2013-05-10T23:59:59.000Z

    Chemistry occurring in the liquid and liquid surface is important in many applications. Chemical imaging of liquids using vacuum based analytical techniques is challenging due to the difficulty in working with liquids with high volatility. Recent development in microfluidics enabled and increased our capabilities to study liquid in situ using surface sensitive techniques such as electron microscopy and spectroscopy. Due to its small size, low cost, and flexibility in design, liquid cells based on microfluidics have been increasingly used in studying and imaging complex phenomena involving liquids. This paper presents a review of microfluidic cells that were developed to adapt to electron microscopes and various spectrometers for in situ chemical analysis and imaging of liquids. The following topics will be covered including cell designs, fabrication techniques, unique technical features for vacuum compatible cells, and imaging with electron microscopy and spectroscopy. Challenges are summarized and recommendations for future development priority are proposed.

  14. Picosecond Optical MCPI-Based Imagers

    SciTech Connect (OSTI)

    None

    2012-10-01T23:59:59.000Z

    We present the desired performance specifications for an advanced optical imager, which borrows practical concepts in high-speed microchannel plate (MCP) intensified x-ray stripline imagers and time-dilation techniques. With a four-fold speed improvement in state-of-the-art high-voltage impulse drivers, and novel atomic-layer deposition MCPs, we tender a design capable of 5 ps optical gating without the use of magnetic field confinement of the photoelectrons. We analyze the electron dispersion effects in the MCP and their implications for gating pulses shorter than the MCP transit time. We present a wideband design printed-circuit version of the Series Transmission Line Transformer (STLT) that makes use of 50-ohm coaxial 1.0 mm (110 GHz) and 1.85 mm (65 GHz) hermetically sealed vacuum feedthroughs and low-dispersion Teflon/Kapton circuit materials without the use of any vias. The STLT matches impedance at all interfaces with a 16:1 impedance (4:1 voltage) reduction, and delivers a dispersion-limited sharp impulse to the MCP strip. A comparison of microstrip design calculations is given, showing variances between method of moments, empirical codes, and finite element methods for broad, low-impedance traces. Prototype performance measurements are forthcoming.

  15. Seeing the magnetic monopole through the mirror of topological surface states

    SciTech Connect (OSTI)

    Qi, Xiao-Liang; Li, Rundong; /Stanford U., Phys. Dept.; Zang, Jiadong; /Fudan U.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept. /Fudan U.

    2010-03-25T23:59:59.000Z

    Existence of the magnetic monopole is compatible with the fundamental laws of nature, however, this illusive particle has yet to be detected experimentally. In this work, we show that an electric charge near the topological surface state induces an image magnetic monopole charge due to the topological magneto-electric effect. The magnetic field generated by the image magnetic monopole can be experimentally measured, and the inverse square law of the field dependence can be determined quantitatively. We propose that this effect can be used to experimentally realize a gas of quantum particles carrying fractional statistics, consisting of the bound states of the electric charge and the image magnetic monopole charge.

  16. Magnetization process of a single magnetic ring detected by nonlocal spin valve measurement

    E-Print Network [OSTI]

    Otani, Yoshichika

    Magnetization process of a single magnetic ring detected by nonlocal spin valve measurement T of a 200-nm-wide Permalloy ring using a nonlocal spin-valve measurement technique in a lateral geometry state using lateral spin-valve geometry.1315 The chirality is found to be easily determined from

  17. Correlation lifetimes of quiet and magnetic granulation from the SOUP (Solar Optical Universal Polarimeter) instrument on Spacelab 2

    SciTech Connect (OSTI)

    Title, A.; Tarbell, T.; Topka, K.; Acton, L.; Duncan, D.

    1988-10-01T23:59:59.000Z

    The flight of the Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 allowed the collection of time sequences of diffraction-limited (0.5 arc second) granulation images with excellent pointing (0.003 arc second jitter RMS) and freedom from the distortion that plagues ground-based images. The solar 5 minute oscillations are clearly seen in the data. Using Fourier transforms in the temporal and spatial domain, the authors show that these dominate the autocorrelation lifetime in magnetic regions. When the oscillations are removed the autocorrelation lifetime is found to be 410 and 890 seconds, respectively, in quiet and magnetic regions. In quiet areas exploding granules are common. It is hard to find that neither explodes nor is unaffected by a nearby explosion. A significant fraction of granule lifetimes are terminated by nearby explosions. Local correlation-tracking techniques are used to measure horizontal displacements, and thus transverse velocities, in the intensity field. In the quiet sun it is possible to detect both super- and mesogranulation. Horizontal velocities are as great as 1000 m/s quiet sun, and the average velocity is 400 m/s. In magnetic regions, horizontal velocities are much less, about 200 m/s. These flows effect the measured lifetime. A lower limit to the lifetime in quiet and magnetic sun is estimated to be 440 and 950 seconds respectively.

  18. Magnetic Catalysis vs Magnetic Inhibition

    E-Print Network [OSTI]

    Kenji Fukushima; Yoshimasa Hidaka

    2012-09-06T23:59:59.000Z

    We discuss the fate of chiral symmetry in an extremely strong magnetic field B. We investigate not only quark fluctuations but also neutral meson effects. The former would enhance the chiral-symmetry breaking at finite B according to the Magnetic Catalysis, while the latter would suppress the chiral condensate once B exceeds the scale of the hadron structure. Using a chiral model we demonstrate how neutral mesons are subject to the dimensional reduction and the low dimensionality favors the chiral-symmetric phase. We point out that this effect, the Magnetic Inhibition, can be a feasible explanation for recent lattice-QCD data indicating the decreasing behavior of the chiral-restoration temperature with increasing B.

  19. Technique for ship/wake detection

    DOE Patents [OSTI]

    Roskovensky, John K. (Albuquerque, NM)

    2012-05-01T23:59:59.000Z

    An automated ship detection technique includes accessing data associated with an image of a portion of Earth. The data includes reflectance values. A first portion of pixels within the image are masked with a cloud and land mask based on spectral flatness of the reflectance values associated with the pixels. A given pixel selected from the first portion of pixels is unmasked when a threshold number of localized pixels surrounding the given pixel are not masked by the cloud and land mask. A spatial variability image is generated based on spatial derivatives of the reflectance values of the pixels which remain unmasked by the cloud and land mask. The spatial variability image is thresholded to identify one or more regions within the image as possible ship detection regions.

  20. Heat Loss Measurement Using Infrared Imaging

    E-Print Network [OSTI]

    Seeber, S. A.

    1983-01-01T23:59:59.000Z

    levels for objects seen in the CRT. (Radiance levels refer to the amount of infrared energy produced by an object.) The conversion of these radiance compari sons to temperatures and heat flows will be discussed below. Infrared images may be recorded... radiance level comparisons since colors may be associated with particular temperature ranges. Black and white images may be colorized during the inspection process. Alternatively, the black and white images may be stored on magnetic tape and color...

  1. Superconducting Magnet Division

    E-Print Network [OSTI]

    Superconducting Magnet Division DOE NP Program Review - July 06 1 Brookhaven Magnet Division - Nuclear Physics Program Support Activities Superconducting Magnet Program RHIC Operations Support Spin Summary Peter Wanderer, DOE review, July 25, 2006 Acting Head, Superconducting Magnet Division #12

  2. NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSVOLUME 11 N0.1 2004

    E-Print Network [OSTI]

    Weston, Ken

    NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSVOLUME 11 N0.1 2004 OPERATED BY: FLORIDA STATE R E V I E W BIOLOGY BIOCHEMISTRY CHEMISTRY CRYOGENICS ENGINEERING MATERIALS GEOCHEMISTRY INSTRUMENTATION KONDO/HEAVY FERMION SYSTEMS MAGNET TECHNOLOGY MAGNETIC RESONANCE TECHNIQUES MAGNETISMAND MAGNETIC

  3. People Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    People Images People Images Several hundred of the 1700 U.S. scientists contributing to the LHC accelerator and experiments gathered in June 2008 in CERN's building 40 CE0252 Joel...

  4. Image alignment

    DOE Patents [OSTI]

    Dowell, Larry Jonathan

    2014-04-22T23:59:59.000Z

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  5. Image processing applications in NDE

    SciTech Connect (OSTI)

    Morris, R.A.

    1980-01-01T23:59:59.000Z

    Nondestructive examination (NDE) can be defined as a technique or collection of techniques that permits one to determine some property of a material or object without damaging the object. There are a large number of such techniques and most of them use visual imaging in one form or another. They vary from holographic interferometry where displacements under stress are measured to the visual inspection of an objects surface to detect cracks after penetrant has been applied. The use of image processing techniques on the images produced by NDE is relatively new and can be divided into three general categories: classical image enhancement; mensuration techniques; and quantitative sensitometry. An example is discussed of how image processing techniques are used to nondestructively and destructively test the product throughout its life cycle. The product that will be followed is the microballoon target used in the laser fusion program. The laser target is a small (50 to 100 ..mu..m - dia) glass sphere with typical wall thickness of 0.5 to 6 ..mu..m. The sphere may be used as is or may be given a number of coatings of any number of materials. The beads are mass produced by the millions and the first nondestructive test is to separate the obviously bad beads (broken or incomplete) from the good ones. After this has been done, the good beads must be inspected for spherocity and wall thickness uniformity. The microradiography of the glass, uncoated bead is performed on a specially designed low-energy x-ray machine. The beads are mounted in a special jig and placed on a Kodak high resolution plate in a vacuum chamber that contains the x-ray source. The x-ray image is made with an energy less that 2 keV and the resulting images are then inspected at a magnification of 500 to 1000X. Some typical results are presented.

