National Library of Energy BETA

Sample records for imaging long-wave infrared

  1. Category:Long-Wave Infrared | Open Energy Information

    Open Energy Info (EERE)

    Infrared Retrieved from "http:en.openei.orgwindex.php?titleCategory:Long-WaveInfrared&oldid794161" Feedback Contact needs updating Image needs updating Reference...

  2. Long-Wave Infrared | Open Energy Information

    Open Energy Info (EERE)

    such as hand portable, truck mounted, airborne, or satellite.3 Physical Properties The electromagnetic spectrum.4 Best Practices Typically, LWIR imaging as a hydrothermal...

  3. Hollow Core Fiber Optics for Mid-Wave and Long-Wave Infrared Spectroscopy

    SciTech Connect (OSTI)

    Kriesel, J.M.; Gat, N.; Bernacki, Bruce E.; Erikson, Rebecca L.; Cannon, Bret D.; Myers, Tanya L.; Bledt, Carlos M.; Harrington, J. A.

    2011-06-01

    The development and testing of hollow core glass waveguides (i.e., fiber optics) for use in Long-Wave Infrared (LWIR) spectroscopy systems is described. LWIR fiber optics are a key enabling technology needed to improve the utility and effectiveness of trace chemical detection systems based in the 8 to 12 micron region. This paper focuses on recent developments in hollow waveguide technology geared specifically for LWIR spectroscopy, including a reduction in both the length dependent loss and the bending loss while maintaining relatively high beam quality. Results will be presented from tests conducted with a Quantum Cascade Laser.

  4. Long wave infrared cavity-enhanced sensors using quantum cascade lasers

    SciTech Connect (OSTI)

    Taubman, Matthew S.; Scott, David C.; Myers, Tanya L.; Cannon, Bret D.

    2005-12-30

    Quantum cascade lasers (QCLs) are becoming well known as convenient and stable semiconductor laser sources operating in the mid- to long-wave infrared, and are able to be fabricated to operate virtually anywhere in the 3.5 to 25 micron region. This makes them an ideal choice for infrared chemical sensing, a topic of great interest at present, spanning at least three critical areas: national security, environmental monitoring and protection, and the early diagnosis of disease through breath analysis. There are many different laser-based spectroscopic chemical sensor architectures in use today, from simple direct detection through to more complex and highly sensitive systems. Many current sensor needs can be met by combining QCLs and appropriate sensor architectures, those needs ranging from UAV-mounted surveillance systems, through to larger ultra-sensitive systems for airport security. In this paper we provide an overview of various laser-based spectroscopic sensing techniques, pointing out advantages and disadvantages of each. As part of this process, we include our own results and observations for techniques under development at PNNL. We also present the latest performance of our ultra-quiet QCL control electronics now being commercialized, and explore how using optimized supporting electronics enables increased sensor performance and decreased sensor footprint for given applications.

  5. Systems having optical absorption layer for mid and long wave infrared and methods for making the same

    DOE Patents [OSTI]

    Kuzmenko, Paul J

    2013-10-01

    An optical system according to one embodiment includes a substrate; and an optical absorption layer coupled to the substrate, wherein the optical absorption layer comprises a layer of diamond-like carbon, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). A method for applying an optical absorption layer to an optical system according to another embodiment includes depositing a layer of diamond-like carbon of an optical absorption layer above a substrate using plasma enhanced chemical vapor deposition, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). Additional systems and methods are also presented.

  6. Minority carrier lifetimes in very long-wave infrared InAs/GaInSb superlattices

    SciTech Connect (OSTI)

    Olson, Benjamin Varberg; Haugan, Heather J.; Brown, Gail J.; Kadlec, Emil Andrew; Kim, Jin K.; Shaner, Eric A.

    2016-01-01

    Here, significantly improved carrier lifetimes in very-long wave infrared InAs/GaInSb superlattice(SL) absorbers are demonstrated by using time-resolved microwave reflectance (TMR) measurements. A nominal 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb SLstructure that produces an approximately 25 μm response at 10 K has a minority carrier lifetime of 140 ± 20 ns at 18 K, which is markedly long for SL absorber with such a narrow bandgap. This improvement is attributed to the strain-engineered ternary design. Such SL employs a shorter period with reduced gallium in order to achieve good optical absorption and epitaxial advantages, which ultimately leads to the improvements in the minority carrier lifetime by reducing Shockley–Read–Hall (SRH) defects. By analyzing the temperature-dependence of TMR decay data, the recombination mechanisms and trap states that currently limit the performance of this SL absorber have been identified. The results show a general decrease in the long-decay lifetime component, which is dominated by the SRH recombination at temperature below ~30 K, and by Auger recombination at temperatures above ~45 K.

  7. Minority carrier lifetimes in very long-wave infrared InAs/GaInSb superlattices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olson, Benjamin Varberg; Haugan, Heather J.; Brown, Gail J.; Kadlec, Emil Andrew; Kim, Jin K.; Shaner, Eric A.

    2016-01-01

    Here, significantly improved carrier lifetimes in very-long wave infrared InAs/GaInSb superlattice(SL) absorbers are demonstrated by using time-resolved microwave reflectance (TMR) measurements. A nominal 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb SLstructure that produces an approximately 25 μm response at 10 K has a minority carrier lifetime of 140 ± 20 ns at 18 K, which is markedly long for SL absorber with such a narrow bandgap. This improvement is attributed to the strain-engineered ternary design. Such SL employs a shorter period with reduced gallium in order to achieve good optical absorption and epitaxial advantages, which ultimately leads to the improvements in themore » minority carrier lifetime by reducing Shockley–Read–Hall (SRH) defects. By analyzing the temperature-dependence of TMR decay data, the recombination mechanisms and trap states that currently limit the performance of this SL absorber have been identified. The results show a general decrease in the long-decay lifetime component, which is dominated by the SRH recombination at temperature below ~30 K, and by Auger recombination at temperatures above ~45 K.« less

  8. Variable waveband infrared imager

    DOE Patents [OSTI]

    Hunter, Scott R.

    2013-06-11

    A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

  9. Oblique Aerial & Ground Visible Band & Thermographic Imaging...

    Open Energy Info (EERE)

    definition has been provided for this term. Add a Definition Related Techniques Passive Sensors Aerial Photography FLIR Geodetic Survey Hyperspectral Imaging Long-Wave Infrared...

  10. ARM - Field Campaign - Arctic Cloud Infrared Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsArctic Cloud Infrared Imaging Campaign Links Field Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Arctic Cloud Infrared Imaging 2012.07.16 - 2014.07.31 Lead Scientist : Joseph Shaw For data sets, see below. Abstract The 3rd-generation Infrared Cloud Imager (ICI) instrument was deployed close to the Great White facility at the North Slope of Alaska site and operated as

  11. Infrared Sky Imager (IRSI) Instrument Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Infrared Sky Imager Instrument Handbook VR Morris April 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

  12. Infrared Images of Shock-Heated Tin

    SciTech Connect (OSTI)

    Craig W. McCluskey; Mark D. Wilke; William D. Turley; Gerald D. Stevens; Lynn R. Veeser; Michael Grover

    2004-09-01

    High-resolution, gated infrared images were taken of tin samples shock heated to just below the 505 K melting point. Sample surfaces were either polished or diamond-turned, with grain sizes ranging from about 0.05 to 10 mm. A high explosive in contact with a 2-mm-thick tin sample induced a peak sample stress of 18 GPa. Interferometer data from similarly-driven tin shots indicate that immediately after shock breakout the samples spall near the free (imaged) surface with a scab thickness of about 0.1 mm.

  13. Near-infrared spectroscopic tissue imaging for medical applications

    DOE Patents [OSTI]

    Demos, Stavros; Staggs, Michael C.

    2006-12-12

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  14. Near-infrared spectroscopic tissue imaging for medical applications

    DOE Patents [OSTI]

    Demos; Stavros , Staggs; Michael C.

    2006-03-21

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  15. Geothermal Exploration with Visible through Long Wave Infrared...

    Open Energy Info (EERE)

    mapping for geothermal exploration using combined system allows for the complimentary nature of these combined sensors to effective map the surface and reduce costs by only using...

  16. Doped carbon nanostructure field emitter arrays for infrared imaging

    DOE Patents [OSTI]

    Korsah, Kofi [Knoxville, TN; Baylor, Larry R [Farragut, TN; Caughman, John B [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN; Rack, Philip D [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN

    2009-10-27

    An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.

  17. Emissivity corrected infrared method for imaging anomalous structural heat flows

    DOE Patents [OSTI]

    Del Grande, Nancy K.; Durbin, Philip F.; Dolan, Kenneth W.; Perkins, Dwight E.

    1995-01-01

    A method for detecting flaws in structures using dual band infrared radiation. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features.

  18. Comparison of image deconvolution algorithms on simulated and laboratory infrared images

    SciTech Connect (OSTI)

    Proctor, D.

    1994-11-15

    We compare Maximum Likelihood, Maximum Entropy, Accelerated Lucy-Richardson, Weighted Goodness of Fit, and Pixon reconstructions of simple scenes as a function of signal-to-noise ratio for simulated images with randomly generated noise. Reconstruction results of infrared images taken with the TAISIR (Temperature and Imaging System InfraRed) are also discussed.

  19. Emissivity corrected infrared method for imaging anomalous structural heat flows

    DOE Patents [OSTI]

    Del Grande, N.K.; Durbin, P.F.; Dolan, K.W.; Perkins, D.E.

    1995-08-22

    A method for detecting flaws in structures using dual band infrared radiation is disclosed. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features. 1 fig.

  20. Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)

    SciTech Connect (OSTI)

    Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H.; Barhen, J.

    1997-04-01

    A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

  1. NEAR-INFRARED CIRCULAR POLARIZATION IMAGES OF NGC 6334-V

    SciTech Connect (OSTI)

    Kwon, Jungmi; Tamura, Motohide; Hashimoto, Jun; Kusakabe, Nobuhiko; Kandori, Ryo; Lucas, Phil W.; Hough, James H.; Nakajima, Yasushi; Nagayama, Takahiro; Nagata, Tetsuya

    2013-03-01

    We present results from deep imaging linear and circular polarimetry of the massive star-forming region NGC 6334-V. These observations show high degrees of circular polarization (CP), as much as 22% in the K{sub s} band, in the infrared nebula associated with the outflow. The CP has an asymmetric positive/negative pattern and is very extended ({approx}80'' or 0.65 pc). Both the high CP and its extended size are larger than those seen in the Orion CP region. Three-dimensional Monte Carlo light-scattering models are used to show that the high CP may be produced by scattering from the infrared nebula followed by dichroic extinction by an optically thick foreground cloud containing aligned dust grains. Our results show not only the magnetic field orientation of around young stellar objects, but also the structure of circumstellar matter such as outflow regions and their parent molecular cloud along the line of sight. The detection of the large and extended CP in this source and the Orion nebula may imply the CP origin of the biological homochirality on Earth.

  2. SUBARU AND GEMINI HIGH SPATIAL RESOLUTION INFRARED 18 {mu}m IMAGING OBSERVATIONS OF NEARBY LUMINOUS INFRARED GALAXIES

    SciTech Connect (OSTI)

    Imanishi, Masatoshi; Imase, Keisuke; Oi, Nagisa; Ichikawa, Kohei

    2011-05-15

    We present the results of a ground-based, high spatial resolution infrared 18 {mu}m imaging study of nearby luminous infrared galaxies (LIRGs), using the Subaru 8.2 m and Gemini-South 8.1 m telescopes. The diffraction-limited images routinely achieved with these telescopes in the Q band (17-23 {mu}m) allow us to investigate the detailed spatial distribution of infrared emission in these LIRGs. We then investigate whether the emission surface brightnesses are modest, as observed in starbursts, or are so high that luminous active galactic nuclei (AGNs; high emission surface brightness energy sources) are indicated. The sample consists of 18 luminous buried AGN candidates and starburst-classified LIRGs identified in earlier infrared spectroscopy. We find that the infrared 18 {mu}m emission from the buried AGN candidates is generally compact, and the estimated emission surface brightnesses are high, sometimes exceeding the maximum value observed in and theoretically predicted for a starburst phenomenon. The starburst-classified LIRGs usually display spatially extended 18 {mu}m emission and the estimated emission surface brightnesses are modest, within the range sustained by a starburst phenomenon. The general agreement between infrared spectroscopic and imaging energy diagnostic methods suggests that both are useful tools for understanding the hidden energy sources of the dusty LIRG population.

  3. Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002 J. A. Shaw and B. Thurairajah Department of Electrical and Computer Engineering Montana State University Bozeman, Montana E. Edqvist National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado K. Mizutani Communications Research Laboratory Koganei, Tokyo, Japan Introduction Starting in February 2002, we deployed a new cloud-radiation sensor called the infrared cloud imager

  4. Minimum Fisher regularization of image reconstruction for infrared imaging bolometer on HL-2A

    SciTech Connect (OSTI)

    Gao, J. M.; Liu, Y.; Li, W.; Lu, J.; Dong, Y. B.; Xia, Z. W.; Yi, P.; Yang, Q. W.

    2013-09-15

    An infrared imaging bolometer diagnostic has been developed recently for the HL-2A tokamak to measure the temporal and spatial distribution of plasma radiation. The three-dimensional tomography, reduced to a two-dimensional problem by the assumption of plasma radiation toroidal symmetry, has been performed. A three-dimensional geometry matrix is calculated with the one-dimensional pencil beam approximation. The solid angles viewed by the detector elements are taken into account in defining the chord brightness. And the local plasma emission is obtained by inverting the measured brightness with the minimum Fisher regularization method. A typical HL-2A plasma radiation model was chosen to optimize a regularization parameter on the criterion of generalized cross validation. Finally, this method was applied to HL-2A experiments, demonstrating the plasma radiated power density distribution in limiter and divertor discharges.

  5. Long-Wave Infrared At Coso Geothermal Area (1968-1971) | Open...

    Open Energy Info (EERE)

    Unknown Exploration Basis Fumarolic and hot springs activity Notes 8- to 14-micrometer IR imagery has value in delineating the typical arcuate structural patterns References...

  6. Infrared tomography for diagnostic imaging of port wine stain blood vessels

    SciTech Connect (OSTI)

    Goodman, D.

    1994-11-15

    The objective of this work is the development of Infrared Tomography (IRT) for detecting and characterizing subsurface chromophores in human skin. Characterization of cutaneous chromophores is crucial for advances in the laser treatment of pigmented lesions (e.g., port wine stain birthmarks and tatoos). Infrared tomography (IRT) uses a fast infrared focal plane array (IR-FPA) to detect temperature rises in a substrate induced by pulsed radiation. A pulsed laser is used to produce transient heating of an object. The temperature rise, due to the optical absorption of the pulsed laser light, creates an increase in infrared emission which is measured by the IR-FPA. Although the application of IRT to image subsurface cracks due to metal fatigue is a topic of great interest in the aircraft industry, the application to image subsurface chromophores in biological materials is novel. We present an image recovery method based on a constrained conjugate gradient algorithm that has obtained the first ever high quality images of port wine blood vessels.

  7. Method and apparatus for coherent imaging of infrared energy

    DOE Patents [OSTI]

    Hutchinson, D.P.

    1998-05-12

    A coherent camera system performs ranging, spectroscopy, and thermal imaging. Local oscillator radiation is combined with target scene radiation to enable heterodyne detection by the coherent camera`s two-dimensional photodetector array. Versatility enables deployment of the system in either a passive mode (where no laser energy is actively transmitted toward the target scene) or an active mode (where a transmitting laser is used to actively illuminate the target scene). The two-dimensional photodetector array eliminates the need to mechanically scan the detector. Each element of the photodetector array produces an intermediate frequency signal that is amplified, filtered, and rectified by the coherent camera`s integrated circuitry. By spectroscopic examination of the frequency components of each pixel of the detector array, a high-resolution, three-dimensional or holographic image of the target scene is produced for applications such as air pollution studies, atmospheric disturbance monitoring, and military weapons targeting. 8 figs.

  8. Method and apparatus for coherent imaging of infrared energy

    DOE Patents [OSTI]

    Hutchinson, Donald P.

    1998-01-01

    A coherent camera system performs ranging, spectroscopy, and thermal imaging. Local oscillator radiation is combined with target scene radiation to enable heterodyne detection by the coherent camera's two-dimensional photodetector array. Versatility enables deployment of the system in either a passive mode (where no laser energy is actively transmitted toward the target scene) or an active mode (where a transmitting laser is used to actively illuminate the target scene). The two-dimensional photodetector array eliminates the need to mechanically scan the detector. Each element of the photodetector array produces an intermediate frequency signal that is amplified, filtered, and rectified by the coherent camera's integrated circuitry. By spectroscopic examination of the frequency components of each pixel of the detector array, a high-resolution, three-dimensional or holographic image of the target scene is produced for applications such as air pollution studies, atmospheric disturbance monitoring, and military weapons targeting.

  9. TESTING THE HYPOTHESIS THAT METHANOL MASER RINGS TRACE CIRCUMSTELLAR DISKS: HIGH-RESOLUTION NEAR-INFRARED AND MID-INFRARED IMAGING

    SciTech Connect (OSTI)

    De Buizer, James M.; Bartkiewicz, Anna; Szymczak, Marian

    2012-08-01

    Milliarcsecond very long baseline interferometry maps of regions containing 6.7 GHz methanol maser emission have lead to the recent discovery of ring-like distributions of maser spots and the plausible hypothesis that they may be tracing circumstellar disks around forming high-mass stars. We aimed to test this hypothesis by imaging these regions in the near- and mid-infrared at high spatial resolution and compare the observed emission to the expected infrared morphologies as inferred from the geometries of the maser rings. In the near-infrared we used the Gemini North adaptive optics system of ALTAIR/NIRI, while in the mid-infrared we used the combination of the Gemini South instrument T-ReCS and super-resolution techniques. Resultant images had a resolution of {approx}150 mas in both the near-infrared and mid-infrared. We discuss the expected distribution of circumstellar material around young and massive accreting (proto)stars and what infrared emission geometries would be expected for the different maser ring orientations under the assumption that the masers are coming from within circumstellar disks. Based upon the observed infrared emission geometries for the four targets in our sample and the results of spectral energy distribution modeling of the massive young stellar objects associated with the maser rings, we do not find compelling evidence in support of the hypothesis that methanol masers rings reside in circumstellar disks.

  10. Gas Phase Photoacoustic Spectroscopy in the long-wave IR using Quartz Tuning Forks and Amplitude Modulated Quantum Cascade Lasers

    SciTech Connect (OSTI)

    Wojcik, Michael D.; Phillips, Mark C.; Cannon, Bret D.

    2006-12-31

    A paper to accompany a 20 minute talk about the progress of a DARPA funded project called LPAS. ABSTRACT: We demonstrate the performance of a novel long-wave infrared photoacoustic laser absorbance spectrometer for gas-phase species using an amplitude modulated (AM) quantum cascade (QC) laser and a quartz tuning fork microphone. Photoacoustic signal was generated by focusing the output of a Fabry-Perot QC laser operating at 8.41 micron between the legs of a quartz tuning fork which served as a transducer for the transient acoustic pressure wave. The QC laser was modulated at the resonant frequency of the tuning fork (32.8 kHz). This sensor was calibrated using the infrared absorber Freon-134a by performing a simultanious absorption measurement using a 35 cm absorption cell. The NEAS of this instrument was determined to be 2 x 10^-8 W cm^-1 /Hz^1/2 and the fundamental sensitivity of this technique is limited by the noise floor of the tuning fork itself.

  11. Infrared Cloud Imager Measurements of Cloud Statistics from the 2003 Cloudiness Intercomparison Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Cloud Imager Measurements of Cloud Statistics from the 2003 Cloudiness Intercomparison Campaign B. Thurairajah and J. A. Shaw Department of Electrical and Computer Engineering Montana State University Bozeman, Montana Introduction The Cloudiness Inter-Comparison Intensive Operational Period (CIC IOP) occurred at the Atmospheric Radiation Measurement (ARM), Southern Great Plains (SGP) central facility site in Lamont, Oklahoma from mid-February to mid-April 2003 (Kassianov et al. 2004).

  12. Subaru Near-Infrared Coronagraphic Images of LkHalpha 234

    SciTech Connect (OSTI)

    Kato, Eri; Fukagawa, Misato; Shibai, Hiroshi; Ito, Yusuke; Ootsubo, Takafumi

    2009-08-05

    We present high-resolution (0''.2) near-infrared images of the Herbig Ae/Be star LkHalpha 234 taken with the stellar coronagraphic camera CIAO (Coronagraphic Imager with Adaptive Optics) on the Subaru Telescope. We have observed LkHalpha 234, located in the NGC 7129 star formation region at 1.25 kpc, using the adaptive optics and the coronagraph. Near-infrared (J, H, K, L' and M' bands) images obtained reveal detailed circumstellar structures around LkHalpha 234. Six young stellar object (YSO) candidates are detected at 2''-10'' from LkHalpha 234, and four out of six candidates are identified for the first time. Our high-resolution imaging reveals the complex morphology of the reflection nebula which is located at approximately 3'' from LkHalpha 234 and extended more than 10'' toward the west. The newly found object in H and K bands may be the source of the reflection nebula.

  13. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE WIDE-FIELD IMAGERS

    SciTech Connect (OSTI)

    Bock, J.; Battle, J.; Sullivan, I.; Arai, T.; Matsumoto, T.; Matsuura, S.; Tsumura, K.; Cooray, A.; Mitchell-Wynne, K.; Smidt, J.; Hristov, V.; Lam, A. C.; Levenson, L. R.; Mason, P.; Keating, B.; Renbarger, T.; Kim, M. G.; Lee, D. H.; Nam, U. W.; Suzuki, K.; and others

    2013-08-15

    We have developed and characterized an imaging instrument to measure the spatial properties of the diffuse near-infrared extragalactic background light (EBL) in a search for fluctuations from z > 6 galaxies during the epoch of reionization. The instrument is part of the Cosmic Infrared Background Experiment (CIBER), designed to observe the EBL above Earth's atmosphere during a suborbital sounding rocket flight. The imaging instrument incorporates a 2 Degree-Sign Multiplication-Sign 2 Degree-Sign field of view to measure fluctuations over the predicted peak of the spatial power spectrum at 10 arcmin, and 7'' Multiplication-Sign 7'' pixels, to remove lower redshift galaxies to a depth sufficient to reduce the low-redshift galaxy clustering foreground below instrumental sensitivity. The imaging instrument employs two cameras with {Delta}{lambda}/{lambda} {approx} 0.5 bandpasses centered at 1.1 {mu}m and 1.6 {mu}m to spectrally discriminate reionization extragalactic background fluctuations from local foreground fluctuations. CIBER operates at wavelengths where the electromagnetic spectrum of the reionization extragalactic background is thought to peak, and complements fluctuation measurements by AKARI and Spitzer at longer wavelengths. We have characterized the instrument in the laboratory, including measurements of the sensitivity, flat-field response, stray light performance, and noise properties. Several modifications were made to the instrument following a first flight in 2009 February. The instrument performed to specifications in three subsequent flights, and the scientific data are now being analyzed.

  14. Near infrared spectral imaging of explosives using a tunable laser source

    SciTech Connect (OSTI)

    Klunder, G L; Margalith, E; Nguyen, L K

    2010-03-26

    Diffuse reflectance near infrared hyperspectral imaging is an important analytical tool for a wide variety of industries, including agriculture consumer products, chemical and pharmaceutical development and production. Using this technique as a method for the standoff detection of explosive particles is presented and discussed. The detection of the particles is based on the diffuse reflectance of light from the particle in the near infrared wavelength range where CH, NH, OH vibrational overtones and combination bands are prominent. The imaging system is a NIR focal plane array camera with a tunable OPO/laser system as the illumination source. The OPO is programmed to scan over a wide spectral range in the NIR and the camera is synchronized to record the light reflected from the target for each wavelength. The spectral resolution of this system is significantly higher than that of hyperspectral systems that incorporate filters or dispersive elements. The data acquisition is very fast and the entire hyperspectral cube can be collected in seconds. A comparison of data collected with the OPO system to data obtained with a broadband light source with LCTF filters is presented.

  15. Uncooled thin film infrared imaging device with aerogel thermal isolation: Deposition and planarization techniques

    SciTech Connect (OSTI)

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A.; Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States); Sriram, C.S. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Bullington, J.A. [AMMPEC, Inc., Albuquerque, NM (United States)

    1998-04-01

    The authors have successfully integrated a thermally insulating silica aerogel thin film into a new uncooled monolithic thin film infrared (IR) imaging device. Compared to other technologies (bulk ceramic and microbridge), use of an aerogel layer provides superior thermal isolation of the pyroelectric imaging element from the relatively massive heat sinking integrated circuit. This results in significantly higher thermal and temporal resolutions. They have calculated noise equivalent temperature differences of 0.04--0.10 C from a variety of Pb{sub x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PZT) and Pb{sub x}La{sub 1{minus}x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PLZT) pyroelectric imaging elements in monolithic structures. In addition, use of aerogels results in an easier, less expensive fabrication process and a more robust device. Fabrication of these monolithic devices entails sol-gel deposition of the aerogel, sputter deposition of the electrodes, and solution chemistry deposition of the pyroelectric imaging elements. Uniform pyroelectric response is achieved across the device by use of appropriate planarization techniques. These deposition and planarization techniques are described. Characterization of the individual layers and monolithic structure using scanning electron microscopy, atomic force microscopy and Byer-Roundy techniques also is discussed.

  16. Infrared retina

    DOE Patents [OSTI]

    Krishna, Sanjay; Hayat, Majeed M.; Tyo, J. Scott; Jang, Woo-Yong

    2011-12-06

    Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

  17. Localization of polyhydroxybutyrate in sugarcane using Fourier-transform infrared microspectroscopy and multivariate imaging

    SciTech Connect (OSTI)

    Lupoi, Jason S.; Smith-Moritz, Andreia; Singh, Seema; McQualter, Richard; Scheller, Henrik V.; Simmons, Blake A.; Henry, Robert J.

    2015-07-10

    Background: Slow-degrading, fossil fuel-derived plastics can have deleterious effects on the environment, especially marine ecosystems. The production of bio-based, biodegradable plastics from or in plants can assist in supplanting those manufactured using fossil fuels. Polyhydroxybutyrate (PHB) is one such biodegradable polyester that has been evaluated as a possible candidate for relinquishing the use of environmentally harmful plastics. Results: PHB, possessing similar properties to polyesters produced from non-renewable sources, has been previously engineered in sugarcane, thereby creating a high-value co-product in addition to the high biomass yield. This manuscript illustrates the coupling of a Fourier-transform infrared microspectrometer, equipped with a focal plane array (FPA) detector, with multivariate imaging to successfully identify and localize PHB aggregates. Principal component analysis imaging facilitated the mining of the abundant quantity of spectral data acquired using the FPA for distinct PHB vibrational modes. PHB was measured in the chloroplasts of mesophyll and bundle sheath cells, acquiescent with previously evaluated plant samples. Conclusion: This study demonstrates the power of IR microspectroscopy to rapidly image plant sections to provide a snapshot of the chemical composition of the cell. While PHB was localized in sugarcane, this method is readily transferable to other value-added co-products in different plants.

  18. Localization of polyhydroxybutyrate in sugarcane using Fourier-transform infrared microspectroscopy and multivariate imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lupoi, Jason S.; Smith-Moritz, Andreia; Singh, Seema; McQualter, Richard; Scheller, Henrik V.; Simmons, Blake A.; Henry, Robert J.

    2015-07-10

    Background: Slow-degrading, fossil fuel-derived plastics can have deleterious effects on the environment, especially marine ecosystems. The production of bio-based, biodegradable plastics from or in plants can assist in supplanting those manufactured using fossil fuels. Polyhydroxybutyrate (PHB) is one such biodegradable polyester that has been evaluated as a possible candidate for relinquishing the use of environmentally harmful plastics. Results: PHB, possessing similar properties to polyesters produced from non-renewable sources, has been previously engineered in sugarcane, thereby creating a high-value co-product in addition to the high biomass yield. This manuscript illustrates the coupling of a Fourier-transform infrared microspectrometer, equipped with a focalmore » plane array (FPA) detector, with multivariate imaging to successfully identify and localize PHB aggregates. Principal component analysis imaging facilitated the mining of the abundant quantity of spectral data acquired using the FPA for distinct PHB vibrational modes. PHB was measured in the chloroplasts of mesophyll and bundle sheath cells, acquiescent with previously evaluated plant samples. Conclusion: This study demonstrates the power of IR microspectroscopy to rapidly image plant sections to provide a snapshot of the chemical composition of the cell. While PHB was localized in sugarcane, this method is readily transferable to other value-added co-products in different plants.« less

  19. Topographical and Chemical Imaging of a Phase Separated Polymer Using a Combined Atomic Force Microscopy/Infrared Spectroscopy/Mass Spectrometry Platform

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tai, Tamin; Karácsony, Orsolya; Bocharova, Vera; Van Berkel, Gary J.; Kertesz, Vilmos

    2016-02-18

    This article describes how the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry.

  20. Infrared Chemical Nano-Imaging: Accessing Structure, Coupling, and Dynamics on Molecular Length Scales

    SciTech Connect (OSTI)

    Muller, Eric A.; Pollard, Benjamin; Raschke, Markus Bernd

    2015-04-02

    This Perspective highlights recent advances in infrared vibrational chemical nano-imaging. In its implementations of scattering scanning near-field optical microscopy (s-SNOM) and photothermal-induced resonance (PTIR), IR nanospectroscopy provides few-nanometer spatial resolution for the investigation of polymer, biomaterial, and related soft-matter surfaces and nanostructures. Broad-band IR s-SNOM with coherent laser and synchrotron sources allows for chemical recognition with small-ensemble sensitivity and the potential for sensitivity reaching the single-molecule limit. Probing selected vibrational marker resonances, it gives access to nanoscale chemical imaging of composition, domain morphologies, order/disorder, molecular orientation, or crystallographic phases. Local intra- and intermolecular coupling can be measured through frequency shifts of a vibrational marker in heterogeneous environments and associated inhomogeneities in vibrational dephasing. In combination with ultrafast spectroscopy, the vibrational coherent evolution of homogeneous sub-ensembles coupled to their environment can be observed. Outstanding challenges are discussed in terms of extensions to coherent and multidimensional spectroscopies, implementation in liquid and in situ environments, general sample limitations, and engineering s-SNOM scanning probes to better control the nano-localized optical excitation and to increase sensitivity.

  1. Surface geometry of protoplanetary disks inferred from near-infrared imaging polarimetry

    SciTech Connect (OSTI)

    Takami, Michihiro; Hasegawa, Yasuhiro; Gu, Pin-Gao; Karr, Jennifer L.; Chapillon, Edwige; Tang, Ya-Wen [Institute of Astronomy and Astrophysics, Academia Sinica, PO Box 23-141, Taipei 10617, Taiwan, ROC (China); Muto, Takayuki [Division of Liberal Arts, Kogakuin University, 1-24-2, Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Dong, Ruobing [Nuclear Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Hashimoto, Jun [H. L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St. Norman, OK 73019 (United States); Kusakabe, Nobuyuki; Akiyama, Eiji; Kwon, Jungmi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Itoh, Youchi [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo, Sayo, Hyogo 679-5313 (Japan); Carson, Joseph [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); Follette, Katherine B. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Mayama, Satoshi [The Center for the Promotion of Integrated Sciences, The Graduate University for Advanced Studies (SOKENDAI), Shonan International Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan); Sitko, Michael [Department of Physics, University of Cincinnati, Cincinnati, OH 45221 (United States); Janson, Markus [Astrophysics Research Center, Queen's University Belfast, BT7 1NN (United Kingdom); Grady, Carol A. [Eureka Scientific, 2452 Delmer Suite 100, Oakland, CA 96402 (United States); Kudo, Tomoyuki, E-mail: hiro@asiaa.sinica.edu.tw [Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720 (United States); and others

    2014-11-01

    We present a new method of analysis for determining the surface geometry of five protoplanetary disks observed with near-infrared imaging polarimetry using Subaru-HiCIAO. Using as inputs the observed distribution of polarized intensity (PI), disk inclination, assumed properties for dust scattering, and other reasonable approximations, we calculate a differential equation to derive the surface geometry. This equation is numerically integrated along the distance from the star at a given position angle. We show that, using these approximations, the local maxima in the PI distribution of spiral arms (SAO 206462, MWC 758) and rings (2MASS J16042165-2130284, PDS 70) are associated with local concave-up structures on the disk surface. We also show that the observed presence of an inner gap in scattered light still allows the possibility of a disk surface that is parallel to the light path from the star, or a disk that is shadowed by structures in the inner radii. Our analysis for rings does not show the presence of a vertical inner wall as often assumed in studies of disks with an inner gap. Finally, we summarize the implications of spiral and ring structures as potential signatures of ongoing planet formation.

  2. Book Review: Reiner Salzer and Heinz W. Siesler (Eds.): Infrared and Raman spectroscopic imaging, 2nd ed.

    SciTech Connect (OSTI)

    Moore, David Steven

    2015-05-10

    This second edition of "Infrared and Raman Spectroscopic Imaging" propels practitioners in that wide-ranging field, as well as other readers, to the current state of the art in a well-produced and full-color, completely revised and updated, volume. This new edition chronicles the expanded application of vibrational spectroscopic imaging from yesterday's time-consuming point-by-point buildup of a hyperspectral image cube, through the improvements afforded by the addition of focal plane arrays and line scan imaging, to methods applicable beyond the diffraction limit, instructs the reader on the improved instrumentation and image and data analysis methods, and expounds on their application to fundamental biomedical knowledge, food and agricultural surveys, materials science, process and quality control, and many others.

  3. Book Review: Reiner Salzer and Heinz W. Siesler (Eds.): Infrared and Raman spectroscopic imaging, 2nd ed.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moore, David Steven

    2015-05-10

    This second edition of "Infrared and Raman Spectroscopic Imaging" propels practitioners in that wide-ranging field, as well as other readers, to the current state of the art in a well-produced and full-color, completely revised and updated, volume. This new edition chronicles the expanded application of vibrational spectroscopic imaging from yesterday's time-consuming point-by-point buildup of a hyperspectral image cube, through the improvements afforded by the addition of focal plane arrays and line scan imaging, to methods applicable beyond the diffraction limit, instructs the reader on the improved instrumentation and image and data analysis methods, and expounds on their application to fundamentalmore » biomedical knowledge, food and agricultural surveys, materials science, process and quality control, and many others.« less

  4. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2012-10-30

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  5. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2013-07-16

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  6. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2011-06-21

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  7. Category:Passive Sensors | Open Energy Information

    Open Energy Info (EERE)

    Imaging L Long-Wave Infrared M Macrophotography Multispectral Imaging N Near Infrared Surveys O Oblique Aerial & Ground Visible Band & Thermographic Imaging P Passive...

  8. Passive Sensors | Open Energy Information

    Open Energy Info (EERE)

    Imaging Long-Wave Infrared Multispectral Imaging Near Infrared Surveys Oblique Aerial & Ground Visible Band & Thermographic Imaging Radiometrics SWIR Stereo Satellite Imagery...

  9. Synchrotron based infrared imaging and spectroscopy via focal plane array on live fibroblasts in D2O enriched medium

    SciTech Connect (OSTI)

    Quaroni, Luca; Zlateva, Theodora; Sarafimov, Blagoj; Kreuzer, Helen W.; Wehbe, Katia; Hegg, Eric L.; Cinque, Gianfelice

    2014-03-26

    We tested the viability of using synchrotron based infrared imaging to study biochemical processes inside living cells. As a model system, we studied fibroblast cells exposed to a medium highly enriched with D2O. We could show that the experimental technique allows us to reproduce at the cellular level measurements that are normally performed on purified biological molecules. We can obtain information about lipid conformation and distribution, kinetics of hydrogen/deuterium exchange, and the formation of concentration gradients of H and O isotopes in water that are associated with cell metabolism. The implementation of the full field technique in a sequential imaging format gives a description of cellular biochemistry and biophysics that contains both spatial and temporal information.

  10. Phase transition in bulk single crystals and thin films of VO2 by nanoscale infrared spectroscopy and imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Mengkun; Sternbach, Aaron J.; Wagner, Martin; Slusar, Tetiana V.; Kong, Tai; Bud'ko, Sergey L.; Kittiwatanakul, Salinporn; Qazilbash, M. M.; McLeod, Alexander; Fei, Zhe; et al

    2015-06-29

    We have systematically studied a variety of vanadium dioxide (VO2) crystalline forms, including bulk single crystals and oriented thin films, using infrared (IR) near-field spectroscopic imaging techniques. By measuring the IR spectroscopic responses of electrons and phonons in VO2 with sub-grain-size spatial resolution (~20nm), we show that epitaxial strain in VO2 thin films not only triggers spontaneous local phase separations, but leads to intermediate electronic and lattice states that are intrinsically different from those found in bulk. Generalized rules of strain- and symmetry-dependent mesoscopic phase inhomogeneity are also discussed. Furthermore, these results set the stage for a comprehensive understanding ofmore » complex energy landscapes that may not be readily determined by macroscopic approaches.« less

  11. FY 2005 Infrared Photonics Final Report

    SciTech Connect (OSTI)

    Anheier, Norman C.; Allen, Paul J.; Ho, Nicolas; Krishnaswami, Kannan; Johnson, Bradley R.; Sundaram, S. K.; Riley, Bradley M.; Martinez, James E.; Qiao, Hong; Schultz, John F.

    2005-12-01

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrologyall specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. QCLs provide a viable infrared laser source for a new class of laser transmitters capable of meeting the performance requirements for a variety of national security sensing applications. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions. During FY 2005, PNNLs Infrared Photonics research team made measurable progress exploiting the extraordinary optical and material properties of chalcogenide glass to develop miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. We investigated sulfur purification methods that will eventually lead to routine production of optical quality chalcogenide glass. We also discovered a glass degradation phenomenon and our investigation uncovered the underlying surface chemistry mechanism and developed mitigation actions. Key research was performed to understand and control the photomodification properties. This research was then used to demonstrate several essential infrared photonic devices, including LWIR single-mode waveguide devices and waveguide

  12. Fourier Transform Infrared Imaging Showing Reduced Unsaturated Lipid Content in the Hippocampus of a mouse Model of Alzheimer's Disease

    SciTech Connect (OSTI)

    Leskovjan, A.C.; Kretlow, A.; Miller, L.M.

    2010-04-01

    Polyunsaturated fatty acids are essential to brain functions such as membrane fluidity, signal transduction, and cell survival. It is also thought that low levels of unsaturated lipid in the brain may contribute to Alzheimer's disease (AD) risk or severity. However, it is not known how accumulation of unsaturated lipids is affected in different regions of the hippocampus, which is a central target of AD plaque pathology, during aging. In this study, we used Fourier transform infrared imaging (FTIRI) to visualize the unsaturated lipid content in specific regions of the hippocampus in the PSAPP mouse model of AD as a function of plaque formation. Specifically, the unsaturated lipid content was imaged using the olefinic {double_bond}CH stretching mode at 3012 cm{sup -1}. The axonal, dendritic, and somatic layers of the hippocampus were examined in the mice at 13, 24, 40, and 56 weeks old. Results showed that lipid unsaturation in the axonal layer was significantly increased with normal aging in control (CNT) mice (p < 0.01) but remained low and relatively constant in PSAPP mice. Thus, these findings indicate that unsaturated lipid content is reduced in hippocampal white matter during amyloid pathogenesis and that maintaining unsaturated lipid content early in the disease may be critical in avoiding progression of the disease.

