Sample records for image caithness energy

  1. Caithness Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump to:ListCRED: AII JumpCaithness

  2. EIS-0315-S1: SEIS on Caithness Big Sandy Project

    Broader source: Energy.gov [DOE]

    In June 2001, the Bureau of Land Management (BLM) and Western Area Power Administration (Western) issued the Big Sandy Energy Project Draft Environmental Impact Statement (EIS) (BLM and Western 2001). After June 2001, Caithness Big Sandy, L.L.C. (Caithness), revised aspects of the Big Sandy Energy Project (Project) described as the Proposed Action in the Draft EIS.

  3. Caithness Shepherds Flat | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Flat, which commenced operations in September 2012, is one of the world's largest wind farms. Technology The DOE guarantee was issued under the Financial Institution...

  4. Caithness Shephards Flat: The Largest Wind Farm Project in the World |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:WhetherNovemberRemoval of C-Site Motor Generator

  5. Document Imaging | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome | DepartmentDeveloperServicesDocument Imaging

  6. Hyperspectral Imaging | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New Energy DevelopmentList ofHyperspectral Imaging

  7. Imaging the High Energy Cosmic Ray Sky

    E-Print Network [OSTI]

    Haviland, David

    Imaging the High Energy Cosmic Ray Sky PETTER HOFVERBERG Licentiate Thesis Stockholm, Sweden 2006 #12;#12;Licentiate Thesis Imaging the High Energy Cosmic Ray Sky Petter Hofverberg Particle

  8. Document Imaging | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Converting Paper Documents into Electronic Files Converting paper documents into electronic files helps us manage, store, access and archive the organizational information...

  9. Multispectral Imaging | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,SpurrMulberry,EnergyEnergy Informationform

  10. Sandia Energy - EC Image Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied &ClimateContact UsEC EventsEC

  11. Image Logs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolidIdaho‎Information RiverIllumitex Jump

  12. Fluid Imaging | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs Valley Area (DOEARRA Funded Projects for Fluid

  13. PET Plants: Imaging Natural Processes for Renewable Energy

    E-Print Network [OSTI]

    Homes, Christopher C.

    PET Plants: Imaging Natural Processes for Renewable Energy from Plants Benjamin A. Babst Goldhaber Postdoctoral Fellow Medical Department Plant Imaging #12;PET imaging for medicine Tumor Diagnosis Biomedical research and plants #12;Brookhaven's Unique Capabilities Movement, distribution, and metabolism

  14. Imaging Ahead of Mining | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum TechnologyEnergyImaging Ahead of Mining

  15. Balancing Image Quality and Energy Consumption in Visual Sensor Networks

    E-Print Network [OSTI]

    Tam, Vincent W. L.

    Balancing Image Quality and Energy Consumption in Visual Sensor Networks Kit-Yee Chow, King by hop through the sensor network. To reduce the energy used in transmission, the size of the images studies the tradeoff between image quality and energy consumption. We study the scenario that a number

  16. Help:Images | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|InformationInformation Station - South IcelandImages Jump to:

  17. Sandia Energy - Wake Imaging Measurement System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety Home StationaryUpperWake Imaging

  18. Human Genome Program Image Gallery (from genomics.energy.gov)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This collection contains approximately 240 images from the genome programs of DOE's Office of Science. The images are divided into galleries related to biofuels research, systems biology, and basic genomics. Each image has a title, a basic citation, and a credit or source. Most of the images are original graphics created by the Genome Management Information System (GMIS). GMIS images are recognizable by their credit line. Permission to use these graphics is not needed, but please credit the U.S. Department of Energy Genome Programs and provide the website http://genomics.energy.gov. Other images were provided by third parties and not created by the U.S. Department of Energy. Users must contact the person listed in the credit line before using those images. The high-resolution images can be downloaded.

  19. Spectroscopic Needs for Imaging Dark Energy Experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Newman, Jeffrey A. [Univ. of Pittsburgh and PITT PACC, PA (United States). Dept of Physics and Astronomy; Slosar, Anze [Brookhaven National Laboratory (BNL), Upton, NY (United States); Abate, Alexandra [Univ. of Arizona, Tucson, AZ (United States); Abdalla, Filipe B. [Univ. College London (United Kingdom); Allam, Sahar [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Allen, Steven W. [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Ansari, Reza [LAL Univ. Paris-Sud, Orsay (France); Bailey, Stephen [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Barkhouse, Wayne A. [Univ. of North Dakota, Grand Forks, ND (United States); Beers, Timothy C. [National Optical Astronomy Observations, Tucson, AZ (United States); Blanton, Michael R. [New York Univ., NY (United States); Brodwin, Mark [Univ. of Missouri at Kansas City, Kansas City, MO (United States); Brownstein, Joel R. [Univ. of Utah, Salt Lake City, UT (United States); Brunner, Robert J. [Illinois Univ., Urbana, IL (United States); Carrasco-Kind, Matias [Illinois Univ., Urbana, IL (United States); Cervantes-Cota, Jorge [Inst. Nacional de Investigaciones Nucleares (ININ), Escandon (Mexico); Chisari, Nora Elisa [Princeton Univ., Princeton, NJ (United States); Colless, Matthew [Australian National Univ., Canberra (Australia). Research School of Astronomy and Astrophysics; Comparat, Johan [Campus of International Excellence UAM and CSIC, Madrid (Spain); Coupon, Jean [Univ. of Geneva (Switzerland). Astronomical Observatory; Cheu, Elliott [Univ. of Arizona, Tucson, AZ (United States); Cunha, Carlos E. [Stanford Univ., Stanford, CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; de la Macorra, Alex [UNAM, Mexico City (Mexico). Dept. de Fisica Teorica and Inst. Avanzado de Cosmologia; Dell’Antonio, Ian P. [Brown Univ., Providence, RI (United States); Frye, Brenda L. [Univ. of Arizona, Tucson, AZ (United States); Gawiser, Eric J. [State Univ. of New Jersey, Piscataway, NJ (United States); Gehrels, Neil [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Grady, Kevin [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Hagen, Alex [Penn State Univ., University Park, PA (United States); Hall, Patrick B. [York Univ., Toronto, ON (Canada); Hearin, Andrew P. [Yale Univ., New Haven, CT (United States); Hildebrandt, Hendrik [Argelander-Inst. fuer Astronomie, Bonn (Germany); Hirata, Christopher M. [Ohio State Univ., Columbus, OH (United States); Ho, Shirley [Carnegie Mellon Univ., Pittsburgh, PA (United States). McWilliams Center for Cosmology; Honscheid, Klaus [Ohio State Univ., Columbus, OH (United States); Huterer, Dragan [Univ. of Michigan, Ann Arbor, MI (United States); Ivezic, Zeljko [Univ. of Washington, Seattle, WA (United States); Kneib, Jean -Paul [Laboratoire d'Astrophysique, Ecole Polytechnique Federale de Lausanne (EPFL) (Swizerland); Laboratoire d'Astrophysique de Marseille (France); Kruk, Jeffrey W. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Lahav, Ofer [Univ. College London, Bloomsbury (United Kingdom); Mandelbaum, Rachel [Carnegie Mellon Univ., Pittsburgh, PA (United States). McWilliams Center for Cosmology; Marshall, Jennifer L. [Texas A and M Univ., College Station, TX (United States); Matthews, Daniel J. [Univ. of Pittsburgh and PITT PACC, PA (United States). Dept of Physics and Astronomy; Menard, Brice [Johns Hopkins Univ., Baltimore, MD (United States); Miquel, Ramon [Univ. Autonoma de Barcelona (Spain). Inst. de Fisica d'Altes Energies (IFAE); Moniez, Marc [Univ. Paris-Sud, Orsay (France); Moos, H. W. [Johns Hopkins Univ., Baltimore, MD (United States); Moustakas, John [Siena College, Loudonville, NY (United States); Papovich, Casey [Texas A and M Univ., College Station, TX (United States); Peacock, John A. [Univ. of Edinburgh (United Kingdom). Inst. for Astronomy, Royal Observatory; Park, Changbom [Korea Inst. for Advanced Study, Seoul (Korea, Republic of); Rhodes, Jason [Jet Propulsion Lab./Caltech, Pasadena, CA (United States)

    2015-03-01T23:59:59.000Z

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z’s): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z’s will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large sets of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our “training set” of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ~30,000 objects over >~15 widely-separated regions, each at least ~20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce scatter further, enhancing the science return from planned experiments greatly (increasing the Dark Energy Task Force figure of merit by up to ~50%); Options: This spectroscopy will most efficiently be done by covering as much of the optical and near-infrared spectrum as possible at modestly high spectral resolution (?/?? > ~3000), while maximizing the telescope collecting area, field of view on the sky, and multiplexing of simultaneous spectra. The most efficient instrument for this would likely be either the proposed GMACS/MANIFEST spectrograph for the Giant Magellan Telescope or the OPTIMOS spectrograph for the European Extremely Large Telescope, depending on actual properties when built. The PFS spectrograph at Subaru would be next best and available considerably earlier, c. 2018; the proposed ngCFHT and SSST telescopes would have similar capabilities but start later. Other key options, in order of increasing total time required, are the WFOS spectrograph at TMT, MOONS at the VLT, and DESI at the Mayall 4 m telescope (or the similar 4MOST and WEAVE projects); of these, only DESI, MOONS, and PFS are expected to be available before 2020. Table 2-3 of this white paper summarizes the observation time required at each facility for strawman training samples. To attain secure redshift measurements for a high fraction of targeted objects and cover the full redshift span of future experiments, additional near-infrared spectroscopy will also be required; this is best done from space, particularly with WFIRST-2.4 and JWST; Calibration: The first several moments of redshift distributions (the mean, RMS redshift dispersion, etc.), must be known to high accuracy for cosmological constraints not to be systematics-dominated (equivalently, the moments of the distribution of differences between photometric and true redshifts could be determined instead). The ultimate goal of calibration is to characterize these moments for every subsample used in analyses - i.e., to minimize the uncertainty in their mean redshift, RMS dispersion, etc. – rather than to make the moments themselve

  20. Spectroscopic Needs for Imaging Dark Energy Experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Newman, Jeffrey A.; Slosar, Anze; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Reza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; et al

    2015-03-01T23:59:59.000Z

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z’s): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z’s will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large setsmore »of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our “training set” of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ~30,000 objects over >~15 widely-separated regions, each at least ~20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce scatter further, enhancing the science return from planned experiments greatly (increasing the Dark Energy Task Force figure of merit by up to ~50%); Options: This spectroscopy will most efficiently be done by covering as much of the optical and near-infrared spectrum as possible at modestly high spectral resolution (?/?? > ~3000), while maximizing the telescope collecting area, field of view on the sky, and multiplexing of simultaneous spectra. The most efficient instrument for this would likely be either the proposed GMACS/MANIFEST spectrograph for the Giant Magellan Telescope or the OPTIMOS spectrograph for the European Extremely Large Telescope, depending on actual properties when built. The PFS spectrograph at Subaru would be next best and available considerably earlier, c. 2018; the proposed ngCFHT and SSST telescopes would have similar capabilities but start later. Other key options, in order of increasing total time required, are the WFOS spectrograph at TMT, MOONS at the VLT, and DESI at the Mayall 4 m telescope (or the similar 4MOST and WEAVE projects); of these, only DESI, MOONS, and PFS are expected to be available before 2020. Table 2-3 of this white paper summarizes the observation time required at each facility for strawman training samples. To attain secure redshift measurements for a high fraction of targeted objects and cover the full redshift span of future experiments, additional near-infrared spectroscopy will also be required; this is best done from space, particularly with WFIRST-2.4 and JWST; Calibration: The first several moments of redshift distributions (the mean, RMS redshift dispersion, etc.), must be known to high accuracy for cosmological constraints not to be systematics-dominated (equivalently, the moments of the distribution of differences between photometric and true redshifts could be determined instead). The ultimate goal of calibration is to characterize these moments for every subsample used in analyses - i.e., to minimize the uncertainty in their mean redshift, RMS dispersion, etc. – rather than to make the m

  1. Hierarchical Remote Sensing Image Analysis via Graph Laplacian Energy

    E-Print Network [OSTI]

    Zhou, Jun

    1 Hierarchical Remote Sensing Image Analysis via Graph Laplacian Energy Zhang Huigang, Bai Xiao for an efficient image description, which may cause increased computational complexity. In this paper, we propose a new hierarchical segmentation method that applies graph Laplacian energy as a generic measure

  2. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) Mission

    E-Print Network [OSTI]

    California at Berkeley, University of

    The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) Mission R. P. fla B. Dennis, G mission is to investigate the physics of particle acceleration and energy release in solar flares, through-ray/gamma-ray spectroscopy 1. INTRODUCTION The primary scientific objective of the Reuven Ramaty High Energy Solar

  3. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy

    SciTech Connect (OSTI)

    Cortesi, M.; Prasser, H.-M. [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, Villigen PSI 5234 (Switzerland); Mechanical Engineering Department, Swiss Federal Institute of Technology, Zurich 8092 (Switzerland); Dangendorf, V. [Ion and Neutron Radiation Department, Physikalisch-Technische Bundesanstalt, Braunschweig 38116 (Germany); Zboray, R. [Mechanical Engineering Department, Swiss Federal Institute of Technology, Zurich 8092 (Switzerland)

    2014-07-15T23:59:59.000Z

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels.

  4. Help:Linked images | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy InformationHebeiProgram Jump to:

  5. BT Imaging Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria PowerAxeonBCHP ScreeningBLMBSABT GeradoraBT

  6. Image Processing Occupancy Sensor - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITERBuilding Energy Efficiency Building

  7. Category:Multispectral Imaging | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury Vapor page?Logging

  8. Geothermal Ultrasonic Fracture Imager | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment of a downhole wireline tool to characterize

  9. Category:Hyperspectral Imaging | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo Back to PV Economics By Buildingpage?

  10. Multispectral Imaging (Laney, 2005) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,SpurrMulberry, Ohio:Geothermal Systems

  11. Radiance: Synthetic Imaging System | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevada <RECServices,RYPOSRadiance:

  12. Calibrated Ultra Fast Image Simulations for the Dark Energy Survey

    E-Print Network [OSTI]

    Bruderer, Claudio; Refregier, Alexandre; Amara, Adam; Berge, Joel; Gamper, Lukas

    2015-01-01T23:59:59.000Z

    Weak lensing by large-scale structure is a powerful technique to probe the dark components of the universe. To understand the measurement process of weak lensing and the associated systematic effects, image simulations are becoming increasingly important. For this purpose we present a first implementation of the $\\textit{Monte Carlo Control Loops}$ ($\\textit{MCCL}$; Refregier & Amara 2014), a coherent framework for studying systematic effects in weak lensing. It allows us to model and calibrate the shear measurement process using image simulations from the Ultra Fast Image Generator (UFig; Berge et al. 2013). We apply this framework to a subset of the data taken during the Science Verification period (SV) of the Dark Energy Survey (DES). We calibrate the UFig simulations to be statistically consistent with DES images. We then perform tolerance analyses by perturbing the simulation parameters and study their impact on the shear measurement at the one-point level. This allows us to determine the relative im...

  13. IMAGE PROCESSING OCCUPANCY SENSOR - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen andHypernuclei in Hall linkTreatmentI L

  14. Acoustic Imaging Suite - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction InNational Laboratories Find

  15. Iterative image-domain decomposition for dual-energy CT

    SciTech Connect (OSTI)

    Niu, Tianye; Dong, Xue; Petrongolo, Michael; Zhu, Lei, E-mail: leizhu@gatech.edu [Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)] [Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-04-15T23:59:59.000Z

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its capability of material decomposition. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical values of DECT. Existing denoising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. In this work, the authors propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, the authors include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. The regularization term enforces the image smoothness by calculating the square sum of neighboring pixel value differences. To retain the boundary sharpness of the decomposed images, the authors detect the edges in the CT images before decomposition. These edge pixels have small weights in the calculation of the regularization term. Distinct from the existing denoising algorithms applied on the images before or after decomposition, the method has an iterative process for noise suppression, with decomposition performed in each iteration. The authors implement the proposed algorithm using a standard conjugate gradient algorithm. The method performance is evaluated using an evaluation phantom (Catphan©600) and an anthropomorphic head phantom. The results are compared with those generated using direct matrix inversion with no noise suppression, a denoising method applied on the decomposed images, and an existing algorithm with similar formulation as the proposed method but with an edge-preserving regularization term. Results: On the Catphan phantom, the method maintains the same spatial resolution on the decomposed images as that of the CT images before decomposition (8 pairs/cm) while significantly reducing their noise standard deviation. Compared to that obtained by the direct matrix inversion, the noise standard deviation in the images decomposed by the proposed algorithm is reduced by over 98%. Without considering the noise correlation properties in the formulation, the denoising scheme degrades the spatial resolution to 6 pairs/cm for the same level of noise suppression. Compared to the edge-preserving algorithm, the method achieves better low-contrast detectability. A quantitative study is performed on the contrast-rod slice of Catphan phantom. The proposed method achieves lower electron density measurement error as compared to that by the direct matrix inversion, and significantly reduces the error variation by over 97%. On the head phantom, the method reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusions: The authors propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. By exploring the full variance-covariance properties of the decomposed images and utilizing the edge predetection, the proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability.