  6. Imaging diffusion with non-uniform B{sub 1} gradients.

    SciTech Connect (OSTI)

    Woelk, K.

    1998-01-30T23:59:59.000Z

    Rotating-frame imaging with the mathematically well-defined, non-constant magnetic field gradient of toroid cavity detectors represents a new technique to evaluate diffusion in solids, fluids or mixed-phase systems. While conventional NMR methods to measure diffusion utilize constant magnetic field gradients and, therefore, constant k-space wave numbers across the sample volume, the hyperbolic B{sub 1} fields of toroid cavity detectors exhibit large ranges of wave numbers radially distributed around the central conductor. As a consequence, signal amplitudes decay depending on the radial distance from the center axis of the torus. Applying a numerical finite-difference procedure to solve partial differential transport equations makes it possible not only to determine diffusion in toroid detectors to a high precision but also to include and accurately reproduce transport phenomena at or through singularities, such as phase transitions, membranes or impermeable boundaries.

  7. High throughput 3D optical microscopy : from image cytometry to endomicroscopy

    E-Print Network [OSTI]

    Choi, Heejin

    2014-01-01T23:59:59.000Z

    Optical microscopy is an imaging technique that allows morphological mapping of intracellular structures with submicron resolution. More importantly, optical microscopy is a technique that can readily provide images with ...

  8. Energetic neutral atom imaging with the Polar CEPPAD/IPS instrument: Initial forward modeling results

    SciTech Connect (OSTI)

    Henderson, M.G.; Reeves, G.D.; Moore, K.R. [Los Alamos National Lab., NM (United States); Spence, H.E.; Jorgensen, A.M. [Boston Univ., MA (United States). Center for Space Physics; Fennell, J.F.; Blake, J.B. [Aerospace Corp., Los Angeles, CA (United States); Roelof, E.C. [Johns Hopkins Univ., Laurel, MD (United States). Applied Physics Lab.

    1997-12-31T23:59:59.000Z

    Although the primary function of the CEP-PAD/IPS instrument on Polar is the measurement of energetic ions in-situ, it has also proven to be a very capable Energetic neutral Atom (ENA) imager. Raw ENA images are currently being constructed on a routine basis with a temporal resolution of minutes during both active and quiet times. However, while analyses of these images by themselves provide much information on the spatial distribution and dynamics of the energetic ion population in the ring current, detailed modeling is required to extract the actual ion distributions. In this paper, the authors present the initial results of forward modeling an IPS ENA image obtained during a small geo-magnetic storm on June 9, 1997. The equatorial ion distribution inferred with this technique reproduces the expected large noon/midnight and dawn/dusk asymmetries. The limitations of the model are discussed and a number of modifications to the basic forward modeling technique are proposed which should significantly improve its performance in future studies.

  9. artery magnetic resonance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Whole Brain Isotropic Arterial Spin Labeling Magnetic Resonance Imaging in a transgenic mouse...

  10. Medial Techniques for Automating Finite Element Analysis

    E-Print Network [OSTI]

    Whitton, Mary C.

    Medial Techniques for Automating Finite Element Analysis by Jessica Renee Crawford Crouch Analysis. (Under the direction of Stephen M. Pizer.) Finite element analysis provides a principled method the simulation of tissue deformation. The drawback to using finite element analysis for imaging problems

  11. Sub-surface characterization and three dimensional profiling of semiconductors by magnetic resonance force microscopy

    SciTech Connect (OSTI)

    Hammel, P.C.; Moore, G.; Roukes, M.; Zhenyong Zhang

    1996-10-01T23:59:59.000Z

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project successfully developed a magnetic resonance force microscope (MRFM) instrument to mechanically detect magnetic resonance signals. This technique provides an intrinsically subsurface, chemical-species-specific probe of structure, constituent density and other properties of materials. As in conventional magnetic resonance imaging (MRI), an applied magnetic field gradient selects a well defined volume of the sample for study. However mechanical detection allows much greater sensitivity, and this in turn allows the reduction of the size of the minimum resolvable volume. This requires building an instrument designed to achieve nanometer-scale resolution at buried semiconductor interfaces. High-resolution, three-dimensional depth profiling of semiconductors is critical in the development and fabrication of semiconductor devices. Currently, there is no capability for direct, high-resolution observation and characterization of dopant density, and other critical features of semiconductors. The successful development of MRFM in conjunction with modifications to improve resolution will enable for the first time detailed structural and electronic studies in doped semiconductors and multilayered nanoelectronic devices, greatly accelerating the current pace of research and development.

  12. Magnetic Reconnection

    SciTech Connect (OSTI)

    Masaaki Yamada, Russell Kulsrud and Hantao Ji

    2009-09-17T23:59:59.000Z

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

  13. Patterned Magnetic Nanostructures and Quantized Magnetic Disks

    E-Print Network [OSTI]

    -increasing demands in data storage and to new applications of magnetic devices in the field of sensors. NewPatterned Magnetic Nanostructures and Quantized Magnetic Disks STEPHEN Y. CHOU Invited Paper, opens up new opportunities for engineering innovative magnetic materials and devices, developing ultra

  14. SPIE Medical Imaging Medical Imaging

    E-Print Network [OSTI]

    Miga, Michael I.

    CT and SPECT (GE Hawkeye) SPIE Medical Imaging 2006 28 CT/PET System Combined CT and PET (Siemens Medical Imaging 2006 10 Computed Tomography (CT) 3D Tomography from multiple projections #12;6 SPIE: Scintillation Camera SPIE Medical Imaging 2006 26 PET and SPECT PET = Positron Emission Tomography SPECT

  15. Deep Illumination Angular Domain Imaging within Highly Scattering Media Enhanced by Image Processing

    E-Print Network [OSTI]

    Chapman, Glenn H.

    tissue damage and increasing cancer risks proportionate to the cumulative dose of radiation applied [2 techniques to enhance the spatial image resolution and image contrast and to reduce noise. Keywords: Optical tomography, Angular Domain Imaging, Deep Illumination, Lasers, Tissue Optics, angular filter, Silicon

  16. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas

    SciTech Connect (OSTI)

    Lynn, Alan G., E-mail: lynn@ece.unm.edu; Gilmore, Mark [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2014-11-15T23:59:59.000Z

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ?10{sup 4} T (100 Megagauss) over small volumes (?10{sup ?10}m{sup 3}) at high plasma densities (?10{sup 28}m{sup ?3}) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  17. An optimized magnet for magnetic refrigeration

    E-Print Network [OSTI]

    Bjrk, R; Smith, A; Christensen, D V; Pryds, N

    2014-01-01T23:59:59.000Z

    A magnet designed for use in a magnetic refrigeration device is presented. The magnet is designed by applying two general schemes for improving a magnet design to a concentric Halbach cylinder magnet design and dimensioning and segmenting this design in an optimum way followed by the construction of the actual magnet. The final design generates a peak value of 1.24 T, an average flux density of 0.9 T in a volume of 2 L using only 7.3 L of magnet, and has an average low flux density of 0.08 T also in a 2 L volume. The working point of all the permanent magnet blocks in the design is very close to the maximum energy density. The final design is characterized in terms of a performance parameter, and it is shown that it is one of the best performing magnet designs published for magnetic refrigeration.

  18. In Vivo Imaging with a Cell-Permeable Porphyrin-Based MRI Contrast

    E-Print Network [OSTI]

    Lee, Taekwan

    Magnetic resonance imaging (MRI) with molecular probes offers the potential to monitor physiological parameters with comparatively high spatial and temporal resolution in living subjects. For detection of intracellular ...

  19. In vivo imaging with a cell-permeable porphyrin-based MRI contrast agent

    E-Print Network [OSTI]

    Lee, Taekwan

    Magnetic resonance imaging (MRI) with molecular probes offers the potential to monitor physiological parameters with comparatively high spatial and temporal resolution in living subjects. For detection of intracellular ...

  20. Impact of seismic resolution on geostatistical techniques

    SciTech Connect (OSTI)

    Mukerji, T.; Rio, P.; Mavko, G.M.

