Sample records for images contacts amf

  1. ARM - AMF Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRing Under79FacilitiesAMF Architecture

  2. ARM - AMF2 Organization and Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRingFacilitiesAMF1

  3. ARM - AMF Architecture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRing Under79FacilitiesAMF Architecture AMF

  4. ARM - AMF Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRing Under79FacilitiesAMF ArchitectureData

  5. ARM - AMF Data Plots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRing Under79FacilitiesAMF

  6. ARM - AMF Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRing Under79FacilitiesAMFOperations AMF

  7. ARM - AMF2 Architecture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRingFacilitiesAMF1 Baseline Instruments

  8. ARM - AMF2 Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRingFacilitiesAMF1 BaselineManagement

  9. ARM - AMF1 Baseline Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRingFacilitiesAMF1 Baseline Instruments AMF

  10. ARM - AMF3 Baseline Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRingFacilitiesAMF1FacilitiesAMF3 Baseline

  11. AMF Deployment, Steamboat Springs, Colorado

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies Colorado Steamboat Deployment AMF Home

  12. ARM - AMF2 Baseline Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRingFacilitiesAMF1 Baseline

  13. Sandia National Laboratories: AMF3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguardsEngineers Wind EnergyAMF3 Sierra Unmanned

  14. Multifrequency Imaging in the Intermittent Contact Mode of Atomic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the intermittent-contact (IC) 1-4 and noncontact (NC) 5 modes of atomic force micro- scopy (AFM) has opened a pathway towards high-resolution nondestructive imaging of...

  15. ARM - AMF2 Management and Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRingFacilitiesAMF1 BaselineManagement and

  16. Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Contacts Bradbury Science Museum P.O. Box 1663 Mail Stop C330 Los Alamos National Laboratory Los Alamos, NM 87545 email: web-bsm@lanl.gov PHONE: 505-667-4444 FAX:...

  17. Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - WorkingContactContact

  18. Contacts:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-GovContacts News News Home

  19. Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1Contact CommunityContact

  20. Images in Emergency Medicine: Irritant Contact Dermatitis from Jet Fuel

    E-Print Network [OSTI]

    Trigger, Christopher C; Eilbert, Wesley

    2009-01-01T23:59:59.000Z

    and penetration of JP-8 jet fuel and its components. Toxicoland other kerosene-based fuels have been shown to cause skinContact Dermatitis from Jet Fuel Christopher C. Trigger, MD

  1. Microsoft Word - AMF2 Instruments for BAECC.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8 - Outline andPROPOSAL FACT SHEET PAC cycle: _AMF2

  2. Atmospheric Radiation Measurement (ARM) Data from Oliktok Point, Alaska (an AMF3 Deployment)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARM’s third and newest ARM Mobile Facility, or AMF3. The AMF3 is gathering data using about two dozen instruments that obtain continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. Site operators will also fly manned and unmanned aircraft over sea ice, drop instrument probes and send up tethered balloons. The combination of atmospheric observations with measurements from both the ground and over the Arctic Ocean will give researchers a better sense of why the Arctic sea ice has been fluctuating in fairly dramatic fashion over recent years. AMF3 will be stationed at Oliktok Point.

  3. Investigation of the Downwelling LW Differences Between the Niamey AMF Main and Supplementary Sites

    SciTech Connect (OSTI)

    CN Long; P Gotseff; EG Dutton

    2008-04-01T23:59:59.000Z

    The overall average downwelling longwave (LW) measured at the Niamey supplementary facility (S1) is 6-8 Wm-2 less than that measured by the two instruments located at the ARM Mobile Facility (AMF) main (N1) site. Examination of all other data available at both sites does not reveal any overarching differences that suggest this should be the case. However, examination of the pyrgeometer case and dome temperatures do suggest that the S1 values are also anomalously low, which in turn would explain the downwelling LW anomaly since the LW is calculated using these temperatures. Our recommendation then is to normalize the S1 data to the average N1 value by applying an adjustment factor to the S1 downwelling pyrgeometer case and dome temperatures (in Kelvin), then recalculating the downwelling LW values. The adjustment factor (0.00305) has been determined as that factor that brings the overall average S1 LWdn to agree with the overall average of the two N1 LWdn data series. We note that there is no reason to expect that the two site averages would actually be exactly equal to one another, and thus our recommendation is viewed as likely moving the S1 data in the right direction and by normalizing to the N1 average will help facilitate more meaningful temporal variability studies at least. It is also strongly recommended that for all future AMF deployments where supplementary sites will also be deployed, that the supplementary instrument systems (complete) be assembled as they will be operated in the field and run for at least a few days beside the corresponding AMF main site instruments, both at the beginning and end of the AMF field campaign. This is absolutely crucial so that all the measurements can be compared pre- and post-experiment to properly relate these measurements and systems, and to detect measurement anomalies such as those discussed in this report.

  4. Programs Beamlines Contact/GL Programs Beamlines Contact/GL Programs Beamlines Contact/GL Contact/GL Spectroscopy (SPC) 20ID S. Heald Inelastic and Nuclear 3ID T. Gog Imaging (IMG) 2BM F. DeCarlo S. Pasky

    E-Print Network [OSTI]

    Kemner, Ken

    Programs Beamlines Contact/GL Programs Beamlines Contact/GL Programs Beamlines Contact/GL Contact/GL

  5. A CMOS contact imager for locating individual Honghao Ji, David Sander, Alfred Haas, Pamela A. Abshire

    E-Print Network [OSTI]

    Maryland at College Park, University of

    to the background illumination. The imager is capable of locating dark objects in a bright background or bright objects in a dark background. The loca- tions of recognized cells are generated as outputs to alleviate of intracel- lular processes, drug development, medical diagnostics, and the development of cell-based sensors

  6. Atmospheric Radiation Measurement (ARM) Data from Niamey, Niger for the Radiative Atmospheric Divergence using AMF, GERB and AMMA Stations (RADAGAST)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. The ARM Mobile Facility (AMF) operates at non-permanent sites selected by the ARM Program. Sometimes these sites can become permanent ARM sites, as was the case with Graciosa Island in the Azores. It is now known as the Eastern North Atlantic permanent site. In January 2006 the AMF deployed to Niamey, Niger, West Africa, at the Niger Meteorological Office at Niamey International Airport. This deployment was timed to coincide with the field phases and Special Observing Periods of the African Monsoon Multidisciplinary Analysis (AMMA). The ARM Program participated in this international effort as a field campaign called "Radiative Divergence using AMF, GERB and AMMA Stations (RADAGAST).The primary purpose of the Niger deployment was to combine an extended series of measurements from the AMF with those from the Geostationary Earth Radiation Budget (GERB) Instrument on the Meteosat operational geostationary satellite in order to provide the first well-sampled, direct estimates of the divergence of solar and thermal radiation across the atmosphere. A large collection of data plots based on data streams from specific instruments used at Niamey are available via a link from ARM's Niamey, Niger site information page. Other data can be found at the related websites mentioned above and in the ARM Archive. Users will be requested to create a password, but the plots and data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  7. Non-contact, Wavelet-based Measurement of Vital Signs using Thermal Imaging S. Yu. Chekmenev, H. Rara, and Aly A. Farag

    E-Print Network [OSTI]

    Farag, Aly A.

    be measured and used to assess the person's level of physical functioning. Normal ranges of vital signs vary with ECG data as the baseline measurement. Geisheimer [6] developed a Radar Vital Signs Monitor (RVSMNon-contact, Wavelet-based Measurement of Vital Signs using Thermal Imaging S. Yu. Chekmenev, H

  8. Near-Edge X-ray Absorption Fine Structure Imaging of Spherical and Flat Counterfaces of Ultrananocrystalline Diamond Tribological Contacts: A Correlation of Surface Chemistry and Friction

    SciTech Connect (OSTI)

    A Konicek; C Jaye; M Hamilton; W Sawyer; D Fischer; R Carpick

    2011-12-31T23:59:59.000Z

    A recently installed synchrotron radiation near-edge X-ray absorption fine structure (NEXAFS) full field imaging electron spectrometer was used to spatially resolve the chemical changes of both counterfaces from an ultra-nanocrystalline diamond (UNCD) tribological contact. A silicon flat and Si{sub 3}N{sub 4} sphere were both coated with UNCD, and employed to form two wear tracks on the flat in a linear reciprocating tribometer. The first wear track was produced using a new, unconditioned sphere whose surface was thus conditioned during this first experiment. This led to faster run-in and lower friction when producing a second wear track using the conditioned sphere. The large depth of field of the magnetically guided NEXAFS imaging detector enabled rapid, large area spectromicroscopic imaging of both the spherical and flat surfaces. Laterally resolved NEXAFS data from the tribological contact area revealed that both substrates had an as-grown surface layer that contained a higher fraction of sp{sup 2}-bonded carbon and oxygen which was mechanically removed. Unlike the flat, the film on the sphere showed evidence of having graphitic character, both before and after sliding. These results show that the graphitic character of the sphere is not solely responsible for low friction and short run-in. Rather, conditioning the sphere, likely by removing asperities and passivating dangling bonds, leads to lower friction with less chemical modification of the substrate in subsequent tests. The new NEXAFS imaging spectroscopy detector enabled a more complete understanding of the tribological phenomena by imaging, for the first time, the surface chemistry of the spherical counterface which had been in continual contact during wear track formation.

  9. Contact us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact us Participate with us Participate Become a Volunteer Share Your Stories Museum Fan Downloads Q&A Blog Contact us invisible utility element Contact us We want to hear from...

  10. Contacts | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    list of important phone numbers. Contact a Staff Member at NREL Our searchable staff directory has contact information for staff. Questions or Comments? Please use our feedback...

  11. Scanning Microscopy, Vol. 5, No. 2, 1991 (Pages 317-328) Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA

    E-Print Network [OSTI]

    Vertes, Akos

    (AMF O'Hare), IL 60666 USA 0891-7035/91$3.00+.00 RESTRICTED ENERGY TRANSFER IN LASER DESORPTION OF HIGH- guished importance in mass spectrometry. In our present study we survey different laser desorption methods of restricted energy transfer pathways as a pos- sible explanation to the volatilization of non-degraded large

  12. Coupling Between Oceanic Upwelling and Cloud-aerosol Properties at the AMF Point Reyes Site

    SciTech Connect (OSTI)

    Dunn, M.; Jensen, M.; Miller, M.; Kollias, P.; Bartholomew, M. J.; Turner, D.; Andrews, E.; Jefferson, A.; Daum, P.

    2008-03-10T23:59:59.000Z

    Cloud microphysical properties measured at the ARM Mobile Facility site located on the northern coast of California near Point Reyes, during the 2005 Marine Stratus Radiation, Aerosol and Drizzle experiment, were analyzed to determine their relationship to the coastal sea surface temperature (SST) which was characterized using measurements acquired from a National Oceanic and Atmospheric Administration offshore buoy. An increase in SST resulting from a relaxation of upwelling, occurring in the eastern Pacific Ocean off the coast of California in summer is observed to strongly correlate with nearby ground measured cloud microphysical properties and cloud condensation nuclei (CCN) concentrations. Correlations between these atmospheric and oceanic features provide insight into the interplay between the ocean and cloud radiative properties. We present evidence of this robust correlation and examine the factors controlling these features. The marine boundary layer is in direct contact with the sea surface and is strongly influenced by SST. Moisture and vertical motion are crucial ingredients for cloud development and so we examine the role of SST in providing these key components to the atmosphere. Although upwelling of cold subsurface waters is conventionally thought to increase aerosols in the region, thus increasing clouds, here we observed a relaxation of upwelling associated with changes in the structure of marine stratus clouds. As upwelling relaxes, the SST get warmer, thick clouds with high liquid water paths are observed and persist for a few days. This cycle is repeated throughout the summer upwelling season. A concomitant cyclic increase and decrease of CCN concentration is also observed. Forcing mechanisms and large-scale atmospheric features are discussed. Marine stratocumulus clouds are a critical component of the earth's radiation budget and this site provides an excellent opportunity to study the influence of SST on these clouds.

  13. Atmospheric Radiation Measurement (ARM) Data from Los Angeles, California, to Honolulu, Hawaii for the Marine ARM GPCI Investigation of Clouds (MAGIC) Field Campaign (an AMF2 Deployment)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    From October 2012 through September 2013, the second ARM Mobile Facility (AMF2) was deployed on the container ship Spirit, operated by Horizon Lines, for the Marine ARM GPCI* Investigation of Clouds (MAGIC) field campaign. During approximately 20 round trips between Los Angeles, California, and Honolulu, Hawaii, AMF2 obtained continuous on-board measurements of cloud and precipitation, aerosols, and atmospheric radiation; surface meteorological and oceanographic variables; and atmospheric profiles from weather balloons launched every six hours. During two two-week intensive observational periods in January and July 2013, additional instruments were deployed and balloon soundings were be increased to every three hours. These additional data provided a more detailed characterization of the state of the atmosphere and its daily cycle during two distinctly different seasons. The primary objective of MAGIC was to improve the representation of the stratocumulus-to-cumulus transition in climate models. AMF2 data documented the small-scale physical processes associated with turbulence, convection, and radiation in a variety of marine cloud types.

  14. AMF Deployment, Hyytiala, Finland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGasandArgonneALS in the News

  15. AMF Deployment, Manacapuru, Brazil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGasandArgonneALS in the NewsManacapuru,

  16. AMF ARM Mobile FAcility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2 Print258 PrintSOLIAMERICA'S NATIONAL ARM

  17. AMF Deployment, Oliktok, Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory:CONTR.l\CTIndia GangesAlaska

  18. AMF Deployment, Shouxian, China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies

  19. ARM - AMF Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRing Under79FacilitiesAMFOperations

  20. ARM - AMF Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRing

  1. Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial ValidationContactContact Us Contact

  2. Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial ValidationContactContact Us Contact

  3. Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact InContactContact

  4. Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContactContact Contact Us

  5. Objective assessment of image quality (OAIQ) in fluorescence-enhanced optical imaging

    E-Print Network [OSTI]

    Sahu, Amit K.

    2009-05-15T23:59:59.000Z

    .7 SNR Hot computed from simulated measurements of light intensity (filled circles) and phase (open circles) in hundred percent lumpy backgrounds of endogenous ( axi ? , ami ? , sx ? , and sm ? ) as well as exogenous ( axf ? , and amf ? ) optical..., fluorophores do not have an intrinsic half-life as do radiopharmaceuticals. This greatly enhances the duration of time for imaging, which is limited in the case of nuclear imaging, and results in higher target- to-background ratios (TBR). Despite...

  6. Website Contact

    Broader source: Energy.gov [DOE]

    Contact the website administrator with questions, comments, or issues related to the Federal Energy Management Program website. If your inquiry is in regard to a specific Web page, please include...

  7. Workshop Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 TableContacts Workshop Contacts Questions?

  8. ARM - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformationbudapest Comments? We would love toContact Information Related Links TWP-ICE HomeContacts

  9. WINDExchange: Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Share Contacts

  10. Eyeglass allergic contact dermatitis

    E-Print Network [OSTI]

    Scott, Kimberly; Levender, Michelle M; Feldman, Steven R

    2010-01-01T23:59:59.000Z

    T, Iijima M, Maibach HI. Eyeglass frame allergic contactNakada T, Maibach HI. Eyeglass allergic contact dermatitis.Eyeglass allergic contact dermatitis Kimberly Scott 1 ,

  11. Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial ValidationContact

  12. ARM - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformationbudapest Comments? We would love toContact Information Related Links TWP-ICE Home

  13. ARM - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformationbudapest Comments? We would love toContact Information Related Links TWP-ICE

  14. LANL Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission Statement Titan TargetInJupiter Lasertowards|Contacts

  15. Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact In

  16. Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact

  17. Chemical Management Contacts

    Broader source: Energy.gov [DOE]

    Contacts for additional information on Chemical Management and brief description on Energy Facility Contractors Group

  18. AMF Deployment, Black Forest, Germany

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory:CONTR.l\CT

  19. AMF Deployment, Ganges Valley, India

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory:CONTR.l\CTIndia Ganges Valley

  20. AMF Deployment, Graciosa Island, Azores

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory:CONTR.l\CTIndia Ganges Valley

  1. Thermal contact resistance

    E-Print Network [OSTI]

    Mikic, B. B.

    1966-01-01T23:59:59.000Z

    This work deals with phenomena of thermal resistance for metallic surfaces in contact. The main concern of the work is to develop reliable and practical methods for prediction of the thermal contact resistance for various ...

  2. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign In About |Imaging Imaging Print

  3. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasicsScience atIanIgorIlyaBuildingImaging Print

  4. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasicsScience atIanIgorIlyaBuildingImaging

  5. Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth CodestheatforContacts Contacts Contact Information

  6. Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth CodestheatforContacts Contacts Contact

  7. Federal NEPA Contacts

    Broader source: Energy.gov [DOE]

    CEQ and most Federal agencies identify primary points of contact for NEPA compliance. Normally a senior environmental professional, environmental law attorney, or member of agency leadership, these...

  8. Optical contact micrometer

    SciTech Connect (OSTI)

    Jacobson, Steven D.

    2014-08-19T23:59:59.000Z

    Certain examples provide optical contact micrometers and methods of use. An example optical contact micrometer includes a pair of opposable lenses to receive an object and immobilize the object in a position. The example optical contact micrometer includes a pair of opposable mirrors positioned with respect to the pair of lenses to facilitate viewing of the object through the lenses. The example optical contact micrometer includes a microscope to facilitate viewing of the object through the lenses via the mirrors; and an interferometer to obtain one or more measurements of the object.

  9. Contact Us - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContactContact Contact

  10. Contact | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1Contact CommunityContact SHARE Contact

  11. Contacts & Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1Contact CommunityContactContacts &

  12. Contact thermal lithography

    E-Print Network [OSTI]

    Schmidt, Aaron Jerome, 1979-

    2004-01-01T23:59:59.000Z

    Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

  13. Contact urticaria to raw potato

    E-Print Network [OSTI]

    Lagrán, Z Martínez de; Frutos, FJ Ortiz de; Arribas, M González de; Vanaclocha-Sebastián, F

    2009-01-01T23:59:59.000Z

    allergen in latex-induced potato allergy. Ann Allergy Asthmaof allergy to cooked potatoes in children. Allergy 2007;62(contact dermatitis from potato flesh. Contact Dermatitis

  14. Bilevel contact solar cells

    SciTech Connect (OSTI)

    Sinton, R.A.

    1991-10-01T23:59:59.000Z

    This patent describes a solar cell. It comprises a body of semiconductor material having at least one P/N junction therein, the body including a front face having no electrodes thereon, and a bilevel elevation back face having at least one P-doped region at a first level interdigitated with at least one N-doped region at a second level, wherein the at least one P-doped region and the at least one N-doped region partially overlap to form at least one compensated region; and a positive electrode contacting the at lease one P-doped region and a negative electrode contacting the at least one N-doped region, both electrodes contacting the solar cell on the back face.

  15. Contact Us - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial ValidationContactContact Us

  16. Contacts | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-Gov LeAnnProjectContacts

  17. Contacts: Tel: Locations: Tel:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-GovContacts News News

  18. Contact JLab | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact InContact Visiting

  19. Contact Us - Pantex Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContactContact

  20. Contact Us | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - Working WithContact Us »

  1. Contact Us | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - Working WithContact Us

  2. Contact: Nathan Howard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1Contact CommunityContact SHARENathan

  3. Contacts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" ContactsContacts for the

  4. Sandia National Laboratories: Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-Farm OwnersContacts SSLS Contacts On

  5. CONTACT INFO BUILDING SHELTER

    E-Print Network [OSTI]

    King, David G.