  16. SU-E-J-256: Dual Energy Planar Image Based Localization in the Absence of On-Board CT Images

    SciTech Connect (OSTI)

    Sadagopan, R; Yang, J; Li, H [M.D. Anderson Cancer Center, Houston, TX (United States)

    2014-06-01T23:59:59.000Z

    Purpose: To develop a tool enabling soft tissue based image guidance using dual energy radiographs for cases when on-board CT is not available. Method: Dual energy planar radiographs can be applied to image guidance for targeting lung lesions because the bone based alignment only may not be sufficient as the lesions move. We acquired images of an anthropomorphic thorax phantom at 120 and 60 KVp respectively. Using a weighted logarithmic subtraction of these dual energy images, a soft tissue enhanced and a bone enhanced image were generated and they could be used for the image guidance purpose. Similar processing was also applied to a dual energy image set acquired for a patient undergoing a proton therapy. Results: The soft tissue enhanced images suppressed bones (ribs and scapula) overlying on lung, thus enabling a better visualization of soft tissue and lesion, while the bone enhanced image suppressed the soft tissue. These enhanced effects were visually apparent without further processing for display enhancements, such as using histogram or edge enhancement technique. Conclusions: The phantom image processing was encouraging. The initial test on the patient image set showed that other post processing might still be able to add value in visualizing soft tissues in addition to the dual energy soft tissue enhancement. More evaluations are needed to determine the potential benefit of this technique in the clinic.

  17. Category:Map Image Files | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists for Companies"Image Files Jump

  18. Property:EZFeed/JurisdictionImage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType JumpDOEInvolveRtoSpp Jump to: navigation,JurisdictionImage

  19. Imaging of granular sources in high energy heavy ion collisions

    E-Print Network [OSTI]

    Zhi-Tao Yang; Wei-Ning Zhang; Lei Huo; Jing-Bo Zhang

    2008-11-13T23:59:59.000Z

    We investigate the source imaging for a granular pion-emitting source model in high energy heavy ion collisions. The two-pion source functions of the granular sources exhibit a two-tiered structure. Using a parametrized formula of granular two-pion source function, we examine the two-tiered structure of the source functions for the imaging data of Au+Au collisions at Alternating Gradient Synchrotron (AGS) and Relativistic Heavy Ion Collider (RHIC). We find that the imaging technique introduced by Brown and Danielewicz is suitable for probing the granular structure of the sources. Our data-fitting results indicate that there is not visible granularity for the sources at AGS energies. However, the data for the RHIC collisions with the selections of $40 < {\\rm centrality} < 90%$ and $0.20

  20. Method and apparatus for coherent imaging of infrared energy

    DOE Patents [OSTI]

    Hutchinson, D.P.

    1998-05-12T23:59:59.000Z

    A coherent camera system performs ranging, spectroscopy, and thermal imaging. Local oscillator radiation is combined with target scene radiation to enable heterodyne detection by the coherent camera`s two-dimensional photodetector array. Versatility enables deployment of the system in either a passive mode (where no laser energy is actively transmitted toward the target scene) or an active mode (where a transmitting laser is used to actively illuminate the target scene). The two-dimensional photodetector array eliminates the need to mechanically scan the detector. Each element of the photodetector array produces an intermediate frequency signal that is amplified, filtered, and rectified by the coherent camera`s integrated circuitry. By spectroscopic examination of the frequency components of each pixel of the detector array, a high-resolution, three-dimensional or holographic image of the target scene is produced for applications such as air pollution studies, atmospheric disturbance monitoring, and military weapons targeting. 8 figs.

  1. Method and apparatus for coherent imaging of infrared energy

    DOE Patents [OSTI]

    Hutchinson, Donald P. (Knoxville, TN)

    1998-01-01T23:59:59.000Z

    A coherent camera system performs ranging, spectroscopy, and thermal imaging. Local oscillator radiation is combined with target scene radiation to enable heterodyne detection by the coherent camera's two-dimensional photodetector array. Versatility enables deployment of the system in either a passive mode (where no laser energy is actively transmitted toward the target scene) or an active mode (where a transmitting laser is used to actively illuminate the target scene). The two-dimensional photodetector array eliminates the need to mechanically scan the detector. Each element of the photodetector array produces an intermediate frequency signal that is amplified, filtered, and rectified by the coherent camera's integrated circuitry. By spectroscopic examination of the frequency components of each pixel of the detector array, a high-resolution, three-dimensional or holographic image of the target scene is produced for applications such as air pollution studies, atmospheric disturbance monitoring, and military weapons targeting.

  2. Dimensionality and noise in energy selective x-ray imaging

    SciTech Connect (OSTI)

    Alvarez, Robert E. [Aprend Technology, Mountain View, California 94043 (United States)] [Aprend Technology, Mountain View, California 94043 (United States)

    2013-11-15T23:59:59.000Z

    Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging.Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurement noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator.Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 10{sup 3}. With the soft tissue component, it is 2.7 × 10{sup 4}. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases the variance of the bone component markedly with three dimension processing, approximately a factor of 25 as the resolution decreases from 100 to 3 bins. The increase with two dimension processing for adipose tissue is a factor of two and with the contrast agent as the third material for two or three dimensions is also a factor of two for both components. The simulated images show that a maximum likelihood estimator can be used to process energy selective x-ray data to produce images with noise close to the CRLB.Conclusions: The method presented can be used to compute the effects of the object attenuation coefficients and the x-ray system properties on the relationship of dimensionality and noise in energy selective x-ray imaging systems.

  3. PIA - ETTP Badge Imaging System (EBIS) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartmentChartForumsETTP Badge Imaging System

  4. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventyTechnologiesfacilityImaging

  5. Imaging doped silicon test structures using low energy electron microscopy.

    SciTech Connect (OSTI)

    Nakakura, Craig Yoshimi; Anderson, Meredith Lynn; Kellogg, Gary Lee

    2010-01-01T23:59:59.000Z

    This document is the final SAND Report for the LDRD Project 105877 - 'Novel Diagnostic for Advanced Measurements of Semiconductor Devices Exposed to Adverse Environments' - funded through the Nanoscience to Microsystems investment area. Along with the continuous decrease in the feature size of semiconductor device structures comes a growing need for inspection tools with high spatial resolution and high sample throughput. Ideally, such tools should be able to characterize both the surface morphology and local conductivity associated with the structures. The imaging capabilities and wide availability of scanning electron microscopes (SEMs) make them an obvious choice for imaging device structures. Dopant contrast from pn junctions using secondary electrons in the SEM was first reported in 1967 and more recently starting in the mid-1990s. However, the serial acquisition process associated with scanning techniques places limits on the sample throughput. Significantly improved throughput is possible with the use of a parallel imaging scheme such as that found in photoelectron emission microscopy (PEEM) and low energy electron microscopy (LEEM). The application of PEEM and LEEM to device structures relies on contrast mechanisms that distinguish differences in dopant type and concentration. Interestingly, one of the first applications of PEEM was a study of the doping of semiconductors, which showed that the PEEM contrast was very sensitive to the doping level and that dopant concentrations as low as 10{sup 16} cm{sup -3} could be detected. More recent PEEM investigations of Schottky contacts were reported in the late 1990s by Giesen et al., followed by a series of papers in the early 2000s addressing doping contrast in PEEM by Ballarotto and co-workers and Frank and co-workers. In contrast to PEEM, comparatively little has been done to identify contrast mechanisms and assess the capabilities of LEEM for imaging semiconductor device strictures. The one exception is the work of Mankos et al., who evaluated the impact of high-throughput requirements on the LEEM designs and demonstrated new applications of imaging modes with a tilted electron beam. To assess its potential as a semiconductor device imaging tool and to identify contrast mechanisms, we used LEEM to investigate doped Si test structures. In section 2, Imaging Oxide-Covered Doped Si Structures Using LEEM, we show that the LEEM technique is able to provide reasonably high contrast images across lateral pn junctions. The observed contrast is attributed to a work function difference ({Delta}{phi}) between the p- and n-type regions. However, because the doped regions were buried under a thermal oxide ({approx}3.5 nm thick), e-beam charging during imaging prevented quantitative measurements of {Delta}{phi}. As part of this project, we also investigated a series of similar test structures in which the thermal oxide was removed by a chemical etch. With the oxide removed, we obtained intensity-versus-voltage (I-V) curves through the transition from mirror to LEEM mode and determined the relative positions of the vacuum cutoffs for the differently doped regions. Although the details are not discussed in this report, the relative position in voltage of the vacuum cutoffs are a direct measure of the work function difference ({Delta}{phi}) between the p- and n-doped regions.

  6. SIMULATION OF ENERGY SELECTIVE X-RAY IMAGES FOR MATERIAL DIS-CRIMINATION

    E-Print Network [OSTI]

    Hickman, Mark

    SIMULATION OF ENERGY SELECTIVE X-RAY IMAGES FOR MATERIAL DIS- CRIMINATION Rune S Thing1 , Syen J Carlo model is presented to evaluate the clinical benefits of optimal energy bins in spectral X-ray imaging, using the BEAMnrc code system. While energy resolving photon counting detectors have been

  7. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITERBuilding EnergyImaging Print The

  8. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITERBuilding EnergyImaging Print

  9. Biomedical nuclear and X-ray imager using high-energy grazing incidence mirrors

    DOE Patents [OSTI]

    Ziock, Klaus-Peter; Craig, William W.; Hasegawa, Bruce; Pivovaroff, Michael J.

    2005-09-27T23:59:59.000Z

    Imaging of radiation sources located in a subject is explored for medical applications. The approach involves using grazing-incidence optics to form images of the location of radiopharmaceuticals administered to a subject. The optics are "true focusing" optics, meaning that they project a real and inverted image of the radiation source onto a detector possessing spatial and energy resolution.

  10. Dual energy imaging in mammography: Cross-talk study in a Si array detector

    E-Print Network [OSTI]

    Ramello, Luciano

    Dual energy imaging in mammography: Cross-talk study in a Si array detector G. Baldazzi a , D-monochromatic peaks are shown in Fig. 1. 2. Experimental setup The apparatus for dual energy mammography

  11. Energy current imaging method for time reversal in elastic media Brian E. Anderson,1,2,a

    E-Print Network [OSTI]

    16 July 2009 An energy current imaging method is presented for use in locating sources of wave energy of an ideal time reversal experiment, wave energy coalesces from all angles of incidence to recreate the source event; after the recreation, wave energy diverges in every direction. An energy current imaging

  12. Simulation of air shower image in fluorescence light based on energy deposits derived from CORSIKA

    E-Print Network [OSTI]

    D. Gora; D. Heck; P. Homola; H. Klages; J. Pekala; M. Risse; B. Wilczynska; H. Wilczynski

    2004-03-01T23:59:59.000Z

    Spatial distributions of energy deposited by an extensive air shower in the atmosphere through ionization, as obtained from the CORSIKA simulation program, are used to find the fluorescence light distribution in the optical image of the shower. The shower image derived in this way is somewhat smaller than that obtained from the NKG lateral distribution of particles in the shower. The size of the image shows a small dependence on the primary particle type.

  13. Evaluation of a modified quadruple energy window scatter subtraction algorithm for quantitative imaging with In-111 

    E-Print Network [OSTI]

    Sadler,John J.

    2000-01-01T23:59:59.000Z

    spatial resolution broadens the curve by giving false indication of where individual counts register. Another effect of having the dual-energy gamma rays &om In-111 in particular is that Compton scatter from the higher energy 246 keV gamma.... Attenuation and Scatter Correction with the Quadruple Energy Window Scatter Subtraction Method 1. 10. 1. The Original Quadruple Energy Window Scatter Subtraction Algorithm Scatter subtraction methods based on a dual-energy window image acquisition scheme...

  14. Anatomical noise in contrast-enhanced digital mammography. Part II. Dual-energy imaging

    SciTech Connect (OSTI)

    Hill, Melissa L.; Yaffe, Martin J. [Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)] [Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Mainprize, James G. [Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)] [Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Carton, Ann-Katherine; Saab-Puong, Sylvie; Iordache, R?zvan; Muller, Serge [GE Healthcare, 283 rue de la Minière, Buc 78530 (France)] [GE Healthcare, 283 rue de la Minière, Buc 78530 (France); Jong, Roberta A. [Breast Imaging, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)] [Breast Imaging, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Dromain, Clarisse [Department of Radiology, Institut Gustave Roussy, 39 rue Camille Desmoulin, Villejuif 94805 (France)] [Department of Radiology, Institut Gustave Roussy, 39 rue Camille Desmoulin, Villejuif 94805 (France)

    2013-08-15T23:59:59.000Z

    Purpose: Dual-energy (DE) contrast-enhanced digital mammography (CEDM) uses an iodinated contrast agent in combination with digital mammography (DM) to evaluate lesions on the basis of tumor angiogenesis. In DE imaging, low-energy (LE) and high-energy (HE) images are acquired after contrast administration and their logarithms are subtracted to cancel the appearance of normal breast tissue. Often there is incomplete signal cancellation in the subtracted images, creating a background “clutter” that can impair lesion detection. This is the second component of a two-part report on anatomical noise in CEDM. In Part I the authors characterized the anatomical noise for single-energy (SE) temporal subtraction CEDM by a power law, with model parameters ? and ?. In this work the authors quantify the anatomical noise in DE CEDM clinical images and compare this with the noise in SE CEDM. The influence on the anatomical noise of the presence of iodine in the breast, the timing of imaging postcontrast administration, and the x-ray energy used for acquisition are each evaluated.Methods: The power law parameters, ? and ?, were measured from unprocessed LE and HE images and from DE subtracted images to quantify the anatomical noise. A total of 98 DE CEDM cases acquired in a previous clinical pilot study were assessed. Conventional DM images from 75 of the women were evaluated for comparison with DE CEDM. The influence of the imaging technique on anatomical noise was determined from an analysis of differences between the power law parameters as measured in DM, LE, HE, and DE subtracted images for each subject.Results: In DE CEDM, weighted image subtraction lowers ? to about 1.1 from 3.2 and 3.1 in LE and HE unprocessed images, respectively. The presence of iodine has a small but significant effect in LE images, reducing ? by about 0.07 compared to DM, with ? unchanged. Increasing the x-ray energy, from that typical in DM to a HE beam, significantly decreases ? by about 2 × 10{sup ?5} mm{sup 2}, and lowers ? by about 0.14 compared to LE images. A comparison of SE and DE CEDM at 4 min postcontrast shows equivalent power law parameters in unprocessed images, and lower ? and ? by about 3 × 10{sup ?5} mm{sup 2} and 0.50, respectively, in DE versus SE subtracted images.Conclusions: Image subtraction in both SE and DE CEDM reduces ? by over a factor of 2, while maintaining ? below that in DM. Given the equivalent ? between SE and DE unprocessed CEDM images, and the smaller anatomical noise in the DE subtracted images, the DE approach may have an advantage over SE CEDM. It will be necessary to test this potential advantage in future lesion detectability experiments, which account for realistic lesion signals. The authors' results suggest that LE images could be used in place of DM images in CEDM exam interpretation.