  13. Method for measuring thermal properties using a long-wavelength infrared thermal image

    DOE Patents [OSTI]

    Walker, Charles L.; Costin, Laurence S.; Smith, Jody L.; Moya, Mary M.; Mercier, Jeffrey A.

    2007-01-30

    A method for estimating the thermal properties of surface materials using long-wavelength thermal imagery by exploiting the differential heating histories of ground points in the vicinity of shadows. The use of differential heating histories of different ground points of the same surface material allows the use of a single image acquisition step to provide the necessary variation in measured parameters for calculation of the thermal properties of surface materials.

  14. HIGH-RESOLUTION MID-INFRARED IMAGING OF THE CIRCUMSTELLAR DISKS OF HERBIG Ae/Be STARS

    SciTech Connect (OSTI)

    Marinas, N.; Telesco, C. M.; Packham, C.; Fisher, R. S.

    2011-08-20

    We have imaged the circumstellar environments of 17 Herbig Ae/Be stars at 12 and 18 {mu}m using MICHELLE on Gemini North and T-ReCS on Gemini South. Our sample contained eight Group I sources, those having large rising near- to far-infrared (IR) fluxes, and nine Group II sources, those having more modest mid-IR fluxes relative to their near-IR flux (in the classification of Meeus et al.). We have resolved extended emission from all Group I sources in our target list. The majority of these sources have radially symmetric mid-IR emission extending from a radius of 10 AU to hundreds of AU. Only one of the nine Group II sources is resolved at the FWHM level, with another two Group II sources resolved at fainter levels. Models by Dullemond et al. explain the observed spectral energy distribution of Group II sources using self-shadowed cold disks. If this is the case for all the Group II sources, we do not expect to detect extended emission with this study, since the IR emission measured should arise from a region only a few AU in size, which is smaller than our resolution. The fact that we do resolve some of the Group II sources implies that their disks are not completely flat, and might represent an intermediate stage. We also find that none of the more massive (>3 M{sub sun}) Herbig Ae/Be stars in our sample belongs to Group I, which may point to a relationship between stellar mass and circumstellar dust evolution. Disks around more massive stars might evolve faster so that stars are surrounded by a more evolved flat disk by the time they become optically visible, or they might follow a different evolutionary path altogether.

  15. Multispectral Imaging | Open Energy Information

    Open Energy Info (EERE)

    ASTER imager utilizes 14 bands that cover portions of the visible (green, yellow, and red), near infrared (NIR), short wavelength infrared (SWIR), and long wavelength infrared...

  16. A reconsideration of the noise equivalent power and the data analysis procedure for the infrared imaging video bolometers

    SciTech Connect (OSTI)

    Pandya, Shwetang N. Sano, Ryuichi; Peterson, Byron J.; Kobayashi, Masahiro; Mukai, Kiyofumi; Pandya, Santosh P.

    2014-12-15

    The infrared imaging video bolometer (IRVB) used for measurement of the two-dimensional (2D) radiation profiles from the Large Helical Device has been significantly upgraded recently to improve its signal to noise ratio, sensitivity, and calibration, which ultimately provides quantitative measurements of the radiation from the plasma. The reliability of the quantified data needs to be established by various checks. The noise estimates also need to be revised and more realistic values need to be established. It is shown that the 2D heat diffusion equation can be used for estimating the power falling on the IRVB foil, even with a significant amount of spatial variation in the thermal diffusivity across the area of the platinum foil found experimentally during foil calibration. The equation for the noise equivalent power density (NEPD) is re-derived to include the errors in the measurement of the thermophysical and the optical properties of the IRVB foil. The theoretical value estimated using this newly derived equation matches closely, within 5.5%, with the mean experimental value. The change in the contribution of each error term of the NEPD equation with rising foil temperature is also studied and the blackbody term is found to dominate the other terms at elevated operating temperatures. The IRVB foil is also sensitive to the charge exchange (CX) neutrals escaping from the plasma. The CX neutral contribution is estimated to be marginally higher than the noise equivalent power (NEP) of the IRVB. It is also established that the radiation measured by the IRVB originates from the impurity line radiation from the plasma and not from the heated divertor tiles. The change in the power density due to noise reduction measures such as data smoothing and averaging is found to be comparable to the IRVB NEPD. The precautions that need to be considered during background subtraction are also discussed with experimental illustrations. Finally, the analysis algorithm with all the

  17. NEAR-INFRARED IMAGING OF A z = 6.42 QUASAR HOST GALAXY WITH THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3

    SciTech Connect (OSTI)

    Mechtley, M.; Windhorst, R. A.; Cohen, S. H.; Jansen, R. A.; Scannapieco, E.; Ryan, R. E.; Koekemoer, A. M.; Schneider, G.; Fan, X.; Hathi, N. P.; Keel, W. C.; Roettgering, H.; Schneider, D. P.; Strauss, M. A.; Yan, H. J.

    2012-09-10

    We report on deep near-infrared F125W (J) and F160W (H) Hubble Space Telescope Wide Field Camera 3 images of the z = 6.42 quasar J1148+5251 to attempt to detect rest-frame near-ultraviolet emission from the host galaxy. These observations included contemporaneous observations of a nearby star of similar near-infrared colors to measure temporal variations in the telescope and instrument point-spread function (PSF). We subtract the quasar point source using both this direct PSF and a model PSF. Using direct subtraction, we measure an upper limit for the quasar host galaxy of m{sub J} > 22.8 and m{sub H} > 23.0 AB mag (2 {sigma}). After subtracting our best model PSF, we measure a limiting surface brightness from 0.''3 to 0.''5 radius of {mu}{sub J} > 23.5 and {mu}{sub H} > 23.7 AB mag arcsec{sup -2} (2 {sigma}). We test the ability of the model subtraction method to recover the host galaxy flux by simulating host galaxies with varying integrated magnitude, effective radius, and Sersic index, and conducting the same analysis. These models indicate that the surface brightness limit ({mu}{sub J} > 23.5 AB mag arcsec{sup -2}) corresponds to an integrated upper limit of m{sub J} > 22-23 AB mag, consistent with the direct subtraction method. Combined with existing far-infrared observations, this gives an infrared excess log (IRX) > 1.0 and corresponding ultraviolet spectral slope {beta} > -1.2 {+-} 0.2. These values match those of most local luminous infrared galaxies, but are redder than those of almost all local star-forming galaxies and z {approx_equal} 6 Lyman break galaxies.

  18. THE TAIWAN ECDFS NEAR-INFRARED SURVEY: ULTRA-DEEP J AND K{sub S} IMAGING IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH

    SciTech Connect (OSTI)

    Hsieh, Bau-Ching; Wang, Wei-Hao; Hsieh, Chih-Chiang; Lin, Lihwai; Lim, Jeremy; Ho, Paul T. P.; Yan Haojing

    2012-12-15

    We present ultra-deep J and K{sub S} imaging observations covering a 30' Multiplication-Sign 30' area of the Extended Chandra Deep Field-South (ECDFS) carried out by our Taiwan ECDFS Near-Infrared Survey (TENIS). The median 5{sigma} limiting magnitudes for all detected objects in the ECDFS reach 24.5 and 23.9 mag (AB) for J and K{sub S} , respectively. In the inner 400 arcmin{sup 2} region where the sensitivity is more uniform, objects as faint as 25.6 and 25.0 mag are detected at 5{sigma}. Thus, this is by far the deepest J and K{sub S} data sets available for the ECDFS. To combine TENIS with the Spitzer IRAC data for obtaining better spectral energy distributions of high-redshift objects, we developed a novel deconvolution technique (IRACLEAN) to accurately estimate the IRAC fluxes. IRACLEAN can minimize the effect of blending in the IRAC images caused by the large point-spread functions and reduce the confusion noise. We applied IRACLEAN to the images from the Spitzer IRAC/MUSYC Public Legacy in the ECDFS survey (SIMPLE) and generated a J+K{sub S} -selected multi-wavelength catalog including the photometry of both the TENIS near-infrared and the SIMPLE IRAC data. We publicly release the data products derived from this work, including the J and K{sub S} images and the J+K{sub S} -selected multi-wavelength catalog.

  19. MID-INFRARED HIGH-CONTRAST IMAGING OF HD 114174 B: AN APPARENT AGE DISCREPANCY IN A ''SIRIUS-LIKE'' BINARY SYSTEM

    SciTech Connect (OSTI)

    Matthews, Christopher T.; Crepp, Justin R.; Skemer, Andrew; Hinz, Philip M.; Bailey, Vanessa P.; Defrere, Denis; Leisenring, Jarron; Gianninas, Alexandros; Kilic, Mukremin; Skrutskie, Michael; Esposito, Simone; Puglisi, Alfio

    2014-03-10

    We present new observations of the faint ''Sirius-like'' companion discovered to orbit HD 114174. Previous attempts to image HD 114174 B at mid-infrared wavelengths using NIRC2 at Keck have resulted in a non-detection. Our new L'-band observations taken with the Large Binocular Telescope and L/M-band InfraRed Camera recover the companion (?L = 10.15 0.15mag, ? = 0.''675 0.''016) with a high signal-to-noise ratio (10?). This measurement represents the deepest L' high-contrast imaging detection at subarcsecond separations to date, including extrasolar planets. We confirm that HD 114174 B has near-infrared colors consistent with the interpretation of a cool white dwarf (WD; J L' = 0.76 0.19mag, K L' = 0.64 0.20). New model fits to the object's spectral energy distribution indicate a temperature T {sub eff} = 4260 360K, surface gravity log g = 7.94 0.03, a cooling age t{sub c} ? 7.8Gyr, and mass M = 0.54 0.01 M {sub ?}. We find that the cooling ages given by theoretical atmospheric models do not agree with the age of HD 114174 A derived from both isochronological and gyrochronological analyses. We speculate on possible scenarios to explain the apparent age discrepancy between the primary and secondary. HD114174B is a nearby benchmark WD that will ultimately enable a dynamical mass estimate through continued Doppler and astrometric monitoring. Efforts to characterize its physical properties in detail will test theoretical atmospheric models and improve our understanding of WD evolution, cooling, and progenitor masses.

  20. Category:Near Infrared Surveys | Open Energy Information

    Open Energy Info (EERE)

    Infrared Surveys Retrieved from "http:en.openei.orgwindex.php?titleCategory:NearInfraredSurveys&oldid794164" Feedback Contact needs updating Image needs updating...

  1. Infrared thermography

    SciTech Connect (OSTI)

    Roberts, C.C. Jr.

    1982-12-01

    Infrared thermography is a useful tool for the diagnosis of problems in building systems. In instances where a building owner has several large buildings, an investment in a typical $30,000 infrared system may be cost effective. In most instances, however, the rental of an infrared system or the hiring of an infrared consulting service is a cost effective alternative. As can be seen from the several applications presented here, any mechanical problem manifesting itself in an atypical temperature pattern can usually be detected. The two primary savings generated from infrared analysis of building systems are maintenance and energy.

  2. A pilot study using deep infrared imaging to constrain the star formation history of the XUV stellar populations in NGC 4625

    SciTech Connect (OSTI)

    Bush, Stephanie J.; Ashby, M. L. N.; Fazio, Giovanni; Kennicutt, Robert C.; Johnson, Benjamin D.; Bresolin, Fabio

    2014-09-20

    In a ?CDM universe, disk galaxies' outer regions are the last to form. Characterizing their contents is critical for understanding the ongoing process of disk formation, but observing outer disk stellar populations is challenging due to their low surface brightness. We present extremely deep 3.6 ?m observations (Spitzer/Infrared Array Camera) of NGC 4625, a galaxy known for its radially extended ultraviolet-emitting stellar population. We combine the new imaging with archival UV imaging from the GALEX mission to derive multi-wavelength radial profiles for NGC 4625 and compare them to stellar populations models. The colors can be explained by the young stellar population that is responsible for the UV emission and indicate that the current star formation rates in the outermost disk are recent. Extended star formation in NGC 4625 may have been initiated by an interaction with neighboring galaxies NGC 4618 and NGC 4625a, supporting speculation that minor interactions are a common trigger for outer disk star formation and late stage disk growth.

  3. Dynamically Responsive Infrared Window Coatings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamically Responsive Infrared Window Coatings Addthis 1 of 5 An oxygen plasma etcher is ... Kyle Alvine checks on the progress of the plasma etch. Image: Pacific Northwest National ...

  4. Multi-channel infrared thermometer

    DOE Patents [OSTI]

    Ulrickson, Michael A.

    1986-01-01

    A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and a light pipe array positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The light pipe array includes one light pipe for each detector in the detector array.

  5. Multi-channel infrared thermometer

    DOE Patents [OSTI]

    Ulrickson, M.A.

    A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and optical means positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The optical means may be a light pipe array having one light pipe for each detector in the detector array.

  6. Deep thermal infrared imaging of HR 8799 bcde: new atmospheric constraints and limits on a fifth planet

    SciTech Connect (OSTI)

    Currie, Thayne; Cloutier, Ryan; Jayawardhana, Ray; Burrows, Adam; Girard, Julien H.; Fukagawa, Misato; Sorahana, Satoko; Kuchner, Marc; Kenyon, Scott J.; Madhusudhan, Nikku; Itoh, Yoichi; Matsumura, Soko; Pyo, Tae-Soo

    2014-11-10

    We present new L' (3.8 ?m) and Br? (4.05 ?m) data and reprocessed archival L' data for the young, planet-hosting star HR 8799 obtained with Keck/NIRC2, VLT/NaCo, and Subaru/IRCS. We detect all four HR 8799 planets in each data set at a moderate to high signal-to-noise ratio (S/N ? 6-15). We fail to identify a fifth planet, 'HR 8799 f', at r < 15 AU at a 5? confidence level: one suggestive, marginally significant residual at 0.''2 is most likely a point-spread function artifact. Assuming companion ages of 30 Myr and the Baraffe planet cooling models, we rule out an HR 8799 f with a mass of 5 M{sub J} (7 M{sub J} ), 7 M{sub J} (10 M{sub J} ), or 12 M{sub J} (13 M{sub J} ) at r {sub proj} ? 12 AU, 9 AU, and 5 AU, respectively. All four HR 8799 planets have red early T dwarf-like L' [4.05] colors, suggesting that their spectral energy distributions peak in between the L' and M' broadband filters. We find no statistically significant difference in HR 8799 cde's color. Atmosphere models assuming thick, patchy clouds appear to better match HR 8799 bcde's photometry than models assuming a uniform cloud layer. While non-equilibrium carbon chemistry is required to explain HR 8799 b and c's photometry/spectra, evidence for it from HR 8799 d and e's photometry is weaker. Future, deep-IR spectroscopy/spectrophotometry with the Gemini Planet Imager, SCExAO/CHARIS, and other facilities may clarify whether the planets are chemically similar or heterogeneous.

  7. Passive infrared bullet detection and tracking

    DOE Patents [OSTI]

    Karr, T.J.

    1997-01-21

    An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile. 9 figs.

  8. Passive infrared bullet detection and tracking

    DOE Patents [OSTI]

    Karr, Thomas J.

    1997-01-01

    An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

  9. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    van der Laan, J. D.; Sandia National Lab.; Scrymgeour, D. A.; Kemme, S. A.; Dereniak, E. L.

    2015-03-13

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists bettermore » than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.« less

  10. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths

    SciTech Connect (OSTI)

    van der Laan, J. D.; Scrymgeour, D. A.; Kemme, S. A.; Dereniak, E. L.

    2015-03-13

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists better than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.

  11. Mid-infrared tunable metamaterials

    DOE Patents [OSTI]

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A; Passmore, Brandon Scott; Jun, Young Chul

    2015-04-28

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  12. Infrared floodlight

    DOE Patents [OSTI]

    Levin, Robert E.; English, George J.

    1986-08-05

    An infrared floodlight assembly designed particularly for security purposes and including a heat-conducting housing, a lens secured to the housing to provide a closure therefor, and a floodlight located within (and surrounded by) the housing. The floodlight combines the use of a tungsten halogen light source and dichroic hot and cold mirrors for directing substantially only infrared radiation toward the assembly's forward lens. Visible radiation is absorbed by the housing's interior wall(s) and, optionally, by a filter located between the floodlight and lens. An optional means may be used within the floodlight to reflect all forward radiation back toward the paraboloidal hot mirror or, alternatively, to reflect only visible radiation in this direction. The dichroic hot and cold mirrors preferably each comprise a glass substrate having multiple layers of titanium dioxide and silicon dioxide thereon.

  13. Dynamically Responsive Infrared Window Coatings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamically Responsive Infrared Window Coatings 1 of 5 An oxygen plasma etcher is used to ... Kyle Alvine checks on the progress of the plasma etch. Image: Pacific Northwest National ...

  14. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Imaging Print The wavelengths of soft x-ray photons (1-15 nm) are very well matched to the creation of "nanoscopes" capable of probing the interior structure of biological cells and inorganic mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron radiation is absolutely essential for the creation of contrast mechanisms. Cell biology CAT scans are performed in

  15. NREL: Measurements and Characterization - Fourier-Transform Infrared...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fourier-Transform Infrared and Raman Spectroscopy Image of FTIR map FTIR mapping capabilities are extremely useful for the quick, nondestructive characterization of heterogeneous ...

  16. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron...

  17. Uncooled infrared photon detector and multicolor infrared detection using microoptomechanical sensors

    DOE Patents [OSTI]

    Datskos, Panagiotis G.; Rajic, Solobodan; Datskou, Irene C.

    1999-01-01

    Systems and methods for infrared detection are described. An optomechanical photon detector includes a semiconductor material and is based on measurement of a photoinduced lattice strain. A multicolor infrared sensor includes a stack of frequency specific optomechanical detectors. The stack can include one, or more, of the optomechanical photon detectors that function based on the measurement of photoinduced lattice strain. The systems and methods provide advantages in that rapid, sensitive multicolor infrared imaging can be performed without the need for a cooling subsystem.

  18. Image

    Energy Science and Technology Software Center (OSTI)

    2007-08-31

    The computer side of the IMAGE project consists of a collection of Perl scripts that perform a variety of tasks; scripts are available to insert, update and delete data from the underlying Oracle database, download data from NCBI's Genbank and other sources, and generate data files for download by interested parties. Web scripts make up the tracking interface, and various tools available on the project web-site (image.llnl.gov) that provide a search interface to the database.

  19. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Print The wavelengths of soft x-ray photons (1-15 nm) are very well matched to the creation of "nanoscopes" capable of probing the interior structure of biological cells and inorganic mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron radiation is absolutely essential for the creation of contrast mechanisms. Cell biology CAT scans are performed in the

  20. Phase transition in bulk single crystals and thin films of VO2 by nanoscale infrared spectroscopy and imaging

    SciTech Connect (OSTI)

    Liu, Mengkun; Sternbach, Aaron J.; Wagner, Martin; Slusar, Tetiana V.; Kong, Tai; Bud'ko, Sergey L.; Kittiwatanakul, Salinporn; Qazilbash, M. M.; McLeod, Alexander; Fei, Zhe; Abreu, Elsa; Zhang, Jingdi; Goldflam, Michael; Dai, Siyuan; Ni, Guang -Xin; Lu, Jiwei; Bechtel, Hans A.; Martin, Michael C.; Raschke, Markus B.; Averitt, Richard D.; Wolf, Stuart A.; Kim, Hyun -Tak; Canfield, Paul C.; Basov, D. N.

    2015-06-29

    We have systematically studied a variety of vanadium dioxide (VO2) crystalline forms, including bulk single crystals and oriented thin films, using infrared (IR) near-field spectroscopic imaging techniques. By measuring the IR spectroscopic responses of electrons and phonons in VO2 with sub-grain-size spatial resolution (~20nm), we show that epitaxial strain in VO2 thin films not only triggers spontaneous local phase separations, but leads to intermediate electronic and lattice states that are intrinsically different from those found in bulk. Generalized rules of strain- and symmetry-dependent mesoscopic phase inhomogeneity are also discussed. Furthermore, these results set the stage for a comprehensive understanding of complex energy landscapes that may not be readily determined by macroscopic approaches.

  1. Uncooled infrared photon detector and multicolor infrared detection...

    Office of Scientific and Technical Information (OSTI)

    A multicolor infrared sensor includes a stack of frequency specific optomechanical ... lattice; strain; multicolor; infrared; sensor; stack; frequency; specific; ...

  2. Infrared microscope inspection apparatus

    DOE Patents [OSTI]

    Forman, S.E.; Caunt, J.W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

  3. Infrared microscope inspection apparatus

    DOE Patents [OSTI]

    Forman, Steven E.; Caunt, James W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  4. Far infrared supplement: Catalog of infrared observations, second edition

    SciTech Connect (OSTI)

    Gezari, D.Y.; Schmitz, M.; Mead, J.M.

    1988-08-01

    The Far Infrared Supplement: Catalog of Infrared Observations summarizes all infrared astronomical observations at far infrared wavelengths (5 to 1000 microns) published in the scientific literature from 1965 through 1986. The Supplement list contain 25 percent of the observations in the full Catalog of Infrared Observations (CIO), and essentially eliminates most visible stars from the listings. The Supplement is thus more compact than the main catalog, and is intended for easy reference during astronomical observations. The Far Infrared Supplement (2nd Edition) includes the Index of Infrared Source Positions and the Bibliography of Infrared Astronomy for the subset of far infrared observations listed.

  5. Line Focus Receiver Infrared Temperature Survey System

    Energy Science and Technology Software Center (OSTI)

    2010-06-01

    For ongoing maintenance and performance purposes, solar parabolic trough field operators desire to know that the Heat Collection Elements (HCEs) are performing properly. Measuring their temperature is one way of doing this One 30MW field can contain approximately 10,000 HCE's. This software interfaces with a GPS receiver and an infrared camera. It takes global positioning data from the GPS and uses this information to automate the infrared image capture and temperature analysis of individual solarmore » parabolic HCEs in a solar parabolic trough field With this software system an entire 30MW field can be surveyed in 2-3 days.« less

  6. Arctic Clouds Infrared Imaging Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    ... European Journal of Physics 34(6): S111-S121. 9 JA Shaw, March 2016, DOESC-ARM-16-002 Shupe, MD, VP Walden, E Eloranta, T Uttal, JR Campbell, SM Starkweather, and M Shiobara. ...

  7. High speed infrared imaging system and method

    DOE Patents [OSTI]

    Zehnder, Alan T.; Rosakis, Ares J.; Ravichandran, G.

    2001-01-01

    A system and method for radiation detection with an increased frame rate. A semi-parallel processing configuration is used to process a row or column of pixels in a focal-plane array in parallel to achieve a processing rate up to and greater than 1 million frames per second.

  8. Variable waveband infrared imager (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating ...

  9. Uncooled infrared imaging using bimaterial microcantilever arrays...

    Office of Scientific and Technical Information (OSTI)

    Symposium, Orlando (Kissimmee), FL, USA, 20060417, 20060421 Research Org: Oak Ridge ... Save Share this Record Citation Formats MLA APA Chicago Bibtex Export Metadata Endnote ...

  10. Infrared source test

    SciTech Connect (OSTI)

    Ott, L.

    1994-11-15

    The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

  11. HUBBLE SPACE TELESCOPE ACS IMAGING OF THE GOALS SAMPLE: QUANTITATIVE STRUCTURAL PROPERTIES OF NEARBY LUMINOUS INFRARED GALAXIES WITH L{sub IR} > 10{sup 11.4} L{sub Sun}

    SciTech Connect (OSTI)

    Kim, D.-C.; Evans, A. S.; Privon, G. C. E-mail: aevans@virginia.edu; and others

    2013-05-10

    A Hubble Space Telescope/Advanced Camera for Surveys study of the structural properties of 85 luminous and ultraluminous (L{sub IR} > 10{sup 11.4} L{sub Sun }) infrared galaxies (LIRGs and ULIRGs) in the Great Observatories All-sky LIRG Survey (GOALS) sample is presented. Two-dimensional GALFIT analysis has been performed on F814W ''I-band'' images to decompose each galaxy, as appropriate, into bulge, disk, central point-spread function (PSF) and stellar bar components. The fraction of bulge-less disk systems is observed to be higher in LIRGs (35%) than in ULIRGs (20%), with the disk+bulge systems making up the dominant fraction of both LIRGs (55%) and ULIRGs (45%). Further, bulge+disk systems are the dominant late-stage merger galaxy type and are the dominant type for LIRGs and ULIRGs at almost every stage of galaxy-galaxy nuclear separation. The mean I-band host absolute magnitude of the GOALS galaxies is -22.64 {+-} 0.62 mag (1.8{sup +1.4}{sub -0.4} L{sup *}{sub I}), and the mean bulge absolute magnitude in GOALS galaxies is about 1.1 mag fainter than the mean host magnitude. Almost all ULIRGs have bulge magnitudes at the high end (-20.6 to -23.5 mag) of the GOALS bulge magnitude range. Mass ratios in the GOALS binary systems are consistent with most of the galaxies being the result of major mergers, and an examination of the residual-to-host intensity ratios in GOALS binary systems suggests that smaller companions suffer more tidal distortion than the larger companions. We find approximately twice as many bars in GOALS disk+bulge systems (32.8%) than in pure-disk mergers (15.9%) but most of the disk+bulge systems that contain bars are disk-dominated with small bulges. The bar-to-host intensity ratio, bar half-light radius, and bar ellipticity in GOALS galaxies are similar to those found in nearby spiral galaxies. The fraction of stellar bars decreases toward later merger stages and smaller nuclear separations, indicating that bars are destroyed as the merger

  12. Method for imaging a concealed object

    DOE Patents [OSTI]

    Davidson, James R [Idaho Falls, ID; Partin, Judy K [Idaho Falls, ID; Sawyers, Robert J [Idaho Falls, ID

    2007-07-03

    A method for imaging a concealed object is described and which includes a step of providing a heat radiating body, and wherein an object to be detected is concealed on the heat radiating body; imaging the heat radiating body to provide a visibly discernible infrared image of the heat radiating body; and determining if the visibly discernible infrared image of the heat radiating body is masked by the presence of the concealed object.

  13. Infrared Basics | Open Energy Information

    Open Energy Info (EERE)

    Infrared Basics Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Infrared Basics Author Protherm Published Publisher Not Provided, 2013 DOI Not Provided...

  14. Infrared floodlight assembly

    DOE Patents [OSTI]

    Wierzbicki, Julian J.; Chakrabarti, Kirti B.

    1987-09-22

    An infrared floodlight assembly (10) including a cast aluminum outer housing (11) defining a central chamber (15) therein. A floodlight (14), having a tungsten halogen lamp as the light source, is spacedly positioned within a heat conducting member (43) within chamber (15) such that the floodlight is securedly positioned in an aligned manner relative to the assembly's filter (35) and lens (12) components. The invention also includes venting means (51) to allow air passage between the interior of the member (43) and the adjacent chamber (15), as well as engagement means (85) for engaging a rear surface of the floodlight (14) to retain it firmly against an internal flange of the member (43). A reflector (61), capable of being compressed to allow insertion or removal, is located within the heat conducting member's interior between the floodlight (14) and filter (35) to reflect infrared radiation toward the filter (35) and spaced lens (12).

  15. Development of Research Infrastructure in Nevada for the Exploitation of Hyperspectral Image Data to Address Proliferation and Detection of Chemical and Biological Materials.

    SciTech Connect (OSTI)

    James V. Taranik

    2007-12-31

    This research was to exploit hyperspectral reflectance imaging technology for the detection and mapping variability (clutter) of the natural background against which gases in the atmosphere are imaged. The natural background consists of landscape surface cover composed of consolidated rocks, unconsolidated rock weathering products, soils, coatings on rock materials, vegetation, water, materials constructed by humans, and mixtures of the above. Human made gases in the atmosphere may indicate industrial processes important to detecting non-nuclear chemical and biological proliferation. Our research was to exploit the Visible and Near-Infrared (NIR) and the Short-wave Infrared (SWIR) portions of the electromagnetic spectrum to determine the properties of solid materials on the earths surface that could influence the detection of gases in the Long-Wave Infrared (LWIR). We used some new experimental hyperspectral imaging technologies to collect data over the Non-Proliferation Test and Evaluation Center (NPTEC) located on the Nevada Test Site (NTS). The SpecTIR HyperSpecTIR (HST) and Specim Dual hyperspectral sensors were used to understand the variability in the imaged background (clutter), that detected, measured, identified and mapped with operational commercial hyperspectral techniques. The HST sensors were determined to be more experimental than operational because of problems with radiometric and atmospheric data correction. However the SpecTIR Dual system, developed by Specim in Finland, eventually was found to provide cost-effective hyperspectral image data collection and it was possible to correct the Dual systems data for specific areas. Batch processing of long flightlines was still complex, and if comparison to laboratory spectra was desired, the Dual system data still had to be processed using the empirical line method. This research determined that 5-meter spatial resolution was adequate for mapping natural background variations. Furthermore, this

  16. Studies of planetary boundary layer by infrared thermal imagery

    SciTech Connect (OSTI)

    Albina, Bogdan; Dimitriu, Dan Gheorghe Gurlui, Silviu Octavian; Cazacu, Marius Mihai; Timofte, Adrian

    2014-11-24

    The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.

  17. Frequency selective infrared sensors

    DOE Patents [OSTI]

    Davids, Paul; Peters, David W

    2013-05-28

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  18. Frequency selective infrared sensors

    DOE Patents [OSTI]

    Davids, Paul; Peters, David W

    2014-11-25

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  19. Imaging bolometer

    DOE Patents [OSTI]

    Wurden, Glen A.

    1999-01-01

    Radiation-hard, steady-state imaging bolometer. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas.

  20. Imaging bolometer

    DOE Patents [OSTI]

    Wurden, G.A.

    1999-01-19

    Radiation-hard, steady-state imaging bolometer is disclosed. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas. 2 figs.

  1. Dual waveband compact catadioptric imaging spectrometer

    DOE Patents [OSTI]

    Chrisp, Michael P.

    2012-12-25

    A catadioptric dual waveband imaging spectrometer that covers the visible through short-wave infrared, and the midwave infrared spectral regions, dispersing the visible through shortwave infrared with a zinc selenide grating and midwave infrared with a sapphire prism. The grating and prism are at the cold stop position, enabling the pupil to be split between them. The spectra for both wavebands are focused onto the relevant sections of a single dual waveband detector. Spatial keystone distortion is controlled to less than one tenth of a pixel over the full wavelength range, facilitating the matching of the spectra in the midwave infrared with the shorter wavelength region.

  2. SPITZER OBSERVATIONS OF ABELL 1763. I. INFRARED AND OPTICAL PHOTOMETRY

    SciTech Connect (OSTI)

    Edwards, Louise O. V.; Fadda, Dario; Biviano, Andrea

    2010-02-15

    We present a photometric analysis of the galaxy cluster Abell 1763 at visible and infrared wavelengths. Included are fully reduced images in r', J, H, and K{sub s} obtained using the Palomar 200in telescope, as well as the IRAC and MIPS images from Spitzer. The cluster is covered out to approximately 3 virial radii with deep 24 {mu}m imaging (a 5{sigma} depth of 0.2 mJy). This same field of {approx}40' x 40' is covered in all four IRAC bands as well as the longer wavelength MIPS bands (70 and 160 {mu}m). The r' imaging covers {approx}0.8 deg{sup 2} down to 25.5 mag, and overlaps with most of the MIPS field of view. The J, H, and K{sub s} images cover the cluster core and roughly half of the filament galaxies, which extend toward the neighboring cluster, Abell 1770. This first, in a series of papers on Abell 1763, discusses the data reduction methods and source extraction techniques used for each data set. We present catalogs of infrared sources (with 24 and/or 70 {mu}m emission) and their corresponding emission in the optical (u', g', r', i', z'), and near- to far-IR (J, H, K{sub s} , IRAC, and MIPS 160 {mu}m). We provide the catalogs and reduced images to the community through the NASA/IPAC Infrared Science Archive.

  3. Sandia Infrared Analysis Program

    Energy Science and Technology Software Center (OSTI)

    2004-05-11

    SandIR is a sophisticated Windows2000/WindowsXP program for the capture and analysis of thermal images in real time. It is a 32-bit, 5 thread C++ OOP application that rests on Microsoft’s MFC and DirectDraw libraries, the DT3152LS driver functions and the LabEngine link libraries of Origin 4.1 for full functionality. Images may be loaded in from saved files or viewed live by connection to a FLIR (Inframetrics) 600 or 760 IR camera or a video cassettemore » recorder playing tapes recorded from a FLIR (Inframetrlcs) 600 or 760 IR camera- At this time, no other IR camera formats are supported. The raw radiosity data used by SandiR is derived from the 8-bit, 256 level, RS-170 (grayscale) NTSC camera signal. The FLIR camera images contain 175x131 pixels of real IR data. SandIR displays these data in a 604x410 image. The maximum matrix size is 640x452 Including VIR and grayscale. Live IR images can be frozen and then stored to computer disk. An incrementing save command makes It easy to save a sequence of images with a series of related file names. These files can then be loaded into SandIR at a later time for anatysis by a number of predefined tools or data probes. Multiple pseudo-color palettes containing 64 colors are available as well as a 256 level grayscale palette for image colorizing. SandtR always processes all the data in the ROt for each acquired image; so a complete temperature matrix is always available for any frozen image. SandIR performs nearly 7 million temperature calculations per second and updates the image display through Direct Draw over the PCI bus at frequencies of 30 Hz. 3-d surface plots, projections, wire maps or contour plots of absolute temperatures are also updated at 20 to 30 Hz which approaches the real-time acquisition rate of the camera, These plots may be viewed full-screen or frozen in separate windows for comparison to later images. The full set of both 2-d and 3-d Origin plotting tools can be used to manipulate the attached plots

  4. Infrared laser system

    DOE Patents [OSTI]

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph

    1982-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  5. Infrared laser system

    DOE Patents [OSTI]

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph S.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  6. Lateral conduction infrared photodetector

    DOE Patents [OSTI]

    Kim, Jin K.; Carroll, Malcolm S.

    2011-09-20

    A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.

  7. Autofluorescence detection and imaging of bladder cancer realized through a cystoscope

    DOE Patents [OSTI]

    Demos, Stavros G.; deVere White, Ralph W.

    2007-08-14

    Near infrared imaging using elastic light scattering and tissue autofluorescence and utilizing interior examination techniques and equipment are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and/or tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  8. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    SciTech Connect (OSTI)

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise of an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.

  9. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Probing Organic Transistors with Infrared Beams Print Wednesday, 26 July 2006 00:00 Silicon-based transistors are well-understood,...

  10. Forward looking infrared | Open Energy Information

    Open Energy Info (EERE)

    looking infrared Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Forward looking infrared Author Wikipedia Published Publisher Not Provided, 2013...

  11. Synchrotron Infrared Unveils a Mysterious Microbial Community

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Infrared Unveils a Mysterious Microbial Community Synchrotron Infrared Unveils a Mysterious Microbial Community Print Tuesday, 22 January 2013 00:00 A cold sulfur...

  12. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    infrared microspectroscopy at the ALS, with a diffraction-limited infrared beam diameter of less than 10 m, can overcome this hurdle. And while previous studies used...

  13. Mid-infrared photodetectors

    DOE Patents [OSTI]

    Guyot-Sionnest, Philippe; Keuleyan, Sean E.; Lhuillier, Emmanuel

    2016-04-19

    Nanoparticles, methods of manufacture, devices comprising the nanoparticles, methods of their manufacture, and methods of their use are provided herein. The nanoparticles and devices having photoabsorptions in the range of 1.7 .mu.m to 12 .mu.m and can be used as photoconductors, photodiodes, phototransistors, charge-coupled devices (CCD), luminescent probes, lasers, thermal imagers, night-vision systems, and/or photodetectors.

  14. OUTFLOWS IN {rho} OPHIUCHI AS SEEN WITH THE SPITZER INFRARED ARRAY CAMERA

    SciTech Connect (OSTI)

    Zhang Miaomiao; Wang Hongchi

    2009-12-15

    Using the IRAC images from the Spitzer c2d program, we have made a survey of mid-infrared outflows in the {rho} Ophiuchi molecular cloud. Extended objects that have prominent emission in IRAC channel 2 (4.5 {mu}m) compared to IRAC channel 1 (3.6 {mu}m) and stand out as green objects in the three-color images (3.6 {mu}m in blue, 4.5 {mu}m in green, 8.0 {mu}m in red) are identified as mid-infrared outflows. As a result, we detected 13 new outflows in the {rho} Ophiuchi molecular cloud that have not been previously observed in either the optical or the near-infrared. In addition, at the positions of previously observed HH objects or near-infrared emission, we detected 31 mid-infrared outflows, among which seven correspond to previously observed HH objects and 30 to near-infrared emission. Most of the mid-infrared outflows detected in the {rho} Ophiuchi cloud are concentrated in the L1688 dense core region. In combination with the survey results for young stellar objects (YSOs) and millimeter and submillimeter sources, the distribution of mid-infrared outflows in the {rho} Ophiuchi molecular complex hints a propagation of star formation in the cloud in the direction from the northwest to the southeast, as suggested by previous studies of the region.

  15. Lattice Simulations and Infrared Conformality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Appelquist, Thomas; Fleming, George T.; Lin, Meifeng; Neil, Ethan T.; Schaich, David A

    2011-09-01

    We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrapolation. We also note that the conformal hypothesis does not work well for two theories that are known or expected to be confining and chirally broken, and that itmore » does work well for another theory expected to be infrared conformal.« less

  16. Electrically tunable infrared metamaterial devices

    DOE Patents [OSTI]

    Brener, Igal; Jun, Young Chul

    2015-07-21

    A wavelength-tunable, depletion-type infrared metamaterial optical device is provided. The device includes a thin, highly doped epilayer whose electrical permittivity can become negative at some infrared wavelengths. This highly-doped buried layer optically couples with a metamaterial layer. Changes in the transmission spectrum of the device can be induced via the electrical control of this optical coupling. An embodiment includes a contact layer of semiconductor material that is sufficiently doped for operation as a contact layer and that is effectively transparent to an operating range of infrared wavelengths, a thin, highly doped buried layer of epitaxially grown semiconductor material that overlies the contact layer, and a metallized layer overlying the buried layer and patterned as a resonant metamaterial.

  17. Real time infrared aerosol analyzer

    DOE Patents [OSTI]

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  18. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    SciTech Connect (OSTI)

    Lomanowski, B. A. Sharples, R. M.; Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM Collaboration: JET-EFDA Team

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium D?, D?, D? line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  19. Infrared emitting device and method

    DOE Patents [OSTI]

    Kurtz, Steven R.; Biefeld, Robert M.; Dawson, L. Ralph; Howard, Arnold J.; Baucom, Kevin C.

    1997-01-01

    An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.