    1995-12-31T23:59:59.000Z

    Seismic measurements are often incorporated in geostatistical techniques for estimation and simulation of petrophysical properties such as porosity. The good correlation between seismic and rock properties provides a basis for these techniques. Seismic data have a wide spatial coverage not available in log or core data. However, each seismic measurement has a characteristic response function determined by the source-receiver geometry and signal bandwidth. The image response of the seismic measurement gives a filtered version of the true velocity image. Therefore the seismic image we obtain cannot reflect exactly the true seismic velocity at all scales of spatial heterogeneities present in the earth. The seismic response function can be conveniently approximated in the spatial spectral domain using a Born approximation. Our goal is to study how the seismic image response affects the estimation of variograms and spatial scales, and its impact on geostatistical results. Limitations of view angles and signal bandwidth not only smoothes the seismic image, increasing the variogram range, but can also introduce anisotropic spatial structures in the image. We can add value to the seismic data by better characterizing an quantifying these attributes. As an exercise we present example of seismically assisted cosimulation of porosity between wells.

  1. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema (OSTI)

    Zhang, Song

    2012-08-29T23:59:59.000Z

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  2. The HERMES dual-radiator ring imaging Cerenkov detector

    E-Print Network [OSTI]

    Akopov, N Z; Bailey, K; Bernreuther, S; Bianchi, N; Capitani, G P; Carter, P; Cisbani, E; De Leo, R; De Sanctis, E; De Schepper, D; Dzhordzhadze, V; Filippone, B W; Frullani, S; Garibaldi, F; Hansen, J O; Hommez, B; Iodice, M; Jackson, H E; Jung, P; Kaiser, R; Kanesaka, J; Kowalczyk, R; Lagamba, L; Maas, A; Muccifora, V; Nappi, E; Negodaeva, K; Nowak, Wolf-Dieter; O'Connor, T; O'Neill, T G; Potterveld, D H; Ryckbosch, D; Sakemi, Y; Sato, F; Schwind, A; Shibata, T A; Suetsugu, K; Thomas, E; Tytgat, M; Urciuoli, G M; Van de Kerckhove, K; Van de Vyver, R; Yoneyama, S; Zohrabyan, H G; Zhang, L F

    2002-01-01T23:59:59.000Z

    The construction and use of a dual radiator Ring Imaging Cerenkov(RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasizes measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C4F10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  3. Applications of Fourier Domain Mode Locked lasers for optical coherence tomography imaging

    E-Print Network [OSTI]

    Adler, Desmond Christopher, 1978-

    2009-01-01T23:59:59.000Z

    Optical coherence tomography (OCT) is a micrometer-resolution imaging technique that produces cross-sectional images of sample microstructure by measuring the amplitude and echo time delay of backscattered light. OCT imaging ...

  4. Associated Particle Tagging (APT) in Magnetic Spectrometers

    SciTech Connect (OSTI)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16T23:59:59.000Z

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. The report documents several features of a notional generator design incorporating the alpha-particle spectrometer concept, and outlines challenges involved in the magnetic field design. Tagged photon interrogation: We investigated a method for discriminating fissile from benign cargo-material response to an energy-tagged photon beam. The method relies upon coincident detection of the tagged photon and a photoneutron or photofission neutron produced in the target material. The method exploits differences in the shape of the neutron production cross section as a function of incident photon energy in order to discriminate photofission yield from photoneutrons emitted by non-fissile materials. Computational tests of the interrogation method as applied to material composition assay of a simple, multi-layer target suggest that the tagged-photon information facilitates precise (order 1% thickness uncertainty) reconstruction of the constituent thicknesses of fissile (uranium) and high-Z (Pb) constituents of the test targets in a few minutes of photon-beam exposure. We assumed an 18-MeV endpoint tagged photon beam for these simulations. The report addresses several candidate design and data analysis issues for beamline infrastructure required to produce a tagged photon beam in a notional AI-dedicated facility, including the accelerator and tagging spectrometer.

  5. Knowledge discovery using data mined from Nuclear Magnetic

    E-Print Network [OSTI]

    Narasayya, Vivek

    Knowledge discovery using data mined from Nuclear Magnetic Resonance spectral images William J cyberinfrastructure Method Solid State ab initio calculations Nuclear Magnetic Resonance (NMR) Support Vector refined (and/or relaxed) structure, perform Self-Consistent Field calculation for electronic structure

  6. Wavelets in medical imaging

    SciTech Connect (OSTI)

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H. [Sharda University, SET, Department of Electronics and Communication, Knowledge Park 3rd, Gr. Noida (India); University of Kocaeli, Department of Mathematics, 41380 Kocaeli (Turkey); Istanbul Aydin University, Department of Computer Engineering, 34295 Istanbul (Turkey); Sharda University, SET, Department of Mathematics, 32-34 Knowledge Park 3rd, Greater Noida (India)

    2012-07-17T23:59:59.000Z

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  7. A magnetically switched kicker for proton extraction

    SciTech Connect (OSTI)

    Dinkel, J.; Biggs, J.

    1989-03-01T23:59:59.000Z

    The application of magnetic current amplification and switching techniques to the generation of precise high current pulses for switching magnets is described. The square loop characteristic of Metglas tape wound cores at high excitation levels provides excellent switching characteristics for microsecond pulses. The rugged and passive nature of this type pulser makes it possible to locate the final stages of amplification at the load for maximum efficiency. 12 refs., 8 figs.

  8. Imaging the Coso geothermal area crustal structure with an array...

    Open Energy Info (EERE)

    teleseismic events. Using array-processing techniques, we mitigate the effects of near surface scattered energy. Mini-arrays of seismometers allow for imaging of small-scale...

  9. Fluid Imaging of Enhanced Geothermal Systems | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Geophysical Imaging Technologies for Geothermal Resource Characterization Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced...

  10. Assessor Training Assessment Techniques

    E-Print Network [OSTI]

    NVLAP Assessor Training Assessment Techniques: Communication Skills and Conducting an Assessment listener Knowledgeable Assessor Training 2009: Assessment Techniques: Communication Skills & Conducting, truthful, sincere, discrete Diplomatic Decisive Selfreliant Assessor Training 2009: Assessment

  11. Superconducting Magnet Division

    E-Print Network [OSTI]

    Gupta, Ramesh

    Superconducting Magnet Division Permanent Magnet Designs with Large Variations in Field Strength the residual field of the magnetized bricks by concentrating flux lines at the iron pole. Low Field Design Medium Field Design Superconducting Magnet Division Dipole and Quadrupole Magnets for RHIC e

  12. advanced x-ray techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a new X-ray radiographic technique for measuring density uniformity of silica aerogels used as radiator in proximity-focusing ring-imaging Cherenkov detectors. To obtain...

  13. Superconducting magnet

    DOE Patents [OSTI]

    Satti, John A. (Naperville, IL)

    1980-01-01T23:59:59.000Z

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  14. Multiphase imaging of gas flow in a nanoporous material usingremote detection NMR

    SciTech Connect (OSTI)

    Harel, Elad; Granwehr, Josef; Seeley, Juliette A.; Pines, Alex

    2005-10-03T23:59:59.000Z

    Pore structure and connectivity determine how microstructured materials perform in applications such as catalysis, fluid storage and transport, filtering, or as reactors. We report a model study on silica aerogel using a recently introduced time-of-flight (TOF) magnetic resonance imaging technique to characterize the flow field and elucidate the effects of heterogeneities in the pore structure on gas flow and dispersion with Xe-129 as the gas-phase sensor. The observed chemical shift allows the separate visualization of unrestricted xenon and xenon confined in the pores of the aerogel. The asymmetrical nature of the dispersion pattern alludes to the existence of a stationary and a flow regime in the aerogel. An exchange time constant is determined to characterize the gas transfer between them. As a general methodology, this technique provides new insights into the dynamics of flow in porous media where multiple phases or chemical species may be present.

  15. Ground Magnetics At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Ground Magnetics Activity...

  16. Vital Alert's C1000 mine and tunnel radios use magnetic induction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and tunnel radios use magnetic induction, advanced digital communications techniques and ultra-low frequency transmission to wirelessly provide reliable 2-way voice, text, or data...

  17. Surface Magnetization of Aperiodic Ising Quantum Chains

    E-Print Network [OSTI]

    L. Turban; B. Berche

    1997-09-11T23:59:59.000Z

    We study the surface magnetization of aperiodic Ising quantum chains. Using fermion techniques, exact results are obtained in the critical region for quasiperiodic sequences generated through an irrational number as well as for the automatic binary Thue-Morse sequence and its generalizations modulo p. The surface magnetization exponent keeps its Ising value, beta_s=1/2, for all the sequences studied. The critical amplitude of the surface magnetization depends on the strength of the modulation and also on the starting point of the chain along the aperiodic sequence.

  18. Nanoscale Diffusion Studies of Lipid Membranes National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    Magnetic Resonance Imaging & Spectroscopy User Facility, University of Florida Chemical Engineering We haveNanoscale Diffusion Studies of Lipid Membranes National High Magnetic Field Laboratory Advanced for the facility's future use. This will serve to enhance infrastructure for research and education at the Magnet

  19. Nanostructured magnetic materials

    E-Print Network [OSTI]

    Chan, Keith T.