  15. Particle Image Velocimetery (PIV) Diagnostics for Wind Energy and Energy Security Research

    SciTech Connect (OSTI)

    Pol, Suhas Uddhav [Los Alamos National Laboratory

    2012-06-04T23:59:59.000Z

    Particle Image Velocimetery (PIV) is a laser based technique that involves correlation analysis of tracer particle images to estimate the velocity field in a fluid. High resolution velocity measurement capability and non-intrusive nature of PIV make it desirable for understanding complex fluid flow phenomena occurring in various scenarios. This presentation briefly describes the development of novel PIV diagnostics that forward Wind Energy research and advance scaling models to solve expensive maintenance issues of the Strategic Petroleum Reserves (SPR). Two new diagnostic implementations of Particle Image Velocimetry (PIV) are being developed at Los Alamos National Laboratory (LANL) to facilitate understanding of wind turbine aerodynamics in unprecedented detail. It has been demonstrated that a Large-Field PIV (LF-PIV) diagnostic capable of measuring large scale flow fields of up to 4.3m x 2.8m per camera has been developed. This diagnostic, which represents a significant leap in the field of view of existing centimeter scale PIV systems, allows the measurement of velocity fields at multiple points with high accuracy for large scale flows, such as, flows around wind turbines. Further, to characterize the near blade boundary layer of wind turbines a rotating PIV system (R-PIV) is also under development at LANL (patent application in progress). Design considerations and results of bench top tests that confirm the reliability of PIV measurements obtained using the above diagnostics will be presented in this talk. PIV along with conductivity and temperature probe data has been useful to develop models that simulate the evolution of the layered structure of crude oil stored in the subterranean caverns of the Strategic Petroleum Reserves (SPR). Understanding the evolution of stratified layers of crude oil that are subjected to geothermal forcing is crucial in improving the efficiency of maintenance procedures carried out for the SPR and hence ensure Energy Security of the nation. Through analytical and experimental analysis it has been found that the dynamics of crude oil mixing are significantly affected by the presence of heating sidewalls of the storage caverns. Scaling laws that have been advanced for evolution of mixed layers for stratified fluid layers stored in slender containers will also be described in this presentation.

  16. Multispectral Imaging At Silver Peak Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question) | Open EnergyEnergyEnergyInformation

  17. Total electron and proton energy input during auroral substorms: Remote sensing with IMAGE-FUV

    E-Print Network [OSTI]

    California at Berkeley, University of

    Total electron and proton energy input during auroral substorms: Remote sensing with IMAGE-FUV B the ionospheric Pedersen conductivity and produces Joule heat- ing in the presence of an electric field. In addition, part of the energy of the auroral particles is dissipated into local heating through dissociation

  18. Split Bregman Method for Minimization of Region-Scalable Fitting Energy for Image

    E-Print Network [OSTI]

    Soatto, Stefano

    Split Bregman Method for Minimization of Region-Scalable Fitting Energy for Image Segmentation, The Ohio State University, OH 43202, U.S. b Department of Mathematics, Harbin Institute of Technology convex segmenta- tion method and the split Bregman technique into the region-scalable fitting energy

  19. Multispectral Imaging At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question) | Open EnergyEnergy Information

  20. OpenEI:Projects/Images | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio: Energy Resourcesen)5/0Meetupcoordinate

  1. High Resolution Imaging Science Experiment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: Energy Resources Jump

  2. Multispectral Imaging At Coso Geothermal Area (1990) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question) | Open Energy Information|

  3. Multispectral Imaging At Cove Fort Area (Laney, 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question) | Open Energy

  4. Automated Image Analysis of Fibers - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologiesVehicleAuthor Guidelines

  5. Multispectral Imaging At Fort Bliss Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,SpurrMulberry,Energy Information

  6. Multispectral Imaging At Maui Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,SpurrMulberry,Energy InformationAl., 2001) |

  7. Multispectral Imaging At Silver Peak Area (Laney, 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,SpurrMulberry,Energy InformationAl.,

  8. Discover the Benefits of Radar Imaging | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Energy Information At1986) |Disa Jump to:of

  9. 3D Temperature Dependence of Ultrasonic Backscattered Energy in3D Temperature Dependence of Ultrasonic Backscattered Energy in Images Compensated for Apparent Tissue MotionImages Compensated for Apparent Tissue Motion

    E-Print Network [OSTI]

    Arthur, R. Martin

    DBackscattered Energy in 3D Circulating Heater 7 MHz Transducer Tissue Sample Insulated Tank with Degassed in a water bath from 37 to 50oC. Images were formed by a Terason 2000 imager with a 7 MHz linear probe, Deionized Water Terason 2000 Imaging System Stepper Motor Motor Controller Needle Thermistor Temperature

  10. Formation Micro-Imager Logs (FMI) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,dataset name below

  11. Supercomputing: Eye-Opening Possibilities in Imaging | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummary SpecialFactories |Supercomputing Our Way to a

  12. Progress and issues in single well seismic imaging | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,PowerInformationOpenProe

  13. Image Logs At Coso Geothermal Area (2004) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind FarmInformationIllinois/WindIllustrative

  14. Image Logs At Coso Geothermal Area (2011) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolidIdaho‎Information RiverIllumitex

  15. Small Wind Guidebook/Image Library | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation SlimSlough Heat and Power102WindSmall

  16. Fisheye Video Imaging for Diagnosis and Monitoring - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofof EnergyInnovationFiscalPortal

  17. Thermal Imaging Technique for Measuring Mixing of Fluids - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in theTheoretical Study onThermal Hydraulic

  18. Work_Pyramid_small_image.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | DepartmentKavita RaviValerie ReedWork

  19. High Speed Particle Image Velocimetry - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High School football Fancy footwork at HighEnergy

  20. Method for Reducing Background Clutter in a Camera Image - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from aRodMIT-HarvardEnergy

  1. Multispectral Imaging (Lewicki & Oldenburg, 2004) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,SpurrMulberry, Ohio:Geothermal

  2. Multispectral Imaging (Monaster And Coolbaugh, 2007) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,SpurrMulberry, Ohio:GeothermalInformation

  3. Multispectral Imaging At Alum Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,SpurrMulberry, Ohio:GeothermalInformationAlum

  4. Neutron Imaging of Advanced Engine Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForum |Energy NovemberCto the President's| Department2

  5. Neutron Imaging of Advanced Engine Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForum |Energy NovemberCto the President's| Department21

  6. Neutron Imaging of Diesel Particulate Filters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForum |Energy NovemberCto the President's|

  7. DSI Dipole Shear Sonic Imager | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs andCrops Ltd Jump1-EA Jump to: navigation,DSI Dipole

  8. The Difference Imaging Pipeline for the Transient Search in the Dark Energy Survey

    E-Print Network [OSTI]

    Kessler, R; Childress, M; Covarrubias, R; D'Andrea, C B; Finley, D A; Fischer, J; Foley, R J; Goldstein, D; Gupta, R R; Kuehn, K; Marcha, M; Nichol, R C; Papadopoulos, A; Sako, M; Scolnic, D; Smith, M; Sullivan, M; Wester, W; Yuan, F; Abbott, T; Abdalla, F B; Allam, S; Benoit-Levy, A; Bernstein, G M; Bertin, E; Brooks, D; Rosell, A Carnero; Kind, M Carrasco; Castander, F J; Crocce, M; da Costa, L N; Desai, S; Diehl, H T; Eifler, T F; Neto, A Fausti; Flaugher, B; Frieman, J; Gruen, D; Gruendl, R A; Honscheid, K; James, D J; Kuropatkin, N; Li, T S; Maia, M A G; Marshall, J L; Martini, P; Miller, C J; Miquel, R; Ogando, R; Plazas, A A; Romer, A K; Roodman, A; Sanchez, E; Sevilla-Noarbe, I; Smith, R C; Soares-Santos, M; Sobreira, F; Tarle, G; Thaler, J; Thomas, R C; Tucker, D; Walker, A R

    2015-01-01T23:59:59.000Z

    We describe the difference imaging pipeline (DiffImg) used to detect transients in deep images from the Dark Energy Survey Supernova program (DES-SN) in its first observing season from Aug 2013 through Feb 2014. DES-SN is a search for transients in which ten 3-deg^2 fields are repeatedly observed in the g,r,i,z passbands with a cadence of about 1 week. The observing strategy has been optimized to measure high-quality light curves and redshifts for thousands of Type Ia supernova (SN Ia) with the goal of measuring dark energy parameters. The essential DiffImg functions are to align each search image to a deep reference image, do a pixel-by-pixel subtraction, and then examine the subtracted image for significant positive detections of point-source objects. The vast majority of detections are subtraction artifacts, but after selection requirements and image filtering with an automated scanning program, there are 130 detections per deg^2 per observation in each band, of which only 25% are artifacts. Of the 7500 tr...

  9. EERE: VTO - Hybrid Bus PNG Image | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F, Western22,EERE Solar SunShot IncubatorofHybrid Bus PNG

  10. EERE: VTO - Red Leaf PNG Image | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F, Western22,EERE Solar SunShot IncubatorofHybrid Bus PNGRed

  11. EERE: VTO - UPS Truck PNG Image | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F, Western22,EERE Solar SunShot IncubatorofHybrid Bus

  12. Covered Product Category: Imaging Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013DepartmentEnterprise ServersHot Food

  13. Anatomic and Functional Imaging of Tagged Molecules in Animals - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3 Table 3. Summary

  14. A Combinational Approach to the Fusion, De-noising and Enhancement of Dual-Energy X-Ray Luggage Images

    E-Print Network [OSTI]

    Abidi, Mongi A.

    dual-energy X-ray images for better object classification and threat detection. The fusion stepA Combinational Approach to the Fusion, De-noising and Enhancement of Dual-Energy X-Ray Luggage-based noise reduction technique which is very efficient in removing background noise from fused X-ray images

  15. FAQs: Copyrighted Images and Text on the Website | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: Final EnvironmentalCounties,UnitedCommunication,1]EnergyFAQSFAQs: Copyrighted Images

  16. Electric Micro Imager Log At Coso Geothermal Area (2003) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open JumpEcologyElInformation Imager Log At Coso

  17. Image

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ I 1' . _c m y 7I_ - I _

  18. Image

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernmentStandardsIdahoby4

  19. Image

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolidIdaho‎Information RiverIllumitex Jump

  20. Image

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2Y-12NevadaPROCEEDINGS,Los

  1. Image

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2Y-12NevadaPROCEEDINGS,Los

  2. Image

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2Y-12NevadaPROCEEDINGS,Los

  3. Image

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration Sandia CorporationNuclearQuestions WhatNNSANo.II 1

  4. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITER SubscribeIlya Prigogine,

  5. Image

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform at the Department51 U.S.Water Heaters |Snyder,

  6. Image

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform at the Department51 U.S.Water Heaters |Snyder,

  7. Image

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform at the Department51 U.S.Water Heaters |Snyder,

  8. Image

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform at the Department51 U.S.Water Heaters |Snyder,

  9. Image

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform at the Department51 U.S.Water Heaters |Snyder,

  10. Image

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform at the Department51 U.S.Water Heaters |Snyder,

  11. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed in

  12. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed in CONTRACT!D CODE

  13. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed in CONTRACT!D

  14. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed in CONTRACT!D

  15. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed in CONTRACT!D

  16. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed in CONTRACT!D

  17. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed in CONTRACT!D

  18. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed in CONTRACT!D

  19. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed in CONTRACT!D

  20. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed in CONTRACT!D

  1. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed in CONTRACT!D

  2. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed in CONTRACT!DMA RTINEZ

  3. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed in CONTRACT!DMA

  4. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed in

  5. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed inMARTINI:'!, Governor

  6. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed inMARTINI:'!,

  7. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed inMARTINI:'!,MA!n!NEZ

  8. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed

  9. Demonstration of x-ray fluorescence imaging of a high-energy-density plasma

    SciTech Connect (OSTI)

    MacDonald, M. J., E-mail: macdonm@umich.edu; Gamboa, E. J. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Keiter, P. A.; Fein, J. R.; Klein, S. R.; Kuranz, C. C.; LeFevre, H. J.; Manuel, M. J.-E.; Wan, W. C.; Drake, R. P. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Montgomery, D. S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Biener, M. M.; Fournier, K. B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Streit, J. [Schafer Corporation, Livermore, California 94551 (United States)

    2014-11-15T23:59:59.000Z

    Experiments at the Trident Laser Facility have successfully demonstrated the use of x-ray fluorescence imaging (XRFI) to diagnose shocked carbonized resorcinol formaldehyde (CRF) foams doped with Ti. One laser beam created a shock wave in the doped foam. A second laser beam produced a flux of vanadium He-? x-rays, which in turn induced Ti K-shell fluorescence within the foam. Spectrally resolved 1D imaging of the x-ray fluorescence provided shock location and compression measurements. Additionally, experiments using a collimator demonstrated that one can probe specific regions within a target. These results show that XRFI is a capable alternative to path-integrated measurements for diagnosing hydrodynamic experiments at high energy density.

  10. Measuring proton energies and fluxes using EIT (SOHO) CCD areas outside the solar disk images

    E-Print Network [OSTI]

    L. V. Didkovsky; D. L. Judge; A. R. Jones; E. J. Rhodes, Jr.; J. B. Gurman

    2006-04-20T23:59:59.000Z

    An indirect proton flux measuring tool based on discrimination of the energy deposited by protons in 128 x 128 pixel EIT CCD areas outside the solar disk images is presented. Single pixel intensity events are converted into proton incident energy flux using modeled energy deposition curves for angles of incidence 60 deg in four EIT spatial areas with different proton stopping power. The extracted proton flux is corrected for both the loss of one-pixel events in the range of angles of incidence as well as for the contribution to the single pixel events resulting from scattered middle-energy protons (low-energy or high-energy particles are stopped by the EIT components or pass through them, accordingly). A simple geometrical approach was found and applied to correct for a non-unique relation between the proton-associated CCD output signal and the incident proton energy. With this geometrical approximation four unique proton incident energy ranges were determined as 45--49, 145--154, 297--335, and 390--440 MeV. The indirect proton flux measuring tool has been tested by comparing Solar Energetic Particles (SEP) flux temporal profiles extracted from the EIT CCD frames and downloaded from the GOES database for the Bastille Day (BD) of 2000 July 14 and the more recent 2005 January 20 events. The SEP flux temporal profiles and proton spectra extracted from the EIT in the relatively narrow energy ranges between 45 and 440 MeV reported here are consistent with the related GOES profiles. The four additional EIT extracted ranges provide higher energy resolution of the SEP data.

  11. A theoretical comparison of x-ray angiographic image quality using energy-dependent and conventional subtraction methods

    SciTech Connect (OSTI)

    Tanguay, Jesse; Kim, Ho Kyung; Cunningham, Ian A. [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8 (Canada) and Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada); School of Mechanical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Lawson Health Research Institute, London, Ontario N6A 4V2 (Canada) and London Health Sciences Centre, London, Ontario N6A 5A5 (Canada)

    2012-01-15T23:59:59.000Z

    Purpose: X-ray digital subtraction angiography (DSA) is widely used for vascular imaging. However, the need to subtract a mask image can result in motion artifacts and compromised image quality. The current interest in energy-resolving photon-counting (EPC) detectors offers the promise of eliminating motion artifacts and other advanced applications using a single exposure. The authors describe a method of assessing the iodine signal-to-noise ratio (SNR) that may be achieved with energy-resolved angiography (ERA) to enable a direct comparison with other approaches including DSA and dual-energy angiography for the same patient exposure. Methods: A linearized noise-propagation approach, combined with linear expressions of dual-energy and energy-resolved imaging, is used to describe the iodine SNR. The results were validated by a Monte Carlo calculation for all three approaches and compared visually for dual-energy and DSA imaging using a simple angiographic phantom with a CsI-based flat-panel detector. Results: The linearized SNR calculations show excellent agreement with Monte Carlo results. While dual-energy methods require an increased tube heat load of 2x to 4x compared to DSA, and photon-counting detectors are not yet ready for angiographic imaging, the available iodine SNR for both methods as tested is within 10% of that of conventional DSA for the same patient exposure over a wide range of patient thicknesses and iodine concentrations. Conclusions: While the energy-based methods are not necessarily optimized and further improvements are likely, the linearized noise-propagation analysis provides the theoretical framework of a level playing field for optimization studies and comparison with conventional DSA. It is concluded that both dual-energy and photon-counting approaches have the potential to provide similar angiographic image quality to DSA.