  20. Primer on Use of Multi-Spectral and Infra Red Imaging for On-Site Inspections

    SciTech Connect (OSTI)

    Henderson, J R

    2010-10-26

    . Finally, an appendix provides detail describing the magnitude and spatial extent of the surface shock expected from an underground nuclear explosion. If there is a seismic event or other data to suggest there has been a nuclear explosion in violation of the CTBT, an OSI may be conducted to determine whether a nuclear explosion has occurred and to gather information which may be useful in identifying the party responsible for conducting the explosion. The OSI must be conducted in the area where the event that triggered the inspection request occurred, and the inspected area must not exceed 1,000 square kilometers, or be more than 50 km on aside (CTBT Protocol, Part II, Paragraphs 2 and 3). One of the guiding principles for an inspection is that it be effective, minimally intrusive, timely, and cost-effective [Hawkins, Feb 1998]. In that context, MSIR is one of several technologies that can be used during an aircraft overflight to identify ground regions of high interest in a timely and cost-effective manner. This allows for an optimized inspection on the ground. The primary purpose for MSIR is to identify artifacts and anomalies that might be associated with a nuclear explosion, and to use the location of those artifacts and anomalies to reduce the search area that must be inspected from the ground. The MSIR measurements can have additional utility. The multi-spectral measurements of the ground can be used for terrain classification, which can aid in geological characterization of the Inspected Area. In conditions of where light smoke or haze is present, long-wave infrared imaging can provide better imaging of the ground than is possible with standard visible imagery.

  1. Solar and Infrared Radiation Station (SIRS) Handbook

    SciTech Connect (OSTI)

    Stoffel, T

    2005-07-01

    The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: Direct normal shortwave (solar beam) Diffuse horizontal shortwave (sky) Global horizontal shortwave (total hemispheric) Upwelling shortwave (reflected) Downwelling longwave (atmospheric infrared) Upwelling longwave (surface infrared)

  2. Tunable Surface Plasmon Infrared Modulator - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Industries Infrared Modulator IR Counter Measures Photonic Circuitry Metamaterials Chemical Sensing Variable Attenuation Patents and Patent Applications ID Number...

  3. Infrared spectroscopic investigation of nuclear spin conversion...

    Office of Scientific and Technical Information (OSTI)

    relaxation processes mediated by phonons to the temperature dependence of these ... INFRARED SPECTRA; METHANE; MOLECULES; PHONONS; RELAXATION; SOLIDS; SPIN; TEMPERATURE ...

  4. Sample rotating turntable kit for infrared spectrometers

    DOE Patents [OSTI]

    Eckels, Joel Del (Livermore, CA); Klunder, Gregory L. (Oakland, CA)

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  5. Thermal Imaging Control of Furnaces and Combustors

    SciTech Connect (OSTI)

    David M. Rue; Serguei Zelepouga; Ishwar K. Puri

    2003-02-28

    The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

  6. Ferroelectric infrared detector and method

    DOE Patents [OSTI]

    Lashley, Jason Charles; Opeil, Cyril P.; Smith, James Lawrence

    2010-03-30

    An apparatus and method are provided for sensing infrared radiation. The apparatus includes a sensor element that is positioned in a magnetic field during operation to ensure a .lamda. shaped relationship between specific heat and temperature adjacent the Curie temperature of the ferroelectric material comprising the sensor element. The apparatus is operated by inducing a magnetic field on the ferroelectric material to reduce surface charge on the element during its operation.

  7. ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology...

    Office of Scientific and Technical Information (OSTI)

    engineering data Title: ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): engineering data Atmospheric Sounder Spectrometer for Infrared Spectral ...

  8. Infrared emitting device and method

    DOE Patents [OSTI]

    Kurtz, S.R.; Biefeld, R.M.; Dawson, L.R.; Howard, A.J.; Baucom, K.C.

    1997-04-29

    The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns. 8 figs.

  9. ARM - Evaluation Product - Airborne Visible/Infrared Imaging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focused on understanding processes related to the global environment and climate change. Data Details Contact Alice Cialella Brookhaven National Laboratory cialella@bnl.gov...

  10. Arctic Clouds Infrared Imaging Field Campaign Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    This objective was successfully completed with a comparison of the two-year data set calibrated with and without the onboard blackbody. The two different calibration methods ...

  11. ARM: Infrared/visible sky imager (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Authors: Annette Koontz ; Victor Morris Publication Date: 2014-05-20 OSTI Identifier: 1181986 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data ...

  12. Imaging sensors and displays. SPIE volume 765

    SciTech Connect (OSTI)

    Freeman, C.F.

    1987-01-01

    This book discusses the following contents: HUMAN FACTORS FOR IMAGING SYSTEMS. Analysis of electroluminescent display devices for stereographic display of video images. Field of view, resolution, and brightness parameters for eye-limited displays. Helmet-mounted display for tank applications. Temporal aspects of electro-optical imaging systems. Helmet-mounted display for infantry applications. Image quality: two current issues. ADVANCED IMAGING SENSOR TECHNOLOGY. New color coding method with quasi-field integration mode for solid-state color imaging equipment. One-half inch CCD imager with 510 X 492 pixels. Solid-state imager implementing sensitivity control function on chip. Color laser microscope. A channel stop defined, barrier and drain antiblooming structure for virtual phase CCD image sensors. ADVANCED IMAGING DISPLAYS. Ultrahigh resolution 7 in. round monochrome CRT. High resolution MIM-diode LCD addressed by storage capacitor matrix. IMAGE DISPLAY TECHNOLOGY FOR INFRARED PROJECTORS. IR transducer technology: an overview. IT emitting CRT. IR simulation using the liquid crystal light valve (LCLV). Infrared display array. IR image generation by thermoelectric elements. IR simulation with diffusion image transfer film. Dynamic RAM imaging display technology utilizing silicon blackbody emitters. Thermal target projector for MRTD testing and vehicle identification training.

  13. Panoramic imaging perimeter sensor design and modeling

    SciTech Connect (OSTI)

    Pritchard, D.A.

    1993-12-31

    This paper describes the conceptual design and preliminary performance modeling of a 360-degree imaging sensor. This sensor combines automatic perimeter intrusion detection with immediate visual assessment and is intended to be used for fast deployment around fixed or temporary high-value assets. The sensor requirements, compiled from various government agencies, are summarized. The conceptual design includes longwave infrared and visible linear array technology. An auxiliary millimeter-wave sensing technology is also considered for use during periods of infrared and visible obscuration. The infrared detectors proposed for the sensor design are similar to the Standard Advanced Dewar Assembly Types Three A and B (SADA-IIIA/B). An overview of the sensor and processor is highlighted. The infrared performance of this sensor design has been predicted using existing thermal imaging system models and is described in the paper. Future plans for developing a prototype are also presented.

  14. Final LDRD report : infrared detection and power generation using self-assembled quantum dots.

    SciTech Connect (OSTI)

    Cederberg, Jeffrey George; Ellis, Robert; Shaner, Eric Arthur

    2008-02-01

    Alternative solutions are desired for mid-wavelength and long-wavelength infrared radiation detection and imaging arrays. We have investigated quantum dot infrared photodetectors (QDIPs) as a possible solution for long-wavelength infrared (8 to 12 {mu}m) radiation sensing. This document provides a summary for work done under the LDRD 'Infrared Detection and Power Generation Using Self-Assembled Quantum Dots'. Under this LDRD, we have developed QDIP sensors and made efforts to improve these devices. While the sensors fabricated show good responsivity at 80 K, their detectivity is limited by high noise current. Following efforts concentrated on how to reduce or eliminate this problem, but with no clear path was identified to the desired performance improvements.

  15. A REDSHIFT SURVEY OF HERSCHEL FAR-INFRARED SELECTED STARBURSTS AND IMPLICATIONS FOR OBSCURED STAR FORMATION

    SciTech Connect (OSTI)

    Casey, C. M.; Budynkiewicz, J.; Berta, S.; Lutz, D.; Magnelli, B.; Bethermin, M.; Le Floc'h, E.; Magdis, G.; Burgarella, D.; Chapin, E.; Chapman, S. C.; Clements, D. L.; Conley, A.; Conselice, C. J.; Cooray, A.; Farrah, D.; Hatziminaoglou, E.; Ivison, R. J.; and others

    2012-12-20

    We present Keck spectroscopic observations and redshifts for a sample of 767 Herschel-SPIRE selected galaxies (HSGs) at 250, 350, and 500 {mu}m, taken with the Keck I Low Resolution Imaging Spectrometer and the Keck II DEep Imaging Multi-Object Spectrograph. The redshift distribution of these SPIRE sources from the Herschel Multitiered Extragalactic Survey peaks at z = 0.85, with 731 sources at z < 2 and a tail of sources out to z {approx} 5. We measure more significant disagreement between photometric and spectroscopic redshifts (({Delta}z/(1 + z{sub spec})) = 0.29) than is seen in non-infrared selected samples, likely due to enhanced star formation rates and dust obscuration in infrared-selected galaxies. The infrared data are used to directly measure integrated infrared luminosities and dust temperatures independent of radio or 24 {mu}m flux densities. By probing the dust spectral energy distribution (SED) at its peak, we estimate that the vast majority (72%-83%) of z < 2 Herschel-selected galaxies would drop out of traditional submillimeter surveys at 0.85-1 mm. We find that dust temperature traces infrared luminosity, due in part to the SPIRE wavelength selection biases, and partially from physical effects. As a result, we measure no significant trend in SPIRE color with redshift; if dust temperature were independent of luminosity or redshift, a trend in SPIRE color would be expected. Composite infrared SEDs are constructed as a function of infrared luminosity, showing the increase in dust temperature with luminosity, and subtle change in near-infrared and mid-infrared spectral properties. Moderate evolution in the far-infrared (FIR)/radio correlation is measured for this partially radio-selected sample, with q{sub IR}{proportional_to}(1 + z){sup -0.30{+-}0.02} at z < 2. We estimate the luminosity function and implied star formation rate density contribution of HSGs at z < 1.6 and find overall agreement with work based on 24 {mu}m extrapolations of the LIRG

  16. LIFTERS-hyperspectral imaging at LLNL

    SciTech Connect (OSTI)

    Fields, D.; Bennett, C.; Carter, M.

    1994-11-15

    LIFTIRS, the Livermore Imaging Fourier Transform InfraRed Spectrometer, recently developed at LLNL, is an instrument which enables extremely efficient collection and analysis of hyperspectral imaging data. LIFTIRS produces a spatial format of 128x128 pixels, with spectral resolution arbitrarily variable up to a maximum of 0.25 inverse centimeters. Time resolution and spectral resolution can be traded off for each other with great flexibility. We will discuss recent measurements made with this instrument, and present typical images and spectra.

  17. A survey of infrared supernova remnants in the Large Magellanic Cloud

    SciTech Connect (OSTI)

    Seok, Ji Yeon; Koo, Bon-Chul; Onaka, Takashi

    2013-12-20

    We present a comprehensive infrared study of supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) using near- to mid-infrared images taken by Infrared Array Camera (IRAC; 3.6, 4.5, 5.8, and 8 μm) and Multiband Imaging Photometer (MIPS; 24 and 70 μm) onboard the Spitzer Space Telescope. Among the 47 bona fide LMC SNRs, 29 were detected in infrared, giving a high detection rate of 62%. All 29 SNRs show emission at 24 μm, and 20 out of 29 show emission in one or several IRAC bands. We present their 4.5, 8, 24, and 70 μm images and a table summarizing their Spitzer fluxes. We find that the LMC SNRs are considerably fainter than the Galactic SNRs, and that, among the LMC SNRs, Type Ia SNRs are significantly fainter than core-collapse SNRs. We conclude that the MIPS emission of essentially all SNRs originates from dust emission, whereas their IRAC emissions originate from ionic/molecular lines, polycyclic aromatic hydrocarbons emission, or synchrotron emission. The infrared fluxes show correlation with radio and X-ray fluxes. For SNRs that have similar morphology in infrared and X-rays, the ratios of 24 to 70 μm fluxes have good correlation with the electron density of hot plasma. The overall correlation is explained well by the emission from collisionally heated silicate grains of 0.1 μm size, but for mature SNRs with relatively low gas temperatures, the smaller-sized grain population is favored more. For those that appear different between infrared and X-rays, the emission in the MIPS bands is probably from dust heated by shock radiation.

  18. EVIDENCE FOR INFRARED-FAINT RADIO SOURCES AS z > 1 RADIO-LOUD ACTIVE GALACTIC NUCLEI

    SciTech Connect (OSTI)

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-10

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 {mu}m) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z {approx}> 1) active galactic nuclei.

  19. Infrared Debonding - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Infrared Debonding Y-12 National Security Complex Contact Y12 About This Technology Publications: PDF Document Publication Fact Sheet (302 KB) PDF Document Publication Presentation (370 KB) PDF Document Publication Patent (48 KB) <p align="left">&nbsp;</p> <p><em><span style="font-size: x-small;">Y-12 worker elevates object for positioning inside the IR

  20. Infra-red detector and method of making and using same

    DOE Patents [OSTI]

    Craig, Richard A.; Griffin, Jeffrey W.

    2007-02-20

    A low-cost infra-red detector is disclosed including a method of making and using the same. The detector employs a substrate, a filtering layer, a converting layer, and a diverter to be responsive to wavelengths up to about 1600 nm. The detector is useful for a variety of applications including spectroscopy, imaging, and defect detection.

  1. Infrared systems, SPIE proceedings. Vol. 256

    SciTech Connect (OSTI)

    Sanmann, E.E.

    1980-01-01

    The seminar focused on infrared systems sensor specifications, applications of infrared thermography in the analysis of induced surface currents due to incident electromagnetic radiation on complex shapes, advanced optical ceramics for sensor windows, digital processing in calibrated infrared imagery, and calibration. Papers were presented on nearby object radiometry, homing overlay experiment radiometric error terminology, design of radiometric calibration sources and spectroradiometers, and the Lockheed sensor test facility.

  2. Infra-red signature neutron detector

    DOE Patents [OSTI]

    Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN

    2009-10-13

    A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates infrared radiation and generation a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the infrared radiation. Identifying a characteristic of the activator based on the infrared radiation.

  3. Infrared trace element detection system

    DOE Patents [OSTI]

    Bien, F.; Bernstein, L.S.; Matthew, M.W.

    1988-11-15

    An infrared trace element detection system includes an optical cell into which the sample fluid to be examined is introduced and removed. Also introduced into the optical cell is a sample beam of infrared radiation in a first wavelength band which is significantly absorbed by the trace element and a second wavelength band which is not significantly absorbed by the trace element for passage through the optical cell through the sample fluid. The output intensities of the sample beam of radiation are selectively detected in the first and second wavelength bands. The intensities of a reference beam of the radiation are similarly detected in the first and second wavelength bands. The sensed output intensity of the sample beam in one of the first and second wavelength bands is normalized with respect to the other and similarly, the intensity of the reference beam of radiation in one of the first and second wavelength bands is normalized with respect to the other. The normalized sample beam intensity and normalized reference beam intensity are then compared to provide a signal from which the amount of trace element in the sample fluid can be determined. 11 figs.

  4. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signature, allowing their evolution into the final product to be precisely monitored with infrared spectroscopy. Although other (non-synchrotron) spectroscopic tools have the...

  5. SPITZER INFRARED SPECTROGRAPH DETECTION OF MOLECULAR HYDROGEN...

    Office of Scientific and Technical Information (OSTI)

    MOLECULAR HYDROGEN ROTATIONAL EMISSION TOWARDS TRANSLUCENT CLOUDS Citation Details In-Document Search Title: SPITZER INFRARED SPECTROGRAPH DETECTION OF MOLECULAR HYDROGEN ...

  6. Fluorescent microthermographic imaging

    SciTech Connect (OSTI)

    Barton, D.L.

    1993-09-01

    In the early days of microelectronics, design rules and feature sizes were large enough that sub-micron spatial resolution was not needed. Infrared or IR thermal techniques were available that calculated the object`s temperature from infrared emission. There is a fundamental spatial resolution limitation dependent on the wavelengths of light being used in the image formation process. As the integrated circuit feature sizes began to shrink toward the one micron level, the limitations imposed on IR thermal systems became more pronounced. Something else was needed to overcome this limitation. Liquid crystals have been used with great success, but they lack the temperature measurement capabilities of other techniques. The fluorescent microthermographic imaging technique (FMI) was developed to meet this need. This technique offers better than 0.01{degrees}C temperature resolution and is diffraction limited to 0.3 {mu}m spatial resolution. While the temperature resolution is comparable to that available on IR systems, the spatial resolution is much better. The FMI technique provides better spatial resolution by using a temperature dependent fluorescent film that emits light at 612 nm instead of the 1.5 {mu}m to 12 {mu}m range used by IR techniques. This tutorial starts with a review of blackbody radiation physics, the process by which all heated objects emit radiation to their surroundings, in order to understand the sources of information that are available to characterize an object`s surface temperature. The processes used in infrared thermal imaging are then detailed to point out the limitations of the technique but also to contrast it with the FMI process. The FMI technique is then described in detail, starting with the fluorescent film physics and ending with a series of examples of past applications of FMI.

  7. Compensated infrared absorption sensor for carbon dioxide and other infrared absorbing gases

    DOE Patents [OSTI]

    Owen, Thomas E.

    2005-11-29

    A gas sensor, whose chamber uses filters and choppers in either a semicircular geometry or annular geometry, and incorporates separate infrared radiation filters and optical choppers. This configuration facilitates the use of a single infrared radiation source and a single detector for infrared measurements at two wavelengths, such that measurement errors may be compensated.

  8. HERSCHEL OBSERVATIONS OF FAR-INFRARED COOLING LINES IN INTERMEDIATE REDSHIFT (ULTRA)-LUMINOUS INFRARED GALAXIES

    SciTech Connect (OSTI)

    Rigopoulou, D.; Magdis, G. E.; Thatte, N.; Hopwood, R.; Clements, D.; Swinyard, B. M.; Pearson, C.; Farrah, D.; Huang, J.-S.; Alonso-Herrero, A.; Bock, J. J.; Cooray, A.; Griffin, M. J.; Oliver, S.; Smith, A.; Wang, L.; Riechers, D.; Scott, D.; Vaccari, M.; Valtchanov, I.

    2014-01-20

    We report the first results from a spectroscopic survey of the [C II] 158?m line from a sample of intermediate redshift (0.2 infrared galaxies, (U)LIRGs (L {sub IR} > 10{sup 11.5} L {sub ?}), using the Spectral and Photometric Imaging REceiver-Fourier Transform Spectrometer on board the Herschel Space Observatory. This is the first survey of [C II] emission, an important tracer of star formation, at a redshift range where the star formation rate density of the universe increases rapidly. We detect strong [C II] 158?m line emission from over 80% of the sample. We find that the [C II] line is luminous, in the range (0.8-4) 10{sup 3} of the far-infrared continuum luminosity of our sources, and appears to arise from photodissociation regions on the surface of molecular clouds. The L{sub [C} {sub II]}/L {sub IR} ratio in our intermediate redshift (U)LIRGs is on average ?10times larger than that of local ULIRGs. Furthermore, we find that the L{sub [C} {sub II]}/L {sub IR} and L{sub [CII]}/L{sub CO(1-0)} ratios in our sample are similar to those of local normal galaxies and high-z star-forming galaxies. ULIRGs at z ? 0.5 show many similarities to the properties of local normal and high-z star-forming galaxies. Our findings strongly suggest that rapid evolution in the properties of the star-forming regions of (U)LIRGs is likely to have occurred in the last 5 billion years.

  9. ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology...

    Office of Scientific and Technical Information (OSTI)

    1 data Title: ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): channel 1 data Atmospheric Sounder Spectrometer for Infrared Spectral Technology ...

  10. ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology...

    Office of Scientific and Technical Information (OSTI)

    summary data Title: ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): summary data Atmospheric Sounder Spectrometer for Infrared Spectral Technology ...

  11. Gimbaled multispectral imaging system and method

    DOE Patents [OSTI]

    Brown, Kevin H.; Crollett, Seferino; Henson, Tammy D.; Napier, Matthew; Stromberg, Peter G.

    2016-01-26

    A gimbaled multispectral imaging system and method is described herein. In an general embodiment, the gimbaled multispectral imaging system has a cross support that defines a first gimbal axis and a second gimbal axis, wherein the cross support is rotatable about the first gimbal axis. The gimbaled multispectral imaging system comprises a telescope that fixed to an upper end of the cross support, such that rotation of the cross support about the first gimbal axis causes the tilt of the telescope to alter. The gimbaled multispectral imaging system includes optics that facilitate on-gimbal detection of visible light and off-gimbal detection of infrared light.

  12. Mushroom plasmonic metamaterial infrared absorbers

    SciTech Connect (OSTI)

    Ogawa, Shinpei Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  13. Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Image Gallery News & Publications ESnet News Publications and Presentations Galleries Image Gallery Video Gallery ESnet Awards and Honors Contact Us Media Jon Bashor, ...

  14. Rapid infrared heating of a surface

    DOE Patents [OSTI]

    Sikka, Vinod K.; Blue, Craig A.; Ohriner, Evan Keith

    2002-01-01

    High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

  15. Rapid infrared heating of a surface

    DOE Patents [OSTI]

    Sikka, Vinod K.; Blue, Craig A.; Ohriner, Evan Keith

    2001-01-01

    High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

  16. Rapid infrared heating of a surface

    DOE Patents [OSTI]

    Sikka, Vinod K.; Blue, Craig A.; Ohriner, Evan Keith

    2003-12-23

    High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

  17. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  18. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  19. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  20. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  1. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  2. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  3. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  4. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Infrared Mapping Helps Optimize Catalytic Reactions Print Wednesday, 20 August 2014 07:59 A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ

  5. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Probing Organic Transistors with Infrared Beams Print Wednesday, 26 July 2006 00:00 Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also

  6. Posters Long-Pathlength Infrared Absorption Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Posters Long-Pathlength Infrared Absorption Measurements in the 8- to 14-µm Atmospheric Window: Self-Broadening Coefficient Data T. J. Kulp (a) and J. Shinn Geophysics and Environmental Research Program Lawrence Livermore National Laboratory Livermore, California Introduction The accurate characterization of the latent infrared (IR) absorption in the atmospheric window regions continues to be an area of research interest for the global climate modeling community. In the window between 8 and

  7. THE INFRARED SPECTRUM OF URANIUM HOLLOW CATHODE LAMPS FROM 850...

    Office of Scientific and Technical Information (OSTI)

    CATHODES; ELECTRODES; ELECTROMAGNETIC RADIATION; ELEMENTS; INFRARED RADIATION; INTEGRAL TRANSFORMATIONS; MEASURING INSTRUMENTS; METALS; RADIATIONS; SPECTRA; SPECTROMETERS; ...

  8. DEEP SPITZER OBSERVATIONS OF INFRARED-FAINT RADIO SOURCES: HIGH-REDSHIFT RADIO-LOUD ACTIVE GALACTIC NUCLEI?

    SciTech Connect (OSTI)

    Norris, Ray P.; Mao, Minnie; Afonso, Jose; Cava, Antonio; Farrah, Duncan; Oliver, Seb; Huynh, Minh T.; Mauduit, Jean-Christophe; Surace, Jason; Ivison, R. J.; Jarvis, Matt; Lacy, Mark; Maraston, Claudia; Middelberg, Enno; Seymour, Nick

    2011-07-20

    Infrared-faint radio sources (IFRSs) are a rare class of objects which are relatively bright at radio wavelengths but very faint at infrared and optical wavelengths. Here we present sensitive near-infrared observations of a sample of these sources taken as part of the Spitzer Extragalactic Representative Volume Survey. Nearly all the IFRSs are undetected at a level of {approx}1 {mu}Jy in these new deep observations, and even the detections are consistent with confusion with unrelated galaxies. A stacked image implies that the median flux density is S{sub 3.6{mu}m} {approx} 0.2 {mu}Jy or less, giving extreme values of the radio-infrared flux density ratio. Comparison of these objects with known classes of object suggests that the majority are probably high-redshift radio-loud galaxies, possibly suffering from significant dust extinction.

  9. A COMPARISON OF X-RAY AND MID-INFRARED SELECTION OF OBSCURED ACTIVE GALACTIC NUCLEI

    SciTech Connect (OSTI)

    Eckart, Megan E.; Harrison, Fiona A.; McGreer, Ian D.; Helfand, David J.; Stern, Daniel

    2010-01-01

    We compare the relative merits of active galactic nuclei (AGNs) selection at X-ray and mid-infrared wavelengths using data from moderately deep fields observed by both Chandra and Spitzer. The X-ray-selected AGN sample and associated photometric and spectroscopic optical follow-up are drawn from a subset of fields studied as part of the Serendipitous Extragalactic X-ray Source Identification (SEXSI) program. Mid-infrared data in these fields are derived from targeted and archival Spitzer imaging, and mid-infrared AGN selection is accomplished primarily through application of the Infrared Array Camera (IRAC) color-color AGN 'wedge' selection technique. Nearly all X-ray sources in these fields which exhibit clear spectroscopic signatures of AGN activity have mid-infrared colors consistent with IRAC AGN selection. These are predominantly the most luminous X-ray sources. X-ray sources that lack high-ionization and/or broad lines in their optical spectra are far less likely to be selected as AGNs by mid-infrared color selection techniques. The fraction of X-ray sources identified as AGNs in the mid-infrared increases monotonically as the X-ray luminosity increases. Conversely, only 22% of mid-infrared-selected AGNs are detected at X-ray energies in the moderately deep ((t{sub exp}) approx 100 ks) SEXSI Chandra data. We hypothesize that IRAC sources with AGN colors that lack X-ray detections are predominantly high-luminosity AGNs that are obscured and/or lie at high redshift. A stacking analysis of X-ray-undetected sources shows that objects in the mid-infrared AGN selection wedge have average X-ray fluxes in the 2-8 keV band 3 times higher than sources that fall outside the wedge. Their X-ray spectra are also harder. The hardness ratio of the wedge-selected stack is consistent with moderate intrinsic obscuration, but is not suggestive of a highly obscured, Compton-thick source population. It is evident from this comparative study that in order to create a complete

  10. INFRARED STUDIES OF EPSILON AURIGAE IN ECLIPSE

    SciTech Connect (OSTI)

    Stencel, Robert E.; Kloppenborg, Brian K.; Wall, Randall E.; Hopkins, Jeffrey L.; Howell, Steve B.; Hoard, D. W.; Rayner, John; Bus, Schelte; Tokunaga, Alan; Sitko, Michael L.; Bradford, Suellen; Russell, Ray W.; Lynch, David K.; Hammel, Heidi; Whitney, Barbara; Orton, Glenn; Yanamandra-Fisher, Padma; Hora, Joseph L.; Hinz, Philip; Hoffmann, William; and others

    2011-11-15

    We report here on a series of medium resolution spectro-photometric observations of the enigmatic long period eclipsing binary epsilon Aurigae, during its eclipse interval of 2009-2011, using near-infrared spectra obtained with SpeX on the Infrared Telescope Facility (IRTF), mid-infrared spectra obtained with BASS on AOES and IRTF, MIRSI on IRTF, and MIRAC4 on the MMT, along with mid-infrared photometry using MIRSI on IRTF and MIRAC4 on the MMT, plus 1995-2000 timeframe published photometry and data obtained with Denver's TNTCAM2 at WIRO. The goals of these observations included: (1) comparing eclipse depths with prior eclipse data, (2) confirming the re-appearance of CO absorption bands at and after mid-eclipse, associated with sublimation in the disk, (3) seeking evidence for any mid-infrared solid state spectral features from particles in the disk, and (4) providing evidence that the externally irradiated disk has azimuthal temperature differences. IR eclipse depths appear similar to those observed during the most recent (1983) eclipse, although evidence for post-mid-eclipse disk temperature increase is present, due to F star heated portions of the disk coming into view. Molecular CO absorption returned 57 days after nominal mid-eclipse, but was not detected at mid-eclipse plus 34 days, narrowing the association with differentially heated sub-regions in the disk. Transient He I 10830A absorption was detected at mid-eclipse, persisting for at least 90 days thereafter, providing a diagnostic for the hot central region. The lack of solid-state features in Spitzer Infrared Spectrograph, BASS, and MIRAC spectra to date suggests the dominance of large particles (micron-sized) in the disk. Based on these observations, mid-infrared studies out of eclipse can directly monitor and map the disk thermal changes, and better constrain disk opacity and thermal conductivity.

  11. Real time capable infrared thermography for ASDEX Upgrade

    SciTech Connect (OSTI)

    Sieglin, B. Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-15

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  12. Broadband enhancement of infrared absorption in microbolometers using Ag nanocrystals

    SciTech Connect (OSTI)

    Hyun, Jerome K.; Ahn, Chi Won; Kim, Woo Choong; Kim, Tae Hyun; Hyun, Moon Seop; Kim, Hee Yeoun E-mail: jhpark@nnfc.re.kr; Park, Jae Hong E-mail: jhpark@nnfc.re.kr; Lee, Won-Oh

    2015-12-21

    High performance microbolometers are widely sought for thermal imaging applications. In order to increase the performance limits of microbolometers, the responsivity of the device to broadband infrared (IR) radiation needs to be improved. In this work, we report a simple, quick, and cost-effective approach to modestly enhance the broadband IR response of the device by evaporating Ag nanocrystals onto the light entrance surface of the device. When irradiated with IR light, strong fields are built up within the gaps between adjacent Ag nanocrystals. These fields resistively generate heat in the nanocrystals and underlying substrate, which is transduced into an electrical signal via a resistive sensing element in the device. Through this method, we are able to enhance the IR absorption over a broadband spectrum and improve the responsivity of the device by ∼11%.

  13. Infrared curing simulations of liquid composites molding

    SciTech Connect (OSTI)

    Nakouzi, S.; Pancrace, J.; Schmidt, F. M.; Le Maoult, Y.; Berthet, F. [Universite de Toulouse (France); INSA, UPS, Mines Albi, ISAE, ICA - Institut Clement Ader, Campus Jarlard, F-81013 Albi cedex 09 (France); Ecole des Mines Albi, Campus Jarlard, F-81013 Albi (France)

    2011-05-04

    Infrared radiation is an effective energy source to cure thermosetting polymers. Its usage is expected to reduce curing time in comparison with thermal heating and mold thermally regulated. In addition, because of the polymerization mechanism and instant on-off control of this power, an improvement in the final properties of the material is also expected. In this paper, we studied the infrared interaction with carbon (or glass) fibers reinforced epoxy matrix, where Liquid resin infusion (LRI) is used to manufacture the composite. Temperature of the composite is a key parameter that affects its mechanical properties and is controlled by the infrared emitters and the exothermic heat released from the polymerization. Radiative heat flux is computed using the in-lab developed software RAYHEAT. Then, the heat flux (or absorbed energy for glass fibers) is exported to the finite element based program COMSOLMULTIPHYSICS where heat balance equation is solved. This equation is coupled with the exothermic heat released during the curing process in order to predict the composite temperature versus time and degree of cure. Numerical simulations will be performed on planar parts (sheet shape) as well as curvilinear shapes. Experimental validations of the infrared curing carbon (glass)-epoxy composite system are presented in this paper Sheet surface temperature distribution are measured thanks to infrared camera. Kinetic parameters were estimated from differential scanning calorimeter (DSC) experimental data.

  14. Methodology and apparatus for diffuse photon imaging

    DOE Patents [OSTI]

    Feng, S.C.; Zeng, F.; Zhao, H.L.

    1997-12-09

    Non-invasive near infrared optical medical imaging devices for both hematoma detection in the brain and early tumor detection in the breast is achieved using image reconstruction which allows a mapping of the position dependent contrast diffusive propagation constants, which are related to the optical absorption coefficient and scattering coefficient in the tissue, at near infrared wavelengths. Spatial resolutions in the range of 5 mm for adult brain sizes and breast sizes can be achieved. The image reconstruction utilizes WKB approximation on most probable diffusion paths which has as lowest order approximation the straight line-of-sight between the plurality of sources and the plurality of detectors. The WKB approximation yields a set of linear equations in which the contrast optical absorption coefficients are the unknowns and for which signals can be generated to produce a pixel map of the contrast optical resolution of the scanned tissue. 58 figs.

  15. Non-Destructive Evaluation of Wind Turbine Blades Using an Infrared Camera

    SciTech Connect (OSTI)

    Beattie, A.G.; Rumsey, M.

    1998-12-17

    The use of a digital infrared as a non-destructive evaluation thermography camera (NDE) tool was ex- plored in two separate wind turbine blade fatigue tests. The fwst test was a fatigue test of part of a 13.1 meter wood-epoxy-composite blade. The second test was on a 4.25 meter pultruded fiber glass blade section driven at several mechanical resonant frequencies. The digital infrared camera can produce images of either the static temperature distribution on the surface of the specimen, or the dynamic temperature distribution that is in phase with a specific frequency on a vibrating specimen. The dynamic temperature distribution (due to thermoplastic effects) gives a measure of the sum of the principal stresses at each point on the surface. In the wood- epoxy-composite blade fatigue test, the point of ultimate failure was detected long before failure occurred. The mode shapes obtained with the digital infrared camera, from the resonant blade tests, were in very good agree- ment with the finite-element calculations. In addition, the static temperature images of the resonating blade showed two areas that contained cracks. Close-up dy- namic inf%red images of these areas showed the crack structure that agreed with subsequent dye-penetrant analysis.

  16. Gated IR Images of Shocked Surfaces

    SciTech Connect (OSTI)

    S. S. Lutz; W. D. Turley; P. M. Rightley; L. E. Primas

    2001-06-01

    Gated infrared (IR) images have been taken of a series of shocked surface geometries in tin. Metal coupons machined with steps and flats were mounted directly to the high explosive. The explosive was point-initiated and 500-ns to 1-microsecond-wide gated images of the target were taken immediately following shock breakout using a Santa Barbara Focalplane InSb camera (SBF-134). Spatial distributions of surface radiance were extracted from the images of the shocked samples and found to be non-single-valued. Several geometries were modeled using CTH, a two-dimensional Eulerian hydrocode.

  17. Infrared light sources with semimetal electron injection

    DOE Patents [OSTI]

    Kurtz, Steven R.; Biefeld, Robert M.; Allerman, Andrew A.

    1999-01-01

    An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

  18. Image alignment

    DOE Patents [OSTI]

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  19. THE WIRED SURVEY. II. INFRARED EXCESSES IN THE SDSS DR7 WHITE DWARF CATALOG

    SciTech Connect (OSTI)

    Debes, John H.; Leisawitz, David T.; Hoard, D. W.; Wachter, Stefanie; Cohen, Martin

    2011-12-01

    With the launch of the Wide-field Infrared Survey Explorer (WISE), a new era of detecting planetary debris and brown dwarfs (BDs) around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED Survey is sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs. In this paper, we present a cross-correlation of the preliminary Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) WD catalog between the WISE, Two-Micron All Sky Survey (2MASS), UKIRT Infrared Deep Sky Survey (UKIDSS), and SDSS DR7 photometric catalogs. From {approx}18,000 input targets, there are WISE detections comprising 344 'naked' WDs (detection of the WD photosphere only), 1020 candidate WD+M dwarf binaries, 42 candidate WD+BD systems, 52 candidate WD+dust disk systems, and 69 targets with indeterminate infrared excess. We classified all of the detected targets through spectral energy distribution model fitting of the merged optical, near-IR, and WISE photometry. Some of these detections could be the result of contaminating sources within the large ( Almost-Equal-To 6'') WISE point-spread function; we make a preliminary estimate for the rates of contamination for our WD+BD and WD+disk candidates and provide notes for each target of interest. Each candidate presented here should be confirmed with higher angular resolution infrared imaging or infrared spectroscopy. We also present an overview of the observational characteristics of the detected WDs in the WISE photometric bands, including the relative frequencies of candidate WD+M, WD+BD, and WD+disk systems.

  20. Activities of the CLIO infrared facility

    SciTech Connect (OSTI)

    Ortega, J.M.; Berset, J.M.; Chaput, R.

    1995-12-31

    The CLIO infrared FEL is operated since 1992. It is based on a 3 GHz RF linac. The laser beam time was about 2400 h in 1994, 1600 for users and 800 for FEL physics and machine optimisation. The beam time is limited mainly by user ability to work during nights.

  1. Joint spatio-spectral based edge detection for multispectral infrared imagery.

    SciTech Connect (OSTI)

    Krishna, Sanjay; Hayat, Majeed M.; Bender, Steven C.; Sharma, Yagya D.; Jang, Woo-Yong; Paskalva, Biliana S.

    2010-06-01

    Image segmentation is one of the most important and difficult tasks in digital image processing. It represents a key stage of automated image analysis and interpretation. Segmentation algorithms for gray-scale images utilize basic properties of intensity values such as discontinuity and similarity. However, it is possible to enhance edge-detection capability by means of using spectral information provided by multispectral (MS) or hyperspectral (HS) imagery. In this paper we consider image segmentation algorithms for multispectral images with particular emphasis on detection of multi-color or multispectral edges. More specifically, we report on an algorithm for joint spatio-spectral (JSS) edge detection. By joint we mean simultaneous utilization of spatial and spectral characteristics of a given MS or HS image. The JSS-based edge-detection approach, termed Spectral Ratio Contrast (SRC) edge-detection algorithm, utilizes the novel concept of matching edge signatures. The edge signature represents a combination of spectral ratios calculated using bands that enhance the spectral contrast between the two materials. In conjunction with a spatial mask, the edge signature give rise to a multispectral operator that can be viewed as a three-dimensional extension of the mask. In the extended mask, the third (spectral) dimension of each hyper-pixel can be chosen independently. The SRC is verified using MS and HS imagery from a quantum-dot in a well infrared (IR) focal plane array, and the Airborne Hyperspectral Imager.

  2. Transmissive infrared frequency selective surfaces and infrared antennas : final report for LDRD 105749.

    SciTech Connect (OSTI)

    Wendt, Joel Robert; Hadley, G. Ronald; Samora, Sally; Loui, Hung; Cruz-Cabrera, Alvaro Augusto; Davids, Paul; Kemme, Shanalyn A.; Basilio, Lorena I.; Johnson, William Arthur; Peters, David William

    2009-09-01

    Plasmonic structures open up new opportunities in photonic devices, sometimes offering an alternate method to perform a function and sometimes offering capabilities not possible with standard optics. In this LDRD we successfully demonstrated metal coatings on optical surfaces that do not adversely affect the transmission of those surfaces at the design frequency. This technology could be applied as an RF noise blocking layer across an optical aperture or as a method to apply an electric field to an active electro-optic device without affecting optical performance. We also demonstrated thin optical absorbers using similar patterned surfaces. These infrared optical antennas show promise as a method to improve performance in mercury cadmium telluride detectors. Furthermore, these structures could be coupled with other components to lead to direct rectification of infrared radiation. This possibility leads to a new method for infrared detection and energy harvesting of infrared radiation.

  3. Effects of Cosmic Infrared Background on High Energy Delayed...

    Office of Scientific and Technical Information (OSTI)

    Effects of Cosmic Infrared Background on High Energy Delayed Gamma-Rays From Gamma-Ray Bursts Citation Details In-Document Search Title: Effects of Cosmic Infrared Background on...