    2011-01-01T23:59:59.000Z

    Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

  20. Interface Magnetism in Multiferroics

    E-Print Network [OSTI]

    He, Qing

    2011-01-01T23:59:59.000Z

    1.2.1 Magnetism . . . . . . . . . . . . . . . . . . . 1.2.2domain walls . . . . . 3 Magnetism of domain walls in BiFeOof electrical control of magnetism in mixed phase BiFeO 3

  1. Fluorescence Imaging for Nuclear Arms Control Verification

    E-Print Network [OSTI]

    Feener, Jessica S

    2014-08-14T23:59:59.000Z

    treaties. Specifically, this technique uses fluorescence imaging to determine fissile material attributes in verifying, during the dismantlement process, an uncanned nuclear warhead or warhead component without revealing sensitive information. This could...

  2. Efficient implementation schemes for image enhancement filters

    E-Print Network [OSTI]

    Yusuf, Khadem Mahmud

    1994-01-01T23:59:59.000Z

    Generalized median filtering techniques that have appeared in previous literature suffer from some severe disadvantages. They are not only hardware intensive and time consuming but also tend to smear image edges. These shortcomings can be overcome...

  3. Efficient implementation schemes for image enhancement filters

    E-Print Network [OSTI]

    Yusuf, Khadem Mahmud

    1994-01-01T23:59:59.000Z

    Generalized median filtering techniques that have appeared in previous literature suffer from some severe disadvantages. They are not only hardware intensive and time consuming but also tend to smear image edges. These shortcomings can be overcome...

  4. Laced permanent magnet quadrupole drift tube magnets

    SciTech Connect (OSTI)

    Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.

    1989-03-01T23:59:59.000Z

    Twenty-three laced permanent magnet quadrupole drift tube magnets have been constructed, tested, and installed in the SuperHILAC heavy ion linear accelerator at LBL, marking the first accelerator use of this new type of quadrupole. The magnets consist of conventional tape-wound quadrupole electromagnets, using iron pole-pieces, with permanent magnet material (samarium cobalt) inserted between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the individual quadrupole magnets in a drift tube linac is never reversed, we can take advantage of this asymmetrical saturation to provide about 20% greater focusing strength than is available with conventional quadrupoles, while replacing the vanadium permendur poletips with iron poletips. Comparisons between these magnets and conventional tape-wound quadrupoles will be presented. 3 refs., 5 figs.

  5. Advantages and Limitations of the RICH Technique for Particle Identification

    SciTech Connect (OSTI)

    Ratcliff, Blair N.; /SLAC

    2011-11-07T23:59:59.000Z

    The ring imaging Cherenkov (RICH) technique for hadronic particle identification (PID) is described. The advantages and limitations of RICH PID counters are compared with those of other classic PID techniques, such as threshold Cherenkov counters, ionization loss (dE/dx) in tracking devices, and time of flight (TOF) detectors.

  6. Application of a nudging technique to thermoacoustic tomography

    E-Print Network [OSTI]

    Boyer, Edmond

    Application of a nudging technique to thermoacoustic tomography Xavier Bonnefond and Sbastien Marinesque December 3, 2011 Abstract ThermoAcoustic Tomography (TAT) is a promising, non invasive, medical inversion method. 1 Introduction ThermoAcoustic Tomography (TAT) is a hybrid imaging technique that uses

  7. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  8. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Design of the BPA Superconducting 30-MJ Energy Storagefor a Utility Scale Superconducting Magnetic Energy Storagefor a Lnrge Scale Superconducting Magnetic Energy Storage

  9. A practical acceleration algorithm for real-time imaging

    E-Print Network [OSTI]

    Sumbul, Uygar

    A practical acceleration algorithm for real-time magnetic resonance imaging (MRI) is presented. Neither separate training scans nor embedded training samples are used. The Kalman filter based algorithm provides a fast and ...

  10. Sandia Energy - Sandia Magnetized Fusion Technique Produces Significant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeterWave-Energyto Share

  11. Particle transport as a result of resonant magnetic perturbations

    E-Print Network [OSTI]

    Mordijck, Saskia

    2011-01-01T23:59:59.000Z

    field of plasma physics with a particular focus on particlewe will focus on localized measurements at the plasma edgefocuses on the Magnetic confinement technique utilizing a Tokamak [91]. The goal of a burning plasma,

  12. Efficient and Robust Non-Rigid Least-Squares Rectification of Medical Images

    E-Print Network [OSTI]

    Orchard, Jeffery J.

    imaging, robust statistics, least-squares. 1 Introduction Advances in medical imaging techniques haveEfficient and Robust Non-Rigid Least-Squares Rectification of Medical Images A. Wong Department of the major problems facing medical imaging is the presence of geometric distortions inherent in an imaging

  13. Rotational hysteresis of exchange-spring magnets.

    SciTech Connect (OSTI)

    Jiang, J.S.; Bader, S.D.; Kaper, H.; Leaf, G.K.; Shull, R.D.; Shapiro, A.J.; Gornakov, V.S.; Nikitenko, V.I.; Platt, C.L.; Berkowitz, A.E.; David, S.; Fullerton, E.E.

    2002-03-27T23:59:59.000Z

    We highlight our experimental studies and micromagnetic simulations of the rotational hysteresis in exchange-spring magnets. Magneto-optical imaging and torque magnetometry measurements for SmCo/Fe exchange-spring films with uniaxial in-plane anisotropy show that the magnetization rotation created in the magnetically soft Fe layer by a rotating magnetic field is hysteretic. The rotational hysteresis is due to the reversal of the chirality of the spin spiral structure. Micromagnetic simulations reveal two reversal modes of the chirality, one at low fields due to an in-plane untwisting of the spiral, and the other, at high fields, due to an out-of-plane fanning of the spiral.

  14. Science Drivers and Technical Challenges for Advanced Magnetic Resonance

    SciTech Connect (OSTI)

    Mueller, Karl T.; Pruski, Marek; Washton, Nancy M.; Lipton, Andrew S.

    2013-03-07T23:59:59.000Z

    This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field.

  15. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion

    SciTech Connect (OSTI)

    McBride, R. D.; Martin, M. R.; Lemke, R. W.; Jennings, C. A.; Rovang, D. C.; Sinars, D. B.; Cuneo, M. E.; Herrmann, M. C.; Slutz, S. A.; Nakhleh, C. W.; Davis, J.-P.; Flicker, D. G.; Rogers, T. J.; Robertson, G. K.; Kamm, R. J.; Smith, I. C.; Savage, M.; Stygar, W. A.; Rochau, G. A.; Jones, M. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); and others

    2013-05-15T23:59:59.000Z

    Multiple experimental campaigns have been executed to study the implosions of initially solid beryllium (Be) liners (tubes) on the Z pulsed-power accelerator. The implosions were driven by current pulses that rose from 0 to 20 MA in either 100 or 200 ns (200 ns for pulse shaping experiments). These studies were conducted in support of the recently proposed Magnetized Liner Inertial Fusion concept [Slutz et al., Phys. Plasmas 17, 056303 (2010)], as well as for exploring novel equation-of-state measurement techniques. The experiments used thick-walled liners that had an aspect ratio (initial outer radius divided by initial wall thickness) of either 3.2, 4, or 6. From these studies, we present three new primary results. First, we present radiographic images of imploding Be liners, where each liner contained a thin aluminum sleeve for enhancing the contrast and visibility of the liner's inner surface in the images. These images allow us to assess the stability of the liner's inner surface more accurately and more directly than was previously possible. Second, we present radiographic images taken early in the implosion (prior to any motion of the liner's inner surface) of a shockwave propagating radially inward through the liner wall. Radial mass density profiles from these shock compression experiments are contrasted with profiles from experiments where the Z accelerator's pulse shaping capabilities were used to achieve shockless (quasi-isentropic) liner compression. Third, we present micro-B-dot measurements of azimuthal magnetic field penetration into the initially vacuum-filled interior of a shocked liner. Our measurements and simulations reveal that the penetration commences shortly after the shockwave breaks out from the liner's inner surface. The field then accelerates this low-density precursor plasma to the axis of symmetry.

  16. Reaction product imaging

    SciTech Connect (OSTI)

    Chandler, D.W. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01T23:59:59.000Z

    Over the past few years the author has investigated the photochemistry of small molecules using the photofragment imaging technique. Bond energies, spectroscopy of radicals, dissociation dynamics and branching ratios are examples of information obtained by this technique. Along with extending the technique to the study of bimolecular reactions, efforts to make the technique as quantitative as possible have been the focus of the research effort. To this end, the author has measured the bond energy of the C-H bond in acetylene, branching ratios in the dissociation of HI, the energetics of CH{sub 3}Br, CD{sub 3}Br, C{sub 2}H{sub 5}Br and C{sub 2}H{sub 5}OBr dissociation, and the alignment of the CD{sub 3} fragment from CD{sub 3}I photolysis. In an effort to extend the technique to bimolecular reactions the author has studied the reaction of H with HI and the isotopic exchange reaction between H and D{sub 2}.