    CONTACT INFO SIGNALS BUILDING SHELTER THE DISABLED B.E.R.T. TEAM B.E.R.T.* EMERGENCY RESPONSE GUIDE, SIUC*Building Emergency Response Team Siren* Long Blast: Tornado High/Low: Any Other Emergency Radio needed. 2. Find two or three B.E.R.T. "buddies" who are willing to help you in the event of an emergency

  6. Technology Advertising Contact Information

    E-Print Network [OSTI]

    Peters, Richard

    Overview #12;Technology Advertising Contact Information Alex Sheath 8596 4063 asheath Overview Our online Technology section is geared towards an IT professional environment, reaching a range of technology enthusiasts from every day gadget consumers to business decision makers where enterprise solutions

  7. Contact Center Sales Office

    E-Print Network [OSTI]

    Fisher, Kathleen

    PSTN Contact Center India Plant Ohio Sales Office Russia Remote Worker Arizona Plant China GPS petrochemical industry. The demands to improve supply and demand balances and increase business velocity have of diverse organizations in the petrochemical industry ­ from crude oil to refinery to processing

  8. Contact stress sensor

    DOE Patents [OSTI]

    Kotovsky, Jack

    2014-02-11T23:59:59.000Z

    A method for producing a contact stress sensor that includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  9. ARM - NSA Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane Background Information OutreachContacts NSA

  10. Contacts / Hours - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us -

  11. DOE Radiation Records Contacts List

    Broader source: Energy.gov [DOE]

    DOE radiation records contact list for individuals to obtain records of occupational exposure directly from a DOE site.

  12. Uniform Methods Project Contacts | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Uniform Methods Project Contacts The primary contacts for the Uniform Methods Project are: U.S. Department of Energy Michael Li Carla Frisch National Renewable Energy...

  13. Transmission - Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler TinaContact-Information-Transmission Sign In About |

  14. Transmission Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler TinaContact-Information-Transmission Sign In

  15. ARM - Instrument Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncements MediagovCampaignsList ofgovInstrumentsContacts

  16. SRNL LDRD - Program Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards ,#2446SmallnAbout LDRDProgram Contacts

  17. FOR IMMEDIATE RELEASE CONTACT:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES Committees of9,of Energy8 CH2M CONTACT:

  18. ARM - Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformationbudapest Comments? We would love toContact Information Related Links TWP-ICE Home Tropical

  19. Contacts | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2Administrative Operations Contacts for theAbout the State

  20. Geothermal: Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning FunNeuTel2011Programmatic ReportsContact Us Geothermal

  1. How to Contact NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portal SolarAbout Energy.govHonorsAbout » Contact us

  2. Climate VISION: Contact Us

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,6. Radiative Forcing of ClimateCONTACT US

  3. Contact Us - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContactContactcontact

  4. Contacts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - News Media Assembling A

  5. Fermilab | Contact Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpun OffTechnologies|21,Contact

  6. NREL: Library - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLizResultsGeothermal Energy TheContacts A photo

  7. Media Contact: Will Callicott

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey MathematicaMeasuring andSecurity Contact: Will

  8. Contact | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1 BuildingContactCoordinators|

  9. Contact Issue 1

    E-Print Network [OSTI]

    Multiple Contributors

    1976-01-01T23:59:59.000Z

    , '\\ ..... ,. '" ' ; ') I f. I , j ------------------~ The tall lean Earthman stepped up to the8!nterprise trio who had just beamed down onto his porch. "Welcome to the Kes sler Colonr.' gentlemen, " he greeted them. "I'm Leon Kessler at your service l' The man... DEDICATION This zi_e is dedicated to all STAR TREK raas who saw aad uaderstood that special quality ia the "Kirk/Spock Relatioash!p", aad to WILLIAM SHATNER .ad LEONARD NIMOY, who made it happe_. ? Copyright December, 1915, CONTACT. No reprlats...

  10. Method for forming metal contacts

    DOE Patents [OSTI]

    Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

    2013-09-17T23:59:59.000Z

    Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

  11. ARM - News : AMF Deployment, Shouxian, China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane Background InformationNews Related

  12. AMF Deployment, Niamey, Niger, West Africa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory:CONTR.l\CTIndia Ganges

  13. AMF Deployment, Point Reyes National Seashore, California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory:CONTR.l\CTIndiaCalifornia

  14. An Energy-Based Approach for Contact Force Computation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    An Energy-Based Approach for Contact Force Computation Fran¸cois Faure Francois.Faure@imag.fr, i. The subsequent iterations consist of global redistributions of energy through the solids in order to restrict widely addressed in computer graphics research. The dynamics equations are now well-known and used

  15. Solar cell with back side contacts

    DOE Patents [OSTI]

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

    2013-12-24T23:59:59.000Z

    A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

  16. Protein folding using contact maps

    E-Print Network [OSTI]

    Michele Vendruscolo; Eytan Domany

    1999-01-21T23:59:59.000Z

    We present the development of the idea to use dynamics in the space of contact maps as a computational approach to the protein folding problem. We first introduce two important technical ingredients, the reconstruction of a three dimensional conformation from a contact map and the Monte Carlo dynamics in contact map space. We then discuss two approximations to the free energy of the contact maps and a method to derive energy parameters based on perceptron learning. Finally we present results, first for predictions based on threading and then for energy minimization of crambin and of a set of 6 immunoglobulins. The main result is that we proved that the two simple approximations we studied for the free energy are not suitable for protein folding. Perspectives are discussed in the last section.

  17. Method for lubricating contacting surfaces

    DOE Patents [OSTI]

    Dugger, Michael T. (Tijeras, NM); Ohlhausen, James A. (Albuquerque, NM); Asay, David B. (Boalsburg, PA); Kim, Seong H. (State College, PA)

    2011-12-06T23:59:59.000Z

    A method is provided for tribological lubrication of sliding contact surfaces, where two surfaces are in contact and in motion relative to each other, operating in a vapor-phase environment containing at least one alcohol compound at a concentration sufficiently high to provide one monolayer of coverage on at least one of the surfaces, where the alcohol compound continuously reacts at the surface to provide lubrication.

  18. FOIA Contacts | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitors Program Exchange VisitorsContacts FOIA Contacts

  19. Ferroelectric optical image comparator

    DOE Patents [OSTI]

    Butler, M.A.; Land, C.E.; Martin, S.J.; Pfeifer, K.B.

    1993-11-30T23:59:59.000Z

    A ferroelectric optical image comparator has a lead lanthanum zirconate titanate thin-film device which is constructed with a semi-transparent or transparent conductive first electrode on one side of the thin film, a conductive metal second electrode on the other side of the thin film, and the second electrode is in contact with a nonconducting substrate. A photoinduced current in the device represents the dot product between a stored image and an image projected onto the first electrode. One-dimensional autocorrelations are performed by measuring this current while displacing the projected image. 7 figures.

  20. Utility Energy Service Contract Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contacts Utility Energy Service Contract Contacts For more information about utility energy service contracts, contact: Contact Organization David McAndrew 202-586-7722 Federal...

  1. Contacts of space--times

    SciTech Connect (OSTI)

    Maia, M.D.

    1981-03-01T23:59:59.000Z

    The concept of contact between manifolds is applied to space--times of general relativity. For a given background space--time a contact approximation of second order is defined and interpreted both from the point of view of a metric pertubation and of a higher order tangent manifold. In the first case, an application to the high frequency gravitational wave hypothesis is suggested. In the second case, a constant curvature tangent bundle is constructed and suggested as a means to define a ten parameter local space--time symmetry.

  2. Non- contacting capacitive diagnostic device

    DOE Patents [OSTI]

    Ellison, Timothy

    2005-07-12T23:59:59.000Z

    A non-contacting capacitive diagnostic device includes a pulsed light source for producing an electric field in a semiconductor or photovoltaic device or material to be evaluated and a circuit responsive to the electric field. The circuit is not in physical contact with the device or material being evaluated and produces an electrical signal characteristic of the electric field produced in the device or material. The diagnostic device permits quality control and evaluation of semiconductor or photovoltaic device properties in continuous manufacturing processes.

  3. Contact Us | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUs Contact UsContact

  4. Contact Us | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUs Contact UsContactUs

  5. Contact Us | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUsContact UsContact Us

  6. Sandia National Laboratories: Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeScience SSRL ScienceCRFCareersandContact Us Contact Us

  7. Contact OAK RIDGE NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact InContact

  8. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - Working With UsContact Us

  9. Contact | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - WorkingContact

  10. Improved Electrical Contact For Dowhhole Drilling Networks

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT)

    2005-08-16T23:59:59.000Z

    An electrical contact system for transmitting information across tool joints while minimizing signal reflections that occur at the tool joints includes a first electrical contact comprising an annular resilient material. An annular conductor is embedded within the annular resilient material and has a surface exposed from the annular resilient material. A second electrical contact is provided that is substantially equal to the first electrical contact. Likewise, the second electrical contact has an annular resilient material and an annular conductor. The two electrical contacts configured to contact one another such that the annular conductors of each come into physical contact. The annular resilient materials of each electrical contact each have dielectric characteristics and dimensions that are adjusted to provide desired impedance to the electrical contacts.

  11. Contact Symmetries and Hamiltonian Thermodynamics

    E-Print Network [OSTI]

    A. Bravetti; C. S. Lopez-Monsalvo; F. Nettel

    2015-02-22T23:59:59.000Z

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher's Information Matrix. In this work we analyze several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.

  12. University Assessment Contacts Academic Units

    E-Print Network [OSTI]

    Escher, Christine

    .j.arp@oregonstate.edu 541-737-2331 Notes: Agricultural and Resource Economics Assessment Rep: Email: Phone: Penelope DiebelUniversity Assessment Contacts Academic Units COLLEGE OF AGRICULTURAL SCIENCES Assessment Rep.Capalbo@oregonstate.edu 541-737-5639 Notes: Agricultural Education and Agricultural Sciences Assessment Rep: Email: Phone

  13. Contact Information Elias M. Marvinney

    E-Print Network [OSTI]

    DeJong, Theodore

    Contact Information Elias M. Marvinney 619 Fillmore St Davis, CA 95616 Cell: 617-721-9636 Email: emarvinney@ucdavis.edu Employment History University of California Davis, College of Agriculture accounts for upstream emissions associated with material production and transport, fuel combustion

  14. APRIL 18, 2013 Media Contact

    E-Print Network [OSTI]

    Solar Project State Partners with Project Owners to Purchase Conservation Land The California Department of Fish and Wildlife (CDFW), the California Energy Commission (Energy Commission) and the Ivanpah SolarAPRIL 18, 2013 Media Contact: Jordan Traverso, CDFW Communications, (916) 654-9937 California

  15. Contact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial Validation andPWRContaCt The nuclear

  16. Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation AdministrationEnvironmental Review-NEPAContacts

  17. Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation AdministrationEnvironmental

  18. CONTACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASL Symposium: CelebratingMission Welcomefor

  19. Contact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVision Predict,Researchhome /

  20. Solar cell contact formation using laser ablation

    DOE Patents [OSTI]

    Harley, Gabriel; Smith, David; Cousins, Peter

    2012-12-04T23:59:59.000Z

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  1. Solar cell contact formation using laser ablation

    DOE Patents [OSTI]

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2014-07-22T23:59:59.000Z

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

  2. Details of Forestry Commission and DARDNI Plant Health Contacts for UK Points of Entry UK Principle Ports Contacts Contact Details

    E-Print Network [OSTI]

    Ports Contacts Contact Details Felixstowe Richard Fergusson Pat Mitchell Philip Evans Roland Fry Fax Other GB Ports John Hunter Joanne McAuley Fax 0131-314-6148 Tel : 0131-314-6182 or Tel : 0131

  3. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This fact sheet provides contact information for program staff of the U.S. Department of Energy's Clean Cities program, as well as contact information for the nearly 100 local Clean Cities coalitions across the country.

  4. University of Michigan -Traveler Contact Information Name __________________________________

    E-Print Network [OSTI]

    Eustice, Ryan

    University of Michigan - Traveler Contact Information Name __________________________________ Phone __________________________________ Email __________________________________ University of Michigan/Clinic __________________________________ Address __________________________________ Phone __________________________________ University of Michigan

  5. Electrical Contacts to Individual Colloidal Semiconductor Nanorods

    E-Print Network [OSTI]

    Trudeau, Paul-Emile

    2008-01-01T23:59:59.000Z

    stable nanostructured electrical devices with interestingElectrical Contacts to Individual Colloidal Semiconductorand its effect on electrical properties has important

  6. A Contact Sheet Approach to Searching Untagged Images on Smartphones

    E-Print Network [OSTI]

    -Sourced Photo Consider the plight of parents who have lost their child in a large crowd such as the Macy be valuable. This is best illustrated with an example [16], summarized below. Figure 1: Lost Child in Crowd the lost child, soon leading to her rescue. Note the role of opportunism here. The users whose pictures

  7. CMOS Contact Imagers for Spectrally-Multiplexed Fluorescence DNA Biosensing

    E-Print Network [OSTI]

    Gulak, P. Glenn

    architecture where photon shot noise is taken into consideration. A prototype was fabricated in a standard 0 . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Electrochemical Detection . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Surface Plasmon

  8. Advanced Source/Drain and Contact Design for Nanoscale CMOS

    E-Print Network [OSTI]

    Vega, Reinaldo

    2010-01-01T23:59:59.000Z

    Barrier Modeling of Metal and Silicide Contacts,” IEEE Elec.Redistributions in Metal and Silicide Contacts,” IEEE Trans.Redistributions in Metal and Silicide Contacts,” IEEE Trans.

  9. Contact DMSE | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial Validation andPWRContaCt TheContact

  10. Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial Validation andPWRContaCtContact

  11. Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial ValidationContact Information Human

  12. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)Don HillebrandContact Us

  13. Contact Us | DOE Data Explorer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)Don HillebrandContact

  14. Contact Us | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUs Contact Us For

  15. Contact Us | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUs Contact Us

  16. Contact Us | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUs Contact

  17. Contact Us | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUsContact Us

  18. Contacts | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-Gov

  19. Contact EM | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorking withAbout Us » Contact

  20. Contact Us | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorking withAbout Us »Contact Us

  1. Contact Us | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorking withAbout Us »Contact

  2. Contact Us | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorking withAbout UsContact Us

  3. Contact Us | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorking withAbout UsContact UsUs

  4. Contact Us | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorking withAbout UsContact

  5. Contact Us | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorking withAboutUs » Contact Us

  6. Contact Us | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorking withAboutUs » Contact

  7. contact | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoungClean EnergyContact NETL Technology

  8. contact | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoungClean EnergyContact NETL TechnologyOn-Site

  9. contacts | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoungClean EnergyContact NETL

  10. contacts | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoungClean EnergyContact NETLcontacts

  11. EMSL Integration 2015: Contacts | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironment > Voluntary ReportingAbout Us Doc.prepared2Contacts

  12. Sandia National Laboratories: PV Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLong RangePILSResourcesPV Contacts PV

  13. Media Contacts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey MathematicaMeasuring andSecurity Contact:

  14. contacts | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage CleanDiscoveryCompletedContacts Operating

  15. Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1 Building 9201-1 wasFAboutContact

  16. Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1 Building 9201-1 wasFAboutContact

  17. Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1 Building 9201-1 wasFAboutContact

  18. Contact Us | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1 BuildingContact UsNNSAContact Us

  19. University of Delaware | Contact CCEI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEIResearch Thrust PyrolysisContact

  20. Rolling Contact Fatigue of Ceramics

    SciTech Connect (OSTI)

    Wereszczak, Andrew A [ORNL; Wang, W. [Bournemouth University, Bournemouth, United Kingdom; Wang, Y. [Bournemouth University, Bournemouth, United Kingdom; Hadfield, M. [Bournemouth University, Bournemouth, United Kingdom; Kanematsu, W. [National Institute of Advanced Industrial Science and Technology, Japan; Kirkland, Timothy Philip [ORNL; Jadaan, Osama M. [University of Wisconsin, Platteville

    2006-09-01T23:59:59.000Z

    High hardness, low coefficient of thermal expansion and high temperature capability are properties also suited to rolling element materials. Silicon nitride (Si{sub 3}N{sub 4}) has been found to have a good combination of properties suitable for these applications. However, much is still not known about rolling contact fatigue (RCF) behavior, which is fundamental information to assess the lifetime of the material. Additionally, there are several test techniques that are employed internationally whose measured RCF performances are often irreconcilable. Due to the lack of such information, some concern for the reliability of ceramic bearings still remains. This report surveys a variety of topics pertaining to RCF. Surface defects (cracks) in Si{sub 3}N{sub 4} and their propagation during RCF are discussed. Five methods to measure RCF are then briefly overviewed. Spalling, delamination, and rolling contact wear are discussed. Lastly, methods to destructively (e.g., C-sphere flexure strength testing) and non-destructively identify potential RCF-limiting flaws in Si{sub 3}N{sub 4} balls are described.

  1. BISON Contact Improvements CASL FY14 Report

    SciTech Connect (OSTI)

    B. W. Spencer; J. D. Hales; D. R. Gaston; D. A. Karpeev; R. L. Williamson; S. R. Novascone; D. M. Perez; R. J. Gardner; K. A. Gamble

    2014-09-01T23:59:59.000Z

    The BISON code is the foundation for multiple fuel performance modeling efforts, and is cur- rently under heavy development. For a variety of fuel forms, the effects of heat conduction across a gap and mechanical contact between components of a fuel system are very significant. It is thus critical that BISON have robust capabilities for enforcement of thermal and mechanical contact. BISON’s solver robustness has generally been quite good before mechanical contact between the fuel and cladding occurs, but there have been significant challenges obtaining converged so- lutions once that contact occurs and the solver begins to enforce mechanical contact constraints. During the current year, significant development effort has been focused on the enforcement of mechanical contact to provide improved solution robustness. In addition to this work to improve mechanical contact robustness, an investigation into ques- tionable results attributable to thermal contact has been performed. This investigation found that the order of integration typically used on the surfaces involved in thermal contact was not suffi- ciently high. To address this problem, a new option was provided to permit the use of a different integration order for surfaces, and new usage recommendations were provided.

  2. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01T23:59:59.000Z

    This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

  3. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01T23:59:59.000Z

    This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

  4. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

  5. Contact Form - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Form by Diane Johnson Directives are the Department of Energy's Primary means of establishing policies, requirements, responsibilities, and procedures for Departmental...

  6. Tube-wave Seismic Imaging and Monitoring Method for Oil Reservoirs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tube-wave Seismic Imaging and Monitoring Method for Oil Reservoirs and Aquifers Lawrence Berkeley National Laboratory Contact LBL About This Technology Real-Time Reservoir...

  7. BRAND IDENTITY GUIDE 2 For assistance: contact University Communications and Marketing.

    E-Print Network [OSTI]

    Dodla, Ramana

    that our visual communications--print or electronic-- convey a cohesive image." Brand Identity GuideBRAND IDENTITY GUIDE #12;2 For assistance: contact University Communications and Marketing. Introduction UTSA's Brand Mission. Vision. Values Visual Style Guide University Name Seal Roadrunner Graphic

  8. Silicone oil contamination and electrical contact resistance degradation of low-force gold contacts.

    SciTech Connect (OSTI)

    Dugger, Michael Thomas; Dickrell, Daniel John, III

    2006-02-01T23:59:59.000Z

    Hot-switched low-force gold electrical contact testing was performed using a nanomechanical test apparatus to ascertain the sensitivity of simulated microelectromechanical systems (MEMS) contact to silicone oil contamination. The observed cyclic contact resistance degradation was dependent on both closure rate and noncontact applied voltage. The decomposition of silicone oil from electrical arcing was hypothesized as the degradation mechanism.