  4. Rapid infrared joining takes on the advanced materials

    SciTech Connect (OSTI)

    Blue, C.A.; Warrier, S.G.; Robson, M.T.; Lin, R.Y. . Dept. of Materials Science and Engineering)

    1993-06-01

    Applying the rapid infrared joining technique, the authors have successfully joined steels, Inconel[sup [reg sign

  5. THE GALACTIC CENTER IN THE FAR-INFRARED

    SciTech Connect (OSTI)

    Etxaluze, M.; Smith, Howard A.; Tolls, V.; Stark, A. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gonzalez-Alfonso, E., E-mail: metxaluz@cfa.harvard.edu [CfA and Universidad de Alcala, Alcala de Henares 28801 (Spain)

    2011-10-15

    We analyze the far-infrared dust emission from the Galactic center region, including the circumnuclear disk (CND) and other structures, using Herschel PACS and SPIRE photometric observations. These Herschel data are complemented by unpublished observations by the Infrared Space Observatory Long Wavelength Spectrometer (ISO-LWS), which used parallel mode scans to obtain photometric images of the region with a larger beam than Herschel but with a complementary wavelength coverage and more frequent sampling with 10 detectors observing at 10 different wavelengths in the range from 46 {mu}m to 180 {mu}m, where the emission peaks. We also include data from the Midcourse Space Experiment at 21.3 {mu}m for completeness. We model the combined ISO-LWS continuum plus Herschel PACS and SPIRE photometric data toward the central 2 pc in Sagittarius A* (Sgr A*), a region that includes the CND. We find that the far-infrared spectral energy distribution is best represented by a continuum that is the sum of three gray body curves from dust at temperatures of 90, 44.5, and 23 K. We obtain temperature and molecular hydrogen column density maps of the region. We estimate the mass of the inner part of the CND to be {approx}5.0 x 10{sup 4} M{sub sun}, with luminosities: L{sub cavity} {approx} 2.2 x 10{sup 6} L{sub sun} and L{sub CND} {approx} 1.5 x 10{sup 6} L{sub sun} in the central 2 pc radius around Sgr A*. We find from the Herschel and ISO data that the cold component of the dust dominates the total dust mass, with a contribution of {approx}3.2 x 10{sup 4} M{sub sun}; this important cold material had escaped the notice of earlier studies that relied on shorter wavelength observations. The hotter component disagrees with some earlier estimates, but is consistent with measured gas temperatures and with models that imply shock heating or turbulent effects are at work. We find that the dust grain sizes apparently change widely across the region, perhaps in response to the temperature

  6. THE INFRARED COLORS OF THE SUN

    SciTech Connect (OSTI)

    Casagrande, L.; Asplund, M.; Ramirez, I.; Melendez, J.

    2012-12-10

    Solar infrared colors provide powerful constraints on the stellar effective temperature scale, but they must be measured with both accuracy and precision in order to do so. We fulfill this requirement by using line-depth ratios to derive in a model-independent way the infrared colors of the Sun, and we use the latter to test the zero point of the Casagrande et al. effective temperature scale, confirming its accuracy. Solar colors in the widely used Two Micron All Sky Survey (2MASS) JHK{sub s} and WISE W1-4 systems are provided: (V - J){sub Sun} = 1.198, (V - H){sub Sun} = 1.484, (V - K{sub s} ){sub Sun} = 1.560, (J - H){sub Sun} = 0.286, (J - K{sub s} ){sub Sun} = 0.362, (H - K{sub s} ){sub Sun} = 0.076, (V - W1){sub Sun} = 1.608, (V - W2){sub Sun} = 1.563, (V - W3){sub Sun} = 1.552, and (V - W4){sub Sun} = 1.604. A cross-check of the effective temperatures derived implementing 2MASS or WISE magnitudes in the infrared flux method confirms that the absolute calibration of the two systems agrees within the errors, possibly suggesting a 1% offset between the two, thus validating extant near- and mid-infrared absolute calibrations. While 2MASS magnitudes are usually well suited to derive T{sub eff}, we find that a number of bright, solar-like stars exhibit anomalous WISE colors. In most cases, this effect is spurious and can be attributed to lower-quality measurements, although for a couple of objects (3% {+-} 2% of the total sample) it might be real, and may hint at the presence of warm/hot debris disks.

  7. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However,

  8. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However,

  9. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However,

  10. Room-temperature near-infrared silicon carbide nanocrystalline emitters based on optically aligned spin defects

    SciTech Connect (OSTI)

    Muzha, A.; Fuchs, F.; Simin, D.; Astakhov, G. V.; Tarakina, N. V.; Trupke, M.; Soltamov, V. A.; Mokhov, E. N.; Baranov, P. G.; Dyakonov, V.; and others

    2014-12-15

    Bulk silicon carbide (SiC) is a very promising material system for bio-applications and quantum sensing. However, its optical activity lies beyond the near infrared spectral window for in-vivo imaging and fiber communications due to a large forbidden energy gap. Here, we report the fabrication of SiC nanocrystals and isolation of different nanocrystal fractions ranged from 600?nm down to 60?nm in size. The structural analysis reveals further fragmentation of the smallest nanocrystals into ca. 10-nm-size clusters of high crystalline quality, separated by amorphization areas. We use neutron irradiation to create silicon vacancies, demonstrating near infrared photoluminescence. Finally, we detect room-temperature spin resonances of these silicon vacancies hosted in SiC nanocrystals. This opens intriguing perspectives to use them not only as in-vivo luminescent markers but also as magnetic field and temperature sensors, allowing for monitoring various physical, chemical, and biological processes.

  11. PROBING INTERSTELLAR DUST WITH INFRARED ECHOES FROM THE Cas A SUPERNOVA

    SciTech Connect (OSTI)

    Vogt, Frederic P. A.; Besel, Marc-Andre; Krause, Oliver; Dullemond, Cornelis P.

    2012-05-10

    We present the analysis of an Infrared Spectrograph 5-38 {mu}m spectrum and Multiband Imaging Photometer for Spitzer photometric measurements of an infrared echo near the Cassiopeia A (Cas A) supernova (SN) remnant observed with the Spitzer Space Telescope. We have modeled the recorded echo accounting for polycyclic aromatic hydrocarbons (PAHs), quantum-heated carbon and silicate grains, as well as thermal carbon and silicate particles. Using the fact that optical light-echo spectroscopy has established that Cas A originated from a Type IIb SN explosion showing an optical spectrum remarkably similar to the prototypical Type IIb SN 1993J, we use the latter to construct template data input for our simulations. We are then able to reproduce the recorded infrared echo spectrum by combining the emission of dust heated by the UV burst produced at the shock breakout after the core-collapse and dust heated by optical light emitted near the visual maximum of the SN light curve, where the UV burst and optical light curve characteristics are based on SN 1993J. We find a mean density of {approx}680 H cm{sup -3} for the echo region, with a size of a few light years across. We also find evidence of dust processing in the form of a lack of small PAHs with less than {approx}300 carbon atoms, consistent with a scenario of PAHs destruction by the UV burst via photodissociation at the estimated distance of the echo region from Cas A. Furthermore, our simulations suggest that the weak 11 {mu}m features of our recorded infrared echo spectrum are consistent with a strong dehydrogenated state of the PAHs. This exploratory study highlights the potential of investigating dust processing in the interstellar medium through infrared echoes.

  12. Career Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Career Images Career Images Explore a dimensional career at Los Alamos Lab: Take a look at who is working here and what they are doing to have a fulfilling career and balanced work/life. Diversity and Inclusion» Career Options» Our Workplace» Employee, Retiree Resources» Career Stories» Career Images» Career Videos» Click thumbnails to enlarge. Photos arranged by most recent first, horizontal formats before vertical. See Flickr for more sizes and details. Advanced wireless sensing systems

  13. SPITZER OBSERVATIONS OF PASSIVE AND STAR-FORMING EARLY-TYPE GALAXIES: AN INFRARED COLOR-COLOR SEQUENCE

    SciTech Connect (OSTI)

    Temi, Pasquale

    2009-12-20

    We describe the infrared properties of a large sample of early-type galaxies, comparing data from the Spitzer archive with Ks-band emission from the Two Micron All Sky Survey. While most representations of this data result in correlations with large scatter, we find a remarkably tight relation among colors formed by ratios of luminosities in Spitzer-Multiband Imaging Photometer bands (24, 70, and 160 mum) and the Ks band. Remarkably, this correlation among E and S0 galaxies follows that of nearby normal galaxies of all morphological types. In particular, the tight infrared color-color correlation for S0 galaxies alone follows that of the entire Hubble sequence of normal galaxies, roughly in order of galaxy type from ellipticals to spirals to irregulars. The specific star formation rate (SFR) of S0 galaxies estimated from the 24 mum luminosity increases with decreasing K-band luminosity (or stellar mass) from essentially zero, as with most massive ellipticals, to rates typical of irregular galaxies. Moreover, the luminosities of the many infrared-luminous S0 galaxies can significantly exceed those of the most luminous (presumably post-merger) E galaxies. SFRs in the most infrared-luminous S0 galaxies approach 1-10 solar masses per year. Consistently, with this picture we find that while most early-type galaxies populate an infrared red sequence, about 24% of the objects (mostly S0s) are in an infrared blue cloud together with late-type galaxies. For those early-type galaxies also observed at radio frequencies, we find that the far-infrared luminosities correlate with the mass of neutral and molecular hydrogen, but the scatter is large. This scatter suggests that the star formation may be intermittent or that similar S0 galaxies with cold gaseous disks of nearly equal mass can have varying radial column density distributions that alter the local and global SFRs.

  14. Invited Article: An integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument

    SciTech Connect (OSTI)

    Kühne, P. Schubert, M. Hofmann, T.; Herzinger, C. M. Woollam, J. A.

    2014-07-15

    We report on the development of the first integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument, covering an ultra wide spectral range from 3 cm{sup −1} to 7000 cm{sup −1} (0.1–210 THz or 0.4–870 meV). The instrument comprises four sub-systems, where the magneto-cryostat-transfer sub-system enables the usage of the magneto-cryostat sub-system with the mid-infrared ellipsometer sub-system, and the far-infrared/terahertz ellipsometer sub-system. Both ellipsometer sub-systems can be used as variable angle-of-incidence spectroscopic ellipsometers in reflection or transmission mode, and are equipped with multiple light sources and detectors. The ellipsometer sub-systems are operated in polarizer-sample-rotating-analyzer configuration granting access to the upper left 3 × 3 block of the normalized 4 × 4 Mueller matrix. The closed cycle magneto-cryostat sub-system provides sample temperatures between room temperature and 1.4 K and magnetic fields up to 8 T, enabling the detection of transverse and longitudinal magnetic field-induced birefringence. We discuss theoretical background and practical realization of the integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument, as well as acquisition of optical Hall effect data and the corresponding model analysis procedures. Exemplarily, epitaxial graphene grown on 6H-SiC, a tellurium doped bulk GaAs sample and an AlGaN/GaN high electron mobility transistor structure are investigated. The selected experimental datasets display the full spectral, magnetic field and temperature range of the instrument and demonstrate data analysis strategies. Effects from free charge carriers in two dimensional confinement and in a volume material, as well as quantum mechanical effects (inter-Landau-level transitions) are observed and discussed exemplarily.

  15. Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D

    SciTech Connect (OSTI)

    Lasnier, C. J. Allen, S. L.; Ellis, R. E.; Fenstermacher, M. E.; McLean, A. G.; Meyer, W. H.; Morris, K.; Seppala, L. G.; Crabtree, K.; Van Zeeland, M. A.

    2014-11-15

    An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in diverted and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. Demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.

  16. Development of two-band infrared radiometer for irradiance calibration of target simulators

    SciTech Connect (OSTI)

    Yang, Sen; Li, Chengwei

    2015-07-15

    A detector-based spectral radiometer has been developed for the calibration of target simulator. Unlike the conventional spectral irradiance calibration method based on radiance and irradiance, the new radiometer is calibrated using image-space temperature based method. The image-space temperature based method improves the reproducibility in the calibration of radiometer and reduces the uncertainties existing in the conventional calibration methods. The calibrated radiometer is then used to establish the irradiance transfer standard for the target simulator. With the designed radiometer in this paper, a highly accurate irradiance calibration for target simulators of wavelength from 2.05 to 2.55 μm and from 3.7 to 4.8 μm can be performed with an expanded uncertainty (k = 2) of calibration of 2.18%. Last but not least, the infrared radiation of the target simulator was measured by the infrared radiometer, the effectiveness and capability of which are verified through measurement of temperature and irradiance and a comparison with the thermal imaging camera.

  17. Infrared spectroscopy study of irradiated PVDF

    SciTech Connect (OSTI)

    Chappa, Veronica; Grosso, Mariela del; Garcia Bermudez, Gerardo; Behar, Moni

    2007-10-26

    The effects induced by 1 MeV/amu ion irradiations were compared to those induced by 4-12 MeV/amu irradiations. Structural analysis with infrared spectroscopy (FTIR) was carried out on PVDF irradiated using C and He beams with different fluences. From these spectra it was observed, as a function of fluence, an overall destruction of the polymer, amorphization of the crystalline regions and the creation of in-chain unsaturations. The track dimensions were determined using a previously developed Monte Carlo simulation code and these results were compared to a semiempirical model.

  18. Resonator-quantum well infrared photodetectors

    SciTech Connect (OSTI)

    Choi, K. K. Sun, J.; Olver, K.; Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A.

    2013-11-11

    We applied a recent electromagnetic model to design the resonator-quantum well infrared photodetector (R-QWIP). In this design, we used an array of rings as diffractive elements to diffract normal incident light into parallel propagation and used the pixel volume as a resonator to intensify the diffracted light. With a proper pixel size, the detector resonates at certain optical wavelengths and thus yields a high quantum efficiency (QE). To test this detector concept, we fabricated a number of R-QWIPs with different quantum well materials and detector geometries. The experimental result agrees satisfactorily with the prediction, and the highest QE achieved is 71%.

  19. Defining the infrared systems for ITER

    SciTech Connect (OSTI)

    Reichle, R.; Andrew, P.; Drevon, J.-M.; Encheva, A.; Janeschitz, G.; Levesy, B.; Martin, A.; Pitcher, C. S.; Pitts, R.; Thomas, D.; Vayakis, G.; Walsh, M.; Counsell, G.; Johnson, D.; Kusama, Y.

    2010-10-15

    The International Thermonuclear Experimental Reactor will have wide angle viewing systems and a divertor thermography diagnostic, which shall provide infrared coverage of the divertor and large parts of the first wall surfaces with spatial and temporal resolution adequate for operational purposes and higher resolved details of the divertor and other areas for physics investigations. We propose specifications for each system such that they jointly respond to the requirements. Risk analysis driven priorities for future work concern mirror degradation, interfaces with other diagnostics, radiation damage to refractive optics, reflections, and the development of calibration and measurement methods for varying optical and thermal target properties.

  20. Transition undulator radiation as bright infrared sources

    SciTech Connect (OSTI)

    Kim, K.J.

    1995-02-01

    Undulator radiation contains, in addition to the usual component with narrow spectral features, a broad-band component in the low frequency region emitted in the near forward direction, peaked at an angle 1/{gamma}, where {gamma} is the relativistic factor. This component is referred to as the transition undulator radiation, as it is caused by the sudden change in the electron`s longitudinal velocity as it enters and leaves the undulator. The characteristic of the transition undulator radiation are analyzed and compared with the infrared radiation from the usual undulator harmonics and from bending magnets.

  1. Laser Microperforated Biodegradable Microbial Polyhydroxyalkanoate Substrates for Tissue Repair Strategies: An Infrared Microspectroscopy Studey

    SciTech Connect (OSTI)

    G Ellis; P Cano; M Jadraque; M Martin; L Lopez; T Nunez; E de la Pena; C Marco; L Garrido

    2011-12-31

    Flexible and biodegradable film substrates prepared by solvent casting from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) solutions in chloroform were microperforated by ultraviolet laser ablation and subsequently characterized using infrared (IR) microspectroscopy and imaging techniques and scanning electron microscopy (SEM). Both transmission synchrotron IR microspectroscopy and attenuated total reflectance microspectroscopy measurements demonstrate variations in the polymer at the ablated pore rims, including evidence for changes in chemical structure and crystallinity. SEM results on microperforated PHBHV substrates after cell culture demonstrated that the physical and chemical changes observed in the biomaterial did not hinder cell migration through the pores.

  2. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    SciTech Connect (OSTI)

    Abreu, Pedro; et al.,

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  3. Spectroscopic infrared near-field microscopy and x-ray reflectivity studies of order and clustering in lipid membranes

    SciTech Connect (OSTI)

    Generosi, J.; Margaritondo, G.; Sanghera, J. S.; Aggarwal, I. D.; Tolk, N. H.; Piston, D. W.; Castellano, A. Congiu; Cricenti, A.

    2006-12-04

    Lipid membranes were studied by infrared scanning near-field optical microscopy at several wavelengths and by x-ray reflectivity. Together with the x-ray data, the optical images indicate the formation of locally ordered multiple bilayers, and the topographical micrographs reveal the presence of islands at the surface, both critically important features for biotechnology and medical applications such as biosensors and gene therapy.

  4. Andromeda (M31) optical and infrared disk survey. I. Insights in wide-field near-IR surface photometry

    SciTech Connect (OSTI)

    Sick, Jonathan; Courteau, Stphane; Cuillandre, Jean-Charles; McDonald, Michael; De Jong, Roelof; Tully, R. Brent

    2014-05-01

    We present wide-field near-infrared J and K{sub s} images of the Andromeda Galaxy (M31) taken with WIRCam at the Canada-France-Hawaii Telescope as part of the Andromeda Optical and Infrared Disk Survey. This data set allows simultaneous observations of resolved stars and near-infrared (NIR) surface brightness across M31's entire bulge and disk (within R = 22 kpc), permitting a direct test of the stellar composition of near-infrared light in a nearby galaxy. Here we develop NIR observation and reduction methods to recover a uniform surface brightness map across the 3 1 disk of M31 with 27 WIRCam fields. Two sky-target nodding strategies are tested, and we find that strictly minimizing sky sampling latency cannot improve background subtraction accuracy to better than 2% of the background level due to spatio-temporal variations in the NIR skyglow. We fully describe our WIRCam reduction pipeline and advocate using flats built from night-sky images over a single night, rather than dome flats that do not capture the WIRCam illumination field. Contamination from scattered light and thermal background in sky flats has a negligible effect on the surface brightness shape compared to the stochastic differences in background shape between sky and galaxy disk fields, which are ?0.3% of the background level. The most dramatic calibration step is the introduction of scalar sky offsets to each image that optimizes surface brightness continuity. Sky offsets reduce the mean surface brightness difference between observation blocks from 1% to <0.1% of the background level, though the absolute background level remains statistically uncertain to 0.15% of the background level. We present our WIRCam reduction pipeline and performance analysis to give specific recommendations for the improvement of NIR wide-field imaging methods.

  5. Monthly Energy Review - April 2013

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  6. Monthly Energy Review - August 2014

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  7. Monthly Energy Review - January 2015

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  8. Monthly Energy Review - July 2012

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  9. Monthly Energy Review - December 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  10. Monthly Energy Review - January 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  11. Monthly Energy Review - September 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  12. Monthly Energy Review - July 2014

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  13. Monthly Energy Review - September 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  14. Monthly Energy Review - August 2013

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  15. Monthly Energy Review - December 2014

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  16. Monthly Energy Review - February 2012

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  17. Monthly Energy Review - August 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  18. Monthly Energy Review - September 2015

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  19. Monthly Energy Review - February 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  20. Monthly Energy Review - December 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  1. Monthly Energy Review - November 2010

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  2. Monthly Energy Review - October 2010

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  3. Monthly Energy Review - July 2013

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  4. Monthly Energy Review - October 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  5. Monthly Energy Review - July 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  6. Monthly Energy Review - May 2011

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  7. Monthly Energy Review - March 2014

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  8. Monthly Energy Review - April 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  9. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  10. Monthly Energy Review - May 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  11. Monthly Energy Review - November 2015

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  12. Monthly Energy Review - March 2011

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  13. Monthly Energy Review - May 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  14. Monthly Energy Review - October 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  15. Monthly Energy Review - June 2013

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  16. Monthly Energy Review - August 2011

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  17. Monthly Energy Review - June 2011

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  18. Monthly Energy Review - January 2012

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  19. Monthly Energy Review - Janurary 2011

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  20. Monthly Energy Review - November 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  1. Monthly Energy Review - October 2013

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  2. Monthly Energy Review - April 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  3. Monthly Energy Review - November 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  4. Monthly Energy Review - August 2010

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  5. Monthly Energy Review - February 2014

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  6. Monthly Energy Review - June 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  7. Monthly Energy Review - December 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  8. Monthly Energy Review - October 2015

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  9. Monthly Energy Review - November 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  10. Monthly Energy Review - July 2015

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  11. Monthly Energy Review - September 2010

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  12. Monthly Energy Review - May 2015

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  13. Monthly Energy Review - February 2013

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  14. Monthly Energy Review - June 2015

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  15. Monthly Energy Review - March 2015

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  16. Monthly Energy Review - December 2015

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  17. Monthly Energy Review - August 2015

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  18. Monthly Energy Review - April 2015

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  19. Monthly Energy Review - March 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  20. Monthly Energy Review - December 2010

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  1. Monthly Energy Review - September 2014

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  2. Monthly Energy Review - September 2012

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  3. First Principles Simulations of the Infrared Spectrum of Liquid Water |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Infrared spectra of liquid water Infrared spectra of liquid water computed using hybrid (solid lines) and semi-local (dotted line) functionals, computed by ab-initio molecular dynamics with the Qbox code. Cui Zhang, UC-Davis. First Principles Simulations of the Infrared Spectrum of Liquid Water PI Name: Giulia Galli PI Email: gagalli@ucdavis.edu Institution: University of California-Davis Allocation Program: INCITE Allocation Hours at ALCF: 15 Million

  4. Infrared Thermography (IRT) Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrared Thermography (IRT) Working Group Infrared Thermography (IRT) Working Group Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps3_pvmc_mcwilliams.pdf (1.52 MB) More Documents & Publications US & Japan TG 4 Activities of QA Forum Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Energy Auditor - Single Family 2.0: Interpreting Infrared

  5. Nanosecond Time Resolved and Steady State Infrared Studies of...

    Office of Scientific and Technical Information (OSTI)

    Nanosecond Time Resolved and Steady State Infrared Studies of Photoinduced Decomposition of TATB at Ambient and Elevated Pressures Citation Details In-Document Search Title: ...

  6. Synchrotron radiation infrared microscopic study of non-bridging...

    Office of Scientific and Technical Information (OSTI)

    Title: Synchrotron radiation infrared microscopic study of non-bridging oxygen modes associated with laser-induced breakdown of fused silica Authors: Matthews, M J ; Carr, C W ; ...

  7. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    because it is extremely difficult to perform spectroscopic measurements on a single monolayer of graphene. Infrared measurements can probe the dynamical properties of...

  8. Application Of Airborne Thermal Infrared Imagery To Geothermal...

    Open Energy Info (EERE)

    Infrared Imagery To Geothermal Exploration Abstract Burlington Northern (BN) conducted TIR surveys using a fixed wing aircraft over 17 different geothermal prospects in...

  9. Near-infrared (JHK) spectroscopy of young stellar and substellar...

    Office of Scientific and Technical Information (OSTI)

    7 new objects having masses below the hydrogen-burning limit, and 6 objects with masses ... SPECTRA; HERTZSPRUNG-RUSSELL DIAGRAM; HYDROGEN BURNING; LUMINOSITY; MASS; NEAR INFRARED ...

  10. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signatures of many-body interactions in graphene and have demonstrated the potential of graphene for novel applications in optoelectronics. Infrared View of Graphene Graphene's...

  11. Enhancement of Aluminum Alloy Forgings Using Rapid Infrared Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and industry partners, Queen City Forging Company and Infra Red Heating Technologies LLC, have developed a process for forging aluminum parts using infrared (IR) technology. ...

  12. Quantitative infrared absorption cross sections of isoprene for...

    Office of Scientific and Technical Information (OSTI)

    Quantitative infrared absorption cross sections of isoprene for atmospheric measurements ... and other oxygenated organics, yet little quantitative IR data exists for isoprene. ...

  13. Electrochemical and infrared studies of the reduction of organic...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Electrochemical and infrared studies of the reduction of organic carbonates Citation Details ... Publication Date: 2001-06-01 OSTI Identifier: 821009 Report ...

  14. Thermal And-Or Near Infrared At Yellowstone Region (Hellman ...

    Open Energy Info (EERE)

    Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness useful DOE-funding Unknown...

  15. A near-infrared 64-pixel superconducting nanowire single photon...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; DETECTION; EFFICIENCY; NANOWIRES; NEAR INFRARED RADIATION; ...

  16. Imaging sciences workshop

    SciTech Connect (OSTI)

    Candy, J.V.

    1994-11-15

    This workshop on the Imaging Sciences sponsored by Lawrence Livermore National Laboratory contains short abstracts/articles submitted by speakers. The topic areas covered include the following: Astronomical Imaging; biomedical imaging; vision/image display; imaging hardware; imaging software; Acoustic/oceanic imaging; microwave/acoustic imaging; computed tomography; physical imaging; imaging algorithms. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  17. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, Paul H.

    1998-01-01

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

  18. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, P.H.

    1998-09-22

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

  19. Oxidation of carbynes: Signatures in infrared spectra

    SciTech Connect (OSTI)

    Cinquanta, E. E-mail: p.rudolf@rug.nl; Manini, N.; Caramella, L.; Onida, G.; Ravagnan, L.; Milani, P.; Rudolf, P. E-mail: p.rudolf@rug.nl

    2014-06-28

    We report and solidly interpret the infrared spectrum of both pristine and oxidized carbynes embedded in a pure-carbon matrix. The spectra probe separately the effects of oxidation on sp- and on sp{sup 2}-hybridized carbon, and provide information on the stability of the different structures in an oxidizing atmosphere. The final products are mostly short end-oxidized carbynes anchored with a double bond to sp{sup 2} fragments, plus an oxidized sp{sup 2} amorphous matrix. Our results have important implications for the realization of carbyne-based nano-electronics devices and highlight the active participation of carbynes in astrochemical reactions where they act as carbon source for the promotion of more complex organic species.

  20. Tunable infrared source employing Raman mixing

    DOE Patents [OSTI]

    Byer, Robert L.; Herbst, Richard L.

    1980-01-01

    A tunable source of infrared radiation is obtained by irradiating an assemblage of Raman active gaseous atoms or molecules with a high intensity pumping beam of coherent radiation at a pump frequency .omega..sub.p to stimulate the generation of Stokes wave energy at a Stokes frequency .omega..sub.s and to stimulate the Raman resonant mode at the Raman mode frequency .omega..sub.R within the irradiated assemblage where the pump frequency .omega..sub.p minus the Stokes frequency .omega..sub.s is equal to the Raman mode frequency .omega..sub.R. The stimulated assemblage is irradiated with a tunable source of coherent radiation at a frequency .omega..sub.i to generate the output infrared radiation of the frequency .omega..sub.0 which is related to the Raman mode frequency .omega..sub.R and the input wave .omega..sub.i by the relation .omega..sub.0 =.omega..sub.i .+-..omega..sub.R. In one embodiment the interaction between the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i is collinear and the ratio of the phase velocity mismatch factor .DELTA.k to the electric field exponential gain coefficient T is within the range of 0.1 to 5. In another embodiment the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i have velocity vectors k.sub.p and k.sub.i which cross at an angle to each other to compensate for phase velocity mismatches in the medium. In another embodiment, the Stokes wave energy .omega..sub.s is generated by pump energy .omega..sub.p in a first Raman cell and .omega..sub.s, .omega..sub.i and .omega..sub.p are combined in a second Raman mixing cell to produce the output at .omega..sub.i.

  1. WARM MOLECULAR GAS IN LUMINOUS INFRARED GALAXIES

    SciTech Connect (OSTI)

    Lu, N.; Zhao, Y.; Xu, C. K.; Mazzarella, J. M.; Howell, J.; Appleton, P.; Lord, S.; Schulz, B.; Gao, Y.; Armus, L.; Daz-Santos, T.; Surace, J.; Isaak, K. G.; Petric, A. O.; Charmandaris, V.; Evans, A. S.; Inami, H.; Iwasawa, K.; Leech, J.; Sanders, D. B.; and others

    2014-06-01

    We present our initial results on the CO rotational spectral line energy distribution (SLED) of the J to J1 transitions from J = 4 up to 13 from Herschel SPIRE spectroscopic observations of 65 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey. The observed SLEDs change on average from one peaking at J ? 4 to a broad distribution peaking around J ? 6 to 7 as the IRAS 60-to-100?m color, C(60/100), increases. However, the ratios of a CO line luminosity to the total infrared luminosity, L {sub IR}, show the smallest variation for J around 6 or 7. This suggests that, for most LIRGs, ongoing star formation (SF) is also responsible for a warm gas component that emits CO lines primarily in the mid-J regime (5 ? J ? 10). As a result, the logarithmic ratios of the CO line luminosity summed over CO(54), (65), (76), (87) and (109) transitions to L {sub IR}, log R {sub midCO}, remain largely independent of C(60/100), and show a mean value of 4.13 (?log?R{sub midCO}{sup SF}) and a sample standard deviation of only 0.10 for the SF-dominated galaxies. Including additional galaxies from the literature, we show, albeit with a small number of cases, the possibility that galaxies, which bear powerful interstellar shocks unrelated to the current SF, and galaxies, in which an energetic active galactic nucleus contributes significantly to the bolometric luminosity, have their R {sub midCO} higher and lower than R{sub midCO}{sup SF}, respectively.

  2. Apparatus and method for transient thermal infrared spectrometry

    DOE Patents [OSTI]

    McClelland, John F.; Jones, Roger W.

    1991-12-03

    A method and apparatus for enabling analysis of a material (16, 42) by applying a cooling medium (20, 54) to cool a thin surface layer portion of the material and to transiently generate a temperature differential between the thin surface layer portion and the lower portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material. The altered thermal infrared emission spectrum of the material is detected by a spectrometer/detector (28, 50) while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of the emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation, so that the detected altered thermal infrared emission spectrum is indicative of the characteristics relating to the molecular composition of the material.

  3. Multivariate classification of infrared spectra of cell and tissue samples

    DOE Patents [OSTI]

    Haaland, David M.; Jones, Howland D. T.; Thomas, Edward V.

    1997-01-01

    Multivariate classification techniques are applied to spectra from cell and tissue samples irradiated with infrared radiation to determine if the samples are normal or abnormal (cancerous). Mid and near infrared radiation can be used for in vivo and in vitro classifications using at least different wavelengths.

  4. SPITZER/INFRARED ARRAY CAMERA LIMITS TO PLANETARY COMPANIONS OF FOMALHAUT AND {epsilon} ERIDANI

    SciTech Connect (OSTI)

    Marengo, Massimo; Hora, Joseph L.; Fazio, Giovanni G.; Schuster, Michael T.; Stapelfeldt, Karl; Werner, Michael W.; Carson, Joseph C.; Megeath, S. Thomas

    2009-08-01

    Fomalhaut and {epsilon} Eridani are two young, nearby stars that possess extended debris disks whose structures suggest the presence of perturbing planetary objects. With its high sensitivity and stable point-spread function, Spitzer/Infrared Array Camera (IRAC) is uniquely capable of detecting cool, Jupiter-like planetary companions whose peak emission is predicted to occur near 4.5 {mu}m. We report on deep IRAC imaging of these two stars, taken at 3.6 and 4.5 {mu}m using subarray mode and in all four channels in wider-field full array mode. Observations acquired at two different telescope roll angles allowed faint surrounding objects to be separated from the stellar diffraction pattern. No companion candidates were detected at the reported position of Fomalhaut b with 3{sigma} model-dependent mass upper limits of 3M {sub J} (for an age of 200 Myr). Around {epsilon} Eridani, we instead set a limit of 4 and {approx}<1M {sub J} (1 Gyr model age) at the inner and outer edge of the submillimeter debris ring, respectively. These results are consistent with non-detections in recent near-infrared imaging searches, and set the strongest limits to date on the presence of planets outside {epsilon} Eridani submillimeter ring.

  5. Laser-induced reactions in a deep UV resist system: Studied with picosecond infrared spectroscopy

    SciTech Connect (OSTI)

    Lippert, T.; Koskelo, A.; Stoutland, P.O.

    1995-12-31

    One of the most technologically important uses of organic photochemistry is in the imaging industry where radiation-sensitive organic monomers and polymers are used in photoresists. A widely-used class of compounds for imaging applications are diazoketones; these compounds undergo a photoinduced Wolff rearrangement to form a ketene intermediate which subsequently hydrolyses to a base-soluble, carboxylic acid. Another use of organic molecules in polymer matrices is for dopant induced ablation of polymers. As part of a program to develop diagnostics for laser driven reactions in polymer matrices, we have investigated the photoinduced decomposition of 5-diazo-2,2-dimethyl-1,3-dioxane-4,6-dione (5-diazo Meldrum`s acid, DM) in a PMMA matrix using picosecond infrared spectroscopy. In particular, irradiation of DM with a 60 ps 266 nm laser pulse results in immediate bleaching of the diazo infrared band ({nu} = 2172 cm{sup -1}). Similarly, a new band appears within our instrument response at 2161 cm{sup -1} (FWHM = 29 cm{sup -1}) and is stable to greater than 6 ns.; we assign this band to the ketene photoproduct of the Wolff rearrangement. Using deconvolution techniques we estimate a limit for its rate of formation of {tau} < 20 ps. The linear dependence of the absorbance change with the pump power (266 nm) even above the threshold of ablation suggest that material ejection take place after 6ns.

  6. Status of thermal imaging technology as applied to conservation-update 1

    SciTech Connect (OSTI)

    Snow, F.J.; Wood, J.T.; Barthle, R.C.

    1980-07-01

    This document updates the 1978 report on the status of thermal imaging technology as applied to energy conservation in buildings. Thermal imaging technology is discussed in terms of airborne surveys, ground survey programs, and application needs such as standards development and lower cost equipment. Information on the various thermal imaging devices was obtained from manufacturer's standard product literature. Listings are provided of infrared projects of the DOE building diagnostics program, of aerial thermographic firms, and of aerial survey programs. (LCL)

  7. Thermal wave image processing for characterization of subsurface of flaws in materials

    SciTech Connect (OSTI)

    Gopalan, K.; Gopalsami, N.

    1993-08-01

    Infrared images resulting from back-scattered thermal waves in composite materials are corrupted by instrument noise and sample heat-spread function. This paper demonstrates that homomorphic deconvolution and {open_quotes}demultiplication{close_quotes} result in enhanced image quality for characterization of subsurface flaws in Kevlar and graphics composites. The choice of processing depends on the material characteristics and the extent of noise in the original image.

  8. Industrial applications of accelerator-based infrared sources: Analysis using infrared microspectroscopy

    SciTech Connect (OSTI)

    Bantignies, J.L.; Fuchs, G.; Wilhelm, C.; Carr, G.L.; Dumas, P.

    1997-09-01

    Infrared Microspectroscopy, using a globar source, is now widely employed in the industrial environment, for the analysis of various materials. Since synchrotron radiation is a much brighter source, an enhancement of an order of magnitude in lateral resolution can be achieved. Thus, the combination of IR microspectroscopy and synchrotron radiation provides a powerful tool enabling sample regions only few microns size to be studied. This opens up the potential for analyzing small particles. Some examples for hair, bitumen and polymer are presented.

  9. Relative Infrared (IR) and Terahertz (THz) Signatures of Common Explosives

    SciTech Connect (OSTI)

    Sharpe, Steven W.; Johnson, Timothy J.; Sheen, David M.; Atkinson, David A.

    2006-11-13

    Pacific Northwest National Laboratory (PNNL) has recently recorded the infrared (IR) and far-infrared (sometimes called the terahertz, THz) spectral signatures of four common explosives, in the condensed phase. The signatures of RDX, PETN, TNT and Tetryl were recorded both in the infrared and the THz domains, using Fourier transform infrared (FTIR) spectroscopy. Samples consisted of thin films and were made by depositing and subsequent evaporation of an acetone-explosive mixture. The complete spectrum spanned the range from 4,000 to 8 cm-1 at 2.0 cm-1 spectral resolution. Preliminary results in the infrared agree with those of previous workers, while the THz signatures are one order of magnitude weaker than the strongest IR bands.

  10. Infrared non-destructive evaluation method and apparatus

    DOE Patents [OSTI]

    Baleine, Erwan; Erwan, James F; Lee, Ching-Pang; Stinelli, Stephanie

    2014-10-21

    A method of nondestructive evaluation and related system. The method includes arranging a test piece (14) having an internal passage (18) and an external surface (15) and a thermal calibrator (12) within a field of view (42) of an infrared sensor (44); generating a flow (16) of fluid characterized by a fluid temperature; exposing the test piece internal passage (18) and the thermal calibrator (12) to fluid from the flow (16); capturing infrared emission information of the test piece external surface (15) and of the thermal calibrator (12) simultaneously using the infrared sensor (44), wherein the test piece infrared emission information includes emission intensity information, and wherein the thermal calibrator infrared emission information includes a reference emission intensity associated with the fluid temperature; and normalizing the test piece emission intensity information against the reference emission intensity.

  11. Imaging systems

    SciTech Connect (OSTI)

    Young, I.R.

    1981-08-18

    In an imaging apparatus using nuclear magnetic resonance, first and second gradient field pulses are applied, the second being of opposite sense to the first. It is preferable to match these so that they entirely cancel. However it is shown to be sufficient if they are as close as possible to the same magnitude and a further 'glitch' pulse is used to reduce the total gradient field over the pulse sequence substantially to zero.

  12. Nuclear Imaging | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Jefferson Lab's Radiation Detector and Imaging Group Members of Jefferson Lab's Radiation Detector & Medical Imaging Group design and build unique imaging devices based on...

  13. Manhattan Project: Places Images

    Office of Scientific and Technical Information (OSTI)

    PLACES IMAGES Resources > Photo Gallery Scroll down to see each of these images individually. The images are: 1. Remains of a Shinto Shrine, Nagasaki, October 1945 (courtesy the ...

  14. INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF SEYFERT GALAXIES: SPITZER SPACE TELESCOPE OBSERVATIONS OF THE 12 {mu}m SAMPLE OF ACTIVE GALAXIES

    SciTech Connect (OSTI)

    Gallimore, J. F.; Yzaguirre, A.; Jakoboski, J.; Stevenosky, M. J.; Axon, D. J.; O'Dea, C. P.; Robinson, A.; Baum, S. A.; Buchanan, C. L.; Elitzur, M.; Elvis, M.

