National Library of Energy BETA

Sample records for imaging equipment manufacturers

  1. Project Sponsor: An Original Equipment Manufacturer (confidential)

    E-Print Network [OSTI]

    Mease, Kenneth D.

    transfer within the boiler while staying within the O2 concentration limits set by existing equipment high concentration of CO2 in the gas flowing through the boiler, the difference in physical properties air into the boiler, a downstream CO2purification step (cryogenic) is required to meet

  2. Processing and Manufacturing Equipment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhonoSolarProcessing and Manufacturing

  3. Pollution prevention assessment for a manufacturer of food service equipment

    SciTech Connect (OSTI)

    Edwards, H.W.; Kostrzewa, M.F.; Looby, G.P.

    1995-09-01

    The US Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. The WMAC team at Colorado State University performed an assessment at a plant that manufacturers commercial food service equipment. Raw materials used by the plant include stainless steel, mild steel, aluminum, and copper and brass. Operations performing in the plant include cutting, forming, bending, welding, polishing, painting, and assembly The team`s report, detailing findings and recommendations, indicated that paint-related wastes (organic solvents) are generated in large quantities and that significant cost savings could be achieved by retrofitting the water curtain paint spray booth to operate as a dry filter paint booth. Toluene could be replaced by a less toxic solvent. This Research Brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  4. Production lead time reduction in a semiconductor capital equipment manufacturing plant through optimized testing protocols

    E-Print Network [OSTI]

    Bhadauria, Anubha Singh

    2014-01-01

    Processes at a semiconductor equipment manufacturing facility were studied with the goal to reduce the production lead time. Based on the principles of lean manufacturing, DMAIC methodology was used to guide the process. ...

  5. Advanced Manufacturing and Engineering Equipment at the University of Southern Indiana

    SciTech Connect (OSTI)

    Mitchell, Zane Windsor; Gordon, Scott Allen

    2014-08-04

    Department of Energy grant DE-SC0005231was awarded to the University of Southern Indiana for the purchase of Advanced Manufacturing and Engineering equipment.

  6. Modular Process Equipment for Low Cost Manufacturing of High Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX F Wetlandsof Energy ModelSEI Layer |Department

  7. Optimizing the selection and implementation of assembly line equipment at a large automobile original equipment manufacturer

    E-Print Network [OSTI]

    Holman, Cale M. (Cale Matthew)

    2005-01-01

    Toyota Motor Manufacturing North America (TMMNA) is continuing to face an increasingly competitive automobile market. To meet these evolving market conditions, TMMNA has experienced rapid growth in demand for its automobiles ...

  8. Shenyang Tianxiang Wind Equipments Manufacturing Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New Energy Equipment Co Ltd Jump to:Information

  9. Comment submitted by the North American Association of Food Equipment Manufacturers (NAFEM) regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by the North American Association of Food Equipment Manufacturers (NAFEM) regarding the Energy Star Verification Testing Program

  10. Image change detection systems, methods, and articles of manufacture

    DOE Patents [OSTI]

    Jones, James L. (Idaho Falls, ID); Lassahn, Gordon D. (Idaho Falls, ID); Lancaster, Gregory D. (Idaho Falls, ID)

    2010-01-05

    Aspects of the invention relate to image change detection systems, methods, and articles of manufacture. According to one aspect, a method of identifying differences between a plurality of images is described. The method includes loading a source image and a target image into memory of a computer, constructing source and target edge images from the source and target images to enable processing of multiband images, displaying the source and target images on a display device of the computer, aligning the source and target edge images, switching displaying of the source image and the target image on the display device, to enable identification of differences between the source image and the target image.

  11. ME 4210: Manufacturing Processes and Equipment Prof. J.S. Colton GIT 2011

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Raw materials Furnace Atmosphere #12;ME 4210: Manufacturing Processes and Equipment Prof. J.S. Colton route from raw material to finished product · Melt metals · Pour / force liquid into hollow cavity (mold © GIT 2011 12 Melting · Raw material (charge) ­ scrap, alloying materials · Atmosphere ­ Air (oxygen

  12. Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture

    DOE Patents [OSTI]

    Lassahn, Gordon D.; Lancaster, Gregory D.; Apel, William A.; Thompson, Vicki S.

    2013-01-08

    Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture are described. According to one embodiment, an image portion identification method includes accessing data regarding an image depicting a plurality of biological substrates corresponding to at least one biological sample and indicating presence of at least one biological indicator within the biological sample and, using processing circuitry, automatically identifying a portion of the image depicting one of the biological substrates but not others of the biological substrates.

  13. Development of an Improved Process for Installation Projects of High Technology Manufacturing Equipment

    SciTech Connect (OSTI)

    Quintana, Sarah V.

    2014-04-30

    High technology manufacturing equipment is utilized at Los Alamos National Laboratory (LANL) to support nuclear missions. This is undertaken from concept initiation where equipment is designed and then taken through several review phases, working closely with system engineers (SEs) responsible for each of the affected systems or involved disciplines (from gasses to HVAC to structural, etc.). After the design is finalized it moves to procurement and custom fabrication of the equipment and equipment installation, including all of the paperwork involved. Not only are the engineering and manufacturing aspects important, but also the scheduling, financial forecasting, and planning portions that take place initially and are sometimes modified as the project progresses should requirements, changes or additions become necessary. The process required to complete a project of this type, including equipment installation, is unique and involves numerous steps to complete. These processes can be improved and recent work on the Direct Current Arc (DC Arc) Glovebox Design, Fabrication and Installation Project provides an opportunity to identify some important lessons learned (LL) that can be implemented in the future for continued project improvement and success.

  14. Environmental research brief: Pollution prevention assessment for a manufacturer of automotive lighting equipment and accessories

    SciTech Connect (OSTI)

    Fleischman, M.; Couch, B.; Handmaker, A. [Tennessee Univ., Knoxville, TN (United States). Dept. of Engineering Science and Mechanics; Looby, G.P. [University City Science Center, Philadelphia, PA (United States)

    1995-08-01

    The US Environmental Protection Agency (EPA) has funded a Pilot project to assist small and medium-size manufacture who want to minimize their generation of waste but who lac the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Centers (WMACs) we established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. The WMAC team at the University of Tennessee performed an assessment at a plant that manufactures outboard motors for water craft. Three basic subunits received from other manufacturing plants undergo primarily painting and assembly operations in order to produce the final product. The team`s report, detailing findings and recommendations, indicated that paint overspray waste and spent clean-up solvent are generated in large quantities and that significant cost savings could be achieved by installing robotic paint application equipment. This Research Brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  15. ARCHITECTURE GEOMETRIE PERCEPTION IMAGES GESTES Equipe AGPiG-Architecture gomtrie perception images gestes

    E-Print Network [OSTI]

    Condat, Laurent

    gipsa-lab AGPiG ARCHITECTURE GEOMETRIE PERCEPTION IMAGES GESTES Equipe AGPiG-Architecture géométrie programmation parallčle Gestion dynamique d'architecture THÉMATIQUES RESPONSABLES Dominique ATTALI Dominique vidéos Mesures de courbure Suivi d'activités Identification d'expressions Attention visuelle Architecture

  16. U.S. Playground Equipment Manufacturer and Purchaser Perceptions of Treated Wood

    E-Print Network [OSTI]

    -Grand Rapids, MI, December 29, 2003 #12;"I believe this is a children's safety issue," Crow pleaded. "If in accordance with Tailored Design Method (Dillman 2000) The Studies #12;Manufacturers: · 188: mailed · 141 Purchasers #12;Playset Materials Manufacturing/Purchase Criteria Free from as many chemicals as possible

  17. Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at Ft. Bliss, Texas. Interim report

    SciTech Connect (OSTI)

    Alvarez, R.A.; Yost, D.M.

    1995-11-01

    A technology demonstration program of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles was conducted at FL Bliss, Texas to demonstrate the use of CNG as an alternative fuel. The demonstration program at FL Bliss was the first Army initiative with CNG-fueled vehicles under the legislated Alternative Motor Fuels Act. This Department of Energy (DOE)-supported fleet demonstration consisted of 48 General Services Administration (GSA)-owned, Army-leased 1992 dedicated CNG General Motors (GM) 3/4-ton pickup trucks and four 1993 gasoline-powered Chevrolet 3/4-ton pickup trucks.

  18. Department of Industrial Engineering Spring 2012 Equipment Jack Manufacturing Process Improvement at CIU -Global Project

    E-Print Network [OSTI]

    Demirel, Melik C.

    it to the current system's capacity Perform FMEA to conclude the top events critical to quality for the assembly collection for both EWMA, FMEA, and manufacturing systems Outcomes New, standardized process increased forecast schedules, orders, and capabilities. FMEA illustrates assembly steps that are crucial to quality

  19. Development of Functionally Graded Materials for Manufacturing Tools and Dies and Industrial Processing Equipment

    SciTech Connect (OSTI)

    Lherbier, Louis, W.; Novotnak, David, J.; Herling, Darrell, R.; Sears, James, W.

    2009-03-23

    Hot forming processes such as forging, die casting and glass forming require tooling that is subjected to high temperatures during the manufacturing of components. Current tooling is adversely affected by prolonged exposure at high temperatures. Initial studies were conducted to determine the root cause of tool failures in a number of applications. Results show that tool failures vary and depend on the operating environment under which they are used. Major root cause failures include (1) thermal softening, (2) fatigue and (3) tool erosion, all of which are affected by process boundary conditions such as lubrication, cooling, process speed, etc. While thermal management is a key to addressing tooling failures, it was clear that new tooling materials with superior high temperature strength could provide improved manufacturing efficiencies. These efficiencies are based on the use of functionally graded materials (FGM), a new subset of hybrid tools with customizable properties that can be fabricated using advanced powder metallurgy manufacturing technologies. Modeling studies of the various hot forming processes helped identify the effect of key variables such as stress, temperature and cooling rate and aid in the selection of tooling materials for specific applications. To address the problem of high temperature strength, several advanced powder metallurgy nickel and cobalt based alloys were selected for evaluation. These materials were manufactured into tooling using two relatively new consolidation processes. One process involved laser powder deposition (LPD) and the second involved a solid state dynamic powder consolidation (SSDPC) process. These processes made possible functionally graded materials (FGM) that resulted in shaped tooling that was monolithic, bi-metallic or substrate coated. Manufacturing of tooling with these processes was determined to be robust and consistent for a variety of materials. Prototype and production testing of FGM tooling showed the benefits of the nickel and cobalt based powder metallurgy alloys in a number of applications evaluated. Improvements in tool life ranged from three (3) to twenty (20) or more times than currently used tooling. Improvements were most dramatic where tool softening and deformation were the major cause of tool failures in hot/warm forging applications. Significant improvement was also noted in erosion of aluminum die casting tooling. Cost and energy savings can be realized as a result of increased tooling life, increased productivity and a reduction in scrap because of improved dimensional controls. Although LPD and SSDPC tooling usually have higher acquisition costs, net tooling costs per component produced drops dramatically with superior tool performance. Less energy is used to manufacture the tooling because fewer tools are required and less recycling of used tools are needed for the hot forming process. Energy is saved during the component manufacturing cycle because more parts can be produced in shorter periods of time. Energy is also saved by minimizing heating furnace idling time because of less downtime for tooling changes.

  20. IMAGING-BASED OPTICAL CALIPER FOR OBJECTS IN HOT MANUFACTURING PROCESSES

    SciTech Connect (OSTI)

    Huang, Howard

    2013-04-03

    OG Technologies, Inc. (OGT), in conjunction with its industrial and academic partners, proposes to develop an �Imaging-Based Optical Caliper (hereafter referred to as �OC�) for Objects in Hot Manufacturing Processes�. The goal is to develop and demonstrate the OC with the synergy of OGT�s current technological pool and other innovations to provide a light weight, robust, safe and accurate portable dimensional measurement device for hot objects with integrated wireless communication capacity to enable real time process control. The technical areas of interest in this project are the combination of advanced imaging, Sensor Fusion, and process control. OGT believes that the synergistic interactions between its current set of technologies and other innovations could deliver products that are viable and have high impact in the hot manufacture processes, such as steel making, steel rolling, open die forging, and glass industries, resulting in a new energy efficient control paradigm in the operations through improved yield, prolonged tool life and improved quality. In-line dimension measurement and control is of interest to the steel makers, yet current industry focus is on the final product dimension only instead of whole process due to the limit of man power, system cost and operator safety concerns. As sensor technologies advances, the industry started to see the need to enforce better dimensional control throughout the process, but lack the proper tools to do so. OGT along with its industrial partners represent the indigenous effort of technological development to serve the US steel industry. The immediate market that can use and get benefited from the proposed OC is the Steel Industry. The deployment of the OC has the potential to provide benefits in reduction of energy waste, CO2 emission, waste water amount, toxic waste, and so forth. The potential market after further expended function includes Hot Forging and Freight Industries. The OC prototypes were fabricated, and were progressively tested on-site in several steel mill and hot forging facilities for evaluation. Software refinements and new calibration procedures were also carried out to overcome the discovered glitches. Progress was presented to the hot manufacture facilities worldwide. Evidence showed a great interest and practical need for this product. OGT is in the pilot commercialization mode for this new development. The R&D team also successfully developed a 3D measurement function with no additional investment of hardware or equipment to measure low or room temperature object dimensions. Several tests were conducted in the reality environment to evaluate the measurement results. This new application will require additional development in product design.

  1. Covered Product Category: Imaging Equipment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergyEvery Thanksgiving, we hear and©displays,imaging

  2. Method for indexing and retrieving manufacturing-specific digital imagery based on image content

    DOE Patents [OSTI]

    Ferrell, Regina K.; Karnowski, Thomas P.; Tobin, Jr., Kenneth W.

    2004-06-15

    A method for indexing and retrieving manufacturing-specific digital images based on image content comprises three steps. First, at least one feature vector can be extracted from a manufacturing-specific digital image stored in an image database. In particular, each extracted feature vector corresponds to a particular characteristic of the manufacturing-specific digital image, for instance, a digital image modality and overall characteristic, a substrate/background characteristic, and an anomaly/defect characteristic. Notably, the extracting step includes generating a defect mask using a detection process. Second, using an unsupervised clustering method, each extracted feature vector can be indexed in a hierarchical search tree. Third, a manufacturing-specific digital image associated with a feature vector stored in the hierarchicial search tree can be retrieved, wherein the manufacturing-specific digital image has image content comparably related to the image content of the query image. More particularly, can include two data reductions, the first performed based upon a query vector extracted from a query image. Subsequently, a user can select relevant images resulting from the first data reduction. From the selection, a prototype vector can be calculated, from which a second-level data reduction can be performed. The second-level data reduction can result in a subset of feature vectors comparable to the prototype vector, and further comparable to the query vector. An additional fourth step can include managing the hierarchical search tree by substituting a vector average for several redundant feature vectors encapsulated by nodes in the hierarchical search tree.

  3. Computed radiography imaging plates and associated methods of manufacture

    DOE Patents [OSTI]

    Henry, Nathaniel F.; Moses, Alex K.

    2015-08-18

    Computed radiography imaging plates incorporating an intensifying material that is coupled to or intermixed with the phosphor layer, allowing electrons and/or low energy x-rays to impart their energy on the phosphor layer, while decreasing internal scattering and increasing resolution. The radiation needed to perform radiography can also be reduced as a result.

  4. Bioassay Phantoms Using Medical Images and Computer Aided Manufacturing

    SciTech Connect (OSTI)

    Dr. X. Geroge Xu

    2011-01-28

    A radiation bioassay program relies on a set of standard human phantoms to calibrate and assess radioactivity levels inside a human body for radiation protection and nuclear medicine imaging purposes. However, the methodologies in the development and application of anthropomorphic phantoms, both physical and computational, had mostly remained the same for the past 40 years. We herein propose a 3-year research project to develop medical image-based physical and computational phantoms specifically for radiation bioassay applications involving internally deposited radionuclides. The broad, long-term objective of this research was to set the foundation for a systematic paradigm shift away from the anatomically crude phantoms in existence today to realistic and ultimately individual-specific bioassay methodologies. This long-term objective is expected to impact all areas of radiation bioassay involving nuclear power plants, U.S. DOE laboratories, and nuclear medicine clinics.

  5. New Electrode Manufacturing Process Equipment: Novel High Energy Density Lithium-Ion Cell Designs via Innovative Manufacturing Process Modules for Cathode and Integrated Separator

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: Applied Materials is developing new tools for manufacturing Li-Ion batteries that could dramatically increase their performance. Traditionally, the positive and negative terminals of Li-Ion batteries are mixed with glue-like materials called binders, pressed onto electrodes, and then physically kept apart by winding a polymer mesh material between them called a separator. With the Applied Materials system, many of these manually intensive processes will be replaced by next generation coating technology to apply each component. This process will improve product reliability and performance of the cells at a fraction of the current cost. These novel manufacturing techniques will also increase the energy density of the battery and reduce the size of several of the battery’s components to free up more space within the cell for storage.

  6. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source:...

  7. Additive manufacturing capabilities expanding | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive manufacturing capabilities expanding January 01, 2013 Large-scale polymer additive manufacturing equipment located at the Manufacturing Demonstration Facility. Additive...

  8. MANUFACTURING Manufacturing and Biomanufacturing

    E-Print Network [OSTI]

    Magee, Joseph W.

    process improvements to manufacturing. In addition, the critical national need area of Manufacturing hasMANUFACTURING Manufacturing and Biomanufacturing: Materials Advances and Critical Processes NATIONAL NEED The proposed topics within "Manufacturing and Biomanufacturing: Materials Advances

  9. MANUFACTURING ENGINEERING Manufacturing engineering

    E-Print Network [OSTI]

    MANUFACTURING ENGINEERING Manufacturing engineering transforms raw materials, parts, and operations, following a well- organized plan for each activity. Manufacturing engineering involves designing assuring a competitive level of productivity. The manufacturing engineering curriculum at WSU focuses

  10. Vehicle Technologies Office Merit Review 2014: Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Applied Materials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modular process equipment...

  11. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets

    SciTech Connect (OSTI)

    Wheeler, D.; Ulsh, M.

    2012-08-01

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

  12. Imaging Study of Multi-Crystalline Silicon Wafers Throughout the Manufacturing Process: Preprint

    SciTech Connect (OSTI)

    Johnston, S.; Yan, F.; Zaunbracher, K.; Al-Jassim, M.; Sidelkheir, O.; Blosse, A.

    2011-07-01

    Imaging techniques are applied to multi-crystalline silicon bricks, wafers at various process steps, and finished solar cells. Photoluminescence (PL) imaging is used to characterize defects and material quality on bricks and wafers. Defect regions within the wafers are influenced by brick position within an ingot and height within the brick. The defect areas in as-cut wafers are compared to imaging results from reverse-bias electroluminescence and dark lock-in thermography and cell parameters of near-neighbor finished cells. Defect areas are also characterized by defect band emissions. The defect areas measured by these techniques on as-cut wafers are shown to correlate to finished cell performance.

  13. Acceptance test report for the Tank 241-C-106 in-tank imaging system

    SciTech Connect (OSTI)

    Pedersen, L.T.

    1998-05-22

    This document presents the results of Acceptance Testing of the 241-C-106 in-tank video camera imaging system. The purpose of this imaging system is to monitor the Project W-320 sluicing of Tank 241-C-106. The objective of acceptance testing of the 241-C-106 video camera system was to verify that all equipment and components function in accordance with procurement specification requirements and original equipment manufacturer`s (OEM) specifications. This document reports the results of the testing.

  14. Papyrus Manufacture

    E-Print Network [OSTI]

    Leach, Bridget

    2009-01-01

    British Museum, London. Papyrus Manufacture, Leach, UEE 2009AINES Short Citation: Leach 2009, Papyrus Manufacture. UEE.Bridget, 2009, Papyrus Manufacture. In Willeke Wendrich (

  15. FACT SHEET: 48C MANUFACTURING TAX CREDITS

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Energy Manufacturing Tax Credit Program is helping build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment. On February 7,...

  16. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt002esflicker2011...

  17. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt002esflicker2012...

  18. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. esarravt002flicker2010...

  19. Advanced Battery Manufacturing Facilities and Equipment Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0Department of Energy 2 DOE Hydrogen and

  20. Advanced Battery Manufacturing Facilities and Equipment Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0Department of Energy 2 DOE Hydrogen

  1. Advanced Battery Manufacturing Facilities and Equipment Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0Department of Energy 2 DOE

  2. Journal of Mathematical Imaging and Vision 14, 2138, 2001 c 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

    E-Print Network [OSTI]

    Chojnacki, Wojtek

    . Manufactured in The Netherlands. Rationalising the Renormalisation Method of Kanatani WOJCIECH CHOJNACKI with the minimiser. Standard statistical techniques are then employed to derive afresh several renormalisation's first-order and second-order renormalisation schemes, and sev- eral variations on the theme are proposed

  3. Healthcare Energy: Spotlight on Medical Equipment

    Broader source: Energy.gov [DOE]

    The Building Technologies Office conducted a healthcare energy end-use monitoring project for two sites. Read details about large medical imaging equipment energy results.