  17. New techniques for the scientific visualization of three-dimensional multi-variate and vector fields

    SciTech Connect (OSTI)

    Crawfis, R.A.

    1995-10-01T23:59:59.000Z

    Volume rendering allows us to represent a density cloud with ideal properties (single scattering, no self-shadowing, etc.). Scientific visualization utilizes this technique by mapping an abstract variable or property in a computer simulation to a synthetic density cloud. This thesis extends volume rendering from its limitation of isotropic density clouds to anisotropic and/or noisy density clouds. Design aspects of these techniques are discussed that aid in the comprehension of scientific information. Anisotropic volume rendering is used to represent vector based quantities in scientific visualization. Velocity and vorticity in a fluid flow, electric and magnetic waves in an electromagnetic simulation, and blood flow within the body are examples of vector based information within a computer simulation or gathered from instrumentation. Understand these fields can be crucial to understanding the overall physics or physiology. Three techniques for representing three-dimensional vector fields are presented: Line Bundles, Textured Splats and Hair Splats. These techniques are aimed at providing a high-level (qualitative) overview of the flows, offering the user a substantial amount of information with a single image or animation. Non-homogenous volume rendering is used to represent multiple variables. Computer simulations can typically have over thirty variables, which describe properties whose understanding are useful to the scientist. Trying to understand each of these separately can be time consuming. Trying to understand any cause and effect relationships between different variables can be impossible. NoiseSplats is introduced to represent two or more properties in a single volume rendering of the data. This technique is also aimed at providing a qualitative overview of the flows.

  18. Magnetic tests for magnetosome chains in Martian meteorite ALH84001

    E-Print Network [OSTI]

    Weiss, Benjamin P.

    Magnetic tests for magnetosome chains in Martian meteorite ALH84001 Benjamin P. Weiss* , Soon Sam* Divisions of *Geological and Planetary Sciences and Chemistry and Chemical Engineering and Jet Propulsion to magnetofossils. Here we use three rock magnetic techniques, low-temperature cycling, the Moskowitz test

  19. Integrated nuclear techniques to detect illicit materials

    SciTech Connect (OSTI)

    DeVolpi, A.

    1997-10-01T23:59:59.000Z

    This paper discusses the problem of detecting explosives in the context of an object being transported for illicit purposes. The author emphasizes that technologies developed for this particular application have payoffs in many related problem areas. The author discusses nuclear techniques which can be applied to this detection problem. These include: x-ray imaging; neutronic interrogation; inelastic neutron scattering; fieldable neutron generators. He discusses work which has been done on the applications of these technologies, including results for detection of narcotics. He also discusses efforts to integrate these techniques into complementary systems which offer improved performance.

  20. FTN4 OPTIMIZATION TECHNIQUES.

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01T23:59:59.000Z

    3 1st Edition FTN4 OPTIMIZATION TECHNIQUES November 1979O. INTRODUCTION 1. COt1PILER OPTIMIZATIONS 2. SOURCE CODEcode. Most of these optimizations decrease central processor

  1. Laced permanent magnet quadrupole drift tube magnets

    SciTech Connect (OSTI)

    Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.

    1988-10-01T23:59:59.000Z

    A laced permanent magnet quadrupole drift tube magnet has been constructed for a proof-of-principle test. The magnet is a conventional tape-wound quadrupole electromagnet, using iron pole- pieces, with the addition of permanent magnet material (neodymium iron) between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the quadrupole magnets in a drift tube linac is not reversed we can take advantage of this asymmetrical saturation to provide greater focusing strength. The magnet configuration has been optimized and the vanadium permendur poles needed in a conventional quadrupole have been replaced with iron poles. The use of permanent magnet material has allowed us to increase the focusing strength of the magnet by about 20% over that of a conventional tape-wound quadrupole. Comparisons will be made between this magnet and the conventional tape-wound quadrupole. 3 refs., 5 figs.

  2. Microscopy image segmentation tool: Robust image data analysis

    SciTech Connect (OSTI)

    Valmianski, Ilya, E-mail: ivalmian@ucsd.edu; Monton, Carlos; Schuller, Ivan K. [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)] [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)

    2014-03-15T23:59:59.000Z

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  3. Image Fusion for MR Bias Stochastic Systems Group

    E-Print Network [OSTI]

    Willsky, Alan S.

    We can target T1 and T2 through appropriate selection of TE and TR. #12;Image Reconstruction The MRImage Fusion for MR Bias Correction Ayres Fan Stochastic Systems Group Joint work with W. Wells, J. Fisher, M. Cetin, S. Haker, A. Willsky, B. Mulkern #12;Magnetic Resonance The magnetic resonance (MR

  4. Introduction Magnetic Anisotropy of

    E-Print Network [OSTI]

    Rossak, Wilhelm R.

    not completely understood interesting for dilute magnetic semiconductors (DMSs) transparent ferromagnets

  5. Superconducting Magnet Division

    E-Print Network [OSTI]

    McDonald, Kirk

    Superconducting Magnet Division Ramesh Gupta 20T Target Solenoid with HTS Insert Solenoid Capture Laboratory New York, USA http://www.bnl.gov/magnets/staff/gupta #12;Superconducting Magnet Division Ramesh of HTS may significantly reduce the amount of Tungsten shielding · Summary #12;Superconducting Magnet

  6. Modeling, Pattern Analysis and Feature-Based Retrieval on Retinal Images

    E-Print Network [OSTI]

    Ying, Huajun

    2012-07-16T23:59:59.000Z

    modeling techniques on the rotational contrast transform (RCT) of image pixels, we do a quantified reasoning of the transitional Figure 1: Proposed analytical framework on retinal image. 3 properties of vessel pixels from center-line vessel... visualization technique called daisy graph representation developed in our previous work [71] to approach the physical property of image pixel. Daisy graph representation results from the technique of rotational contrast transform (RCT) [71] of 21 image...

  7. Contamination Control Techniques

    SciTech Connect (OSTI)

    EBY, J.L.

    2000-05-16T23:59:59.000Z

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

  8. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions

    SciTech Connect (OSTI)

    Schmidt, M., E-mail: mike.schmidt@dreebit.com [DREEBIT GmbH, 01109 Dresden (Germany); Zschornack, G.; Kentsch, U.; Ritter, E. [Department of Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden (Germany)] [Department of Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden (Germany)

    2014-02-15T23:59:59.000Z

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100?C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100?C did not change the magnetic properties of the setup.

  9. Image Scanning Microscopy Claus B. Muller and Jorg Enderlein*

    E-Print Network [OSTI]

    Enderlein, Jrg

    Image Scanning Microscopy Claus B. Muller and Jorg Enderlein* III. Institute of Physics, Georg microscopy technique is introduced, image scanning microscopy (ISM), which combines conventional confocal-laser scanning microscopy with fast wide-field CCD detection. The technique allows for doubling the lateral

  10. Magnetic monopole searches in the cosmic radiation

    E-Print Network [OSTI]

    Ivan De Mitri

    2002-07-22T23:59:59.000Z

    There has been a big effort in the past twenty years with at least a couple of generations of experiments which searched for supermassive GUT magnetic monopoles in the cosmic radiation. Here a short review of these searches is given, together with a brief description of the theoretical framework and of the detection techniques.

  11. Co-Funding for the Conference on Magnetic Resonance in Biological Systems

    SciTech Connect (OSTI)

    Alan McLaughlin, Ph.D., Director, Division of Applied Science & Technology, NIBIB, NIH

    2008-10-01T23:59:59.000Z

    The XXIst International Conference on Magnetic Resonance in Biological Systems (ICMRBS 2005), '60th anniversary of the discovery of Nuclear Magnetic Resonance,' was held between 16 and 21 January 2005 in Hyderabad, India. The meeting focused on a broad range of magnetic resonance methods as applied to studies of biological processes related to human health. The biennial ICMRBS has become the major venue for discussion of advances in nuclear and electron magnetic resonance (NMR & EMR/EPR) studies of the structure, dynamics, and chemical properties of important classes of biomolecules. Magnetic resonance has become an established tool in structural biology, and its special importance derives from its ability to provide atomic level information. It is becoming increasingly evident that the dynamic features of biomolecules, their intermolecular interactions, and accessible conformations in solution are data of key importance in understanding molecular recognition and function. NMR, which is already contributing to approximately 25% of the new structures being deposited with the Protein Data Bank, is destined to be a major player in the post genomic structure age with its emphasis on structure and function. In-vivo magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) results shed light on human metabolic processes and on the cellular ramifications of cancer, stroke, cardiovascular disease, and other pathologies. New methodologies in metabonomics may lead to development of new drugs and medical diagnosis. The ICMRBS is the one conference that brings together experts from high-resolution NMR, solid state NMR, EPR, in-vivo MRS and MRI, and developers of instrumentation, techniques, software, and databases. Symposia at this ICMRBS are designed to continue the fruitful cross-fertilization of ideas that has been so successful in driving the spectacular advances in this field. ICMRBS 2005 maintained the traditional format of poster sessions, and plenary lectures that highlight major advances in each of the major areas, and three parallel symposia that focused on particular biological systems, interfacial applications of magnetic resonance, and rapidly advancing technology. Funds provided partial travel support for 33 younger scientists from the U.S. (graduate students, postdoctoral research associates, and beginning faculty), selected from those who submitted accepted posters; 12 of these were invited to contribute oral presentations. Those receiving travel support were selected by a committee composed of the U.S. members of the International Advisory Committee for the meeting. Particular emphasis was placed on facilitating participation of minority and women scientists.