  12. Rates of exponential decay in systems of discrete energy levels by Stieltjes imaging

    SciTech Connect (OSTI)

    Craigie, Jacob; Hammad, Ali; Cooper, Bridgette; Averbukh, Vitali, E-mail: v.averbukh@imperial.ac.uk [Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2014-07-07T23:59:59.000Z

    An isolated bound state coupled to a continuum shows an exponential decay of its survival probability. Rates of the exponential decay occurring due to the bound-continuum coupling can be recovered from discretized continuum (L{sup 2}) calculations using a computational technique known as Stieltjes-Chebyshev moment theory or Stieltjes imaging. At the same time, some genuinely discrete level systems, e.g., Bixon-Jortner model, also show an exponential (or approximately exponential) decay of the initially populated level before the onset of quantum revivals. Here, we demonstrate numerically that Stieltjes imaging can be used for calculation of the rates of the exponential decay in such discrete level systems. We apply the Stieltjes imaging technique to the approximately exponential decay of inner-valence vacancies in trans-butadiene in order to show that the breakdown of the molecular orbital picture of ionization in the inner valence region can be physically interpreted as an energy-forbidden Coster-Kronig transition.

  13. Imaging properties of the Medipix2 system exploiting single and dual energy thresholds

    E-Print Network [OSTI]

    Tlustos, Lukas; Campbell, Michael; Heijne, Erik H M; Kincade, Karla Lorraine; Llopart-Cudie, Xavier; Stejskal, Pavel

    2006-01-01T23:59:59.000Z

    Low noise, high resolution and high dose efficiency are the common requirements for most X-ray imaging applications. Especially in medical applications the dose efficiency is a necessity for detector systems. We present the imaging performance of the Medipix2 readout chip bump bonded to a 300 mu m thick Si detector as a function of the detection threshold, a free parameter not available in conventional integrating imaging systems. Spatial resolution has been measured using the modulation transfer function (MTF) and it varies between 8.2 Ip/mm and 11.0 Ip/mm at 70%. An associated measurement of noise power spectrum (NPS) permits us to derive the detective quantum efficiency (DQE) which can be as a high as 25.5 % for a broadband incoming spectrum. The influence of charge diffusion in the sensor together with threshold variation in the readout chip is discussed. Although the Medipix2 system is used in photon counting mode with a single threshold in energy, the system is also capable of counting within a given en...

  14. An image-based four-source surface energy balance model to estimate crop evapotranspiration from solar

    E-Print Network [OSTI]

    Boyer, Edmond

    An image-based four-source surface energy balance model to estimate crop evapotranspiration from solar reflectance/thermal emission data (SEB-4S) Olivier Merlin,a , Jonas Chirouzea , Albert Oliosob, 84000 Avignon, France Abstract A remote sensing-based surface energy balance model is developed

  15. Absolute calibration of image plates for electrons at energy between 100 keV and 4 MeV

    SciTech Connect (OSTI)

    Chen Hui; Back, Norman L.; Eder, David C.; MacPhee, Andrew G.; Ping Yuan; Song, Peter M.; Throop, Alan [Lawrence Livermore National Laboratory, Livermore, California 94550-9234 (United States); Bartal, Teresa; Beg, F. N. [University of California, San Diego, La Jolla, California 92093 (United States); Link, Anthony J.; Van Woerkom, Linn [Ohio State University, Columbus, Ohio 43210 (United States)

    2008-03-15T23:59:59.000Z

    We measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV and 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on solid density targets. This paper presents the calibration results of image plate photon stimulated luminescence per electron at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energy depositions at these angles. These provide a complete set of tools that allows extraction of our absolute calibration to other spectrometer setting at this electron energy range.

  16. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization

    SciTech Connect (OSTI)

    Dong, Xue; Niu, Tianye; Zhu, Lei, E-mail: leizhu@gatech.edu [Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)] [Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-05-15T23:59:59.000Z

    Purpose: Dual-energy CT (DECT) is being increasingly used for its capability of material decomposition and energy-selective imaging. A generic problem of DECT, however, is that the decomposition process is unstable in the sense that the relative magnitude of decomposed signals is reduced due to signal cancellation while the image noise is accumulating from the two CT images of independent scans. Direct image decomposition, therefore, leads to severe degradation of signal-to-noise ratio on the resultant images. Existing noise suppression techniques are typically implemented in DECT with the procedures of reconstruction and decomposition performed independently, which do not explore the statistical properties of decomposed images during the reconstruction for noise reduction. In this work, the authors propose an iterative approach that combines the reconstruction and the signal decomposition procedures to minimize the DECT image noise without noticeable loss of resolution. Methods: The proposed algorithm is formulated as an optimization problem, which balances the data fidelity and total variation of decomposed images in one framework, and the decomposition step is carried out iteratively together with reconstruction. The noise in the CT images from the proposed algorithm becomes well correlated even though the noise of the raw projections is independent on the two CT scans. Due to this feature, the proposed algorithm avoids noise accumulation during the decomposition process. The authors evaluate the method performance on noise suppression and spatial resolution using phantom studies and compare the algorithm with conventional denoising approaches as well as combined iterative reconstruction methods with different forms of regularization. Results: On the Catphan©600 phantom, the proposed method outperforms the existing denoising methods on preserving spatial resolution at the same level of noise suppression, i.e., a reduction of noise standard deviation by one order of magnitude. This improvement is mainly attributed to the high noise correlation in the CT images reconstructed by the proposed algorithm. Iterative reconstruction using different regularization, including quadratic orq-generalized Gaussian Markov random field regularization, achieves similar noise suppression from high noise correlation. However, the proposed TV regularization obtains a better edge preserving performance. Studies of electron density measurement also show that our method reduces the average estimation error from 9.5% to 7.1%. On the anthropomorphic head phantom, the proposed method suppresses the noise standard deviation of the decomposed images by a factor of ?14 without blurring the fine structures in the sinus area. Conclusions: The authors propose a practical method for DECT imaging reconstruction, which combines the image reconstruction and material decomposition into one optimization framework. Compared to the existing approaches, our method achieves a superior performance on DECT imaging with respect to decomposition accuracy, noise reduction, and spatial resolution.

  17. Virtual monochromatic imaging in dual-source and dual-energy CT for visualization of acute ischemic stroke

    E-Print Network [OSTI]

    Hara, Hidetake; Matsuzawa, Hiroki; Inoue, Toshiyuki; Abe, Shinji; Satoh, Hitoshi; Nakajima, Yasuo

    2015-01-01T23:59:59.000Z

    We have recently developed a phantom that simulates acute ischemic stroke. We attempted to visualize acute-stage cerebral infarction by applying virtual monochromatic images to this phantom using dual-energy CT (DECT). Virtual monochromatic images were created using DECT from 40 to 100 keV at every 10 keV and from 60 to 80 keV at every 1 keV, under three energy conditions of tube voltages with thin (Sn) filters. Calculation of the CNR values allowed us to evaluate the visualization of acute-stage cerebral infarction. The CNR value of a virtual monochromatic image was the highest at 68 keV under 80 kV / Sn 140 kV, at 72 keV under 100 kV / Sn 140 kV, and at 67 keV under 140 kV / 80 kV. The CNR values of virtual monochromatic images between 65 and 75 keV were significantly higher than those obtained for all other created energy images. Therefore, optimal conditions for visualizing acute ischemic stroke were achievable.

  18. The Reuven Ramaty High Energy Solar Spectroscopic Imager observation of the 1809 keV line from Galactic 26Al

    E-Print Network [OSTI]

    David M. Smith

    2003-04-28T23:59:59.000Z

    Observations of the central radian of the Galaxy by the Reuven Ramaty High Energy Solar Spectroscopy Imager (RHESSI) have yielded a high-resolution measurement of the 1809 keV line from 26Al, detected at 11 sigma significance in nine months of data. The RHESSI result for the width of the cosmic line is 2.03 (+0.78, -1.21) keV FWHM. The best fit line width of 5.4 keV FWHM reported by Naya et al. (1996) using the Gamma-Ray Imaging Spectrometer (GRIS) balloon instrument is rejected with high confidence.

  19. Calibration and Laboratory Test of the Department of Energy Cloud Particle Imager

    SciTech Connect (OSTI)

    McFarquhar, GM; Um, J

    2012-02-17T23:59:59.000Z

    Calibration parameters from the Connolly et al. (2007) algorithm cannot be applied to the Department of Energy's (DOE) CPI because the DOE CPI is version 2.0. Thus, Dr. Junshik Um and Prof. Greg McFarquhar brought the DOE CPI to the University of Manchester, UK, where facilities for calibrating it were available. In addition, two other versions of CPIs (1.0 and 1.5) were available on-site at the University of Manchester so that an intercomparison of three different versions of the CPI was possible. The three CPIs (versions 1.0, 1.5, and 2.0) were calibrated by moving glass calibration beads and ice analogues of known size parallel to the object plane. The distance between the object plane and a particle, the particle's focus, its apparent maximum dimension, and a background image were measured in order to derive calibration parameters for each CPI version. The calibration parameters are used in two empirical equations that are applied to in situ CPI data to determine particle size and depth of field, and hence particle size distributions (PSDs). After the tests with the glass calibration beads to derive the calibration parameters, the three CPIs were installed at the base of the Manchester Ice Cloud Chamber and connected to air pumps that drew cloud through the sample volume. Warm liquid clouds at a temperature of 1-2 C and ice clouds at a temperature of -5 C were generated, and the resulting PSDs for each of the CPIs were determined by applying the results of each calibration.

  20. Extreme ultraviolet ionization of pure He nanodroplets: Mass-correlated photoelectron imaging, Penning ionization, and electron energy-loss spectra

    SciTech Connect (OSTI)

    Buchta, D.; Stienkemeier, F.; Mudrich, M. [Physikalisches Institut, Universität Freiburg, 79104 Freiburg (Germany)] [Physikalisches Institut, Universität Freiburg, 79104 Freiburg (Germany); Krishnan, S. R.; Moshammer, R. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany)] [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Brauer, N. B.; Drabbels, M. [Laboratoire de Chimie Physique Moléculaire, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland)] [Laboratoire de Chimie Physique Moléculaire, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); O’Keeffe, P.; Coreno, M. [CNR Istituto di Metodologie Inorganiche e dei Plasmi, CP10, 00016 Monterotondo Scalo (Italy)] [CNR Istituto di Metodologie Inorganiche e dei Plasmi, CP10, 00016 Monterotondo Scalo (Italy); Devetta, M. [CIMAINA and Dipartimento di Fisica, Università di Milano, 20133 Milano (Italy)] [CIMAINA and Dipartimento di Fisica, Università di Milano, 20133 Milano (Italy); Di Fraia, M. [Department of Physics, University of Trieste, 34128 Trieste (Italy)] [Department of Physics, University of Trieste, 34128 Trieste (Italy); Callegari, C.; Richter, R.; Prince, K. C. [Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste (Italy)] [Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste (Italy); Ullrich, J. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany) [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, D-38116 Braunschweig (Germany)

    2013-08-28T23:59:59.000Z

    The ionization dynamics of pure He nanodroplets irradiated by Extreme ultraviolet radiation is studied using Velocity-Map Imaging PhotoElectron-PhotoIon COincidence spectroscopy. We present photoelectron energy spectra and angular distributions measured in coincidence with the most abundant ions He{sup +}, He{sub 2}{sup +}, and He{sub 3}{sup +}. Surprisingly, below the autoionization threshold of He droplets, we find indications for multiple excitation and subsequent ionization of the droplets by a Penning-like process. At high photon energies we observe inelastic collisions of photoelectrons with the surrounding He atoms in the droplets.

  1. Workshop on Satellites for Solar Energy Resource Information -Washington, DC, April 10-11, 1996 POTENTIALS OF IMAGES FROM GEOSTATIONARY SATELLITE DATA FOR THE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Workshop on Satellites for Solar Energy Resource Information - Washington, DC, April 10-11, 1996 POTENTIALS OF IMAGES FROM GEOSTATIONARY SATELLITE DATA FOR THE ASSESSMENT OF SOLAR ENERGY PARAMETERS Lucien Author manuscript, published in "Workshop `satellites for solar energy resource information', Washington

  2. Fiche de proposition de stage en traitement d'images Nom de l'entreprise : Commissariat l'Energie Atomique et aux nergies alternatives Laboratoire

    E-Print Network [OSTI]

    Dobigeon, Nicolas

    Fiche de proposition de stage en traitement d'images Nom de l'entreprise : Commissariat à l'Energie Atomique et aux énergies alternatives ­ Laboratoire Télédétection, Surveillance, Environnement Email aux images disponibles et aux changements recherchés (de type bâti). Les méthodes basées sur la

  3. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergy /newsroom/_assets/images/energy-icon.png Energy

  4. A high-resolution imaging x-ray crystal spectrometer for high energy density plasmas

    SciTech Connect (OSTI)

    Chen, Hui, E-mail: chen33@llnl.gov, E-mail: bitter@pppl.gov; Magee, E.; Nagel, S. R.; Park, J.; Schneider, M. B.; Stone, G.; Williams, G. J.; Beiersdorfer, P. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550-9234 (United States); Bitter, M., E-mail: chen33@llnl.gov, E-mail: bitter@pppl.gov; Hill, K. W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Kerr, S. [Department of Applied Science, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-11-15T23:59:59.000Z

    Adapting a concept developed for magnetic confinement fusion experiments, an imaging crystal spectrometer has been designed and tested for HED plasmas. The instrument uses a spherically bent quartz [211] crystal with radius of curvature of 490.8 mm. The instrument was tested at the Titan laser at Lawrence Livermore National Laboratory by irradiating titanium slabs with laser intensities of 10{sup 19}–10{sup 20} W/cm{sup 2}. He-like and Li-like Ti lines were recorded, from which the spectrometer performance was evaluated. This spectrometer provides very high spectral resolving power (E/dE > 7000) while acquiring a one-dimensional image of the source.

  5. This paper proposes a method for classification and discrimina-tion of textures based on the energies of image subbands. We

    E-Print Network [OSTI]

    Chang, Shih-Fu

    , the dimension of the discriminant space and number of energy mea- sures used for classification. We hopeAbstract This paper proposes a method for classification and discrimina- tion of textures based on the energies of image subbands. We show that even with this relatively simple feature set, effective texture

  6. Desorption Dynamics, Internal Energies and Imaging of Organic Molecules from Surfaces with Laser Desorption and Vacuum Ultraviolet (VUV) Photoionization

    SciTech Connect (OSTI)

    Kostko, Oleg; Takahashi, Lynelle K.; Ahmed, Musahid

    2011-04-05T23:59:59.000Z

    There is enormous interest in visualizing the chemical composition of organic material that comprises our world. A convenient method to obtain molecular information with high spatial resolution is imaging mass spectrometry. However, the internal energy deposited within molecules upon transfer to the gas phase from a surface can lead to increased fragmentation and to complications in analysis of mass spectra. Here it is shown that in laser desorption with postionization by tunable vacuum ultraviolet (VUV) radiation, the internal energy gained during laser desorption leads to minimal fragmentation of DNA bases. The internal temperature of laser-desorbed triacontane molecules approaches 670 K, whereas the internal temperature of thymine is 800 K. A synchrotron-based VUV postionization technique for determining translational temperatures reveals that biomolecules have translational temperatures in the range of 216-346 K. The observed low translational temperatures, as well as their decrease with increased desorption laser power is explained by collisional cooling. An example of imaging mass spectrometry on an organic polymer, using laser desorption VUV postionization shows 5 mu m feature details while using a 30 mu m laser spot size and 7 ns duration. Applications of laser desorption postionization to the analysis of cellulose, lignin and humic acids are briefly discussed.

  7. Oblique Aerial & Ground Visible Band & Thermographic Imaging | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,andOasys Water Jump to:Obetz,

  8. 2015 OSTIblog top header image and slogan | OSTI, US Dept of Energy, Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014 2014FebruaryEnergy,Energy,of

  9. Photo 3D-Printer, Image Credit, Ames Lab | OSTI, US Dept of Energy, Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision, MissionthePhosphazene Newsof

  10. Sandia Energy - Wake-Imaging System Progresses to Outdoor Scaled Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia'sEvent Video

  11. Category:Single-Well And Cross-Well Seismic Imaging | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal RegulatoryInformation Cross-Well

  12. 2015 OSTIblog top header image and slogan | OSTI, US Dept of Energy, Office

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Garyand Technical Informationof Scientific and

  13. STIP Logo Image | OSTI, US Dept of Energy, Office of Scientific and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton n uSTEM Outreach SHARETechnical

  14. Single-Well And Cross-Well Seismic Imaging | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAirPowerSilcio SASindicatum Carbon(Majer,

  15. Single-Well And Cross-Well Seismic Imaging | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAirPowerSilcio SASindicatum

  16. User Science Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Image: OBrianImageBig.png | png | 5 MB SlavaFull.png FES: Small Scale Experimental Plasma Research October 21, 2010 | Author(s): Vyacheslav Lukin (NRL) | Category: Fusion Energy |...