  4. Journal of Mathematical Imaging and Vision 19: 199218, 2003 c 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

    E-Print Network [OSTI]

    Hamarneh, Ghassan

    technical combustion devices, such as aero engines and low pollution gas turbines. In the past, turbulent of flow and chemistry effects on local flame front structures. Image data of combustion processes combustion research has mostly focused on the measurement of temporally uncorrelated events. Such data can

  5. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  6. Status of thermal imaging technology as applied to conservation-update 1

    SciTech Connect (OSTI)

    Snow, F.J.; Wood, J.T.; Barthle, R.C.

    1980-07-01

    This document updates the 1978 report on the status of thermal imaging technology as applied to energy conservation in buildings. Thermal imaging technology is discussed in terms of airborne surveys, ground survey programs, and application needs such as standards development and lower cost equipment. Information on the various thermal imaging devices was obtained from manufacturer's standard product literature. Listings are provided of infrared projects of the DOE building diagnostics program, of aerial thermographic firms, and of aerial survey programs. (LCL)

  7. Brawley 10 MW Geothermal Plant Plant Manual for Southern California Edison Company and Union Oil Company of California. Volume IV. Equipment Data

    SciTech Connect (OSTI)

    1980-11-28

    This volume covers Equipment Data. This volume has technical presentations on each piece of plant equipment. it also references manufacturer's instruction books and drawing lists.

  8. Responses to Questions and Answers Advanced Vehicle Technology Manufacturing Solicitation

    E-Print Network [OSTI]

    1 Responses to Questions and Answers Advanced Vehicle Technology Manufacturing Solicitation PON successful applicants after the Notice of Proposed Awards to confirm this role and obtain any additional definition of "manufacturing equipment?" For example, would purchases of tooling or assembly line equipment

  9. Additive Manufacturing: Implications on Research and Manufacturing

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Additive Manufacturing: Implications on Research and Manufacturing With recent developments, etc.), additive manufacturing (AM) has the potential to become a transformative technology in innovation-based manufacturing. Agencies such as the Department of Defense, the National Science Foundation

  10. Manufacturing Technical Assistance Program FY 2014 Guidelines The University of Connecticut (UConn), a public research university with an academic health

    E-Print Network [OSTI]

    Alpay, S. Pamir

    . Applications for projects to be undertaken at UConn must be in the area of Additive Manufacturing only and equipment, including the state-of the-art additive manufacturing equipment at the new Additive Manufacturing with additive manufacturing challenges are especially encouraged to apply. Applications must (a) outline

  11. Assembly lead time reduction in a semiconductor capital equipment plant through improved material kitting

    E-Print Network [OSTI]

    Jain, Sonam

    2014-01-01

    Manufacturing operations were studied at a semiconductor capital equipment manufacturing plant, with an aim to reduce the production time of their longest lead time module. Preliminary analysis was done by observing the ...

  12. Program management systems for the semiconductor processing capital equipment supply chain

    E-Print Network [OSTI]

    Chandler, Thomas B. (Thomas Brian), 1970-

    2004-01-01

    The Capital Equipment Procurement group of Intel Corporation is responsible for developing and procuring the semiconductor processing capital equipment that is used throughout all of the company's development and manufacturing ...

  13. Analysis and sourcing of the mechanical equipment required for a ceramic pot filter production facility

    E-Print Network [OSTI]

    Getachew, Julian (Julian B.)

    2011-01-01

    Research was done into identifying and sourcing the mechanical equipment required for manufacturing ceramic pot filters, specifically for use in the Pure Home Water factory in Northern Ghana. The pieces of equipment ...

  14. Subsea equipment marriage is top ROV priority

    SciTech Connect (OSTI)

    Redden, J.

    1985-04-01

    Interfacing subsea equipment with remotely operated vehicles (ROV's) and the further development of arctic-class units are the primary challenges facing manufacturers. Worldwide use of the ROV for drilling support has exploded during this decade as oil companies continue their search in deeper waters. If the unmanned vehicles are to become an even more integral tool of the oilman, experts say they must be able to perform more complex tasks. The evolution of more multi-purpose ROVs, however, hinges on the redesigning of subsea equipment. The severe limitations on subsea support (by ROVs) is the obsolete design associated with the subsea equipment itself. These limitations are discussed.

  15. Improving reuse of semiconductor equipment through benchmarking, standardization, and automation

    E-Print Network [OSTI]

    Silber, Jacob B. (Jacob Bradley)

    2006-01-01

    The 6D program at Intel® Corporation was set up to improve operations around capital equipment reuse, primarily in their semiconductor manufacturing facilities. The company was faced with a number of challenges, including ...

  16. Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

  17. Test and Test Equipment Joshua Lottich

    E-Print Network [OSTI]

    Patel, Chintan

    Test and Test Equipment Joshua Lottich CMPE 640 11/23/05 #12;Testing Verifies that manufactured chip meets design specifications. Cannot test for every potential defect. Modeling defects as faults allows for passing and failing of chips. Ideal test would capture all defects and pass only chips

  18. Catalina Island Soapstone Manufacture

    E-Print Network [OSTI]

    Wlodarski, Robert J

    1979-01-01

    Catalina Island Soapstone Manufacture ROBERT J. WLODARSKIsome artifact of native manufacture. That stone is a "hard"Peabody Museum. Method and Manufacture of Several Articles

  19. Metrics for Sustainable Manufacturing

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2008-01-01

    for implementing green manufacturing”. Trans. of NAMRI/SME,on: Environmentally Benign Manufacturing (EBM). Tech. rep. ,towards sustainable manufacturing”. Proceedings of the In-

  20. Magnet Cable Manufacturing

    E-Print Network [OSTI]

    Royet, J.M.

    2011-01-01

    J. Royet, "Magnet Cable Manufacturing", oral presentation atDivision Magnet Cable Manufacturing J. Royet October 1990J I Magnet Cable Manufacturing* John Royet Accelerator &

  1. MAGNET CABLE MANUFACTURING

    E-Print Network [OSTI]

    Royet, J.

    2010-01-01

    76SFOOO98. MAGNET CABLE MANUFACTURING John Royet Lawrenceused in this cable manufacturing are made of superconductingapplied during manufacturing. 2.2 Twist The composite

  2. Metrics for Sustainable Manufacturing

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David A.

    2008-01-01

    S. , 2008. “Carbon emissions and ces(tm) in manufacturing”.CIRP Annals - Manufacturing Technology, 57, pp. 17–20.ventional tool and die manufacturing”. Journal of Cleaner

  3. Green Manufacturing

    SciTech Connect (OSTI)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  4. Manufacturing Innovation Institute for Smart Manufacturing: Advanced...

    Energy Savers [EERE]

    SMART technologies can transform American manufacturing, enabling businesses to manufacture more while using less energy and spending less. For more information, see the full...

  5. COMPOSITES AND MANUFACTURED PRODUCTS MANUFACTURING PARTICLEBOARD

    E-Print Network [OSTI]

    COMPOSITES AND MANUFACTURED PRODUCTS MANUFACTURING PARTICLEBOARD FROM EASTERN REDCEDAR SALl redcedar (Juniperus i~ir#jnirmrrL.) in a whole-tree chipping process to manufacture a commercial sin- gle foundtobecomparableto those of commercial particleboards manufactured from different species. Panel properties

  6. Energy Audit Equipment 

    E-Print Network [OSTI]

    Phillips, J.

    2012-01-01

    The tools (equipment) needed to perform an energy audit include those items which assist the auditor in measuring the energy used by equipment or lost in inefficiency. Each tool is designed for a specific measurement. They can be inexpensive simple...

  7. Power equipment applications

    SciTech Connect (OSTI)

    Seeley, R.S. (Consultant, Bridgewater, NJ (United States))

    1993-11-01

    Many considerations are taken into account in selecting equipment for power projects. The project often becomes a proving ground, benefiting equipment suppliers and developers. In designing and building power generation projects, developers and engineering and construction firms must go through the process of choosing the right equipment for the job. In doing so, a number of considerations regarding the benefits of selection and ease of installation must be taken into account. Understanding the selection process demonstrates how the independent power generation industry becomes a proving ground for different applications of power equipment. In turn, this adds more innovation and versatility to the entire power generation industry. It also provides lenders with examples of proven equipment that will more readily lead to successful financing in the future. Several developers and equipment vendors recently talked about how and why the choices were made for equipment like gas turbines, fluidized bed boilers, water treatment, power cooling equipment, and instruments and controls. 3 figs.

  8. Bolt Manufacture: Process Selection

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Bolt Manufacture: Process Selection ver. 1 ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 1 #12;How would you make a bolt? ME 6222: Manufacturing Processes and Systems Prof. J: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 3 #12;Possible Manufacturing Methodsg for Metal

  9. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program...

  10. International photovoltaic products and manufacturers directory, 1995

    SciTech Connect (OSTI)

    Shepperd, L.W.

    1995-11-01

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  11. Manufacturing Fuel Pellets from Biomass Introduction

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Manufacturing Fuel Pellets from Biomass Introduction Wood pellets have increased tremendously pellet stoves or boilers over traditional wood-fired equipment due to their relative ease of use. As a result, the demand for fuel pellets has also grown quickly. However, wood is not the only suitable

  12. Advanced Manufacturing Office: Smart Manufacturing Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    14 The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) held a Smart Manufacturing Industry Day on February 25, 2015, at the Georgia Tech Hotel and...

  13. Electrolyzer Manufacturing Progress and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    John Torrance, Director of Manufacturing DOE Manufacturing Workshop 81211 Outline * Proton Commercialization Status: PEM Electrolysis * Current Manufacturing Limitations: Stack...

  14. Sandia Energy - Manufacturing Supply Chain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Supply Chain Home Stationary Power Energy Conversion Efficiency Wind Energy Materials, Reliability, & Standards Manufacturing Supply Chain Manufacturing Supply...

  15. Ultratech Develops an Improved Lithography Tool for LED Wafer Manufacturing

    Broader source: Energy.gov [DOE]

    Ultratech modified an existing lithography tool used for semiconductor manufacturing to better meet the cost and performance targets of the high-brightness LED manufacturing industry. The goal was to make the equipment compatible with the wide range of substrate diameters and thicknesses prevalent in the industry while reducing the capital cost and the overall cost of ownership (COO).

  16. Recovery Act Incentives for Wind Energy Equipment Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to 30% of system costs is also available to individuals who purchase and install small wind energy systems. www.dsireusa.orgincentivesincentive. cfm?IncentiveCodeUS02F The...

  17. Tax Credit for Renewable Energy Equipment Manufacturers | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher iSlide 1Greta Kathy CongableSeptember, 2014 U. S.

  18. Recovery Act Incentives for Wind Energy Equipment Manufacturing |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: JuliaDepartment-8-2008RSSa Webcast that wasBuilding

  19. China Shandong Penglai Electric Power Equipment Manufacturing | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:ChangingCNE Jump to: navigation, search

  20. Nordex Dongying Wind Power Equipment Manufacturing Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgency (IRENA)Options Jump to: navigation,

  1. Nordex Yinchuan Wind Power Equipment Manufacturing Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgency (IRENA)Options Jump to: navigation,Information

  2. US Recovery Act Smart Grid Projects - Equipment Manufacturing | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWind Power CoInformation

  3. Yatu Yangjiang Fengdian Equipment Manufacturing Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo NewYanbu, Saudi Arabia: Energy Resources

  4. Ningxia Yinxing Energy PV Power Equipment Manufacturing Co Ltd | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: Energy Resources JumpInformationSilicon

  5. Category:Smart Grid Projects - Equipment Manufacturing | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPID Roadmap ContactRock DensitySmall

  6. List of Processing and Manufacturing Equipment Incentives | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressed airGeothermalListPersonal

  7. Educated and Equipped: Energy & Manufacturing Training | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25,EV Everywhere|MuscleEnergy Energy &

  8. Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTL SolarGateMingyangHangtianOpen EnergyHong

  9. Guides to pollution prevention: The paint-manufacturing industry

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    Paint manufacturing facilities generate large quantities of both hazardous and nonhazardous wastes. These wastes are: equipment cleaning wastewater and waste solvent, filter cartridges, off-spec paint, spills, leftover containers; and pigment dusts from air pollution control equipment. Reducing the generation of these wastes at the source, or recycling the wastes on- or off-site, will benefit paint manufacturers by reducing raw material needs, reducing disposal costs; and lowering the liabilities associated with hazardous waste disposal. The guide provides an overview of the paint manufacturing processes and operations that generate waste and presents options for minimizing the waste generation through source reduction or recycling.

  10. Advanced Manufacturing Office News

    SciTech Connect (OSTI)

    2013-08-08

    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  11. RESEARCH GROUP MANUFACTURING

    E-Print Network [OSTI]

    Psarrakos, Panayiotis

    RESEARCH GROUP MANUFACTURING ADDITIVE www.lboro.ac.uk/amrg PhD Studentships in Additive by the Additive Manufacturing Research Group is based around a family of processes comprising of adding layers Additive Manufacturing Research Group in the Wolfson School of Mechanical & Manufacturing Engineering

  12. Advanced Manufacturing Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Manufacturing Production Technician; Electro-Mechanical Technician; Electronics Maintenance Technician  

  13. Low Cost Lithography Tool for High Brightness LED Manufacturing

    SciTech Connect (OSTI)

    Andrew Hawryluk; Emily True

    2012-06-30

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  14. Manufacturing fuel-switching capability, 1988

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  15. Early Equipment Management

    E-Print Network [OSTI]

    Schlie, Michelle

    2007-05-18

    Installed .................................................40 Exhibit 11: 400 Gallon Tank and K-Tron Feeder................................................42 Exhibit 12: Cardboard Box Layout of First Floor Equipment ..............................43... Exhibit 13: Continuous Mixer .............................................................................43 Exhibit 14: Gantry Palletizer...............................................................................44 Page 4 Acknowledgements I...

  16. Appendix D Instrumentation and equipment This appendix contains the tables of instrumentation and equipment used in the Griffin field experiment. For each sensor/instrument the

    E-Print Network [OSTI]

    Appendix D Instrumentation and equipment This appendix contains the tables of instrumentation and equipment used in the Griffin field experiment. For each sensor/instrument the manufacturer and item serial / #020 Gill Instruments Cup anemometer Wind speed - analogue 0.00421 0.2041 U = V Denominator

  17. Laboratory Equipment Donation Program - Equipment List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and masthead Berkeley LablooksEquipment List

  18. Development of an NC equipment level controller in a hierarchical shop floor control system 

    E-Print Network [OSTI]

    Chang, William

    1993-01-01

    The methodology of developing an NC equipment controller in a Computer Integrated Manufacturing (CIM) System, which is based on a philosophy of hierarchical shop floor control, is presented in this research. The underlying architecture consists...

  19. Mechanical, Industrial & Manufacturing

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Mechanical, Industrial & Manufacturing Engineering (MIME) COLLEGE OF ENGINEERING FY2013 Oregon graduate degrees (MS, MEng, PhD) in mechanical engineering, industrial engineering, and materials science. We offer bachelor's degrees in mechanical, industrial, manufacturing, and energy systems engineering

  20. Manufacturing Day 2015

    Broader source: Energy.gov [DOE]

    All over the country, manufacturing companies and other organizations are preparing to host an anticipated 400,000 people who want to experience U.S. manufacturing up close and in person. On...

  1. Energy Use in Manufacturing

    Reports and Publications (EIA)

    2006-01-01

    This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

  2. Proceedings of NAMRI/SME, Vol. 39, 2011 Additive Manufacturing based on Optimized Mask Video

    E-Print Network [OSTI]

    Chen, Yong

    Proceedings of NAMRI/SME, Vol. 39, 2011 Additive Manufacturing based on Optimized Mask Video@usc.edu, (213) 740-7829 ABSTRACT Additive manufacturing (AM) processes based on mask image projection and resolution of built components. KEYWORDS Additive manufacturing, Solid freeform fabrication, Mask image

  3. Promoting Advanced Manufacturing Clusters in

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Promoting Advanced Manufacturing Clusters in Tennessee1 1 This report is supported, Economic Development Administration; and the Manufacturing Extension Partnership Program, National.........................................................................................................................1 Context: Trends in Tennessee Manufacturing

  4. Enabling Manufacturing Research through Interoperability

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul; Helu, Moneer; Vijayaraghavan, Athulan

    2009-01-01

    IMECE2004. Dornfeld, D. , Lee, D, Manufacturing, Springer.Precision future manufacturing," J. Int. Manuf, 11, pp.Merchant, M. E. , 1961, "The manufacturing system concept in

  5. Energy Use in Nanoscale Manufacturing

    E-Print Network [OSTI]

    Zhang, Teresa; Boyd, Sarah; Vijayaraghavan, Athulan; Dornfeld, David

    2006-01-01

    on Semiconductor Manufacturing, vol. 17, pp. 554–561, 2004.intensity of computer manufacturing: Hybrid assessmentand Integrated NAno-Manufacturing ( SINAM ). Any opinions, ?

  6. Review: Manufacturing National Park Nature

    E-Print Network [OSTI]

    Mason, Fred

    2012-01-01

    Review: Manufacturing National Park Nature: Photography,Canada Cronin, J. Keri. Manufacturing National Park Nature:J. Keri Cronin’s book Manufacturing National Park Nature

  7. Manufacturing Battle Creek

    E-Print Network [OSTI]

    de Doncker, Elise

    to the manufacturing sector in Western Michigan. In addition to serving as director of the MRC, Dr. Patten is alsoManufacturing Research Center Kalamazoo Battle Creek The College of Engineering and Applied Sciences The Supporting manufacturing industries by providing opportunities for collaboration with faculty

  8. International Crystal Manufacturing

    E-Print Network [OSTI]

    Berns, Hans-Gerd

    International Crystal Manufacturing CRYSTAL OSCILLATOR AND FILTER PRODUCTS International Crystal Manufacturing, Inc. P.O. Box 26330 · Oklahoma City, OK 73126-0330 · Phone (405) 236-3741 Fax (405) 235@icmfg.com #12;2 International Crystal Manufacturing, Inc. P.O. Box 26330 · Oklahoma City, OK 73126-0330 · Phone

  9. Applications of Artificial Neural Networks (ANNs) to Rotating Equipment

    E-Print Network [OSTI]

    Sainudiin, Raazesh

    , automotive, banking, defense, electronics, finance, insurance, manufacturing, medicine, oil and gas, robotics a vital role in oil and power industries. In spite of all research which has been carried out so far equipment, rotating machine, oil and power industry 1-PhD Candidate 2-Professor, Director of Mechatronics

  10. Health Care Buildings: Equipment Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Equipment Table Buildings, Size and Age Data by Equipment Types for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet)...

  11. Laser alignment of rotating equipment at PNL

    SciTech Connect (OSTI)

    Berndt, R.H.

    1994-05-01

    Lateral vibration in direct-drive equipment is usually caused by misalignment. Over the years, because of the need to improve on techniques and ways of working more efficiently, various types of alignment methods have evolved. In the beginning, craftsmen used a straight-edge scale across the coupling with a feeler gauge measuring the misalignment error. This is still preferred today for aligning small couplings. The industry has since decided that alignment of large direct-drive equipment needed a more accurate type of instrumentation. Rim and face is another of the first alignment methods and is used on all sizes of equipment. A disadvantage of the rim and face method is that in most cases the coupling has to be disassembled. This can cause alignment problems when the coupling is reassembled. Also, the rim and face method is not fast enough to work satisfactorily on alignment of thermally hot equipment. Another concern is that the coupling has to be manufactured accurately for correct rim and face readings. Reverse dial alignment is an improvement over the rim and face method, and depending on the operator`s experience, this method can be very accurate. A good training program along with field experience will bring the operator to a proper level of proficiency for a successful program. A hand-held computer with reverse dial calculations in memory is a must for job efficiency. An advantage over the rim and face method is that the coupling is not disassembled and remains locked together. Reverse dial instrumentation measures from both shaft center lines, rather than the coupling surface so the machining of the coupling during manufacture is not a major concern.

  12. Equipment Operational Requirements

    SciTech Connect (OSTI)

    Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

    2009-06-11

    The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

  13. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat Pumpsfacility doe logo CH2M-WG logoImaging

  14. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower,PrincipalIdahoImaging Print The

  15. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower,PrincipalIdahoImaging Print

  16. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  17. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  18. Additive Manufacturing: Going Mainstream

    Broader source: Energy.gov [DOE]

    Additive manufacturing, or 3D printing, is receiving attention from media, investment communities and governments around the world transforming it from obscurity to something to be talked about.

  19. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  20. Advanced Materials Manufacturing | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Manufacturing New materials drive the development of innovative products. Building upon a rich history in materials science, ORNL is discovering and developing...

  1. Roll to Roll Manufacturing

    SciTech Connect (OSTI)

    Daniel, Claus

    2015-06-09

    ORNL researchers are developing roll to roll technologies for manufacturing, automotive, and clean energy applications in collaboration with industry partners such as Eastman Kodak.