  12. LOD-Sprite Technique for Accelerated Terrain Rendering Baoquan Chen1

    E-Print Network [OSTI]

    Chen, Baoquan

    LOD-Sprite Technique for Accelerated Terrain Rendering Baoquan Chen1 SUNY at Stony Brook J. Edward present a new rendering technique, termed LOD-sprite render- ing, which uses a combination of a level-of-detail (LOD) represen- tation of the scene together with reusing image sprites (previously rendered images

  13. Method for the detection of a magnetic field utilizing a magnetic vortex

    DOE Patents [OSTI]

    Novosad, Valentyn (Chicago, IL); Buchanan, Kristen (Batavia, IL)

    2010-04-13T23:59:59.000Z

    The determination of the strength of an in-plane magnetic field utilizing one or more magnetically-soft, ferromagnetic member, having a shape, size and material whereas a single magnetic vortex is formed at remanence in each ferromagnetic member. The preferred shape is a thin circle, or dot. Multiple ferromagnetic members can also be stacked on-top of each other and separated by a non-magnetic spacer. The resulting sensor is hysteresis free. The sensor's sensitivity, and magnetic saturation characteristics may be easily tuned by simply altering the material, size, shape, or a combination thereof to match the desired sensitivity and saturation characteristics. The sensor is self-resetting at remanence and therefore does not require any pinning techniques.

  14. Nonlinear Hamiltonian modelling of Magnetic Shape Memory Alloy based Jean-Yves Gauthier ,a

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Nonlinear Hamiltonian modelling of Magnetic Shape Memory Alloy based actuators Jean-Yves Gauthier and control a mechatronic system using Magnetic Shape Memory Alloys. In this aim, an original dynamical modelling of a Magnetic Shape Memory Alloy based actuator is presented. Energy-based techniques are used

  15. Magnetic Activity in Stars, Discs and Quasars

    E-Print Network [OSTI]

    Donald Lynden-Bell

    2000-07-14T23:59:59.000Z

    Although magnetic fields in interstellar matter were postulated almost fifty years ago, magnetohydrodynamic theory was then much hampered by our inability to see what the magnetic field configurations were like and, after a decade of innovative development, cynics, not without some justification, began to claim that anything can happen when magnetism and an imaginative theorist get together. Thus cosmic lightning in particular received a bad press. More recently great advances in observational techniques that we shall hear of from Title, Beck, Moran and Mirabel have enabled us to see not only the sun's magnetic field with unprecedented clarity but the fields in galaxies, quasars and microquasars are now measured and not merely figments of fertile imaginations.

  16. Vertebrate heart development: Lessons learnt from live imaging

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    Vertebrate heart development: Lessons learnt from live imaging California Institute of Technology employing different imaging techniques. Sub resolution imaging of beating zebrafish heart has however remained a challenge owing Embryonic heart is a 100 moving quasi-periodically at few Hertz frequency, over

  17. Video and Image Processing in Multimedia Systems (Video Processing)

    E-Print Network [OSTI]

    Furht, Borko

    COT 6930 Video and Image Processing in Multimedia Systems (Video Processing) Instructor: Borko. Content-based image and video indexing and retrieval. Video processing using compressed data. Course concepts and structures 4. Classification of compression techniques 5. Image and video compression

  18. Identification of Fissionable Materials Using the Tagged Neutron Technique

    SciTech Connect (OSTI)

    R.P. Keegan, J.P. Hurley, J.R. Tinsley, R. Trainham

    2009-06-30T23:59:59.000Z

    This summary describes experiments to detect and identify fissionable materials using the tagged neutron technique. The objective of this work is to enhance homeland security capability to find fissionable material that may be smuggled inside shipping boxes, containers, or vehicles. The technique distinguishes depleted uranium from lead, steel, and tungsten. Future work involves optimizing the technique to increase the count rate by many orders of magnitude and to build in the additional capability to image hidden fissionable materials. The tagged neutron approach is very different to other techniques based on neutron die-away or photo-fission. This work builds on the development of the Associated Particle Imaging (API) technique at the Special Technologies Laboratory (STL) [1]. Similar investigations have been performed by teams at the Oak Ridge National Laboratory (ORNL), the Khlopin Radium Institute in Russia, and by the EURITRACK collaboration in the European Union [2,3,4].

  19. Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.

  20. Image Fusion and Registration a Variational Bernd Fischer1

    E-Print Network [OSTI]

    Modersitzki, Jan

    Image Fusion and Registration ­ a Variational Approach Bernd Fischer1 and Jan Modersitzki1 Institute of Mathematics, Wallstra?e 40, D-23560 L¨ubeck, Germany fischer@math.uni-luebeck.de, modersitzki, including the registration of magnetic resonance images of a female breast subject to some volume preserving

  1. Roadmap: Radiologic Imaging Sciences -Computed Tomography (with AAS Radiologic Technology) -

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Radiologic Imaging Sciences - Computed Tomography (with AAS Radiologic Technology 34084 Computed Tomography and Magnetic Resonance Imaging Sectional Anatomy I 2 C RIS 44021 Patient Management in Computed Tomography (CT) 2 C RIS 44025 Computed Tomography (CT) Clinical Education I 3 C

  2. Roadmap: Radiologic Imaging Sciences -Computed Tomography (with AAS Radiologic Technology) -

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Radiologic Imaging Sciences - Computed Tomography (with AAS Radiologic Technology] Note: Admission to the program is required to enroll in RIS courses RIS 34084 Computed Tomography and Magnetic Resonance Imaging Sectional Anatomy I 2 C RIS 44021 Patient Management in Computed Tomography 2

  3. Bayesian Video Dejittering By BV Image Model Jianhong Shen

    E-Print Network [OSTI]

    Bayesian Video Dejittering By BV Image Model Jianhong Shen School of Mathematics University horizontal displacement in video images, occurs when the synchronization signals are corrupted in video storage media, or by electro- magnetic interference in wireless video transmission. The goal of intrinsic

  4. Magnets for Muon 6D Cooling Channels

    SciTech Connect (OSTI)

    Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

    2014-09-10T23:59:59.000Z

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  5. Magnetic infrasound sensor

    DOE Patents [OSTI]

    Mueller, Fred M. (Los Alamos, NM); Bronisz, Lawrence (Los Alamos, NM); Grube, Holger (Los Alamos, NM); Nelson, David C. (Santa Fe, NM); Mace, Jonathan L. (Los Alamos, NM)

    2006-11-14T23:59:59.000Z

    A magnetic infrasound sensor is produced by constraining a permanent magnet inside a magnetic potential well above the surface of superconducting material. The magnetic infrasound sensor measures the position or movement of the permanent magnet within the magnetic potential well, and interprets the measurements. Infrasound sources can be located and characterized by combining the measurements from one or more infrasound sensors. The magnetic infrasound sensor can be tuned to match infrasound source types, resulting in better signal-to-noise ratio. The present invention can operate in frequency modulation mode to improve sensitivity and signal-to-noise ratio. In an alternate construction, the superconductor can be levitated over a magnet or magnets. The system can also be driven, so that time resolved perturbations are sensed, resulting in a frequency modulation version with improved sensitivity and signal-to-noise ratio.