  17. MACHETE: A transit Imaging Atmospheric Cherenkov Telescope to survey half of the Very High Energy $\\gamma$-ray sky

    E-Print Network [OSTI]

    Cortina, J; Moralejo, A

    2015-01-01T23:59:59.000Z

    Current Imaging Atmospheric Cherenkov Telescopes for Very High Energy $\\gamma$-ray astrophysics are pointing instruments with a Field of View up to a few tens of sq deg. We propose to build an array of two non-steerable (drift) telescopes. Each of the telescopes would have a camera with a FOV of 5$\\times$60 sq deg oriented along the meridian. About half of the sky drifts through this FOV in a year. We have performed a Montecarlo simulation to estimate the performance of this instrument. We expect it to survey this half of the sky with an integral flux sensitivity of $\\sim$0.77\\% of the steady flux of the Crab Nebula in 5 years, an analysis energy threshold of $\\sim$150 GeV and an angular resolution of $\\sim$0.1$^{\\circ}$. For astronomical objects that transit over the telescope for a specific night, we can achieve an integral sensitivity of 12\\% of the Crab Nebula flux in a night, making it a very powerful tool to trigger further observations of variable sources using steerable IACTs or instruments at other w...

  18. Home Page Refresh News Image | OSTI, US Dept of Energy, Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About |Pages default

  19. European Photovoltaic Solar Energy Conference, Hamburg, Germany, 21-24 September 2009, 4CO.2.3 Quantitative analysis of PV-modules by electroluminescence images for

    E-Print Network [OSTI]

    24st European Photovoltaic Solar Energy Conference, Hamburg, Germany, 21-24 September 2009, 4CO.2 photovoltaic (PV) module. This technique is based on electroluminescence imaging and makes use of two physical the operating cell voltages. The reliability of this relation is verified by applying the method to a specially

  20. Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    cross-correlation method (CCM) applied to two consecutive1993). Before applying the CCM, images are projected intoof the sky image area. The CCM finds the position that best

  1. 4.5 * Energy-Filtered TEM Imaging (EFTEM) 201 to absolute concentrations. Similarly, three-window images can be corrected

    E-Print Network [OSTI]

    , and at higher energies the intensity becomes inconveniently low. 4.5.3 Chemical Analysis with High Spatial, showing the outstanding spatial resolution of the tech- nique. 4.6 Energy Dispersive X-Ray Spectrometry (EDS) 4.6.1 Electron Trajectories through Materials To understand how a high-energy electron causes

  2. Time-Resolved Imaging of the Microbunching Instability and Energy Spread at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ratner, D.; Behrens, C.; Deutsches Elektronen-Synchrotron DESY, Hamburg; Ding, Y.; Huang, Z.; Marinelli, A.; Maxwell, T.; Zhou, F.

    2015-03-01T23:59:59.000Z

    The microbunching instability (MBI) is a well known problem for high brightness electron beams and has been observed at accelerator facilities around the world. Free-electron lasers (FELs) are particularly susceptible to MBI, which can distort the longitudinal phase space and increase the beam’s slice energy spread (SES). Past studies of MBI at the Linac Coherent Light Source (LCLS) relied on optical transition radiation to infer the existence of microbunching. With the development of the x-band transverse deflecting cavity (XTCAV), we can for the first time directly image the longitudinal phase space at the end of the accelerator and complete amore »comprehensive study of MBI, revealing both detailed MBI behavior as well as insights into mitigation schemes. The fine time resolution of the XTCAV also provides the first LCLS measurements of the final SES, a critical parameter for many advanced FEL schemes. Detailed MBI and SES measurements can aid in understanding MBI mechanisms, benchmarking simulation codes, and designing future high- brightness accelerators.« less

  3. Time-Resolved Imaging of the Microbunching Instability and Energy Spread at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ratner, D. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Behrens, C. [SLAC National Accelerator Laboratory SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Ding, Y. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Huang, Z. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Marinelli, A. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Maxwell, T. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Zhou, F. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States)

    2015-03-01T23:59:59.000Z

    The microbunching instability (MBI) is a well known problem for high brightness electron beams and has been observed at accelerator facilities around the world. Free-electron lasers (FELs) are particularly susceptible to MBI, which can distort the longitudinal phase space and increase the beam’s slice energy spread (SES). Past studies of MBI at the Linac Coherent Light Source (LCLS) relied on optical transition radiation to infer the existence of microbunching. With the development of the x-band transverse deflecting cavity (XTCAV), we can for the first time directly image the longitudinal phase space at the end of the accelerator and complete a comprehensive study of MBI, revealing both detailed MBI behavior as well as insights into mitigation schemes. The fine time resolution of the XTCAV also provides the first LCLS measurements of the final SES, a critical parameter for many advanced FEL schemes. Detailed MBI and SES measurements can aid in understanding MBI mechanisms, benchmarking simulation codes, and designing future high- brightness accelerators.

  4. Scintillating Fiber Array Characterization and Alignment for Neutron Imaging using the High Energy X-ray (HEX) Facility

    SciTech Connect (OSTI)

    Buckles, R. A., Ali, Z. A., Cradick, J. R., Traille, A. J., Warthan, W. A.

    2009-09-04T23:59:59.000Z

    The Neutron Imager diagnostic at the National Ignition Facility (NIF) located at Lawrence Livermore National Laboratory (LLNL) will produce high-resolution, gated images of neutron-generating implosions. A similar pinhole imaging experiment (PINEX) diagnostic was recently deployed at the Z facility at Sandia National Laboratories (SNL). Both the SNL and LLNL neutron imagers use similar fiber array scintillators (BCF-99-555). Despite diverse resolution and magnification requirements, both diagnostics put significant onus on the scintillator spatial quality and alignment precision to maintain optimal point spread. Characterization and alignment of the Z-PINEX scintillator and imaging system were done at NSTec/Livermore Operations in 2009, and is currently underway for the NIF Neutron Imager.

  5. Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    solener.2011.02.014, Solar Energy. Lave, M. , Kleissl, J. ,smoothing. Submitted to Solar Energy. Linke, F. , 1922.24th European Photovoltaic Solar Energy Conference, Hamburg,

  6. Sandia National Laboratories: Energy Storage Multimedia Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageEnergy Storage Multimedia Gallery Energy Storage Multimedia Gallery Images Videos Energy Storage Image Gallery Energy Storage B-Roll Videos Battery Abuse Testing Laboratory...

  7. Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    solar irradiation in Brazil, Solar Energy, 68, 91- 107, ISSNmaps for Brazil under SWERA project, Solar Energy, 81, 517-

  8. Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    smoothing. Submitted to Solar Energy. Linke, F. , 1922.24th European Photovoltaic Solar Energy Conference, Hamburg,solener.2011.02.014, Solar Energy. Lave, M. , Kleissl, J. ,

  9. Confocal coded aperture imaging

    DOE Patents [OSTI]

    Tobin, Jr., Kenneth William (Harriman, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  10. The Energy Spectrum of TeV $\\Gamma$-Rays from the Crab Nebula as measured by the HEGRA system of imaging air Cherenkov telescopes

    E-Print Network [OSTI]

    Aharonian, F A; Barrio, J A; Bernlöhr, K; Bojahr, H; Calle, I; Contreras, J L; Cortina, J; Denninghoff, S; Fonseca, V; González, J C; Götting, N; Heinzelmann, G; Hemberger, M; Hermann, G; Heusler, A; Hofmann, W; Horns, D; Ibarra, Alejandro; Kankanyan, R; Kestel, M; Kettler, J; Köhler, C; Kohnle, A; Konopelko, A K; Kornmayer, H; Kranich, D; Krawczynski, H; Lampeitl, H; Lindner, A; Lorenz, E; Lucarelli, F; Magnussen, N; Mang, O; Meyer, H; Mirzoian, R M; Moralejo, A; Padilla, L; Panter, M; Plaga, R; Plyasheshnikov, A V; Prahl, J; Pühlhofer, G; Rauterberg, G; Röhring, A; Sahakian, V V; Samorski, M; Schilling, M; Schmele, D; Schröder, F; Stamm, W; Tluczykont, M; Völk, H J; Wiebel-Sooth, B; Wiedner, C A; Willmer, M; Wittek, W

    2000-01-01T23:59:59.000Z

    The Crab Nebula has been observed by the HEGRA (High-Energy Gamma-Ray Astronomy) stereoscopic system of imaging air Cherenkov telescopes (IACTs) for a total of about 200 hrs during two observational campaigns: from September 1997 to March 1998 and from August 1998 to April 1999. The recent detailed studies of system performance give an energy threshold and an energy resolution for gamma-rays of 500 GeV and ~ 18, respectively. The Crab energy spectrum was measured with the HEGRA IACT system in a very broad energy range up to 20 TeV, using observations at zenith angles up to 65 degrees. The Crab data can be fitted in the energy range from 1 to 20 TeV by a simple power-law, which yields dJg/dE = (2.79+/-0.02 +/- 0.5) 10^{-7} E^{-2.59 +/- 0.03 +/- 0.05}, ph m^{-2} s^{-1} TeV^{-1} The Crab Nebula energy spectrum, as measured with the HEGRA IACT system, agrees within 15 0n the absolute scale and within 0.1 units in the power law index with the latest measurements by the Whipple, CANGAROO and CAT groups, consistent ...

  11. Global analysis of Fo rster resonance energy transfer in live cells measured by fluorescence lifetime imaging microscopy exploiting

    E-Print Network [OSTI]

    van Stokkum, Ivo

    Global analysis of Fo¨ rster resonance energy transfer in live cells measured by fluorescence of Fo¨ rster resonance energy transfer (FRET) in live cells using the rise time of acceptor fluorescence those molecules that are involved in the energy-transfer process are monitored. This contrasts

  12. European Photovoltaic Solar Energy Conference, Hamburg, Germany, 21-25 September 2009 IMAGING AND ANALYSIS OF PRE-BREAKDOWN SITES

    E-Print Network [OSTI]

    the current flow also results in local heating [6]. In photovoltaic modules, the temperature of those hot spots might be- come high enough to cause a damage of the module en- capsulation. Using infrared imaging are performed using an infrared camera with an MCT sensor sensitive in the wavelength range from 3.9 to 5 µm

  13. Image-based stochastic modeling of the 3D morphology of energy materials on various length scales

    E-Print Network [OSTI]

    Schmidt, Volker

    , to appear 3D image of uncompressed graphite electrode used in Li-ion batteries tomography: Helmholtz Center, 2013 | Volker Schmidt Contents Introduction 3D microstructure of uncompressed graphite electrodes 3D microstructure of compressed graphite electrodes 3D morphology of hybrid organic solar cells Charge transport

  14. Lensless imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless4 Lensless Imaging of

  15. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    19, 2013 This image shows the barred spiral galaxy NGC 1398. | Image courtesy of the Dark Energy Survey. Supercomputing: A Toolbox to Simulate the Big Bang and Beyond Learn...

  16. The initial conditions of isolated star formation. V: ISOPHOT imaging and the temperature and energy balance of pre-stellar cores

    E-Print Network [OSTI]

    D. Ward-Thompson; P. Andre; J. M. Kirk

    2001-09-11T23:59:59.000Z

    ISO data taken with the long-wavelength imaging photo-polarimeter ISOPHOT are presented of 18 pre-stellar cores at three far-infrared wavelengths - 90, 170 and 200 microns. Most of the cores are detected clearly at 170 and 200 but only one is detected strongly at 90 microns, indicating that mostly they are very cold, with typical temperatures of only 10-20K. Colour temperature images are constructed for each of the cores. Most of the cores are seen to be either isothermal, or to have associated temperature gradients from the core centres to their edges, with all except one being cooler at the centre. We compare the data with previous ISOCAM absorption data and calculate the energy balance for those cores in common between the two samples. We find that the energy radiated by each core in the far-IR is similar to that absorbed at shorter wavelengths. Hence there is no evidence for a central heating source in any of the cores - even those for which previous evidence for core contraction exists. This is all consistent with external heating of the cores by the local interstellar radiation field, confirming their pre-stellar nature.

  17. Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF

    SciTech Connect (OSTI)

    Ma, T.; Izumi, N.; Tommasini, R.; Bradley, D. K.; Bell, P.; Cerjan, C. J.; Dixit, S.; Doeppner, T.; Jones, O.; Landen, O. L.; LePape, S.; Mackinnon, A. J.; Park, H.-S.; Patel, P. K.; Prasad, R. R.; Ralph, J.; Smalyuk, V. A.; Springer, P. T.; Suter, L.; Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2012-10-15T23:59:59.000Z

    Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide broadband time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered implosions. This diagnostic measures the temperature- and density-sensitive bremsstrahlung emission and provides estimates of hot spot mass, mix mass, and pressure.

  18. Test Images

    E-Print Network [OSTI]

    Test Images. I hope to have a set of test images for the course soon. Some images are available now; some will have to wait until I can find another 100-200

  19. Image Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recognition Image Analysis and Recognition Snapshot1498121slicesqResedison Fibers permeating imaged material (Courtesy: Bale, Loring, Perciano and Ushizima) Imagery coming from...

  20. Time encoded radiation imaging

    DOE Patents [OSTI]

    Marleau, Peter; Brubaker, Erik; Kiff, Scott

    2014-10-21T23:59:59.000Z

    The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

  1. Nuclear medicine imaging system

    DOE Patents [OSTI]

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11T23:59:59.000Z

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  2. People Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    People Images People Images Several hundred of the 1700 U.S. scientists contributing to the LHC accelerator and experiments gathered in June 2008 in CERN's building 40 CE0252 Joel...

  3. Image alignment

    DOE Patents [OSTI]

    Dowell, Larry Jonathan

    2014-04-22T23:59:59.000Z

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  4. Atomic-Scale Chemical Imaging and Quantification of Metallic Alloy Structures by Energy-Dispersive X-Ray Spectroscopy

    SciTech Connect (OSTI)

    Lu, Ping [Sandia National Laboratories; Zhou, Lin [Ames Laboratory; Kramer, Matthew J. [Ames Laboratory; Smith, David J. [Arizona State University

    2014-02-04T23:59:59.000Z

    Determination of atomic-scale crystal structure for nanostructured intermetallic alloys, such as magnetic alloys containing Al, Ni, Co (alnico) and Fe, is crucial for understanding physical properties such as magnetism, but technically challenging due to the small interatomic distances and the similar atomic numbers. By applying energy-dispersive X-ray spectroscopy (EDS) mapping to the study of two intermetallic phases of an alnico alloy resulting from spinodal decomposition, we have determined atomic-scale chemical composition at individual lattice sites for the two phases: one is the B2 phase with Fe0.76Co0.24 -Fe0.40Co0.60 ordering and the other is the L21 phase with Ni0.48Co0.52 at A-sites, Al at B?-sites and Fe0.20Ti0.80 at B??-sites, respectively. The technique developed through this study represents a powerful real-space approach to investigate structure chemically at the atomic scale for a wide range of materials systems.

  5. SPIE Medical Imaging Medical Imaging

    E-Print Network [OSTI]

    Miga, Michael I.

    CT and SPECT (GE Hawkeye) SPIE Medical Imaging 2006 28 CT/PET System Combined CT and PET (Siemens Medical Imaging 2006 10 Computed Tomography (CT) 3D Tomography from multiple projections #12;6 SPIE: Scintillation Camera SPIE Medical Imaging 2006 26 PET and SPECT PET = Positron Emission Tomography SPECT

  6. Calibration method for video and radiation imagers

    DOE Patents [OSTI]

    Cunningham, Mark F. (Oak Ridge, TN); Fabris, Lorenzo (Knoxville, TN); Gee, Timothy F. (Oak Ridge, TN); Goddard, Jr., James S. (Knoxville, TN); Karnowski, Thomas P. (Knoxville, TN); Ziock, Klaus-peter (Clinton, TN)

    2011-07-05T23:59:59.000Z

    The relationship between the high energy radiation imager pixel (HERIP) coordinate and real-world x-coordinate is determined by a least square fit between the HERIP x-coordinate and the measured real-world x-coordinates of calibration markers that emit high energy radiation imager and reflect visible light. Upon calibration, a high energy radiation imager pixel position may be determined based on a real-world coordinate of a moving vehicle. Further, a scale parameter for said high energy radiation imager may be determined based on the real-world coordinate. The scale parameter depends on the y-coordinate of the moving vehicle as provided by a visible light camera. The high energy radiation imager may be employed to detect radiation from moving vehicles in multiple lanes, which correspondingly have different distances to the high energy radiation imager.