  2. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Guide explains the different types of alternative fuel commercial mowers and lists the makes and models of the ones available on the market. Turf grass is a fixture of the American landscape and the American economy. It is the nation's largest irrigated crop, covering more than 40 million acres. Legions of lawnmowers care for this expanse during the growing season-up to year-round in the warmest climates. The annual economic impact of the U.S. turf grass industry has been estimated at more than $62 billion. Lawn mowing also contributes to the nation's petroleum consumption and pollutant emissions. Mowers consume 1.2 billion gallons of gasoline annually, about 1% of U.S. motor gasoline consumption. Commercial mowing accounts for about 35% of this total and is the highest-intensity use. Large property owners and mowing companies cut lawns, sports fields, golf courses, parks, roadsides, and other grassy areas for 7 hours per day and consume 900 to 2,000 gallons of fuel annually depending on climate and length of the growing season. In addition to gasoline, commercial mowing consumes more than 100 million gallons of diesel annually. Alternative fuel mowers are one way to reduce the energy and environmental impacts of commercial lawn mowing. They can reduce petroleum use and emissions compared with gasoline- and diesel-fueled mowers. They may also save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and promote a 'green' image. And on ozone alert days, alternative fuel mowers may not be subject to the operational restrictions that gasoline mowers must abide by. To help inform the commercial mowing industry about product options and potential benefits, Clean Cities produced this guide to alternative fuel commercial lawn equipment. Although the guide's focus is on original equipment manufacturer (OEM) mowers, some mowers can be converted to run on alternative fuels. For more information about propane conversions. This guide may be particularly helpful for organizations that are already using alternative fuels in their vehicles and have an alternative fuel supply or electric charging in place (e.g., golf cart charging stations at most golf courses). On the flip side, experiencing the benefits of using alternative fuels in mowing equipment may encourage organizations to try them in on-road vehicles as well. Whatever the case, alternative fuel commercial lawnmowers are a powerful and cost-effective way to reduce U.S. petroleum dependence and help protect the environment.

  3. Lean manufacturing in a mass customization plant : improved efficiencies in raw material presentation

    E-Print Network [OSTI]

    Daneshmand, Moojan

    2011-01-01

    This thesis focuses on the application of the principles of lean manufacturing at Varian Semiconductor Equipment Associates (VSEA). The company faces the challenges of highly customized assembly as well as fluctuating ...

  4. The Sixth Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    About 140 industry leaders from across the country, representing every link in the supply chain—from chip makers, to luminaire manufacturers, to material and equipment suppliers, to packagers, to...

  5. The Fourth Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    Two hundred lighting industry leaders from across the country, representing every link in the supply chain—from chip makers, to luminaire manufacturers, to material and equipment suppliers, to packagers, to luminaire testers, to the makers of testing equipment—gathered in San Jose, CA, June 13–14, 2012, to share insights, ideas, and updates at the fourth annual Solid-State Lighting (SSL) Manufacturing R&D Workshop, hosted by DOE. The workshop is a key component of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes, and to foster a significant manufacturing role in the U.S. This year in San Jose, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

  6. The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 250 industry leaders from all corners of the supply chain – including chip makers, luminaire manufacturers, material and equipment suppliers, packagers, luminaire testers, and makers of testing equipment – gathered in San Jose, CA, April 21-22, 2010, to share insights, ideas, and updates at the second annual Solid-State Lighting (SSL) Manufacturing R&D Workshop, hosted by DOE. This workshop is a key part of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes and to foster a significant manufacturing role in the U.S. This year in San Jose, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

  7. The Fifth Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 150 industry leaders from across the country, representing every link in the supply chain—chip makers, luminaire manufacturers, material and equipment suppliers, packagers, luminaire testers, and makers of testing equipment—gathered in Boston June 5–6, 2013, to share insights, ideas, and updates at the fifth annual Solid-State Lighting Manufacturing R&D Workshop, hosted by DOE. The workshop is a key component of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes, and to foster a significant manufacturing role in the U.S. This year in Boston, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

  8. The Third Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 250 lighting industry leaders from across the country, representing every link in the supply chain—from chip makers, to luminaire manufacturers, to material and equipment suppliers, to packagers, to luminaire testers, to the makers of testing equipment—gathered in Boston April 12–13, 2011, to share insights, ideas, and updates at the third annual Solid-State Lighting (SSL) Manufacturing R&D Workshop, hosted by DOE. The workshop is a key component of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes and to foster a significant manufacturing role in the U.S. This year in Boston, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

  9. Manufacturing Demonstration Facility

    E-Print Network [OSTI]

    life-cycle energy and greenhouse gas emissions, lower production cost, and create new products Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing

  10. Clean Energy Manufacturing Initiative

    SciTech Connect (OSTI)

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  11. China production equipment sourcing strategy

    E-Print Network [OSTI]

    Chouinard, Natalie, 1979-

    2009-01-01

    This thesis recommends a China business and equipment strategy for the Controls Conveyor Robotics Welding (CCRW) group at General Motors. The current strategy is to use globally common equipment through predetermined global ...

  12. Manufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced

    E-Print Network [OSTI]

    applications related to additive manufacturing or carbon fiber and composites will have the highest likelihood in additive manufacturing or carbon fiber and composites. #12;MDF: Technology Collaborations for USManufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced

  13. UNIRIB: Equipment Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0 - 19 Publications 1. Xie, Z.; Ma, L.;1Equipment

  14. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

  15. Number of Large Energy User Manufacturing Facilities by Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Petroleum and Coal Products Manufacturing Chemical Manufacturing & Plastics and Rubber Products Manufacturing Nonmetallic Mineral Product Manufacturing Primary...

  16. From "Smart Manufacturing" to "Manufacturing Smart" Manufacturing as a core enabler of the Internet of Things

    E-Print Network [OSTI]

    Das, Suman

    Page | 1 From "Smart Manufacturing" to "Manufacturing Smart" Manufacturing as a core enabler in the United States (see the announcement of the Advanced Manufacturing Partnership Steering Committee "2 manufacturing on economic growth and competitiveness. It has been recently suggested that "a network of sensors

  17. Advanced Technology Vehicles Manufacturing (ATVM) Loan Program...

    Office of Environmental Management (EM)

    Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan...

  18. Manufacturing-aware physical design techniques

    E-Print Network [OSTI]

    Sharma, Puneet

    2007-01-01

    C. Design for Manufacturing . . . . . . . . . . .for Microelectronic Manufacturing, 2006, pp. 61560T-1 –for Microelectronic Manufacturing, vol. 5042, 2003, pp. 99–

  19. Honda: North American Manufacturing Facilities | Department of...

    Office of Environmental Management (EM)

    Honda: North American Manufacturing Facilities Honda: North American Manufacturing Facilities From October, 2008 Honda: North American Manufacturing Facilities More Documents &...

  20. Improving maintenance work flow processes in a volatile assembly factory environment : maintenance people and processes, spares inventory, and equipment reliability

    E-Print Network [OSTI]

    Chase, H. Ryan (Harold Ryan)

    2005-01-01

    Many manufacturing companies face significant challenges in maintaining their factory equipment in a cost efficient manner so as to provide reliable production capacity. CEI (Consumer Electronics, Inc., a pseudonym for an ...

  1. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers...

  2. Arnold Schwarzenegger RESEARCH ON MANUFACTURING

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor RESEARCH ON MANUFACTURING QUADRUPLE-JUNCTION SOLAR CELLS Prepared ON MANUFACTURING QUADRUPLE-JUNCTION SOLAR CELLS EISG AWARDEE Chemical Engineering Department University Efficiency · Renewable Energ

  3. HPC4Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Deborah May, Lawrence Livermore National Laboratory U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 LLNL-PRES-792637 This work was...

  4. Manufacturing High Temperature Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report Management Challenges atEnergy ManufacturingThe Office

  5. List of Manufacturing Groups Displayed in the 1998 Manufacturing...

    Gasoline and Diesel Fuel Update (EIA)

    332 Fabricated Metal Products 333 Machinery 334 Computer and Electronic Products 335 Electrical Equip., Appliances, and Components 336 Transportation Equipment 337 Furniture and...

  6. Global Influences on UK Manufacturing Prices

    E-Print Network [OSTI]

    Coutts, Ken; Norman, Neville R.

    2004-06-16

    being the index of production to an index of the number of employed persons. We further disaggregate costs by separating unit labour costs, WUC and materials prices, PMAT5. lp = a0 + a1t + a2lwuc + a3 lpmat + a4 lpm + u (3) Finally, we... within the sector. Others, like mechanical equipment, though a large sector of manufacturing, have a much wider dispersion of firm size. Chemicals and motor vehicles both have a high percentage of foreign-owned plant, while firms in clothing and textiles...

  7. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  8. 4. Manufacturing Isovolumes Michael Bailey

    E-Print Network [OSTI]

    Bailey, Mike

    4. Manufacturing Isovolumes Michael Bailey 4.1 Introduction Displaying a single isosurface provides and then manufactures them, providing a non-volatile display of several isosurfaces. The inspiration for this idea, tetrahedralization produces more information than is necessary for prototype manufacturing. Prototype manufacturing

  9. LNG infrastructure and equipment

    SciTech Connect (OSTI)

    Forgash, D.J.

    1995-12-31

    Sound engineering principals have been used by every company involved in the development of the LNG infrastructure, but there is very little that is new. The same cryogenic technology that is used in the manufacture and sale of nitrogen, argon, and oxygen infrastructure is used in LNG infrastructure. The key component of the refueling infrastructure is the LNG tank which should have a capacity of at least 15,000 gallons. These stainless steel tanks are actually a tank within a tank separated by an annular space that is void of air creating a vacuum between the inner and outer tank where superinsulation is applied. Dispensing can be accomplished by pressure or pump. Either works well and has been demonstrated in the field. Until work is complete on NFPA 57 or The Texas Railroad Commission Rules for LNG are complete, the industry is setting the standards for the safe installation of refueling infrastructure. As a new industry, the safety record to date has been outstanding.

  10. INL '@work' heavy equipment mechanic

    SciTech Connect (OSTI)

    Christensen, Cad

    2008-01-01

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  11. INL '@work' heavy equipment mechanic

    ScienceCinema (OSTI)

    Christensen, Cad

    2013-05-28

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  12. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    SciTech Connect (OSTI)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  13. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  14. Photovoltaic manufacturing technology

    SciTech Connect (OSTI)

    Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. (Solarex Corp., Frederick, MD (United States))

    1991-12-01

    This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

  15. MERIT Equipment MERIT Video Conference

    E-Print Network [OSTI]

    McDonald, Kirk

    of Energy MERIT Equipment Dismantlement 1 Sept 2010 #12;What's Left · Hydraulic Power Unit (HPU disposal Sept 2010 (estimated) 2 Managed by UT-Battelle for the U.S. Department of Energy MERIT Equipment secondary containmentco ta e t · Hydraulic fluid drained & cylinders removed& cy de s e o ed 3 Managed by UT

  16. UCI Equipment Management Peter's Exchange

    E-Print Network [OSTI]

    Wood, Marcelo A.

    the Asset Retirement Global document available in KFS under KFS Capital Asset Management (as the EIMR formUCI Equipment Management Peter's Exchange (UCI Surplus Sales) SURPLUS PICK-UP REQUEST Department) Phone: (949) 824-6111, 6447, 6519, 6100 Fax this form to (949) 824-4115, or e-mail Equipment-Management

  17. The design and testing of subsea production equipment: Current practice and potential for the future

    SciTech Connect (OSTI)

    Cort, A.J.C.; Ford, J.T.

    1995-12-31

    This paper presents an analysis of the current approach to the design and testing of equipment used in subsea developments. The paper critically assesses the current equipment specification, design, manufacture and testing process. An essential part of the analysis is a review of the standards used by the industry and statutory regulations which impact on this process. It raises significant questions about the efficacy of the design and testing procedures and the role of the regulating bodies in that process. It discusses the impact of poor specification and design procedures, and inadequate testing, of the safety and reliability of the equipment. As a consequence of the analysis it is suggested that the manner in which equipment is specified, designed and tested may need to be changed in order to meet future needs. The above issues are focused, by considering the production of a subsea wellhead, from specification by the operator to delivery by the manufacturer.

  18. Information technology equipment cooling method

    DOE Patents [OSTI]

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  19. The Results (Lessons Learned) of More than 110 Energy Audits for Manufacturers by the Louisiana Industrial Assessment Center 

    E-Print Network [OSTI]

    Kozman, T.; Davies, T.; Reynolds, C.; O'Quin, R.; DaCosta, J.; Galti, T.; Pechon, C.; Stutes, K.

    2005-01-01

    and conducted its first industrial energy assessment in December 2000. In this paper we present the results of this energy assessment and those of 112 more through August 2004. By industrial type, these assessments were for: Oilfield Equipment Manufacturing (23...

  20. for Industry Manufacturing

    E-Print Network [OSTI]

    helps to reduce risk and accelerate the development and deployment of innovative energy-efficient Energy Research Nation's broadest portfolio of energy generation and efficiency programs ScienceA National Resource for Industry Manufacturing Demonstration Facility #12;As the nation's premier

  1. MANUFACTURING & SERVICE OPERATIONS MANAGEMENT

    E-Print Network [OSTI]

    Chiang, Wei-yu Kevin

    an upstream firm, as a result of charging a wholesale price above the marginal cost, induces its intermediary Dynamics and Channel Efficiency in Durable Product Pricing and Distribution Wei-yu Kevin Chiang College the single-period vertical price interaction in a manufacturer­retailer dyad to a multi- period setting

  2. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative

  3. Design for manufacturability Design verification

    E-Print Network [OSTI]

    Patel, Chintan

    ITRS Design #12;Design · Design for manufacturability · Design verification #12;Design for Manufacturability · Architecture challenges · Logic and circuit challenges · Layout and physical design challenges · Expected to be the source of multiple DFM challenges · Invest in variability reduction or design

  4. Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  5. Embedding Sustainability into Manufacturing Organizations 

    E-Print Network [OSTI]

    Tutterow, V.

    2014-01-01

    will be reviewed, also. This paper has an emphasis on smaller manufacturers, and will discuss how large manufacturers can engage the smaller companies within their global supply chains in both energy management and sustainability....

  6. Axiomatic Deisgn of Manufacturing Systems

    E-Print Network [OSTI]

    Cochran, David

    This paper introduces the use of axiomatic design in the design of manufacturing systems. The two primary functional requirements of any manufacturing system are developed. These functional requirements are then used to ...

  7. Design and Manufacture of a Laparoscopic Telesurgical and Telementoring Robot Manipulator

    E-Print Network [OSTI]

    Prince, Stephen William

    2012-01-01

    Manufacture Case Studies . . . . . . .Engineering & Manufacture Design . . . . . . . . . . .6 Manufacture of the

  8. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 ITP Nanomanufacturing:...

  9. Origins of Eponymous Orthopaedic Equipment

    E-Print Network [OSTI]

    Meals, Clifton; Wang, Jeffrey

    2010-01-01

    equipment named for their inventors and in the broadest useof dermatology and a proli?c inventor. He produced a single-Foley’s described the inventor as having a ‘‘great presence

  10. Manufacturing Research and Development | Department of Energy

    Office of Environmental Management (EM)

    Manufacturing Research and Development Manufacturing Research and Development The Fuel Cell Technologies Office's manufacturing research and development (R&D) activity improves...

  11. Smart Manufacturing Innovation Institute: Overview, Goals and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Manufacturing Innovation Institute: Overview, Goals and Activities AMO Industry Day February 25, 2015 Isaac Chan Advanced Manufacturing Office www.manufacturing.energy.gov 2...

  12. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry...

  13. Precision and Energy Usage for Additive Manufacturing

    E-Print Network [OSTI]

    Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

    2013-01-01

    Sustainability of additive manufacturing: measuring theCommittee F42 on Additive Manufacturing Technologies," TheASTM Committee F42 on Additive Manufacturing Technologies. -

  14. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy...

  15. Tennessee's Manufacturing Sector Before and After the

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Tennessee's Manufacturing Sector Before and After the Great Recession Prepared by Matthew N. Murray....................................................................................................................................... 1 Manufacturing in the Post Great Recession Era............................................................................... 2 Manufacturing Employment Trends

  16. Precision and Energy Usage for Additive Manufacturing

    E-Print Network [OSTI]

    Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

    2013-01-01

    optimisation in manufacturing," International Journal ofEnergy Requirements for Manufacturing Processes," in 13thenergy consumption of manufacturing processes: a case of

  17. "Technology Wedges" for Implementing Green Manufacturing

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul

    2007-01-01

    Environmentally benign manufacturing: Trends in Europe,USA” Trans. ASME, J. Manufacturing Science and Engineering,and Computer Integrated Manufacturing, 15, pp. 257-270.

  18. Sustainable Manufacturing – Greening Processes, Systems and Products

    E-Print Network [OSTI]

    Dornfeld, David

    2010-01-01

    International Chemnitz Manufacturing Colloquium Prof. R.mittels Sustainable Manufacturing - Greening Processes,Annals - Dornfeld, D. A and its Manufacturing University of

  19. Precision Manufacturing Process Monitoring with Acoustic Emission

    E-Print Network [OSTI]

    Lee, D. E.; Hwang, I.; Valente, C. M. O.; Oliviera, J. F.G.; Dornfeld, D. A.

    2006-01-01

    feedback in a fully automated manufacturing environment. 8.Conclusions As current manufacturing trends aim for smallerfor open architecture manufacturing of precision machining

  20. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

    2011-01-01

    reduction technology in manufacturing – A selective reviewD. , Sustainable Manufacturing – Greening Processes, SystemsStrategies for Green Manufacturing, Proceedings of the 4th

  1. Appropriate use of Green Manufacturing Frameworks

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2010-01-01

    Wedges for Implementing Green Manufacturing,” Trans.North American Manufacturing Research Institute, vol. 35,A. (2008), “Metrics for Manufacturing Sustainability,” Proc.

  2. Precision Manufacturing Process Monitoring With Acoustic Emission

    E-Print Network [OSTI]

    Lee, D.E.; Huang, Inkil; Valente, Carlos M. O.; Oliveira, J. F.; Dornfeld, David

    2006-01-01

    feedback in a fully automated manufacturing environment. 8.Conclusions As current manufacturing trends aim for smallerfor open architecture manufacturing of precision machining

  3. "Technology Wedges" for Implementing Green Manufacturing

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul

    2007-01-01

    Environmentally benign manufacturing: Trends in Europe,USA” Trans. ASME, J. Manufacturing Science and Engineering,Design and Inverse Manufacturing, Tokyo, Japan. Krishnan,

  4. Leveraging Manufacturing for a Sustainable Future

    E-Print Network [OSTI]

    Dornfeld, David

    2011-01-01

    for Implementing Green Manufacturing”, NAMRI Trans. , 35,issue is whether or not manufacturing can rightfully claimreal products through manufacturing. So, for sure, the role

  5. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01

    reduction technology in manufacturing – A selective reviewContribution of Labor to Manufacturing Energy Use,” Proc. ofResearch in Sustainable Manufacturing,” Proc. of the ASME

  6. Water-Using Equipment: Domestic

    SciTech Connect (OSTI)

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water management is an important aspect of energy engineering. This article addresses water-using equipment primarily used for household purposes, including faucets, showers, toilets, urinals, dishwashers, and clothes washers, and focuses on how the equipment can be optimized to save both water and energy. Technology retrofits and operation and maintenance changes are the primary methods discussed for water and energy conservation. Auditing to determine current consumption rates is also described for each technology.