  9. Important LANL Directions and Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. |EndecahemeEMSLImagingOregonAerosol3

  10. Electrical contact resistance degradation of a hot-switched simulated metal MEMS contact.

    SciTech Connect (OSTI)

    Dugger, Michael Thomas; Dickrell, Daniel John, III

    2005-03-01T23:59:59.000Z

    Electrical contact resistance testing was performed by hot-switching a simulated gold-platinum metal microelectromechanical systems contact. The experimental objective was to determine the sensitivity of the contact resistance degradation to current level and environment. The contact resistance increased sharply after 100 hot-switched cycles in air. Hot-switching at a reduced current and in nitrogen atmosphere curtailed contact resistance degradation by several orders of magnitude. The mechanism responsible for the resistance degradation was found to be arc-induced decomposition of adsorbed surface contaminants.

  11. Contact SSRL | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact InContactContact Us

  12. Contact Us | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - WorkingContact Us Contact

  13. Contact us | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - WorkingContact UsContact us

  14. Contact | MIT-Harvard Center for Excitonics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - WorkingContact UsContact

  15. Contact Us | Linac Coherent Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1 BuildingContact Us ContactContact

  16. 2005, in Etudes croles nXXVIII n1,Contacts de croles, croles en contacts, L'Harmattan, 23-57. CONTACTS DE CREOLES A MANA (GUYANE FRANAISE)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2005, in Etudes créoles n°XXVIII n°1,Contacts de créoles, créoles en contacts, L'Harmattan, 23°1,Contacts de créoles, créoles en contacts, L'Harmattan, 23-57. 2 de langues, notamment à la gestion

  17. Contact Information College of Business and Economics

    E-Print Network [OSTI]

    Barrash, Warren

    Contact Information College of Business and Economics Center for Business Research and Economic Research and Economic Development Center What's your challenge? We help businesses and organizations can lie in Accountancy, Economics, Information Technology and Supply Chain Management, International

  18. Front contact solar cell with formed emitter

    SciTech Connect (OSTI)

    Cousins, Peter John

    2014-11-04T23:59:59.000Z

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  19. Front contact solar cell with formed emitter

    DOE Patents [OSTI]

    Cousins, Peter John (Menlo Park, CA)

    2012-07-17T23:59:59.000Z

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  20. Contact fatigue : life prediction and palliatives

    E-Print Network [OSTI]

    Conner, Brett P. (Brett Page), 1975-

    2002-01-01T23:59:59.000Z

    Fretting fatigue is defined as damage resulting from small magnitude (0.5-50 microns) displacement between contacting bodies where at least one of the bodies has an applied bulk stress. The applicability and limits of a ...

  1. DOE Headquarters Contact Information: Employee Concerns Program...

    Broader source: Energy.gov (indexed) [DOE]

    Office ECP Contact Information: Albuquerque Complex (NNSA) Eva Glow Brownlow Michelle Rodriguez de Varela Hotline: 800-688-5713 Fax: 505-845-4020 E-mail: ecp@nnsa.doe.gov...

  2. NUMERICAL MODELING OF CATHODE CONTACT MATERIAL DENSIFICATION

    SciTech Connect (OSTI)

    Koeppel, Brian J.; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-11-01T23:59:59.000Z

    Numerical modeling was used to simulate the constrained sintering process of the cathode contact layer during assembly of solid oxide fuel cells (SOFCs). A finite element model based on the continuum theory for sintering of porous bodies was developed and used to investigate candidate low-temperature cathode contact materials. Constitutive parameters for various contact materials under investigation were estimated from dilatometry screening tests, and the influence of processing time, processing temperature, initial grain size, and applied compressive stress on the free sintering response was predicted for selected candidate materials. The densification behavior and generated stresses within a 5-cell planar SOFC stack during sintering, high temperature operation, and room temperature shutdown were predicted. Insufficient constrained densification was observed in the stack at the proposed heat treatment, but beneficial effects of reduced grain size, compressive stack preload, and reduced thermal expansion coefficient on the contact layer densification and stresses were observed.

  3. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01T23:59:59.000Z

    Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

  4. The contact angle in inviscid fluid mechanics

    E-Print Network [OSTI]

    P N Shankar; R Kidambi

    2005-08-17T23:59:59.000Z

    We show that in general, the specification of a contact angle condition at the contact line in inviscid fluid motions is incompatible with the classical field equations and boundary conditions generally applicable to them. The limited conditions under which such a specification is permissible are derived; however, these include cases where the static meniscus is not flat. In view of this situation, the status of the many `solutions' in the literature which prescribe a contact angle in potential flows comes into question. We suggest that these solutions which attempt to incorporate a phenomenological, but incompatible, condition are in some, imprecise sense `weak-type solutions'; they satisfy or are likely to satisfy, at least in the limit, the governing equations and boundary conditions everywhere except in the neighbourhood of the contact line. We discuss the implications of the result for the analysis of inviscid flows with free surfaces.

  5. Louise Guy, Administrative Contact College of Education

    E-Print Network [OSTI]

    provide leadership, scholarship and training across the following programs: · Educational Specialist/Severe Disabilities, Orientation & Mobility, and Vocational Special Education). · Certificate programs offeredLouise Guy, Administrative Contact College of Education Department of Special Education 1600

  6. Cooperativity and Contact Order in Protein Folding

    E-Print Network [OSTI]

    Marek Cieplak

    2004-01-11T23:59:59.000Z

    The effects of cooperativity are studied within Go-Lennard-Jones models of proteins by making the contact interactions dependent on the proximity to the native conformation. The kinetic universality classes are found to remain the same as in the absence of cooperativity. For a fixed native geometry, small changes in the effective contact map may affect the folding times in a chance way and to the extent that is comparable to the shift in the folding times due to cooperativity. The contact order controlls folding scenarios: the average times necessary to bring pairs of amino acids into their near native separations depend on the sequential distances within the pairs. This dependence is largely monotonic, regardless of the cooperativity, and the dominant trend could be described by a single parameter like the average contact order. However, it is the deviations from the trend which are usually found to set the net folding times.

  7. Colorado State University Extension Contact: Joanne Littlefield

    E-Print Network [OSTI]

    Stephens, Graeme L.

    Colorado State University Extension Contact: Joanne Littlefield Director, Outreach and Engagement weather situation in Colorado is requiring often quick property and safety decisions; recovery efforts and rapidly shifting conditions along Colorado's Front Range. From food safety issues related to crops

  8. Elastic–Plastic Spherical Contact Modeling Including Roughness Effects

    E-Print Network [OSTI]

    Li, L.; Etsion, I.; Talke, F. E.

    2010-01-01T23:59:59.000Z

    A multilevel model for elastic–plastic contact between ajunction growth of an elastic–plastic spherical contact. J.nite element based elastic–plastic model for the contact of

  9. Exploring Korean Americans’ Interracial Contact Experiences During Recreational Sport Activities

    E-Print Network [OSTI]

    Lee, Kang Jae

    2010-07-14T23:59:59.000Z

    This thesis follows the style of Journal of Leisure Research. 2 of friendship, as an essential condition for successful intergroup contact (Pettigrew, 1997; Pettigrew & Tropp, 2006). Since the contact hypothesis was first introduced, intergroup contact... conditions for successful intergroup contact. Their meta-analysis of 713 independent samples from 515 intergroup contact studies revealed four important findings First, 17 intergroup contact typically reduces intergroup prejudice. Second, the positive...

  10. EERE Information Center Contact, PIA, The Office of Energy Efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Center Contact, PIA, The Office of Energy Efficiency and Renewable Energy (EERE) EERE Information Center Contact, PIA, The Office of Energy Efficiency and Renewable...

  11. Cell Phone Allergic Contact Dermatitis: Case Report and Review

    E-Print Network [OSTI]

    Rajpara, Anand; Feldman, Steven R

    2010-01-01T23:59:59.000Z

    testing in a sample of cell phones in Denmark. ContactCell phone allergic contact dermatitis: Case report andcombination of increased cell phone ownership and unlimited

  12. Test Images

    E-Print Network [OSTI]

    Test Images. I hope to have a set of test images for the course soon. Some images are available now; some will have to wait until I can find another 100-200

  13. Electric Field and Humidity Trigger Contact Electrification

    E-Print Network [OSTI]

    Zhang, Yanzhen; Liu, Yonghong; Wang, Xiaolong; Zhang, Rui; Shen, Yang; Ji, Renjie; Cai, Baoping

    2015-01-01T23:59:59.000Z

    Here, we study the old problem of why identical insulators can charge one another on contact. We perform several experiments showing that, if driven by a preexisting electric field, charge is transferred between contacting insulators. This happens because the insulator surfaces adsorb small amounts of water from a humid atmosphere. We believe the electric field then separates positively from negatively charged ions prevailing within the water, which we believe to be hydronium and hydroxide ions, such that at the point of contact, positive ions of one insulator neutralize negative ions of the other one, charging both of them. This mechanism can explain for the first time the observation made four decades ago that wind-blown sand discharges in sparks if and only if a thunderstorm is nearby.

  14. Electric Field and Humidity Trigger Contact Electrification

    E-Print Network [OSTI]

    Yanzhen Zhang; Thomas Pähtz; Yonghong Liu; Xiaolong Wang; Rui Zhang; Yang Shen; Renjie Ji; Baoping Cai

    2015-01-14T23:59:59.000Z

    Here, we study the old problem of why identical insulators can charge one another on contact. We perform several experiments showing that, if driven by a preexisting electric field, charge is transferred between contacting insulators. This happens because the insulator surfaces adsorb small amounts of water from a humid atmosphere. We believe the electric field then separates positively from negatively charged ions prevailing within the water, which we believe to be hydronium and hydroxide ions, such that at the point of contact, positive ions of one insulator neutralize negative ions of the other one, charging both of them. This mechanism can explain for the first time the observation made four decades ago that wind-blown sand discharges in sparks if and only if a thunderstorm is nearby.

  15. Contacts for Integrating Renewable Energy into Federal Construction Projects

    Broader source: Energy.gov [DOE]

    Contacts to learn more about integrating renewable energy technologies into Federal construction projects.

  16. Image Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recognition Image Analysis and Recognition Snapshot1498121slicesqResedison Fibers permeating imaged material (Courtesy: Bale, Loring, Perciano and Ushizima) Imagery coming from...

  17. Ohmic contacts to n-GaSb

    E-Print Network [OSTI]

    Yang, Zhengchong

    2012-06-07T23:59:59.000Z

    in the semiconductor is measured during the deposition of the metal contact. In using method 1, the I-V characteristics is plotted. The thermionic emission theory predicts the current-voltage characteristics of Schottky diodes as [13]: J(rhcrmionic) = A" T' exp... of different work functions. This situation is also true for metal contacts to n-GaSb. Polyakov et al. [14] examined the Schottky diodes of Al, Au, In, Pd, Ga, and Sb on Te doped n-GaSb. They used the C-V measurements methods. They reported that barrier...

  18. Contact Us | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the GrandSr:s I1Us |Contact Us Contact

  19. Contact Upper Great Plains Regional Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial ValidationContact InformationContact

  20. Contact Us | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUs ContactLosContact

  1. Contact Us | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUsContact UsContact

  2. Contacts for Services | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-Gov LeAnnProjectContacts for

  3. Contact Information | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact InContact

  4. Contact Us - Working With Us | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - Working With Us Contact us

  5. Contact Us | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - Working With UsContact

  6. Contact Us | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1 BuildingContact UsNNSAContactContact

  7. Contacts For "A" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA" Contacts For

  8. Contacts For "B" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA" Contacts ForB"

  9. Contacts For "C" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA" Contacts

  10. Contacts For "D" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA" ContactsD"

  11. Contacts For "E" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA" ContactsD"E"

  12. Contacts For "G" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA"G" Contacts For

  13. Contacts For "H" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA"G" Contacts

  14. Contacts For "I" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA"G" ContactsI"

  15. Contacts For "K" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA"G"K" Contacts

  16. Contacts For "S" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" Contacts ForS" Contacts For

  17. Contacts For "T" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" Contacts ForS" Contacts

  18. Contacts | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" ContactsContacts for

  19. Microsoft Word - AMF2 Environmental Health and Safety Manual...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to electrical hazards. 12.7.2 Selection Guidelines for Foot Protection Safety shoes and boots provide both impact and compression protection. Where necessary, safety shoes that...

  20. ARM - AMF Deployment, Los Angeles, California, to Honolulu, Hawaii

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGasandArgonneALS inRelatedLos Angeles,

  1. ARM - Field Campaign - RAdiative Divergence using AMF, GERB and AMMA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaignSTations (RADAGAST)

  2. AMF Deployment, Pearl Harbor, Hawaii, to San Francisco, California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory:CONTR.l\CTIndia

  3. CONTACT INFORMATION The KAVLI NANOSCIENCE INSTITUTE

    E-Print Network [OSTI]

    CONTACT INFORMATION The KAVLI NANOSCIENCE INSTITUTE California Institute of Technology 1200 E structures. The Holliston Parking Structure is nearest Steele Laboratory. rev052708 The KAVLI NANOSCIENCE to users from academia, government, and industry. The Kavli Nanoscience Institute has been founded through

  4. Thermodynamics of nuclei in thermal contact

    E-Print Network [OSTI]

    Karl-Heinz Schmidt; Beatriz Jurado

    2010-10-05T23:59:59.000Z

    The behaviour of a di-nuclear system in the regime of strong pairing correlations is studied with the methods of statistical mechanics. It is shown that the thermal averaging is strong enough to assure the application of thermodynamical methods to the energy exchange between the two nuclei in contact. In particular, thermal averaging justifies the definition of a nuclear temperature.

  5. Thin Silicon MEMS Contact-Stress Sensor

    SciTech Connect (OSTI)

    Kotovsky, J; Tooker, A; Horsley, D A

    2009-12-07T23:59:59.000Z

    This work offers the first, thin, MEMS contact-stress (CS) sensor capable of accurate in situ measruement of time-varying, contact-stress between two solid interfaces (e.g. in vivo cartilage contact-stress and body armor dynamic loading). This CS sensor is a silicon-based device with a load sensitive diaphragm. The diaphragm is doped to create piezoresistors arranged in a full Wheatstone bridge. The sensor is similar in performance to established silicon pressure sensors, but it is reliably produced to a thickness of 65 {micro}m. Unlike commercial devices or other research efforts, this CS sensor, including packaging, is extremely thin (< 150 {micro}m fully packaged) so that it can be unobtrusively placed between contacting structures. It is built from elastic, well-characterized materials, providing accurate and high-speed (50+ kHz) measurements over a potential embedded lifetime of decades. This work explored sensor designs for an interface load range of 0-2 MPa; however, the CS sensor has a flexible design architecture to measure a wide variety of interface load ranges.

  6. For additional information, contact: Department of Ecology

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    For additional information, contact: Department of Ecology Montana State University 310 Lewis Hall P.O. Box 173460 Bozeman, MT 59717-3460 Tel: 406-994-4548 Fax: 406-994-3190 www.montana.edu/ecology/ ecology@montana.edu The Department of Ecology at Montana State University offers undergraduate majors

  7. subcollector Schottky collector contact & interconnect metals

    E-Print Network [OSTI]

    Rodwell, Mark J. W.

    base collector depletion layer subcollector ohmic metal (a) base collector depletion layer Schottky metal base emitter collector collector We emitter base emitter emitter We Wc Wc (b) Schottky collector contact & interconnect metals Emitter & collector Ohmics undoped collector depletion layer base N

  8. Contact Anosov flows and the FBI transform

    E-Print Network [OSTI]

    Tsujii, Masato

    2010-01-01T23:59:59.000Z

    This paper is about spectral properties of transfer operators for contact Anosov flows. The main result gives the essential spectral radius of the transfer operators acting on the so-called anisotropic Sobolev space exactly in terms of dynamical exponents. Also we provide a simplified proof by using the FBI transform.

  9. Contact Details Journeying Beyond Breast Cancer

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    Home About Contact Details Facebook Search Journeying Beyond Breast Cancer making sense of the cancer experience Feeds: Posts Comments Cancer-fighting fountain pen May 20, 2009 by JBBC A research team be used both as a research tool in the development of next-generation cancer treatments

  10. Contact details: School of Architecture, BCU

    E-Print Network [OSTI]

    Birmingham, University of

    With 90% of the UK population living in urban areas, improving urban sustainability has become a pressing Economic Fabric This work package investigated opportunities and barriers to achieving sustainable is to be sustainable in the widest sense. Contact details: Centre for Urban and Regional Studies, U0B Dr. Austin Barber

  11. For more information, contact University Parking

    E-Print Network [OSTI]

    Mahon, Bradford Z.

    .275.4524 Have a Flat Tire? Car Won't Start? Need Directions? V.A.P. VEHICLE ASSISTANCE PROGRAM University Tire? Car Won't Start? Contact University Parking and Transportation's Vehicle Assistance Program (V-icer assistance during winter months ·Tire inflations Inclement Travel Information When inclement weather

  12. Lactation Room Locations Building Location Room Details Contact Name Contact Info Instructions

    E-Print Network [OSTI]

    Jiang, Huiqiang

    , hot water heater, educational info Natalie Blais narnold@pitt.edu Contact Natalie to receive and request a key to this locked room. Public Health A712 Crabtree Hall table, chairs, storage cabinet, fridge

  13. Electrical contact arrangement for a coating process

    DOE Patents [OSTI]

    Kabagambe, Benjamin; McCamy, James W; Boyd, Donald W

    2013-09-17T23:59:59.000Z

    A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.

  14. Direct contact, binary fluid geothermal boiler

    DOE Patents [OSTI]

    Rapier, Pascal M. (Richmond, CA)

    1982-01-01T23:59:59.000Z

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  15. Active alignment/contact verification system

    DOE Patents [OSTI]

    Greenbaum, William M. (Modesto, CA)

    2000-01-01T23:59:59.000Z

    A system involving an active (i.e. electrical) technique for the verification of: 1) close tolerance mechanical alignment between two component, and 2) electrical contact between mating through an elastomeric interface. For example, the two components may be an alumina carrier and a printed circuit board, two mating parts that are extremely small, high density parts and require alignment within a fraction of a mil, as well as a specified interface point of engagement between the parts. The system comprises pairs of conductive structures defined in the surfaces layers of the alumina carrier and the printed circuit board, for example. The first pair of conductive structures relate to item (1) above and permit alignment verification between mating parts. The second pair of conductive structures relate to item (2) above and permit verification of electrical contact between mating parts.

  16. Non-Contact Gaging with Laser Probe

    SciTech Connect (OSTI)

    Clinesmith, Mike

    2009-03-20T23:59:59.000Z

    A gage has been constructed using conventional (high end) components for the application of measuring fragile syntactic foam parts in a non-contact mode. Success with this approach has been achieved through a novel method of transferring (mapping) high accuracy local measurements of a coated aluminum master, taken on a Leitz Coordinate Measurement Machine (CMM), to the gage software system. The mapped data is then associated with local voltage readings from two (inner and outer) laser triangulating probes. This couples discreet laser probe offset and linearity characteristics to the measured master geometry. The gage software compares real part measured data against the master data to provide non-contact part inspection that results in a high accuracy and low uncertainty performance. Uncertainty from the part surface becomes the prevailing contributor to the gaging process. The gaging process provides a high speed, hands off measurement with nearly zero impedance.

  17. Photoinduced electron transfer in contact ion pairs

    SciTech Connect (OSTI)

    Bockman, T.M.; Kochi, J.K.

    1988-02-17T23:59:59.000Z

    Contact ion pair (CIP) formation is especially relevant to the reactivity of organic and organometallic nucleophiles and electrophiles in solution. The authors felt that the intermolecular charge-transfer (CT) absorptions which commonly accompany the interaction of uncharged nucleophiles (donors) with electrophiles (acceptors) could also provide the experimental means to assess CIP behavior. Accordingly they examined the CT excitations from CIPs of carbonylmetallate anions in this study, since they are known to be effective nucleophiles with relatively low ionization potentials.