  7. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmerging ThreatsEmployment Openings

  8. Prospects for in vivo estimation of photon linear attenuation coefficients using postprocessing dual-energy CT imaging on a commercial scanner: Comparison of analytic and polyenergetic statistical reconstruction algorithms

    SciTech Connect (OSTI)

    Evans, Joshua D., E-mail: jevans2@mcvh-vcu.edu; Yu, Yaduo; Williamson, Jeffrey F. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)] [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Whiting, Bruce R. [Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States)] [Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States); O’Sullivan, Joseph A. [Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130 (United States)] [Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130 (United States); Politte, David G. [Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110 (United States)] [Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110 (United States); Klahr, Paul H. [Philips Healthcare, 595 Miner Rd., Highland Hts., Ohio 44143 (United States)] [Philips Healthcare, 595 Miner Rd., Highland Hts., Ohio 44143 (United States)

    2013-12-15T23:59:59.000Z

    Purpose: Accurate patient-specific photon cross-section information is needed to support more accurate model-based dose calculation for low energy photon-emitting modalities in medicine such as brachytherapy and kilovoltage x-ray imaging procedures. A postprocessing dual-energy CT (pDECT) technique for noninvasivein vivo estimation of photon linear attenuation coefficients has been experimentally implemented on a commercial CT scanner and its accuracy assessed in idealized phantom geometries. Methods: Eight test materials of known composition and density were used to compare pDECT-estimated linear attenuation coefficients to NIST reference values over an energy range from 10 keV to 1 MeV. As statistical image reconstruction (SIR) has been shown to reconstruct images with less random and systematic error than conventional filtered backprojection (FBP), the pDECT technique was implemented with both an in-house polyenergetic SIR algorithm, alternating minimization (AM), as well as a conventional FBP reconstruction algorithm. Improvement from increased spectral separation was also investigated by filtering the high-energy beam with an additional 0.5 mm of tin. The law of propagated uncertainty was employed to assess the sensitivity of the pDECT process to errors in reconstructed images. Results: Mean pDECT-estimated linear attenuation coefficients for the eight test materials agreed within 1% of NIST reference values for energies from 1 MeV down to 30 keV, with mean errors rising to between 3% and 6% at 10 keV, indicating that the method is unbiased when measurement and calibration phantom geometries are matched. Reconstruction with FBP and AM algorithms conferred similar mean pDECT accuracy. However, single-voxel pDECT estimates reconstructed on a 1 × 1 × 3 mm{sup 3} grid are shown to be highly sensitive to reconstructed image uncertainty; in some cases pDECT attenuation coefficient estimates exhibited standard deviations on the order of 20% around the mean. Reconstruction with the statistical AM algorithm led to standard deviations roughly 40% to 60% less than FBP reconstruction. Additional tin filtration of the high energy beam exhibits similar pDECT estimation accuracy as the unfiltered beam, even when scanning with only 25% of the dose. Using the law of propagated uncertainty, low Z materials are found to be more sensitive to image reconstruction errors than high Z materials. Furthermore, it is estimated that reconstructed CT image uncertainty must be limited to less than 0.25% to achieve a target linear-attenuation coefficient estimation uncertainty of 3% at 28 keV. Conclusions: That pDECT supports mean linear attenuation coefficient measurement accuracies of 1% of reference values for energies greater than 30 keV is encouraging. However, the sensitivity of the pDECT measurements to noise and systematic errors in reconstructed CT images warrants further investigation in more complex phantom geometries. The investigated statistical reconstruction algorithm, AM, reduced random measurement uncertainty relative to FBP owing to improved noise performance. These early results also support efforts to increase DE spectral separation, which can further reduce the pDECT sensitivity to measurement uncertainty.

  9. Fast neutron imaging device and method

    DOE Patents [OSTI]

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11T23:59:59.000Z

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  10. Energy

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (; ...) "..

  11. Does dual-energy CT of lower-extremity tendons incur penalties in patient radiation exposure or reduced multiplanar reconstruction image quality?

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    diagnostic value of dual-energy CT and MRI in the detectionusing dual-source dual-energy MDCT: Results of JAFROCfor dose reduction in dual energy hepatic CT using non-

  12. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    different... September 22, 2011 Brian Andrews is a former meter reader who now works with smart meter and intelligent grid projects. | Image courtesy of CenterPoint Energy. New...

  13. Buried object detection in GPR images

    DOE Patents [OSTI]

    Paglieroni, David W; Chambers, David H; Bond, Steven W; Beer, W. Reginald

    2014-04-29T23:59:59.000Z

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  14. ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM RecoveryManagement'sJuneAprilEMS U.S.

  15. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseCElizabethTwoJaniceEnerG2Energetics of Hydrogen .M

  16. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas

    SciTech Connect (OSTI)

    Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

    2008-02-27T23:59:59.000Z

    A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and v? on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and nuclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

  17. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas

    SciTech Connect (OSTI)

    Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

    2008-01-29T23:59:59.000Z

    A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1 MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and v? on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and uclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

  18. The U.S. Department of Energy's Brookhaven National Laboratory P.O. Box 5000, Upton NY 11973 631 344-2345 www.bnl.gov Medical Imaging

    E-Print Network [OSTI]

    · 631 344-2345 · www.bnl.gov FACTS (2/07) Medical Imaging Center for Translational Neuroimaging Tools and techniques to increase understanding of the human brain Scientists have made great advances in understanding be used to advance diagnosis and treatment. Brookhaven scientists are actively pursuing brain

  19. Analyzing the Quality of Supernovae Search Image Subtraction James Snitzer

    E-Print Network [OSTI]

    Cinabro, David

    . Scientists have attributed this to what is called dark energy. The purpose of the Dark Energy Survey (DES or object. Abstract Template and reference, or supernovae search images, of the same right ascension (RA with template images of the same RA and DEC, the template images are aligned and subtracted from the reference

  20. Solar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    February 14, 2014 The Ivanpah Solar Energy Generating System was dedicated on Thursday, February 13, 2014. | Photo courtesy of MingassonGetty Images for Bechtel. Making Solar...

  1. Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multi-scale dynamics of glycine receptors in the neuronal membrane

    E-Print Network [OSTI]

    Masson, Jean-Baptiste; Salvatico, Charlotte; Renner, Marianne; Specht, Christian G; Triller, Antoine; Dahan, Maxime

    2015-01-01T23:59:59.000Z

    Protein mobility is conventionally analyzed in terms of an effective diffusion. Yet, this description often fails to properly distinguish and evaluate the physical parameters (such as the membrane friction) and the biochemical interactions governing the motion. Here, we present a method combining high-density single-molecule imaging and statistical inference to separately map the diffusion and energy landscapes of membrane proteins across the cell surface at ~100 nm resolution (with acquisition of a few minutes). When applying these analytical tools to glycine neurotransmitter receptors (GlyRs) at inhibitory synapses, we find that gephyrin scaffolds act as shallow energy traps (~3 kBT) for GlyRs, with a depth modulated by the biochemical properties of the receptor-gephyrin interaction loop. In turn, the inferred maps can be used to simulate the dynamics of proteins in the membrane, from the level of individual receptors to that of the population, and thereby, to model the stochastic fluctuations of physiologi...

  2. Wavelets in medical imaging

    SciTech Connect (OSTI)

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H. [Sharda University, SET, Department of Electronics and Communication, Knowledge Park 3rd, Gr. Noida (India); University of Kocaeli, Department of Mathematics, 41380 Kocaeli (Turkey); Istanbul Aydin University, Department of Computer Engineering, 34295 Istanbul (Turkey); Sharda University, SET, Department of Mathematics, 32-34 Knowledge Park 3rd, Greater Noida (India)

    2012-07-17T23:59:59.000Z

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  3. Image-guided robots for dot-matrix tumor ablation

    E-Print Network [OSTI]

    Walsh, Conor James

    2010-01-01T23:59:59.000Z

    Advances in medical imaging now provides detailed images of solid tumors inside the body and miniaturized energy delivery systems enable tumor destruction through local heating powered by a thin electrode. However, the use ...

  4. Hyperspectral Imaging or Imaging Spectroscopy

    E-Print Network [OSTI]

    Gilbes, Fernando

    (nm) Cosmic Rays Gamma Rays X Rays Microwaves (Radar) Radio & Television WavesUV 105 106 107 108 109 the image cube by scanning through it. The conventional methods are whiskbroom (a), filter/Fourier transform Optics Scene FOVx X-Dimension Scanning Mechanism Focusing Optics #12;Whiskbroom Sensor Accumulation

  5. Imaging bolometer

    DOE Patents [OSTI]

    Wurden, Glen A. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    Radiation-hard, steady-state imaging bolometer. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas.

  6. Imaging bolometer

    DOE Patents [OSTI]

    Wurden, G.A.

    1999-01-19T23:59:59.000Z

    Radiation-hard, steady-state imaging bolometer is disclosed. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas. 2 figs.

  7. Multimode imaging device

    DOE Patents [OSTI]

    Mihailescu, Lucian; Vetter, Kai M

    2013-08-27T23:59:59.000Z

    Apparatus for detecting and locating a source of gamma rays of energies ranging from 10-20 keV to several MeV's includes plural gamma ray detectors arranged in a generally closed extended array so as to provide Compton scattering imaging and coded aperture imaging simultaneously. First detectors are arranged in a spaced manner about a surface defining the closed extended array which may be in the form a circle, a sphere, a square, a pentagon or higher order polygon. Some of the gamma rays are absorbed by the first detectors closest to the gamma source in Compton scattering, while the photons that go unabsorbed by passing through gaps disposed between adjacent first detectors are incident upon second detectors disposed on the side farthest from the gamma ray source, where the first spaced detectors form a coded aperture array for two or three dimensional gamma ray source detection.

  8. Heat Loss Measurement Using Infrared Imaging

    E-Print Network [OSTI]

    Seeber, S. A.

    1983-01-01T23:59:59.000Z

    levels for objects seen in the CRT. (Radiance levels refer to the amount of infrared energy produced by an object.) The conversion of these radiance compari sons to temperatures and heat flows will be discussed below. Infrared images may be recorded... radiance level comparisons since colors may be associated with particular temperature ranges. Black and white images may be colorized during the inspection process. Alternatively, the black and white images may be stored on magnetic tape and color...

  9. To the Graduate Council: I am submitting herewith a thesis written by Yue Zheng entitled "X-Ray Image

    E-Print Network [OSTI]

    Abidi, Mongi A.

    -ray imaging for airport luggage inspection and the characteristics of single-energy and dual-energy x-ray data single energy and dual energy x-ray images, are then presented in four categories: (1) gray based color-coding approaches and dual-energy image fusion algorithms --spatial information- based

  10. Nuclide Imaging: Planar Scintigraphy, SPECT, PET

    E-Print Network [OSTI]

    Suel, Torsten

    Capture · Also known as Beta Plus decay ­ A proton changes to a neutron, a positron (positive electron) · A nucleus (which is unstable) changes from a higher energy state to a lower energy state through: energy of each photon 2 4 r AE I = #12;EL5823 Nuclear Imaging Yao Wang, Polytechnic U., Brooklyn 9

  11. Career Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteriesmetal-organic frameworks | Center for GasCareer

  12. From Analog Objects to Digital Images

    E-Print Network [OSTI]

    van Vliet, Lucas J.

    of light, light as wave disturbance and light as quanta of energy. We introduce the concept of light as a wave disturbance to explain the imaging process in a microscope. It shows that the finite aperture of a lens system produces an upper limit to the frequency content of the imaged object. The quantum nature

  13. Covered Product Category: Imaging Equipment

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including imaging equipment, which is covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  14. Dissertation Imaging as Characterization Techniques

    E-Print Network [OSTI]

    Sites, James R.

    Telluride Photovoltaics The goal of increasing the efficiency of solar cell devices is a universal oneDissertation Imaging as Characterization Techniques for Thin-Film Cadmium Telluride Photovoltaics. Increased photovoltaic (PV) performance means an increase in competition with other energy tech- nologies

  15. aided ct image: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging X-rays Computed Tomography (CT) Positron Emission Tomography (PET 12;LSO-APD Array Schematic 12;Time-of-Flight PET 12;Energy Spectrum with lutetium...

  16. Imaging the Coso geothermal area crustal structure with an array...

    Open Energy Info (EERE)

    teleseismic events. Using array-processing techniques, we mitigate the effects of near surface scattered energy. Mini-arrays of seismometers allow for imaging of small-scale...

  17. Management of Scientific Images: an approach to the extraction, annotation and retrieval of figures in the field of High Energy Physics

    E-Print Network [OSTI]

    Praczyk, Piotr Adam; Mele, Salvatore

    The information environment of the first decade of the XXIst century is unprecedented. The physical barriers limiting access to the knowledge are disappearing as traditional methods of accessing information are being replaced or enhanced by computer systems. Digital systems are able to manage much larger sets of documents, confronting information users with the deluge of documents related to their topic of interest. This new situation created an incentive for the rapid development of Data Mining techniques and to the creation of more efficient search engines capable of limiting the search results to a small subset of the most relevant ones. However, most of the up to date search engines operate using the text descriptions of the documents. Those descriptions can either be extracted from the content of the document or be obtained from the external sources. The retrieval based on the non-textual content of documents is a subject of ongoing research. In particular, the retrieval of images and unlocking the infor...

  18. Photoacoustic phasoscopy super-contrast imaging

    SciTech Connect (OSTI)

    Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin, E-mail: yjzheng@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2014-05-26T23:59:59.000Z

    Phasoscopy is a recently proposed concept correlating electromagnetic (EM) absorption and scattering properties based on energy conservation. Phase information can be extracted from EM absorption induced acoustic wave and scattered EM wave for biological tissue characterization. In this paper, an imaging modality, termed photoacoustic phasoscopy imaging (PAPS), is proposed and verified experimentally based on phasoscopy concept with laser illumination. Both endogenous photoacoustic wave and scattered photons are collected simultaneously to extract the phase information. The PAPS images are then reconstructed on vessel-mimicking phantom and ex vivo porcine tissues to show significantly improved contrast than conventional photoacoustic imaging.

  19. STAR Images: Image gallery from the Solenoidal Tracker at RHIC

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The primary physics task of STAR is to study the formation and characteristics of the quark-gluon plasma (QGP), a state of matter believed to exist at sufficiently high energy densities. STAR consists of several types of detectors, each specializing in detecting certain types of particles or characterizing their motion. These detectors allow final statements to be made about the collision. The gallery of STAR images makes available a small collection of event-generated images from Gold-Beam experiments, a simulation of TCP Drift, and a library of STAR instrument and construction photos.

  20. Associated particle imaging (API)

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    Associated Particle Imaging (API) is an active neutron probe technique that provides a 3-D image with elemental composition of the material under interrogation, and so occupies a unique niche in the interrogation of unknown objects. The highly penetrating nature of neutrons enables API to provide detailed information about targets of interest that are hidden from view. Due to the isotropic nature of the induced reactions, radiation detectors can be set on the same side of the object as the neutron source, so that the object can be interrogated from a single side. At the heat of the system is a small generator that produces a continuous, monoenergetic flux of neutrons. By measuring the trajectory of coincident alpha particles that are produced as part of the process, the trajectory of the neutron can be inferred. Interactions between a neutron and the material in its path often produce a gamma ray whose energy is characteristic of that material. When the gamma ray is detected, its energy is measured and combined with the trajectory information to produce a 3-D image of the composition of the object being interrogated. During the course of API development, a number of improvements have been made. A new, more rugged sealed Tube Neutron Generator (STNG) has been designed and fabricated that is less susceptible to radiation damage and better able to withstand the rigors of fielding than earlier designs. A specialized high-voltage power supply for the STNG has also been designed and built. A complete package of software has been written for the tasks of system calibration, diagnostics and data acquisition and analysis. A portable system has been built and field tested, proving that API can be taken out of the lab and into real-world situations, and that its performance in the field is equal to that in the lab.

  1. Image processing applications in NDE

    SciTech Connect (OSTI)

    Morris, R.A.