  6. Postpartum Hemorrhage Treated with Gelfoam Slurry Embolization Using the Superselective Technique: Immediate Results and 1-Month MRI Follow-up

    SciTech Connect (OSTI)

    Pellerin, Olivier, E-mail: olivier.pellerin@egp.aphp.fr [Universite Paris Descartes, Sorbonne Paris Cite, Faculte de Medecine - Assistance Publique-Hopitaux de Paris - Hopital Europeen Georges-Pompidou, Paris, France, Interventional Radiology Department (France)] [Universite Paris Descartes, Sorbonne Paris Cite, Faculte de Medecine - Assistance Publique-Hopitaux de Paris - Hopital Europeen Georges-Pompidou, Paris, France, Interventional Radiology Department (France); Bats, Anne-Sophie [Universite Paris Descartes, Sorbonne Paris Cite, Faculte de Medecine - Assistance Publique-Hopitaux de Paris - Hopital Europeen Georges-Pompidou, Paris, France, Gynecologic and Oncologic Surgery Department (France)] [Universite Paris Descartes, Sorbonne Paris Cite, Faculte de Medecine - Assistance Publique-Hopitaux de Paris - Hopital Europeen Georges-Pompidou, Paris, France, Gynecologic and Oncologic Surgery Department (France); Primio, Massimiliano Di; Palomera-Ricco, Ana [Universite Paris Descartes, Sorbonne Paris Cite, Faculte de Medecine - Assistance Publique-Hopitaux de Paris - Hopital Europeen Georges-Pompidou, Paris, France, Interventional Radiology Department (France)] [Universite Paris Descartes, Sorbonne Paris Cite, Faculte de Medecine - Assistance Publique-Hopitaux de Paris - Hopital Europeen Georges-Pompidou, Paris, France, Interventional Radiology Department (France); Pinot de Villechenon, Gabrielle [Universite Paris Descartes, Sorbonne Paris Cite, Faculte de Medecine - Assistance Publique-Hopitaux de Paris - Hopital Europeen Georges-Pompidou, Paris, France, Anesthesia and Surgical Intensive Care Unit (France)] [Universite Paris Descartes, Sorbonne Paris Cite, Faculte de Medecine - Assistance Publique-Hopitaux de Paris - Hopital Europeen Georges-Pompidou, Paris, France, Anesthesia and Surgical Intensive Care Unit (France); and others

    2013-02-15T23:59:59.000Z

    To evaluate the efficacy and safety of superselective embolization of the uterine arteries in a postpartum hemorrhage. Between November 2004 and January 2011, a total of 44 consecutive women (median {+-} standard deviation age 34 {+-} 3 years, range 23-41 years) were referred to our institution for postpartum intractable hemorrhage management. All patients were embolized with a microcatheter that was placed deep into the uterine arteries upstream of the cervical arteries. The embolic agent was a mixture of contrast medium and 5 Multiplication-Sign 5 Multiplication-Sign 5 cm pieces of gelfoam (Gelita-Spon) modified into a gelatin emulsion as follows: rapid mixing through a three-way stopcock with two 2.5-ml syringes. A 1-ml syringe was used for injection. One month after embolization, all patients underwent magnetic resonance imaging and clinical examination. Technical and clinical success was obtained in all cases. Thirty-five patients experienced bleeding related to poor retraction of the uterus, 7 patients because of a tear of the cervix and 2 because of a vaginal hematoma. Pre- and postembolization red blood cell transfusions were (mean {+-} standard deviation [SD]) 6 {+-} 1.2 (range 3-8) U and 2 {+-} 0.7 (range 2-4) U, respectively. One-month magnetic resonance imaging follow-up revealed no sign of ischemic myometrium or necrosis, and no instances of uterine rupture and no pelvic vein thrombosis. Incidental findings included two small intramyometrial hematic collections. All uterine arteries were patent via magnetic resonance angiography. Seventeen patients had concomitant fibroids, all of which appeared hypovascular. This technique permits good, safe clinical results with no marked damage to the uterine arteries or the uterus itself.

  7. Magnetic relaxation of superconducting quantum dot: two-dimensional false vacuum decay

    E-Print Network [OSTI]

    D. R. Gulevich; F. V. Kusmartsev

    2006-09-11T23:59:59.000Z

    Quantum tunneling of vortices has been found to be an important novel phenomena for description of low temperature creep in high temperature superconductors (HTSCs). We speculate that quantum tunneling may be also exhibited in mesoscopic superconductors due to vortices trapped by the Bean-Livingston barrier. The London approximation and method of images is used to estimate the shape of the potential well in superconducting HTSC quantum dot. To calculate the escape rate we use the instanton technique. We model the vortex by a quantum particle tunneling from a two-dimensional ground state under magnetic field applied in the transverse direction. The resulting decay rates obtained by the instanton approach and conventional WKB are compared revealing complete coincidence with each other.

  8. Magnetic Resonance Flow Velocity and Temperature Mapping of a Shape Memory Polymer Foam Device

    SciTech Connect (OSTI)

    Small IV, W; Gjersing, E; Herberg, J L; Wilson, T S; Maitland, D J

    2008-10-29T23:59:59.000Z

    Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  9. Brushed permanent magnet DC MLC motor operation in an external magnetic field

    SciTech Connect (OSTI)

    Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2010-05-15T23:59:59.000Z

    Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450{+-}10 G. The carriage motor tolerated up to 2000{+-}10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600{+-}10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance levels determined, some form of magnetic shielding would be required.

  10. Control of magnetization reversal in oriented strontium ferrite thin films

    SciTech Connect (OSTI)

    Roy, Debangsu, E-mail: debangsu@physics.iisc.ernet.in; Anil Kumar, P. S. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-02-21T23:59:59.000Z

    Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.

  11. Tamper resistant magnetic stripes

    DOE Patents [OSTI]

    Naylor, Richard Brian (Albuquerque, NM); Sharp, Donald J. (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    This invention relates to a magnetic stripe comprising a medium in which magnetized particles are suspended and in which the encoded information is recorded by actual physical rotation or alignment of the previously magnetized particles within the flux reversals of the stripe which are 180.degree. opposed in their magnetic polarity. The magnetized particles are suspended in a medium which is solid, or physically rigid, at ambient temperatures but which at moderately elevated temperatures, such as 40.degree. C., is thinable to a viscosity permissive of rotation of the particles therein under applications of moderate external magnetic field strengths within acceptable time limits.

  12. Interactive image processing console A6471

    SciTech Connect (OSTI)

    Kempe, V.; Rebel, B.; Wilhelmi, W.

    1982-01-01T23:59:59.000Z

    Many system designs and implementations of image processors have been published and discussed to which the authors add another one promising a good compromise between speed, flexibility, and costs. Its main components are programmable semiconductor image refresh memories and a fast parallel processor both acting at TV scan velocity. They are embedded in a 16-bit microcomputer system which interfaces them to the user and the programmer. Special features are the possibility to share the image memories between some systems and a crossconnection between image processor and graphic data. A glance onto the programming techniques is given. Prototypes of such a system are operating in remote sensing and biomedical applications. 6 references.

  13. MEASURING THERMOMECHANICAL DISPLACEMENTS OF SOLAR CELLS IN LAMINATES USING DIGITAL IMAGE CORRELATION

    E-Print Network [OSTI]

    , is necessary in the usual process of module manufacturing. DIGITAL IMAGE CORRELATION TECHNIQUE The methodMEASURING THERMOMECHANICAL DISPLACEMENTS OF SOLAR CELLS IN LAMINATES USING DIGITAL IMAGE and the polymers. We demonstrate that the digital image correlation technique (DIC) is capable of measuring

  14. Infrared Optical Imaging Techniques for Gas Visualization and Measurement

    E-Print Network [OSTI]

    Safitri, Anisa

    2012-07-16T23:59:59.000Z

    modeling. In this research, infrared cameras have been used to visualize liquefied natural gas (LNG) plumes from LNG spills on water. The analyses of the thermograms showed that the apparent temperatures were different from the thermocouple measurement...

  15. Phase-based cell imaging techniques for microbeam irradiations

    E-Print Network [OSTI]

    . RandersPehrson, C.C. Peng, D.J. Brenner Columbia University, Radiological Research Accelerator Facility Universitys Radiological Research Accelerator Facility (RARAF) is incorporating two new methods The microbeam facility at Columbia University is expanding current protocols for single-particle, single

  16. Microcomposition of Human Urinary Calculi Using Advanced Imaging Techniques

    E-Print Network [OSTI]

    -XANES XAS microfocused XAS XRD microfocused XRD XRF microfocused XRF CT computerized tomography FTIR Fourier XRD x-ray diffraction XRF x-ray fluorescence Accepted for publication September 18, 2012. Supported

  17. 3D thermography imaging standardization technique for inflammation diagnosis

    E-Print Network [OSTI]

    Ju, X.

    Ju,X. Nebel,J.C. Siebert,J.P. Photonics Asia 2004, Proceedings of SPIE, Vol. 5640-46, 8-12 November 2004, Beijing, China pp 5640-46 Society of photo optical instrumentation engineers

  18. Nonlinear optical Fourier filtering technique for medical image processing

    E-Print Network [OSTI]

    Rao, D.V.G.L.N.

    for a 442 nm probe beam with a 568 nm control beam and vice versa is experimentally studied in detail causes of mortality in women.1 Early detection of the cancer is extremely important for successful

  19. Application of Data Mining Techniques for Medical Image Classification

    E-Print Network [OSTI]

    Zaiane, Osmar R.

    are necessary to assist the medical staff to achieve high efficiency and effectiveness. 1In the United States of cancer deaths in women today and it is the most common type of cancer in women. This paper presents some in cancer treatment and allows reaching a high survival rate. Mammography is considered the most reliable

  20. Neutron Imaging Explored as Complementary Technique for Improving Cancer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3, IssueSciTech ConnectDetection

  1. New imaging technique provides improved insight into controlling the plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew Visible toNew appNew generation

  2. Thermal Imaging Technique for Measuring Mixing of Fluids - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in theTheoretical Study onThermal Hydraulic

  3. Thermal and high magnetic field treatment of materials and associated apparatus

    DOE Patents [OSTI]

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2010-06-29T23:59:59.000Z

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  4. Thermal and high magnetic field treatment of materials and associated apparatus

    DOE Patents [OSTI]

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2007-01-09T23:59:59.000Z

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  5. Journal of Magnetism and Magnetic Materials ] (

    E-Print Network [OSTI]

    McHenry, Michael E.

    magnetic properties were measured with a vibrating sample magnetometer. The mass-specific power loss.40.Rs Keywords: Nanocrystalline alloys; Amorphous alloys; Field annealing; Power loss; Soft magnets the hysteretic power loss while maintaining high-temperature operability [4]. Other goals have included studies

  6. Quantitative imaging of turbulent and reacting flows

    SciTech Connect (OSTI)

    Paul, P.H. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01T23:59:59.000Z

    Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.