  18. Renewable Energy Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and LaunchesRelated FinancialUtility District |Contacts

  19. Property:Geothermal/Contact | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug PowerAddressDataFormatGeothermal/Contact" Showing 25

  20. People Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    People Images People Images Several hundred of the 1700 U.S. scientists contributing to the LHC accelerator and experiments gathered in June 2008 in CERN's building 40 CE0252 Joel...

  1. Photovoltaic Electrical Contact and Cell Coating Basics | Department...

    Broader source: Energy.gov (indexed) [DOE]

    p-type seminconductor, and back contact. A typical solar cell consists of a glass or plastic cover, an antireflective coating, a front contact to allow electrons to enter a...

  2. Oak Ridge Site Specific Advisory Board Contacts | Department...

    Office of Environmental Management (EM)

    Contacts Oak Ridge Site Specific Advisory Board Contacts Mailing Address Oak Ridge Site Specific Advisory Board P.O. Box 2001, EM-91 Oak Ridge, TN 37831 Phone Numbers (865)...

  3. Protein folding using contact maps Michele Vendruscolo and Eytan Domany

    E-Print Network [OSTI]

    Domany, Eytan

    Protein folding using contact maps Michele Vendruscolo and Eytan Domany Department of Physics 26 I. INTRODUCTION Computational approaches to protein folding are divided into two main categories protein fold prediction. Contact maps are a particularly manageable representation of protein structure

  4. atomic aluminum contacts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rear-contact solar cell, we 59 LOSS ANALYSIS OF BACK-CONTACT BACK-JUNCTION THIN-FILM MONOCRYSTALLINE SILICON SOLAR CELLS Renewable Energy Websites Summary: of the...

  5. Image alignment

    DOE Patents [OSTI]

    Dowell, Larry Jonathan

    2014-04-22T23:59:59.000Z

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  6. ASYMPTOTIC SHAPE FOR THE CONTACT PROCESS IN RANDOM ENVIRONMENT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ASYMPTOTIC SHAPE FOR THE CONTACT PROCESS IN RANDOM ENVIRONMENT OLIVIER GARET AND R´EGINE MARCHAND in stationary random environment. These theorems gen- eralize known results for the classical contact process environment, when the contact process survives, the set Ht/t almost surely converges to a compact set

  7. Ohmic contact metallization on p-type indium phosphide

    E-Print Network [OSTI]

    Park, Moonho

    1993-01-01T23:59:59.000Z

    contact resistivities comparable to those of Au-based contacts, determined by the Cox and Strack structure, can be obtained for a pure Pd contact on p-InP (hole concentration -3xlOl' cm-'). The defects can be identified to be related with phosphorus...

  8. Electrical Contacts to Molecular Layers by Nanotransfer Printing

    E-Print Network [OSTI]

    Rogers, John A.

    Electrical Contacts to Molecular Layers by Nanotransfer Printing Yueh-Lin Loo, David V. Lang, John of electrical contact. Results show that the nTP method produces superior devices in which the electrical for making electrical contacts in molecular electronics. Organic molecules whose electronic properties can

  9. Role of chemical termination in edge contact to graphene

    SciTech Connect (OSTI)

    Gao, Qun; Guo, Jing, E-mail: guoj@ufl.edu [Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611 (United States)

    2014-05-01T23:59:59.000Z

    Edge contacts to graphene can offer excellent contact properties. Role of different chemical terminations is examined by using ab initio density functional theory and quantum transport simulations. It is found that edge termination by group VI elements O and S offers considerably lower contact resistance compared to H and group VII element F. The results can be understood by significantly larger binding energy and shorter binding distance between the metal contact and these group VI elements, which results in considerably lower interface potential barrier and larger transmission. The qualitative conclusion applies to a variety of contact metal materials.

  10. Silicon point contact concentrator solar cells

    SciTech Connect (OSTI)

    Sinton, R.A.; Kwark, Y.; Swirhun, S.; Swanson, R.M.

    1985-08-01T23:59:59.000Z

    Experimental results are presented for thin high resistivity concentrator silicon solar cells which use a back-side point-contact geometry. Cells of 130 and 233 micron thickness were fabricated and characterized. The thin cells were found to have efficiencies greater than 22 percent for incident solar intensities of 3 to 30 W/sq cm. Efficiency peaked at 23 percent at 11 W/sq cm measured at 22-25 C. Strategies for obtaining higher efficiencies with this solar cell design are discussed. 8 references.

  11. Federal NEPA Contacts | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES ANDIndustrialEnergy Federal EfficiencyReportingNEPA Contacts Federal

  12. Center for Advanced Solar Photophysics | Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUM DISPLAYCareersCathy-Ehli Sign InCenterContacts

  13. Contact Information | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial Validation andPWRContaCtContact

  14. Contact OSUR Program | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial ValidationContact Information

  15. Contact Us | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUs ContactLos Alamos

  16. Contact Us-About-PHaSe-EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUsContact

  17. Contacts for Enterprise Architecture | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-Gov LeAnn Oliver

  18. Contacts for IT Planning | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-Gov LeAnn

  19. NREL: Email Contact for NREL Newsroom

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version Email Contact for NREL

  20. NREL: Energy Systems Integration Facility - Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintableContact Us For more information

  1. Geothermal Technologies Office Contacts | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermal Technologies Office Contacts Geothermal

  2. ORISE: Contact Us | Worker Health Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK Mapping Application ORISECenterMaking aContact Us

  3. Laboratory Equipment Donation Program - Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering&Dynamos ProfessorContact Us

  4. DOE Research and Development Accomplishments Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNALostPlasma PhysicsDOE Plans2BlogContact

  5. ARM - ARM Engineering and Operations Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |NovemberARMContactsARM Engineering and Operations Contacts About

  6. RAPID/Contact | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakum CountyPzero JumpQuestionQuinhagakContact

  7. Contact CEFRC - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact In This

  8. Contact Hanford Fire Department - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact In ThisDepartment

  9. Contact Us | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - Working With Us

  10. Fermilab | Illinois Accelerator Research Center | Contact IARC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto Fermilab atContact

  11. SciTech Connect: Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertzon HomeScholarshipsSciDBsmartContact

  12. Contact Information Systems | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1 Building 9201-1 wasFAbout UsContact

  13. Contact Us | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1 BuildingContact UsNNSAContact

  14. Contacts For "F" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA"

  15. Contacts For "J" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA"G"

  16. Contacts For "L" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA"G"K"

  17. Contacts For "M" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA"G"K"M"

  18. Contacts For "O" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" Contacts For "O" Shaun

  19. Contacts For "P" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" Contacts For "O"

  20. Contacts For "Q" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" Contacts For "O"Q"

  1. Contacts For "R" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" Contacts For

  2. Contacts For "V" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" Contacts ForS"

  3. Contacts For "W" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" Contacts ForS"W"

  4. Contacts For "Z" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" Contacts ForS"W"Z"

  5. Air Entrainment by Viscous Contact Lines

    E-Print Network [OSTI]

    Marchand, Antonin; Snoeijer, Jacco H; Andreotti, Bruno

    2011-01-01T23:59:59.000Z

    The entrainment of air by advancing contact lines is studied by plunging a solid plate into a very viscous liquid. Above a threshold velocity, we observe the formation of an extended air film, typically 10 microns thick, which subsequently decays into air bubbles. Exploring a large range of viscous liquids, we find an unexpectedly weak dependence of entrainment speed on liquid viscosity, pointing towards a crucial role of the flow inside the air film. This induces a striking asymmetry between wetting and dewetting: while the breakup of the air film strongly resembles the dewetting of a liquid film, the wetting speeds are larger by orders of magnitude.

  6. Method of forming contacts for a back-contact solar cell

    DOE Patents [OSTI]

    Manning, Jane

    2013-07-23T23:59:59.000Z

    Methods of forming contacts for back-contact solar cells are described. In one embodiment, a method includes forming a thin dielectric layer on a substrate, forming a polysilicon layer on the thin dielectric layer, forming and patterning a solid-state p-type dopant source on the polysilicon layer, forming an n-type dopant source layer over exposed regions of the polysilicon layer and over a plurality of regions of the solid-state p-type dopant source, and heating the substrate to provide a plurality of n-type doped polysilicon regions among a plurality of p-type doped polysilicon regions.

  7. Computing Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Images The interior of an automated tape library in Brookhaven's RHIC and ATLAS Computing Facility. Brookhaven engineers in the RHIC and ATLAS Computing Facility....

  8. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1984-03-27T23:59:59.000Z

    A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  9. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1985-08-20T23:59:59.000Z

    A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  10. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M. (Friendswood, TX)

    1984-01-01T23:59:59.000Z

    A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  11. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M. (Friendswood, TX)

    1985-01-01T23:59:59.000Z

    A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  12. Human Genome Program Image Gallery (from genomics.energy.gov)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This collection contains approximately 240 images from the genome programs of DOE's Office of Science. The images are divided into galleries related to biofuels research, systems biology, and basic genomics. Each image has a title, a basic citation, and a credit or source. Most of the images are original graphics created by the Genome Management Information System (GMIS). GMIS images are recognizable by their credit line. Permission to use these graphics is not needed, but please credit the U.S. Department of Energy Genome Programs and provide the website http://genomics.energy.gov. Other images were provided by third parties and not created by the U.S. Department of Energy. Users must contact the person listed in the credit line before using those images. The high-resolution images can be downloaded.

  13. The contact of elastic regular wavy surfaces revisited

    E-Print Network [OSTI]

    Vladislav A. Yastrebov; Guillaume Anciaux Jean-Francois Molinari

    2014-09-05T23:59:59.000Z

    We revisit the classic problem of an elastic solid with a two-dimensional wavy surface squeezed against an elastic flat half-space from infinitesimal to full contact. Through extensive numerical calculations and analytic derivations, we discover previously overlooked transition regimes. These are seen in particular in the evolution with applied load of the contact area and perimeter, the mean pressure and the probability density of contact pressure. These transitions are correlated with the contact area shape, which is affected by long range elastic interactions. Our analysis has implications for general random rough surfaces, as similar local transitions occur continuously at detached areas or coalescing contact zones. We show that the probability density of null contact pressures is non-zero at full contact. This might suggest revisiting the conditions necessary for applying Persson's model at partial contacts and guide the comparisons with numerical simulations. We also address the evaluation of the contact perimeter for discrete geometries and the applicability of Westergaard's solution for three-dimensional geometries.

  14. Nanoscale contact engineering for Si/Silicide nanowire devices.

    E-Print Network [OSTI]

    Lin, Yung-Chen

    2012-01-01T23:59:59.000Z

    ??Metal silicides have been used in silicon technology as contacts to achieve high device performance and desired device functions. The growth and applications of silicide… (more)

  15. Contacts for the Assistant General Counsel for Legislation, Regulation...

    Energy Savers [EERE]

    Legislation, Regulation, and Energy Efficiency Contacts for the Assistant General Counsel for Legislation, Regulation, and Energy Efficiency Office of the Assistant General Counsel...

  16. Contacts for the Assistant General Counsel for Technology Transfer...

    Broader source: Energy.gov (indexed) [DOE]

    Technology Transfer and Procurement Contacts for the Assistant General Counsel for Technology Transfer and Procurement Subject MatterFunctional Area Lead Backup Technology...

  17. Registered_Lobbyist_Contact_Disclosure_Form.pdf | Department...

    Broader source: Energy.gov (indexed) [DOE]

    egisteredLobbyistContactDisclosureForm.pdf More Documents & Publications Lobbyist Disclosure Form - AltEn Interested Parties - Shipp Interested Parties - Smith Dawson & Andrews...

  18. Ohmic contacts for high-temperature GaP devices

    E-Print Network [OSTI]

    Van der Hoeven, Willem Bernard

    2012-06-07T23:59:59.000Z

    REMOVAL 10 13 24 24 26 50 50 52 78 80 83 98 98 99 100 TABLE OF CONTENTS (Continued) APPENDIX D ? 6 LIFT-OFF PREMETAL PREPARATION APPENDIX D ? 7 METAL LIFTOFF Page 100 100 vi LIST OP TABLES Table I Relative High Temperature... with a variety of III-V compound semi- conductors and contact metals. By using a ruby or a COe laser with Au-Sn or Ag-Sn contact metals, specific contact resistances as low as 8. 6 x 19 " 0-cm were reported. (The specific contact resistance...

  19. A Drucker-Prager model for elastic contact with friction; A Drucker-Prager model for elastic contact with friction.

    E-Print Network [OSTI]

    wu, yunxian

    2011-01-01T23:59:59.000Z

    ?? In mumerical contact simulations with friction, the simple Coloumb law is usually employed. Standard plasticity models are difficult to use since the balance enforced… (more)

  20. Contact Information: Jeff Williams, MLIS phone (858) 822-2218

    E-Print Network [OSTI]

    California at San Diego, University of

    Contact Information: Jeff Williams, MLIS phone (858) 822-2218 Biology Librarian fax (858) 822-2219 UCSD Biomedical Library j12williams@ucsd.edu Life Sciences Newsletter UCSD Biomedical Library Fall 2004 contact me at (858) 822-2218 or j12williams@ucsd.edu Top Biology Resources ­ http

  1. RELATIVISTIC HEAVY-ION PHYSICS WITHOUT NUCLEAR CONTACT

    E-Print Network [OSTI]

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    RELATIVISTIC HEAVY-ION PHYSICS WITHOUT NUCLEAR CONTACT The large electromagnetic field generated physics research--for example, for investigating nuclear structure, hadronic structure, atomic physics Berkeley Laboratory--it became clear that heavy-ion physics without nuclear contact could be very useful

  2. Contact Information: Sophia Radlowski, Assistant to the Director for Budgeting

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Contact Information: Sophia Radlowski, Assistant to the Director for Budgeting Contact regarding will be mailed to you by Sophia Radlowski. 1. Read the offer letter carefully. If you agree to the terms, please form, original drug-free workplace statement, and copy of IDs listed above to: Sophia Radlowski UIC

  3. Energy-efficient Contact Probing in Opportunistic Mobile Networks

    E-Print Network [OSTI]

    Wu, Jie

    a trade-off between energy efficiency and the contact opportunities in OppNets. In this paper, in order proposed model. Finally, based on the proposed model, we analyze the trade- off between energy efficiency to a trade-off between energy efficiency and contact opportunities. For strategies which use a constant

  4. Making Contact: Getting the Group Communicating with Groupware

    E-Print Network [OSTI]

    Greenberg, Saul

    is that people must be in contact with one another. Relationships must be established, and many interactions that overcomes distance barriers is available. Many mundane factors interfere with making contact. People must, people must find each other with minimal effort. People must also select one or more of the many

  5. Event Logistics Checklist and Contacts Questions to consider

    E-Print Network [OSTI]

    Sherrill, David

    will my space need to include? 4. How many people will be attending? a. For every 250 people, one security/Chairs/Tents Questions to Consider: 1. Will people be sitting at your event? 2. How many people are attending? 3. Do you people, an EMT is expected. GTPD can provide contacts for EMTs. Relevant Contacts: 1. Beverly Peace

  6. Air Entrainment by Viscous Contact Lines Antonin Marchand1

    E-Print Network [OSTI]

    Air Entrainment by Viscous Contact Lines Antonin Marchand1 , Tak Shing Chan2 , Jacco H. Snoeijer2) The entrainment of air by advancing contact lines is studied by plunging a solid plate into a very viscous liquid by orders of magnitude. Objects that impact on a liquid interface can entrain small bubbles of air

  7. Neutron irradiation effects on metal-gallium nitride contacts

    SciTech Connect (OSTI)

    Katz, Evan J.; Lin, Chung-Han; Zhang, Zhichun [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Qiu, Jie; Cao, Lei [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Mishra, Umesh K. [Departments of Electrical and Computer Engineering and Materials Science and Engineering University of California, Santa Barbara, California 93106 (United States); Brillson, Leonard J., E-mail: brillson.1@osu.edu [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Physics and Center for Materials Research, The Ohio State University, Columbus, Ohio 43210 (United States)

    2014-03-28T23:59:59.000Z

    We have measured the effect of fast and thermal neutrons on GaN Schottky barriers and ohmic contacts using current–voltage and transmission line method electrical techniques, optical, atomic force and scanning electron microscopy morphological techniques, and X-ray photoemission spectroscopy chemical techniques. These studies reveal a 10{sup 15}?n/cm{sup 2} neutron threshold for Schottky barrier ideality factor increases, a 10{sup 15}?n/cm{sup 2} fast plus thermal neutron threshold for ohmic contact sheet and contact resistance increases, and 10{sup 16}?n/cm{sup 2} neutron fluence threshold for major device degradation identified with thermally driven diffusion of Ga and N into the metal contacts and surface phase changes. These results demonstrate the need for protecting metal-GaN contacts in device applications subject to neutron radiation.

  8. Generalized nuclear contacts and the nucleon's momentum distributions

    E-Print Network [OSTI]

    Weiss, Ronen; Barnea, Nir

    2015-01-01T23:59:59.000Z

    The general nuclear contact matrices are defined, taking into consideration all partial waves and finite-range interactions, extending Tan's work for the zero range model. The properties of these matrices are discussed and the relations between the contacts and the one-nucleon and two-nucleon momentum distributions are derived. Using these relations, a new asymptotic connection between the one-nucleon and two-nucleon momentum distributions, describing the two-body short-range correlations in nuclei, is obtained. Using available numerical data, we extract few connections between the different contacts and verify their relations to the momentum distributions. The numerical data also allows us to identify the main nucleon momentum range affected by two-body short-range correlations. Utilizing these relations and the numerical data, we also verify a previous independent prediction connecting between the Levinger constant and the contacts. This work provides an important indication for the relevance of the contact...

  9. Infrared Images of Shock-Heated Tin

    SciTech Connect (OSTI)

    Craig W. McCluskey; Mark D. Wilke; William D. Turley; Gerald D. Stevens; Lynn R. Veeser; Michael Grover

    2004-09-01T23:59:59.000Z

    High-resolution, gated infrared images were taken of tin samples shock heated to just below the 505 K melting point. Sample surfaces were either polished or diamond-turned, with grain sizes ranging from about 0.05 to 10 mm. A high explosive in contact with a 2-mm-thick tin sample induced a peak sample stress of 18 GPa. Interferometer data from similarly-driven tin shots indicate that immediately after shock breakout the samples spall near the free (imaged) surface with a scab thickness of about 0.1 mm.

  10. Method and apparatus for high-efficiency direct contact condensation

    DOE Patents [OSTI]

    Bharathan, D.; Parent, Y.; Hassani, A.V.

    1999-07-20T23:59:59.000Z

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions, and the geometric properties of the contact medium. 39 figs.

  11. Method and apparatus for high-efficiency direct contact condensation

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Parent, Yves (Golden, CO); Hassani, A. Vahab (Golden, CO)

    1999-01-01T23:59:59.000Z

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions. and the geometric properties of the contact medium.

  12. Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell

    E-Print Network [OSTI]

    Park, Byungwoo

    Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell Seung- circuit voltage (Voc) and the conversion efficiency of the Si solar cell. Recently, a-Si:H heterojunction (heterojunction with intrinsic thin layer) cell [1] even with practical-sized Czochralski-grown (CZ) wafer. The a-Si:H

  13. Contact Resistance for "End-Contacted" Metal-Graphene and Metal-Nanotube Interfaces from Quantum Mechanics

    E-Print Network [OSTI]

    Goddard III, William A.

    ballistic conductance,12-14 and high thermal conductivity.15 Indeed, significant progress has been made layer graphene has been demonstrated to exhibit high electron mobility (15 000 cm2 /(V s)) and thermalContact Resistance for "End-Contacted" Metal-Graphene and Metal-Nanotube Interfaces from Quantum

  14. Method of forming contacts for a back-contact solar cell

    DOE Patents [OSTI]

    Manning, Jane

    2014-07-15T23:59:59.000Z

    Methods of forming contacts for solar cells are described. In one embodiment, a method includes forming a silicon layer above a substrate, forming and patterning a solid-state p-type dopant source on the silicon layer, forming an n-type dopant source layer over exposed regions of the silicon layer and over a plurality of regions of the solid-state p-type dopant source, and heating the substrate to provide a plurality of n-type doped silicon regions among a plurality of p-type doped silicon regions.