    2010-03-01

    The mid-infrared spectral energy distributions (SEDs) of 83 active galaxies, mostly Seyfert galaxies, selected from the extended 12 {mu}m sample are presented. The data were collected using all three instruments, Infrared Array Camera (IRAC), Infrared Spectrograph (IRS), and Multiband Imaging Photometer for Spitzer (MIPS), aboard the Spitzer Space Telescope. The IRS data were obtained in spectral mapping mode, and the photometric data from IRAC and IRS were extracted from matched, 20'' diameter circular apertures. The MIPS data were obtained in SED mode, providing very low-resolution spectroscopy (R {approx} 20) between {approx}55 and 90 {mu}m in a larger, 20'' x 30'' synthetic aperture. We further present the data from a spectral decomposition of the SEDs, including equivalent widths and fluxes of key emission lines; silicate 10 {mu}m and 18 {mu}m emission and absorption strengths; IRAC magnitudes; and mid-far-infrared spectral indices. Finally, we examine the SEDs averaged within optical classifications of activity. We find that the infrared SEDs of Seyfert 1s and Seyfert 2s with hidden broad line regions (HBLRs, as revealed by spectropolarimetry or other technique) are qualitatively similar, except that Seyfert 1s show silicate emission and HBLR Seyfert 2s show silicate absorption. The infrared SEDs of other classes within the 12 {mu}m sample, including Seyfert 1.8-1.9, non-HBLR Seyfert 2 (not yet shown to hide a type 1 nucleus), LINER, and H II galaxies, appear to be dominated by star formation, as evidenced by blue IRAC colors, strong polycyclic aromatic hydrocarbon emission, and strong far-infrared continuum emission, measured relative to mid-infrared continuum emission.

  15. SPITZER AND NEAR-INFRARED OBSERVATIONS OF A NEW BIPOLAR PROTOSTELLAR OUTFLOW IN THE ROSETTE MOLECULAR CLOUD

    SciTech Connect (OSTI)

    Ybarra, Jason E.; Lada, Elizabeth A.; Fleming, Scott W.; Balog, Zoltan; Phelps, Randy L.

    2010-05-01

    We present and discuss Spitzer and near-infrared H{sub 2} observations of a new bipolar protostellar outflow in the Rosette Molecular Cloud. The outflow is seen in all four InfraRed Array Camera (IRAC) bands and partially as diffuse emission in the MIPS 24 {mu}m band. An embedded MIPS 24 {mu}m source bisects the outflow and appears to be the driving source. This source is coincident with a dark patch seen in absorption in the 8 {mu}m IRAC image. Spitzer IRAC color analysis of the shocked emission was performed from which thermal and column density maps of the outflow were constructed. Narrowband near-infrared (NIR) images of the flow reveal H{sub 2} emission features coincident with the high temperature regions of the outflow. This outflow has now been given the designation MHO 1321 due to the detection of NIR H{sub 2} features. We use these data and maps to probe the physical conditions and structure of the flow.

  16. Lensless imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Lensless Imaging of Magnetic Nanostructures by X-ray Spectro-Holography J. Lüning, W. F. Schlotter and J. Stöhr (SSRL) The unprecedented properties of X-ray free electron lasers (X-FELs) under development world wide will open the door for entirely new classes of experiments. The ultra-short time structure of the ultra-bright x-ray pulses will revolutionize the field of femtosecond x-ray science, since it will become possible to obtain sufficient information about a system from probing it

  17. Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Image Gallery The Trinity Test of 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer our goal is to do this virtually, in 3D. Click thumbnails to enlarge. Photos arranged by most recent first, horizontal formats before vertical. See Flickr for more sizes and details. Groves and Oppenheimer, 9-11-45 (799398) Groves and Oppenheimer, 9-11-45 (799398) Trinity (C761, Los Alamos National Laboratory, Photo by Jack Aeby) Trinity (C761, Los Alamos

  18. Negligible sample heating from synchrotron infrared beam

    SciTech Connect (OSTI)

    Martin, Michael C.; Tsvetkova, Nelly M.; Crowe, John H.; McKinney, Wayne R.

    2000-08-30

    The use of synchrotron sources for infrared (IR) spectromicroscopy provides greatly increased brightness enabling high-quality IR measurements at diffraction-limited spatial resolutions. This permits synchrotron-based IR spectromicroscopy to be applied to biological applications at spatial resolutions of the order of the size of a single mammalian cell. The question then arises, ''Does the intense synchrotron beam harm biological samples?'' Mid-IR photons are too low in energy to break bonds directly, however they could cause damage to biological molecules due to heating. In this work, we present measurements showing negligible sample heating effects from a diffraction-limited synchrotron IR source. The sample used is fully hydrated lipid bilayers composed of dipalmitoylphosphatidylcholine(DPPC), which undergoes a phase transition from a gel into a liquid-crystalline state at about 315 K during heating. Several IR-active vibrational modes clearly shift in frequency when the sample passes through the phase transition. We calibrate and then use these shifting vibrational modes as an in situ temperature sensor.

  19. Radiant energy required for infrared neural stimulation

    SciTech Connect (OSTI)

    Tan, Xiaodong; Rajguru, Suhrud; Young, Hunter; Xia, Nan; Stock, Stuart R.; Xiao, Xianghui; Richter, Claus-Peter

    2015-08-25

    Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography was used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 ± 12.2 or 10.3 ± 4.9 mJ/cm2, respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.

  20. MODELING THE INFRARED EMISSION IN CYGNUS A

    SciTech Connect (OSTI)

    Privon, G. C.; Baum, S. A.; Noel-Storr, J.; O'Dea, C. P.; Axon, D. J.; Robinson, A.; Gallimore, J.

    2012-03-01

    We present new Spitzer IRS spectroscopy of Cygnus A, one of the most luminous radio sources in the local universe. Data on the inner 20'' are combined with new reductions of MIPS and IRAC photometry as well as data from the literature to form a radio through mid-infrared spectral energy distribution (SED). This SED is then modeled as a combination of torus reprocessed active galactic nucleus (AGN) radiation, dust enshrouded starburst, and a synchrotron jet. This combination of physically motivated components successfully reproduces the observed emission over almost 5 dex in frequency. The bolometric AGN luminosity is found to be 10{sup 12} L{sub Sun} (90% of L{sub IR}), with a clumpy AGN-heated dust medium extending to {approx}130 pc from the supermassive black hole. Evidence is seen for a break or cutoff in the core synchrotron emission. The associated population of relativistic electrons could in principle be responsible for some of the observed X-ray emission though the synchrotron self-Compton mechanism. The SED requires a cool dust component, consistent with dust-reprocessed radiation from ongoing star formation. Star formation contributes at least 6 Multiplication-Sign 10{sup 10} L{sub Sun} to the bolometric output of Cygnus A, corresponding to a star formation rate of {approx}10 M{sub Sun} yr{sup -1}.

  1. Radiant energy required for infrared neural stimulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, Xiaodong; Rajguru, Suhrud; Young, Hunter; Xia, Nan; Stock, Stuart R.; Xiao, Xianghui; Richter, Claus-Peter

    2015-08-25

    Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography wasmore » used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 ± 12.2 or 10.3 ± 4.9 mJ/cm2, respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.« less

  2. Infrared Thermographic Study of Laser Ignition

    SciTech Connect (OSTI)

    Mohler, Jonathan H.; Chow, Charles T. S.

    1986-07-01

    Pyrotechnic ignition has been studied in the past by making a limited number of discrete temperature-time observations during ignition. Present-day infrared scanning techniques make it possible to record thermal profiles, during ignition, with high spacial and temporal resolution. Data thus obtained can be used with existing theory to characterize pyrotechnic materials and to develop more precise kinetic models of the ignition process. Ignition has been studied theoretically and experimentally using various thermal methods. It has been shown that the whole process can, ideally, be divided into two stages. In the first stage, the sample pellet behaves like an inert body heated by an external heat source. The second stage is governed by the chemical reaction in the heated volume produced during the first stage. High speed thermographic recording of the temperature distribution in the test sample during laser ignition makes it possible to calculate the heat content at any instant. Thus, one can actually observe laser heating and the onset of self-sustained combustion in the pellet. The experimental apparatus used to make these observations is described. The temperature distributions recorded are shown to be in good agreement with those predicted by heat transfer theory. Heat content values calculated from the observed temperature distributions are used to calculate thermal and kinetic parameters for several samples. These values are found to be in reasonable agreement with theory.

  3. Infrared thermographic study of laser ignition

    SciTech Connect (OSTI)

    Mohler, J.H.; Chow, C.T.S.

    1986-07-21

    Pyrotechnic ignition has been studied in the past by making a limited number of discrete temperature-time observations during ignition. Present-day infrared scanning techniques make it possible to record thermal profiles, during ignition, with high spacial and temporal resolution. Data thus obtained can be used with existing theory to characterize pyrotechnic materials and to develop more precise kinetic models of the ignition process. Ignition has been studied theoretically and experimentally using various thermal methods. It has been shown that the whole process can, ideally, be divided into two stages. In the first stage, the sample pellet behaves like an inert body heated by an external heat source. The second stage is governed by the chemical reaction in the heated volume produced during the first stage. High speed thermographic recording of the temperature distribution in the test sample during laser ignition makes it possible to calculate the heat content at any instant. Thus, one can actually observe laser heating and the onset of self-sustained combustion in the pellet.

  4. Speckle imaging algorithms for planetary imaging

    SciTech Connect (OSTI)

    Johansson, E.

    1994-11-15

    I will discuss the speckle imaging algorithms used to process images of the impact sites of the collision of comet Shoemaker-Levy 9 with Jupiter. The algorithms use a phase retrieval process based on the average bispectrum of the speckle image data. High resolution images are produced by estimating the Fourier magnitude and Fourier phase of the image separately, then combining them and inverse transforming to achieve the final result. I will show raw speckle image data and high-resolution image reconstructions from our recent experiment at Lick Observatory.

  5. Apparatus and method for transient thermal infrared emission spectrometry

    DOE Patents [OSTI]

    McClelland, John F.; Jones, Roger W.

    1991-12-24

    A method and apparatus for enabling analysis of a solid material (16, 42) by applying energy from an energy source (20, 70) top a surface region of the solid material sufficient to cause transient heating in a thin surface layer portion of the solid material (16, 42) so as to enable transient thermal emission of infrared radiation from the thin surface layer portion, and by detecting with a spectrometer/detector (28, 58) substantially only the transient thermal emission of infrared radiation from the thin surface layer portion of the solid material. The detected transient thermal emission of infrared radiation is sufficiently free of self-absorption by the solid material of emitted infrared radiation, so as to be indicative of characteristics relating to molecular composition of the solid material.

  6. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned...

  7. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamcs in Graphene by Infrared Spectroscopy Print Wednesday, 29 October 2008 00:00 Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high...

  8. Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics...

    Office of Scientific and Technical Information (OSTI)

    Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C-H Region of DMSO as a Case Study Citation Details In-Document Search Title: ...

  9. Nanosecond Time Resolved and Steady State Infrared Studies of...

    Office of Scientific and Technical Information (OSTI)

    Ultrafast time-resolved infrared and steady state Fourier transform IR (FTIR) spectroscopies were used to probe TATB and its products after photoexcitation with a 5 ns pulse of 532 ...

  10. Sandia National Laboratories: Z Pulsed Power Facility: Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Image Gallery .

  11. BRIGHTNESS AND FLUCTUATION OF THE MID-INFRARED SKY FROM AKARI OBSERVATIONS TOWARD THE NORTH ECLIPTIC POLE

    SciTech Connect (OSTI)

    Pyo, Jeonghyun; Jeong, Woong-Seob; Matsumoto, Toshio; Matsuura, Shuji

    2012-12-01

    We present the smoothness of the mid-infrared sky from observations by the Japanese infrared astronomical satellite AKARI. AKARI monitored the north ecliptic pole (NEP) during its cold phase with nine wave bands covering from 2.4 to 24 {mu}m, out of which six mid-infrared bands were used in this study. We applied power-spectrum analysis to the images in order to search for the fluctuation of the sky brightness. Observed fluctuation is explained by fluctuation of photon noise, shot noise of faint sources, and Galactic cirrus. The fluctuations at a few arcminutes scales at short mid-infrared wavelengths (7, 9, and 11 {mu}m) are largely caused by the diffuse Galactic light of the interstellar dust cirrus. At long mid-infrared wavelengths (15, 18, and 24 {mu}m), photon noise is the dominant source of fluctuation over the scale from arcseconds to a few arcminutes. The residual fluctuation amplitude at 200'' after removing these contributions is at most 1.04 {+-} 0.23 nW m{sup -2} sr{sup -1} or 0.05% of the brightness at 24 {mu}m and at least 0.47 {+-} 0.14 nW m{sup -2} sr{sup -1} or 0.02% at 18 {mu}m. We conclude that the upper limit of the fluctuation in the zodiacal light toward the NEP is 0.03% of the sky brightness, taking 2{sigma} error into account.

  12. Far-infrared surface emissivity and climate

    SciTech Connect (OSTI)

    Feldman, Daniel R.; Collins, William D.; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong

    2014-11-03

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate model projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m⁻² difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m⁻², and 15%, respectively, after only 25 y of integration. The calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.

  13. Far-infrared surface emissivity and climate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feldman, Daniel R.; Collins, William D.; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong

    2014-11-03

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate modelmore » projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m⁻² difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m⁻², and 15%, respectively, after only 25 y of integration. The calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.« less

  14. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned by applying a gate voltage. The charge carriers in graphene can travel ballistically over great distances (~1 micron) without scattering. These unusual electronic properties make graphene a promising candidate for future nanoelectronics. Using infrared spectromicroscopy at ALS Beamline 1.4, a group of researchers from

  15. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned by applying a gate voltage. The charge carriers in graphene can travel ballistically over great distances (~1 micron) without scattering. These unusual electronic properties make graphene a promising candidate for future nanoelectronics. Using infrared spectromicroscopy at ALS Beamline 1.4, a group of researchers from

  16. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned by applying a gate voltage. The charge carriers in graphene can travel ballistically over great distances (~1 micron) without scattering. These unusual electronic properties make graphene a promising candidate for future nanoelectronics. Using infrared spectromicroscopy at ALS Beamline 1.4, a group of researchers from

  17. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned by applying a gate voltage. The charge carriers in graphene can travel ballistically over great distances (~1 micron) without scattering. These unusual electronic properties make graphene a promising candidate for future nanoelectronics. Using infrared spectromicroscopy at ALS Beamline 1.4, a group of researchers from

  18. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned by applying a gate voltage. The charge carriers in graphene can travel ballistically over great distances (~1 micron) without scattering. These unusual electronic properties make graphene a promising candidate for future nanoelectronics. Using infrared spectromicroscopy at ALS Beamline 1.4, a group of researchers from

  19. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned by applying a gate voltage. The charge carriers in graphene can travel ballistically over great distances (~1 micron) without scattering. These unusual electronic properties make graphene a promising candidate for future nanoelectronics. Using infrared spectromicroscopy at ALS Beamline 1.4, a group of researchers from

  20. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned by applying a gate voltage. The charge carriers in graphene can travel ballistically over great distances (~1 micron) without scattering. These unusual electronic properties make graphene a promising candidate for future nanoelectronics. Using infrared spectromicroscopy at ALS Beamline 1.4, a group of researchers from

  1. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Wednesday, 29 October 2008 00:00 Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned by applying a gate voltage. The charge carriers in graphene can travel ballistically over great distances (~1 micron) without scattering. These unusual electronic properties make graphene a promising candidate for future

  2. Accurate, practical simulation of satellite infrared radiometer spectral data

    SciTech Connect (OSTI)

    Sullivan, T.J.

    1982-09-01

    This study's purpose is to determine whether a relatively simple random band model formulation of atmospheric radiation transfer in the infrared region can provide valid simulations of narrow interval satellite-borne infrared sounder system data. Detailed ozonesondes provide the pertinent atmospheric information and sets of calibrated satellite measurements provide the validation. High resolution line-by-line model calculations are included to complete the evaluation.

  3. Design of integration-ready metasurface-based infrared absorbers

    SciTech Connect (OSTI)

    Ogando, Karim Pastoriza, Hernán

    2015-07-28

    We introduce an integration ready design of metamaterial infrared absorber, highly compatible with many kinds of fabrication processes. We present the results of an exhaustive experimental characterization, including an analysis of the effects of single meta-atom geometrical parameters and collective arrangement. We confront the results with the theoretical interpretations proposed in the literature. Based on the results, we develop a set of practical design rules for metamaterial absorbers in the infrared region.

  4. Femtosecond measurements of near-infrared pulse induced mid-infrared transmission modulation of quantum cascade lasers

    SciTech Connect (OSTI)

    Cai, Hong; Liu, Sheng; Lalanne, Elaine; Guo, Dingkai; Chen, Xing; Choa, Fow-Sen; Wang, Xiaojun; Johnson, Anthony M.

    2014-05-26

    We temporally resolved the ultrafast mid-infrared transmission modulation of quantum cascade lasers (QCLs) using a near-infrared pump/mid-infrared probe technique at room temperature. Two different femtosecond wavelength pumps were used with photon energy above and below the quantum well (QW) bandgap. The shorter wavelength pump modulates the mid-infrared probe transmission through interband transition assisted mechanisms, resulting in a high transmission modulation depth and several nanoseconds recovery lifetime. In contrast, pumping with a photon energy below the QW bandgap induces a smaller transmission modulation depth but much faster (several picoseconds) recovery lifetime, attributed to intersubband transition assisted mechanisms. The latter ultrafast modulation (>60?GHz) could provide a potential way to realize fast QCL based free space optical communication.

  5. Long wave fluorophore sensor compounds and other fluorescent sensor compounds in polymers

    DOE Patents [OSTI]

    Walsh, Joseph C.; Heiss, Aaron M.; Noronha, Glenn; Vachon, David J.; Lane, Stephen M.; Satcher, Jr., Joe H.; Peyser, Thomas A.; Van Antwerp, William Peter; Mastrototaro, John Joseph

    2004-07-20

    Fluorescent biosensor molecules, fluorescent biosensors and systems, as well as methods of making and using these biosensor molecules and systems are described. Embodiments of these biosensor molecules exhibit fluorescence emission at wavelengths greater than about 650 nm. Typical biosensor molecules include a fluorophore that includes an iminium ion, a linker moiety that includes a group that is an anilinic type of relationship to the fluorophore and a boronate substrate recognition/binding moiety, which binds glucose. The fluorescence molecules modulated by the presence or absence of polyhydroxylated analytes such as glucose. This property of these molecules of the invention, as well as their ability to emit fluorescent light at greater than about 650 nm, renders these biosensor molecules particularly well-suited for detecting and measuring in-vivo glucose concentrations.

  6. VARIABLE GAMMA-RAY EMISSION FROM THE CRAB NEBULA: SHORT FLARES AND LONG 'WAVES'

    SciTech Connect (OSTI)

    Striani, E.; Tavani, M.; Vittorini, V.; Donnarumma, I.; Argan, A.; Cardillo, M.; Costa, E.; Del Monte, E.; Pacciani, L.; Piano, G.; Sabatini, S.; Bulgarelli, A.; Ferrari, A.; Pellizzoni, A.; Pittori, C.; and others

    2013-03-01

    Gamma-ray emission from the Crab Nebula has been recently shown to be unsteady. In this paper, we study the flux and spectral variability of the Crab above 100 MeV on different timescales ranging from days to weeks. In addition to the four main intense and day-long flares detected by AGILE and Fermi-LAT between 2007 September and 2012 September, we find evidence for week-long and less intense episodes of enhanced gamma-ray emission that we call 'waves'. Statistically significant 'waves' show timescales of 1-2 weeks, and can occur by themselves or in association with shorter flares. We present a refined flux and spectral analysis of the 2007 September-October gamma-ray enhancement episode detected by AGILE that shows both 'wave' and flaring behavior. We extend our analysis to the publicly available Fermi-LAT data set and show that several additional 'wave' episodes can be identified. We discuss the spectral properties of the 2007 September 'wave'/flare event and show that the physical properties of the 'waves' are intermediate between steady and flaring states. Plasma instabilities inducing 'waves' appear to involve spatial distances l {approx} 10{sup 16} cm and enhanced magnetic fields B {approx} (0.5-1) mG. Day-long flares are characterized by smaller distances and larger local magnetic fields. Typically, the deduced total energy associated with the 'wave' phenomenon (E{sub w} {approx} 10{sup 42} erg, where E{sub w} is the kinetic energy of the emitting particles) is comparable with that associated to the flares, and can reach a few percent of the total available pulsar spin-down energy. Most likely, flares and waves are the product of the same class of plasma instabilities that we show acting on different timescales and radiation intensities.

  7. NEAR-INFRARED H{sub 2} AND CONTINUUM SURVEY OF EXTENDED GREEN OBJECTS

    SciTech Connect (OSTI)

    Lee, Hsu-Tai; Takami, Michihiro; Duan, Hao-Yuan; Karr, Jennifer; Su, Yu-Nung; Liu, Sheng-Yuan; Yeh, Cosmos C.; Froebrich, Dirk

    2012-05-01

    The Spitzer GLIMPSE survey has revealed a number of 'Extended Green Objects' (EGOs) that display extended emission at 4.5 {mu}m. These EGOs are potential candidates for high-mass protostellar outflows. We used high-resolution (<1'') H{sub 2} 1-0 S(1) line, K-, and H-band images from the United Kingdom Infrared Telescope to study 34 EGOs to investigate their nature. We found that 12 EGOs exhibit H{sub 2} outflows (two with chains of H{sub 2} knotty structures, five with extended H{sub 2} bipolar structures, three with extended H{sub 2} lobes, and two with pairs of H{sub 2} knots). Of the 12 EGOs with H{sub 2} outflows, three exhibit similar morphologies between the 4.5 {mu}m and H{sub 2} emission. However, the remaining nine EGOs show that the H{sub 2} features are more extended than the continuum features, and the H{sub 2} emission is seldom associated with continuum emission. Furthermore, the morphologies of the near-infrared continuum and 4.5 {mu}m emission are similar to each other for those EGOs with K-band emission, implying that at least part of the IRAC-band continuum emission of EGOs comes from scattered light from the embedded young stellar objects.

  8. Near-infrared detection of WD 0806-661 B with the Hubble space telescope

    SciTech Connect (OSTI)

    Luhman, K. L.; Esplin, T. L.; Morley, C. V.; Burgasser, A. J.; Bochanski, J. J.

    2014-10-10

    WD 0806-661 B is one of the coldest known brown dwarfs (T {sub eff} = 300-345 K) based on previous mid-infrared photometry from the Spitzer Space Telescope. In addition, it is a benchmark for testing theoretical models of brown dwarfs because its age and distance are well constrained via its primary star (2 0.5 Gyr, 19.2 0.6 pc). We present the first near-infrared detection of this object, which has been achieved through F110W imaging (?Y + J) with the Wide Field Camera 3 on board the Hubble Space Telescope. We measure a Vega magnitude of m {sub 110} = 25.70 0.08, which implies J ? 25.0. When combined with the Spitzer photometry, our estimate of J helps to better define the empirical sequence of the coldest brown dwarfs in M {sub 4.5} versus J [4.5]. The positions of WD 0806-661 B and other Y dwarfs in that diagram are best matched by the cloudy models of Burrows et al. and the cloudless models of Saumon et al., both of which employ chemical equilibrium. The calculations by Morley et al. for 50% cloud coverage differ only modestly from the data. Spectroscopy would enable a more stringent test of the models, but based on our F110W measurement, such observations are currently possible only with Hubble, and would require at least ?10 orbits to reach a signal-to-noise ratio of ?5.

  9. NEAR-INFRARED CIRCULAR POLARIZATION SURVEY IN STAR-FORMING REGIONS: CORRELATIONS AND TRENDS

    SciTech Connect (OSTI)

    Kwon, Jungmi; Tamura, Motohide; Hough, James H.; Lucas, Phil W.; Kusakabe, Nobuhiko; Kandori, Ryo; Nagata, Tetsuya; Nakajima, Yasushi; Nagayama, Takahiro

    2014-11-01

    We have conducted a systematic near-infrared circular polarization (CP) survey in star-forming regions, covering high-mass, intermediate-mass, and low-mass young stellar objects. All the observations were made using the SIRPOL imaging polarimeter on the Infrared Survey Facility 1.4m telescope at the South African Astronomical Observatory. We present the polarization properties of 10 sub-regions in 6 star-forming regions. The polarization patterns, extents, and maximum degrees of linear and circular polarizations are used to determine the prevalence and origin of CP in the star-forming regions. Our results show that the CP pattern is quadrupolar in general, the CP regions are extensive, up to 0.65pc, the CP degrees are high, up to 20%, and the CP degrees decrease systematically from high- to low-mass young stellar objects. The results are consistent with dichroic extinction mechanisms generating the high degrees of CP in star-forming regions.

  10. A mid-infrared search for substellar companions of nearby planet-host stars

    SciTech Connect (OSTI)

    Hulsebus, A.; Marengo, M.; Carson, J.; Stapelfeldt, K.

    2014-03-20

    Determining the presence of widely separated substellar-mass companion is crucial to understand the dynamics of inner planets in extrasolar planetary systems (e.g., to explain their high mean eccentricity as inner planets are perturbed by the Kozai mechanism). We report the results of our Spitzer/Infrared Array Camera (IRAC) imaging search for widely separated (10''-25'') substellar-mass companions for 14 planet-host stars within 15 pc of the Sun. Using deep 3.6 and 4.5 μm observations in subarray mode, we found one object in the field of 47 UMa with [3.6]–[4.5] color similar to a T5 dwarf, which is, however, unlikely to share common proper motion with 47 UMa. We also found three objects with brown-dwarf-like [3.6]–[4.5] color limits in the fields of GJ 86, HD 160691, and GJ 581, as well as another in the field of HD 69830 for which we have excluded common proper motion. We provide model-based upper mass limits for unseen objects around all stars in our sample, with typical sensitivity to 10 M {sub J} objects from a projected separation of 50-300 AU from the parent star. We also discuss our data analysis methods for point-spread-function subtraction, image co-alignment, and artifact subtraction of IRAC subarray images.

  11. INFRARED NON-DETECTION OF FOMALHAUT b: IMPLICATIONS FOR THE PLANET INTERPRETATION

    SciTech Connect (OSTI)

    Janson, Markus; Carson, Joseph C.; Bent, John R.; Wong, Palmer; Lafreniere, David; Spiegel, David S.

    2012-03-10

    The nearby A4-type star Fomalhaut hosts a debris belt in the form of an eccentric ring, which is thought to be caused by dynamical influence from a giant planet companion. In 2008, a detection of a point source inside the inner edge of the ring was reported and was interpreted as a direct image of the planet, named Fomalhaut b. The detection was made at {approx}600-800 nm, but no corresponding signatures were found in the near-infrared range, where the bulk emission of such a planet should be expected. Here, we present deep observations of Fomalhaut with Spitzer/IRAC at 4.5 {mu}m, using a novel point-spread function subtraction technique based on angular differential imaging and Locally Optimized Combination of Images, in order to substantially improve the Spitzer contrast at small separations. The results provide more than an order of magnitude improvement in the upper flux limit of Fomalhaut b and exclude the possibility that any flux from a giant planet surface contributes to the observed flux at visible wavelengths. This renders any direct connection between the observed light source and the dynamically inferred giant planet highly unlikely. We discuss several possible interpretations of the total body of observations of the Fomalhaut system and find that the interpretation that best matches the available data for the observed source is scattered light from a transient or semi-transient dust cloud.

  12. Split image optical display

    DOE Patents [OSTI]

    Veligdan, James T.

    2005-05-31

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  13. Split image optical display

    DOE Patents [OSTI]

    Veligdan, James T.

    2007-05-29

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  14. A MID-INFRARED IMAGING SURVEY OF SUBMILLIMETER-SELECTED GALAXIES WITH THE SPITZER SPACE TELESCOPE

    SciTech Connect (OSTI)

    Hainline, Laura J.; Blain, A. W.; Smail, Ian; Frayer, D. T.; Chapman, S. C.; Ivison, R. J.; Alexander, D. M. E-mail: ljh@astro.umd.edu

    2009-07-10

    We present Spitzer-IRAC and MIPS mid-IR observations of a sample of 73 radio-detected submillimeter-selected galaxies (SMGs) with spectroscopic redshifts, the largest such sample published to date. From our data, we find that IRAC colors of SMGs are much more uniform as compared with rest-frame UV and optical colors, and z>1.5 SMGs tend to be redder in their mid-IR colors than both field galaxies and lower-z SMGs. However, the IRAC colors of the SMGs overlap those of field galaxies sufficiently that color-magnitude and color-color selection criteria suggested in the literature to identify SMG counterparts produce ambiguous counterparts within an 8'' radius in 20%-35% of cases. We use a rest-frame J-H versus H-K color-color diagram and a S {sub 24}/S {sub 8.0} versus S {sub 8.0}/S {sub 4.5} color-color diagram to determine that 13%-19% of our sample are likely to contain active galactic nuclei which dominate their mid-IR emission. We observe in the rest-frame JHK colors of our sample that the rest-frame near-IR emission of SMGs does not resemble that of the compact nuclear starburst observed in local ultraluminous IR galaxies and is consistent with more widely distributed star formation. We take advantage of the fact that many high-z galaxy populations selected at different wavelengths are detected by Spitzer to carry out a brief comparison of mid-IR properties of SMGs to UV-selected high-z galaxies, 24 {mu}m-selected galaxies, and high-z radio galaxies, and find that SMGs have mid-IR fluxes and colors which are consistent with being more massive and more reddened than UV-selected galaxies, while the IRAC colors of SMGs are most similar to powerful high-z radio galaxies.

  15. Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  16. Diamond machining of ZnSe grisms for the Near Infrared Imager...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  17. Short-Term Arctic Cloud Statistics at NSA from the Infrared Cloud Imager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2002 1 Short-Term Energy Outlook November 2002 Overview World Oil Markets: During the past 3-4 months, OPEC 10 production has risen more quickly than projected, thus reducing upward pressure on prices. More specifically, while the West Texas Intermediate (WTI) crude oil spot price averaged $28.84 in October, about $6.70 per barrel above the year-ago level (Figure 1), the WTI average price for fourth quarter 2002 is now projected to soften to $28.20, which is about $2 per barrel below

  18. Multivariate calibration techniques applied to NIRA (near infrared reflectance analysis) and FTIR (Fourier transform infrared) data

    SciTech Connect (OSTI)

    Long, C.L.

    1991-02-01

    Multivariate calibration techniques can reduce the time required for routine testing and can provide new methods of analysis. Multivariate calibration is commonly used with near infrared reflectance analysis (NIRA) and Fourier transform infrared (FTIR) spectroscopy. Two feasibility studies were performed to determine the capability of NIRA, using multivariate calibration techniques, to perform analyses on the types of samples that are routinely analyzed at this laboratory. The first study performed included a variety of samples and indicated that NIRA would be well-suited to perform analyses on selected materials properties such as water content and hydroxyl number on polyol samples, epoxy content on epoxy resins, water content of desiccants, and the amine values of various amine cure agents. A second study was performed to assess the capability of NIRA to perform quantitative analysis of hydroxyl numbers and water contents of hydroxyl-containing materials. Hydroxyl number and water content were selected for determination because these tests are frequently run on polyol materials and the hydroxyl number determination is time consuming. This study pointed out the necessity of obtaining calibration standards identical to the samples being analyzed for each type of polyol or other material being analyzed. Multivariate calibration techniques are frequently used with FTIR data to determine the composition of a large variety of complex mixtures. A literature search indicated many applications of multivariate calibration to FTIR data. Areas identified where quantitation by FTIR would provide a new capability are quantitation of components in epoxy and silicone resins, polychlorinated biphenyls (PCBs) in oils, and additives to polymers. 19 refs., 15 figs., 6 tabs.

  19. ImageJ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ImageJFiji can display, edit, analyze, process, save and print 8-bit, 16-bit and 32-bit images. It can read many image formats including TIFF, GIF, JPEG, BMP, DICOM, FITS and ...

  20. Achieving molecular selectivity in imaging using multiphoton Raman spectroscopy techniques

    SciTech Connect (OSTI)

    Holtom, Gary R. ); Thrall, Brian D. ); Chin, Beek Yoke ); Wiley, H Steven ); Colson, Steven D. )

    2000-12-01

    In the case of most imaging methods, contrast is generated either by physical properties of the sample (Differential Image Contrast, Phase Contrast), or by fluorescent labels that are localized to a particular protein or organelle. Standard Raman and infrared methods for obtaining images are based upon the intrinsic vibrational properties of molecules, and thus obviate the need for attached flurophores. Unfortunately, they have significant limitations for live-cell imaging. However, an active Raman method, called Coherent Anti-Stokes Raman Scattering (CARS), is well suited for microscopy, and provides a new means for imaging specific molecules. Vibrational imaging techniques, such as CARS, avoid problems associated with photobleaching and photo-induced toxicity often associated with the use of fluorescent labels with live cells. Because the laser configuration needed to implement CARS technology is similar to that used in other multiphoton microscopy methods, such as two -photon fluorescence and harmonic generation, it is possible to combine imaging modalities, thus generating simultaneous CARS and fluorescence images. A particularly powerful aspect of CARS microscopy is its ability to selectively image deuterated compounds, thus allowing the visualization of molecules, such as lipids, that are chemically indistinguishable from the native species.

  1. Nova-like cataclysmic variables in the infrared

    SciTech Connect (OSTI)

    Hoard, D. W.; Long, Knox S.; Howell, Steve B.; Wachter, Stefanie; Brinkworth, Carolyn S.; Knigge, Christian; Drew, J. E.; Szkody, Paula; Kafka, S.; Belle, Kunegunda; Ciardi, David R.; Froning, Cynthia S.; Van Belle, Gerard T.; Pretorius, M. L.

    2014-05-01

    Nova-like (NL) cataclysmic variables have persistently high mass transfer rates and prominent steady state accretion disks. We present an analysis of infrared observations of 12 NLs obtained from the Two Micron All Sky Survey, the Spitzer Space Telescope, and the Wide-field Infrared Survey Explorer All Sky Survey. The presence of an infrared excess at ? ? 3-5 ?m over the expectation of a theoretical steady state accretion disk is ubiquitous in our sample. The strength of the infrared excess is not correlated with orbital period, but shows a statistically significant correlation (but shallow trend) with system inclination that might be partially (but not completely) linked to the increasing view of the cooler outer accretion disk and disk rim at higher inclinations. We discuss the possible origin of the infrared excess in terms of emission from bremsstrahlung or circumbinary dust, with either mechanism facilitated by the mass outflows (e.g., disk wind/corona, accretion stream overflow, and so on) present in NLs. Our comparison of the relative advantages and disadvantages of either mechanism for explaining the observations suggests that the situation is rather ambiguous, largely circumstantial, and in need of stricter observational constraints.

  2. Techniques in diagnostic imaging

    SciTech Connect (OSTI)

    Whitehouse, G.H. ); Worthington, B.S. )

    1989-01-01

    This book provides aspirant radiologists worldwide with a modern international coverage of all imaging modalities, including plan x-ray, CT magnetic resonance imaging and nuclear medicine.

  3. Manhattan Project: Image Retouching`

    Office of Scientific and Technical Information (OSTI)

    Image Retouching Resources > Photo Gallery Smyth Report (original) Smyth Report (retouched) Images on this web site have sometimes been "retouched." In every case, however, the ...

  4. A POPULATION OF z > 2 FAR-INFRARED HERSCHEL-SPIRE-SELECTED STARBURSTS

    SciTech Connect (OSTI)

    Casey, C. M.; Berta, S.; Lutz, D.; Magnelli, B.; Bethermin, M.; Floc'h, E. le; Magdis, G.; Burgarella, D.; Chapin, E.; Chapman, S. C.; Clements, D. L.; Conley, A.; Conselice, C. J.; Farrah, D.; Hatziminaoglou, E.; Ivison, R. J.; Oliver, S. J.; and others

    2012-12-20

    We present spectroscopic observations for a sample of 36 Herschel-SPIRE 250-500 {mu}m selected galaxies (HSGs) at 2 < z < 5 from the Herschel Multi-tiered Extragalactic Survey. Redshifts are confirmed as part of a large redshift survey of Herschel-SPIRE-selected sources covering {approx}0.93 deg{sup 2} in six extragalactic legacy fields. Observations were taken with the Keck I Low Resolution Imaging Spectrometer and the Keck II DEep Imaging Multi-Object Spectrograph. Precise astrometry, needed for spectroscopic follow-up, is determined by identification of counterparts at 24 {mu}m or 1.4 GHz using a cross-identification likelihood matching method. Individual source luminosities range from log (L{sub IR}/L{sub Sun }) = 12.5-13.6 (corresponding to star formation rates (SFRs) 500-9000 M{sub Sun} yr{sup -1}, assuming a Salpeter initial mass function), constituting some of the most intrinsically luminous, distant infrared galaxies discovered thus far. We present both individual and composite rest-frame ultraviolet spectra and infrared spectral energy distributions. The selection of these HSGs is reproducible and well characterized across large areas of the sky in contrast to most z > 2 HyLIRGs in the literature, which are detected serendipitously or via tailored surveys searching only for high-z HyLIRGs; therefore, we can place lower limits on the contribution of HSGs to the cosmic star formation rate density (SFRD) at (7 {+-} 2) Multiplication-Sign 10{sup -3} M{sub Sun} yr{sup -1} h {sup 3} Mpc{sup -3} at z {approx} 2.5, which is >10% of the estimated total SFRD of the universe from optical surveys. The contribution at z {approx} 4 has a lower limit of 3 Multiplication-Sign 10{sup -3} M{sub Sun} yr{sup -1} h {sup 3} Mpc{sup -3}, {approx}>20% of the estimated total SFRD. This highlights the importance of extremely infrared-luminous galaxies with high SFRs to the buildup of stellar mass, even at the earliest epochs.

  5. THE CEPHEID PERIOD-LUMINOSITY RELATION (THE LEAVITT LAW) AT MID-INFRARED WAVELENGTHS. IV. CEPHEIDS IN IC 1613

    SciTech Connect (OSTI)

    Freedman, Wendy L.; Rigby, Jane; Madore, Barry F.; Persson, S. E.; Sturch, Laura; Mager, Violet E-mail: jrigby@ociw.edu E-mail: persson@ociw.edu E-mail: vmager@ociw.edu

    2009-04-20

    We present mid-infrared period-luminosity relations for Cepheids in the Local Group galaxy IC 1613. Using archival Infrared Array Camera (IRAC) imaging data from Spitzer we were able to measure single-epoch magnitudes for five, 7-50 days, Cepheids at 3.6 and 4.5 {mu}m. When fit to the calibrating relations, measured for the Large Magellanic Cloud Cepheids, the data give apparent distance moduli of 24.29 {+-} 0.07 and 24.28 {+-} 0.07 at 3.6 and 4.5 {mu}m, respectively. A multiwavelength fit to previously published BVRIJHK apparent moduli and the two IRAC moduli gives a true distance modulus of 24.27 {+-} 0.02 mag with E(B - V) = 0.08 mag, and a corresponding metric distance of 715 kpc. Given that these results are based on single-phase observations derived from exposures having total integration times of only 1000 s pixel{sup -1}, we suggest that Cepheids out to about 2 Mpc are accessible to Spitzer with modest integration times during its warm mission. We identify the main limiting factor to this method to be crowding/contamination induced by the ubiquitous population of infrared-bright asymptotic giant branch stars.