  7. Out of Bounds Additive Manufacturing

    SciTech Connect (OSTI)

    Holshouser, Chris [Lockheed Martin Corporation; Newell, Clint [Lockheed Martin Corporation; Palas, Sid [Lockheed Martin Corporation; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Lind, Randall F [ORNL; Lloyd, Peter D [ORNL; Rowe, John C [ORNL; Blue, Craig A [ORNL; Duty, Chad E [ORNL; Peter, William H [ORNL; Dehoff, Ryan R [ORNL

    2013-01-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing (AM) system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  8. Out of bounds additive manufacturing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Holshouser, Chris; Newell, Clint; Palas, Sid; Love, Lonnie J.; Kunc, Vlastimil; Lind, Randall F.; Lloyd, Peter D.; Rowe, John C.; Blue, Craig A.; Duty, Chad E.; et al

    2013-03-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  9. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 11, NO. 1, FEBRUARY 1998 63 Integrated Dynamic Simulation of Rapid Thermal

    E-Print Network [OSTI]

    Rubloff, Gary W.

    for manufacturing optimization and control. Index Terms--CVD, semiconductor process modeling, simula- tion. I the potential of this simulation technique in design, optimization [2], and control of processes and equipment- gration of individual simulator elements for equipment, process, sensors, and control systems enables

  10. MANUFACTURING NIST Impact Verification Program

    E-Print Network [OSTI]

    such as oil and gas pipelines, heavy trucks, mining equipment, power plants and wind turbines. Credit such as Arcelor- Mittal, Nucor, U. S. Steel and SSAB, as well as heavy equipment manufac- turers

  11. Improved Biomass Cooking Stoves and Improved Stove Emission Equipment

    SciTech Connect (OSTI)

    HATFIELD, MICHAEL; Still, Dean

    2013-04-15

    In developing countries, there is an urgent need for access to safe, efficient, and more affordable cooking technologies. Nearly 2.5 billion people currently use an open fire or traditional cookstove to prepare their meals, and recent models predict that use of biomass for cooking will continue to be the dominant energy use in rural, resource-poor households through 2030. For these families, cooking poses serious risks to health, safety, and income. An alarming 4 million people, primarily women and children, die prematurely each year from indoor and outdoor exposure to the harmful emissions released by solid fuel combustion. Use of traditional stoves can also have a significant impact on deforestation and climate change. This dire situation creates a critical need for cookstoves that significantly and verifiably reduce fuel use and emissions in order to reach protective levels for human health and the environment. Additionally, advances in the scientific equipment needed to measure and monitor stove fuel use and emissions have not kept pace with the significant need within the industry. While several testing centers in the developed world may have hundred thousand-dollar emissions testing systems, organizations in the field have had little more than a thermometer, a scale, and subjective observations to quantify the performance of stove designs. There is an urgent need for easy-to-use, inexpensive, accurate, and robust stove testing equipment for use by laboratory and field researchers around the world. ASAT and their research partner, Aprovecho Research Center (ARC), have over thirty years of experience addressing these two needs, improved cookstoves and emissions monitoring equipment, with expertise spanning the full spectrum of development from conceptual design to product manufacturing and dissemination. This includes: 1) research, design, and verification of clean biomass cookstove technology and emissions monitoring equipment; 2) mass production of quality-controlled stove and emissions equipment at levels scalable to meet global demand; and 3) global distribution through a variety of channels and partners. ARC has been instrumental in designing and improving more than 100 stove designs over the past thirty years. In the last four years, ASAT and ARC have played a key role in the production and sales of over 200,000 improved stoves in the developed and developing world. The ARC-designed emissions equipment is currently used by researchers in laboratories and field studies on five continents. During Phase I of the DOE STTR grant, ASAT and ARC worked together to apply their wealth of product development experience towards creating the next generation of improved cookstoves and emissions monitoring equipment. Highlights of Phase I for the biomass cookstove project include 1) the development of several new stove technologies that reached the DOE 50/90 benchmark; 2) fabrication of new stove prototypes by ASAT’s manufacturing partner, Shengzhou Stove Manufacturing (SSM); 3) field testing of prototype stoves with consumers in Puerto Rico and the US; and 4) the selection of three stove prototypes for further development and commercialization during Phase II. Highlights of Phase I for the emissions monitoring equipment project include: 1) creation of a new emissions monitoring equipment product, the Laboratory Emissions Monitoring System (LEMS 2) the addition of gravimetric PM measurements to the stove testing systems to meet International Standards Organization criteria; 3) the addition of a CO{sub 2} sensor and wireless 3G capability to the IAP Meter; and 4) and the improvement of sensors and signal quality on all systems. Twelve Regional Testing and Knowledge Centers purchased this equipment during the Phase I project period.

  12. Summary of Construction Equipment Tests and Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment Tests A series of tests were conducted by the APS Construction Vibration Measurement Task Force using various pieces of construction equipment at the APCF...

  13. Seminar Title: Additive Manufacturing Advanced Manufacturing of Polymer and Composite Components

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Seminar Title: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Additive manufacturing technologies Functionally Integrated Composite Structures, Augsburg, Germany ME Faculty Candidate Abstract: Additive

  14. This Material Copyrighted By Its Respective Manufacturer This Material Copyrighted By Its Respective Manufacturer

    E-Print Network [OSTI]

    Lanterman, Aaron

    This Material Copyrighted By Its Respective Manufacturer #12;This Material Copyrighted By Its Respective Manufacturer #12;This Material Copyrighted By Its Respective Manufacturer #12;This Material Copyrighted By Its Respective Manufacturer #12;This Material Copyrighted By Its Respective Manufacturer #12

  15. Faculty Position in Mechanical Engineering Additive Manufacturing

    E-Print Network [OSTI]

    Faculty Position in Mechanical Engineering Additive Manufacturing University of Kansas of additive manufacturing. Exceptional candidates with outstanding qualifications could be considered using additive manufacturing in applications such as, but not limited to the net shape manufacture of

  16. Posted 10/18/11 MANUFACTURING ENGINEER

    E-Print Network [OSTI]

    Heller, Barbara

    manufacturing processes in our Metal Fabrication and Assembly departments. Additional responsibilities includePosted 10/18/11 MANUFACTURING ENGINEER Kenall Manufacturing Gurnee, IL Kenall, a leading manufacturer of advanced lighting solutions for specialized environments, has exceptional opportunities

  17. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy...

  18. Clean Energy Manufacturing Innovation Institute for Composites...

    Office of Environmental Management (EM)

    Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures...

  19. Clean Energy Manufacturing Innovation Institute for Composite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Innovation Institute for Composite Materials And Structures Webinar Clean Energy Manufacturing Innovation Institute for Composite Materials And...

  20. Manufacturing Energy and Carbon Footprint References | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    References Manufacturing Energy and Carbon Footprint References footprintreferences.pdf More Documents & Publications 2010 Manufacturing Energy and Carbon Footprints: References...

  1. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel...

  2. Performance, Market and Manufacturing Constraints relevant to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market and Manufacturing Constraints relevant to the Industrialization of Thermoelectric Devices Performance, Market and Manufacturing Constraints relevant to the...

  3. Clean Energy Manufacturing Initiative Midwest Regional Summit...

    Broader source: Energy.gov (indexed) [DOE]

    Lightweighting Breakout Session Summary More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Multimaterial Joining Workshop Manufacturing...

  4. CIMplementation™: Evaluating Manufacturing Automation 

    E-Print Network [OSTI]

    Krakauer, J.

    1985-01-01

    into two parts. CAM hardware inciudes machine tools with programmable controllers and on -board feedback devi ces for qua 1ity con~ ro 1 of cutting tools and workpieces. Automatrd assembly machines, despite their high degree of speci ali zed app 1i... the machines running. Manufacturing managers should examine their operation and their specific competences before apP 3 0aching CIM CIM is not for every one. (Gold and Gerwin a recommend guidelines for determining the degree of fit between CIM ;", and a...

  5. Calibrating Pesticide Application Ground Equipment 

    E-Print Network [OSTI]

    Shaw, Bryan W.

    2000-07-05

    - pose of rinse water as hazardous waste. Clean and lubricate the pump. Equipment used to apply certain pesticides should not be used to apply others. Do not use equipment to apply 2,4-D, MCPA, 2,4-DP, MCPP, and 2,4- DB for any other purpose because... or a commercial decontaminate for- mulation. Most contain a combination of soda ash, detergent and alkaline chlorine. Rinse thoroughly with clean water. Remove nozzles to clean screens and tips. Apply rinse water to a field per label requirements or dis...

  6. Manufacturing consumption of energy 1994

    SciTech Connect (OSTI)

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  7. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  8. Manufacturing R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report Management ChallengesManufacturing R&D The Manufacturing

  9. APPROVED MATERIALS FOR ALSEP EQUIPMENT

    E-Print Network [OSTI]

    Rathbun, Julie A.

    expanding Section I and Section II and adding Section III. New materials added in this revision are: 211 212#12;#12;: : . APPROVED MATERIALS FOR ALSEP EQUIPMENT NO. REV. NO. ATM 242 E PAGE COVER OF 54 DATE 213 322 323 324 417 418 419 612 613 806 1111 Materials reinstated (clarified type no.): 1009 Prepared

  10. Cleaning Mechanised Pesticide Spray Equipment

    E-Print Network [OSTI]

    , hoses, nozzles, valves and pumps of mechanised spraying equipment can contaminate operators and possibly bowls, hoses, tanks and pumps retain the most solution. This Technical Note sets out the procedures label for any special cleaning instructions. · Wear the protective clothing described on the pesticide

  11. Manufacturing Spotlight: Boosting American Competitiveness

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient.

  12. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by ensuring critical feedback from the production phase to invention and discovery. Additive manufacturing is just one of several technologies advanced by the Energy...

  13. Manufacturing Demonstration Facility Technology Collaborations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration Facility (MDF) to assess applicability and of new energy efficient manufacturing technologies. This opportunity will provide selected participants access to ORNL's...

  14. Manufacturing Demonstration Facility Workshop Videos

    Broader source: Energy.gov [DOE]

    Session recordings from the Manufacturing Demonstration Facility Workshop held in Chicago, Illinois, on March 12, 2012, and simultaneously broadcast as a webinar.

  15. Indexes for selected equipment show moderate increase

    SciTech Connect (OSTI)

    Farrar, G.

    1997-04-07

    Costs for six selected equipment items used in refining construction operations have been surveyed for the 3 years, 1994--1996. The accompanying table shows Nelson-Farrar equipment indexes for these items of equipment. The six categories of equipment tracked are bubble trays, fractionating towers, tube stills, valves and fittings, tanks and pressure vessels, and non-metallic building materials. Tables also present data on operating costs for materials, labor, and equipment.

  16. Cost and Energy Consumption Optimization of Product Manufacture in a Flexible Manufacturing System

    E-Print Network [OSTI]

    Diaz, Nancy; Dornfeld, David

    2012-01-01

    Planning: The Design/Manufacture Interface, Butterworth-Optimization of Product Manufacture in a Flexibleplanning stage for product manufacture, i.e. machine tool

  17. Variability assessment and mitigation in advanced VLSI manufacturing through design-manufacturing co-optimization

    E-Print Network [OSTI]

    Jeong, Kwangok

    2011-01-01

    Design-Manufacturing Co-Optimization . . . . . . .Design-Aware Manufacturing Process Optimization . . 5.15.1.4 Overall Manufacturing Cost Comparison Chapter 5 vi

  18. Used energy-related laboratory equipment grant program for institutions of higher learning. Eligible equipment catalog

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This is a listing of energy related equipment available through the Energy-Related Laboratory Equipment Grant Program which grants used equipment to institutions of higher education for energy-related research. Information included is an overview of the program, how to apply for a grant of equipment, eligibility requirements, types of equipment available, and the costs for the institution.

  19. Clean Energy Manufacturing: U.S. Competitiveness and State Policy Strategies (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.

    2014-02-01

    The capital intensive nature of clean energy technologies suggests that manufacturing clean energy equipment has the potential to support state and local economic development efforts. However, manufacturing siting decisions tend to be complex and multi-variable decision processes that require in-depth knowledge of specific markets, the logistical requirements of a given technology, and insight into global clean tech trends. This presentation highlights the potential of manufacturing in supporting economic development opportunities while also providing examples of the financial considerations affecting manufacturing facility siting decisions for wind turbine blades and solar PV. The presentation also includes discussion of other more qualitative drivers of facility siting decisions as gleaned from NREL industry interviews and discusses strategies state and local policymakers may employee to bolster their chances of successfully attracting clean energy manufacturers to their localities.

  20. Hollings Manufacturing Extension Partnership: A Commercialization Collaborator

    E-Print Network [OSTI]

    bottom-line efficiencies through the employment of lean manufacturing techniques and other productivityHollings Manufacturing Extension Partnership: A Commercialization Collaborator MEP · MANUFACTURING Manufacturing Extension Partnership (MEP) works with small and mid-sized U.S. manufacturers to help them create

  1. Out of Bounds Additive Manufacturing Christopher

    E-Print Network [OSTI]

    Pennycook, Steve

    #12;Out of Bounds Additive Manufacturing Christopher Holshouser, Clint Newell, and Sid Palas, Tenn. The Big Area Additive Manufacturing system has the potential to manufacture parts completely) are working on an additive manufacturing (AM) system (Big Area Additive Manufacturing, or BAAM) capable

  2. OPPORTUNITIES FOR HORIZONTAL DIVERSIFICATION IN MANUFACTURING VALUE-ADDED WOOD PRODUCTS

    E-Print Network [OSTI]

    Wu, Qinglin

    OPPORTUNITIES FOR HORIZONTAL DIVERSIFICATION IN MANUFACTURING VALUE-ADDED WOOD PRODUCTS Working Post Doctoral Researcher Wood Products Processing Richard Vlosky Assistant Professor Forest Products Marketing February 7, 1996 #12;2 ABSTRACT A study of equipment usage in the Louisiana secondary wood

  3. Abatement of Air Pollution: Air Pollution Control Equipment and Monitoring Equipment Operation (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations contain instructions for the operation and monitoring of air pollution control equipment, as well as comments on procedures in the event of equipment breakdown, failure, and...

  4. A Three Dimensional System Approach for Environmentally Sustainable Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris; Zhai, Qiang; Dornfield, David

    2012-01-01

    adapted to various manufacturing systems and technologies. ABusiness Development in Manufacturing SMEs. Proceedings ofand Visions towards Sustainable Manufacturing. CIRP Annals –

  5. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01

    ability Principles into Manufacturing/Mechanical Engineeringdefine Sustainable Manufacturing? ,” International Trade7: Air Quality in Manufacturing,” Environmentally Conscious

  6. Operations and Maintenance for Major Equipment Types

    Broader source: Energy.gov [DOE]

    Equipment lies at the heart of all operations and maintenance (O&M) activities. This equipment varies greatly across the Federal sector in age, size, type, model, condition, etc.

  7. Asset Management Equipment Disposal Form -Refrigerant Recovery

    E-Print Network [OSTI]

    Sin, Peter

    EPA's rule, equipment that is typically dismantled on site before disposal (e.g., retail food vacuum, and for small appliances the recover equipment performance requirements are 90 percent efficiency

  8. Risk management practices in global manufacturing investment

    E-Print Network [OSTI]

    Kumar, Mukesh

    2010-07-06

    This thesis explores risk management practices in global manufacturing investment. It reflects the growing internationalisation of manufacturing and the increasing complexity and fragmentation of manufacturing systems. Issues of risk management have...

  9. Precision Manufacturing Process Monitoring With Acoustic Emission

    E-Print Network [OSTI]

    Lee, D.E.; Huang, Inkil; Valente, Carlos M. O.; Oliveira, J. F.; Dornfeld, David

    2006-01-01

    of Machine Tools & Manufacture 46 (2006) 176–188 Fig. 9.of Machine Tools & Manufacture 46 (2006) 176–188 Fig. 15. (of Machine Tools & Manufacture 46 (2006) 176–188 Fig. 17. (

  10. Precision Manufacturing Process Monitoring with Acoustic Emission

    E-Print Network [OSTI]

    Lee, D. E.; Hwang, I.; Valente, C. M. O.; Oliviera, J. F.G.; Dornfeld, D. A.

    2006-01-01

    of Machine Tools & Manufacture 46 (2006) 176–188 Fig. 9.of Machine Tools & Manufacture 46 (2006) 176–188 Fig. 15. (of Machine Tools & Manufacture 46 (2006) 176–188 Fig. 17. (

  11. Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Broader source: Energy.gov (indexed) [DOE]

    manufacturing.energy.gov 3 Morning Agenda 9:00am - 9:05am Welcome Mark Johnson Director, Advanced Manufacturing Office 9:05am - 9:20am Clean Energy Manufacturing Initiative David...

  12. Combining Representations from Manufacturing, Machine Planning, and Manufacturing Resource Planning (MRP)

    E-Print Network [OSTI]

    Cook, Diane J.

    Combining Representations from Manufacturing, Machine Planning, and Manufacturing Resource Planning an ordinary planner into a manufacturing system by showing that the assembly trees used by manufacturers can into a set of matrices used by the manufacturing system. This allows manufacturers to continue to use

  13. Manufacturing Innovation in the DOE

    Broader source: Energy.gov (indexed) [DOE]

    for 60% lighter car doors. Graphic image provided by General Motors. Protective coating materials for high- performance membranes, for pulp and paper industry. Image...

  14. CMP Modeling as a part of Design for Manufacturing

    E-Print Network [OSTI]

    Tripathi, Shantanu; Monvoisin, Adrien; Dornfeld, David; Doyle, F M

    2007-01-01

    IEEE Trans. Semiconductor Manufacturing, 232 (2002) [4] J.J.a part of Design for Manufacturing Shantanu Tripathi, Adrienenabling Design for Manufacturing (DfM) and Manufacturing

  15. Fire suppression and detection equipment

    SciTech Connect (OSTI)

    E.E. Bates [HSB Professional Loss Control, Lexington, KY (United States)

    2006-01-15

    Inspection and testing guidelines go beyond the 'Code of Federal Regulation'. Title 30 of the US Code of Federal Regulations (30 CFR) contains requirements and references to national standards for inspection, testing and maintenance of fire suppression and detection equipment for mine operators. However, federal requirements have not kept pace with national standards and best practices. The article lists National Fire Protection (NFPA) standards that are referenced by the US Mine Safety and Health Administration (MSHA) in 30 CFR. It then discusses other NFPA Standards excluded from 30 CFR and explains the NFPA standard development process. 2 refs., 3 tabs., 5 photos.

  16. Equipment Certification | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,Power Corp Jump to:SIBR JV JumpCertificationEquipment

  17. Agricultural Equipment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar EnergyAerodynall Countriescapital GmbH JumpEquipment Jump

  18. Equipment Insulation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, IncsourceEnginuityBusinessEnviva MaterialsEquipment

  19. Equipment Listing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesof Energy ServicesEnergy4th Quarter 2012 for Equipment

  20. SETEC/Semiconductor Manufacturing Technologies Program: 1999 Annual and Final Report

    SciTech Connect (OSTI)

    MCBRAYER,JOHN D.

    2000-12-01

    This report summarizes the results of work conducted by the Semiconductor Manufacturing Technologies Program at Sandia National Laboratories (Sandia) during 1999. This work was performed by one working group: the Semiconductor Equipment Technology Center (SETEC). The group's projects included Numerical/Experimental Characterization of the Growth of Single-Crystal Calcium Fluoride (CaF{sub 2}); The Use of High-Resolution Transmission Electron Microscopy (HRTEM) Imaging for Certifying Critical-Dimension Reference Materials Fabricated with Silicon Micromachining; Assembly Test Chip for Flip Chip on Board; Plasma Mechanism Validation: Modeling and Experimentation; and Model-Based Reduction of Contamination in Gate-Quality Nitride Reactor. During 1999, all projects focused on meeting customer needs in a timely manner and ensuring that projects were aligned with the goals of the National Technology Roadmap for Semiconductors sponsored by the Semiconductor Industry Association and with Sandia's defense mission. This report also provides a short history of the Sandia/SEMATECH relationship and a brief on all projects completed during the seven years of the program.

  1. IEEE TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY--PART C, VOL. 21, NO. 2, APRIL 1998 97 Material-Centric Modeling of PWB Fabrication

    E-Print Network [OSTI]

    Sandborn, Peter

    processes. Index Terms-- Cost modeling, design-for-environment (DFE), design-to-cost, material, Associate Member, IEEE Abstract--This paper presents an activity-based cost model for printed wiring board-based manufacturing cost models, activities are based on equipment and facilities ("equipment

  2. Force Modulation System for Vehicle Manufacturing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System for Vehicle Manufacturing Force Modulation System for Vehicle Manufacturing Novel Technology Enables Energy-Efficient Production of High-Strength Steel Automotive Parts...

  3. Mechanical and Manufacturing Engineering Mechatronics Engineering Minor

    E-Print Network [OSTI]

    Mechanical and Manufacturing Engineering Mechatronics Engineering Minor Students pursuing a BSc in mechanical or manufacturing engineering have experience and entrepreneurship. Mechatronics is the synergistic combination of mechanical

  4. Energy Intensity Indicators: Manufacturing Energy Intensity

    Broader source: Energy.gov [DOE]

    The manufacturing sector comprises 18 industry sectors, generally defined at the 3-digit level of the North American Industrial Classification System (NAICS). The manufacturing energy data include...

  5. "Technology Wedges" for Implementing Green Manufacturing

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul

    2007-01-01

    Integration issues in green design and manufacturing."schematic of the green elements of design and manufacturing1. SCHEMATIC OF “GREEN” ELEMENTS OF DESIGN AND PRODUCTION,

  6. Understanding Manufacturing Energy and Carbon Footprints, October...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis Cement (2010 MECS)...

  7. MECS 2006 - All Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Footprint All Manufacturing (NAICS 31-33) More Documents & Publications All Manufacturing (2010 MECS) Plastics and Rubber Products (2010 MECS) MECS 2006 - Alumina and Aluminum...

  8. 2014 Manufacturing Energy and Carbon Footprints: Scope

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industries in the Paper Manufacturing subsector make pulp, paper, or converted paper products. The manufacturing of these products is grouped together because they...

  9. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors, diagnostics...

  10. Clean Energy Manufacturing Initiative: Increasing American Competitive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnered with other agencies to launch a pilot Manufacturing Innovation Institute on additive manufacturing in Youngstown, Ohio. Following this pilot, the Energy Department...

  11. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshops Additive Manufacturing Workshop Advanced Qualification of Additive Manufacturing Materials Workshop Our goal is to define opportunities and research gaps within...

  12. Clean Energy Manufacturing Initiative Southeast Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative Southeast Regional Summit Clean Energy Manufacturing Initiative Southeast Regional Summit July 9, 2015 8:30AM to 6:00PM EDT Renaissance...