  15. Mechanical contact by constraints and split-based preconditioning

    SciTech Connect (OSTI)

    Dmitry Karpeyev; Derek Gaston; Jason Hales; Steven Novascone

    2014-03-01T23:59:59.000Z

    An accurate implementation of glued mechanical contact was developed in MOOSE based on its Constraint system. This approach results in a superior convergence of elastic structure problems, in particular in BISON. Adaptation of this technique to frictionless and frictional contact models is under way. Additionally, the improved convergence of elastic problems results from the application of the split-based preconditioners to constraint-based systems. This yields a substantial increase in the robustness of elastic solvers when the number of nodes in contact is increased and/or the mesh is refined.

  16. The hierarchical properties of contact networks in granular packings

    E-Print Network [OSTI]

    T. Aste; T. J. Senden

    2005-04-14T23:59:59.000Z

    The topological structure resulting from the network of contacts between grains (contact network) is studied for very large samples of disorderly-packed monosized spheres with densities ranging from 0.58 to 0.64. The hierarchical organization of such a structure is studied by means of a topological map which starts from a given sphere and moves outwards in concentric shells through the contact network. We find that the topological density of disordered sphere packing is larger than the topological density of equivalent lattice sphere packings.

  17. Contacts - Madison Dynamo Experiment - Cary Forest Group - UW Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1Contact CommunityContactContacts

  18. Imaging the irradiance distribution in the optical near field J. Aizenberg,a)

    E-Print Network [OSTI]

    Prentiss, Mara

    Imaging the irradiance distribution in the optical near field J. Aizenberg,a) J. A. Rogers, K. E of the irradiance distribution in the optical near field for contact-mode photolithography using elastomeric phase of a sensitive photoresist for direct imaging of optical intensity profiles in near-field photolithographic

  19. Contact Information: Jeff Williams, MLIS phone (858) 822-2218

    E-Print Network [OSTI]

    California at San Diego, University of

    Contact Information: Jeff Williams, MLIS phone (858) 822-2218 Biology Librarian fax (858) 822-2219 UCSD Biomedical Library j12williams@ucsd.edu Life Sciences Newsletter UCSD Biomedical Library Spring

  20. Extrapolating Sparse Large-Scale GPS Traces for Contact Evaluation

    E-Print Network [OSTI]

    Ott, Jörg

    , such as access points and cell towers, and occasionally also their geo- graphic location. However, given the larger transmission ranges of network elements, whether a short-range contact could take place can only

  1. Optics, mask and resist implications on contact CDU

    SciTech Connect (OSTI)

    Naulleau, Patrick

    2010-06-01T23:59:59.000Z

    Mask and condenser roughness plays important in contact CDU. Resist blur drives both dose requirements and mask specs. Correlation methods can be used to measure mask contributions to CDU.

  2. Influence of surface roughness and waviness upon thermal contact resistance

    E-Print Network [OSTI]

    Yovanovich, M. Michael

    1967-01-01T23:59:59.000Z

    This work deals with the phenomenon of thermal resistance between contacting solids. Attention is directed towards contiguous solids possessing both surface roughness and waviness. When two such surfaces are brought together ...

  3. Dynamics of clusters and molecules in contact with an environment

    E-Print Network [OSTI]

    Giraud, Olivier

    (embedded, deposited) Fundamental studies on mechanisms (irradiation, deposition) (Nano) Contacts with insulators (ionic crystals, rare gases...) Low energy dynamics (optical response, deposition) Laser irradiation #12;Time Dependent Density Functional Theory (TDDFT) Ensemble of orbitals (1 electron

  4. Impedance Control of a Pneumatic Actuator for Contact Tasks

    E-Print Network [OSTI]

    Barth, Eric J.

    of a pneumatic system is that of compliant actuation. By virtue of the compressibility of air, a pneumatic and stable force control, less damage during inadvertent contact, and the potential for energy storage." [1

  5. Centralized processing of contact-handled TRU waste feasibility analysis

    SciTech Connect (OSTI)

    Not Available

    1986-12-01T23:59:59.000Z

    This report presents work for the feasibility study of central processing of contact-handled TRU waste. Discussion of scenarios, transportation options, summary of cost estimates, and institutional issues are a few of the subjects discussed. (JDL)

  6. Hearing Material 1 Perception of Material from Contact Sounds

    E-Print Network [OSTI]

    Pai, Dinesh

    of simulated enviroments. This circumstance is unfortunate, when one considers that sounds provide important, the force of impact, and the location of contact relative to object geometry. In this paper we concentrate

  7. Measurement of normal contact stiffness of fractal rough surfaces

    E-Print Network [OSTI]

    Chongpu Zhai; Sébastien Bevand; Yixiang Gan; Dorian Hanaor; Gwénaëlle Proust; Bruno Guelorget; Delphine Retraint

    2014-09-03T23:59:59.000Z

    We investigate the effects of roughness and fractality on the normal contact stiffness of rough surfaces. Samples of isotropically roughened aluminium surfaces are considered. The roughness and fractal dimension were altered through blasting using different sized particles. Subsequently, surface mechanical attrition treatment (SMAT) was applied to the surfaces in order to modify the surface at the microscale. The surface topology was characterised by interferometry based profilometry. The normal contact stiffness was measured through nanoindentation with a flat tip utilising the partial unloading method. We focus on establishing the relationships between surface stiffness and roughness, combined with the effects of fractal dimension. The experimental results, for a wide range of surfaces, showed that the measured contact stiffness depended very closely on surfaces' root mean squared (RMS) slope and their fractal dimension, with correlation coefficients of around 90\\%, whilst a relatively weak correlation coefficient of 57\\% was found between the contact stiffness and RMS roughness.

  8. 2014 EMPLOYEE BENEFIT INSURANCE PLAN CONTACTS Health Insurance

    E-Print Network [OSTI]

    2014 EMPLOYEE BENEFIT INSURANCE PLAN CONTACTS Health Insurance Anthem Blue Cross and Blue Shield www.anthem.com Ã? BlueAdvantage Point of Service Plan (HMO/POS) Ã? PRIME Health Plan (PPO) and Custom Plus Health Plan Phone

  9. Graded Materials for Resistance to Contact Deformation and Damage

    E-Print Network [OSTI]

    Suresh, Subra

    Graded Materials for Resistance to Contact Deformation and Damage S. Suresh The mechanical response as diverse as tribology, geology, optoelectronics, biomechanics, fracture mechanics, and nanotechnology changes in the elastic properties of sands, soils, and rocks beneath Earth's surface in- fluence

  10. aluminum alloyed contacts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modarres Razavi, Sonia 2012-02-14 116 LOSS ANALYSIS OF BACK-CONTACT BACK-JUNCTION THIN-FILM MONOCRYSTALLINE SILICON SOLAR CELLS Renewable Energy Websites Summary: of the...

  11. Au-free Ohmic Contacts to Gallium Nitride and Graphene

    E-Print Network [OSTI]

    Ravikirthi, Pradhyumna

    2014-08-10T23:59:59.000Z

    This work deals with Au-free contact metallization schemes for gallium nitride (GaN) and graphene semiconductors. Graphene and gallium nitride are promising materials that can potentially be integrated together in the near future for high frequency...

  12. A multi-scale iterative approach for finite element modeling of thermal contact resistance

    E-Print Network [OSTI]

    Thompson, Mary Kathryn, 1980-

    2007-01-01T23:59:59.000Z

    Surface topography has long been considered a key factor in the performance of many contact applications including thermal contact resistance. However, essentially all analytical and numerical models of thermal contact ...

  13. Degradation of Iris Recognition Performance Due to Non-Cosmetic Prescription Contact Lenses

    E-Print Network [OSTI]

    Bowyer, Kevin W.

    stated as: "Subjects can generally be recognized through eyeglasses or contact lenses. Colored contact with the recognition technology" [5] and "Successful identification can be made through eyeglasses and contact lenses

  14. Direct-contact closed-loop heat exchanger

    DOE Patents [OSTI]

    Berry, Gregory F. (Naperville, IL); Minkov, Vladimir (Skokie, IL); Petrick, Michael (Joliet, IL)

    1984-01-01T23:59:59.000Z

    A high temperature heat exchanger with a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.

  15. Fiber tip interferometry for non-contact ultrasonic NDE

    E-Print Network [OSTI]

    Schumacher, Neal Andrew

    2012-06-07T23:59:59.000Z

    FIBER TIP INTERFEROMETRY FOR NON-CONTACT ULTRASONIC NDE A Thesis by Neal Andrew Schumacher Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... August 1990 Major Subject: Mechanical Engineering FIBER TIP INTERFEROMETRY FOR NON-CONTACT ULTRASONIC NDE A Thesis by Neal Andrew Schumacher Approved as to style and content by: Christian P. Burger (Chair of Committee) Hans Schuessler...

  16. Superconductor-normal-superconductor with distributed Sharvin point contacts

    DOE Patents [OSTI]

    Holcomb, Matthew J. (San Mateo County, CA); Little, William A. (Santa Clara County, CA)

    1994-01-01T23:59:59.000Z

    A non-linear superconducting junction device comprising a layer of high transient temperature superconducting material which is superconducting at an operating temperature, a layer of metal in contact with the layer of high temperature superconducting material and which remains non-superconducting at the operating temperature, and a metal material which is superconducting at the operating temperature and which forms distributed Sharvin point contacts with the metal layer.

  17. Electronic Non-Contacting Linear Position Measuring System

    DOE Patents [OSTI]

    Post, Richard F. (Walnut Creek, CA)

    2005-06-14T23:59:59.000Z

    A non-contacting linear position location system employs a special transmission line to encode and transmit magnetic signals to a receiver on the object whose position is to be measured. The invention is useful as a non-contact linear locator of moving objects, e.g., to determine the location of a magnetic-levitation train for the operation of the linear-synchronous motor drive system.

  18. Amorphous silicon passivated contacts for diffused junction silicon solar cells

    SciTech Connect (OSTI)

    Bullock, J., E-mail: james.bullock@anu.edu.au; Yan, D.; Wan, Y.; Cuevas, A. [Research School of Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Demaurex, B.; Hessler-Wyser, A.; De Wolf, S. [École Polytechnique Fédérale de Lausanne (EPFL), Institute of micro engineering (IMT), Photovoltaics and Thin Film Electronic Laboratory, Maladière 71, CH-200 Neuchâtel (Switzerland)

    2014-04-28T23:59:59.000Z

    Carrier recombination at the metal contacts is a major obstacle in the development of high-performance crystalline silicon homojunction solar cells. To address this issue, we insert thin intrinsic hydrogenated amorphous silicon [a-Si:H(i)] passivating films between the dopant-diffused silicon surface and aluminum contacts. We find that with increasing a-Si:H(i) interlayer thickness (from 0 to 16?nm) the recombination loss at metal-contacted phosphorus (n{sup +}) and boron (p{sup +}) diffused surfaces decreases by factors of ?25 and ?10, respectively. Conversely, the contact resistivity increases in both cases before saturating to still acceptable values of ? 50 m? cm{sup 2} for n{sup +} and ?100 m? cm{sup 2} for p{sup +} surfaces. Carrier transport towards the contacts likely occurs by a combination of carrier tunneling and aluminum spiking through the a-Si:H(i) layer, as supported by scanning transmission electron microscopy–energy dispersive x-ray maps. We explain the superior contact selectivity obtained on n{sup +} surfaces by more favorable band offsets and capture cross section ratios of recombination centers at the c-Si/a-Si:H(i) interface.

  19. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting

    E-Print Network [OSTI]

    Q. Li; K. H. Luo; Q. J. Kang; Q. Chen

    2014-10-21T23:59:59.000Z

    In this paper, we aim to investigate the implementation of contact angles in the pseudopotential lattice Boltzmann modeling of wetting at a large density ratio. The pseudopotential lattice Boltzmann model [X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994)] is a popular mesoscopic model for simulating multiphase flows and interfacial dynamics. In this model, the contact angle is usually realized by a fluid-solid interaction. Two widely used fluid-solid interactions: the density-based interaction and the pseudopotential-based interaction, as well as a modified pseudopotential-based interaction formulated in the present paper, are numerically investigated and compared in terms of the achievable contact angles, the maximum and the minimum densities, and the spurious currents. It is found that the pseudopotential-based interaction works well for simulating small static (liquid) contact angles, however, is unable to reproduce static contact angles close to 180 degrees. Meanwhile, it is found that the proposed modified pseudopotential-based interaction performs better in light of the maximum and the minimum densities and is overall more suitable for simulating large contact angles as compared with the other two types of fluid-solid interactions. Furthermore, the spurious currents are found to be enlarged when the fluid-solid interaction force is introduced. Increasing the kinematic viscosity ratio between the vapor and liquid phases is shown to be capable of reducing the spurious currents caused by the fluid-solid interactions.

  20. Imaging bolometer

    DOE Patents [OSTI]

    Wurden, Glen A. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    Radiation-hard, steady-state imaging bolometer. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas.

  1. Imaging bolometer

    DOE Patents [OSTI]

    Wurden, G.A.

    1999-01-19T23:59:59.000Z

    Radiation-hard, steady-state imaging bolometer is disclosed. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas. 2 figs.

  2. Contact Detection and Constraints Enforcement for the Simulation of Pellet/Clad Thermo-Mechanical Contact in Nuclear Fuel Rods

    E-Print Network [OSTI]

    Lebrun-Grandié, Damien Thomas

    2014-03-05T23:59:59.000Z

    As fission process heats up the fuel rods, UO2 pellets stacked on top of each other swell both radially and axially, while the surrounding Zircaloy cladding creeps down, so that the pellets eventually come into contact with the clad...

  3. Ultra-low contact resistance at an epitaxial metal/oxide heterojunctio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultra-low contact resistance at an epitaxial metaloxide heterojunction through interstitial site doping. Ultra-low contact resistance at an epitaxial metaloxide heterojunction...

  4. E-Print Network 3.0 - advanced biocompatible contact Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biocompatible contact Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced biocompatible contact Page: << < 1 2 3 4 5 > >> 1 Knowledge Transfer...

  5. E-Print Network 3.0 - airborne allergic contact Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Items that "contact" the eye or promote irritation (i.e. foreign objects... , chemicals, etc.) Contact lens products, eye drops or eye ointments Anatomical abnormalities of...

  6. E-Print Network 3.0 - action contacts directory Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contacts directory Search Powered by Explorit Topic List Advanced Search Sample search results for: action contacts directory Page: << < 1 2 3 4 5 > >> 1 Faculty and Staff...

  7. Graphitic Electrical Contacts to Metallic Single Walled Carbon Nanotubes Using Pt Electrodes

    E-Print Network [OSTI]

    Collins, Philip G

    2009-01-01T23:59:59.000Z

    NANO LETTERS Graphitic Electrical Contacts to Metallicof the interfacial electrical resistance between nano- tubesprovide excellent electrical contacts to many types of

  8. High-Speed Imaging of Freezing Drops: Still No Preference for the Contact Line

    E-Print Network [OSTI]

    Kostinski, Alex

    , Michigan Technological University, Houghton, Michigan 49931, United States *S Supporting Information regarding a preferred status of the triple line between water, air, and an ice-catalyzing substrate geometry. INTRODUCTION Heterogeneous nucleation in clouds converts water to ice, thereby affecting weather

  9. Tritium trapping in silicon carbide in contact with solid breeder under high flux isotope reactor irradiation

    SciTech Connect (OSTI)

    H. Katsui; Y. Katoh; A. Hasegawa; M. Shimada; Y. Hatano; T. Hinoki; S. Nogami; T. Tanaka; S. Nagata; T. Shikama

    2013-11-01T23:59:59.000Z

    The trapping of tritium in silicon carbide (SiC) injected from ceramic breeding materials was examined via tritium measurements using imaging plate (IP) techniques. Monolithic SiC in contact with ternary lithium oxide (lithium titanate and lithium aluminate) as a ceramic breeder was irradiated in the High Flux Isotope Reactor (HFIR) in Oak Ridge, Tennessee, USA. The distribution of photo-stimulated luminescence (PSL) of tritium in SiC was successfully obtained, which separated the contribution of 14C ß-rays to the PSL. The tritium incident from ceramic breeders was retained in the vicinity of the SiC surface even after irradiation at 1073 K over the duration of ~3000 h, while trapping of tritium was not observed in the bulk region. The PSL intensity near the SiC surface in contact with lithium titanate was higher than that obtained with lithium aluminate. The amount of the incident tritium and/or the formation of a Li2SiO3 phase on SiC due to the reaction with lithium aluminate under irradiation likely were responsible for this observation.

  10. Nanometric Optical Imaging Frontiers in Chemical Imaging

    E-Print Network [OSTI]

    Nanometric Optical Imaging Frontiers in Chemical Imaging Seminar Series Presented by... Professor growing field which has provided for nanometric optical imaging in the near-field. Even though a variety of techniques are being developed with nanometric optical imaging potential, near-field optics remains the most

  11. REALTIME MONITORING OF PIPELINES FOR THIRD-PARTY CONTACT

    SciTech Connect (OSTI)

    Gary L. Burkhardt; Alfred E. Crouch

    2004-10-01T23:59:59.000Z

    Third-party contact with pipelines (typically caused by contact with a digging or drilling device) can result in mechanical damage to the pipe, in addition to coating damage that can initiate corrosion. Because this type of damage often goes unreported and can lead to eventual catastrophic failure of the pipe, a reliable, cost-effective method is needed for monitoring and reporting third-party contact events. The impressed alternating cycle current (IACC) pipeline monitoring method consists of impressing electrical signals on the pipe by generating a time-varying voltage between the pipe and the soil at periodic locations where pipeline access is available. The signal voltage between the pipe and ground is monitored continuously at receiving stations located some distance away. Third-party contact to the pipe that breaks through the coating changes the signal received at the receiving stations. In this project, the IACC monitoring method is being developed, tested, and demonstrated. Work performed to date includes (1) a technology assessment, (2) development of an IACC model to predict performance and assist with selection of signal operating parameters, (3) Investigation of potential interactions with cathodic protection systems, and (4) experimental measurements on buried pipe at a test site as well as on an operating pipeline. Initial results show that simulated contact can be detected. Future work will involve further refinement of the method and testing on operating pipelines.

  12. REALTIME MONITORING OF PIPELINES FOR THIRD-PARTY CONTACT

    SciTech Connect (OSTI)

    Gary L. Burkhardt; Alfred E. Crouch; Jay L. Fisher

    2004-04-01T23:59:59.000Z

    Third-party contact with pipelines (typically caused by contact with a digging or drilling device) can result in mechanical damage to the pipe, in addition to coating damage that can initiate corrosion. Because this type of damage often goes unreported and can lead to eventual catastrophic failure of the pipe, a reliable, cost-effective method is needed for monitoring and reporting third-party contact events. The impressed alternating cycle current (IACC) pipeline monitoring method consists of impressing electrical signals on the pipe by generating a time-varying voltage between the pipe and the soil at periodic locations where pipeline access is available. The signal voltage between the pipe and ground is monitored continuously at receiving stations located some distance away. Third-party contact to the pipe that breaks through the coating changes the signal received at the receiving stations. In this project, the IACC monitoring method is being developed, tested, and demonstrated. Work performed to date includes a technology assessment, development of an IACC model to predict performance and assist with selection of signal operating parameters, and experimental measurements on a buried pipe at a test site. Initial results show that simulated contact can be detected. Future work will involve further refinement of the method and testing on operating pipelines.