  6. Hard, infrared black coating with very low outgassing

    SciTech Connect (OSTI)

    Kuzmenko, P J; Behne, D M; Casserly, T; Boardman, W; Upadhyaya, D; Boinapally, K; Gupta, M; Cao, Y

    2008-06-02

    Infrared astronomical instruments require absorptive coatings on internal surfaces to trap scattered and stray photons. This is typically accomplished with any one of a number of black paints. Although inexpensive and simple to apply, paint has several disadvantages. Painted surfaces can be fragile, prone to shedding particles, and difficult to clean. Most importantly, the vacuum performance is poor. Recently a plasma enhanced chemical vapor deposition (PECVD) process was developed to apply thick (30 {micro}m) diamond-like carbon (DLC) based protective coatings to the interior of oil pipelines. These DLC coatings show much promise as an infrared black for an ultra high vacuum environment. The coatings are very robust with excellent cryogenic adhesion. Their total infrared reflectivity of < 10% at normal incidence approaches that of black paints. We measured outgas rates of <10{sup -12} Torr liter/sec cm{sup 2}, comparable to bare stainless steel.

  7. Blocked impurity band hybrid infrared focal plane arrays for astronomy

    SciTech Connect (OSTI)

    Reynolds, D.B.; Seib, D.H.; Stetson, S.B.; Herter, T.; Rowlands, N.; Schoenwald, J.

    1989-02-01

    High-performance infrared hybrid focal plane arrays using 10 x 50 element Si:As Blocked-Impurity-Band (BIB) detectors (cut-off wavelength = 28 ..mu..m) and matching switched MOSFET multiplexers have been developed and characterized for space astronomy. Use of impurity band conduction technology provides detectors which are nuclear radiation hard and free of the many anomalies associated with conventional silicon photoconductive detectors. Emphasis in this paper is on recent advances in detector material quality which have led to significantly improved detector and hybrid characteristics. Results demonstrating increase quantum efficiency (particular at short wavelength infrared), obtained by varying the Blocked-Impurity-Band detector properties (infrared active layer thickness and arsenic doping profile), are summarized. Read noise and dark current for different temperatures have been measured and are also described. The hybrid array performance achieved clearly demonstrates that BIB detectors are well suited for use in astronomical instrumentation.

  8. Noise Reduction Efforts for the ALS Infrared Beamlines

    SciTech Connect (OSTI)

    Scarvie, Tom; Andresen, Nord; Baptiste, Ken; Byrd, John; Chin, Mike; Martin, Michael; McKinney, Wayne; Steier, Christoph

    2004-05-12

    The quality of infrared microscopy and spectroscopy data collected at synchrotron based sources is strongly dependent on signal-to-noise. We have successfully identified and suppressed several noise sources affecting Beamlines 1.4.2, 1.4.3, and 1.4.4 at the Advanced Light Source (ALS), resulting in a significant increase in the quality of FTIR spectra obtained. In this paper, we present our methods of noise source analysis, the negative effect of noise on the infrared beam quality, and the techniques used to reduce the noise. These include reducing the phase noise in the storage ring radio-frequency (RF) system, installing an active mirror feedback system, analyzing and changing physical mounts to better isolate portions of the beamline optics from low-frequency environmental noise, and modifying the input signals to the main ALS RF system. We also discuss the relationship between electron beam energy oscillations at a point of dispersion and infrared beamline noise.

  9. High speed infrared radiation thermometer, system, and method

    DOE Patents [OSTI]

    Markham, James R. (Middlefield, CT)

    2002-01-01

    The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.

  10. Apparatus for generating coherent infrared energy of selected wavelength

    DOE Patents [OSTI]

    Stevens, Charles G.

    1985-01-01

    A tunable source (11) of coherent infrared energy includes a heat pipe (12) having an intermediate region (24) at which cesium (22) is heated to vaporizing temperature and end regions (27, 28) at which the vapor is condensed and returned to the intermediate region (24) for reheating and recirculation. Optical pumping light (43) is directed along the axis of the heat pipe (12) through a first end window (17) to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window (18). A porous walled tubulation (44) extends along the axis of the heat pipe (12) and defines a region (46) in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light (43). Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light (43).

  11. Antenna-coupled microcavities for enhanced infrared photo-detection

    SciTech Connect (OSTI)

    Nga Chen, Yuk; Todorov, Yanko Askenazi, Benjamin; Vasanelli, Angela; Sirtori, Carlo; Biasiol, Giorgio; Colombelli, Raffaele

    2014-01-20

    We demonstrate mid-infrared detectors embedded into an array of double-metal nano-antennas. The antennas act as microcavities that squeeze the electric field into thin semiconductor layers, thus enhancing the detector responsivity. Furthermore, thanks to the ability of the antennas to gather photons from an area larger than the device's physical dimensions, the dark current is reduced without hindering the photo-generation rate. In these devices, the background-limited performance is improved with a consequent increase of the operating temperature. Our results illustrate how the antenna-coupled microcavity concept can be applied to enhance the performances of infrared opto-electronic devices.

  12. Infrared absorption spectroscopy and chemical kinetics of free radicals

    SciTech Connect (OSTI)

    Curl, R.F.; Glass, G.P.

    1993-12-01

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  13. The COBE Diffuse Infrared Background Experiment search for thecosmic infrared background. I. Limits and detections

    SciTech Connect (OSTI)

    Hauser, M.G.; Arendt, R.G.; Kelsall, T.; Dwek, E.; Odegard, N.; Weiland, J.L.; Freudenreich, H.T.; Reach, W.T.; Silverberg, R.F.; Moseley, S.H.; Pei, Y.C.; Lubin, P.; Mather, J.C.; Shafer, R.A.; Smoot,G.F.; Weiss, R.; Wilkinson, D.T.; Wright, E.L.

    1998-01-06

    The Diffuse Infrared Background Experiment (DIRBE) on the Cosmic Background Explorer (COBE) spacecraft was designed primarily to conduct a systematic search for an isotropic cosmic infrared background (CIB) in 10 photometric bands from 1.25 to 240 mu m. The results of that search are presented here. Conservative limits on the CIB are obtained from the minimum observed brightness in all-sky maps at each wavelength, with the faintest limits in the DIRBE spectral range being at 3.5 mu m(nu l nu<64 nW m-2 sr-1, 95 percent confidence level) and at 240 mu m (nu l nu < 28 nW m-1 sr-1, 95 percent confidence level). The bright foregrounds from interplanetary dust scattering and emission, stars, and interstellar dust emission are the principal impediments to the DIRBE measurements of the CIB. These foregrounds have been modeled and removed from the sky maps. Assessment of the random and systematic uncertainties in the residuals and tests for isotropy show that only the 140 and 240 mum data provide candidate detections of the CIB. The residuals and their uncertainties provide CIB upper limits more restrictive than the dark sky limits at wavelengths from 1.25 to 100 mu m. No plausible solar system or Galactic source of the observed 140 and 240 mu m residuals can be identified, leading to the conclusion that the CIB has been detected at levels of nu l nu = 25 +- 7 and 14 +- 3 nW m-2 sr-1 at 140 and 240 mu m, respectively. The integrated energy from 140 to 240 mu m, 10.3 nW m-2sr-1, is about twice the integrated optical light from the galaxies in the Hubble Deep Field, suggesting that star formation might have been heavily enshrouded by dust at high redshift. The detections and upper limits reported here provide new constraints on models of the history of energy-releasing processes and dust production since the decoupling of the cosmic microwave background from matter.

  14. A far-infrared spectroscopic survey of intermediate redshift (ultra) luminous infrared galaxies

    SciTech Connect (OSTI)

    Magdis, Georgios E.; Rigopoulou, D.; Hopwood, R.; Clements, D.; Huang, J.-S.; Farrah, D.; Pearson, C.; Alonso-Herrero, Almudena; Bock, J. J.; Cooray, A.; Griffin, M. J.; Oliver, S.; Perez Fournon, I.; Riechers, D.; Swinyard, B. M.; Thatte, N.; Scott, D.; Valtchanov, I.; Vaccari, M.

    2014-11-20

    We present Herschel far-IR photometry and spectroscopy as well as ground-based CO observations of an intermediate redshift (0.21 ? z ? 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L {sub IR} > 10{sup 11.5} L {sub ?}). With these measurements, we trace the dust continuum, far-IR atomic line emission, in particular [C II] 157.7 ?m, as well as the molecular gas of z ? 0.3 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L {sub C} {sub II}/L {sub FIR} ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-z star-forming galaxies. Using our sample to bridge local and high-z [C II] observations, we find that the majority of galaxies at all redshifts and all luminosities follow an L {sub C} {sub II}L {sub FIR} relation with a slope of unity, from which local ULIRGs and high- z active-galactic-nucleus-dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L {sub C} {sub II}/L {sub FIR} ratio and the far-IR color L {sub 60}/L {sub 100} observed in the local universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L {sub C} {sub II}/L {sub FIR} at any epoch. Intermediate redshift ULIRGs are also characterized by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L {sub C} {sub II}/L {sub FIR} ratios, the moderate star formation efficiencies (L {sub IR}/L{sub CO}{sup ?} or L {sub IR}/M{sub H{sub 2}}), and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star-forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the present day and z

  15. Seismic Imaging and Monitoring

    SciTech Connect (OSTI)

    Huang, Lianjie

    2012-07-09

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  16. Image registration method for medical image sequences

    SciTech Connect (OSTI)

    Gee, Timothy F.; Goddard, James S.

    2013-03-26

    Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

  17. Measurement of directional thermal infrared emissivity of vegetation and soils

    SciTech Connect (OSTI)

    Norman, J.M. [Wisconsin Univ., Madison, WI (United States). Dept. of Soil Science; Balick, L.K. [EG and G Energy Measurements, Inc., Las Vegas, NV (United States)

    1995-10-01

    A new method has been developed for measuring directional thermal emissivity as a function of view angle for plant canopies and soils using two infrared thermometers each sensitive to a different wavelength band. By calibrating the two infrared thermometers to 0.1C consistency, canopy directional emissivity can be estimated with typical errors less than 0.005 in the 8--14 um wavelength band, depending on clarity of the sky and corrections for CO{sub 2} absorption by the atmosphere. A theoretical justification for the method is developed along with an error analysis. Laboratory measurements were used to develop corrections for CO{sub 2}, absorption and a field calibration method is used to obtain the necessary 0.1C consistency for relatively low cost infrared thermometers. The emissivity of alfalfa (LAI=2.5) and corn (LAI=3.2) was near 0.995 and independent of view angle. Individual corn leaves had an emissivity of 0.97. A wheat (LAI=3.0) canopy had an emissivity of 0.985 at nadir and 0.975 at 75 degree view angle. The canopy emissivity values tend to be higher than values in the literature, and are useful for converting infrared thermometer measurements to kinetic temperature and interpreting satellite thermal observations.

  18. THE MID-INFRARED TULLY-FISHER RELATION: SPITZER SURFACE PHOTOMETRY

    SciTech Connect (OSTI)

    Sorce, Jenny G.; Courtois, Helene M.; Tully, R. Brent

    2012-11-01

    The availability of photometric imaging of several thousand galaxies with the Spitzer Space Telescope enables a mid-infrared calibration of the correlation between luminosity and rotation in spiral galaxies. The most important advantage of the new calibration in the 3.6 {mu}m band, IRAC Channel 1, is photometric consistency across the entire sky. Additional advantages are minimal obscuration, observations of flux dominated by old stars, and sensitivity to low surface brightness levels due to favorable backgrounds. Roughly 3000 galaxies have been observed through Spitzer cycle 7 and images of these are available from the Spitzer archive. In cycle 8, a program called Cosmic Flows with Spitzer was initiated, which will increase the available sample of spiral galaxies with inclinations greater than 45 Degree-Sign from face-on that are suitable for distance measurements by 1274. This paper describes procedures, based on the photometry package Archangel, that are being employed to analyze both the archival and new data in a uniform way. We give results for 235 galaxies, our calibrator sample for the Tully-Fisher relation. Galaxy magnitudes are determined with uncertainties held below 0.05 mag for normal spiral systems. A subsequent paper will describe the calibration of the [3.6] luminosity-rotation relation.

  19. A JOINT MODEL OF X-RAY AND INFRARED BACKGROUNDS. II. COMPTON...

    Office of Scientific and Technical Information (OSTI)

    X-RAY AND INFRARED BACKGROUNDS. II. COMPTON-THICK ACTIVE GALACTIC NUCLEUS ABUNDANCE Citation Details In-Document Search Title: A JOINT MODEL OF X-RAY AND INFRARED BACKGROUNDS. II. ...

  20. A wide-field near- and mid-infrared Census of young stars in NGC 6334

    SciTech Connect (OSTI)

    Willis, S.; Marengo, M.; Allen, L.; Fazio, G. G.; Smith, H. A.; Carey, S.

    2013-12-01

    This paper presents a study of the rate and efficiency of star formation in the NGC 6334 star-forming region. We obtained observations at J, H, and K{sub s} taken with the NOAO Extremely Wide-Field Infrared Imager and combined them with observations taken with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope at wavelengths = 3.6, 4.5, 5.8, and 8.0 μm. We also analyzed previous observations taken at 24 μm using the Spitzer MIPS camera as part of the MIPSGAL survey. We have produced a point source catalog with >700, 000 entries. We have identified 2283 young stellar object (YSO) candidates, 375 Class I YSOs, and 1908 Class II YSOs using a combination of existing IRAC-based color classification schemes that we have extended and validated to the near-IR for use with warm Spitzer data. We have identified multiple new sites of ongoing star formation activity along filamentary structures extending tens of parsecs beyond the central molecular ridge of NGC 6334. By mapping the extinction, we derived an estimate for the gas mass, 2.2 × 10{sup 5} M {sub ☉}. The heavy concentration of protostars along the dense filamentary structures indicates that NGC 6334 may be undergoing a 'mini-starburst' event with Σ{sub SFR} > 8.2 M {sub ☉} Myr{sup –1} pc{sup –2} and SFE > 0.10. We have used these estimates to place NGC 6334 in the Kennicutt-Schmidt diagram to help bridge the gap between observations of local low-mass star-forming regions and star formation in other galaxies.

  1. Near-infrared (JHK) spectroscopy of young stellar and substellar objects in orion

    SciTech Connect (OSTI)

    Ingraham, P.; Albert, L.; Doyon, R.; Artigau, E.

    2014-02-10

    We performed low-resolution (R ∼ 40) near-infrared (0.9-2.4 μm) multi-object spectroscopy of 240 isolated point sources having apparent H-band magnitudes between 9 and 18 in the central 5' × 6' of the Orion Trapezium cluster. The observations were performed over four nights at the Canada-France-Hawaii Telescope using the visiting instrument SIMON, an infrared imager and multi-object spectrograph. We present the spectra of 104 objects with accurately derived spectral types including 7 new objects having masses below the hydrogen-burning limit, and 6 objects with masses below the deuterium-burning limit. The spectral classification is performed by fitting previously classified spectral templates of dwarf stars (K4-M3) and optically classified young stellar and substellar objects (M4-L0), to the entire 0.9-2.4 μm spectral energy distribution in order to assign a spectral type and visual extinction for each object. Of the 104 objects studied, 44 have been previously classified spectroscopically using various techniques. We perform a rigorous comparison between the previous classifications and our own and find them to be in good agreement. Using the dereddened H-band magnitudes, the classified objects are used to create an Hertzsprung-Russell diagram for the cluster. We find that the previous age estimates of ∼1 Myr to be consistent with our results. Consistent with previous studies, numerous objects are observed to have luminosities several magnitudes above the 1 Myr isochrone. Numerous objects exhibiting emission features in the J band are also reported.

  2. Characterizing Wolf-Rayet stars in the near- and mid-infrared

    SciTech Connect (OSTI)

    Faherty, Jacqueline K.; Shara, Michael M.; Zurek, David; Kanarek, Graham; Moffat, Anthony F. J.

    2014-05-01

    We present refined color-color selection criteria for identifying Wolf-Rayet (WR) stars using available mid-infrared (MIR) photometry from WISE in combination with near-infrared (NIR) photometry from the Two Micron All Sky Survey. Using a sample of spectrally classified objects, we find that WR stars are well distinguished from the field stellar population in the (W1 – W2) versus (J – K{sub s} ) color-color diagram, and further distinguished from other emission line objects such as planetary nebulae, Be, and cataclysmic variable stars using a combination of NIR and MIR color constraints. As proof of concept we applied the color constraints to a photometric sample in the Galactic plane, located WR star candidates, and present five new spectrally confirmed and classified WC (1) and WN (4) stars. Analysis of the 0.8-5.0 μm spectral data for a subset of known, bright WC and WN stars shows that emission lines (primarily He I) extend into the 3.0-5.0 μm spectral region, although their strength is greatly diminished compared to the 0.8-2.5 μm region. The WR population stands out relative to background field stars at NIR and MIR colors due to an excess continuum contribution, likely caused by free-free scattering in dense winds. Mean photometric properties of known WRs are presented and imply that reddened late-type WN and WC sources are easier to detect than earlier-type sources at larger Galactic radii. WISE W3 and W4 images of 10 WR stars show evidence of circumstellar shells linked to mass ejections from strong stellar winds.

  3. NEAR-INFRARED DETECTION OF A SUPER-THIN DISK IN NGC 891

    SciTech Connect (OSTI)

    Schechtman-Rook, Andrew; Bershady, Matthew A.

    2013-08-10

    We probe the disk structure of the nearby, massive, edge-on spiral galaxy NGC 891 with subarcsecond resolution JHK{sub s}-band images covering {approx} {+-}10 kpc in radius and {+-}5 kpc in height. We measure intrinsic surface brightness (SB) profiles using realistic attenuation corrections constrained from near- and mid-infrared (Spitzer) color maps and three-dimensional Monte Carlo radiative-transfer models. In addition to the well-known thin and thick disks, a super-thin disk with 60-80 pc scale-height-comparable to the star-forming disk of the Milky Way-is visibly evident and required to fit the attenuation-corrected light distribution. Asymmetries in the super-thin disk light profile are indicative of young, hot stars producing regions of excess luminosity and bluer (attenuation-corrected) near-infrared color. To fit the inner regions of NGC 891, these disks must be truncated within {approx}3 kpc, with almost all their luminosity redistributed in a bar-like structure 50% thicker than the thin disk. There appears to be no classical bulge but rather a nuclear continuation of the super-thin disk. The super-thin, thin, thick, and bar components contribute roughly 30%, 42%, 13%, and 15% (respectively) to the total K{sub s}-band luminosity. Disk axial ratios (length/height) decrease from 30 to 3 from super-thin to thick components. Both exponential and sech{sup 2} vertical SB profiles fit the data equally well. We find that the super-thin disk is significantly brighter in the K{sub s}-band than typically assumed in integrated spectral energy distribution models of NGC 891: it appears that in these models the excess flux, likely produced by young stars in the super-thin disk, has been mistakenly attributed to the thin disk.

  4. Coherent imaging with two-dimensional focal-plane arrays: design and applications

    SciTech Connect (OSTI)

    Simpson, M.L.; Bennett, C.A.; Emery, M.S.; Hutchinson, D.P.; Miller, G.H.; Richards, R.K.; Sitter, D.N.

    1997-09-01

    Scanned, single-channel optical heterodyne detection has been used in a variety of lidar applications from ranging and velocity measurements to differential absorption spectroscopy. We describe the design of a coherent camera system that is based on a two-dimensional staring array of heterodyne receivers for coherent imaging applications. Experimental results with a single HgCdTe detector translated in the image plane to form a synthetic two-dimensional array demonstrate the ability to obtain passive heterodyne images of chemical vapor plumes that are invisible to normal video infrared cameras. We describe active heterodyne imaging experiments with use of focal-plane arrays that yield hard-body Doppler lidar images and also demonstrate spatial averaging to reduce speckle effects in static coherent images. {copyright} 1997 Optical Society of America

  5. Multispectral image feature fusion for detecting land mines

    SciTech Connect (OSTI)

    Clark, G.A.; Fields, D.J.; Sherwood, R.J.

    1994-11-15

    Our system fuses information contained in registered images from multiple sensors to reduce the effect of clutter and improve the the ability to detect surface and buried land mines. The sensor suite currently consists if a camera that acquires images in sixible wavelength bands, du, dual-band infrared (5 micron and 10 micron) and ground penetrating radar. Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite of sensors detects a variety of physical properties that are more separate in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, holes made by animals and natural processes, etc.) and some artifacts.

  6. Spectrographic imaging system

    DOE Patents [OSTI]

    Morris, Michael D.; Treado, Patrick J.

    1991-01-01

    An imaging system for providing spectrographically resolved images. The system incorporates a one-dimensional spatial encoding mask which enables an image to be projected onto a two-dimensional image detector after spectral dispersion of the image. The dimension of the image which is lost due to spectral dispersion on the two-dimensional detector is recovered through employing a reverse transform based on presenting a multiplicity of different spatial encoding patterns to the image. The system is especially adapted for detecting Raman scattering of monochromatic light transmitted through or reflected from physical samples. Preferably, spatial encoding is achieved through the use of Hadamard mask which selectively transmits or blocks portions of the image from the sample being evaluated.

  7. Manhattan Project: Events Images

    Office of Scientific and Technical Information (OSTI)

    Scroll down to see each of these images individually. The images are: 1. Albert Einstein ... Albert Einstein and Leo Szilard Albert Einstein and Leo Szilard Painting of CP-1 going ...

  8. ARM - Measurement - Aerosol image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol image Images of aerosols from which one can derive characteristics such...

  9. FAR-INFRARED FINE-STRUCTURE LINE DIAGNOSTICS OF ULTRALUMINOUS INFRARED GALAXIES

    SciTech Connect (OSTI)

    Farrah, D.; Petty, S. M.; Harris, K.; Lebouteiller, V.; Spoon, H. W. W.; Bernard-Salas, J.; Pearson, C.; Rigopoulou, D.; Smith, H. A.; Gonzlez-Alfonso, E.; Clements, D. L.; Efstathiou, A.; Cormier, D.; Afonso, J.; Hurley, P.; Borys, C.; Verma, A.; Cooray, A.; Salvatelli, V.

    2013-10-10

    We present Herschel observations of 6 fine-structure lines in 25 ultraluminous infrared galaxies at z < 0.27. The lines, [O III]52 ?m, [N III]57 ?m, [O I]63 ?m, [N II]122 ?m, [O I]145 ?m, and [C II]158 ?m, are mostly single Gaussians with widths <600 km s{sup 1} and luminosities of 10{sup 7}-10{sup 9} L{sub ?}. There are deficits in the [O I]63/L{sub IR}, [N II]/L{sub IR}, [O I]145/L{sub IR}, and [C II]/L{sub IR} ratios compared to lower luminosity systems. The majority of the line deficits are consistent with dustier H II regions, but part of the [C II] deficit may arise from an additional mechanism, plausibly charged dust grains. This is consistent with some of the [C II] originating from photodissociation regions or the interstellar medium (ISM). We derive relations between far-IR line luminosities and both the IR luminosity and star formation rate. We find that [N II] and both [O I] lines are good tracers of the IR luminosity and star formation rate. In contrast, [C II] is a poor tracer of the IR luminosity and star formation rate, and does not improve as a tracer of either quantity if the [C II] deficit is accounted for. The continuum luminosity densities also correlate with the IR luminosity and star formation rate. We derive ranges for the gas density and ultraviolet radiation intensity of 10{sup 1} < n < 10{sup 2.5} and 10{sup 2.2} < G{sub 0} < 10{sup 3.6}, respectively. These ranges depend on optical type, the importance of star formation, and merger stage. We do not find relationships between far-IR line properties and several other parameters: active galactic nucleus (AGN) activity, merger stage, mid-IR excitation, and SMBH mass. We conclude that these far-IR lines arise from gas heated by starlight, and that they are not strongly influenced by AGN activity.

  10. Video image position determination

    DOE Patents [OSTI]

    Christensen, Wynn; Anderson, Forrest L.; Kortegaard, Birchard L.

    1991-01-01

    An optical beam position controller in which a video camera captures an image of the beam in its video frames, and conveys those images to a processing board which calculates the centroid coordinates for the image. The image coordinates are used by motor controllers and stepper motors to position the beam in a predetermined alignment. In one embodiment, system noise, used in conjunction with Bernoulli trials, yields higher resolution centroid coordinates.

  11. Examining the infrared variable star population discovered in the Small Magellanic Cloud using the SAGE-SMC survey

    SciTech Connect (OSTI)

    Polsdofer, Elizabeth; Marengo, M.; Seale, J.; Sewiło, M.; Vijh, U. P.; Terrazas, M.; Meixner, M.

    2015-02-01

    We present our study on the infrared variability of point sources in the Small Magellanic Cloud (SMC). We use the data from the Spitzer Space Telescope Legacy Program “Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud” (SAGE-SMC) and the “Spitzer Survey of the Small Magellanic Cloud” (S{sup 3}MC) survey, over three different epochs, separated by several months to 3 years. Variability in the thermal infrared is identified using a combination of Spitzer’s InfraRed Array Camera 3.6, 4.5, 5.8, and 8.0 μm bands, and the Multiband Imaging Photometer for Spitzer 24 μm band. An error-weighted flux difference between each pair of three epochs (“variability index”) is used to assess the variability of each source. A visual source inspection is used to validate the photometry and image quality. Out of ∼2 million sources in the SAGE-SMC catalog, 814 meet our variability criteria. We matched the list of variable star candidates to the catalogs of SMC sources classified with other methods, available in the literature. Carbon-rich Asymptotic Giant Branch (AGB) stars make up the majority (61%) of our variable sources, with about a third of all of our sources being classified as extreme AGB stars. We find a small, but significant population of oxygen-rich (O-rich) AGB (8.6%), Red Supergiant (2.8%), and Red Giant Branch (<1%) stars. Other matches to the literature include Cepheid variable stars (8.6%), early type stars (2.8%), Young-stellar objects (5.8%), and background galaxies (1.2%). We found a candidate OH maser star, SSTISAGE1C J005212.88-730852.8, which is a variable O-rich AGB star, and would be the first OH/IR star in the SMC, if confirmed. We measured the infrared variability of a rare RV Tau variable (a post-AGB star) that has recently left the AGB phase. 59 variable stars from our list remain unclassified.

  12. Design of a Thermal Imaging Diagnostic Using 90-Degree, Off-Axis, Parabolic Mirrors

    SciTech Connect (OSTI)

    Malone, Robert M.; Becker, Steven A.; Dolan, Daniel H.; Hacking, Richard G.; Hickman, Randy J.; Kaufman, Morris I.; Stevens, Gerald D.; Turley, William D.

    2006-09-01

    Thermal imaging is an important, though challenging, diagnostic for shockwave experiments. Shock-compressed materials undergo transient temperature changes that cannot be recorded with standard (greater than ms response time) infrared detectors. A further complication arises when optical elements near the experiment are destroyed. We have designed a thermal-imaging system for studying shock temperatures produced inside a gas gun at Sandia National Laboratories. Inexpensive, diamond-turned, parabolic mirrors relay an image of the shocked target to the exterior of the gas gun chamber through a sapphire vacuum port. The 30005000-nm portion of this image is directed to an infrared camera which acquires a snapshot of the target with a minimum exposure time of 150 ns. A special mask is inserted at the last intermediate image plane, to provide dynamic thermal background recording during the event. Other wavelength bands of this image are split into high-speed detectors operating at 9001700 nm, and at 17003000 nm for timeresolved pyrometry measurements. This system incorporates 90-degree, off-axis parabolic mirrors, which can collect low f/# light over a broad spectral range, for high-speed imaging. Matched mirror pairs must be used so that aberrations cancel. To eliminate image plane tilt, proper tip-to-tip orientation of the parabolic mirrors is required. If one parabolic mirror is rotated 180 degrees about the optical axis connecting the pair of parabolic mirrors, the resulting image is tilted by 60 degrees. Different focal-length mirrors cannot be used to magnify the image without substantially sacrificing image quality. This paper analyzes performance and aberrations of this imaging diagnostic.

  13. Near-electrode imager

    DOE Patents [OSTI]

    Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, II, Rex E.

    2000-01-01

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager uses the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  14. Medical imaging systems

    SciTech Connect (OSTI)

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  15. Non-destructive component separation using infrared radiant energy

    SciTech Connect (OSTI)

    Simandl, Ronald F.; Russell, Steven W.; Holt, Jerrid S.; Brown, John D.

    2011-03-01

    A method for separating a first component and a second component from one another at an adhesive bond interface between the first component and second component. Typically the method involves irradiating the first component with infrared radiation from a source that radiates substantially only short wavelengths until the adhesive bond is destabilized, and then separating the first component and the second component from one another. In some embodiments an assembly of components to be debonded is placed inside an enclosure and the assembly is illuminated from an IR source that is external to the enclosure. In some embodiments an assembly of components to be debonded is simultaneously irradiated by a multi-planar array of IR sources. Often the IR radiation is unidirectional. In some embodiments the IR radiation is narrow-band short wavelength infrared radiation.

  16. Near-infrared photodetector with reduced dark current

    DOE Patents [OSTI]

    Klem, John F; Kim, Jin K

    2012-10-30

    A photodetector is disclosed for the detection of near-infrared light with a wavelength in the range of about 0.9-1.7 microns. The photodetector, which can be formed as either an nBp device or a pBn device on an InP substrate, includes an InGaAs light-absorbing layer, an InAlGaAs graded layer, an InAlAs or InP barrier layer, and an InGaAs contact layer. The photodetector can detect near-infrared light with or without the use of an applied reverse-bias voltage and is useful as an individual photodetector, or to form a focal plane array.

  17. Deep Sky Astronomical Image Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Sky Astronomical Image Database Deep Sky Astronomical Image Database Key Challenges: Develop, store, analyze, and make available an astronomical image database of...

  18. Low Cost Near Infrared Selective Plasmonic Smart Windows

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guillermo Garcia, memo@heliotropetech.com Heliotrope Technologies Low Cost Near Infrared Selective Plasmonic Smart Windows 2015 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: 5/15/14 Planned end date: 5/15/16 Key Milestones 1. Met device performance milestones by optimizing material composition, Aug 2014 2. Established fabrication protocol for transition to commercial scaled samples, Oct 2014 3. Validated UV sensitivity, variable temperature operation, and cycle

  19. Tailorable infrared sensing device with strain layer superlattice structure

    DOE Patents [OSTI]

    Cheng, Li-Jen

    1987-12-08

    An infrared photodetector is formed of a heavily doped p-type Ge.sub.x Si.sub.1-x /Si superlattice in which x is pre-established during manufacture in the range 0 to 100 percent. A custom tailored photodetector that can differentiate among close wavelengths in the range of 2.7 to 50 microns is fabricated by appropriate selection of the alloy constituency value, x, to establish a specific wavelength at which photodetection cut-off will occur.

  20. Deuterium separation by infrared-induced addition reaction

    DOE Patents [OSTI]

    Marling, John B.

    1977-01-01

    A method for deuterium enrichment by the infrared-induced addition reaction of a deuterium halide with an unsaturated aliphatic compound. A gaseous mixture of a hydrogen halide feedstock and an unsaturated aliphatic compound, particularly an olefin, is irradiated to selectively vibrationally excite the deuterium halide contained therein. The excited deuterium halide preferentially reacts with the unsaturated aliphatic compound to produce a deuterated addition product which is removed from the reaction mixture.

  1. Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le Mans, France D. Gillotay Institute d'Aeronomie Spatiale de Belgique Brussels, Belgium Introduction In the effort to resolve uncertainties about global climate change, the Atmospheric Radiation Measurement (ARM) Program (www.arm.gov) is improving the treatment of cloud radiative forcing and feedbacks in general

  2. Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Handbook C Flynn March 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use

  3. Sensitized near infrared emission from lanthanide-exchanged zeolites

    SciTech Connect (OSTI)

    Monguzzi, A.; Macchi, G.; Meinardi, F.; Tubino, R.; Burger, M.; Calzaferri, G.

    2008-03-24

    In this work, we present an alternative approach to sensitize the near infrared emission of Er{sup 3+} ions (used in telecom applications) by exploiting the geometrical confinement occurring in porous zeolites structures. The sensitization of the Ln ion is obtained by energy transfer between a suitable organic molecule acting as an antenna and the emitting ion arranged in closed proximity, thus, avoiding the limits imposed by the coordination chemistry.

  4. THE INFRARED SPECTROSCOPY OF NEUTRAL POLYCYCLIC AROMATIC HYDROCARBON CLUSTERS

    SciTech Connect (OSTI)

    Ricca, Alessandra; Bauschlicher, Charles W. Jr.; Allamandola, Louis J. E-mail: Charles.W.Bauschlicher@nasa.gov

    2013-10-10

    The mid-infrared spectra of neutral homogeneous polycyclic aromatic hydrocarbon (PAH) clusters have been computed using density functional theory including an empirical correction for dispersion. The C-H out-of-plane bending modes are redshifted for all the clusters considered in this work. The magnitude of the redshift and the peak broadening are dependent on PAH size, shape, and on the PAH arrangement in the cluster.

  5. Ultraluminous infrared galaxies in the AKARI all-sky survey

    SciTech Connect (OSTI)

    Kilerci Eser, E., E-mail: ecekilerci@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Goto, T. [National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Doi, Y., E-mail: tomo@phys.nthu.edu.tw, E-mail: doi@ea.c.u-tokyo.ac.jp [The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902 (Japan)

    2014-12-10

    We present a new catalog of 118 ultraluminous infrared galaxies (ULIRGs) and one hyperluminous infrared galaxy (HLIRG) by cross-matching the AKARI all-sky survey with the Sloan Digital Sky Survey Data Release 10 (SDSS DR10) and the final data release of the Two-Degree Field Galaxy Redshift Survey. Forty of the ULIRGs and one HLIRG are new identifications. We find that ULIRGs are interacting pair galaxies or ongoing or postmergers. This is consistent with the widely accepted view: ULIRGs are major mergers of disk galaxies. We confirm the previously known positive trend between the active galactic nucleus fraction and infrared luminosity. We show that ULIRGs have a large offset from the main sequence up to z ? 1; their offset from the z ? 2 'main sequence' is relatively smaller. We find a result consistent with the previous studies showing that, compared to local star-forming SDSS galaxies of similar mass, local ULIRGs have lower oxygen abundances. We demonstrate for the first time that ULIRGs follow the fundamental metallicity relation (FMR). The scatter of ULIRGs around the FMR (0.09 dex-0.5 dex) is comparable to the scatter of z ? 2-3 galaxies. We provide the largest local (0.050

  6. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brauer, C. S.; Blake, T. A.; Guenther, A. B.; Sharpe, S. W.; Sams, R. L.; Johnson, T. J.

    2014-11-19

    Isoprene (C5H8, 2-methyl-1,3-butadiene) is a volatile organic compound (VOC) and is one of the primary contributors to annual global VOC emissions. Isoprene is produced primarily by vegetation as well as anthropogenic sources, and its OH- and O3-initiated oxidations are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, limiting the ability to quantify isoprene emissions via remote or in situ infrared detection. We thus report absorption cross sections and integrated band intensities for isoprene in the 600–6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298, and 323 Kmore » in a 19.94 cm path-length cell at 0.112 cm-1 resolution, using a Bruker IFS 66v/S Fourier transform infrared (FTIR) spectrometer. Composite spectra are derived from a minimum of seven isoprene sample pressures, each at one of three temperatures, and the number densities are normalized to 296 K and 1 atm.« less

  7. THE NUCLEAR INFRARED EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    SciTech Connect (OSTI)

    Mason, R. E.; Lopez-Rodriguez, E.; Packham, C.; Alonso-Herrero, A.; Elitzur, M.; Aretxaga, I.; Roche, P. F.; Oi, N.

    2012-07-15

    We present high-resolution mid-infrared (MIR) imaging, nuclear spectral energy distributions (SEDs), and archival Spitzer spectra for 22 low-luminosity active galactic nuclei (LLAGNs; L{sub bol} {approx}< 10{sup 42} erg s{sup -1}). Infrared (IR) observations may advance our understanding of the accretion flows in LLAGNs, the fate of the obscuring torus at low accretion rates, and, perhaps, the star formation histories of these objects. However, while comprehensively studied in higher-luminosity Seyferts and quasars, the nuclear IR properties of LLAGNs have not yet been well determined. We separate the present LLAGN sample into three categories depending on their Eddington ratio and radio emission, finding different IR characteristics for each class. (1) At the low-luminosity, low-Eddington-ratio (log L{sub bol}/L{sub Edd} < -4.6) end of the sample, we identify 'host-dominated' galaxies with strong polycyclic aromatic hydrocarbon bands that may indicate active (circum-)nuclear star formation. (2) Some very radio-loud objects are also present at these low Eddington ratios. The IR emission in these nuclei is dominated by synchrotron radiation, and some are likely to be unobscured type 2 AGNs that genuinely lack a broad-line region. (3) At higher Eddington ratios, strong, compact nuclear sources are visible in the MIR images. The nuclear SEDs of these galaxies are diverse; some resemble typical Seyfert nuclei, while others lack a well-defined MIR 'dust bump'. Strong silicate emission is present in many of these objects. We speculate that this, together with high ratios of silicate strength to hydrogen column density, could suggest optically thin dust and low dust-to-gas ratios, in accordance with model predictions that LLAGNs do not host a Seyfert-like obscuring torus. We anticipate that detailed modeling of the new data and SEDs in terms of accretion disk, jet, radiatively inefficient accretion flow, and torus components will provide further insights into the nuclear

  8. Fourier plane imaging microscopy

    SciTech Connect (OSTI)

    Dominguez, Daniel Peralta, Luis Grave de; Alharbi, Nouf; Alhusain, Mdhaoui; Bernussi, Ayrton A.

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  9. A detailed investigation on the impact of post-growth annealing on the materials and device characteristics of 35-layer In{sub 0.50}Ga{sub 0.50}As/GaAs quantum dot infrared photodetector with quaternary In{sub 0.21}Al{sub 0.21}Ga{sub 0.58}As capping

    SciTech Connect (OSTI)

    Adhikary, Sourav; Chakrabarti, Subhananda

    2012-11-15

    Highlights: ? We investigated the effect of ex situ annealing on InGaAs/GaAs QDIP with InAlGaAs layer. ? As-grown defect was removed by using post-growth annealing treatment. ? Increase in the compressive strain due to annealing is calculated from XRD curve. ? Three-fold enhancement in responsivity is observed in the QDIPs annealed at 650 C. ? Two-fold enhancement in D* is observed sample annealed at 650 C compared to as grown. -- Abstract: The effect of post-growth rapid thermal annealing on 35-layer In{sub 0.50}Ga{sub 0.50}As/GaAs quantum dot infrared photodetector (QDIP) with quaternary In{sub 0.21}Al{sub 0.21}Ga{sub 0.58}As capping has been investigated. Transmission electron microscopy showed some as-grown defects were removed by post growth annealing treatment. An increase in the compressive strain in the heterostructure due to annealing was identified from X-ray diffraction curve. A two-color photoresponse in the long-wave region (8.5 and 10.2 ?m) was observed in both as-grown device and those annealed at 650 C temperature. A three-fold enhancement in peak responsivity was observed in the QDIPs annealed at 650 C (1.19 A/W) compared to that in the as-grown (0.34 A/W). Detectivity also increased by two fold from as-grown to 650 C annealed device. The changes are attributed to the removal of as-grown defects and dislocations during epitaxial growth. These removals changed the confinement potential profile, which resulted in an improvement in the detectivity and responsivity of the annealed sample.