    1980-01-01T23:59:59.000Z

    Nondestructive examination (NDE) can be defined as a technique or collection of techniques that permits one to determine some property of a material or object without damaging the object. There are a large number of such techniques and most of them use visual imaging in one form or another. They vary from holographic interferometry where displacements under stress are measured to the visual inspection of an objects surface to detect cracks after penetrant has been applied. The use of image processing techniques on the images produced by NDE is relatively new and can be divided into three general categories: classical image enhancement; mensuration techniques; and quantitative sensitometry. An example is discussed of how image processing techniques are used to nondestructively and destructively test the product throughout its life cycle. The product that will be followed is the microballoon target used in the laser fusion program. The laser target is a small (50 to 100 ..mu..m - dia) glass sphere with typical wall thickness of 0.5 to 6 ..mu..m. The sphere may be used as is or may be given a number of coatings of any number of materials. The beads are mass produced by the millions and the first nondestructive test is to separate the obviously bad beads (broken or incomplete) from the good ones. After this has been done, the good beads must be inspected for spherocity and wall thickness uniformity. The microradiography of the glass, uncoated bead is performed on a specially designed low-energy x-ray machine. The beads are mounted in a special jig and placed on a Kodak high resolution plate in a vacuum chamber that contains the x-ray source. The x-ray image is made with an energy less that 2 keV and the resulting images are then inspected at a magnification of 500 to 1000X. Some typical results are presented.

  2. Method for position emission mammography image reconstruction

    DOE Patents [OSTI]

    Smith, Mark Frederick

    2004-10-12T23:59:59.000Z

    An image reconstruction method comprising accepting coincidence datat from either a data file or in real time from a pair of detector heads, culling event data that is outside a desired energy range, optionally saving the desired data for each detector position or for each pair of detector pixels on the two detector heads, and then reconstructing the image either by backprojection image reconstruction or by iterative image reconstruction. In the backprojection image reconstruction mode, rays are traced between centers of lines of response (LOR's), counts are then either allocated by nearest pixel interpolation or allocated by an overlap method and then corrected for geometric effects and attenuation and the data file updated. If the iterative image reconstruction option is selected, one implementation is to compute a grid Siddon retracing, and to perform maximum likelihood expectation maiximization (MLEM) computed by either: a) tracing parallel rays between subpixels on opposite detector heads; or b) tracing rays between randomized endpoint locations on opposite detector heads.

  3. Femtosecond Transient Imaging

    E-Print Network [OSTI]

    Kirmani, Ahmed (Ghulam Ahmed)

    2010-01-01T23:59:59.000Z

    This thesis proposes a novel framework called transient imaging for image formation and scene understanding through impulse illumination and time images. Using time-of-flight cameras and multi-path analysis of global light ...

  4. Large Scale Computing Requirements for Basic Energy Sciences (An BES / ASCR / NERSC Workshop) Hilton Washington DC/Rockville Meeting Center, Rockville MD 3D Geophysical Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERNLandLarge

  5. Very High Energy gamma-ray observations of Mrk 501 using TACTIC imaging gamma-ray telescope during 2005-06

    E-Print Network [OSTI]

    Godambe, S V; Chandra, P; Yadav, K K; Tickoo, A K; Venugopal, K; Bhatt, N; Bhattacharya, S; Chanchalani, K; Dhar, V K; Goyal, H C; Kaul, R K; Kothari, M; Kotwal, S; Koul, M K; Koul, R; Sahaynathan, B S; Sharma, M; Thoudam, S

    2008-01-01T23:59:59.000Z

    In this paper we report on the Markarian 501 results obtained during our TeV $\\gamma$-ray observations from March 11 to May 12, 2005 and February 28 to May 7, 2006 for 112.5 hours with the TACTIC $\\gamma$-ray telescope. During 2005 observations for 45.7 hours, the source was found to be in a low state and we have placed an upper limit of 4.62 $\\times$ 10$^{-12}$ photons cm$^{-2}$ s$^{-1}$ at 3$\\sigma$ level on the integrated TeV $\\gamma$-ray flux above 1 TeV from the source direction. However, during the 2006 observations for 66.8h, detailed data analysis revealed the presence of a TeV $\\gamma$-ray signal from the source with a statistical significance of 7.5$\\sigma$ above $E_{\\gamma}\\geq$ 1 TeV. The time averaged differential energy spectrum of the source in the energy range 1-11 TeV is found to match well with the power law function of the form ($d\\Phi/dE=f_0 E^{-\\Gamma}$) with $f_0=(1.66\\pm0.52)\\times 10^{-11}cm^{-2}s^{-1}TeV^{-1}$ and $\\Gamma=2.80\\pm0.27$.

  6. Transform Methods in ImageTransform Methods in Image ProcessingProcessing

    E-Print Network [OSTI]

    Broughton, S. Allen

    × T (spatial × time) · scientific data: Dt = V (3D volume) · scientific data: Dt can be quite an arbitrary set imaging · denoising: part of restoration · compression: FBI finger print problem, JPEG image storage on a time or spatial domain (or combination) D=Dt X : Dt R or X : Dt C, · in general X L2(Dt ) · energy

  7. Imaging Sciences Workshop Proceedings

    SciTech Connect (OSTI)

    Candy, J.V.

    1996-11-21T23:59:59.000Z

    This report contains the proceedings of the Imaging Sciences Workshop sponsored by C.A.S.LS., the Center for Advanced Signal & Image Sciences. The Center, established primarily to provide a forum where researchers can freely exchange ideas on the signal and image sciences in a comfortable intellectual environment, has grown over the last two years with the opening of a Reference Library (located in Building 272). The Technical Program for the 1996 Workshop include a variety of efforts in the Imaging Sciences including applications in the Microwave Imaging, highlighted by the Micro-Impulse Radar (MIR) system invented at LLNL, as well as other applications in this area. Special sessions organized by various individuals in Speech, Acoustic Ocean Imaging, Radar Ocean Imaging, Ultrasonic Imaging, and Optical Imaging discuss various applica- tions of real world problems. For the more theoretical, sessions on Imaging Algorithms and Computed Tomography were organized as well as for the more pragmatic featuring a session on Imaging Systems.

  8. History Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbetand ModelingHigh-LevelHistoryHistoryHistory

  9. Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITER SubscribeIlya

  10. Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITER

  11. POLYMER IMAGING WITH FRESNEL PROJECTION MICROSCOPY VU THIEN BINH1

    E-Print Network [OSTI]

    Peters, Achim

    1 POLYMER IMAGING WITH FRESNEL PROJECTION MICROSCOPY VU THIEN BINH1 , V. SEMET1 and N. GARCIA2 1 exploited in a compact low-energy electron microscope: the Fresnel Projection Microscope. Images size of the sources. The result is a high-resolution, low-energy electron microscope, the "Fresnel

  12. Synthetic aperture integration (SAI) algorithm for SAR imaging

    DOE Patents [OSTI]

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W; Beer, N. Reginald

    2013-07-09T23:59:59.000Z

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  13. Spot restoration for GPR image post-processing

    DOE Patents [OSTI]

    Paglieroni, David W; Beer, N. Reginald

    2014-05-20T23:59:59.000Z

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  14. Spatially adaptive migration tomography for multistatic GPR imaging

    DOE Patents [OSTI]

    Paglieroni, David W; Beer, N. Reginald

    2013-08-13T23:59:59.000Z

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  15. Processing Visual Images

    SciTech Connect (OSTI)

    Litke, Alan (UC Santa Cruz) [UC Santa Cruz

    2006-03-27T23:59:59.000Z

    The back of the eye is lined by an extraordinary biological pixel detector, the retina. This neural network is able to extract vital information about the external visual world, and transmit this information in a timely manner to the brain. In this talk, Professor Litke will describe a system that has been implemented to study how the retina processes and encodes dynamic visual images. Based on techniques and expertise acquired in the development of silicon microstrip detectors for high energy physics experiments, this system can simultaneously record the extracellular electrical activity of hundreds of retinal output neurons. After presenting first results obtained with this system, Professor Litke will describe additional applications of this incredible technology.

  16. Seismic Imaging and Monitoring

    SciTech Connect (OSTI)

    Huang, Lianjie [Los Alamos National Laboratory

    2012-07-09T23:59:59.000Z

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  17. 12 Days of Energy Savings | Department of Energy

    Office of Environmental Management (EM)

    Keep in the holiday spirit while saving energy by using timer controls to turn holiday lights on and off at specific times. Image: Sarah Gerrity, Energy Department Day 9: Use LED...

  18. Reaction product imaging

    SciTech Connect (OSTI)

    Chandler, D.W. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01T23:59:59.000Z

    Over the past few years the author has investigated the photochemistry of small molecules using the photofragment imaging technique. Bond energies, spectroscopy of radicals, dissociation dynamics and branching ratios are examples of information obtained by this technique. Along with extending the technique to the study of bimolecular reactions, efforts to make the technique as quantitative as possible have been the focus of the research effort. To this end, the author has measured the bond energy of the C-H bond in acetylene, branching ratios in the dissociation of HI, the energetics of CH{sub 3}Br, CD{sub 3}Br, C{sub 2}H{sub 5}Br and C{sub 2}H{sub 5}OBr dissociation, and the alignment of the CD{sub 3} fragment from CD{sub 3}I photolysis. In an effort to extend the technique to bimolecular reactions the author has studied the reaction of H with HI and the isotopic exchange reaction between H and D{sub 2}.

  19. Nuclear medicine imaging system

    DOE Patents [OSTI]

    Bennett, Gerald W. (East Moriches, NY); Brill, A. Bertrand (Shoreham, NY); Bizais, Yves J. C. (Upton, NY); Rowe, R. Wanda (Upton, NY); Zubal, I. George (Upton, NY)

    1986-01-01T23:59:59.000Z

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  20. Quantum Mirrors and Crossing Symmetry as Heart of Ghost Imaging

    E-Print Network [OSTI]

    D. B. Ion; M. L. Ion; L. Rusu

    2009-04-27T23:59:59.000Z

    In this paper it is proved that the key to understanding the ghost imaging mystery are the crossing symmetric photon reactions in the nonlinear media. Hence, the laws of the plane quantum mirror (QM) and that of spherical quantum mirror, observed in the ghost imaging experiments, are obtained as natural consequences of the energy-momentum conservation laws. So, it is shown that the ghost imaging laws depend only on the energy-momentum conservation and not on the photons entanglement. The extension of these results to the ghost imaging with other kind of light is discussed. Some fundamental experiments for a decisive tests of the [SPDC-DFG]-quantum mirror are suggested.

  1. NETL's High-Speed Imaging System Successfully Applied in Medicine, Broad Spectrum of Industry

    Broader source: Energy.gov [DOE]

    A groundbreaking Department of Energy-developed imaging system originally designed to help create cleaner fossil energy processes is finding successful applications in a wide range of medical, chemical processing, energy, and other industries.

  2. Imaging in radiotherapy

    SciTech Connect (OSTI)

    Taylor, J.

    1987-01-01T23:59:59.000Z

    The text contains details of recording media, image quality, sensitometry, processing and equipment used in radiotherapy for imaging. It reflects part of the syllabus for the College of Radiographers.

  3. Moving Energy

    SciTech Connect (OSTI)

    Rameau, Jon; Crabtree, George; Greene, Laura; Kwok, Wai; Johnson, Peter; Tsvelik, Alexei [Artist

    2013-07-18T23:59:59.000Z

    Representing the Center for Emergent Superconductivity (CES), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of the CES is to discover new high-temperature superconductors and improve the performance of known superconductors by understanding the fundamental physics of superconductivity.

  4. Consumers' Image of Broilers.

    E-Print Network [OSTI]

    Courtenay, Henry V.; Branson, Robert E.

    1962-01-01T23:59:59.000Z

    which they feel the product possesses. This research was designed to determine consumers' favorable and unfavorable images as to broilers, both in making purchases in stores and in serving them as a meat dish. These images, summarized briefly here... count. The Preparation and Cooking Image: The h0u.l wife's image of broilers focuses on one metliotl- frying. The major deterrent to preparing othci dishes was that these are either too difficult or canno* be prepared satisfactorily...

  5. Imaging with Scattered Neutrons

    E-Print Network [OSTI]

    H. Ballhausen; H. Abele; R. Gaehler; M. Trapp; A. Van Overberghe

    2006-10-30T23:59:59.000Z

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-resolution images by scattered neutron radiography and tomography are presented.

  6. OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets August 27, 2013 | Tags: Basic Energy...

  7. Leveraging Tribal Renewable Resources to Support Military Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leveraging Tribal Renewable Resources to Support Military Energy Goals Leveraging Tribal Renewable Resources to Support Military Energy Goals May 30-31, 2013 Image of a speaker at...

  8. Near-electrode imager

    DOE Patents [OSTI]

    Rathke, Jerome W. (Lockport, IL); Klingler, Robert J. (Westmont, IL); Woelk, Klaus (Wachtberg, DE); Gerald, II, Rex E. (Brookfield, IL)

    2000-01-01T23:59:59.000Z

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager uses the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  9. Human Functional Brain Imaging

    E-Print Network [OSTI]

    Rambaut, Andrew

    Human Functional Brain Imaging 1990­2009 September 2011 Portfolio Review #12;2 | Portfolio Review: Human Functional Brain ImagingThe Wellcome Trust is a charity registered in England and Wales, no's role in supporting human functional brain imaging and have informed `our' speculations for the future

  10. Human Functional Brain Imaging

    E-Print Network [OSTI]

    Rambaut, Andrew

    Human Functional Brain Imaging 1990­2009 September 2011 Portfolio Review Summary Brain Imaging #12 Dale ­ one of our first Trustees. Understanding the brain remains one of our key strategic aims today three-fold: · to identify the key landmarks and influences on the human functional brain imaging

  11. Medical imaging systems

    DOE Patents [OSTI]

    Frangioni, John V

    2013-06-25T23:59:59.000Z

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  12. Magnetic Imaging Wolfgang Kuch

    E-Print Network [OSTI]

    Kuch, Wolfgang

    Magnetic Imaging Wolfgang Kuch Freie Universit¨at Berlin, Institut f¨ur Experimentalphysik, Arnimallee 14, 14195 Berlin, Germany kuch@physik.fu-berlin.de Abstract. Imaging of magnetic domains has- ern techniques is used nowadays routinely for magnetic imaging of magnetic ma- terials

  13. Automation in image cytometry : continuous HCS and kinetic image cytometry

    E-Print Network [OSTI]

    Charlot, David J.

    2012-01-01T23:59:59.000Z

    OF CALIFORNIA, SAN DIEGO Automation in Image Cytometry:xiv Abstract of Dissertation Automation in Image Cytometry:

  14. Sandia Energy - Wake Imaging Measurement System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the flowfield. The objective of the project is to deploy the system at the Scaled Wind Farm Technology (SWiFT) facility to demonstrate the technology in a field...

  15. INTERSTELLAR NEUTRAL ATOMS AT 1 AU OBSERVED BY THE IMAGE/LENA IMAGER

    SciTech Connect (OSTI)

    Fuselier, S. A.; Ghielmetti, A. G. [Lockheed Martin Advanced Technology Center, Palo Alto, CA (United States); Wurz, P. [Physikalishes Institut, University of Bern, CH-3012, Bern (Switzerland)], E-mail: Stephen.a.fuselier@lmco.com, E-mail: gmetti@mail.spasci.com, E-mail: peter.wurz@space.unibe.ch

    2009-06-20T23:59:59.000Z

    Observations from the Imager for Magnetopause to Aurora: Global Exploration (IMAGE) Low Energy Neutral Atom (LENA) imager from 2005 are used to investigate characteristics of interstellar neutrals in the inner solar system. The LENA imager detected an interstellar neutral signal starting in 2004 December and extending to early 2005 April. Using the orientation of the field of view of the imager and the date of the loss of the interstellar neutral signal, it is concluded that the signal is consistent with a relatively compact (several degrees wide in ecliptic latitude and longitude) source of neutral helium and/or energetic (>150 eV) hydrogen originating from the solar apex direction. Observations later in 2005 are used to distinguish the composition and conclude that the relatively compact source likely contains some energetic hydrogen (in addition to the helium)

  16. Minimal Stereoscopic Analysis for Imaging Atmospheric Cherenkov Telescope Arrays

    E-Print Network [OSTI]

    S. LeBohec; C. Duke; P. Jordan

    2006-08-15T23:59:59.000Z

    The trajectory of a primary gamma-ray detected with an array of at least four atmospheric Cherenkov imaging telescopes can be reconstructed from the shower image centroid positions and geometrical considerations independent of the primary energy. Using only the image centroid positions some cosmic-ray discrimination is also possible. This minimal approach opens the possibility of pushing the analysis threshold to lower values, close to the hardware threshold.