  13. Enhanced Semiconductor Nanocrystal Conductance via Solution Grown Contacts

    SciTech Connect (OSTI)

    Sheldon, Matthew T.; Trudeau, Paul-Emile; Mokari, Taleb; Wang, Lin-Wang; Alivisatos, A. Paul

    2009-08-19T23:59:59.000Z

    We report a 100,000-fold increase in the conductance of individual CdSe nanorods when they are electrically contacted via direct solution phase growth of Au tips on the nanorod ends. Ensemble UV-Vis and X-Ray photoelectron spectroscopy indicate this enhancement does not result from alloying of the nanorod. Rather, low temperature tunneling and high temperature (250-400 K) thermionic emission across the junction at the Au contact reveal a 75percent lower interface barrier to conduction compared to a control sample. We correlate this barrier lowering with the electronic structure at the Au-CdSe interface. Our results emphasize the importance of nanocrystal surface structure for robust device performance and the advantage of this contact method.

  14. Existence and Regularity for Dynamic Viscoelastic Adhesive Contact with Damage

    SciTech Connect (OSTI)

    Kuttler, Kenneth L. [Department of Mathematics, Brigham Young University, Provo, UT 84602 (United States)], E-mail: klkuttler@math.byu.edu; Shillor, Meir [Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309 (United States)], E-mail: shillor@oakland.edu; Fernandez, Jose R. [Departamento de Matematica Aplicada, Facultade de Matematicas, University of Santiago de Compostela, 15706 Santiago de Compostela (Spain)], E-mail: jramon@usc.es

    2006-01-15T23:59:59.000Z

    A model for the dynamic process of frictionless adhesive contact between a viscoelastic body and a reactive foundation, which takes into account the damage of the material resulting from tension or compression, is presented. Contact is described by the normal compliance condition. Material damage is modelled by the damage field, which measures the pointwise fractional decrease in the load-carrying capacity of the material, and its evolution is described by a differential inclusion. The model allows for different damage rates caused by tension or compression. The adhesion is modelled by the bonding field, which measures the fraction of active bonds on the contact surface. The existence of the unique weak solution is established using the theory of set-valued pseudomonotone operators introduced by Kuttler and Shillor (1999). Additional regularity of the solution is obtained when the problem data is more regular and satisfies appropriate compatibility conditions.

  15. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W. (Lawrenceville, NJ); Maley, Nagi (Exton, PA)

    2001-01-01T23:59:59.000Z

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  16. REALTIME MONITORING OF PIPELINES FOR THIRD-PARTY CONTACT

    SciTech Connect (OSTI)

    Gary L. Burkhardt; Alred E. Crouch

    2005-04-01T23:59:59.000Z

    Third-party contact with pipelines (typically caused by contact with a digging or drilling device) can result in mechanical damage to the pipe, in addition to coating damage that can initiate corrosion. Because this type of damage often goes unreported and can lead to eventual catastrophic failure of the pipe, a reliable, cost-effective method is needed for monitoring and reporting third-party contact events. The impressed alternating cycle current (IACC) pipeline monitoring method consists of impressing electrical signals on the pipe by generating a time-varying voltage between the pipe and the soil at periodic locations where pipeline access is available. The signal voltage between the pipe and ground is monitored continuously at receiving stations located some distance away. Third-party contact to the pipe that breaks through the coating changes the signal received at the receiving stations. In this project, the IACC monitoring method is being developed, tested, and demonstrated. Work performed to date includes (1) a technology assessment, (2) development of an IACC model to predict performance and assist with selection of signal operating parameters, (3) Investigation of potential interactions with cathodic protection systems, and (4) experimental measurements on buried pipe at a test site as well as on an operating pipeline. Initial results showed that IACC signals could be successfully propagated over a distance of 3.5 miles, and that simulated contact can be detected up to a distance of 0.7 mile. Unexpected results were that the electrical impedance from the operating pipelines to the soil was very low and, therefore, the changes in impedance and signal resulting from third-party contact were unexpectedly low. Future work will involve further refinement of the method to resolve the issues with small signal change and additional testing on operating pipelines.

  17. Novel Composite Materials for SOFC Cathode-Interconnect Contact

    SciTech Connect (OSTI)

    J. H. Zhu

    2009-07-31T23:59:59.000Z

    This report summarized the research efforts and major conclusions of our University Coal Research Project, which focused on developing a new class of electrically-conductive, Cr-blocking, damage-tolerant Ag-perovksite composite materials for the cathode-interconnect contact of intermediate-temperature solid oxide fuel cell (SOFC) stacks. The Ag evaporation rate increased linearly with air flow rate initially and became constant for the air flow rate {ge} {approx} 1.0 cm {center_dot} s{sup -1}. An activation energy of 280 KJ.mol{sup -1} was obtained for Ag evaporation in both air and Ar+5%H{sub 2}+3%H{sub 2}O. The exposure environment had no measurable influence on the Ag evaporation rate as well as its dependence on the gas flow rate, while different surface morphological features were developed after thermal exposure in the oxidizing and reducing environments. Pure Ag is too volatile at the SOFC operating temperature and its evaporation rate needs to be reduced to facilitate its application as the cathode-interconnect contact. Based on extensive evaporation testing, it was found that none of the alloying additions reduced the evaporation rate of Ag over the long-term exposure, except the noble metals Au, Pt, and Pd; however, these noble elements are too expensive to justify their practical use in contact materials. Furthermore, the addition of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM) into Ag to form a composite material also did not significantly modify the Ag evaporation rate. The Ag-perovskite composites with the perovskite being either (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.8}Fe{sub 0.2})O{sub 3} (LSCF) or LSM were systematically evaluated as the contact material between the ferritic interconnect alloy Crofer 22 APU and the LSM cathode. The area specific resistances (ASRs) of the test specimens were shown to be highly dependent on the volume percentage and the type of the perovskite present in the composite contact material as well as the amount of thermal cycling that the specimens were subjected to during testing. The Ag-LSCF composite contact materials proved more effective in trapping Cr within the contact material and preventing Cr migration into the cathode than the Ag-LSM composites. Ag-perovskite composite contact materials are promising candidates for use in intermediate-temperature SOFC stacks with ferritic stainless steel interconnects due to their ability to maintain acceptably low ASRs while reducing Cr migration into the cathode material.

  18. Laminated photovoltaic modules using back-contact solar cells

    DOE Patents [OSTI]

    Gee, James M. (Albuquerque, NM); Garrett, Stephen E. (Albuquerque, NM); Morgan, William P. (Albuquerque, NM); Worobey, Walter (Albuquerque, NM)

    1999-09-14T23:59:59.000Z

    Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  19. Topological complexity, contact order and protein folding rates

    E-Print Network [OSTI]

    P. F. N. Faisca; R. C. Ball

    2002-05-29T23:59:59.000Z

    Monte Carlo simulations of protein folding show the emergence of a strong correlation between the relative contact order parameter, CO, and the folding time, t, of two-state folding proteins for longer chains with number of amino acids, N>=54, and higher contact order, CO > 0.17. The correlation is particularly strong for N=80 corresponding to slow and more complex folding kinetics. These results are qualitatively compatible with experimental data where a general trend towards increasing t with CO is indeed observed in a set of proteins with chain length ranging from 41 to 154 amino acids.

  20. Contact information for the Cyclotron Institute REU Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUsContactContact

  1. Contacts | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-GovContacts News News Home

  2. Contact | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJune 2008 BasicCharlesCondensedContact EnergyContact

  3. Contact | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJune 2008 BasicCharlesCondensedContactContact Science

  4. Contact | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJune 2008 BasicCharlesCondensedContactContact

  5. Contact Us | ANSER Center | Argonne-Northwestern National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - Working With Us Contact

  6. Contact information | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - WorkingContact Us

  7. Gamma-ray imaging with coaxial HPGe detector

    SciTech Connect (OSTI)

    Niedermayr, T; Vetter, K; Mihailescu, L; Schmid, G J; Beckedahl, D; Kammeraad, J; Blair, J

    2005-04-12T23:59:59.000Z

    We report on the first experimental demonstration of Compton imaging of gamma rays with a single coaxial high-purity germanium (HPGe) detector. This imaging capability is realized by two-dimensional segmentation of the outside contact in combination with digital pulse-shape analysis, which enables to image gamma rays in 4{pi} without employing a collimator. We are able to demonstrate the ability to image the 662keV gamma ray from a {sup 137}Cs source with preliminary event selection with an angular accuracy of 5 degree with an relative efficiency of 0.2%. In addition to the 4{pi} imaging capability, such a system is characterized by its excellent energy resolution and can be implemented in any size possible for Ge detectors to achieve high efficiency.

  8. Split image optical display

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    2007-05-29T23:59:59.000Z

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  9. For additional information, contact: Department of Agricultural Economics & Economics

    E-Print Network [OSTI]

    Lawrence, Rick L.

    For additional information, contact: Department of Agricultural Economics & Economics Montana State.montana.edu/econ agecon@montana.edu 1 2 AGRICULTURAL ECONOMICS & ECONOMICS KELLY GORHAM 1 Austin Owens traveled to Greece as mentors for students in Economics 101 4 Chris Stoddard was the recipient of a MSU Cox Family Faculty

  10. CONTACT: University Relations/News 304.293.6997

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    CONTACT: University Relations/News 304.293.6997 Text of WVU presidential search committee. 28) by the West Virginia University presidential search committee asking the Board of Governors the presidential search at West Virginia University, I hereby move that the Presidential Search Committee: 1

  11. ECE 3301: General Electrical Engineering Credit / Contact hours: 3 / 3

    E-Print Network [OSTI]

    Gelfond, Michael

    ECE 3301: General Electrical Engineering Credit / Contact hours: 3 / 3 Course coordinator: Mary Baker Textbook(s) and/or other required material: Hambley, Allan R., Electrical Engineering ­ Principles and Applications, fourth edition, Prentice Hall, 2007. Catalog description: Analysis of electric circuits

  12. Ohmic contacts to p-type GaP

    E-Print Network [OSTI]

    Jorge Estevez, Humberto Angel

    1996-01-01T23:59:59.000Z

    thickness used in this scheme. The samples were annealed for I @n at temperatures ranging from 3 5 0 to 4 5 0 'C. Lower values of the contact resistivity than those of the Si/Pd/Zn/Pd/p-GaP scheme were achieved by depositing an Aluminum layer on the top...

  13. Annular electrical contact apparatus for use in drill stem testing

    SciTech Connect (OSTI)

    Lancaster, C. E.

    1985-09-17T23:59:59.000Z

    In accordance with an illustrative embodiment of the present invention, a full bore drill stem testing system includes a tubular housing suspended in a well on a pipe string and having an open bore therethrough. An annular electrical contact sleeve is mounted on the wall of the housing surrounding the bore. A running tool that is lowered into the pipe string on electrical wireline includes inner and outer body members, with the outer body member carrying latch dogs that engage a shoulder in the housing to stop downward movement in a predetermined position. The inner body member carries a normally retracted annular elastomer element that has an electrical contact means on its outer periphery, and expander means responsive to upward movement of said inner body member relative to said outer body member is operable to expand the elastomer element to cause the contact means to engage the contact sleeve and enable drill stem test data to be transmitted to the surface via the electric wireline.

  14. For additional information, contact: Department of History, Philosophy

    E-Print Network [OSTI]

    For additional information, contact: Department of History, Philosophy & Religious Studies Montana "Philosophy of Science," "Nature and Religion" and "The Darwinian Revolution." The World The department offers courses ranging from "Latin American Perspectives" to "Religion of Ancient Egypt" to "Philosophies of Asia

  15. Test method Evaluating the influence of contacting fluids on polyethylene

    E-Print Network [OSTI]

    Thompson, Michael

    Test method Evaluating the influence of contacting fluids on polyethylene using acoustic emissions emissions Polyethylene Penetrant Toluene Aqueous detergent a b s t r a c t Identifying microstructural) on the structure of a semi-crystalline polymer (high density polyethylene, HDPE) over different periods of exposure

  16. For Immediate release: 06/14/12 Contact: Ingrid Wright

    E-Print Network [OSTI]

    Ward, Karen

    bays that will obtain a minimum Leadership in Engineering and Environmental Design (LEED) SilverFor Immediate release: 06/14/12 Contact: Ingrid Wright Civil Engineering Collaborates with City to Build New Fire Station The Civil Engineering Department at The University of Texas at El Paso has been

  17. FOR MORE INFORMATION, CONTACT: TP Straatsma, Initiative Lead

    E-Print Network [OSTI]

    FOR MORE INFORMATION, CONTACT: TP Straatsma, Initiative Lead 509-375-2802 tps@pnl.gov www.pnl.gov e Development of Exascale Algorithms for Molecular Modeling Lead investigator: Dr. Karol Kowalski Researchers Optimizations for Extreme Scale Systems Lead investigator: Dr. Daniel Chavarria Exascale systems will provide

  18. Current Producers of Developed Grasses Producers Contact Phone Number

    E-Print Network [OSTI]

    Rod 979-543-0121 Trinity Turf Nursery* Doug O'Conner 800-290-8873 Wharton Turfgrass Jimmy Kocurek 979 Turfgrass Jimmy Kocurek 979-532-4340 Wittig Grass Farms Allan Wittig 979-657-4496 Diamond Producers Contact Turfgrass Jimmy Kocurek 979-532-4340 Winstead Turf Farms* (AR, MS, TN) Bobby Winstead 800-624-8873 Wittig

  19. For Immediate release: 11/16/12 Contact: Ingrid Wright

    E-Print Network [OSTI]

    Ward, Karen

    Mobil, Lockheed Martin, General Motors, AT&T and more. Internship presenters will be Alan Alvillar UTEPFor Immediate release: 11/16/12 Contact: Ingrid Wright Engineering students host Internship Seminar Series The College of Engineering Tau Beta Pi, Malone Engineering Leadership Program, the Entering

  20. For Immediate release: 10/31/12 Contact: Ingrid Wright

    E-Print Network [OSTI]

    Ward, Karen

    Mobil, Lockheed Martin, General Motors, AT&T and more. Internship presenters will be Janet Gomez UTEPFor Immediate release: 10/31/12 Contact: Ingrid Wright Engineering students host Internship Seminar Series The College of Engineering Tau Beta Pi, Malone Engineering Leadership Program, the Entering

  1. For Immediate release: 11/07/12 Contact: Ingrid Wright

    E-Print Network [OSTI]

    Ward, Karen

    Mobil, Lockheed Martin, General Motors, AT&T and more. On Friday, internship presenters will be OliviaFor Immediate release: 11/07/12 Contact: Ingrid Wright Engineering students host Internship Seminar Series The College of Engineering Tau Beta Pi, Malone Engineering Leadership Program, the Entering

  2. For Immediate release: 10/25/12 Contact: Ingrid Wright

    E-Print Network [OSTI]

    Ward, Karen

    Mobil, Lockheed Martin, General Motors, AT&T and more. On October 26, there will be a special guestFor Immediate release: 10/25/12 Contact: Ingrid Wright Engineering students host Internship Seminar Series The College of Engineering Tau Beta Pi, Malone Engineering Leadership Program, the Entering

  3. Ballistic thermal point contacts made of GaAs nanopillars

    SciTech Connect (OSTI)

    Bartsch, Th.; Wetzel, A.; Sonnenberg, D.; Schmidt, M.; Heyn, Ch.; Hansen, W. [Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg, Jungiusstr. 11, 20355 Hamburg (Germany)

    2013-12-04T23:59:59.000Z

    We measure the thermal conductance of GaAs pillars that are only a few nanometers long. Our observations can be understood with a simple model, in which the pillars constitute thermal point contacts between 3D phonon reservoirs. Moreover, first measurements of the electronic transport through these pillars are presented.

  4. For Immediate release: 10/05/11 Contact: Ingrid Wright

    E-Print Network [OSTI]

    Ward, Karen

    For Immediate release: 10/05/11 Contact: Ingrid Wright UTEP to Oversee Push for 'Green' Engineers develop new alternative energy sources and ways to increase energy efficiency. Heidi A. Taboada, Ph of the BuildinG a Regional Energy and Educational Network (BGREEN) project. The USDA announced the award Tuesday

  5. Method and apparatus for producing co-current fluid contact

    DOE Patents [OSTI]

    Trutna, W.R.

    1997-12-09T23:59:59.000Z

    An improved packing system and method are disclosed wherein a packing section includes a liquid distributor and a separator placed above the distributor so that gas rising through the liquid distributor contacts liquid in the distributor, forming a gas-liquid combination which rises in co-current flow to the separator. Liquid is collected in the separator, from which gas rises. 13 figs.

  6. For Immediate release: 03/20/12 Contact: Ingrid Wright

    E-Print Network [OSTI]

    Ward, Karen

    had the opportunity to tour the facility of Operational Test Command (OTC) at Fort Bliss for the firstFor Immediate release: 03/20/12 Contact: Ingrid Wright Electrical Engineering students visit Fort Bliss The University of Texas at El Paso's Department of Electrical and Computer Engineering students

  7. For Immediate release: 03/13/12 Contact: Ingrid Wright

    E-Print Network [OSTI]

    Ward, Karen

    For Immediate release: 03/13/12 Contact: Ingrid Wright UTEP to host symposium on energy science and Engineering Symposium starting at 8 a.m. Saturday, March 24, at the Double Tree Inn in El Paso The symposium assistant professor of mechanical engineering at UTEP. The event will feature keynote speaker Robert R

  8. Friction coefficient of soft contact lenses: measurements and modeling

    E-Print Network [OSTI]

    Sawyer, Wallace

    , FL 32611, USA Received 12 October 2004; accepted 16 January 2005 Tribological conditions for contact elastohydrodynamic lubrication. Finally, the largest contributors to the friction force in these experiments were comfort is related to friction. The mechanical properties of hydro- gels are extremely sensitive to water

  9. TO: HR and Business Contacts FROM: Division of Human Resources

    E-Print Network [OSTI]

    Almor, Amit

    MEMORANDUM TO: HR and Business Contacts FROM: Division of Human Resources DATE: October 25, 2013 RE: Human Resources Fall 2013 Forum The Division of Human Resources will sponsor an HR Forum from 1 to the Division of Human Resources' Organizational and Professional Development Office at hrtrain

  10. TO: HR and Business Contacts FROM: Division of Human Resources

    E-Print Network [OSTI]

    Almor, Amit

    TO: HR and Business Contacts FROM: Division of Human Resources DATE: September 6, 2012 RE: Human Resources Fall 2012 Forum The Division of Human Resources will sponsor an HR Forum from 1-4 p in person or by webinar. Any questions about the forum may be e-mailed to the Division of Human Resources

  11. TO: HR and Business Contacts FROM: Division of Human Resources

    E-Print Network [OSTI]

    Almor, Amit

    TO: HR and Business Contacts FROM: Division of Human Resources DATE: September 24, 2012 RE: Reminder: Human Resources Fall 2012 Forum This is a reminder that you will need to register online by the Division of Human Resources, this forum will include information about benefits updates to annual

  12. Detection of Heavy Metal Ions Based on Quantum Point Contacts

    E-Print Network [OSTI]

    Zhang, Yanchao

    . The ability to detect trace amounts of metal ions is important because of the toxicity of heavy metal ionsDetection of Heavy Metal Ions Based on Quantum Point Contacts Vasanth Rajagopalan, Salah Boussaad on many living organisms and the consequence of heavy metal ions not being biodegradable. To date, heavy

  13. On the Effect of Compliance in Robotic Contact Tasks Problem

    E-Print Network [OSTI]

    1 1995 ACC On the Effect of Compliance in Robotic Contact Tasks Problem Shahram Payandeh, Assistant Professor Experimental Robotics Laboratory (ERL) School of Engineering Science Simon Fraser University control of the robotic manipulator during its phase transition from free to constrained motions. One

  14. Media contact: FOR IMMEDIATE RELEASE Diana Hanford May 4, 2012

    E-Print Network [OSTI]

    Fernandez, Eduardo

    companies working in conjunction with the FAU College of Engineering and Computer Science, the FAU Charles EMedia contact: FOR IMMEDIATE RELEASE Diana Hanford May 4, 2012 Ambit Advertising and Public working on industry projects. Also included is a dedicated office for the annual FAU Business Plan

  15. Media contact: FOR IMMEDIATE RELEASE Diana Hanford September 24, 2012

    E-Print Network [OSTI]

    Belogay, Eugene A.

    to 22 technology companies working in conjunction with the FAU College of Engineering and ComputerMedia contact: FOR IMMEDIATE RELEASE Diana Hanford September 24, 2012 Ambit Advertising and Public by FAU student-based teams working on industry projects. It also serves as a knowledge resource center

  16. ENVS 404: Internship Syllabus Contact Information: Internship Coordinator

    E-Print Network [OSTI]

    1 ENVS 404: Internship Syllabus Contact Information: Internship Coordinator Peg Boulay Environmental Leadership Program Co-Director, Internship Coordinator and Academic Adviser 242 Columbia Hall 541-346-5945 boulay@uoregon.edu Note: The Internship Coordinator position may also be filled by a Graduate Teaching

  17. Simulations with Sliding and Intermittent Contact Matthew P. Kelly

    E-Print Network [OSTI]

    Ruina, Andy L.