  10. THE TAIWAN ECDFS NEAR-INFRARED SURVEY: VERY BRIGHT END OF THE LUMINOSITY FUNCTION AT z > 7

    SciTech Connect (OSTI)

    Hsieh, Bau-Ching; Wang, Wei-Hao; Lin, Lihwai; Lim, Jeremy; Ho, Paul T. P.; Yan, Haojing; Karoji, Hiroshi; Tsai, Chao-Wei

    2012-04-10

    The primary goal of the Taiwan ECDFS Near-Infrared Survey (TENIS) is to find well-screened galaxy candidates at z > 7 (z' dropout) in the Extended Chandra Deep Field-South (ECDFS). To this end, TENIS provides relatively deep J and K{sub s} data ({approx}25.3 ABmag, 5{sigma}) for an area of 0.5 Multiplication-Sign 0.5 deg. Leveraged with existing data at mid-infrared to optical wavelengths, this allows us to screen for the most luminous high-z objects, which are rare and thus require a survey over a large field to be found. We introduce new color selection criteria to select a z > 7 sample with minimal contaminations from low-z galaxies and Galactic cool stars; to reduce confusion in the relatively low angular resolution Infrared Array Camera (IRAC) images, we introduce a novel deconvolution method to measure the IRAC fluxes of individual sources. Illustrating perhaps the effectiveness at which we screen out interlopers, we find only one z > 7 candidate, TENIS-ZD1. The candidate has a weighted z{sub phot} of 7.8, and its colors and luminosity indicate a young (45M years old) starburst galaxy with a stellar mass of 3.2 Multiplication-Sign 10{sup 10} M{sub Sun }. The result matches with the observational luminosity function analysis and the semianalytic simulation result based on the Millennium Simulations, which may over predict the volume density for high-z massive galaxies. The existence of TENIS-ZD1, if confirmed spectroscopically to be at z > 7, therefore poses a challenge to current theoretical models for how so much mass can accumulate in a galaxy at such a high redshift.

  11. CHARACTERIZING ULTRAVIOLET AND INFRARED OBSERVATIONAL PROPERTIES FOR GALAXIES. I. INFLUENCES OF DUST ATTENUATION AND STELLAR POPULATION AGE

    SciTech Connect (OSTI)

    Mao Yewei; Kong Xu [Center for Astrophysics, University of Science and Technology of China, Hefei 230026 (China); Kennicutt, Robert C. Jr. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Hao, Cai-Na [Tianjin Astrophysics Center, Tianjin Normal University, Tianjin 300387 (China); Zhou Xu, E-mail: owen81@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2012-09-20

    The correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color (or ultraviolet spectral slope), i.e., the IRX-UV (or IRX-{beta}) relation, found in studies of starburst galaxies is a prevalent recipe for correcting extragalactic dust attenuation. Considerable dispersion in this relation discovered for normal galaxies, however, complicates its usability. In order to investigate the cause of the dispersion and to have a better understanding of the nature of the IRX-UV relation, in this paper, we select five nearby spiral galaxies, and perform spatially resolved studies on each of the galaxies, with a combination of ultraviolet and infrared imaging data. We measure all positions within each galaxy and divide the extracted regions into young and evolved stellar populations. By means of this approach, we attempt to discover separate effects of dust attenuation and stellar population age on the IRX-UV relation for individual galaxies. In this work, in addition to dust attenuation, stellar population age is interpreted to be another parameter in the IRX-UV function, and the diversity of star formation histories is suggested to disperse the age effects. At the same time, strong evidence shows the need for more parameters in the interpretation of observational data, such as variations in attenuation/extinction law. Fractional contributions of different components to the integrated luminosities of the galaxies suggest that the integrated measurements of these galaxies, which comprise different populations, would weaken the effect of the age parameter on IRX-UV diagrams. The dependence of the IRX-UV relation on luminosity and radial distance in galaxies presents weak trends, which offers an implication of selective effects. The two-dimensional maps of the UV color and the infrared-to-ultraviolet ratio are displayed and show a disparity in the spatial distributions between the two galaxy parameters, which offers a spatial interpretation of the scatter

  12. Image compression technique

    DOE Patents [OSTI]

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.

  13. Image compression technique

    DOE Patents [OSTI]

    Fu, C.Y.; Petrich, L.I.

    1997-03-25

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.

  14. Apparatus and method for transient thermal infrared spectrometry of flowable enclosed materials

    DOE Patents [OSTI]

    McClelland, John F.; Jones, Roger W.

    1993-03-02

    A method and apparatus for enabling analysis of a flowable material enclosed in a transport system having an infrared transparent wall portion. A temperature differential is transiently generated between a thin surface layer portion of the material and a lower or deeper portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material, and the altered thermal infrared emission spectrum is detected through the infrared transparent portion of the transport system while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower or deeper portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation. By such detection, the detected altered thermal infrared emission spectrum is indicative of characteristics relating to molecular composition of the material.

  15. IONIZED GAS KINEMATICS AT HIGH RESOLUTION. II. DISCOVERY OF A DOUBLE INFRARED CLUSTER IN II Zw 40

    SciTech Connect (OSTI)

    Beck, Sara; Lahad, Ohr; Turner, Jean; Lacy, John; Greathouse, Thomas

    2013-04-10

    The nearby dwarf galaxy II Zw 40 hosts an intense starburst. At the center of the starburst is a bright compact radio and infrared source, thought to be a giant dense H II region containing Almost-Equal-To 14, 000 O stars. Radio continuum images suggest that the compact source is actually a collection of several smaller emission regions. We accordingly use the kinematics of the ionized gas to probe the structure of the radio-infrared emission region. With TEXES on the NASA-IRTF we measured the 10.5 {mu}m [S IV] emission line with effective spectral resolutions, including thermal broadening, of {approx}25 and {approx}3 km s{sup -1} and spatial resolution {approx}1''. The line profile shows two distinct, spatially coextensive, emission features. The stronger feature is at galactic velocity and has FWHM 47 km s{sup -1}. The second feature is {approx}44 km s{sup -1} redward of the first and has FWHM 32 km s{sup -1}. We argue that these are two giant embedded clusters, and estimate their masses to be Almost-Equal-To 3 Multiplication-Sign 10{sup 5} M{sub Sun} and Almost-Equal-To 1.5 Multiplication-Sign 10{sup 5} M{sub Sun }. The velocity shift is unexpectedly large for such a small spatial offset. We suggest that it may arise in a previously undetected kinematic feature remaining from the violent merger that formed the galaxy.

  16. The potential for detecting gamma-ray burst afterglows from population III stars with the next generation of infrared telescopes

    SciTech Connect (OSTI)

    Macpherson, D. [ICRAR, University of Western Australia, Crawley, WA 6009 (Australia); Coward, D. M. [School of Physics, University of Western Australia, Crawley, WA 6009 (Australia); Zadnik, M. G., E-mail: damien.macpherson@icrar.org [Department of Imaging and Applied Physics, Curtin University, Perth, WA 6845 (Australia)

    2013-12-10

    We investigate the detectability of a proposed population of gamma-ray bursts (GRBs) from the collapse of Population III (Pop III) stars. The James Webb Space Telescope (JWST) and Space Infrared Telescope for Cosmology and Astrophysics (SPICA) will be able to observe the late time infrared afterglows. We have developed a new method to calculate their detectability, which takes into account the fundamental initial mass function and formation rates of Pop III stars, from which we find the temporal variability of the afterglows and ultimately the length of time JWST and SPICA can detect them. In the range of plausible Pop III GRB parameters, the afterglows are always detectable by these instruments during the isotropic emission, for a minimum of 55 days and a maximum of 3.7 yr. The average number of detectable afterglows will be 2.96 10{sup 5} per SPICA field of view (FOV) and 2.78 10{sup 6} per JWST FOV. These are lower limits, using a pessimistic estimate of Pop III star formation. An optimal observing strategy with SPICA could identify a candidate orphan afterglow in ?1.3 yr, with a 90% probability of confirmation with further detailed observations. A beamed GRB will align with the FOV of the planned GRB detector Energetic X-ray Imaging Survey Telescope once every 9 yr. Pop III GRBs will be more easily detected by their isotropic emissions (i.e., orphan afterglows) rather than by their prompt emissions.

  17. Radiation imaging system

    DOE Patents [OSTI]

    Immel, David M.; Bobbit, III, John T.; Plummer, Jean R.; Folsom, Matthew D.; Serrato, Michael G.

    2016-03-22

    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  18. Video Toroid Cavity Imager

    DOE Patents [OSTI]

    Gerald, II, Rex E.; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  19. imageMCR

    Energy Science and Technology Software Center (OSTI)

    2011-09-27

    imageMCR is a user friendly software package that consists of a variety inputs to preprocess and analyze the hyperspectral image data using multivariate algorithms such as Multivariate Curve Resolution (MCR), Principle Component Analysis (PCA), Classical Least Squares (CLS) and Parallel Factor Analysis (PARAFAC). MCR provides a relative quantitative analysis of the hyperspectral image data without the need for standards, and it discovers all the emitting species (spectral pure components) present in an image, even thosemore » in which there is no a priori information. Once the spectral components are discovered, these spectral components can be used for future MCR analyses or used with CLS algorithms to quickly extract concentration image maps for each component within spectral image data sets.« less

  20. Imaging arrangement and microscope

    DOE Patents [OSTI]

    Pertsinidis, Alexandros; Chu, Steven

    2015-12-15

    An embodiment of the present invention is an imaging arrangement that includes imaging optics, a fiducial light source, and a control system. In operation, the imaging optics separate light into first and second tight by wavelength and project the first and second light onto first and second areas within first and second detector regions, respectively. The imaging optics separate fiducial light from the fiducial light source into first and second fiducial light and project the first and second fiducial light onto third and fourth areas within the first and second detector regions, respectively. The control system adjusts alignment of the imaging optics so that the first and second fiducial light projected onto the first and second detector regions maintain relatively constant positions within the first and second detector regions, respectively. Another embodiment of the present invention is a microscope that includes the imaging arrangement.

  1. The galaxy cluster mid-infrared luminosity function at 1.3 < z < 3.2

    SciTech Connect (OSTI)

    Wylezalek, Dominika; Vernet, Joël; De Breuck, Carlos; Stern, Daniel; Brodwin, Mark; Galametz, Audrey; Gonzalez, Anthony H.; Jarvis, Matt; Hatch, Nina; Seymour, Nick; Stanford, Spencer A.

    2014-05-01

    We present 4.5 μm luminosity functions for galaxies identified in 178 candidate galaxy clusters at 1.3 < z < 3.2. The clusters were identified as Spitzer/Infrared Array Camera (IRAC) color-selected overdensities in the Clusters Around Radio-Loud AGN project, which imaged 420 powerful radio-loud active galactic nuclei (RLAGNs) at z > 1.3. The luminosity functions are derived for different redshift and richness bins, and the IRAC imaging reaches depths of m* + 2, allowing us to measure the faint end slopes of the luminosity functions. We find that α = –1 describes the luminosity function very well in all redshift bins and does not evolve significantly. This provides evidence that the rate at which the low mass galaxy population grows through star formation gets quenched and is replenished by in-falling field galaxies does not have a major net effect on the shape of the luminosity function. Our measurements for m* are consistent with passive evolution models and high formation redshifts (z{sub f} ∼ 3). We find a slight trend toward fainter m* for the richest clusters, implying that the most massive clusters in our sample could contain older stellar populations, yet another example of cosmic downsizing. Modeling shows that a contribution of a star-forming population of up to 40% cannot be ruled out. This value, found from our targeted survey, is significantly lower than the values found for slightly lower redshift, z ∼ 1, clusters found in wide-field surveys. The results are consistent with cosmic downsizing, as the clusters studied here were all found in the vicinity of RLAGNs—which have proven to be preferentially located in massive dark matter halos in the richest environments at high redshift—and they may therefore be older and more evolved systems than the general protocluster population.

  2. Cadmium zinc telluride based infrared interferometry for X-ray detection

    SciTech Connect (OSTI)

    Lohstroh, A. Della Rocca, I.; Parsons, S.; Langley, A.; Shenton-Taylor, C.; Blackie, D.

    2015-02-09

    Cadmium Zinc Telluride (CZT) is a wide band gap semiconductor for room temperature radiation detection. The electro-optic Pockels effect of the material has been exploited in the past to study electric field non-uniformities and their consequence on conventional detector signals in CZT, by imaging the intensity distribution of infrared (IR) light transmitted through a device placed between crossed polarizers. Recently, quantitative monitoring of extremely high intensity neutron pulses through the change of transmitted IR intensity was demonstrated, offering the advantage to place sensitive electronics outside the measured radiation field. In this work, we demonstrate that X-ray intensity can be deduced directly from measuring the change in phase of 1550 nm laser light transmitted through a 7 × 7 × 2 mm{sup 3} CZT based Pockels cell in a simple Mach Zehnder interferometer. X-rays produced by a 50 kVp Mo X-ray tube incident on the CZT cathode surface placed at 7 mm distance cause a linearly increasing phase shift above 0.3 mA tube current, with 1.58 ± 0.02 rad per mA for an applied bias of 500 V across the 2 mm thick device. Pockels images confirm that the sample properties are in agreement with the literature, exhibiting electric field enhancement near the cathode under irradiation, which may cause the non-linearity at low X-ray tube anode current settings. The laser used to probe the X-ray intensity causes itself some space charge, whose spatial distribution does not seem to be exclusively determined by the incident laser position, i.e., charge carrier generation location, with respect to the electrodes.

  3. Beam imaging sensor

    DOE Patents [OSTI]

    McAninch, Michael D; Root, Jeffrey J

    2015-03-31

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  4. ARM - Measurement - Hydrometeor image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    image ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor image Images of hydrometeors from which one can derive characteristics such as size and shape. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements,

  5. Beam imaging sensor

    DOE Patents [OSTI]

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  6. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    SciTech Connect (OSTI)

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.

  7. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advancedmore » understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.« less

  8. Microscopy imaging device with advanced imaging properties

    SciTech Connect (OSTI)

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2015-11-24

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  9. MID-INFRARED EXTINCTION AND ITS VARIATION WITH GALACTIC LONGITUDE

    SciTech Connect (OSTI)

    Gao Jian; Jiang, B. W.; Li Aigen E-mail: bjiang@bnu.edu.c

    2009-12-10

    Based on the data obtained from the Spitzer/Galactic Legacy Infrared Midplane Survey Extraordinaire (GLIPMSE) Legacy Program and the Two Micron All Sky Survey (2MASS) project, we derive the extinction in the four IRAC bands, [3.6], [4.5], [5.8], and [8.0] mum, relative to the 2MASS K{sub s} band (at 2.16 mum) for 131 GLIPMSE fields along the Galactic plane within |l| <= 65 deg., using red giants and red clump giants as tracers. As a whole, the mean extinction in the IRAC bands (normalized to the 2MASS K{sub s} band), A{sub [3.6]}/A{sub K{sub s}}approx0.63+-0.01, A{sub [4.5]}/A{sub K{sub s}}approx0.57+-0.03, A{sub [5.8]}/A{sub K{sub s}}approx0.49+-0.03, A{sub [8.0]}/A{sub K{sub s}}approx0.55+-0.03, exhibits little variation with wavelength (i.e., the extinction is somewhat flat or gray). This is consistent with previous studies and agrees with that predicted from the standard interstellar grain model for R{sub V} = 5.5 by Weingartner and Draine. As far as individual sightline is concerned, however, the wavelength dependence of the mid-infrared interstellar extinction A{sub l}ambda/A{sub K{sub s}} varies from one sightline to another, suggesting that there may not exist a 'universal' IR extinction law. We, for the first time, demonstrate the existence of systematic variations of extinction with Galactic longitude which appears to correlate with the locations of spiral arms as well as with the variation of the far-infrared luminosity of interstellar dust.

  10. Spectral calibration in the mid-infrared: Challenges and solutions

    SciTech Connect (OSTI)

    Sloan, G. C. [Cornell University, Center for Radiophysics and Space Research, Ithaca, NY 14853-6801 (United States); Herter, T. L.; Houck, J. R. [Cornell University, Astronomy Department, Ithaca, NY 14853-6801 (United States); Charmandaris, V. [Department of Physics and ITCP, University of Crete, GR-71003, Heraklion (Greece); Sheth, K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Burgdorf, M., E-mail: sloan@isc.astro.cornell.edu [HE Space Operations, Flughafenallee 24, D-28199 Bremen (Germany)

    2015-01-01

    We present spectra obtained with the Infrared Spectrograph on the Spitzer Space Telescope of 33 K giants and 20 A dwarfs to assess their suitability as spectrophotometric standard stars. The K giants confirm previous findings that the strength of the SiO absorption band at 8 ?m increases for both later optical spectral classes and redder (BV){sub 0} colors, but with considerable scatter. For K giants, the synthetic spectra underpredict the strengths of the molecular bands from SiO and OH. For these reasons, the assumed true spectra for K giants should be based on the assumption that molecular band strengths in the infrared can be predicted accurately from neither optical spectral class or color nor synthetric spectra. The OH bands in K giants grow stronger with cooler stellar temperatures, and they are stronger than predicted by synthetic spectra. As a group, A dwarfs are better behaved and more predictable than the K giants, but they are more likely to show red excesses from debris disks. No suitable A dwarfs were located in parts of the sky continuously observable from Spitzer, and with previous means of estimating the true spectra of K giants ruled out, it was necessary to use models of A dwarfs to calibrate spectra of K giants from observed spectral ratios of the two groups and then use the calibrated K giants as standards for the full database of infrared spectra from Spitzer. We also describe a lingering artifact that affects the spectra of faint blue sources at 24 ?m.

  11. Graphics and Image Standards

    Broader source: Energy.gov [DOE]

    For EERE websites and applications, follow these requirements and best practices for designing graphics and developing images. This includes making them Section 508-compliant.

  12. User Science Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a Field Reverse Configuration (FRC) magnetic field. Magnetic separatrix denoted by green surface. Spheres are colored by azimuthal velocity. Image courtesy of Charlson Kim,...

  13. Ferroelectric optical image comparator

    DOE Patents [OSTI]

    Butler, Michael A.; Land, Cecil E.; Martin, Stephen J.; Pfeifer, Kent B.

    1993-01-01

    A ferroelectric optical image comparator has a lead lanthanum zirconate titanate thin-film device which is constructed with a semi-transparent or transparent conductive first electrode on one side of the thin film, a conductive metal second electrode on the other side of the thin film, and the second electrode is in contact with a nonconducting substrate. A photoinduced current in the device represents the dot product between a stored image and an image projected onto the first electrode. One-dimensional autocorrelations are performed by measuring this current while displacing the projected image.

  14. Environmental Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Create a Sustainable Future Planning for Years to Come Living a Sustainable Future Commitment to Public Involvement Multimedia Google Earth Tours Images Videos Advanced Simulation ...

  15. Wake Imaging Measurement System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Measurement System - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear ...

  16. Quantitative luminescence imaging system

    DOE Patents [OSTI]

    Erwin, D.N.; Kiel, J.L.; Batishko, C.R.; Stahl, K.A.

    1990-08-14

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopic imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber. 22 figs.

  17. Quantitative luminescence imaging system

    DOE Patents [OSTI]

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  18. Ferroelectric optical image comparator

    DOE Patents [OSTI]

    Butler, M.A.; Land, C.E.; Martin, S.J.; Pfeifer, K.B.

    1993-11-30

    A ferroelectric optical image comparator has a lead lanthanum zirconate titanate thin-film device which is constructed with a semi-transparent or transparent conductive first electrode on one side of the thin film, a conductive metal second electrode on the other side of the thin film, and the second electrode is in contact with a nonconducting substrate. A photoinduced current in the device represents the dot product between a stored image and an image projected onto the first electrode. One-dimensional autocorrelations are performed by measuring this current while displacing the projected image. 7 figures.

  19. Fermilab | Press Room | Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    When using these images, please credit Fermilab. Return to Press Release Med Res | Hi Res According to the Standard Model of particles and forces, the Higgs mechanism gives...

  20. Fermilab | Press Room | Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using these images, please credit them as specified. Return to Press Release Med Res | Hi Res The Standard Model describes the interactions of the fundamental particle of the...

  1. Edge-based correlation image registration for multispectral imaging

    DOE Patents [OSTI]

    Nandy, Prabal

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  2. Infrared spectra of small molecular ions trapped in solid neon

    SciTech Connect (OSTI)

    Jacox, Marilyn E.

    2015-01-22

    The infrared spectrum of a molecular ion provides a unique signature for that species, gives information on its structure, and is amenable to remote sensing. It also serves as a comparison standard for refining ab initio calculations. Experiments in this laboratory trap molecular ions in dilute solid solution in neon at 4.2 K in sufficient concentration for observation of their infrared spectra between 450 and 4000 cm{sup !1}. Discharge-excited neon atoms produce cations by photoionization and/or Penning ionization of the parent molecule. The resulting electrons are captured by other molecules, yielding anions which provide for overall charge neutrality of the deposit. Recent observations of ions produced from C{sub 2}H{sub 4} and BF{sub 3} will be discussed. Because of their relatively large possibility of having low-lying excited electronic states, small, symmetric molecular cations are especially vulnerable to breakdown of the Born-Oppenheimer approximation. Some phenomena which can result from this breakdown will be discussed. Ion-molecule reaction rates are sufficiently high that in some systems absorptions of dimer cations and anions are also observed. When H{sub 2} is introduced into the system, the initially-formed ion may react with it. Among the species resulting from such ion-molecule reactions that have recently been studied are O{sub 4}{sup +}, NH{sub 4}{sup +}, HOCO{sup +}, and HCO{sub 2}{sup !}.

  3. Near-infrared free carrier absorption in heavily doped silicon

    SciTech Connect (OSTI)

    Baker-Finch, Simeon C.; McIntosh, Keith R.; Yan, Di; Fong, Kean Chern; Kho, Teng C.

    2014-08-14

    Free carrier absorption in heavily doped silicon can have a significant impact on devices operating in the infrared. In the near infrared, the free carrier absorption process can compete with band to band absorption processes, thereby reducing the number of available photons to optoelectronic devices such as solar cells. In this work, we fabricate 18 heavily doped regions by phosphorus and boron diffusion into planar polished silicon wafers; the simple sample structure facilitates accurate and precise measurement of the free carrier absorptance. We measure and model reflectance and transmittance dispersion to arrive at a parameterisation for the free carrier absorption coefficient that applies in the wavelength range between 1000 and 1500 nm, and the range of dopant densities between ∼10{sup 18} and 3 × 10{sup 20} cm{sup −3}. Our measurements indicate that previously published parameterisations underestimate the free carrier absorptance in phosphorus diffusions. On the other hand, published parameterisations are generally consistent with our measurements and model for boron diffusions. Our new model is the first to be assigned uncertainty and is well-suited to routine device analysis.

  4. Tunable ultrasonic phononic crystal controlled by infrared radiation

    SciTech Connect (OSTI)

    Walker, Ezekiel; Neogi, Arup, E-mail: zhmwang@gmail.com, E-mail: arup@unt.edu [Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054 (China); University of North Texas, Department of Physics, Denton, Texas 76201 (United States); Reyes, Delfino [University of North Texas, Department of Physics, Denton, Texas 76201 (United States); Universidad Autnoma del Estado de Mxico, Toluca 50120 (Mexico); Rojas, Miguel Mayorga [Universidad Autnoma del Estado de Mxico, Toluca 50120 (Mexico); Krokhin, Arkadii [University of North Texas, Department of Physics, Denton, Texas 76201 (United States); Wang, Zhiming, E-mail: zhmwang@gmail.com, E-mail: arup@unt.edu [Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2014-10-06

    A tunable phononic crystal based ultrasonic filter was designed by stimulating the phase of the polymeric material embedded in a periodic structure using infrared radiation. The acoustic filter can be tuned remotely using thermal stimulation induced by the infrared radiation. The filter is composed of steel cylinder scatterers arranged periodically in a background of bulk poly (N-isopropylacrylamide) polymer hydrogel. The lattice structure creates forbidden bands for certain sets of mechanical waves that cause it to behave as an ultrasonic filter. Since the bandstructure is determined by not only the arrangement of the scatterers but also the physical properties of the materials composing the scatterers and background, modulating either the arrangement or physical properties will alter the effect of the crystal on propagating mechanical waves. Here, the physical properties of the filter are varied by inducing changes in the polymer hydrogel using an electromagnetic thermal stimulus. With particular focus on the k{sub 00}-wave, the transmission of ultrasonic wave changes by as much as 20 dBm, and band widths by 22% for select bands.

  5. THE INFRARED TELESCOPE FACILITY (IRTF) SPECTRAL LIBRARY: COOL STARS

    SciTech Connect (OSTI)

    Rayner, John T.; Cushing, Michael C.; Vacca, William D. E-mail: michael.cushing@gmail.com

    2009-12-01

    We present a 0.8-5 {mu}m spectral library of 210 cool stars observed at a resolving power of R {identical_to} {lambda}/{delta}{lambda} {approx} 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  6. Fluorescent image tracking velocimeter

    DOE Patents [OSTI]

    Shaffer, Franklin D.

    1994-01-01

    A multiple-exposure fluorescent image tracking velocimeter (FITV) detects and measures the motion (trajectory, direction and velocity) of small particles close to light scattering surfaces. The small particles may follow the motion of a carrier medium such as a liquid, gas or multi-phase mixture, allowing the motion of the carrier medium to be observed, measured and recorded. The main components of the FITV include: (1) fluorescent particles; (2) a pulsed fluorescent excitation laser source; (3) an imaging camera; and (4) an image analyzer. FITV uses fluorescing particles excited by visible laser light to enhance particle image detectability near light scattering surfaces. The excitation laser light is filtered out before reaching the imaging camera allowing the fluoresced wavelengths emitted by the particles to be detected and recorded by the camera. FITV employs multiple exposures of a single camera image by pulsing the excitation laser light for producing a series of images of each particle along its trajectory. The time-lapsed image may be used to determine trajectory and velocity and the exposures may be coded to derive directional information.

  7. Cathodoluminescence Spectrum Imaging Software

    Energy Science and Technology Software Center (OSTI)

    2011-04-07

    The software developed for spectrum imaging is applied to the analysis of the spectrum series generated by our cathodoluminescence instrumentation. This software provides advanced processing capabilities s such: reconstruction of photon intensity (resolved in energy) and photon energy maps, extraction of the spectrum from selected areas, quantitative imaging mode, pixel-to-pixel correlation spectrum line scans, ASCII, output, filling routines, drift correction, etc.

  8. Medical imaging systems

    DOE Patents [OSTI]

    Frangioni, John V.

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  9. Heart imaging method

    DOE Patents [OSTI]

    Collins, H. Dale; Gribble, R. Parks; Busse, Lawrence J.

    1991-01-01

    A method for providing an image of the human heart's electrical system derives time-of-flight data from an array of EKG electrodes and this data is transformed into phase information. The phase information, treated as a hologram, is reconstructed to provide an image in one or two dimensions of the electrical system of the functioning heart.

  10. Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Fish Lake Valley...

  11. Thermal And-Or Near Infrared At Socorro Mountain Area (Owens...

    Open Energy Info (EERE)

    And-Or Near Infrared Activity Date Usefulness not indicated DOE-funding Unknown Notes IR remote sensing has located elevated surface temperatures (<12 degrees C above...

  12. New Sandia Mirror Isn't Shiny: Instead It Reflects Infrared Light...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... New Sandia Mirror Isn't Shiny: Instead It Reflects Infrared Light Using a Metamaterial HomeCapabilities, Materials Science, News, News & Events, Research & CapabilitiesNew ...

  13. Thermal And-Or Near Infrared At Railroad Valley Area (Laney,...

    Open Energy Info (EERE)

    phenomena. The second objective relates to testing satellite thermal infrared (TIR) data for locating thermal anomalies that may be related to blind systems. A third...

  14. Thermal And-Or Near Infrared At Coso Geothermal Area (2007) ...

    Open Energy Info (EERE)

    and field data is effective for determining geothermal areas Notes Thermal infrared (TIR) data from the spaceborne ASTER instrument was used to detect surface temperature...

  15. Thermal And-Or Near Infrared At Raft River Geothermal Area (1997...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1997) Exploration Activity Details Location Raft River...

  16. Thermal And-Or Near Infrared At Raft River Geothermal Area (1974...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Exploration Activity Details Location Raft River...

  17. Thermal And-Or Near Infrared At Silver Peak Area (DOE GTP) |...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Silver Peak Area (DOE GTP) Exploration Activity Details...

  18. Thermal And-Or Near Infrared At Akutan Fumaroles Area (Kienholz...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Akutan Fumaroles Area (Kienholz, Et Al., 2009) Exploration...

  19. Time encoded radiation imaging

    DOE Patents [OSTI]

    Marleau, Peter; Brubaker, Erik; Kiff, Scott

    2014-10-21

    The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

  20. Image forming apparatus

    DOE Patents [OSTI]

    Satoh, Hisao (Hachioji, JP); Haneda, Satoshi (Hachioji, JP); Ikeda, Tadayoshi (Hachioji, JP); Morita, Shizuo (Hachioji, JP); Fukuchi, Masakazu (Hachioji, JP)

    1996-01-01

    In an image forming apparatus having a detachable process cartridge in which an image carrier on which an electrostatic latent image is formed, and a developing unit which develops the electrostatic latent image so that a toner image can be formed, both integrally formed into one unit. There is provided a developer container including a discharge section which can be inserted into a supply opening of the developing unit, and a container in which a predetermined amount of developer is contained, wherein the developer container is provided to the toner supply opening of the developing unit and the developer is supplied into the developing unit housing when a toner stirring screw of the developing unit is rotated.

  1. Efficient Graffiti Image Retrieval

    SciTech Connect (OSTI)

    Yang, Chunlei; Wong, Pak C.; Ribarsky, William; Fan, Jianping

    2012-07-05

    Research of graffiti character recognition and retrieval, as a branch of traditional optical character recognition (OCR), has started to gain attention in recent years. We have investigated the special challenge of the graffiti image retrieval problem and propose a series of novel techniques to overcome the challenges. The proposed bounding box framework locates the character components in the graffiti images to construct meaningful character strings and conduct image-wise and semantic-wise retrieval on the strings rather than the entire image. Using real world data provided by the law enforcement community to the Pacific Northwest National Laboratory, we show that the proposed framework outperforms the traditional image retrieval framework with better retrieval results and improved computational efficiency.

  2. Confocal coded aperture imaging

    DOE Patents [OSTI]

    Tobin, Jr., Kenneth William (Harriman, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  3. Ultrafast transient grating radiation to optical image converter

    DOE Patents [OSTI]

    Stewart, Richard E; Vernon, Stephen P; Steel, Paul T; Lowry, Mark E

    2014-11-04

    A high sensitivity transient grating ultrafast radiation to optical image converter is based on a fixed transmission grating adjacent to a semiconductor substrate. X-rays or optical radiation passing through the fixed transmission grating is thereby modulated and produces a small periodic variation of refractive index or transient grating in the semiconductor through carrier induced refractive index shifts. An optical or infrared probe beam tuned just below the semiconductor band gap is reflected off a high reflectivity mirror on the semiconductor so that it double passes therethrough and interacts with the radiation induced phase grating therein. A small portion of the optical beam is diffracted out of the probe beam by the radiation induced transient grating to become the converted signal that is imaged onto a detector.

  4. THE DARKEST SHADOWS: DEEP MID-INFRARED EXTINCTION MAPPING OF A MASSIVE PROTOCLUSTER

    SciTech Connect (OSTI)

    Butler, Michael J.; Tan, Jonathan C.; Kainulainen, Jouni

    2014-02-20

    We use deep 8 μm Spitzer-IRAC imaging of massive Infrared Dark Cloud (IRDC) G028.37+00.07 to construct a mid-infrared (MIR) extinction map that probes mass surface densities up to Σ ∼ 1 g cm{sup –2} (A{sub V} ∼ 200 mag), amongst the highest values yet probed by extinction mapping. Merging with an NIR extinction map of the region creates a high dynamic range map that reveals structures down to A{sub V} ∼ 1 mag. We utilize the map to: (1) measure a cloud mass ∼7 × 10{sup 4} M {sub ☉} within a radius of ∼8 pc. {sup 13}CO kinematics indicate that the cloud is gravitationally bound. It thus has the potential to form one of the most massive young star clusters known in the Galaxy. (2) Characterize the structures of 16 massive cores within the IRDC, finding they can be fit by singular polytropic spheres with ρ∝r{sup −k{sub ρ}} and k {sub ρ} = 1.3 ± 0.3. They have Σ-bar ≃0.1--0.4 g cm{sup −2}—relatively low values that, along with their measured cold temperatures, suggest that magnetic fields, rather than accretion-powered radiative heating, are important for controlling fragmentation of these cores. (3) Determine the Σ (equivalently column density or A{sub V} ) probability distribution function (PDF) for a region that is nearly complete for A{sub V} > 3 mag. The PDF is well fit by a single log-normal with mean A-bar {sub V}≃9 mag, high compared to other known clouds. It does not exhibit a separate high-end power law tail, which has been claimed to indicate the importance of self-gravity. However, we suggest that the PDF does result from a self-similar, self-gravitating hierarchy of structures present over a wide range of scales in the cloud.

  5. Adaptive wiener image restoration kernel

    DOE Patents [OSTI]

    Yuan, Ding

    2007-06-05

    A method and device for restoration of electro-optical image data using an adaptive Wiener filter begins with constructing imaging system Optical Transfer Function, and the Fourier Transformations of the noise and the image. A spatial representation of the imaged object is restored by spatial convolution of the image using a Wiener restoration kernel.

  6. Rotary Vapor Compression Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Infrared image acquisition system Infrared fan image 13 Co-rotating Infrared Imaging System Flir Quark infrared camera Raspberry Pi 2 Battery Triggers and saves IR images Transmits ...

  7. Wide-angle point-to-point x-ray imaging with almost arbitrarily large angles of incidence

    SciTech Connect (OSTI)

    Bitter, M.; Hill, K. W.; Scott, S.; Feder, R.; Ko, Jinseok; Ince-Cushman, A.; Rice, J. E.

    2008-10-15

    The paper describes a new scheme for wide-angle point-to-point x-ray imaging with almost arbitrarily large angles of incidence by a matched pair of spherically bent crystals to eliminate the astigmatism, which is a well-known imaging error of spherical mirrors. In addition to x rays, the scheme should be applicable to a very broad spectrum of the electromagnetic radiation, including microwaves, infrared and visible light, as well as UV and extreme UV radiation, if the crystals are replaced with appropriate spherical reflectors. The scheme may also be applicable to the imaging with ultrasound.

  8. Polarization transfer NMR imaging

    DOE Patents [OSTI]

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  9. Advanced Imaging Algorithms for Radiation Imaging Systems

    SciTech Connect (OSTI)

    Marleau, Peter

    2015-10-01

    The intent of the proposed work, in collaboration with University of Michigan, is to develop the algorithms that will bring the analysis from qualitative images to quantitative attributes of objects containing SNM. The first step to achieving this is to develop an indepth understanding of the intrinsic errors associated with the deconvolution and MLEM algorithms. A significant new effort will be undertaken to relate the image data to a posited three-dimensional model of geometric primitives that can be adjusted to get the best fit. In this way, parameters of the model such as sizes, shapes, and masses can be extracted for both radioactive and non-radioactive materials. This model-based algorithm will need the integrated response of a hypothesized configuration of material to be calculated many times. As such, both the MLEM and the model-based algorithm require significant increases in calculation speed in order to converge to solutions in practical amounts of time.

  10. Sparse Image Format

    Energy Science and Technology Software Center (OSTI)

    2007-04-12

    The Sparse Image Format (SIF) is a file format for storing spare raster images. It works by breaking an image down into tiles. Space is savid by only storing non-uniform tiles, i.e. tiles with at least two different pixel values. If a tile is completely uniform, its common pixel value is stored instead of the complete tile raster. The software is a library in the C language used for manipulating files in SIF format. Itmore » supports large files (> 2GB) and is designed to build in Windows and Linux environments.« less

  11. Nuclear medicine imaging system

    DOE Patents [OSTI]

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  12. Lanczos Image Resampling Benchmark

    Energy Science and Technology Software Center (OSTI)

    2007-09-30

    This software abstracts a simple computational kernel from SWarp, an astrometric image resampling code. The input is a grayscale PGM image file (8-bit or 16-bit integer) and the output is a higher-resolution grayscale image file (8-bit or 16-bit integer, or 32-bit floating point). The user selects a scaling factor to be applied and a convolution kernel type to be used during resampling (using 1, 16, 36, 64 input pixels to generate each output pixel). Themore » resampling is performed using the OpenGL API and can run on a PC with GPU (graphics processing unit) hardware.« less

  13. Scanning computed confocal imager

    DOE Patents [OSTI]

    George, John S. (Los Alamos, NM)

    2000-03-14

    There is provided a confocal imager comprising a light source emitting a light, with a light modulator in optical communication with the light source for varying the spatial and temporal pattern of the light. A beam splitter receives the scanned light and direct the scanned light onto a target and pass light reflected from the target to a video capturing device for receiving the reflected light and transferring a digital image of the reflected light to a computer for creating a virtual aperture and outputting the digital image. In a transmissive mode of operation the invention omits the beam splitter means and captures light passed through the target.

  14. DETECTABILITY OF EXOPLANET PERIASTRON PASSAGE IN THE INFRARED

    SciTech Connect (OSTI)

    Kane, Stephen R.; Gelino, Dawn M.

    2011-11-01

    Characterization of exoplanets has matured in recent years, particularly through studies of exoplanetary atmospheres of transiting planets at infrared wavelengths. The primary source for such observations has been the Spitzer Space Telescope but these studies are anticipated to continue with the James Webb Space Telescope. A relatively unexplored region of exoplanet parameter space is the thermal detection of long-period eccentric planets during periastron passage. Here we describe the thermal properties and albedos of long-period giant planets along with the eccentricities of those orbits which allow them to remain within the habitable zone. We further apply these results to the known exoplanets by calculating temperatures and flux ratios for the IRAC passbands occupied by warm Spitzer, considering both low and high thermal redistribution efficiencies from the perspective of an observer. We conclude with recommendations on which targets are best suited for follow-up observations.

  15. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy

    SciTech Connect (OSTI)

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens E-mail: bredenbeck@biophysik.uni-frankfurt.de

    2015-08-15

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.

  16. Methods and apparatus for mid-infrared sensing

    DOE Patents [OSTI]

    Lin, Pao Tai; Cai, Yan; Agarwal, Anuradha Murthy; Kimerling, Lionel C.

    2015-06-02

    A chip-scale, air-clad semiconductor pedestal waveguide can be used as a mid-infrared (mid-IR) sensor capable of in situ monitoring of organic solvents and other analytes. The sensor uses evanescent coupling from a silicon or germanium waveguide, which is highly transparent in the mid-IR portion of the electromagnetic spectrum, to probe the absorption spectrum of fluid surrounding the waveguide. Launching a mid-IR beam into the waveguide exposed to a particular analyte causes attenuation of the evanescent wave's spectral components due to absorption by carbon, oxygen, hydrogen, and/or nitrogen bonds in the surrounding fluid. Detecting these changes at the waveguide's output provides an indication of the type and concentration of one or more compounds in the surrounding fluid. If desired, the sensor may be integrated onto a silicon substrate with a mid-IR light source and a mid-IR detector to form a chip-based spectrometer.