  13. Process systems engineering of continuous pharmaceutical manufacturing

    E-Print Network [OSTI]

    Abel, Matthew J

    2010-01-01

    Continuous manufacturing offers a number of operational and financial benefits to pharmaceutical companies. This research examines the critical blending step for continuous pharmaceutical manufacturing and the characteristics ...

  14. National Electrical Manufacturers Association (NEMA) Response...

    Office of Environmental Management (EM)

    Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical...

  15. Additive Manufacturing Cluster Strategy | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Cluster Strategy SHARE Additive Manufacturing Cluster Strategy As the nation's premier research laboratory, ORNL is one of the world's most capable resources...

  16. New Sensor Network Technology Increases Manufacturing Efficiency...

    Office of Environmental Management (EM)

    Sensor Network Technology Increases Manufacturing Efficiency New Sensor Network Technology Increases Manufacturing Efficiency April 11, 2013 - 12:00am Addthis EERE supported Eaton...

  17. Natural Fiber Composites: Retting, Preform Manufacture & Molding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Fiber Composites: Retting, Preform Manufacture & Molding Natural Fiber Composites: Retting, Preform Manufacture & Molding 2009 DOE Hydrogen Program and Vehicle Technologies...

  18. Low Temperature PEM Fuel Cell Manufacturing Needs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    methods. Identify gaps in MEA manufacturing technology: How much better can we do? Note: Cost reductions realized from both material price reduction and manufacturing yield...

  19. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D...

  20. Solid electrolyte material manufacturable by polymer processing...

    Office of Scientific and Technical Information (OSTI)

    Patent: Solid electrolyte material manufacturable by polymer processing methods Citation Details In-Document Search Title: Solid electrolyte material manufacturable by polymer...

  1. Deputy Director, Advanced Manufacturing Office

    Broader source: Energy.gov [DOE]

    This position is located in the Advanced Manufacturing Office (AMO), within the Office of Energy Efficiency and Renewable Energy (EERE). EERE leads the U.S. Department of Energy's efforts to...

  2. Manufacturing Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report Management Challenges atEnergyPerspective Manufacturing

  3. Liquid-Liquid Extraction Equipment

    SciTech Connect (OSTI)

    Jack D. Law; Terry A. Todd

    2008-12-01

    Solvent extraction processing has demonstrated the ability to achieve high decontamination factors for uranium and plutonium while operating at high throughputs. Historical application of solvent extraction contacting equipment implies that for the HA cycle (primary separation of uranium and plutonium from fission products) the equipment of choice is pulse columns. This is likely due to relatively short residence times (as compared to mixer-settlers) and the ability of the columns to tolerate solids in the feed. Savannah River successfully operated the F-Canyon with centrifugal contactors in the HA cycle (which have shorter residence times than columns). All three contactors have been successfully deployed in uranium and plutonium purification cycles. Over the past 20 years, there has been significant development of centrifugal contactor designs and they have become very common for research and development applications. New reprocessing plants are being planned in Russia and China and the United States has done preliminary design studies on future reprocessing plants. The choice of contactors for all of these facilities is yet to be determined.

  4. Langerhans Lab Major Equipment Inventory Major Equipment Inventory

    E-Print Network [OSTI]

    Langerhans, Brian

    ), ok video quality Canon G12 (& underwater case) - 10 megapixel, lots of control, RAW images, HD video, action use; usually stored at Yates Mill - underwater case, tripod mount, battery bacpac, headgear, extra batteries 2 Sony Handycam DCR-SR68 camcorders - 80GB internal memory, 60x optical zoom, SD memory card

  5. Covered Product Category: Imaging Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|ProgramsLakeDepartmentEnergyEnterprise ServersHot Food

  6. Bulk materials handling equipment roundup

    SciTech Connect (OSTI)

    Fiscor, S.

    2007-07-15

    The article reports recent product developments in belt conveyors. Flexco Steel Lancing Co. (Flexco) has a range of light, portable maintenance tools and offers training modules on procedures for belt conveyor maintenance on its website www.flexcosafe.com. Siemens recently fitted a 19 km long conveyor belt drive system at a Texan aluminium plant with five 556-kW Simovent Masterdrive VC drives. Voith recently launched the TPKL-T turbo coupling for users who want an alignment-free drive solution. Belt cleaners newly on the market include the RemaClean SGB brush and ASGCO Manufacturing's Razor-Back with Spray bar. Continental Conveyor has introduced a new line of dead-shaft pulleys offering increased bearing protection. 6 photos.

  7. A framework for developing, manufacturing, and sourcing trucks & equipment in a global fluid management industry

    E-Print Network [OSTI]

    Awwad, Ghassan Samir

    2009-01-01

    Selecting and executing the optimal strategy for developing new products is a non trivial task, especially for low volume, high complexity products in a highly volatile global industry such as Fluid Management. At Fluid ...

  8. Product development of a device for manufacturing medical equipment for use in low-resource settings

    E-Print Network [OSTI]

    Schlecht, Lisa (Lisa Anne)

    2010-01-01

    The objective of this paper is to describe the product design of a device that can be used to create medical supplies on-site in clinics in low-resource settings. The machine uses purely mechanical elements to cut and fold ...

  9. Consider Steam Turbine Drives for Rotating Equipment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Turbine Drives for Rotating Equipment Consider Steam Turbine Drives for Rotating Equipment This tip sheet outlines the benefits of steam turbine drives for rotating equipment...

  10. Declaration of Concentration in Manufacturing Engineering

    E-Print Network [OSTI]

    Lin, Xi

    .0 * In addition to the courses listed above, the Manufacturing Engineering Concentration requires a ManufacturingDeclaration of Concentration in Manufacturing Engineering Return completed form to ENG in Manufacturing Engineering should complete this form, obtain the signature of their Faculty Advisor below

  11. Layered Manufacturing Sara McMains

    E-Print Network [OSTI]

    McMains, Sara

    Grossman) #12;LM vs. Conventional Manufacturing · Subtractive · Net shape · Additive #12;Conventional · Molding · Casting #12;Conventional Manufacturing · Additive ­ Combine complex sub-units ­ E.g. · WeldingLayered Manufacturing Sara McMains #12;Layered Manufacturing (LM) a.k.a. Solid Freeform Fabrication

  12. Designing a National Network for Manufacturing Innovation

    E-Print Network [OSTI]

    Designing a National Network for Manufacturing Innovation NNMI and The Additive Manufacturing Pilot Introduction · NNMI principles · Public NMMI Design · Pilot Institute on Additive Manufacturing #12;IMI Mission Process, such as Additive Manufacturing An Advanced Material ­ e.g. lightweight, low cost carbon fiber

  13. Systematically Manufacturing Success Stanley B. Gershwin

    E-Print Network [OSTI]

    Gershwin, Stanley B.

    Systematically Manufacturing Success Stanley B. Gershwin Industrial Automation Days 2007 Innovation;Manufacturing Systems Engineering · Manufacturing Systems Engineering (MSE) is a rigorous, vigorous, rapidly on the HP case below. Copyright c 2007 Stanley B. Gershwin. All rights reserved. 2 #12;Manufacturing Systems

  14. Disc Manufacturing, Inc. A QUIXOTE COMPANY

    E-Print Network [OSTI]

    Gupta, Varun

    Disc Manufacturing, Inc. A QUIXOTE COMPANY Introduction to ISO 9660, what it is, how it is implemented, and how it has been extended. Clayton Summers Copyright © 1993 by Disc Manufacturing, Inc. All rights reserved. #12;WHO IS DMI? Disc Manufacturing, Inc. (DMI) manufactures all compact disc formats (i

  15. Educated and Equipped: Community Colleges Providing Technical...

    Energy Savers [EERE]

    of Excellence Regional Center for Next Generation Manufacturing National Center for Welding Education and Training ATE Centers focused on Energy and Environmental Technology...

  16. Manufacturing Energy and Carbon Footprints (2006 MECS)

    Broader source: Energy.gov [DOE]

    Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost—and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

  17. Metrology for Fuel Cell Manufacturing

    SciTech Connect (OSTI)

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  18. State Clean Energy Policies Analysis (SCEPA): State Policy and the Pursuit of Renewable Energy Manufacturing

    SciTech Connect (OSTI)

    Lantz, E.; Oteri, F.; Tegen, S.; Doris, E.

    2010-02-01

    Future manufacturing of renewable energy equipment in the United States provides economic development opportunities for state and local communities. However, demand for the equipment is finite, and opportunities are limited. U.S. demand is estimated to drive total annual investments in renewable energy equipment to $14-$20 billion by 2030. Evidence from leading states in renewable energy manufacturing suggests that economic development strategies that target renewable energy sector needs by adapting existing policies attract renewable energy manufacturing more than strategies that create new policies. Literature suggests that the states that are most able to attract direct investment and promote sustained economic development can leverage diverse sets of durable assets--like human capital and modern infrastructure--as well as low barriers to market entry. State marketing strategies for acquiring renewable energy manufacturers are likely best served by an approach that: (1) is multi-faceted and long-term, (2) fits within existing broad-based economic development strategies, (3) includes specific components such as support for renewable energy markets and low barriers to renewable energy deployment, and (4) involves increased differentiation by leveraging existing assets when applicable.

  19. State Clean Energy Policies Analysis (SCEPA). State Policy and the Pursuit of Renewable Energy Manufacturing

    SciTech Connect (OSTI)

    Lantz, Eric; Oteri, Frank; Tegen, Suzanne; Doris, Elizabeth

    2010-02-01

    Future manufacturing of renewable energy equipment in the United States provides economic development opportunities for state and local communities. However, demand for the equipment is finite, and opportunities are limited. U.S. demand is estimated to drive total annual investments in renewable energy equipment to $14-$20 billion by 2030. Evidence from leading states in renewable energy manufacturing suggests that economic development strategies that target renewable energy sector needs by adapting existing policies attract renewable energy manufacturing more than strategies that create new policies. Literature suggests that the states that are most able to attract direct investment and promote sustained economic development can leverage diverse sets of durable assets—like human capital and modern infrastructure–as well as low barriers to market entry. State marketing strategies for acquiring renewable energy manufacturers are likely best served by an approach that: (1) is multi-faceted and long-term, (2) fits within existing broad-based economic development strategies, (3) includes specific components such as support for renewable energy markets and low barriers to renewable energy deployment, and (4) involves increased differentiation by leveraging existing assets when applicable.

  20. Strengthening Sustainable Manufacturing in The White House, Environmental Protection Agency

    E-Print Network [OSTI]

    manufacturing. Topics of discussion will include sustainable manufacturing, lean manufacturing, workforce issuesStrengthening Sustainable Manufacturing in Indiana The White House, Environmental Protection Agency to participate in an event with Matt Bogoshian, to discuss Sustainable Manufacturing, which was featured

  1. Power Quality from the Manufacturer’s Standpoint 

    E-Print Network [OSTI]

    McEachern, A.

    1989-01-01

    Power quality is an unstable field (if you'll pardon the double meaning). It's in its infancy; there isn't general agreement on much, not even terminology. As an instrument manufacturer in the field, I'm particularly concerned with two philosophical...

  2. WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT

    E-Print Network [OSTI]

    Bhat, M.S.

    2011-01-01

    Proceedings of the Conference on Coal Feeding Systems, HeldWear Resistant Alloys for Coal Handling Equipment", proposalWear Resistant Alloys for Coal Handling Equi pment". The

  3. Pollution Control Equipment Tax Deduction (Alabama)

    Broader source: Energy.gov [DOE]

    The Pollution Control Equipment Tax Deduction allows businesses to deduct from their Alabama net worth the net amount invested in all devices, facilities, or structures, and all identifiable...

  4. Materials Selection Considerations for Thermal Process Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    productivity and operating cost of the equipment. These materials are used in burners, electrical heating elements, material handling, load support, and heater tubes, etc....

  5. Commercial and Industrial Kitchen Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    NOTE: All equipment must be installed on or after January 1, 2015 through December 31, 2015. The documentation must be received no later than March 31, 2016. 

  6. Energy Conservation Program for Certain Industrial Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards and Test Procedures for Commercial Heating, Air- Conditioning, and Water-Heating Equipment AGENCY: Office of Energy Efficiency and Renewable Energy, Department...

  7. PPP Equipment Corporation | Open Energy Information

    Open Energy Info (EERE)

    PPP Equipment Corporation Sector: Solar Product: PPP-E designs, produces and markets Chemical Vapor Deposition (CVD) reactors and converter systems producing high-purity...

  8. Better metallurgy for process equipment

    SciTech Connect (OSTI)

    Rayner, R.E.

    1994-01-01

    Metallurgy choices have expanded significantly for process equipment and pumps used for handling difficult corrosive fluids. If they have been specifying the austenitic AISI types 316, 316L, 317, 317L or the newer first generation alloy 329 in their pumps, there is a strong message in recent literature. Based on tests and experience there are better, often less costly alternatives. In the case of CD[sub 4]MCu, N08020 and 904L, there are lower-cost material alternatives for many applications. For SA S31254 and SA N08367, there are some less aggressive can be substituted. These alternatives are the new second generation duplex steels. The lower cost of the duplex alloys is a result of the reduced nickel content, which is about half that of the standard austenitics. Also, their carbon content is low; the same as 316L and 317L for most alloys, including S31803. The second generation duplex alloys offer significant value improvement in a vast majority of applications over the common austenitics and ferritics. Further, their improved resistance to corrosion and improved physical properties relative to the expensive. and in many cases proprietary, highly corrosion-resistant, super-ferritics and super-austenitics, means that they can and should be considered as an alternative for applications where those materials are now overqualified. Strength, toughness and wide corrosion resistance are all-important properties and considerations for process pump materials. Combine these with competitive cost and there is an opportunity that must be investigated.

  9. Manufacturing Energy and Carbon Footprints 

    E-Print Network [OSTI]

    Brueske, S.; Lorenz, T.

    2012-01-01

    Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

  10. Process for manufacturing multilayer capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  11. Heat treating of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN)

    2012-05-22

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material is disclosed. The system typically includes an insulating vessel placed within a microwave applicator chamber. A moderating material is positioned inside the insulating vessel so that a substantial portion of the exterior surface of each component for heat treating is in contact with the moderating material.

  12. Additive manufacturing method of producing

    E-Print Network [OSTI]

    Painter, Kevin

    Additive manufacturing method of producing silver or copper tracks on polyimide film Problem/stripping) using an additive process support by a novel bio- degradable photo-initiator package. technology. Building on previous work by Hoyd- Gigg Ng et al. [1,2], Heriot-Watt has developed an additive film

  13. Petrick Technology Trends Of Manufacturing

    E-Print Network [OSTI]

    production increased productivity during the Industrial Revolution when it replaced workers performing manufacturing will become commercially competitive across a wide range of industries and will support the use been revolutionizing industrial sectors for more than 200 years. We have seen the way mechanized

  14. Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry (Presentation)

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.

    2013-12-01

    This briefing provides an overview of supply chain developments in the global wind industry and a detailed assessment of blade manufacturing considerations for U.S. end-markets. The report discusses the international trade flows of wind power equipment, blade manufacturing and logistical costs, and qualitative issues that often influence factory location decisions. To help guide policy and research and development strategy decisions, this report offers a comprehensive perspective of both quantitative and qualitative factors that affect selected supply chain developments in the growing wind power industry.

  15. Automatic monitoring of vibration welding equipment

    DOE Patents [OSTI]

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  16. Equipment qualification research program: program plan

    SciTech Connect (OSTI)

    Dong, R.G.; Smith, P.D.

    1982-06-08

    The Lawrence Livermore National Laboratory (LLNL) under the sponsorship of the US Nuclear Regulatory Commission (NRC) has developed this program plan for research in equipment qualification (EQA). In this report the research program which will be executed in accordance with this plan will be referred to as the Equipment Qualification Research Program (EQRP). Covered are electrical and mechanical equipment under the conditions described in the OBJECTIVE section of this report. The EQRP has two phases; Phase I is primarily to produce early results and to develop information for Phase II. Phase I will last 18 months and consists of six projects. The first project is program management. The second project is responsible for in-depth evaluation and review of EQ issues and EQ processes. The third project is responsible for detailed planning to initiate Phase II. The remaining three projects address specific equipment; i.e., valves, electrical equipment, and a pump.

  17. dieSel/heAvy equipMent College of Rural and Community Development

    E-Print Network [OSTI]

    Hartman, Chris

    credits The diesel and heavy equipment mechanics program offers the student training in the maintenance and repair of trucks, buses and heavy equip- ment. This one-year certificate program emphasizes hands of equipment problems and make nec- essary repairs and adjustments from tune-ups to complete engine

  18. Artisan Manufacturing: Order (2010-CW-0712)

    Broader source: Energy.gov [DOE]

    DOE ordered Artisan Manufacturing Company, Inc., to pay a $5,000 civil penalty after finding Artisan Manufacturing had failed to certify that certain models of faucets comply with the applicable water conservation standard.

  19. Manufacturing Metallic Parts with Designed Mesostructure

    E-Print Network [OSTI]

    material geometry: ­ Thin walls ­ Angled trusses ­ Small channels · What is our answer? ­ 3DP of metal? · Preliminary results - characteristic cellular material geometry: ­ Thin walls ­ Angled trusses ­ Small Cellular Material Manufacturing Stochastic Cellular Material Manufacturing (Hydro / Alcan / Combal Process

  20. Benefits and Barriers of Smart Manufacturing 

    E-Print Network [OSTI]

    Trombley, D.; Rogers, E.

    2014-01-01

    Decision makers in the industrial sector have only recently started to realize the potential of smart manufacturing to transform manufacturing. The potential gains in efficiency at the process and supply-chain level are still largely unknown...

  1. Creation and sustainment of manufacturing technology roadmaps

    E-Print Network [OSTI]

    Grillon, Louis S

    2012-01-01

    Manufacturing technology roadmaps align manufacturing capability development to product development and the driving business need. Roadmaps allow an executable business strategy to be communicated to all levels of an ...

  2. USA Manufacturing: Order (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  3. Manufacturing Planning and Control Stephen C. Graves

    E-Print Network [OSTI]

    Graves, Stephen C.

    1 Manufacturing Planning and Control Stephen C. Graves Massachusetts Institute of Technology November 1999 Manufacturing planning and control entails the acquisition and allocation of limited, planning and control problems are inherently optimization problems, where the objective is to develop

  4. Department of Manufacturing & Construction Engineering Technology (MCET)

    E-Print Network [OSTI]

    Hamburger, Peter

    Department of Manufacturing & Construction Engineering Technology (MCET) Position title professional/industrial experience and teaching experience are desired. Additional expectations include, and community is also required. Description of the department: The Department of Manufacturing & Construction

  5. Solid Oxide Fuel Cell Manufacturing Overview

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell Manufacturing Overview Hydrogen and Fuel Cell Technologies Manufacturing R Reserved. 3 The Solid Oxide Fuel Cell Electrochemistry #12;Copyright © 2011 Versa Power Systems. All Rights

  6. INFORMATION SYSTEMS SUPPORT FOR MANUFACTURING PROCESSES

    E-Print Network [OSTI]

    activities. The feature overlapping of production planning and quality control between both systems raises and distribution (Merrit1999) and have extend their scope to support quality control and production tracking: Manufacturing Enterprises, Enterprise Resource Planning, Manufacturing Execution Systems, Discrete Processes

  7. Objective assessment of manufacturing technology investments

    E-Print Network [OSTI]

    Rothman, Craig Jeremy

    2012-01-01

    Amgen is a biotechnology company with manufacturing plants throughout the world. New manufacturing technologies are constantly being developed and implemented in order to address cost, quality, regulation, and competitive ...

  8. Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify Potential Reductions in Utility and Process Energy Consumption Solutia: Massachusetts Chemical...

  9. Advanced Manufacturing Office Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office Overview mwrfworkshopjuly2012.pdf More Documents & Publications Microwave and Radio Frequency Workshop Manufacturing Demonstration Facility Workshop...

  10. Webinar: Additive Manufacturing for Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    Video recording and text version of the webinar titled "Additive Manufacturing for Fuel Cells," originally presented on February 11, 2014.

  11. Manufacturing Licenses Available | Tech Transfer | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    201102675) 200701900 Robust Digital Valve for Prosthetic Finger, Microsurgery, Robotics (Related ID 200701983, 200802088) 200701972 Manufacturing Biodiesel from...

  12. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OFFICE Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart...

  13. 18 years experience on UF{sub 6} handling at Japanese nuclear fuel manufacturer

    SciTech Connect (OSTI)

    Fujinaga, H.; Yamazaki, N.; Takebe, N. [Japan Nucelar Fuel Conversion Co., Ltd., Ibaraki (Japan)

    1991-12-31

    In the spring of 1991, a leading nuclear fuel manufacturing company in Japan, celebrated its 18th anniversary. Since 1973, the company has produced over 5000 metric ton of ceramic grade UO{sub 2} powder to supply to Japanese fabricators, without major accident/incident and especially with a successful safety record on UF{sub 6} handling. The company`s 18 years experience on nuclear fuel manufacturing reveals that key factors for the safe handling of UF{sub 6} are (1) installing adequate facilities, equipped with safety devices, (2) providing UF{sub 6} handling manuals and executing them strictly, and (3) repeating on and off the job training for operators. In this paper, equipment and the operation mode for UF{sub 6} processing at their facility are discussed.