    .edu March 5, 2014 Abstract When simulating a system that has intermittent contact, it is necessary or uses those [4] · Examples from my book (wheel and pulley) · Page 6 of Chatterjee and Ruina board. 4 Bouncing Ball Briefly discuss the results of my Simulations of a bouncing ball. 4.1 Zeno

  18. Problems addressed in this course Teaching methodology, material, exams, contacts

    E-Print Network [OSTI]

    Wehenkel, Louis

    . The first look at a genome - Sequence analysis Bioinformatics - Lecture 1 Louis Wehenkel Department. The first look at a genome - Sequence analysis Problems addressed in this course Teaching methodology, material, exams, contacts Chapter 1. The first look at a genome - Sequence analysis Introduction

  19. Michael A. Santoro Title and Address: Contact Information

    E-Print Network [OSTI]

    Lin, Xiaodong

    of intellectual property, competitor information gathering, personal privacy law, and trade secrecy. ResearchMichael A. Santoro Title and Address: Contact Information: Professor Department of Management, Rutgers Flex Program MBA Program (2013) 2010 With Ronald J. Strauss, Best Paper in Ethics Award

  20. REALTIME MONITORING OF PIPELINES FOR THIRD-PARTY CONTACT

    SciTech Connect (OSTI)

    Gary L. Burkhardt; Alfred E. Crouch

    2005-10-01T23:59:59.000Z

    Third-party contact with pipelines (typically caused by contact with a digging or drilling device) can result in mechanical damage to the pipe, in addition to coating damage that can initiate corrosion. Because this type of damage often goes unreported and can lead to eventual catastrophic failure of the pipe, a reliable, cost-effective method is needed for monitoring and reporting third-party contact events. The impressed alternating cycle current (IACC) pipeline monitoring method consists of impressing electrical signals on the pipe by generating a time-varying voltage between the pipe and the soil at periodic locations where pipeline access is available. The signal voltage between the pipe and ground is monitored continuously at receiving stations located some distance away. Third-party contact to the pipe that breaks through the coating changes the signal received at the receiving stations. In this project, the IACC monitoring method is being developed, tested, and demonstrated. Work performed to date includes (1) a technology assessment, (2) development of an IACC model to predict performance and assist with selection of signal operating parameters, (3) investigation of potential interactions with cathodic protection systems, and (4) experimental measurements on operating pipelines. Based on information recently found in published studies, it is believed that the operation of IACC on a pipeline will cause no interference with CP systems. Initial results on operating pipelines showed that IACC signals could be successfully propagated over a distance of 3.5 miles, and that simulated contact can be detected up to a distance of 1.4 miles, depending on the pipeline and soil conditions.

  1. Femtosecond Transient Imaging

    E-Print Network [OSTI]

    Kirmani, Ahmed (Ghulam Ahmed)

    2010-01-01T23:59:59.000Z

    This thesis proposes a novel framework called transient imaging for image formation and scene understanding through impulse illumination and time images. Using time-of-flight cameras and multi-path analysis of global light ...

  2. PRIMARY PUBLIC INFORMATION LIAISON COORDINATOR (PILC) Primary Contact E-Mail SECONDARY PILC Secondary Contact E-Mail

    E-Print Network [OSTI]

    PRIMARY PUBLIC INFORMATION LIAISON COORDINATOR (PILC) Primary Contact E-Mail SECONDARY PILC to President's Office that do not have their own PILC [Ex: Commandant's Office, etc.] SEND THROUGH PRESIDENT jowilliams@tamu.edu Karen Bigley bigleyk@tamu.edu Units reporting to SVPA that do not have their own PILC [Ex

  3. ribology is the science and technology of contact-ing solid surfaces in relative motion, including the

    E-Print Network [OSTI]

    Guo, Yi

    » friction and lubrication under extreme conditions, such as high-temperature or nonequilibrium, includ- ing, including the study of lubricants, lubrication, friction, wear, and bearings. It is estimated that friction), and in the development of durable, low-friction surfaces and ultra-thin lubrication films. Friction between contacting

  4. REALTIME MONITORING OF PIPELINES FOR THIRD-PARTY CONTACT

    SciTech Connect (OSTI)

    Gary L. Burkhardt

    2005-12-31T23:59:59.000Z

    Third-party contact with pipelines (typically caused by contact with a digging or drilling device) can result in mechanical damage to the pipe, in addition to coating damage that can initiate corrosion. Because this type of damage often goes unreported and can lead to eventual catastrophic failure of the pipe, a reliable, cost-effective method is needed for monitoring the pipeline and reporting third-party contact events. The impressed alternating cycle current (IACC) pipeline monitoring method developed by Southwest Research Institute (SwRI) consists of impressing electrical signals on the pipe by generating a time-varying voltage between the pipe and the soil. The signal voltage between the pipe and ground is monitored continuously at receiving stations located some distance away. Third-party contact to the pipe that breaks through the coating (thus resulting in a signal path to ground) changes the signal received at the receiving stations. The IACC method was shown to be a viable method that can be used to continuously monitor pipelines for third-party contact. Electrical connections to the pipeline can be made through existing cathodic protection (CP) test points without the need to dig up the pipe. The instrumentation is relatively simple, consisting of (1) a transmitting station with a frequency-stable oscillator and amplifier and (2) a receiving station with a filter, lock-in amplifier, frequency-stable oscillator, and remote reporting device (e.g. cell phone system). Maximum distances between the transmitting and receiving stations are approximately 1.61 km (1 mile), although the length of pipeline monitored can be twice this using a single transmitter and one receiver on each side (since the signal travels in both directions). Certain conditions such as poor pipeline coatings or strong induced 60-Hz signals on the pipeline can degrade IACC performance, so localized testing should be performed to determine the suitability for an IACC installation at a given location. The method can be used with pipelines having active CP systems in place without causing interference with operation of the CP system. The most appropriate use of IACC is monitoring of localized high-consequence areas where there is a significant risk of third-party contact (e.g. construction activity). The method also lends itself to temporary, low-cost installation where there is a short-term need for monitoring.

  5. Imaging Sciences Workshop Proceedings

    SciTech Connect (OSTI)

    Candy, J.V.

    1996-11-21T23:59:59.000Z

    This report contains the proceedings of the Imaging Sciences Workshop sponsored by C.A.S.LS., the Center for Advanced Signal & Image Sciences. The Center, established primarily to provide a forum where researchers can freely exchange ideas on the signal and image sciences in a comfortable intellectual environment, has grown over the last two years with the opening of a Reference Library (located in Building 272). The Technical Program for the 1996 Workshop include a variety of efforts in the Imaging Sciences including applications in the Microwave Imaging, highlighted by the Micro-Impulse Radar (MIR) system invented at LLNL, as well as other applications in this area. Special sessions organized by various individuals in Speech, Acoustic Ocean Imaging, Radar Ocean Imaging, Ultrasonic Imaging, and Optical Imaging discuss various applica- tions of real world problems. For the more theoretical, sessions on Imaging Algorithms and Computed Tomography were organized as well as for the more pragmatic featuring a session on Imaging Systems.

  6. Surface tension and contact with soft elastic solids

    E-Print Network [OSTI]

    Robert W. Style; Callen Hyland; Rostislav Boltyanskiy; John S. Wettlaufer; Eric R. Dufresne

    2013-10-11T23:59:59.000Z

    Johnson-Kendall-Robert (JKR) theory is the basis of modern contact mechanics. It describes how two deformable objects adhere together, driven by adhesion energy and opposed by elasticity. However, it does not include solid surface tension, which also opposes adhesion by acting to flatten the surface of soft solids. We tested JKR theory to see if solid surface tension affects indentation behaviour. Using confocal microscopy, we characterised the indentation of glass particles into soft, silicone substrates. While JKR theory held for particles larger than a critical, elastocapillary lengthscale, it failed for smaller particles. Instead, adhesion of small particles mimicked the adsorption of particles at a fluid interface, with a size-independent contact angle between the undeformed surface and the particle given by a generalised version of Young's law. A simple theory quantitatively captures this behaviour, and explains how solid surface tension dominates elasticity for small-scale indentation of soft materials.

  7. Doped surfaces in one sun, point-contact solar cells

    SciTech Connect (OSTI)

    King, R.R.; Sinton, R.A.; Swanson, R.M.

    1989-04-10T23:59:59.000Z

    This letter reports two new types of large-area (>8.5 cm/sup 2/), backside, point-contact solar cells with doped surfaces, designed for use in unconcentrated sunlight. One type was fabricated on an intrinsic substrate with an optimized phosphorus diffusion on the sunward surface. The apertured-area efficiency was independently measured to be 22.3% at 1 sun (0.100 W/cm/sup 2/), 25 /sup 0/C, the highest reported for a silicon solar cell. The other type is constructed on a doped substrate, and has an apertured-area efficiency of 20.9%, the highest reported for a point-contact solar cell with a base in low-level injection. Both cells have record open-circuit voltages above 700 mV.

  8. Method of making a back contacted solar cell

    DOE Patents [OSTI]

    Gee, J.M.

    1995-11-21T23:59:59.000Z

    A back-contacted solar cell is described having laser-drilled vias connecting the front-surface carrier-collector junction to an electrode grid on the back surface. The structure may also include a rear surface carrier-collector junction connected to the same grid. The substrate is connected to a second grid which is interdigitated with the first. Both grids are configured for easy series connection with neighboring cells. Several processes are disclosed to produce the cell. 2 figs.

  9. Contact Term, its Holographic Description in QCD and Dark Energy

    E-Print Network [OSTI]

    Ariel R. Zhitnitsky

    2012-08-01T23:59:59.000Z

    In this work we study the well known contact term, which is the key element in resolving the so-called $U(1)_A$ problem in QCD. We study this term using the dual Holographic Description. We argue that in the dual picture the contact term is saturated by the D2 branes which can be interpreted as the tunnelling events in Minkowski space-time. We quote a number of direct lattice results supporting this identification. We also argue that the contact term receives a Casimir -like correction $\\sim (\\Lqcd R)^{-1}$ rather than naively expected $\\exp(-\\Lqcd R)$ when the Minkowski space-time ${\\cal R}_{3,1}$ is replaced by a large but finite manifold with a size $R$. Such a behaviour is consistent with other QFT-based computations when power like corrections are due to nontrivial properties of topological sectors of the theory. In holographic description such a behaviour is due to massless Ramond-Ramond (RR) field living in the bulk of multidimensional space when power like corrections is a natural outcome of massless RR field. In many respects the phenomenon is similar to the Aharonov -Casher effect when the "modular electric field" can penetrate into a superconductor where the electric field is exponentially screened. The role of "modular operator" from Aharonov -Casher effect is played by large gauge transformation operator $\\cal{T}$ in 4d QCD, resulting the transparency of the system to topologically nontrivial pure gauge configurations. We discuss some profound consequences of our findings. In particular, we speculate that a slow variation of the contact term in expanding universe might be the main source of the observed Dark Energy.

  10. Non-contact fluid characterization in containers using ultrasonic waves

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM)

    2012-05-15T23:59:59.000Z

    Apparatus and method for non-contact (stand-off) ultrasonic determination of certain characteristics of fluids in containers or pipes are described. A combination of swept frequency acoustic interferometry (SFAI), wide-bandwidth, air-coupled acoustic transducers, narrowband frequency data acquisition, and data conversion from the frequency domain to the time domain, if required, permits meaningful information to be extracted from such fluids.

  11. Method of making a back contacted solar cell

    DOE Patents [OSTI]

    Gee, James M. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    A back-contacted solar cell having laser-drilled vias connecting the front-surface carrier-collector junction to an electrode grid on the back surface. The structure may also include a rear surface carrier-collector junction connected to the same grid. The substrate is connected to a second grid which is interdigitated with the first. Both grids are configured for easy series connection with neighboring cells. Several processes are disclosed to produce the cell.

  12. Contact-Handled and Remote-Handled Transuranic Waste Packaging

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-09T23:59:59.000Z

    Provides specific instructions for packaging and/or repackaging contact-handled transuranic (CH-TRU) and remote-handled transuranic (RH-TRU) waste in a manner consistent with DOE O 435.1, Radioactive Waste Management, DOE M 435.1-1 Chg 1, Radioactive Waste Management Manual, CH-TRU and RH-TRU waste transportation requirements, and Waste Isolation Pilot Plant (WIPP) programmatic requirements. Does not cancel other directives.

  13. Contacts for the Office of Administrative Operations | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2Administrative Operations Contacts for the Office of

  14. Contacts for the Office of Standard Contract Management (GC-73) |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2Administrative Operations Contacts for the Office

  15. Property:RAPID/Roadmap/Section/Contact | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,Website Property TypeName"Section/Contact

  16. NMR imaging of materials

    SciTech Connect (OSTI)

    Listerud, J.M.; Sinton, S.W.; Drobny, G.P.

    1989-01-01T23:59:59.000Z

    Interest in the area of NMR imaging has been driven by the widespread success of medical imaging. John M. Listerud of the Pendergrass Diagnostic Research Laboratories, Steven W. Sinton of Lockheed, and Gary P. Drobny of the University of Washington describe the principal image reconstruction methods, factors limiting spatial resolution, and applications of imaging to the study of materials.

  17. Metallic coatings for enhancement of thermal contact conductance

    SciTech Connect (OSTI)

    Lambert, M.A.; Fletcher, L.S. (Texas A M Univ., College Station, TX (United States))

    1994-04-01T23:59:59.000Z

    The reliability of standard electronic modules may be improved by decreasing overall module temperature. This may be accomplished by enhancing the thermal contact conductance at the interface between the module frame guide rib and the card rail to which the module is clamped. Some metallic coatings, when applied to the card rail, would deform under load, increasing the contact area and associated conductance. This investigation evaluates the enhancements in thermal conductance afforded by vapor deposited silver and gold coatings. Experimental thermal conductance measurements were made for anodized aluminum 6101-T6 and electroless nickel-plated copper C11000-H03 card materials to the aluminum A356-T61 rail material. Conductance values for the electroless nickel-plated copper junction ranged from 600 to 2800 W/m(exp 2)K and those for the anodized aluminum junction ranged from 25 to 91 W/m(exp 2)K for contact pressures of 0.172-0.862 MPa and mean junction temperatures of 20-100 C. Experimental thermal conductance values of vapor deposited silver- and gold-coated aluminum A356-T61 rail surfaces indicate thermal enhancements of 1.25-2.19 for the electroless nickel-plated copper junctions and 1.79-3.41 for the anodized aluminum junctions. The silver and gold coatings provide significant thermal enhancement; however, these coating-substrate combinations are susceptible to galvanic corrosion under some conditions. 25 refs.

  18. Seismic Imaging and Monitoring

    SciTech Connect (OSTI)

    Huang, Lianjie [Los Alamos National Laboratory

    2012-07-09T23:59:59.000Z

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  19. Correlation of Oil-Water and Air-Water Contact Angles of Diverse...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil-Water and Air-Water Contact Angles of Diverse Silanized Surfaces and Relationship to Fluid Interfacial Correlation of Oil-Water and Air-Water Contact Angles of Diverse...

  20. Assessing the Accuracy of Contact Angle Measurements for Sessile Drops on Liquid-Repellent Surfaces

    E-Print Network [OSTI]

    Srinivasan, Siddarth

    Gravity-induced sagging can amplify variations in goniometric measurements of the contact angles of sessile drops on super-liquid-repellent surfaces. The very large value of the effective contact angle leads to increased ...

  1. An On/Off Lattice Approach to Protein Structure Prediction from Contact Maps

    E-Print Network [OSTI]

    Passerini, Andrea

    An On/Off Lattice Approach to Protein Structure Prediction from Contact Maps Stefano Teso1: Protein Structure Prediction, HP model, Contact Maps, Simulated Annealing, Replica Exchange Monte Carlo. 1

  2. Quantifying plasticity-independent creep compliance and relaxation of viscoelastoplastic materials under contact loading

    E-Print Network [OSTI]

    Vandamme, Matthieu

    Here we quantify the time-dependent mechanical properties of a linear viscoelastoplastic material under contact loading. For contact load relaxation, we showed that the relaxation modulus can be measured independently of ...

  3. Erythema multiforme like allergic contact dermatitis associated with laurel oil: a rare presentation

    E-Print Network [OSTI]

    Uzuncakmak, Tugba Kevser; Karadag, Ayse Serap; Izol, Belcin; Akdeniz, Necmettin; Cobanoglu, Bengu; Taskin, Secil

    2015-01-01T23:59:59.000Z

    due to contact with laurel oil. Contact Dermatitis 2007: 57:Laurus nobilis L. Essential oil and its main components oncontact dermatitis from olive oil in a masseur. J Am Acad

  4. High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts

    E-Print Network [OSTI]

    California at Irvine, University of

    by using high work function Pd contacts along with degenerate surface doping of the contacts by patterned by the gate electrode.3 For sub-5 nm gate lengths, this corresponds to channel materials with only 1-2 atomic

  5. Method and instrumentation for the measurement and characterization of MEMS fabricated electrical contacts

    E-Print Network [OSTI]

    Read, Melissa B. (Melissa Beth), 1982-

    2010-01-01T23:59:59.000Z

    MEMS fabricated electrical contacts consist of two MEMS fabricated surfaces which are physically separated and brought together for the purpose of carrying current. MEMS fabricated electrical contacts are used in a wide ...

  6. Dynamic testing of polydimethylsiloxane for applications in micro-contact roll printing

    E-Print Network [OSTI]

    Benjaminson, Emma Claire

    2014-01-01T23:59:59.000Z

    Micro-contact roll printing is an emerging alternative to photolithography as a means of cheaply manufacturing MEMS devices. Micro-contact roll printing control systems can regulate the printing pressure of a polydimethylsiloxane ...

  7. E-Print Network 3.0 - au contact uranium-gaine Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEMS switches using nano-indenter Rev.Adv. Mater. Sci. 28 (2011) 17-20 Summary: contact test is conducted to characterize reliability of the contact material. The reliability of...

  8. Process and structures for fabrication of solar cells with laser ablation steps to form contact holes

    DOE Patents [OSTI]

    Harley, Gabriel; Smith, David D; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John

    2013-11-19T23:59:59.000Z

    Contact holes of solar cells are formed by laser ablation to accomodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thickness.