  17. Optimization of blazed quantum-grid infrared photodetectors

    SciTech Connect (OSTI)

    Rokhinson, L. P.; Chen, C. J.; Choi, K. K.; Tsui, D. C.; Vawter, G. A.; Yan, L.; Jiang, M.; Tamir, T.

    1999-12-06

    In a quantum-grid infrared photodetector (QGIP), the active multiple quantum well material is patterned into a grid structure. The purposes of the grid are, on the one hand, to create additional lateral electron confinement and, on the other, to convert part of the incident light into parallel propagation. With these two unique functions, a QGIP allows intersubband transition to occur in all directions. In this work, we focused on improving the effectiveness of a QGIP in redirecting the propagation of light using a blazed structure. The optimization of the grid parameters in terms of the blaze angle and the periodicity was performed by numerical simulation using the modal transmission-line theory and verified by experiment. With a blazed structure, the sensitivity of a QGIP can be improved by a factor of 1.8 compared with a regular QGIP with rectangular profiles. (c) 1999 American Institute of Physics.

  18. Infrared singularities of scattering amplitudes in perturbative QCD

    SciTech Connect (OSTI)

    Becher, Thomas; Neubert, Matthias

    2013-11-01

    An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficients of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.

  19. Optical properties of infrared FELs from the FELI Facility II

    SciTech Connect (OSTI)

    Saeki, K.; Okuma, S.; Oshita, E.

    1995-12-31

    The FELI Facility II has succeeded in infrared FEL oscillation at 1.91 {mu} m using a 68-MeV, 40-A electron beam from the FELI S-band linac in February 27, 1995. The FELI Facility II is composed of a 3-m vertical type undulator ({lambda}u=3.8cm, N=78, Km a x=1.4, gap length {ge}20mm) and a 6.72-m optical cavity. It can cover the wavelength range of 1-5{mu}m. The FELs can be delivered from the optical cavity to the diagnostics room through a 40-m evacuated optical pipeline. Wavelength and cavity length dependences of optical properties such as peak power, average power, spectrum width, FEL macropulse, FEL transverse profile are reported.

  20. Strain-compensated infrared photodetector and photodetector array

    DOE Patents [OSTI]

    Kim, Jin K; Hawkins, Samuel D; Klem, John F; Cich, Michael J

    2013-05-28

    A photodetector is disclosed for the detection of infrared light with a long cutoff wavelength in the range of about 4.5-10 microns. The photodetector, which can be formed on a semiconductor substrate as an nBn device, has a light absorbing region which includes InAsSb light-absorbing layers and tensile-strained layers interspersed between the InAsSb light-absorbing layers. The tensile-strained layers can be formed from GaAs, InAs, InGaAs or a combination of these III-V compound semiconductor materials. A barrier layer in the photodetector can be formed from AlAsSb or AlGaAsSb; and a contact layer in the photodetector can be formed from InAs, GaSb or InAsSb. The photodetector is useful as an individual device, or to form a focal plane array.

  1. Scattering assisted injection based injectorless mid infrared quantum cascade laser

    SciTech Connect (OSTI)

    Singh, Siddharth Kamoua, Ridha

    2014-06-07

    An injectorless five-well mid infrared quantum cascade laser is analyzed which relies on phonon scattering injection in contrast to resonant tunneling injection, which has been previously used for injectorless designs. A Monte Carlo based self-consistent electron and photon transport simulator is used to analyze the performance of the analyzed design and compare it to existing injectorless designs. The simulation results show that the analyzed design could greatly enhance the optical gain and the characteristic temperatures of injectorless quantum cascade lasers (QCLs) which have typically been hindered by low characteristic temperatures and significant temperature related performance degradation. Simulations of the analyzed device predict threshold current densities of 0.85?kA/cm{sup 2} and 1.95?kA/cm{sup 2} at 77?K and 300?K, respectively, which are comparable to the threshold current densities of conventional injector based QCLs.

  2. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals

    SciTech Connect (OSTI)

    Curl, Robert F; Glass, Graham

    2004-11-01

    This research was directed at the detection, monitoring, and study of the chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. Work on the reaction of OH with acetaldehyde has been completed and published and work on the reaction of O({sup 1}D) with CH{sub 4} has been completed and submitted for publication. In the course of our investigation of branching ratios of the reactions of O({sup 1}D) with acetaldehyde and methane, we discovered that hot atom chemistry effects are not negligible at the gas pressures (13 Torr) initially used. Branching ratios of the reaction of O({sup 1}D) with CH{sub 4} have been measured at a tenfold higher He flow and fivefold higher pressure.

  3. Active Control of Nitride Plasmonic Dispersion in the Far Infrared.

    SciTech Connect (OSTI)

    Shaner, Eric A.; Dyer, Gregory Conrad; Seng, William Francis; Bethke, Donald Thomas; Grine, Albert Dario,; Baca, Albert G.; Allerman, Andrew A.

    2014-11-01

    We investigate plasmonic structures in nitride-based materials for far-infrared (IR) applications. The two dimensional electron gas (2DEG) in the GaN/AlGaN material system, much like metal- dielectric structures, is a patternable plasmonic medium. However, it also permits for direct tunability via an applied voltage. While there have been proof-of-principle demonstrations of plasma excitations in nitride 2DEGs, exploration of the potential of this material system has thus far been limited. We recently demonstrated coherent phenomena such as the formation of plasmonic crystals, strong coupling of tunable crystal defects to a plasmonic crystal, and electromagnetically induced transparency in GaAs/AlGaAs 2DEGs at sub-THz frequencies. In this project, we explore whether these effects can be realized in nitride 2DEG materials above 1 THz and at temperatures exceeding 77 K.

  4. Three-dimensional infrared metamaterial with asymmetric transmission

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kenanakis, George; Xomalis, Aggelos; Selimis, Alexandros; Vamvakaki, Maria; Farsari, Maria; Kafesaki, Maria; Soukoulis, Costas M.; Economou, Eleftherios N.

    2015-01-14

    A novel three-dimensional (3D) metallic metamaterial structure with asymmetric transmission for linear polarization is demonstrated in the infrared spectral region. The structure was fabricated by direct laser writing and selective electroless silver coating, a straightforward, novel technique producing mechanically and chemically stable 3D photonic structures. The structure unit cell is composed of a pair of conductively coupled magnetic resonators, and the asymmetric transmission response results from interplay of electric and magnetic responses; this equips the structure with almost total opaqueness along one propagation direction versus satisfying transparency along the opposite one. It also offers easily adjustable impedance, 90° one-way puremore » optical activity and backward propagation possibility, resulting thus in unique capabilities in polarization control and isolation applications. We show also that scaling down the structure can make it capable of exhibiting its asymmetric transmission and its polarization capabilities in the optical region.« less

  5. Three-dimensional infrared metamaterial with asymmetric transmission

    SciTech Connect (OSTI)

    Kenanakis, George; Xomalis, Aggelos; Selimis, Alexandros; Vamvakaki, Maria; Farsari, Maria; Kafesaki, Maria; Soukoulis, Costas M.; Economou, Eleftherios N.

    2015-01-14

    A novel three-dimensional (3D) metallic metamaterial structure with asymmetric transmission for linear polarization is demonstrated in the infrared spectral region. The structure was fabricated by direct laser writing and selective electroless silver coating, a straightforward, novel technique producing mechanically and chemically stable 3D photonic structures. The structure unit cell is composed of a pair of conductively coupled magnetic resonators, and the asymmetric transmission response results from interplay of electric and magnetic responses; this equips the structure with almost total opaqueness along one propagation direction versus satisfying transparency along the opposite one. It also offers easily adjustable impedance, 90° one-way pure optical activity and backward propagation possibility, resulting thus in unique capabilities in polarization control and isolation applications. We show also that scaling down the structure can make it capable of exhibiting its asymmetric transmission and its polarization capabilities in the optical region.

  6. Smart Infrared Inspection System Field Operational Test Final Report

    SciTech Connect (OSTI)

    Siekmann, Adam; Capps, Gary J; Franzese, Oscar; Lascurain, Mary Beth

    2011-06-01

    The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles passing through the SIRIS system are in need of further inspection by measuring the thermal data from the wheel components. As a vehicle enters the system, infrared cameras on the road measure temperatures of the brakes, tires, and wheel bearings on both wheel ends of commercial motor vehicles (CMVs) in motion. This thermal data is then presented to enforcement personal inside of the inspection station on a user friendly interface. Vehicles that are suspected to have a violation are automatically alerted to the enforcement staff. The main goal of the SIRIS field operational test (FOT) was to collect data to evaluate the performance of the prototype system and determine the viability of such a system being used for commercial motor vehicle enforcement. From March 2010 to September 2010, ORNL facilitated the SIRIS FOT at the Greene County Inspection Station (IS) in Greeneville, Tennessee. During the course of the FOT, 413 CMVs were given a North American Standard (NAS) Level-1 inspection. Of those 413 CMVs, 384 were subjected to a SIRIS screening. A total of 36 (9.38%) of the vehicles were flagged by SIRIS as having one or more thermal issues; with brakes issues making up 33 (91.67%) of those. Of the 36 vehicles flagged as having thermal issues, 31 (86.11%) were found to have a violation and 30 (83.33%) of those vehicles were placed out-of-service (OOS). Overall the enforcement personnel who have used SIRIS for screening purposes have had positive feedback on the potential of SIRIS. With improvements in detection algorithms and stability, the system will be beneficial to the CMV enforcement community and increase overall trooper productivity by accurately identifying a higher percentage of CMVs to be placed OOS with minimal error. No future evaluation of SIRIS has been deemed necessary and specifications for a production system will soon be drafted.

  7. THE MAGNETIC FIELD IN TAURUS PROBED BY INFRARED POLARIZATION

    SciTech Connect (OSTI)

    Chapman, Nicholas L.; Goldsmith, Paul F.; Pineda, Jorge L.; Li Di; Clemens, D. P.; Krco, Marko

    2011-11-01

    We present maps of the plane-of-sky magnetic field within two regions of the Taurus molecular cloud: one in the dense core L1495/B213 filament and the other in a diffuse region to the west. The field is measured from the polarization of background starlight seen through the cloud. In total, we measured 287 high-quality near-infrared polarization vectors in these regions. In L1495/B213, the percent polarization increases with column density up to A{sub V} {approx} 9 mag, the limits of our data. The radiative torques model for grain alignment can explain this behavior, but models that invoke turbulence are inconsistent with the data. We also combine our data with published optical and near-infrared polarization measurements in Taurus. Using this large sample, we estimate the strength of the plane-of-sky component of the magnetic field in nine subregions. This estimation is done with two different techniques that use the observed dispersion in polarization angles. Our values range from 5 to 82 {mu}G and tend to be higher in denser regions. In all subregions, the critical index of the mass-to-magnetic flux ratio is sub-unity, implying that Taurus is magnetically supported on large scales ({approx}2 pc). Within the region observed, the B213 filament takes a sharp turn to the north and the direction of the magnetic field also takes a sharp turn, switching from being perpendicular to the filament to becoming parallel. This behavior can be understood if we are observing the rim of a bubble. We argue that it has resulted from a supernova remnant associated with a recently discovered nearby gamma-ray pulsar.

  8. Ultrafast infrared studies of complex ligand rearrangements in solution

    SciTech Connect (OSTI)

    Payne, Christine K.

    2003-05-31

    The complete description of a chemical reaction in solution depends upon an understanding of the reactive molecule as well as its interactions with the surrounding solvent molecules. Using ultrafast infrared spectroscopy it is possible to observe both the solute-solvent interactions and the rearrangement steps which determine the overall course of a chemical reaction. The topics addressed in these studies focus on reaction mechanisms which require the rearrangement of complex ligands and the spectroscopic techniques necessary for the determination of these mechanisms. Ligand rearrangement is studied by considering two different reaction mechanisms for which the rearrangement of a complex ligand constitutes the most important step of the reaction. The first system concerns the rearrangement of a cyclopentadienyl ring as the response of an organometallic complex to a loss of electron density. This mechanism, commonly referred to as ''ring slip'', is frequently cited to explain reaction mechanisms. However, the ring slipped intermediate is too short-lived to be observed using conventional methods. Using a combination of ultrafast infrared spectroscopy and electronic structure calculations it has been shown that the intermediate exists, but does not form an eighteen-electron intermediate as suggested by traditional molecular orbital models. The second example examines the initial steps of alkyne polymerization. Group 6 (Cr, Mo, W) pentacarbonyl species are generated photolytically and used to catalyze the polymerization of unsaturated hydrocarbons through a series of coordination and rearrangement steps. Observing this reaction on the femto- to millisecond timescale indicates that the initial coordination of an alkyne solvent molecule to the metal center results in a stable intermediate that does not rearrange to form the polymer precursor. This suggests that polymerization requires the dissociation of additional carbonyl ligands before rearrangement can occur. Overall

  9. Photothermal imaging scanning microscopy

    DOE Patents [OSTI]

    Chinn, Diane; Stolz, Christopher J.; Wu, Zhouling; Huber, Robert; Weinzapfel, Carolyn

    2006-07-11

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  10. User Science Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    after onset of convection overlayed on the AMR grid. Image courtesy of George Pau and John Bell (LBNL). Repo mp111 marcdayhydrogenflame.jpg ASCR: Lab-scale Flame Simulation...

  11. Overview of Image Reconstruction

    SciTech Connect (OSTI)

    Marr, R. B.

    1980-04-01

    Image reconstruction (or computerized tomography, etc.) is any process whereby a function, f, on Rn is estimated from empirical data pertaining to its integrals, ∫f(x) dx, for some collection of hyperplanes of dimension k < n. The paper begins with background information on how image reconstruction problems have arisen in practice, and describes some of the application areas of past or current interest; these include radioastronomy, optics, radiology and nuclear medicine, electron microscopy, acoustical imaging, geophysical tomography, nondestructive testing, and NMR zeugmatography. Then the various reconstruction algorithms are discussed in five classes: summation, or simple back-projection; convolution, or filtered back-projection; Fourier and other functional transforms; orthogonal function series expansion; and iterative methods. Certain more technical mathematical aspects of image reconstruction are considered from the standpoint of uniqueness, consistency, and stability of solution. The paper concludes by presenting certain open problems. 73 references. (RWR)

  12. DEVELOPMENT OF NEW MID-INFRARED ULTRAFAST LASER SOURCES FOR COMPACT COHERENT X-RAY SOURCES

    SciTech Connect (OSTI)

    Sterling Backus

    2012-05-14

    In this project, we proposed to develop laser based mid-infrared lasers as a potentially robust and reliable source of ultrafast pulses in the mid-infrared region of the spectrum, and to apply this light source to generating bright, coherent, femtosecond-to-attosecond x-ray beams.

  13. X-ray Imaging Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microscopy (PEEM), angle resolved photoemission spectroscopy (ARPES), coherent diffraction imaging, x-ray microscopy, micro-tomography, holographic imaging, and x-ray...

  14. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging...

  15. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in...

  16. Shifter: User Defined Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shifter: User Defined Images Shifter: User Defined Images Shifter: Bringing Linux containers to HPC NERSC is working to increase flexibility and usability of its HPC systems by enabling Docker-like Linux container technology. Linux containers allow an application to be packaged with its entire software stack - including some portions of the base OS files - as well defining needed user environment variables and application "entry point.". Containers may provide an abstract way of

  17. Reflective optical imaging system

    DOE Patents [OSTI]

    Shafer, David R.

    2000-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.

  18. Turbine imaging technology assessment

    SciTech Connect (OSTI)

    Moursund, R. A.; Carlson, T. J.

    2004-12-01

    The goal of this project was to identify and evaluate imaging technologies for observing juvenile fish within a Kaplan turbine, and specifically that would enable scientists to determine mechanisms of fish injury within an operating turbine unit. This report documents the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. These observations were used to make modifications to dam structures and operations to improve conditions for fish passage while maintaining or improving hydropower production. The physical and hydraulic environment that fish experience as they pass through the hydroelectric plants were studied and the regions with the greatest potential for injury were defined. Biological response data were also studied to determine the probable types of injuries sustained in the turbine intake and what types of injuries are detectable with imaging technologies. The study grouped injury-causing mechanisms into two categories: fluid (pressure/cavitation, shear, turbulence) and mechanical (strike/collision, grinding/pinching, scraping). The physical constraints of the environment, together with the likely types of injuries to fish, provided the parameters needed for a rigorous imaging technology evaluation. Types of technology evaluated included both tracking and imaging systems using acoustic technologies (such as sonar and acoustic tags) and optic technologies (such as pulsed-laser videography, which is high-speed videography using a laser as the flash). Criteria for determining image data quality such as frame rate, target detectability, and resolution were used to quantify the minimum requirements of an imaging sensor.

  19. Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture

    DOE Patents [OSTI]

    Lassahn, Gordon D.; Lancaster, Gregory D.; Apel, William A.; Thompson, Vicki S.

    2013-01-08

    Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture are described. According to one embodiment, an image portion identification method includes accessing data regarding an image depicting a plurality of biological substrates corresponding to at least one biological sample and indicating presence of at least one biological indicator within the biological sample and, using processing circuitry, automatically identifying a portion of the image depicting one of the biological substrates but not others of the biological substrates.

  20. Imaging through obscurations for sluicing operations in the waste storage tanks

    SciTech Connect (OSTI)

    Peters, T.J.; McMakin, D.L.; Sheen, D.M.; Chieda, M.A.

    1994-08-01

    Waste remediators have identified that surveillance of waste remediation operations and periodic inspections of stored waste are required under very demanding and difficult viewing environments. In many cases, obscurants such as dust or water vapor are generated as part of the remediation activity. Methods are required for viewing or imaging beyond the normal visual spectrum. Work space images guide the movement of remediation equipment, creating a need for rapidly updated, near real-time imaging capability. In addition, there is a need for three-dimensional topographical data to determine the contours of the wastes, to plan retrieval campaigns, and to provide a three-dimensional map of a robot`s work space as basis for collision avoidance. Three basic imaging techniques were evaluated: optical, acoustic and radar. The optical imaging methods that were examined used cameras which operated in the visible region and near-infrared region and infrared cameras which operated in the 3--5 micron and 8--12 micron wavelength regions. Various passive and active lighting schemes were tested, as well as the use of filters to eliminate reflection in the visible region. Image enhancement software was used to extend the range where visual techniques could be used. In addition, the operation of a laser range finder, which operated at 0.835 microns, was tested when fog/water droplets were suspended in the air. The acoustic technique involved using commercial acoustic sensors, operating at approximately 50 kHz and 215 kHz, to determine the attenuation of the acoustic beam in a high-humidity environment. The radar imaging methods involved performing millimeter wave (94 GHz) attenuation measurement sin the various simulated sluicing environments and performing preliminary experimental imaging studies using a W-Band (75--110 GHz) linearly scanned transceiver in a laboratory environment. The results of the tests are discussed.

  1. THE NEAR-INFRARED BACKGROUND INTENSITY AND ANISOTROPIES DURING THE EPOCH OF REIONIZATION

    SciTech Connect (OSTI)

    Cooray, Asantha; Gong Yan; Smidt, Joseph; Santos, Mario G.

    2012-09-01

    A fraction of the extragalactic near-infrared (near-IR) background light involves redshifted photons from the ultraviolet (UV) emission from galaxies present during reionization at redshifts above 6. The absolute intensity and the anisotropies of the near-IR background provide an observational probe of the first-light galaxies and their spatial distribution. We estimate the extragalactic background light intensity during reionization by accounting for the stellar and nebular emission from first-light galaxies. We require the UV photon density from these galaxies to generate a reionization history that is consistent with the optical depth to electron scattering from cosmic microwave background measurements. We also require the bright-end luminosity function (LF) of galaxies in our models to reproduce the measured Lyman-dropout LFs at redshifts of 6-8. The absolute intensity is about 0.1-0.4 nW m{sup -2} sr{sup -1} at the peak of its spectrum at {approx}1.1 {mu}m. We also discuss the anisotropy power spectrum of the near-IR background using a halo model to describe the galaxy distribution. We compare our predictions for the anisotropy power spectrum to existing measurements from deep near-IR imaging data from Spitzer/IRAC, Hubble/NICMOS, and AKARI. The predicted rms fluctuations at tens of arcminute angular scales are roughly an order of magnitude smaller than the existing measurements. While strong arguments have been made that the measured fluctuations do not have an origin involving faint low-redshift galaxies, we find that measurements in the literature are also incompatible with galaxies present during the era of reionization. The measured near-IR background anisotropies remain unexplained with an unknown origin.

  2. THE MID-INFRARED EXTINCTION LAW IN THE OPHIUCHUS, PERSEUS, AND SERPENS MOLECULAR CLOUDS

    SciTech Connect (OSTI)

    Chapman, Nicholas L.; Mundy, Lee G.; Lai, Shih-Ping; Evans, Neal J. II

    2009-01-01

    We compute the mid-IR extinction law from 3.6 to 24 {mu}m in three molecular clouds-Ophiuchus, Perseus, and Serpens-by combining data from the 'Cores to Disks' Spitzer Legacy Science program with deep JHK{sub s} imaging. Using a new technique, we are able to calculate the line-of-sight (LOS) extinction law toward each background star in our fields. With these LOS measurements, we create, for the first time, maps of the {chi}{sup 2} deviation of the data from two extinction law models. Because our {chi}{sup 2} maps have the same spatial resolution as our extinction maps, we can directly observe the changing extinction law as a function of the total column density. In the Spitzer Infrared Array Camera (IRAC) bands, 3.6-8 {mu}m, we see evidence for grain growth. Below A{sub K{sub s}}= 0.5, our extinction law is well fitted by the Weingartner and Draine R{sub V} = 3.1 diffuse interstellar-medium dust model. As the extinction increases, our law gradually flattens, and for A{sub K{sub s}}{>=}1, the data are more consistent with the Weingartner and Draine R{sub V} = 5.5 model that uses larger maximum dust grain sizes. At 24 {mu}m, our extinction law is 2-4 times higher than the values predicted by theoretical dust models, but is more consistent with the observational results of Flaherty et al. Finally, from our {chi}{sup 2} maps we identify a region in Perseus where the IRAC extinction law is anomalously high considering its column density. A steeper near-IR extinction law than the one we have assumed may partially explain the IRAC extinction law in this region.

  3. Near-infrared structure of fast and slow-rotating disk galaxies

    SciTech Connect (OSTI)

    Schechtman-Rook, Andrew; Bershady, Matthew A.

    2014-11-10

    We investigate the stellar disk structure of six nearby edge-on spiral galaxies using high-resolution JHK {sub s}-band images and three-dimensional radiative transfer models. To explore how mass and environment shape spiral disks, we selected galaxies with rotational velocities between 69 km s{sup 1} 150 km s{sup 1}) galaxies, only NGC 4013 has the super-thin+thin+thick nested disk structure seen in NGC 891 and the Milky Way, albeit with decreased oblateness, while NGC 1055, a disturbed massive spiral galaxy, contains disks with h{sub z} ? 200 pc. NGC 4565, another fast-rotator, contains a prominent ring at a radius ?5 kpc but no super-thin disk. Despite these differences, all fast-rotating galaxies in our sample have inner truncations in at least one of their disks. These truncations lead to Freeman Type II profiles when projected face-on. Slow-rotating galaxies are less complex, lacking inner disk truncations and requiring fewer disk components to reproduce their light distributions. Super-thin disk components in undisturbed disks contribute ?25% of the total K {sub s}-band light, up to that of the thin-disk contribution. The presence of super-thin disks correlates with infrared flux ratios; galaxies with super-thin disks have f{sub K{sub s}}/f{sub 60} {sub ?m}?0.12 for integrated light, consistent with super-thin disks being regions of ongoing star-formation. Attenuation-corrected vertical color gradients in (J K {sub s}) correlate with the observed disk structure and are consistent with population gradients with young-to-intermediate ages closer to the mid-plane, indicating that disk heatingor coolingis a ubiquitous phenomenon.

  4. INFRARED SPECTROSCOPY OF COMET 73P/SCHWASSMANN-WACHMANN 3 USING THE SPITZER SPACE TELESCOPE

    SciTech Connect (OSTI)

    Sitko, Michael L.; Whitney, Barbara A.; Wolff, Michael J.; Lisse, Carey M.; Kelley, Michael S.; Polomski, Elisha F.; Lynch, David K.; Russell, Ray W.; Kimes, Robin L.; Harker, David E. E-mail: bwhitney@wisc.edu E-mail: carey.lisse@jhuapl.edu E-mail: epolomsk@uwec.edu E-mail: Ray.W.Russell@aero.org E-mail: dharker@ucsd.edu

    2011-09-15

    We have used the Spitzer Space Telescope Infrared Spectrograph (IRS) to observe the 5-37 {mu}m thermal emission of comet 73P/Schwassmann-Wachmann 3 (SW3), components B and C. We obtained low spectral resolution (R {approx} 100) data over the entire wavelength interval, along with images at 16 and 22 {mu}m. These observations provided an unprecedented opportunity to study nearly pristine material from the surface and what was until recently the interior of an ecliptic comet-the cometary surface having experienced only two prior perihelion passages, and including material that was totally fresh. The spectra were modeled using a variety of mineral types including both amorphous and crystalline components. We find that the degree of silicate crystallinity, {approx}35%, is somewhat lower than most other comets with strong emission features, while its abundance of amorphous carbon is higher. Both suggest that SW3 is among the most chemically primitive solar system objects yet studied in detail, and that it formed earlier or farther from the Sun than the bulk of the comets studied so far. The similar dust compositions of the two fragments suggest that these are not mineralogically heterogeneous, but rather uniform throughout their volumes. The best-fit particle size distribution for SW3B has a form dn/da {approx} a{sup -3.5}, close to that expected for dust in collisional equilibrium, while that for SW3C has dn/da {approx} a{sup -4.0}, as seen mostly in active comets with strong directed jets, such as C/1995 O1 Hale-Bopp. The total mass of dust in the comae plus nearby tail, extrapolated from the field of view of the IRS peak-up image arrays, is (3-5) x 10{sup 8} kg for B and (7-9) x 10{sup 8} kg for C. Atomic abundances derived from the spectral models indicate a depletion of O compared to solar photospheric values, despite the inclusion of water ice and gas in the models. Atomic C may be solar or slightly sub-solar, but its abundance is complicated by the potential

  5. Confined Space Imager (CSI) Software

    SciTech Connect (OSTI)

    Karelilz, David

    2013-07-03

    The software provides real-time image capture, enhancement, and display, and sensor control for the Confined Space Imager (CSI) sensor system The software captures images over a Cameralink connection and provides the following image enhancements: camera pixel to pixel non-uniformity correction, optical distortion correction, image registration and averaging, and illumination non-uniformity correction. The software communicates with the custom CSI hardware over USB to control sensor parameters and is capable of saving enhanced sensor images to an external USB drive. The software provides sensor control, image capture, enhancement, and display for the CSI sensor system. It is designed to work with the custom hardware.

  6. Study on the activation of styrene-based shape memory polymer by medium-infrared laser light

    SciTech Connect (OSTI)

    Leng Jinsong; Yu Kai; Lan Xin; Zhang Dawei; Liu Yanju

    2010-03-15

    This paper demonstrates the feasibility of shape memory polymer (SMP) activation by medium-infrared laser light. Medium-infrared light is transmitted by an optical fiber embedded in the SMP matrix, and the shape recovery process and temperature distribution are recorded by an infrared camera. Light-induced SMP exhibits potential applications in biomedicines and flexible displays.

  7. MULTI-COLOR OPTICAL AND NEAR-INFRARED LIGHT CURVES OF 64 STRIPPED-ENVELOPE CORE-COLLAPSE SUPERNOVAE

    SciTech Connect (OSTI)

    Bianco, F. B.; Modjaz, M. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Hicken, M.; Friedman, A.; Kirshner, R. P.; Challis, P.; Marion, G. H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bloom, J. S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Wood-Vasey, W. M. [PITT PACC, Department of Physics and Astronomy, 3941 O'Hara Street, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Rest, A., E-mail: fb55@nyu.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-08-01

    We present a densely sampled, homogeneous set of light curves of 64 low-redshift (z ? 0.05) stripped-envelope supernovae (SNe of Type IIb, Ib, Ic, and Ic-BL). These data were obtained between 2001 and 2009 at the Fred L. Whipple Observatory (FLWO) on Mount Hopkins in Arizona, with the optical FLWO 1.2 m and the near-infrared (NIR) Peters Automated Infrared 1.3 m telescopes. Our data set consists of 4543 optical photometric measurements on 61 SNe, including a combination of U BV RI, U BV r{sup ?}i{sup ?}, and u{sup ?} BV r{sup ?}i{sup ?}, and 1919 JHK{sub s} NIR measurements on 25 SNe. This sample constitutes the most extensive multi-color data set of stripped-envelope SNe to date. Our photometry is based on template-subtracted images to eliminate any potential host-galaxy light contamination. This work presents these photometric data, compares them with data in the literature, and estimates basic statistical quantities: date of maximum, color, and photometric properties. We identify promising color trends that may permit the identification of stripped-envelope SN subtypes from their photometry alone. Many of these SNe were observed spectroscopically by the Harvard-Smithsonian Center for Astrophysics (CfA) SN group, and the spectra are presented in a companion paper. A thorough exploration that combines the CfA photometry and spectroscopy of stripped-envelope core-collapse SNe will be presented in a follow-up paper.

  8. Computational and experimental research on infrared trace by human being contact

    SciTech Connect (OSTI)

    Xiong Zonglong; Yang Kuntao; Ding Wenxiu; Zhang Nanyangsheng; Zheng Wenheng

    2010-06-20

    The indoor detection of the human body's thermal trace plays an important role in the fields of infrared detecting, scouting, infrared camouflage, and infrared rescuing and tracking. Currently, quantitative description and analysis for this technology are lacking due to the absence of human infrared radiation analysis. To solve this problem, we study the heating and cooling process by observing body contact and removal on an object, respectively. Through finite-element simulation and carefully designed experiments, an analytical model of the infrared trace of body contact is developed based on infrared physics and heat transfer theory. Using this model, the impact of body temperature on material thermal parameters is investigated. The sensitivity of material thermal parameters, the thermal distribution, and the changes of the thermograph's contrast are then found and analyzed. Excellent matching results achieved between the simulation and the experiments demonstrate the strong impact of temperature on material thermal parameters. Conclusively, the new model, simulation, and experimental results are beneficial to the future development and implementation of infrared trace technology.

  9. Multispectral imaging probe

    DOE Patents [OSTI]

    Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.

    1999-07-27

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.

  10. Microbial Cell Imaging

    SciTech Connect (OSTI)

    Doktycz, Mitchel John; Sullivan, Claretta; Mortensen, Ninell P; Allison, David P

    2011-01-01

    Atomic force microscopy (AFM) is finding increasing application in a variety of fields including microbiology. Until the emergence of AFM, techniques for ivnestigating processes in single microbes were limited. From a biologist's perspective, the fact that AFM can be used to generate high-resolution images in buffers or media is its most appealing feature as live-cell imaging can be pursued. Imaging living cells by AFM allows dynamic biological events to be studied, at the nanoscale, in real time. Few areas of biological research have as much to gain as microbiology from the application of AFM. Whereas the scale of microbes places them near the limit of resolution for light microscopy. AFM is well suited for the study of structures on the order of a micron or less. Although electron microscopy techniques have been the standard for high-resolution imaging of microbes, AFM is quickly gaining favor for several reasons. First, fixatives that impair biological activity are not required. Second, AFM is capable of detecting forces in the pN range, and precise control of the force applied to the cantilever can be maintained. This combination facilitates the evaluation of physical characteristics of microbes. Third, rather than yielding the composite, statistical average of cell populations, as is the case with many biochemical assays, the behavior of single cells can be monitored. Despite the potential of AFM in microbiology, there are several limitations that must be considered. For example, the time required to record an image allows for the study of gross events such as cell division or membrane degradation from an antibiotic but precludes the evaluation of biological reactions and events that happen in just fractions of a second. Additionally, the AFM is a topographical tool and is restricted to imaging surfaces. Therefore, it cannot be used to look inside cells as with opticla and transmission electron microscopes. other practical considerations are the limitation on

  11. Multispectral imaging probe

    DOE Patents [OSTI]

    Sandison, David R.; Platzbecker, Mark R.; Descour, Michael R.; Armour, David L.; Craig, Marcus J.; Richards-Kortum, Rebecca

    1999-01-01

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector.

  12. Fluid Imaging of Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objectives: Attempting to Image EGS Fracture & Fluid Networks; Employing joint Geophysical Imaging Technologies.

  13. Digital Image Correlation Engine

    SciTech Connect (OSTI)

    Turner, Dan; Crozier, Paul; Reu, Phil

    2015-10-06

    DICe is an open source digital image correlation (DIC) tool intended for use as a module in an external application or as a standalone analysis code. It's primary capability is computing full –field displacements and strains from sequences of digital These images are typically of a material sample undergoing a materials characterization experiment, but DICe is also useful for other applications (for example, trajectory tracking). DICe is machine portable (Windows, Linux and Mac) and can be effectively deployed on a high performance computing platform. Capabilities from DICe can be invoked through a library interface, via source code integration of DICe classes or through a graphical user interface.

  14. Magnetic imager and method

    DOE Patents [OSTI]

    Powell, James; Reich, Morris; Danby, Gordon

    1997-07-22

    A magnetic imager 10 includes a generator 18 for practicing a method of applying a background magnetic field over a concealed object, with the object being effective to locally perturb the background field. The imager 10 also includes a sensor 20 for measuring perturbations of the background field to detect the object. In one embodiment, the background field is applied quasi-statically. And, the magnitude or rate of change of the perturbations may be measured for determining location, size, and/or condition of the object.

  15. Magnetic imager and method

    DOE Patents [OSTI]

    Powell, J.; Reich, M.; Danby, G.

    1997-07-22

    A magnetic imager includes a generator for practicing a method of applying a background magnetic field over a concealed object, with the object being effective to locally perturb the background field. The imager also includes a sensor for measuring perturbations of the background field to detect the object. In one embodiment, the background field is applied quasi-statically. And, the magnitude or rate of change of the perturbations may be measured for determining location, size, and/or condition of the object. 25 figs.

  16. Turbine Imaging Technology Assessment

    SciTech Connect (OSTI)

    Moursund, Russell A.; Carlson, Thomas J.

    2004-12-31

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

  17. Design, manufacture, and calibration of infrared radiometric blackbody sources

    SciTech Connect (OSTI)

    Byrd, D.A.; Michaud, F.D.; Bender, S.C.

    1996-04-01

    A Radiometric Calibration Station (RCS) is being assembled at the Los Alamos National Laboratories (LANL) which will allow for calibration of sensors with detector arrays having spectral capability from about 0.4-15 {mu}m. The configuration of the LANL RCS. Two blackbody sources have been designed to cover the spectral range from about 3-15 {mu}m, operating at temperatures ranging from about 180-350 K within a vacuum environment. The sources are designed to present a uniform spectral radiance over a large area to the sensor unit under test. The thermal uniformity requirement of the blackbody cavities has been one of the key factors of the design, requiring less than 50 mK variation over the entire blackbody surface to attain effective emissivity values of about 0.999. Once the two units are built and verified to the level of about 100 mK at LANL, they will be sent to the National Institute of Standards and Technology (NIST), where at least a factor of two improvement will be calibrated into the blackbody control system. The physical size of these assemblies will require modifications of the existing NIST Low Background Infrared (LBIR) Facility. LANL has constructed a bolt-on addition to the LBIR facility that will allow calibration of our large aperture sources. Methodology for attaining the two blackbody sources at calibrated levels of performance equivalent to present state of the art will be explained in the following.

  18. Nanosecond Mid-Infrared Detection for Pulse Radiolysis

    SciTech Connect (OSTI)

    Grills,D.C.; Preses, J.M.; Wishart, J.F.; Cook, A.R.

    2009-07-12

    Pulse radiolysis, utilizing electron pulses from accelerators, is the definitive method for adding single positive or negative charges to molecules. It is also among the most effective means for creating free radicals. Such species are particularly important in applications such as redox catalysis relevant to solar energy conversion and advanced nuclear energy systems. Coupled with fast UV-visible detection, pulse radiolysis has become an extremely powerful method for monitoring the kinetics of the subsequent reactions of these species on timescales ranging from picoseconds to seconds. However, in many important contexts the radicals formed are difficult to identify due to their broad and featureless UV-visible absorption spectra. Time-resolved infrared (TRIR) absorption spectroscopy is a powerful structural probe of short-lived intermediates, which allows multiple transient species to be clearly identified and simultaneously monitored in a single process. Unfortunately, due to technical challenges the coupling of fast (sub-millisecond) TRIR with pulse radiolysis has received little attention, being confined to gas-phase studies. Taking advantage of recent developments in mid-IR laser technology, we have recently begun developing nanosecond TRIR detection methodologies for condensed-phase samples at our Laser Electron Accelerator Facility (LEAF). The results of preliminary pulse radiolysis-TRIR investigations on the formation of the one-electron reduced forms of CO{sub 2} reduction catalysts (e.g. see above) and their interactions with CO{sub 2} will be presented.

  19. Infrared spectroscopy and structure of (NO)n clusters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoshina, Hiromichi; Slipchenko, Mikhail; Prozument, Kirill; Verma, Deepak; Schmidt, Michael W.; Ivanic, Joseph; Vilesov, Andrey F.

    2016-01-12

    Nitrogen oxide clusters (NO)n have been studied in He droplets via infrared depletion spectroscopy and by quantum chemical calculations. The ν1 and ν5 bands of cis-ON-NO dimer have been observed at 1868.2 and 1786.5 cm–1, respectively. Furthermore, spectral bands of the trimer and tetramer have been located in the vicinity of the corresponding dimer bands in accord with computed frequencies that place NO-stretch bands of dimer, trimer, and tetramer within a few wavenumbers of each other. In addition, a new line at 1878.1 cm–1 close to the band origin of single molecules was assigned to van der Waals bound dimersmore » of (NO)2, which are stabilized due to the rapid cooling in He droplets. Spectra of larger clusters (n > 5), have broad unresolved features in the vicinity of the dimer bands. As a result, experiments and calculations indicate that trimers consist of a dimer and a loosely bound third molecule, whereas the tetramer consists of two weakly bound dimers.« less

  20. Infrared Extraction Change for the NSLS-II Storage Ring

    SciTech Connect (OSTI)

    Blednykh,A.; Carr, L.; Coburn, D.; Krinsky, S.

    2009-05-04

    The short- and long-range wakepotentials have been studied for the design of the infrared (IR) extraction chamber with large full aperture: 67mm vertical and 134mm horizontal. The IR-chamber will be installed within a 2.6m long wide-gap bending magnet with 25m bend radius. Due to the large bend radius it is difficult to separate the light from the electron trajectory. The required parameters of the collected IR radiation at the extraction mirror are {approx}50mrad horizontal and {approx}25mrad vertical (full radiation opening angles). If the extraction mirror is seen by the beam, resonant modes are generated in the chamber. In this paper, we present the detailed calculated impedance for the design of the far-IR chamber, and show that placing the extraction mirror in the proper position eliminates the resonances. In this case, the impedance reduces to that of a simple tapered structure, which is acceptable in regard to its impact on the electron beam.