  14. $23.5 Million Investment in Innovative Manufacturing Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    23.5 Million Investment in Innovative Manufacturing Projects Supports the New Clean Energy Manufacturing Initiative 23.5 Million Investment in Innovative Manufacturing Projects...

  15. AMO Industry Day Workshop, February 25th, Targets Smart Manufacturing...

    Office of Environmental Management (EM)

    for Manufacturing, it is a network data-driven process that combines innovative automation and advanced sensing and control. Smart Manufacturing can integrate manufacturing...

  16. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01

    shape part, e.g. , additive manufacturing, Transactions offace operations. Additive manufacturing of metal componentsenvironmen- tal merits of additive manufacturing relative to

  17. Additive Manufacturing in China: Aviation and Aerospace Applications (Part 2)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01

    Analysis May 2013 Additive Manufacturing in China: Aviationan overview of China’s additive manufacturing industry wasmilitary achievements in additive manufacturing. 2 Initial

  18. Essays on the Performance of Manufacturing Firms in Developing Countries

    E-Print Network [OSTI]

    Eifert, Benjamin Patrick

    2010-01-01

    highly-successful lean manufacturing system of production (adopted the Japanese lean manufacturing technology beginningthe experience f rom Lean manufacturing i s t he col lective

  19. Machine Tool Design and Operation Strategies for Green Manufacturing

    E-Print Network [OSTI]

    2010-01-01

    machine tool during its manufacture and use, respectively.calculator” related to part manufacture which allowed thecycle, such as its manufacture, are neglected. Furthermore,

  20. Wind Manufacturing and Supply Chain | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing and Supply Chain Wind Manufacturing and Supply Chain The U.S. Department of Energy (DOE) works with wind technology suppliers to promote advanced manufacturing...

  1. Opportunities and Challenges to Sustainable Manufacturing and CMP

    E-Print Network [OSTI]

    Dornfeld, David

    2009-01-01

    The Case for Manufacturing,” European Commission,Wedges for Implementing Green Manufacturing,” Trans.North American Manufacturing Research Institute, 2007, vol.

  2. Vehicle Manufacturing Futures in Transportation Life-cycle Assessment

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2011-01-01

    transportation vehicle manufacturing results are developedBERKELEY Vehicle Manufacturing Futures in TransportationAugust 2011 Vehicle Manufacturing Futures in Transportation

  3. Design and Manufacturing for Cleanability in High Performance Cutting

    E-Print Network [OSTI]

    Avila, Miguel C.; Reich-Weiser, Corinne; Dornfeld, David; McMains, Sara

    2006-01-01

    Kalpakjian, S. ; Manufacturing Processes for EngineeringDesign and Manufacturing for Cleanability in Highpriority in conventional manufacturing processes, due to the

  4. CMP Modeling as a part of Design for Manufacturing

    E-Print Network [OSTI]

    Shantanu Tripathi; Adrien Monvoisin; Fiona Doyle; Dornfeld, David

    2007-01-01

    and the Laboratory for Manufacturing and Sustainability (IEEE Trans. Semiconductor Manufacturing, 232 (2002) [4] J.J.a part of Design for Manufacturing Shantanu Tripathi, Adrien

  5. Worldwide Energy and Manufacturing USA Inc formerly Worldwide...

    Open Energy Info (EERE)

    Worldwide Manufacturing USA Jump to: navigation, search Name: Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place: San Bruno, California Zip:...

  6. Additive Manufacturing in China: Aviation and Aerospace Applications (Part 2)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01

    Analysis May 2013 Additive Manufacturing in China: Aviationof China’s additive manufacturing industry was presented. Inroles in addi- tive manufacturing (AM) development and

  7. Precision Manufacturing of Imprint Rolls for the Roller Imprinting Process

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Dornfeld, David A; Kim, Chang-Ju

    2008-01-01

    Fugl, J. ; “ ;Precision Manufacturing Methods of Inserts forD. E. ; Precision Manufacturing, 1 st Edition; Springer. [In: CIRP Annals – Manufacturing Technology; pp. 73-76. [

  8. Machine Tool Design and Operation Strategies for Green Manufacturing

    E-Print Network [OSTI]

    2010-01-01

    E. , 2007, Precision Manufacturing, Springer, New York, pp.Environment, CIRP Annals - Manufacturing Technology, Vol.Environment, CIRP Annals - Manufacturing Technology, Vol.

  9. Additive Manufacturing in China: Threats, Opportunities, and Developments (Part I)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01

    application of additive manufacturing in China’s aviationAnalysis May 2013 Additive Manufacturing in China: Threats,of China’s additive manufacturing industry is presented,

  10. Integrated Sustainability Analysis of Atomic Layer Deposition for Microelectronics Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris Yingchun; David Dornfeld

    2010-01-01

    and the Environment. Journal of Manufacturing Science andthe Environmental Impact of Manufacturing and Sustainabilityfor Microelectronics Manufacturing Chris Y. Yuan e-mail:

  11. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01

    maps in semiconductor manufacturing. ” Pattern Recognit.Third ISMI Symposium on Manufacturing Effectiveness. Austin,thickness in semiconductor manufacturing. In Proceedings of

  12. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect (OSTI)

    Knapp, Cameron M

    2012-08-01

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  13. Energy Manufacturing Matthew Realff and Steven Danyluk

    E-Print Network [OSTI]

    Das, Suman

    Energy Manufacturing Matthew Realff and Steven Danyluk Georgia Institute of Technology This white Foundation and held in Arlington VA, on March 24-25, 2009 on Energy Manufacturing. The workshop attendees participated in discussions and presented their views on energy manufacturing and the presentations

  14. e! Science News Semiconductor manufacturing technique holds

    E-Print Network [OSTI]

    Rogers, John A.

    e! Science News Semiconductor manufacturing technique holds promise for solar energy PublishedSemiconductor manufacturing technique holds promise for solar energy | e! Science News 5/26/2010http semiconductor manufacturing method pioneered at the University of Illinois, the future of solar energy just got

  15. Mechanics and Design, Manufacturing Professor Hani Naguib

    E-Print Network [OSTI]

    Sun, Yu

    Mechanical and Industrial Engineering Manufacturing What is Manufacturing? The transformation of materials Mechatronics Robotics Assembly Quality Management Raw Materials Fundamental ManagementAutomation #12;U n i v eMechanics and Design, Manufacturing Professor Hani Naguib #12;U n i v e r s i t y o f T o r o n t o

  16. Pseudomonas fluorescens -A robust manufacturing platform

    E-Print Network [OSTI]

    Lebendiker, Mario

    Pseudomonas fluorescens -A robust manufacturing platform Reprinted from July/August 2004 Speciality at efficient- ly transporting single chain antibodies and other mammalian-derived proteins. In addition production. Dowpharma, a contract manufacturing services unit of Dow Chemical, has developed a manufacturing

  17. Additive manufacturing of metallic tracks on

    E-Print Network [OSTI]

    Painter, Kevin

    Additive manufacturing of metallic tracks on green ceramic/dielectrics Problem this technology (note: may require additional tooling/ set up time) · Rapid Prototyping & small scale manufacture microelectronics such as manufacture of LTCC ceramic/ Dielectric antenna and rapid PCB prototyping or repair

  18. ICME & MGI Big Area Additive Manufacturing

    E-Print Network [OSTI]

    ICME & MGI · Big Area Additive Manufacturing · Neutron Characterization for AM · Materials problems in additive manu- facturing (AM). Additive manufacturing, or three-dimensional (3-D) printing of the world's most advanced neu- tron facilities, the HFIR and SNS, to characterize additive manufactured

  19. Manufacturability-Aware Physical Layout Optimizations

    E-Print Network [OSTI]

    Pan, David Z.

    Manufacturability-Aware Physical Layout Optimizations David Z. Pan and Martin D. F. Wong Dept VLSI design is greatly challenged by the growing interdependency between manufacturing and design. Existing approaches in design for manufacturability (DFM) are still mostly post design, rather than during

  20. Polymer PPolymer P ME 4210: Manufactur

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Polymer PPolymer P verver ME 4210: Manufactur Prof. J.S. ProcessingProcessing r. 1r. 1 ring Processes and Engineering Colton © GIT 2009 1 #12;ExtruExtru ME 4210: Manufactur Prof. J.S. uderuder ring Processes and Engineering Colton © GIT 2009 2 #12;E t dExtruder ME 4210: Manufactur Prof. J.S. d dir and die

  1. EFFECTIVE STRUCTURAL HEALTH MONITORING WITH ADDITIVE MANUFACTURING

    E-Print Network [OSTI]

    Boyer, Edmond

    will be presented for components that can be processed by additive manufacturing (AM) or 3D printing. The origin structures. KEYWORDS : structural health monitoring methodology, 3D printing, additive manufacturing, fatigue, intelligent structure INTRODUCTION Additive manufacturing (AM), also known as 3D Printing or Rapid

  2. MANUFACTURING LOGISTICS RESEARCH: TAXONOMY AND DIRECTIONS

    E-Print Network [OSTI]

    Wu, David

    MANUFACTURING LOGISTICS RESEARCH: TAXONOMY AND DIRECTIONS S. DAVID WU Lehigh University, Bethlehem research directions and opportunities in manufacturing logistics based on recommendations from an NSF in manufacturing logistics by the physical entities (systems) involved, the level-of-abstraction, the focus

  3. Manufacturing

    Office of Environmental Management (EM)

    1 - 100 per ton of CO2e based on emissions in 2009. The range is partly to do discount rate 458 assumptions and partly due to assumptions about future events. Without emissions...

  4. Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Energy ThisSites | DepartmentRebate Program

  5. Incidents of chemical reactions in cell equipment

    SciTech Connect (OSTI)

    Baldwin, N.M.; Barlow, C.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  6. Water-Using Equipment: Commercial and Industrial

    SciTech Connect (OSTI)

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water is an important aspect of many facets in energy engineering. While the previous article detailed domestic related water-using equipment such as toilets and showerheads, this article focuses on various types of water-using equipment in commercial and industrial facilities, including commercial dishwashers and laundry, single-pass cooling equipment, boilers and steam generators, cooling towers, and landscape irrigation. Opportunities for water and energy conservation are explained, including both technology retrofits and operation and maintenance changes. Water management planning and leak detection are also included as they are essential to a successful water management program.

  7. Analog Video Authentication and Seal Verification Equipment Development

    SciTech Connect (OSTI)

    Gregory Lancaster

    2012-09-01

    Under contract to the US Department of Energy in support of arms control treaty verification activities, the Savannah River National Laboratory in conjunction with the Pacific Northwest National Laboratory, the Idaho National Laboratory and Milagro Consulting, LLC developed equipment for use within a chain of custody regime. This paper discussed two specific devices, the Authentication Through the Lens (ATL) analog video authentication system and a photographic multi-seal reader. Both of these devices have been demonstrated in a field trial, and the experience gained throughout will also be discussed. Typically, cryptographic methods are used to prove the authenticity of digital images and video used in arms control chain of custody applications. However, in some applications analog cameras are used. Since cryptographic authentication methods will not work on analog video streams, a simple method of authenticating analog video was developed and tested. A photographic multi-seal reader was developed to image different types of visual unique identifiers for use in chain of custody and authentication activities. This seal reader is unique in its ability to image various types of seals including the Cobra Seal, Reflective Particle Tags, and adhesive seals. Flicker comparison is used to compare before and after images collected with the seal reader in order to detect tampering and verify the integrity of the seal.

  8. IEM5303/4323-Manufacturing Systems Design: High Volume Manufacturing Systems

    E-Print Network [OSTI]

    Bukkapatnam, Satish T.S.

    -time quality and asset management in high-volume manufacturing operations elicit student interests to pursue/CAM Technology for High-Volume Manufacturing: Control Hierarchy and Elements Process Planning and NumericalIEM5303/4323-Manufacturing Systems Design: High Volume Manufacturing Systems Schedule: 2-3:30 TR

  9. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOE Patents [OSTI]

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  10. Manufacturing Demonstration Facility Low-Cost Carbon Fiber Available to US Manufacturers

    E-Print Network [OSTI]

    commercialization and manufacturing barriers and realize the strength and energy saving benefits of these new

  11. Case Study: Sustained Utility Cost Reduction in a Large Manufacturing Facility 

    E-Print Network [OSTI]

    Fiorino, D.

    2004-01-01

    addition in 2003. Approximately 1,000 employees work at the facility. Business functions conducted at the facility include research, design, manufacturing, assembly, and testing of surface and sub-sea energy production equipment, plus engineering... resistance to heat transfer due to insulative oil accumulation (approximately 2% per year) on the refrigerant-side of heat exchange tubes in condensers and evaporators. This refrigerant-side ?fouling? can impede heat transfer by up to 30...

  12. Transportation Equipment Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  13. Oak Ridge Centers for Manufacturing Technology - The Manufacturing Skills Campus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access to scienceSpeeding accessScientificandThe Manufacturing Skills

  14. Consider Steam Turbine Drives for Rotating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  15. An Approach to Evaluating Equipment Efficiency Policies 

    E-Print Network [OSTI]

    Newsom, D. E.; Evans, A. R.

    1980-01-01

    The National Energy Conservation Policy Act of 1978 authorized studies of several types of industrial equipment to evaluate the technical and economic feasibility of labeling rules and minimum energy efficiency standards. An approach...

  16. Industrial Equipment Demand and Duty Factors 

    E-Print Network [OSTI]

    Dooley, E. S.; Heffington, W. M.

    1998-01-01

    Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air ...

  17. Hot conditioning equipment conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  18. Solar Equipment Certification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy SmoothEquipment Certification Solar Equipment

  19. Addressing the Manufacturing Issues Associated with the use of Ceramic Materials for Diesel Engine Components.

    SciTech Connect (OSTI)

    McSpadden, SB

    2001-09-12

    This CRADA supports the objective of selecting appropriate ceramic materials for manufacturing several diesel engine components and addressing critical manufacturing issues associated with these components. Materials that were evaluated included several varieties of silicon nitride and stabilized zirconia. The critical manufacturing issues that were addressed included evaluation of the effect of grain size and the effect of the grinding process on mechanical properties, mechanical performance, reliability, and expected service life. The CRADA comprised four tasks: (1) Machining of Zirconia and Silicon Nitride Materials; (2) Mechanical Properties Characterization and Performance Testing; (3) Tribological Studies; and (4) Residual Stress Studies. Using instrumented equipment at the High Temperature Materials Laboratory (HTML) Machining and Inspection Research User Center (MIRUC), zirconia and silicon nitride materials were ground into simulated component geometries. These components were subsequently evaluated for mechanical properties, wear, and residual stress characteristics in tasks two, three, and four.

  20. A framework for training workers in contemporary manufacturing environments

    E-Print Network [OSTI]

    Kaber, David B.

    A framework for training workers in contemporary manufacturing environments ARUNKUMAR PENNATHUR MCMULKIN and DILEEP SULE Abstract. Manufacturing experiments with full automation for manufacturing. It is now widely accepted that humans are vital to efficient and effective operation of manufacturing

  1. Improving Energy Efficiency in Pharmaceutical ManufacturingOperations -- Part I: Motors, Drives and Compressed Air Systems

    SciTech Connect (OSTI)

    Galitsky, Christina; Chang, Sheng-chien; Worrell, Ernst; Masanet,Eric

    2006-04-01

    In Part I of this two-part series, we focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Pharmaceutical manufacturing plants in the U.S. spend nearly $1 billion each year for the fuel and electricity they need to keep their facilities running (Figure 1, below). That total that can increase dramatically when fuel supplies tighten and oil prices rise, as they did last year. Improving energy efficiency should be a strategic goal for any plant manager or manufacturing professional working in the drug industry today. Not only can energy efficiency reduce overall manufacturing costs, it usually reduces environmental emissions, establishing a strong foundation for a corporate greenhouse-gas-management program. For most pharmaceutical manufacturing plants, Heating, Ventilation and Air Conditioning (HVAC) is typically the largest consumer of energy, as shown in Table 1 below. This two-part series will examine energy use within pharmaceutical facilities, summarize best practices and examine potential savings and return on investment. In this first article, we will focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Part 2, to be published in May, will focus on overall HVAC systems, building management and boilers.

  2. Electricity Used by Office Equipment and Network Equipment in the U.S.: Detailed Report and Appendices

    E-Print Network [OSTI]

    LBNL-45917 Electricity Used by Office Equipment and Network Equipment in the U.S.: Detailed Report..............................................................................................46 #12;#12;1 Electricity Used by Office Equipment and Network Equipment in the U.S. Kaoru Kawamoto and network equipment, there has been no recent study that estimates in detail how much electricity

  3. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

  4. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01

    64] USEPA, 2003, “Lean Manufacturing and the Environment:use the benefits of lean manufacturing principles to improve

  5. A Three Dimensional System Approach for Environmentally Sustainable Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris; Zhai, Qiang; Dornfield, David

    2012-01-01

    determining the sustainability performance of manufacturingcan improve the sustainability performance of manufacturing.for measuring sustainability performance of a manufacturing

  6. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for...

  7. Advanced Manufacturing Office, U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    materials Advanced Manufacturing Office Advanced Manufacturing Office Battery and Supercapacitors: A technology capable of transforming many industries including vehicles systems...

  8. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  9. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1993-01-01

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  10. Manufacturing method of photonic crystal

    DOE Patents [OSTI]

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  11. Additive Manufacturing: Technology and Applications

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| DepartmentAL/FAL 99-01 More5,AchievingSeptemberAdditive Manufacturing:

  12. Transportation Equipment Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  13. Medical Image Segmentation Xiaolei Huang

    E-Print Network [OSTI]

    Huang, Xiaolei

    . The National Electrical Manufacturers Association (NEMA) holds the copyright to the DICOM standard. Medical (CAT), Magnetic Resonance Imaging (MRI), Ultrasound, and X-Ray, in standard DICOM formats are often and Communications in Medicine (DICOM) standard is created as a cooperative international standard for communication

  14. Abatement of Air Pollution: Air Pollution Control Equipment and...

    Broader source: Energy.gov (indexed) [DOE]

    contain instructions for the operation and monitoring of air pollution control equipment, as well as comments on procedures in the event of equipment breakdown, failure, and...

  15. Early Markets: Fuel Cells for Material Handling Equipment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Early Markets: Fuel Cells for Material Handling Equipment Early Markets: Fuel Cells for Material Handling Equipment This fact sheet describes the use of hydrogen fuel cells to...

  16. Best Management Practice #9: Single-Pass Cooling Equipment |...

    Energy Savers [EERE]

    degreasers, hydraulic equipment, condensers, air compressors, welding machines, vacuum pumps, ice machines, x-ray equipment, and air conditioners. To remove the same heat...

  17. Cold-Start Emissions Control in Hybrid Vehicles Equipped with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for...

  18. Data Center Efficiency and IT Equipment Reliability at Wider...

    Energy Savers [EERE]

    Data Center Efficiency and IT Equipment Reliability at Wider Operating Temperature and Humidity Ranges Data Center Efficiency and IT Equipment Reliability at Wider Operating...

  19. Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid The National Renewable Energy...

  20. Guide to Low-Emission Boiler and Combustion Equipment Selection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Emission Boiler and Combustion Equipment Selection Guide to Low-Emission Boiler and Combustion Equipment Selection The guide provides background information about various types...

  1. Saving Energy and Money with Appliance and Equipment Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equipment Standards in the United States Overview Appliance and equipment efficien- cy standards have served as one of the nation's most effective policies for...

  2. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect (OSTI)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  3. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect (OSTI)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  4. Formaldehyde measurements in five new unoccupied energy efficient manufactured homes

    SciTech Connect (OSTI)

    Parker, G.B.; Onisko, S.A.

    1986-11-01

    Week-long integrated formaldehyde levels were measured over eight weeks in five new unoccupied energy efficient manufactured homes. These homes were constructed to the specifications set forth in the Model Conservation Standards (MCS) established by the Northwest Power Planning Council for site-built homes. The MCS standards exceed the Housing and Urban Development's (HUD) standards that currently apply to manufactured homes nationwide. Two of the homes were located at Richland, Washington, and three homes were located at Vancouver, Washington. Among other features of the MCS, the homes are equipped with air-to-air heat exchangers (AAHX) to supply additional fresh air ventilation. The first four weeks of testing were conducted with the AAHX off and the second four-week measurement period was conducted with the AAHX continuously on the HI setting. Formaldehyde levels ranged from 0.047 ppM the fifth week of the testing in a double wide home (with the AAHX turned on) to 0.164 ppM in the single wide home in the first week of measurements with the AAHX off. At no time did the formaldehyde levels exceed 0.4 ppM, the HUD targeted indoor level based on HUD codes for formaldehyde emissions from plywood and particle board building materials used in the homes. There was no strong correlation between formaldehyde levels and the measured air exchange rate. 9 refs., 2 figs., 3 tabs.