  9. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, Malcolm R. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

    1995-01-01T23:59:59.000Z

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  10. A contact theory for surface tension driven systems Roger A. Sauer 1

    E-Print Network [OSTI]

    A contact theory for surface tension driven systems Roger A. Sauer 1 Aachen Institute for Advanced description for the contact of surface tension driven sys- tems. The example system of a liquid droplet liquids or two solids in contact. The surface kinematics, essential to the modeling of surface tension

  11. Finite Element Multi-physics Modeling for Ohmic Contact of Microswitches , D. Leray1, 2

    E-Print Network [OSTI]

    Boyer, Edmond

    Finite Element Multi-physics Modeling for Ohmic Contact of Microswitches H.Liu1, 2 , D. Leray1, 2-physics modelling of electrical contact is accomplished with the finite element commercial package ANSYSTM . Two behaviour of electrical contact with rough surface included. Keywords: multi-physics, finite element

  12. Contact Details of Local Forestry Commission and DARDNI Plant Health Inspectors at Points of Entry UK Principle Ports Inspector Contact Details

    E-Print Network [OSTI]

    UK Principle Ports Inspector Contact Details Grangemouth, Greenock, Inverkeithing, Inverness, Leith, Barry, Port Talbot, Swansea, Neath, Newport, Bristol(Avonmouth), Sharpness Sid Martin Tel/Fax: 01792

  13. Maskless electrodeposited contact for conducting polymer nanowires Carlos M. Hangarter, Mangesh Bangar, Sandra C. Hernandez, Wilfred Chen,

    E-Print Network [OSTI]

    Chen, Wilfred

    . A single dodecyl sulfate doped polypyrrole nanowire with maskless electrodeposited nickel contactsMaskless electrodeposited contact for conducting polymer nanowires Carlos M. Hangarter, Mangesh electrodeposition on electrodes. This is an attractive route for contacting nanowires as it bypasses harsh

  14. High Resolution Backside Imaging and Thermography using a Numerical Aperture Increasing Lens

    E-Print Network [OSTI]

    High Resolution Backside Imaging and Thermography using a Numerical Aperture Increasing Lens Shawn inspection alone, it is necessary to develop techniques, such as thermography, with the capability ­solid immersion lens microscopy and thermography. Standard non-contact optical resolution is limited

  15. Particle trap to sheath contact for a gas-insulated transmission line having a corrugated outer conductor

    DOE Patents [OSTI]

    Fischer, William H. (Pittsburgh, PA); Cookson, Alan H. (Pittsburgh, PA); Yoon, Kue H. (Pittsburgh, PA)

    1984-04-10T23:59:59.000Z

    A particle trap to outer elongated conductor or sheath contact for gas-insulated transmission lines. The particle trap to outer sheath contact of the invention is applicable to gas-insulated transmission lines having either corrugated or non-corrugated outer sheaths. The contact of the invention includes an electrical contact disposed on a lever arm which in turn is rotatably disposed on the particle trap and biased in a direction to maintain contact between the electrical contact and the outer sheath.

  16. Multi-phase back contacts for CIS solar cells

    DOE Patents [OSTI]

    Rockett, A.A.; Yang, L.C.

    1995-12-19T23:59:59.000Z

    Multi-phase, single layer, non-interdiffusing M-Mo back contact metallized films, where M is selected from Cu, Ga, or mixtures thereof, for CIS cells are deposited by a sputtering process on suitable substrates, preferably glass or alumina, to prevent delamination of the CIS from the back contact layer. Typical CIS compositions include CuXSe{sub 2} where X is In or/and Ga. The multi-phase mixture is deposited on the substrate in a manner to provide a columnar microstructure, with micro-vein Cu or/and Ga regions which partially or fully vertically penetrate the entire back contact layer. The CIS semiconductor layer is then deposited by hybrid sputtering and evaporation process. The Cu/Ga-Mo deposition is controlled to produce the single layer two-phase columnar morphology with controllable Cu or Ga vein size less than about 0.01 microns in width. During the subsequent deposition of the CIS layer, the columnar Cu/Ga regions within the molybdenum of the Cu/Ga-Mo back layer tend to partially leach out, and are replaced by columns of CIS. Narrower Cu and/or Ga regions, and those with fewer inner connections between regions, leach out more slowly during the subsequent CIS deposition. This gives a good mechanical and electrical interlock of the CIS layer into the Cu/Ga-Mo back layer. Solar cells employing In-rich CIS semiconductors bonded to the multi-phase columnar microstructure back layer of this invention exhibit vastly improved photo-electrical conversion on the order of 17% greater than Mo alone, improved uniformity of output across the face of the cell, and greater Fill Factor. 15 figs.

  17. Multi-phase back contacts for CIS solar cells

    DOE Patents [OSTI]

    Rockett, Angus A. (505 Park Haven Ct., Champaign, IL 61820); Yang, Li-Chung (1107 W. Green St. #328, Urbana, IL 61801)

    1995-01-01T23:59:59.000Z

    Multi-phase, single layer, non-interdiffusing M-Mo back contact metallized films, where M is selected from Cu, Ga, or mixtures thereof, for CIS cells are deposited by a sputtering process on suitable substrates, preferably glass or alumina, to prevent delamination of the CIS from the back contact layer. Typical CIS compositions include CuXSe.sub.2 where X is In or/and Ga. The multi-phase mixture is deposited on the substrate in a manner to provide a columnar microstructure, with micro-vein Cu or/and Ga regions which partially or fully vertically penetrate the entire back contact layer. The CIS semiconductor layer is then deposited by hybrid sputtering and evaporation process. The Cu/Ga-Mo deposition is controlled to produce the single layer two-phase columnar morphology with controllable Cu or Ga vein size less than about 0.01 microns in width. During the subsequent deposition of the CIS layer, the columnar Cu/Ga regions within the molybdenum of the Cu/Ga-Mo back layer tend to partially leach out, and are replaced by columns of CIS. Narrower Cu and/or Ga regions, and those with fewer inner connections between regions, leach out more slowly during the subsequent CIS deposition. This gives a good mechanical and electrical interlock of the CIS layer into the Cu/Ga-Mo back layer. Solar cells employing In-rich CIS semiconductors bonded to the multi-phase columnar microstructure back layer of this invention exhibit vastly improved photo-electrical conversion on the order of 17% greater than Mo alone, improved uniformity of output across the face of the cell, and greater Fill Factor.

  18. Report on Non-Contact DC Electric Field Sensors

    SciTech Connect (OSTI)

    Miles, R; Bond, T; Meyer, G

    2009-06-16T23:59:59.000Z

    This document reports on methods used to measure DC electrostatic fields in the range of 100 to 4000 V/m using a non-contact method. The project for which this report is written requires this capability. Non-contact measurements of DC fields is complicated by the effect of the accumulation of random space-charges near the sensors which interfere with the measurement of the field-of-interest and consequently, many forms of field measurements are either limited to AC measurements or use oscillating devices to create pseudo-AC fields. The intent of this document is to report on methods discussed in the literature for non-contact measurement of DC fields. Electric field meters report either the electric field expressed in volts per distance or the voltage measured with respect to a ground reference. Common commercial applications for measuring static (DC) electric fields include measurement of surface charge on materials near electronic equipment to prevent arcing which can destroy sensitive electronic components, measurement of the potential for lightning to strike buildings or other exposed assets, measurement of the electric fields under power lines to investigate potential health risks from exposure to EM fields and measurement of fields emanating from the brain for brain diagnostic purposes. Companies that make electric field sensors include Trek (Medina, NY), MKS Instruments, Boltek, Campbell Systems, Mission Instruments, Monroe Electronics, AlphaLab, Inc. and others. In addition to commercial vendors, there are research activities continuing in the MEMS and optical arenas to make compact devices using the principles applied to the larger commercial sensors.

  19. Plasma & reactive ion etching to prepare ohmic contacts

    DOE Patents [OSTI]

    Gessert, Timothy A. (Conifer, CO)

    2002-01-01T23:59:59.000Z

    A method of making a low-resistance electrical contact between a metal and a layer of p-type CdTe surface by plasma etching and reactive ion etching comprising: a) placing a CdS/CdTe layer into a chamber and evacuating said chamber; b) backfilling the chamber with Argon or a reactive gas to a pressure sufficient for plasma ignition; and c) generating plasma ignition by energizing a cathode which is connected to a power supply to enable the plasma to interact argon ions alone or in the presence of a radio-frequency DC self-bias voltage with the p-CdTe surface.

  20. Certification document for newly generated contact-handled transuranic waste

    SciTech Connect (OSTI)

    Box, W.D.; Setaro, J.

    1984-01-01T23:59:59.000Z

    The US Department of Energy has requested that all national laboratories handling defense waste develop and augment a program whereby all newly generated contact-handled transuranic (TRU) waste be contained, stored, and then shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in WIPP-DOE-114. The program described in this report delineates how Oak Ridge National Laboratory intends to comply with these requirements and lists the procedures used by each generator to ensure that their TRU wastes are certifiable for shipment to WIPP.

  1. Back contacted and small form factor GAAS solar cell.

    SciTech Connect (OSTI)

    Clews, Peggy Jane; Wanlass, Mark W. (National Renewable Energy Laboratory); Sanchez, Carlos A.; Pluym, Tammy; Cruz-Campa, Jose Luis; Okandan, Murat; Gupta, Vipin P.; Nielson, Gregory N.; Resnick, Paul James

    2010-06-01T23:59:59.000Z

    We present a newly developed microsystem enabled, back-contacted, shade-free GaAs solar cell. Using microsystem tools, we created sturdy 3 {micro}m thick devices with lateral dimensions of 250 {micro}m, 500 {micro}m, 1 mm, and 2 mm. The fabrication procedure and the results of characterization tests are discussed. The highest efficiency cell had a lateral size of 500 {micro}m and a conversion efficiency of 10%, open circuit voltage of 0.9 V and a current density of 14.9 mA/cm{sup 2} under one-sun illumination.

  2. Transmissive metallic contact for amorphous silicon solar cells

    DOE Patents [OSTI]

    Madan, A.

    1984-11-29T23:59:59.000Z

    A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

  3. Rolling contact mounting arrangement for a ceramic combustor

    DOE Patents [OSTI]

    Boyd, G.L.; Shaffer, J.E.

    1995-10-17T23:59:59.000Z

    A combustor assembly having a preestablished rate of thermal expansion is mounted within a gas turbine engine housing having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the combustor assembly. The combustor assembly is constructed of a inlet end portion, a outlet end portion and a plurality of combustor ring segments positioned between the end portions. A mounting assembly is positioned between the combustor assembly and the gas turbine engine housing to allow for the difference in the rate of thermal expansion while maintaining axially compressive force on the combustor assembly to maintain contact between the separate components. 3 figs.

  4. Rolling contact mounting arrangement for a ceramic combustor

    DOE Patents [OSTI]

    Boyd, Gary L. (328 Sneath Way, Alpine, CA 91901); Shaffer, James E. (1780 Geronimo Tr., Maitland, FL 32751)

    1995-01-01T23:59:59.000Z

    A combustor assembly having a preestablished rate of thermal expansion is mounted within a gas turbine engine housing having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the combustor assembly. The combustor assembly is constructed of a inlet end portion, a outlet end portion and a plurality of combustor ring segments positioned between the end portions. A mounting assembly is positioned between the combustor assembly and the gas turbine engine housing to allow for the difference in the rate of thermal expansion while maintaining axially compressive force on the combustor assembly to maintain contact between the separate components.

  5. Back contact buffer layer for thin-film solar cells

    DOE Patents [OSTI]

    Compaan, Alvin D.; Plotnikov, Victor V.

    2014-09-09T23:59:59.000Z

    A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

  6. Microsoft Word - FINAL Contact Record 2012-01 Roads Maintenance

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawanda North - t8 OLFRockyRFLMA Contact

  7. Federal Energy Management Program Website Contact | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES ANDIndustrialEnergy Federal Efficiency ProgramDepartment ofContact Us

  8. Contact Lee McGetrick Director, Carbon Fiber Technology Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial ValidationContact Information

  9. Contact Manufacturing Demonstration Facility Craig Blue, Ph.D.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial ValidationContact Information

  10. Contacts for E-Gov | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-Gov LeAnn Oliver Associate

  11. Contacts for Geospatial Science Program | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-Gov LeAnn OliverGeospatial

  12. Contacts for IT Project Management | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-Gov LeAnnProject Management

  13. Contacts for Information Collection Management | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-Gov LeAnnProject

  14. NREL: Workforce Development and Education Programs - Email Contact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff Here youEmail Contact Use this

  15. ORISE National Security and Emergency Management: Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControlsOMB Policies OR I GI NHow toContact

  16. ORISE: Contacts for Environmental Assessments and Health Physics staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK Mapping Application ORISECenterMaking aContact

  17. Procuring Solar Energy Guide Contacts | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,-CommitteeItems at6 (April 2012) 1Contact

  18. Contact | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJune 2008 BasicCharlesCondensedContact Energy Frontier

  19. Contact | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJune 2008 BasicCharlesCondensedContact Energy

  20. Contact | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJune 2008 BasicCharlesCondensedContact

  1. EIA-Voluntary Reporting of Greenhouse Gases Program - Contact

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997 http://www.eia.doe.govMarkets 9,Contact

  2. Who do I contact at the Labs? | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP SignInWho do I contact at the Labs?

  3. DOE News Release Media Contact: For Immediate Release:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509)Contacts:For26,

  4. DOE Media Contact: Jim Giusti, (803) 952-7684

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNA GridironDNA-DirectedMedia Contact: Jim

  5. Contacts for the Advanced Manufacturing Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined Heat & Power DeploymentYou are here Home »ProjectContacts

  6. Property:GRR/ContactAgency | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProcedures JumpGreenButtonID JumpContactAgency Jump to:

  7. Property:RAPID/Contact/ID6/Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFYID6/Organization RAPID/Contact/ID6/Position

  8. Center for Lignocellulose Structure and Function - Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASL Symposium:and TechnicalTheory andCenter the InverseContact

  9. Center for Nanophase Materials Sciences (CNMS) - CNMS Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASL Symposium:andNational LaboratoryADVISORYCNMS CONTACTS

  10. Contact > Us > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact In This Section

  11. Category:RAPID Roadmap Contact Properties | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascadeJump to:Lists JumpRoadmap Contact Properties Jump

  12. Contacts - Plasma Couette Experiment - Cary Forest Group - UW Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1Contact

  13. NREL: Sustainable NREL - Media Contacts for the Research Support Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and Resources NREL resourceEnergy SystemsMedia Contacts for the

  14. Sandia National Laboratories: Advanced Simulation and Computing: Contact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced Nuclear Energy TheASC Contact ASC Sandia ASC

  15. Review of Back Contact Silicon Solar Cells for Low-Cost Application

    SciTech Connect (OSTI)

    Smith, David D.

    1999-08-04T23:59:59.000Z

    Back contact solar cells hold significant promise for increased performance in photovoltaics for the near future. Two major advantages which these cells possess are a lack of grid shading loss and coplanar interconnection. Front contacted cells can have up to 10% shading loss when using screen printed metal grids. A front contact cell must also use solder connections which run from the front of one cell to the back of the next for series interconnection. This procedure is more difficult to automate than the case of co-planar contacts. The back contact cell design is not a recent concept. The earliest silicon solar cell developed by Bell Labs was a back contact device. There have been many design modifications to the basic concept over the years. To name a few, there is the Interdigitated Back Contact (IBC) cell, the Stanford Point contact solar cell, the Emitter Wrap Through (EWT), and its many variations. A number of these design concepts have demonstrated high efficiency. The SunPower back contact solar cell holds the efficiency record for silicon concentrator cells. The challenge is to produce a high efficiency cell at low cost using high throughput techniques. This has yet to be achieved with a back contact cell design. The focus of this paper will be to review the relevant features of back contact cells and progress made toward the goal of a low cost version of this device.

  16. Imaging in radiotherapy

    SciTech Connect (OSTI)

    Taylor, J.

    1987-01-01T23:59:59.000Z

    The text contains details of recording media, image quality, sensitometry, processing and equipment used in radiotherapy for imaging. It reflects part of the syllabus for the College of Radiographers.

  17. User Science Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Image: OBrianImageBig.png | png | 5 MB SlavaFull.png FES: Small Scale Experimental Plasma Research October 21, 2010 | Author(s): Vyacheslav Lukin (NRL) | Category: Fusion Energy |...

  18. Modulation of contact resistance between metal and graphene by controlling the graphene edge, contact area, and point defects: An ab initio study

    SciTech Connect (OSTI)

    Ma, Bo; Wen, Yanwei, E-mail: ywwen@hust.edu.cn, E-mail: bshan@mail.hust.edu.cn [State Key Laboratory of Material Processing and Die and Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Gong, Cheng; Cho, Kyeongjae [Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080 (United States); Chen, Rong [State Key Laboratory of Digital Manufacturing Equipment and Technology and School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Shan, Bin, E-mail: ywwen@hust.edu.cn, E-mail: bshan@mail.hust.edu.cn [State Key Laboratory of Material Processing and Die and Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080 (United States)

    2014-05-14T23:59:59.000Z

    A systematic first-principles non-equilibrium Green's function study is conducted on the contact resistance between a series of metals (Au, Ag, Pt, Cu, Ni, and Pd) and graphene in the side contact geometry. Different factors such as the termination of the graphene edge, contact area, and point defect in contacted graphene are investigated. Notable differences are observed in structural configurations and electronic transport characteristics of these metal-graphene contacts, depending on the metal species and aforementioned influencing factors. It is found that the enhanced chemical reactivity of the graphene due to dangling bonds from either the unsaturated graphene edge or point defects strengthens the metal-graphene bonding, leading to a considerable contact resistance reduction for weakly interacting metals Au and Ag. For stronger interacting metals Pt and Cu, a slightly reduced contact resistance is found due to such influencing factors. However, the wetting metals Ni and Pd most strongly hybridize with graphene, exhibiting negligible dependence on the above influencing factors. This study provides guidance for the optimization of metal-graphene contacts at an atomic scale.

  19. DOE assay methods used for characterization of contact-handled transuranic waste

    SciTech Connect (OSTI)

    Schultz, F.J. (Oak Ridge National Lab., TN (United States)); Caldwell, J.T. (Pajarito Scientific Corp., Los Alamos, NM (United States))

    1991-08-01T23:59:59.000Z

    US Department of Energy methods used for characterization of contact-handled transuranic (CH-TRU) waste prior to shipment to the Waste Isolation Pilot Plant (WIPP) are described and listed by contractor site. The methods described are part of the certification process. All CH-TRU waste must be assayed for determination of fissile material content and decay heat values prior to shipment and prior to storage on-site. Both nondestructive assay (NDA) and destructive assay methods are discussed, and new NDA developments such as passive-action neutron (PAN) crate counter improvements and neutron imaging are detailed. Specifically addressed are assay method physics; applicability to CH-TRU wastes; calibration standards and implementation; operator training requirements and practices; assay procedures; assay precision, bias, and limit of detection; and assay limitation. While PAN is a new technique and does not yet have established American Society for Testing and Materials. American National Standards Institute, or Nuclear Regulatory Commission guidelines or methods describing proper calibration procedures, equipment setup, etc., comparisons of PAN data with the more established assay methods (e.g., segmented gamma scanning) have demonstrated its reliability and accuracy. Assay methods employed by DOE have been shown to reliable and accurate in determining fissile, radionuclide, alpha-curie content, and decay heat values of CH-TRU wastes. These parameters are therefore used to characterize packaged waste for use in certification programs such as that used in shipment of CH-TRU waste to the WIPP. 36 refs., 10 figs., 7 tabs.

  20. Dual Plane Imaging

    E-Print Network [OSTI]

    Parry, Ian

    2015-01-01T23:59:59.000Z

    We outline a technique called Dual Plane Imaging which should significantly improve images which would otherwise be blurred due to atmospheric turbulence. The technique involves capturing all the spatial, directional and temporal information about the arriving photons and processing the data afterwards to produce the sharpened images. The technique has particular relevance for imaging at around 400-1000nm on extremely large telescopes (ELTs).