  7. Magnetic Materials Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for magnetic circular dichroism (XMCD) and magnetic scattering experiments. Sunset Yellow 6-ID-B: Resonant and In-Field Scattering Beamline 6-ID-B,C is the primary beamline on...

  8. Recent lunar magnetism

    E-Print Network [OSTI]

    Buz, Jennifer

    2011-01-01T23:59:59.000Z

    The magnetization of young lunar samples (magnetic fields (e.g. core dynamo and long-lived impact plasma fields) have not been present within the last 1.5 Ga. To better ...

  9. Active magnetic regenerator

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM); Steyert, William A. (Los Alamos, NM)

    1982-01-01T23:59:59.000Z

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  10. Permanent magnet with MgB{sub 2} bulk superconductor

    SciTech Connect (OSTI)

    Yamamoto, Akiyasu, E-mail: yamamoto@appchem.t.u-tokyo.ac.jp [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ishihara, Atsushi; Tomita, Masaru [Railway Technical Research Institute, 2-8-38 Hikari, Kokubunji, Tokyo 185-8540 (Japan); Kishio, Kohji [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2014-07-21T23:59:59.000Z

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)materials that can be used without conventional liquid-helium cooling to 4.2?K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB{sub 2}) makes an excellent permanent bulk magnet, maintaining 3?T at 20?K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB{sub 2} permanent bulk magnet was determined. Because MgB{sub 2} is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB{sub 2} bulks promising for the next generation of Tesla-class permanent-magnet applications.

  11. Pore-structure determinations of silica aerogels by {sup 129}Xe NMR spectroscopy and imaging.

    SciTech Connect (OSTI)

    Gregory, D. M.; Gerald, R. E., II; Botto, R. E.; Chemistry

    1998-04-01T23:59:59.000Z

    Silica aerogels represent a new class of open-pore materials with pore dimensions on a scale of tens of nanometers, and are thus classified as mesoporous materials. In this work, we show that the combination of NMR spectroscopy and chemical-shift selective magnetic resonance imaging (MRI) can resolve some of the important aspects of the structure of silica aerogels. The use of xenon as a gaseous probe in combination with spatially resolved NMR techniques is demonstrated to be a powerful, new approach for characterizing the average pore structure and steady-state spatial distributions of xenon atoms in different physicochemical environments. Furthermore, dynamic NMR magnetization transfer experiments and pulsed-field gradient (PFG) measurements have been used to characterize exchange processes and diffusive motion of xenon in samples at equilibrium. In particular, this new NMR approach offers unique information and insights into the nanoscopic pore structure and microscopic morphology of aerogels and the dynamical behavior of occluded adsorbates. MRI provides spatially resolved information on the nature of the flaw regions found in these materials. Pseudo-first-order rate constants for magnetization transfer among the bulk and occluded xenon phases indicate xenon-exchange rate constants on the order of 1 s-1 for specimens having volumes of 0.03 cm3. PFG diffusion measurements show evidence of anisotropic diffusion for xenon occluded within aerogels, with nominal self-diffusivity coefficients on the order of D= 10-3cm2/s.

  12. X-Ray Diffraction Microscopy of Magnetic Structures

    SciTech Connect (OSTI)

    Turner, J.; Lima, E.; Huang, X.; Krupin, O.; Seu, K.; Parks, D.; Kevan, S.; Kisslinger, K.; McNulty, I.; Gambino, R.; Mangin, S.; Roy, S. and Fischer, P.

    2011-07-14T23:59:59.000Z

    We report the first proof-of-principle experiment of iterative phase retrieval from magnetic x-ray diffraction. By using the resonant x-ray excitation process and coherent x-ray scattering, we show that linearly polarized soft x rays can be used to image both the amplitude and the phase of magnetic domain structures. We recovered the magnetic structure of an amorphous terbium-cobalt thin film with a spatial resolution of about 75 nm at the Co L{sub 3} edge at 778 eV. In comparison with soft x-ray microscopy images recorded with Fresnel zone plate optics at better than 25 nm spatial resolution, we find qualitative agreement in the observed magnetic structure.

  13. Magnetism Theory Group / POSTECH Magnetism Theory Group / POSTECH

    E-Print Network [OSTI]

    Min, Byung Il

    Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH J.H . Park et al. #12;'s of FeinCsm e tal The chargeandorbitalordering geom etryin YB a C o 2 O 5 S. K. Kwon etal .Magnetism Theory

  14. Magnetic susceptibility in QCD

    E-Print Network [OSTI]

    V. D. Orlovsky; Yu. A. Simonov

    2014-05-12T23:59:59.000Z

    Magnetic susceptibility in the deconfined phase of QCD is calculated in a closed form using a recent general expression for the quark gas pressure in magnetic field. Quark selfenergies are entering the result via Polyakov line factors and ensure the total paramagnetic effect, increasing with temperature. A generalized form of magnetic susceptibility in nonzero magnetic field suitable for experimental and lattice measurements is derived, showing a good agreement with available lattice data.

  15. Imaging of semiconductors using a flying laser spot scanning system

    E-Print Network [OSTI]

    Richardson, Thomas William

    1982-01-01T23:59:59.000Z

    in silicon p-n junctions was a direct result of this research. Verification of the experimental findings include analysis using other characterization techniques such as X-ray topo- graphy, electrical testing and preferential chemical etching... Image (I. R. Radiation) . . 22 Flying Spot Scanner Photo Image (Visible Radiation) . 23 15 Photo Image Showing Crystal Defects 24 16 Sirtl Etch Photomicrograph of Lattice Crystal Defects 25 17 Photo Image Showing Laser Induced Lifetime Changes 26...

  16. Hyperspectral Imaging or Imaging Spectroscopy

    E-Print Network [OSTI]

    Gilbes, Fernando

    (nm) Cosmic Rays Gamma Rays X Rays Microwaves (Radar) Radio & Television WavesUV 105 106 107 108 109 the image cube by scanning through it. The conventional methods are whiskbroom (a), filter/Fourier transform Optics Scene FOVx X-Dimension Scanning Mechanism Focusing Optics #12;Whiskbroom Sensor Accumulation

  17. Integrating an automatic classification method into the medical image retrieval process

    E-Print Network [OSTI]

    Ruiz, Miguel E.

    the performance of the University at Buffalo Medical Text and Images Retrieval System (UBMedTIRS). This paper classification process was performed using the Image Retrieval for Medical Application (IRMA) codes3 employed to acquire the image such as x-ray, ultrasound, magnetic resonance measurement, nuclear medicine

  18. Dynamic Surface Reconstruction from 4D-MR Images Matthias Fenchel1

    E-Print Network [OSTI]

    Gumhold, Stefan

    Dynamic Surface Reconstruction from 4D-MR Images Matthias Fenchel1 , Stefan Gumhold2 , Hans approach is applied to 4D-MR images of a human heart in motion. 1 Introduction Image segmentation-Peter Seidel3 1 Siemens AG Medical Solutions, Magnetic Resonance, Karl-Schall-Str. 4, 91052 Erlangen 2 TU

  19. Image-based fluidstructure interaction model of the human mitral valve Xingshuang Ma a

    E-Print Network [OSTI]

    Luo, Xiaoyu

    Image-based fluidstructure interaction model of the human mitral valve Xingshuang Ma a , Hao Gao Available online 15 November 2012 Keywords: Human mitral valve Clinical imaging Magnetic resonance imaging Fluidstructure interaction Immersed boundary method a b s t r a c t The mitral valve (MV) is one

  20. TRACKING TONGUE MOTION IN THREE DIMENSIONS USING TAGGED MR IMAGES Xiaofeng Liu1

    E-Print Network [OSTI]

    Prince, Jerry L.

    TRACKING TONGUE MOTION IN THREE DIMENSIONS USING TAGGED MR IMAGES Xiaofeng Liu1 , Maureen Stone3 and strain analysis of tagged magnetic res- onance (MR) imaging [1]. It was originally applied to car- diac This research was supported by NIH grants R01 HL047405 and R01 DC001758 (a) (b) Fig. 1. (a) A tagged MR image