  5. Image engine study : strategic dynamic control for low volume potentially high mix modules

    E-Print Network [OSTI]

    Cohen, Elana Ann, 1978-

    2004-01-01

    The main goal of this project was to provide a case study on image engines for the purpose of developing a supply chain strategy. Initially, the current digital image engine manufacturing core competencies and respective ...

  6. Electrical Metering Equipment and Sensors Appendix D -Electrical Metering Equipment and Sensors

    E-Print Network [OSTI]

    Appendix D ­ Electrical Metering Equipment and Sensors #12;D.1 Appendix D - Electrical Metering Equipment and Sensors D.1 Controllable Electrical Panel Figure D.1. Square D Power Link Electrical Panel D.1.1 Schneider Electric/Square D Power Link G3 Control System The Square D Powerlink G3 offers programmable

  7. Low Energy Ion Implantationin Semiconductor Manufacturing | U...

    Office of Science (SC) Website

    Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  8. Battery Manufacturing Processes Improved by Johnson Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office. The project focused on three major aspects of the lithium ion (Li-ion) battery manufacturing process: reducing process time for battery formation and...

  9. Natural Fiber Composites: Retting, Preform Manufacture & Molding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Fiber Composites: Retting, Preform Manufacture & Molding FY 2008 Progress Report for Lightweighting Materials - 8. Polymer Composites Research and Development FY 2009...

  10. Supplemental Comments of the Plumbing Manufacturers Instititute...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Economic Impacts of the Proposed Definition of "Showerhead," Docket No. EERE-2010-BT-NOA-0016 Supplemental Comments of the Plumbing Manufacturers Instititute Regarding the...

  11. advanced manufacturing office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will create collaborative communities to target a unique technology in advanced manufacturing. DOE's industrial technical assistance efforts are critical to the deployment of...

  12. 2010 Manufacturing Energy and Carbon Footprints: Definitions...

    Broader source: Energy.gov (indexed) [DOE]

    for the Manufacturing Energy and Carbon Footprints (MECS 2010) More Documents & Publications Cement (2010 MECS) Fabricated Metals (2010 MECS) Glass and Glass Products (2010 MECS)...

  13. Manufacturing Barriers to High Temperature PEM Commercialization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve cost 992011 10 Manufacturing Barriers BASF is interested in mass markets for fuel cells Market forces appear to favor distributed generation - combined heat and...

  14. Energy-Related Carbon Emissions in Manufacturing

    Reports and Publications (EIA)

    2000-01-01

    Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

  15. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

    2011-01-01

    Precision Manufacturing, LCA, Machining, SustainabilityNOMENCLATURE API = CMOS = GWP = LCA = LCI = Mfg = MRR = RoHSLife Cycle Assessment (LCA). The following sections will

  16. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01

    Life Cycle Assessment, LCA, Green manufacturing, Leveraging,= Global warming potential LCA = Life Cycle Assessment LCI =Life Cycle Assessment (LCA). The following sections will

  17. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Legacy Manufacturing Technologies: e.g. melding, joining, welding Virtual, model- driven library: e.g. foundries, chemicals Process control metrology Two pathways through the...

  18. Microstructural Properties of Gamma Titanium Aluminide Manufactured...

    Office of Scientific and Technical Information (OSTI)

    COMPOUNDS In recent years, Electron Beam Melting (EBM) has matured as a technology for additive manufacturing of dense metal parts. The parts are built by additive consolidation...

  19. Microstructural Properties of Gamma Titanium Aluminide Manufactured...

    Office of Scientific and Technical Information (OSTI)

    Beam Melting In recent years, Electron Beam Melting (EBM) has matured as a technology for additive manufacturing of dense metal parts. The parts are built by additive consolidation...

  20. Solid State Lighting LED Manufacturing Roundtable Summary

    SciTech Connect (OSTI)

    None

    2010-03-31

    Summary of a meeting of LED experts to develop proposed priority tasks for the Manufacturing R&D initiative, including task descriptions, discussion points, recommendations, and presentation highlights.

  1. Manufacturing Ecosystems and Keystone Technologies (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Manufacturing Ecosystems and Keystone Technologies video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  2. Green Manufacturing Initiative Annual Report 2010

    E-Print Network [OSTI]

    de Doncker, Elise

    Green Manufacturing Initiative Annual Report 2010 Dr. John Patten Dr. David Meade May 3, 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Herman Miller Energy Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

  3. Manufacturing Process for OLED Integrated Substrate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and an additional 3 months has also been granted. The planned spend from subcontractor Solvay is being redirected to alternate in-house anode manufacturing process development....

  4. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy intensity and efficiently direct energy to forming the product. Examples include additive manufacturing, selective heating, and out-of-the-autoclave composite...

  5. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis An error occurred. Try...

  6. Welcome and Advanced Manufacturing Partnership (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  7. Natural Fiber Composites: Retting, Preform Manufacture & Molding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retting, Preform Manufacture & Molding (Start:06.22.07) PI: Jim Holbery Presenter: Mark Smith Pacific Northwest National Laboratory Wednesday, February 27, 2008 This presentation...

  8. Energy & Manufacturing Workforce Training Topics List - Version...

    Office of Environmental Management (EM)

    areas of energy andor manufacturing. Information provided in this list includes: the subjects being taught, grantee, project title, and state. In some cases the list also shows...

  9. Tank Manufacturing, Testing, Deployment and Field Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing, Testing, Field Performance, and Certification International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings CNG and Hydrogen Tank Safety, R&D, and Testing...

  10. Upcoming Clean Energy Manufacturing Initiative (CEMI) Southeast...

    Energy Savers [EERE]

    FCTO Home About the Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Safety, Codes & Standards...

  11. American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    The American Energy and Manufacturing Competitiveness Summit will bring together leaders and perspectives from industry, government, academia, national laboratories, labor, and policy organizations...

  12. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Broader source: Energy.gov (indexed) [DOE]

    Process, and Materials R&D More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop WORKSHOP: MATERIALS FOR HARSH SERVICE CONDITIONS -...

  13. USCAR LEP ESST Advanced Manufacturing

    SciTech Connect (OSTI)

    Lazarus, L.J.

    2000-09-25

    The objective of this task was to provide processing information data summaries on powder metallurgy (PM) alloys that meet the partner requirements for the production of low mass, highly accurate, near-net-shape powertrain components. This required modification to existing ISO machinability test procedures and development of a new drilling test procedure. These summaries could then be presented in a web page format. When combined with information generated from the USCAR CRADA this would allow chemical, metallurgical, and machining data on PM alloys to be available to all engineering and manufacturing personnel that have access to in-house networks. The web page format also allows for the additions of other wrought materials, making this a valuable tool to the technical staffs.

  14. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  15. Combining Representations from Manufacturing, Machine Planning, and Manufacturing Resource Planning (MRP)

    E-Print Network [OSTI]

    Cook, Diane J.

    -time controller. The controller uses four matrices: Fv and Sv describe ordering constraints between plan by allowing limited production capacity Inputs to Control System Researchers studying issues in intelligentCombining Representations from Manufacturing, Machine Planning, and Manufacturing Resource Planning

  16. A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company

  17. Manufacturing techniques studies of ceramics by neutron and ?-ray radiography

    SciTech Connect (OSTI)

    Latini, R. M.; Bellido, A. V. B.; Souza, M. I. S.; Almeida, G. L.

    2014-11-11

    In this study, the aim was to evaluate capabilities and constraints of radiographic imagery using thermal neutrons and gamma-rays as tools to identify the type of technique employed in ceramics manufacturing especially that used in prehistoric Brazilian pottery from Acre state. For this purpose, radiographic images of test objects made with clay of this region using both techniques - palette and rollers - have been acquired with a system comprised of a source of gamma-rays or thermal neutrons and a corresponding X-ray or neutron-sensitive Imaging Plate as detector. For the neutrongraphy samples were exposed to a thermal neutron flux of order of 10{sup 5}n.cm{sup ?2}.s{sup ?1} for 3 minutes at main port of Argonauta research reactor of the Instituto de Engenharia Nuclear - IEN/CNEN. The radiographic images using ?-rays from {sup 165}Dy (95 keV) and {sup 198}Au (412 keV) both produced at this reactor, have been acquired under an exposure time of a couple of hours. After acquisition, images have undergone a treatment to improve their quality through enhancement of their contrast, a procedure involving corrections of the beam divergence, sample shape and averaging of the attenuation map profile. Preliminary results show that difference between manufacturing techniques is better identified by radiography using low energy ?-rays from {sup 165}Dy rather than neutrongraphy or ?-rays from {sup 198}Au. Nevertheless, disregarding the kind of employed radiation, it should be stressed that feasibility to apply the technique is tightly tied to homogeneity of the clay itself and tempers due to their different attenuation.

  18. Manufacturer-to-Retailer versus Manufacturer-to-Consumer Rebates in a Supply Chain

    E-Print Network [OSTI]

    Aydin, Goker

    Manufacturer-to-Retailer versus Manufacturer-to-Consumer Rebates in a Supply Chain Goker Aydin rebates and retail pricing. The demand uncertainty is multiplicative, and the expected demand depends on the effective (retail) price of the product. A retailer rebate goes from the manufacturer to the retailer

  19. MANUFACTURING COMPLEXITY EVALUATION AT THE DESIGN STAGE FOR BOTH MACHINING AND LAYERED MANUFACTURING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and an additive process. Manufacturability indexes are calculated at the tool design stage, these indexes provide an accurate view of which areas of the tool will advantageously be machined or manufactured by an additiveMANUFACTURING COMPLEXITY EVALUATION AT THE DESIGN STAGE FOR BOTH MACHINING AND LAYERED

  20. SUBMITTED TO THE SPECIAL ISSUE OF IEEE TRANS. ON SEMICONDUCTOR MANUFACTURING 1 Simulation of Semiconductor Manufacturing

    E-Print Network [OSTI]

    SUBMITTED TO THE SPECIAL ISSUE OF IEEE TRANS. ON SEMICONDUCTOR MANUFACTURING 1 Simulation of Semiconductor Manufacturing Supply-Chain Systems with DEVS, MPC, and KIB Dongping Huang, Hessam Sarjoughian1 manufacturing supply-chain systems can be described using a combination of Discrete EVent System Specification

  1. APPROVED MATERIALS LIST FOR ALSEP EQUIPMENT

    E-Print Network [OSTI]

    Rathbun, Julie A.

    APPROVED MATERIALS LIST FOR ALSEP EQUIPMENT Addendum 1 ATU 242 I (E1) I PAGE-~ OF 39 DATE July 15, 1971 1. Amendment 1 to ATM 242 is issued to incorporate additional non-metallic materials which can operation and storage period. 2. Show alternate material designation for EPON adhesives made by Hysol after

  2. Engineering study of riser equipment contamination

    SciTech Connect (OSTI)

    BOGER, R.M.

    1999-08-25

    This Engineering Study was to evaluate the current equipment and operating procedures to determine if changes could be made to improve ALARA and evaluate the feasibility of implementing the proposed solutions. As part of this study input from the cognizant characterization engineers and operating sampling crews was obtained and evaluated for ALARA improvements.

  3. Research equipment: Surface Acoustic Wave (SAW) devices

    E-Print Network [OSTI]

    Gizeli, Electra

    Research equipment: Surface Acoustic Wave (SAW) devices: Operating frequencies @50MHz, 104MHz, 110 outputs measuring the real-time change of the phase and amplitude of the acoustic wave. More specifically with Dissipation monitoring (QCM-D): Qsense D-300 for real-time acoustic measurements at low frequencies (5-35MHz

  4. On Storage Operators LAMA -Equipe de Logique

    E-Print Network [OSTI]

    Nour, Karim

    On Storage Operators Karim NOUR LAMA - Equipe de Logique Universit´e de Savoie 73376 Le Bourget du Lac e-mail nour@univ-savoie.fr Abstract In 1990 Krivine (1990b) introduced the notion of storage shown that there is a very simple type in the AF2 type system for storage operators using Godel

  5. EQUIPMENT OR PROCESS UCLA/ACADEMIC

    E-Print Network [OSTI]

    Jalali. Bahram

    Cleanroom Usage $21 $58 0.1 2 AMAT 7830i - CD SEM $50 $110 0.5 3 ASML PAS 5500/200 - Stepper $50 $120 1 4 Monthly Minimum waved if no charges are accumulated in that month Cleanroom Usage Cap: Academic Cleanroom Usage capped at $1000/user per month Industry Cleanroom Usage capped $4000/user per month Equipment

  6. University of California Policy Personal Protective Equipment

    E-Print Network [OSTI]

    Aluwihare, Lihini

    and regulatory standards require the supervisor to select Personal Protective Equipment (PPE) for workers under is included in Appendix A. Laboratory/Technical Areas: For the purposes of this policy, a laboratory/technical, the default "supervisor" in laboratory/technical areas is the Principal Investigator. Use or Storage

  7. Safety Topic: Rota/ng Equipment

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Topic: Rota/ng Equipment Jus/n Kleingartner #12;Safety protocols for opera/ng a lathe · Dos: ­ Locate emergency stop bu?on before use ­ Be sure 2 #12;Safety protocols for opera/ng a lathe · Don'ts: ­ Do not wear gloves

  8. Right-Sizing Laboratory Equipment Loads

    SciTech Connect (OSTI)

    Frenze, David; Greenberg, Steve; Mathew, Paul; Sartor, Dale; Starr, William

    2005-11-29

    Laboratory equipment such as autoclaves, glass washers, refrigerators, and computers account for a significant portion of the energy use in laboratories. However, because of the general lack of measured equipment load data for laboratories, designers often use estimates based on 'nameplate' rated data, or design assumptions from prior projects. Consequently, peak equipment loads are frequently overestimated. This results in oversized HVAC systems, increased initial construction costs, and increased energy use due to inefficiencies at low part-load operation. This best-practice guide first presents the problem of over-sizing in typical practice, and then describes how best-practice strategies obtain better estimates of equipment loads and right-size HVAC systems, saving initial construction costs as well as life-cycle energy costs. This guide is one in a series created by the Laboratories for the 21st Century ('Labs21') program, a joint program of the U.S. Environmental Protection Agency and U.S. Department of Energy. Geared towards architects, engineers, and facilities managers, these guides provide information about technologies and practices to use in designing, constructing, and operating safe, sustainable, high-performance laboratories.

  9. SONIC EQUIPMENT FOR TRACKING INDIVIDUAL FISH

    E-Print Network [OSTI]

    . The equipment can be used in varied hydraulic conditions and in fresh or salt water to track the movements of individual adult salmon in relation to Columbia River dams. Each dam on the Columbia River presents a chance for delay in migration with injurious consequences if the delay is prolonged. Since new dams are under

  10. Clean Energy Manufacturing Analysis Center (CEMAC)

    SciTech Connect (OSTI)

    2015-12-01

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  11. Mechanical and Manufacturing Engineering Petroleum Engineering Minor

    E-Print Network [OSTI]

    Mechanical and Manufacturing Engineering Petroleum Engineering Minor The Department of Mechanical and Manufacturing Engineering offers a minor in petroleum engineering within the mechanical engineering major program. This minor builds on the fundamentals provided by a basis in mechanical engineering and adds

  12. Evaluating Energy Efficiency Improvements in Manufacturing Processes

    E-Print Network [OSTI]

    Boyer, Edmond

    and increasing awareness of "green" customers have brought energy efficient manufacturing on top of the agendaEvaluating Energy Efficiency Improvements in Manufacturing Processes Katharina Bunse1 , Julia Sachs kbunse@ethz.ch, sachsj@student.ethz.ch, mvodicka@ethz.ch Abstract. Global warming, rising energy prices

  13. Manufacturing Thomas W. Eagar, Guest Editor

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Materials Manufacturing Thomas W. Eagar, Guest Editor The bt·h.n-ior of succl'ssful manufac- tunn;imos., t·m·ironment for mate- nab manufacturing changes, so too does our ml·a~un· ol matt·rials performance~·(·vt·r. as shown by Figure 1, there are sen·ral additional dimensions to perfor- mann·. In particular, successful

  14. Fluids Review ME 6222: Manufacturing Processes and

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Gate Cope D Parting Line Gate Drag Casting ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 11 #12;Manufacturing - Ex. 1-2g · You wish to pour the metal so that you do not entrain below 20 000 are OK in casting· values below 20,000 are OK in casting ­ Bernoulli's equation Contin it

  15. BENEFITS OF VIBRATION ANALYSIS FOR DEVELOPMENT OF EQUIPMENT IN HLW TANKS - 12341

    SciTech Connect (OSTI)

    Stefanko, D.; Herbert, J.

    2012-01-10

    Vibration analyses of equipment intended for use in the Savannah River Site (SRS) radioactive liquid waste storage tanks are performed during pre-deployment testing and has been demonstrated to be effective in reducing the life-cycle costs of the equipment. Benefits of using vibration analysis to identify rotating machinery problems prior to deployment in radioactive service will be presented in this paper. Problems encountered at SRS and actions to correct or lessen the severity of the problem are discussed. In short, multi-million dollar cost saving have been realized at SRS as a direct result of vibration analysis on existing equipment. Vibration analysis of equipment prior to installation can potentially reduce inservice failures, and increases reliability. High-level radioactive waste is currently stored in underground carbon steel waste tanks at the United States Department of Energy (DOE) Savannah River Site and at the Hanford Site, WA. Various types of rotating machinery (pumps and separations equipment) are used to manage and retrieve the tank contents. Installation, maintenance, and repair of these pumps and other equipment are expensive. In fact, costs to remove and replace a single pump can be as high as a half million dollars due to requirements for radioactive containment. Problems that lead to in-service maintenance and/or equipment replacement can quickly exceed the initial investment, increase radiological exposure, generate additional waste, and risk contamination of personnel and the work environment. Several different types of equipment are considered in this paper, but pumps provide an initial example for the use of vibration analysis. Long-shaft (45 foot long) and short-shaft (5-10 feet long) equipment arrangements are used for 25-350 horsepower slurry mixing and transfer pumps in the SRS HLW tanks. Each pump has a unique design, operating characteristics and associated costs, sometimes exceeding a million dollars. Vibration data are routinely collected during pre-installation tests and screened for: Critical speeds or resonance, Imbalance of rotating parts, Shaft misalignment, Fluid whirl or lubrication break down, Bearing damages, and Other component abnormalities. Examples of previous changes in operating parameters and fabrication tolerances and extension of equipment life resulting from the SRS vibration analysis program include: (1) Limiting operational speeds for some pumps to extend service life without design or part changes; (2) Modifying manufacturing methods (tightening tolerances) for impellers on slurry mixing pumps based on vibration data that indicated hydraulic imbalance; (3) Identifying rolling element mounting defects and replacing those components in pump seals before installation; and (4) Identifying the need for bearing design modification for SRS long-shaft mixing pump designs to eliminate fluid whirl and critical speeds which significantly increased the equipment service life. In addition, vibration analyses and related analyses have been used during new equipment scale-up tests to identify the need for design improvements for full-scale operation / deployment of the equipment in the full size tanks. For example, vibration analyses were recently included in the rotary micro-filtration scale-up test program at SRNL.

  16. Localization of polyhydroxybutyrate in sugarcane using Fourier-transform infrared microspectroscopy and multivariate imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lupoi, Jason S.; Smith-Moritz, Andreia; Singh, Seema; McQualter, Richard; Scheller, Henrik V.; Simmons, Blake A.; Henry, Robert J.

    2015-07-10

    Background: Slow-degrading, fossil fuel-derived plastics can have deleterious effects on the environment, especially marine ecosystems. The production of bio-based, biodegradable plastics from or in plants can assist in supplanting those manufactured using fossil fuels. Polyhydroxybutyrate (PHB) is one such biodegradable polyester that has been evaluated as a possible candidate for relinquishing the use of environmentally harmful plastics. Results: PHB, possessing similar properties to polyesters produced from non-renewable sources, has been previously engineered in sugarcane, thereby creating a high-value co-product in addition to the high biomass yield. This manuscript illustrates the coupling of a Fourier-transform infrared microspectrometer, equipped with a focalmore »plane array (FPA) detector, with multivariate imaging to successfully identify and localize PHB aggregates. Principal component analysis imaging facilitated the mining of the abundant quantity of spectral data acquired using the FPA for distinct PHB vibrational modes. PHB was measured in the chloroplasts of mesophyll and bundle sheath cells, acquiescent with previously evaluated plant samples. Conclusion: This study demonstrates the power of IR microspectroscopy to rapidly image plant sections to provide a snapshot of the chemical composition of the cell. While PHB was localized in sugarcane, this method is readily transferable to other value-added co-products in different plants.« less

  17. MECS 2006 - Transportation Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.LeadershipLumileds R&D ImpactsMARVIN

  18. Requisition's, Donations, Gifts, Transfers of Equipment There are several ways the University acquires equipment.

    E-Print Network [OSTI]

    as either a Donation or a Transfer. The Property Management Office is re- sponsible for capturing the cost equipment received or purchased. 1 Issue 2 May 2014 The end is near! VOLUME 1 focusDE-MYSTIFYING CAPITA L

  19. Optimization of Hydroacoustic Equipment Deployments at Lookout Point and Cougar Dams, Willamette Valley Project, 2010

    SciTech Connect (OSTI)

    Johnson, Gary E.; Khan, Fenton; Ploskey, Gene R.; Hughes, James S.; Fischer, Eric S.

    2010-08-18

    The goal of the study was to optimize performance of the fixed-location hydroacoustic systems at Lookout Point Dam (LOP) and the acoustic imaging system at Cougar Dam (CGR) by determining deployment and data acquisition methods that minimized structural, electrical, and acoustic interference. The general approach was a multi-step process from mount design to final system configuration. The optimization effort resulted in successful deployments of hydroacoustic equipment at LOP and CGR.

  20. Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future

    E-Print Network [OSTI]

    Brock, David

    Growth. Every $1.00 in manufactured goods generates an additional $1.43 worth of additional economic© ATI 2006 Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future presented to thepresented to the 2006 MIT Manufacturing Summit:2006 MIT Manufacturing Summit

  1. Proceedings of the 1998 NSF Design and Manufacturing Grantees Conferences Manufacturing Logistics Workshop: A Summary of Research Directions

    E-Print Network [OSTI]

    Wu, David

    Proceedings of the 1998 NSF Design and Manufacturing Grantees Conferences Manufacturing Logistics Louis A. Martin-Vega Lehigh University Abstract: A workshop sponsored by NSF on Manufacturing Logistics for Manufacturing Logistics was defined. In this paper, we summarize future research directions in manufacturing

  2. Dairy Manure Handling Systems and Equipment

    E-Print Network [OSTI]

    Sweeten, John M.

    1983-01-01

    Equipment Type System Tank Wagon, Surface spread' Tank Wagon , Surface spread' Tank Wagon, Soil injection' Irrigation , Stationary gun Irrigation , Traveling gun Irrigation, Traveling gun Nominal capacity 1,500 gal. 3,000 gal. 3,000 gal... wagon and 2000 It. haul distance labor. The total cost of pump, irrigation pipe, and traveling gun sprinkler is similar to the cost of a tank wagon system excluding the power unit (tractor) . Direct slurry irrigation systems can serve the dual...

  3. Measured Peak Equipment Loads in Laboratories

    SciTech Connect (OSTI)

    Mathew, Paul A.

    2007-09-12

    This technical bulletin documents measured peak equipment load data from 39 laboratory spaces in nine buildings across five institutions. The purpose of these measurements was to obtain data on the actual peak loads in laboratories, which can be used to rightsize the design of HVAC systems in new laboratories. While any given laboratory may have unique loads and other design considerations, these results may be used as a 'sanity check' for design assumptions.

  4. DESIGN AND FABRICATION OF A ROLLER IMPRINTING DEVICE FOR MICROFLUIDIC DEVICE MANUFACTURING

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Jayanathan, Stephen; Helu, Moneer; Dornfeld, David

    2008-01-01

    micromachining”. CIRP Annals - Manufacturing Technology, 55(of the Laboratory for Manufacturing and Sustainability (the 2008 International Manufacturing Science And Engineering

  5. "Human Health Impact Characterization of Toxic Chemicals for Sustainable Design and Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris; Dornfeld, David

    2009-01-01

    Sustainable Design and Manufacturing Chris Y. Yuan, Davidsustainable design and manufacturing. Human health impactfor sustainable design and manufacturing, streamlined and

  6. Adaptive Integrated Manufacturing Enterprises: Information Technology for the Next Decade

    E-Print Network [OSTI]

    Hsu, Cheng

    Adaptive Integrated Manufacturing Enterprises: Information Technology for the Next Decade Cheng Hsu for Manufacturing Productivity and Technology Transfer. #12;Abstract A new vision effecting adaptiveness Manufacturing Enterprises (AIME). It focuses on four major problems: (1) Management of multiple systems

  7. MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION

    E-Print Network [OSTI]

    Connors, Daniel A.

    MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION In this course you product development and innovation. You will develop a rich knowledge of additive manufacturing processes enabling advanced/additive manufacturing and personal fabrication. You will have the opportunity

  8. Additive Manufacturing in China: Threats, Opportunities, and Developments (Part I)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01

    application of additive manufacturing in China’s aviationAnalysis May 2013 Additive Manufacturing in China: Threats,an overview of China’s additive manufacturing industry is

  9. Advanced Manufacturing Office, U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Advanced Manufacturing Of Office fice Manufacturing is vital to the U.S. economy * 11% of U.S. GDP * 57% of U.S. Exports * 12 million U.S. jobs * Nearly 20% of the...

  10. Advanced Manufacturing Office in DOE Multimaterial Joining Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 -20 -40 -60 -80 -100 Advanced Manufacturing Office Manufacturing is vital to the U.S. economy * 57% of U.S. Exports * Nearly 20% of the worlds manufactured value added * 11% of...

  11. Faculty Position in Ultra High Precision Robotics & Manufacturing

    E-Print Network [OSTI]

    Candea, George

    , manipulation and metrology systems targeting additive manufacturing; · New kinematics, quasi-perfect guidings, actuators, transmission systems, sensors and methods targeting ultra-high precision additive manufacturingFaculty Position in Ultra High Precision Robotics & Manufacturing at the Ecole Polytechnique

  12. Oregon State University School of Mechanical, Industrial, and Manufacturing

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Oregon State University School of Mechanical, Industrial, and Manufacturing Engineering Industrial and Manufacturing Engineering Graduate Programs, Policies, and Procedures Manual Effective September 2014 School of Mechanical, Industrial, and Manufacturing Engineering 204 Rogers Hall Oregon State University Corvallis

  13. Constructing and managing complex virtual worlds for manufacturing

    E-Print Network [OSTI]

    Bowden, Richard

    Constructing and managing complex virtual worlds for manufacturing applications Zhengxu Zhao School and holds great potentials especially in computerised manufacturing applications. Technical problems however manufacturing environments. The paper presents a method of managing virtual worlds, attempting to provide

  14. Oregon State University School of Mechanical, Industrial, and Manufacturing

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Oregon State University School of Mechanical, Industrial, and Manufacturing Engineering Industrial and Manufacturing Engineering Graduate Programs, Policies, and Procedures Manual Effective September 2013 School of Mechanical, Industrial, and Manufacturing Engineering 204 Rogers Hall Oregon State University Corvallis

  15. Bandwidth Study U.S. Pulp and Paper Manufacturing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pulp and Paper Manufacturing Bandwidth Study U.S. Pulp and Paper Manufacturing Pulp-Paper.jpg Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational...

  16. The Specificity of Manufacturing in Marx's Economic Though

    E-Print Network [OSTI]

    Tregenna, Fiona

    , spill-over effects, and intersectoral linkages are considered particularly strong in manufacturing, rendering overall productivity growth endogenous to growth in dynamic manufacturing sectors. This means that expanding the manufacturing sector would...

  17. Realizing the PRomise of Innovative Materials and Manufacturing

    E-Print Network [OSTI]

    Post, Wilfred M.

    performance, multifunctionality, and lower overall manufacturing costs. Not only does additive manufacturingRealizing the PRomise of Innovative Materials and Manufacturing Technologies to Make Next · Investigating alternate low-cost feedstock materials · Increasing performance enhancements for materials

  18. Manufacturing of Profiles for Lightweight Structures

    SciTech Connect (OSTI)

    Chatti, Sami; Kleiner, Matthias

    2007-04-07

    The paper shows some investigation results about the production of straight and curved lightweight profiles for lightweight structures and presents their benefits as well as their manufacturing potential for present and future lightweight construction. A strong emphasis is placed on the manufacturing of straight and bent profiles by means of sheet metal bending of innovative products, such as tailor rolled blanks and tailored tubes, and the manufacturing of straight and curved profiles by the innovative procedures curved profile extrusion and composite extrusion, developed at the Institute of Forming Technology and Lightweight Construction (IUL) of the University of Dortmund.

  19. Breaking Barriers in Polymer Additive Manufacturing

    SciTech Connect (OSTI)

    Love, Lonnie J; Duty, Chad E; Post, Brian K; Lind, Randall F; Lloyd, Peter D; Kunc, Vlastimil; Peter, William H; Blue, Craig A

    2015-01-01

    Additive Manufacturing (AM) enables the creation of complex structures directly from a computer-aided design (CAD). There are limitations that prevent the technology from realizing its full potential. AM has been criticized for being slow and expensive with limited build size. Oak Ridge National Laboratory (ORNL) has developed a large scale AM system that improves upon each of these areas by more than an order of magnitude. The Big Area Additive Manufacturing (BAAM) system directly converts low cost pellets into a large, three-dimensional part at a rate exceeding 25 kg/h. By breaking these traditional barriers, it is possible for polymer AM to penetrate new manufacturing markets.

  20. Real time intelligent process control system for thin film solar cell manufacturing

    SciTech Connect (OSTI)

    George Atanasoff

    2010-10-29

    This project addresses the problem of lower solar conversion efficiency and waste in the typical solar cell manufacturing process. The work from the proposed development will lead toward developing a system which should be able to increase solar panel conversion efficiency by an additional 12-15% resulting in lower cost panels, increased solar technology adoption, reduced carbon emissions and reduced dependency on foreign oil. All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require significant equipment refurbishing needed for installation of multiple separate ellipsometric systems, and development of customized software to control all of them simultaneously. The proposed optical monitoring system comprises AccuStrata’s fiber optics sensors installed inside the thin film deposition equipment, a hardware module of different components (beyond the scope of this project) and our software program with iterative predicting capability able to control material bandgap and surface roughness as films are deposited. Our miniature fiber optics monitoring sensors are installed inside the vacuum chamber compartments in very close proximity where the independent layers are deposited (an option patented by us in 2003). The optical monitoring system measures two of the most important parameters of the photovoltaic thin films during deposition on a moving solar panel - material bandgap and surface roughness. In this program each sensor array consists of two fiber optics sensors monitoring two independent areas of the panel under deposition. Based on the monitored parameters and their change in time and from position to position on the panel, the system is able to provide to the equipment operator immediate information about the thin films as they are deposited. This DoE Supply Chain program is considered the first step towards the development of intelligent optical control system capable of dynamically adjusting the manufacturing process “on-the-fly” in order to achieve better performance. The proposed system will improve the thin film solar cell manufacturing by improving the quality of the individual solar cells and will allow for the manufacturing of more consistent and uniform products resulting in higher solar conversion efficiency and manufacturing yield. It will have a significant impact on the multibillion-dollar thin film solar market. We estimate that the financial impact of these improvements if adopted by only 10% of the industry ($7.7 Billion) would result in about $1.5 Billion in savings by 2015 (at the assumed 20% improvement). This can b

  1. Direct Liquid Cooling for Electronic Equipment

    SciTech Connect (OSTI)

    Coles, Henry; Greenberg, Steve

    2014-03-01

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used with data center energy use modeling software to estimate overall site energy use. These estimates show that an overall data center energy savings of approximately 20 percent can be expected if a center is retrofitted as specified in the models used. Increasing the portion of heat captured by this technology is an area suggested for further development.

  2. Unfolding time : a projective model for the moving image

    E-Print Network [OSTI]

    Watkins, Elizabeth Anne

    2012-01-01

    Humanity's desire to record events happening in time has spawned a lineage of moving-image transcription systems, from early cinematographs to contemporary digital camcorder equipment. These technologies have arisen, ...

  3. The AP1000{sup R} China projects move forward to construction completion and equipment installation

    SciTech Connect (OSTI)

    Harrop, G. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The AP1000 design is the only Generation III+ technology to receive design certification from the U.S. Nuclear Regulatory Commission. This evolutionary design provides the highest safety and performance standards and has several distinct advantages over other designs, including improved operations and reduced construction schedule risks through the use of modern, modular, engineering principles that allow construction and fabrication tasks traditionally performed in sequence to be undertaken in parallel. Since the first granting of Design Certification in 2005 by the NRC, the AP1000 design has been modified to meet emergent NRC requirements such as those requiring the design to withstand the impact of an aircraft crash. Both domestic and foreign utilities have turned to the Westinghouse AP1000 plant design to meet their near - and long-term sustainable energy needs. The first ever deployment of this advanced U.S. nuclear power technology began in China in 2007 with the award of a contract to build four AP1000 units, constructed in pairs at the coastal sites of Sanmen (Zhejiang Province) and Haiyang (Shandong Province). Currently, all four units are at an advanced stage of construction. The commercial operation date for Sanmen Unit 1 is November 2013 followed by Haiyang Unit 1 being operational in May 2014. Construction and equipment manufacture is at an advanced stage. Sanmen Unit 1 equipment that has been delivered includes the reactor vessel, the reactor vessel closure head, the passive residual heat removal heat exchanger, the integrated head package, the polar crane, and the refueling machine. The steam generators are also completed. The RV was installed within the containment vessel building in September 2011. The installation of this major equipment will allow the setting of the containment vessel top head. Haiyang Unit 1 is also achieving significant progress. Significant benefits continue to be realized as a result of lessons learned and experience gained from the first-of-a-kind activities for Sanmen Unit 1 and AP1000 equipment design and manufacturing. For example, the nuclear island basemat at Haiyang Units 1 and 2 and Sanmen Unit 2 was laid in less time than that of Sanmen Unit 1, the ultra-large steam generator and RV forging lead times were reduced for the follow on units, and the fabrication of the auxiliary building module for Haiyang Unit 1 took less time than for the Sanmen first unit. These benefits are also being realized by the United States AP1000 project construction and fabrication modules, and equipment. Some difficulties arise from building this first-of-a-kind (advanced passive) type of plant; however, these difficulties are being overcome and the overall schedule remains achievable. (authors)

  4. New Request for Information (RFI) on Clean Energy Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the cross-cutting and specific manufacturing challenges as well as the underlying motivation for the formation of a manufacturing innovation institute, consistent with the...

  5. Request for Information (RFI): Clean Energy Manufacturing Topics...

    Broader source: Energy.gov (indexed) [DOE]

    as specific manufacturing challenges that if addressed could provide the underlying motivation for the formation of a manufacturing innovation institute, consistent with the...

  6. 2.852 Manufacturing Systems Analysis, Spring 2004

    E-Print Network [OSTI]

    Gershwin, Stanley

    This course deals with the following topics: Models of manufacturing systems, including transfer lines and flexible manufacturing systems; Calculation of performance measures, including throughput, in-process inventory, ...

  7. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

  8. DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...

    Energy Savers [EERE]

    Against 4 Showerhead Manufacturers (Notice of Proposed Civil Penalty and Requests for Test Data Issued) DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...

  9. Energy Department to Work with National Association of Manufacturers...

    Energy Savers [EERE]

    Department to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency Energy Department to Work with National Association of Manufacturers to...

  10. DOE - Office of Legacy Management -- Penn Salt Manufacturing...

    Office of Legacy Management (LM)

    Salt Manufacturing Co Whitemarsh Research Laboratories - PA 20 FUSRAP Considered Sites Site: PENN SALT MANUFACTURING CO., WHITEMARSH RESEARCH LABORATORIES (PA.20) Eliminated from...

  11. Functionally Graded Materials for Manufacturing Tools and Dies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Functionally Graded Materials for Manufacturing Tools and Dies Functionally Graded Materials for Manufacturing Tools and Dies New Material Processes Improve the Performance and...

  12. EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in...

    Office of Environmental Management (EM)

    8: Solyndra, Inc. Photovoltaic Manufacturing Facility in Fremont, CA EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in Fremont, CA March 2, 2009 EA-1638: Final...

  13. EA-1827: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project...

    Office of Environmental Management (EM)

    7: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project in Saginaw, MI EA-1827: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project in Saginaw, MI February 1, 2010...

  14. Celebrating Two Years of Building America's Clean Energy Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Years of Building America's Clean Energy Manufacturing Future Celebrating Two Years of Building America's Clean Energy Manufacturing Future March 27, 2015 - 3:23pm Addthis An...

  15. Unlocking the Potential of Additive Manufacturing in the Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry Download presentation...

  16. Novel Manufacturing Technologies for High Power Induction and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric...

  17. Low Cost Manufacturable Microchannel Systems for Passive PEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost Manufacturable Microchannel Systems for Passive PEM Water Management Low Cost Manufacturable Microchannel Systems for Passive PEM Water Management Part of a 100 million...

  18. Low-Cost Manufacturable Microchannel Systems for Passive PEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management This presentation, which...

  19. DOE Offers Support for Innovative Manufacturing Plant That Will...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offers Support for Innovative Manufacturing Plant That Will Produce High Quality Solar Silicon at Low Cost DOE Offers Support for Innovative Manufacturing Plant That Will Produce...

  20. Energy Department Announces $2 Million to Support Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Announces 2 Million to Support Manufacturing of Taller Wind Turbine Towers Energy Department Announces 2 Million to Support Manufacturing of Taller Wind Turbine...

  1. An Overview of Polymer Additive Manufacturing Technologies Peterson...

    Office of Scientific and Technical Information (OSTI)

    of Polymer Additive Manufacturing Technologies Peterson, Dominic S. Los Alamos National Laboratory Los Alamos National Laboratory Materials Science(36) Additive Manufacturing...

  2. Title: Investigation of extraterrestrial construction processes using Additive Manufacturing techniques

    E-Print Network [OSTI]

    Anand, Mahesh

    Title: Investigation of extraterrestrial construction processes using Additive Manufacturing: · To investigate the strengths and weaknesses of existing Additive Manufacturing (AM) processes relevant to lunar

  3. Letter from Plumbing Manufacturers Institute to Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Letter from Plumbing Manufacturers Institute to Department of Energy re: Ex Parte Communication More Documents & Publications Supplemental Comments of the Plumbing Manufacturers...

  4. Electric Drive Component Manufacturing: Magna E-Car Systems of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Electric Drive Component Manufacturing: Magna E-Car Systems of...

  5. AMO Industry Day Workshop on Upcoming Smart Manufacturing FOA

    Broader source: Energy.gov [DOE]

    AMO will host an Industry Day workshop to explain the concept, vision, and technology needs associated with support for a Clean Energy Manufacturing Innovation Institute on Smart Manufacturing.

  6. Wind Program Manufacturing Research Advances Processes and Reduces...

    Energy Savers [EERE]

    Wind Program Manufacturing Research Advances Processes and Reduces Costs Wind Program Manufacturing Research Advances Processes and Reduces Costs March 31, 2014 - 11:22am Addthis...

  7. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01

    improving the sustainability performance of manufacturingThus, sustainability necessitates the need for a performancethe performance of manufacturing from a sustainability

  8. Join Us for the Clean Energy Manufacturing Initiative's Western...

    Office of Environmental Management (EM)

    Energy Manufacturing Initiative's Western Regional Summit March 25, 2014 - 1:45pm Addthis Additive manufacturing is just one of several technologies that are being advanced by the...

  9. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

  10. Save the Date: DOE EERE AMO Workshop to Discuss Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Save the Date: DOE EERE AMO Workshop to Discuss Manufacturing Process Intensification Innovation Topic Save the Date: DOE EERE AMO Workshop to Discuss Manufacturing Process...

  11. U.S. Advanced Manufacturing and Clean Energy Technology Challenges

    Broader source: Energy.gov (indexed) [DOE]

    Strategy * Collaborative Ideas Collaboration toward: * Common goal to collectively increase U.S. manufacturing competitiveness 17 Clean Energy Manufacturing Initiative - DOE...

  12. President Announces New Public-Private Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute Energy Department Awards 22 Million to Support Next Generation Electric Machines for Manufacturing...

  13. Notice of Intent (NOI): Clean Energy Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Platforms, and Modeling for Manufacturing Notice of Intent (NOI): Next Generation of Electric Machines AMO to Issue FOA for New Innovation Institute on Smart Manufacturing...

  14. Design for manufacturability with regular fabrics in digital integrated circuits

    E-Print Network [OSTI]

    Gazor, Mehdi (Seyed Mehdi)

    2005-01-01

    Integrated circuit design is limited by manufacturability. As devices scale down, sensitivity to process variation increases dramatically, making design for manufacturability a critical concern. Designers must identify the ...

  15. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid...

    Office of Scientific and Technical Information (OSTI)

    Rapid Manufacture of Customized Electric Vehicles This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted...

  16. Energy Department Launches New Clean Energy Manufacturing Initiative...

    Broader source: Energy.gov (indexed) [DOE]

    manufacturers." The announcement was made at the ribbon cutting of the Department's Carbon Fiber Technology Facility in Oak Ridge, Tennessee, a new advanced manufacturing...

  17. An exploration of materials and methods in manufacturing : shoreline membranes

    E-Print Network [OSTI]

    Chin, Ryan C. C., 1974-

    2000-01-01

    This thesis is an investigation into the design methodologies and ideologies of manufacturing processes specifically related to automotive design. The conceptualization, prototyping, testing, and manufacturing of cars is ...

  18. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

  19. Fact #570: May 11, 2009 Automotive Manufacturing Employment Declining...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: May 11, 2009 Automotive Manufacturing Employment Declining Fact 570: May 11, 2009 Automotive Manufacturing Employment Declining The number of people employed by automotive...

  20. 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials...

    Office of Environmental Management (EM)

    3: Manufacturing, Materials, and Resources Summary Slides 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials, and Resources Summary Slides Summary Slides for Chapter 3:...