  17. Quantum Crossing Symmetry as Heart of Ghost Imaging

    E-Print Network [OSTI]

    D. B. Ion; M. L. Ion; L. Rusu

    2008-11-28T23:59:59.000Z

    In this paper it is shown that the key to understanding the ghost imaging mystery are the crossing symmetric photon reactions in the nonlinear media. Then, an intuitive mechanism for the description of the ghost imaging in terms of the quantum mirror (QM) is presented. Moreover, we prove that the ghost imaging laws depend only on the energy-momentum conservation and not on the photons entanglement.

  18. The Neutron Imaging Diagnostic at NIF

    SciTech Connect (OSTI)

    Merrill, F E; Buckles, R; Clark, D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherly, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H

    2012-10-01T23:59:59.000Z

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of ICF implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  19. Policies and Programs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    options, interconnection processes, and others. Learn more about distributed generation policies and programs. Renewable Energy: Utility-Scale Image of power lines....

  20. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News ReleasesDepartmentLending a HandImaging of

  1. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News ReleasesDepartmentLending a HandImaging

  2. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless Imaging of Magnetic

  3. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless Imaging of MagneticLensless

  4. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless Imaging of

  5. Method and apparatus for imaging and documenting fingerprints

    DOE Patents [OSTI]

    Fernandez, Salvador M. (Hartford, CT)

    2002-01-01T23:59:59.000Z

    The invention relates to a method and apparatus for imaging and documenting fingerprints. A fluorescent dye brought in intimate proximity with the lipid residues of a latent fingerprint is caused to fluoresce on exposure to light energy. The resulting fluorescing image may be recorded photographically.

  6. IMAGE COMPRESSION USING SPLINE BASED WAVELET TRANSFORMS

    E-Print Network [OSTI]

    Averbuch, Amir

    known codec. Keywords: Sample, edited book Introduction The three fundamental building blocks with one well known codec. 0.1. Wavelet Based Image Coders Wavelet transforms provide very good energy of partitioning, aggregation and conditional coding­ PACC. Following these concepts, the data object emerging from

  7. Spectral characterization of storage phosphor imaging plates

    SciTech Connect (OSTI)

    Deresch, A.; Jechow, M.; Gollwitzer, C. [Federal Institute for Materials Research and Testing Unter den Eichen 87, 12205 Berlin (Germany)

    2014-02-18T23:59:59.000Z

    This work presents attenuation and sensitivity measurements of radiographic imaging plates (IPs) with quasimonoenergetic X-rays in the 8–60 kiloelectronvolt range. The measurements are used to validate theoretical predictions. A short overview of the theoretical model is given. The model can be used to describe the sensitivity of different detector types to a wide range of X-ray energies.

  8. Video Toroid Cavity Imager

    DOE Patents [OSTI]

    Gerald, Rex E. II; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10T23:59:59.000Z

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  9. T.H.J.J. van der Hagen Imaging Science &

    E-Print Network [OSTI]

    Engineering / CE F. Kapteijn Materials for Energy Conversion and Storage / MECS B. Dam Nanostructured Imaging / QI L.J. van Vliet Quantum Nanoscience / QN L.P. Kouwenhoven Molecular Electronics and Devices

  10. annular dark-field images: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: field scanning transmission electron microscopy (HAADF-STEM), STEM-energy-dispersive X-ray spectrometry nanoparticles. The image contrast in HAADF-STEM is...

  11. Quantitative luminescence imaging system

    DOE Patents [OSTI]

    Erwin, D.N.; Kiel, J.L.; Batishko, C.R.; Stahl, K.A.

    1990-08-14T23:59:59.000Z

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopic imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber. 22 figs.

  12. Quantitative luminescence imaging system

    DOE Patents [OSTI]

    Erwin, David N. (San Antonio, TX); Kiel, Johnathan L. (San Antonio, TX); Batishko, Charles R. (West Richland, WA); Stahl, Kurt A. (Richland, WA)

    1990-01-01T23:59:59.000Z

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  13. BNL | ICS Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    due to the phase-contrast effect. This method will be useful for quantitative computed tomography applications of Thomson sources. High-resolution radiographic image of a wasp...

  14. Ferroelectric optical image comparator

    DOE Patents [OSTI]

    Butler, M.A.; Land, C.E.; Martin, S.J.; Pfeifer, K.B.

    1993-11-30T23:59:59.000Z

    A ferroelectric optical image comparator has a lead lanthanum zirconate titanate thin-film device which is constructed with a semi-transparent or transparent conductive first electrode on one side of the thin film, a conductive metal second electrode on the other side of the thin film, and the second electrode is in contact with a nonconducting substrate. A photoinduced current in the device represents the dot product between a stored image and an image projected onto the first electrode. One-dimensional autocorrelations are performed by measuring this current while displacing the projected image. 7 figures.

  15. Restoring functional PET Images using Anatomical MR Images

    E-Print Network [OSTI]

    Mosegaard, Klaus

    Restoring functional PET Images using Anatomical MR Images Peter Philipsen, Ulrik Kjems, Peter Toft signal to noise ratio and the low spa­ tial resolution in Positron Emission Tomography (PET) images ? And Positron Emission Tomography (PET) Images? ffl Segmentation of MR Images ­ Extraction of important edges

  16. Compression of Computer Graphics Images with Image-Based Rendering

    E-Print Network [OSTI]

    Shahabi, Cyrus

    Compression of Computer Graphics Images with Image-Based Rendering Ilmi Yoon and Ulrich Neumann information from previously rendered images. Images predicted from prior images are combined with a residual-based rendering tech- nique provides accurate motion prediction and accelerates rendering at the same time

  17. On Compton Imaging

    E-Print Network [OSTI]

    Mattafirri, Sara

    2010-01-01T23:59:59.000Z

    energy, the expression for the kinetic energy of the=1 gives an expression for the minimum kinetic energy of the=1 gives an expression for the minimum kinetic energy of the

  18. Wind Energy Development & Wildlife Striving for Co-existence

    E-Print Network [OSTI]

    McCalley, James D.

    Wind Energy Development & Wildlife ­ Striving for Co-existence Caroline Jezierski Nebraska Wind #12;Wind Energy Potential @ 30m http://www.nrel.gov/gis/images/30m_US_Wind.jpg #12;Wind Energy Potential @ 50m http://www.nrel.gov/gis/images/US-50m-wind-power-map.jpg #12;Wind Energy Potential @ 80m

  19. Coherent hybrid electromagnetic field imaging

    DOE Patents [OSTI]

    Cooke, Bradly J. (Jemez Springs, NM); Guenther, David C. (Los Alamos, NM)

    2008-08-26T23:59:59.000Z

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  20. Adaptive wiener image restoration kernel

    DOE Patents [OSTI]

    Yuan, Ding (Henderson, NV)

    2007-06-05T23:59:59.000Z

    A method and device for restoration of electro-optical image data using an adaptive Wiener filter begins with constructing imaging system Optical Transfer Function, and the Fourier Transformations of the noise and the image. A spatial representation of the imaged object is restored by spatial convolution of the image using a Wiener restoration kernel.

  1. Scandinavian Workshop on Imaging

    E-Print Network [OSTI]

    Mosegaard, Klaus

    Barcode Imaging of Chocolate Milk Quan.fica.on of Microstructures in Freeze.on of Fat Content in Raw Beef Cut Meat Evalua.on by RGB-to-spectrum Imaging.on to Visualizing Meat Products Characteriza.on of Commercial Danish Apple Cul.var Using Novel

  2. Heart imaging method

    DOE Patents [OSTI]

    Collins, H. Dale (Richland, WA); Gribble, R. Parks (Richland, WA); Busse, Lawrence J. (Littleton, CO)

    1991-01-01T23:59:59.000Z

    A method for providing an image of the human heart's electrical system derives time-of-flight data from an array of EKG electrodes and this data is transformed into phase information. The phase information, treated as a hologram, is reconstructed to provide an image in one or two dimensions of the electrical system of the functioning heart.

  3. DOUBLE MAJORS Imaging Science + ...

    E-Print Network [OSTI]

    Zanibbi, Richard

    DOUBLE MAJORS Imaging Science + ... Applied Mathematics Biomedical Sciences Computer Science Undergraduate Research Internships and Cooperative Education (Co-op) (optional) Study Abroad WHY IMAGING SCIENCE Science: BS, MS, PhD Color Science: MS, PhD BS + MS/PhD Combos HUMAN VISION BIO- MEDICAL ASTRO- PHYSICS

  4. Fluorescent image tracking velocimeter

    DOE Patents [OSTI]

    Shaffer, Franklin D. (Library, PA)

    1994-01-01T23:59:59.000Z

    A multiple-exposure fluorescent image tracking velocimeter (FITV) detects and measures the motion (trajectory, direction and velocity) of small particles close to light scattering surfaces. The small particles may follow the motion of a carrier medium such as a liquid, gas or multi-phase mixture, allowing the motion of the carrier medium to be observed, measured and recorded. The main components of the FITV include: (1) fluorescent particles; (2) a pulsed fluorescent excitation laser source; (3) an imaging camera; and (4) an image analyzer. FITV uses fluorescing particles excited by visible laser light to enhance particle image detectability near light scattering surfaces. The excitation laser light is filtered out before reaching the imaging camera allowing the fluoresced wavelengths emitted by the particles to be detected and recorded by the camera. FITV employs multiple exposures of a single camera image by pulsing the excitation laser light for producing a series of images of each particle along its trajectory. The time-lapsed image may be used to determine trajectory and velocity and the exposures may be coded to derive directional information.

  5. Medical imaging systems

    DOE Patents [OSTI]

    Frangioni, John V. (Wayland, MA)

    2012-07-24T23:59:59.000Z

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  6. J Math Imaging Vis (2012) 44:168184 DOI 10.1007/s10851-011-0319-6

    E-Print Network [OSTI]

    Boccuto, Antonio

    2012-01-01T23:59:59.000Z

    , or the third order. The energy function that implicitly refers to discontinuities is called dual energy. Keywords Image restoration problem · Regularization · Dual energy functions · Graduated non-convexity A

  7. Imaging Gene Expression | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot SpringsemployedImagerImaging

  8. Imaging Lithium Air Electrodes | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot SpringsemployedImagerImagingNeutron

  9. Sandia National Laboratories: CSP Images & Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Images & Videos CSP Images & Videos Image Gallery Videos Concentrating Solar Power Image Gallery A picture says a thousand words, especially on the World Wide Web. Both Sandia...

  10. Ghost Imaging with Blackbody Radiation

    E-Print Network [OSTI]

    Yangjian Cai; Shiyao Zhu

    2004-07-29T23:59:59.000Z

    We present a theoretical study of ghost imaging by using blackbody radiation source. A Gaussian thin lens equation for the ghost imaging, which depends on both paths, is derived. The dependences of the visibility and quality of the image on the transverse size and temperature of the blackbody are studied. The main differences between the ghost imaging by using the blackbody radiation and by using the entangled photon pairs are image-forming equation, and the visibility and quality of the image

  11. Statement of Work Third Party Algorithm Development and Evaluation of Detection of Liquid Explosives in Dual-Energy Digital Radiographic/TIP Ready X-ray Images - Public Version

    SciTech Connect (OSTI)

    Nekoogar, F; Martz, Jr., H E

    2009-09-23T23:59:59.000Z

    The purpose of this statement of work is for third party collaborators to train, validate and have Lawrence Livermore National Security, LLC (LLNS) evaluate algorithms to detect liquid threats in digital radiography (DR)/TIP Ready X-ray (TRX) images that will be provided by LLNS through the Transportation and Security Administration (TSA). LLNS will provide a set of images with threat(s) to determine detection rates and non-threat images from airports to determine false alarm rates. A key including a bounding box showing the locations of the threats and non-threats will be provided for the images. It is expected that the Subcontractor shall use half of the images with their keys for training the algorithms and the other half shall be used for validation (third party evaluation) purposes. The Subcontractor shall not use the key to the second half of the data other than for the validation and reporting of the performance of its algorithm (not for training). The Subcontractor has 45 business days from the receipt of datasets and the Subcontract to: (1) Run their detection/classification algorithms on the data; (2) Deliver a final report describing their performance by generating Receiver Operator Characteristic (ROC) curves using their algorithm; and (3) Deliver a copy of the third party's executable software (already trained and validated by the datasets) to LLNL accompanied by a user manual. LLNS will evaluate the performance of the same algorithm on another separate set of data. LLNS evaluation of the Subcontractor's algorithm will be documented in a final report within 30 days of receiving the executable code. This report will be sent to TSA and the report may be disseminated to the Subcontract at TSA's discretion.

  12. Scanning computed confocal imager

    DOE Patents [OSTI]

    George, John S. (Los Alamos, NM)

    2000-03-14T23:59:59.000Z

    There is provided a confocal imager comprising a light source emitting a light, with a light modulator in optical communication with the light source for varying the spatial and temporal pattern of the light. A beam splitter receives the scanned light and direct the scanned light onto a target and pass light reflected from the target to a video capturing device for receiving the reflected light and transferring a digital image of the reflected light to a computer for creating a virtual aperture and outputting the digital image. In a transmissive mode of operation the invention omits the beam splitter means and captures light passed through the target.

  13. Performance enhancement approaches for a dual energy x-ray

    E-Print Network [OSTI]

    Fu, Kenneth

    2010-01-01T23:59:59.000Z

    Evans, J.P.O. , “Stereoscopic dual energy imaging for targetCrawford, C.R. , “Dual Energy Volumetric X-ray Tomographicimages in 4–10 MeV Dual- energy customs system for material

  14. Method and apparatus for atomic imaging

    DOE Patents [OSTI]

    Saldin, Dilano K. (Milwaukee, WI); de Andres Rodriquez, Pedro L. (Madrid, ES)

    1993-01-01T23:59:59.000Z

    A method and apparatus for three dimensional imaging of the atomic environment of disordered adsorbate atoms are disclosed. The method includes detecting and measuring the intensity of a diffuse low energy electron diffraction pattern formed by directing a beam of low energy electrons against the surface of a crystal. Data corresponding to reconstructed amplitudes of a wave form is generated by operating on the intensity data. The data corresponding to the reconstructed amplitudes is capable of being displayed as a three dimensional image of an adsorbate atom. The apparatus includes a source of a beam of low energy electrons and a detector for detecting the intensity distribution of a DLEED pattern formed at the detector when the beam of low energy electrons is directed onto the surface of a crystal. A device responsive to the intensity distribution generates a signal corresponding to the distribution which represents a reconstructed amplitude of a wave form and is capable of being converted into a three dimensional image of the atomic environment of an adsorbate atom on the crystal surface.

  15. Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture

    DOE Patents [OSTI]

    Lassahn, Gordon D.; Lancaster, Gregory D.; Apel, William A.; Thompson, Vicki S.

    2013-01-08T23:59:59.000Z

    Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture are described. According to one embodiment, an image portion identification method includes accessing data regarding an image depicting a plurality of biological substrates corresponding to at least one biological sample and indicating presence of at least one biological indicator within the biological sample and, using processing circuitry, automatically identifying a portion of the image depicting one of the biological substrates but not others of the biological substrates.

  16. Image Content Engine (ICE)

    SciTech Connect (OSTI)

    Brase, J M

    2007-03-26T23:59:59.000Z

    The Image Content Engine (ICE) is being developed to provide cueing assistance to human image analysts faced with increasingly large and intractable amounts of image data. The ICE architecture includes user configurable feature extraction pipelines which produce intermediate feature vector and match surface files which can then be accessed by interactive relational queries. Application of the feature extraction algorithms to large collections of images may be extremely time consuming and is launched as a batch job on a Linux cluster. The query interface accesses only the intermediate files and returns candidate hits nearly instantaneously. Queries may be posed for individual objects or collections. The query interface prompts the user for feedback, and applies relevance feedback algorithms to revise the feature vector weighting and focus on relevant search results. Examples of feature extraction and both model-based and search-by-example queries are presented.

  17. Overview of Image Reconstruction

    SciTech Connect (OSTI)

    Marr, R.B.

    1980-04-01T23:59:59.000Z

    Image reconstruction (or computerized tomography, etc.) is any process whereby a function, f, on Rn is estimated from empirical data pertaining to its integrals, ∫f(x) dx, for some collection of hyperplanes of dimension k < n. The paper begins with background information on how image reconstruction problems have arisen in practice, and describes some of the application areas of past or current interest; these include radioastronomy, optics, radiology and nuclear medicine, electron microscopy, acoustical imaging, geophysical tomography, nondestructive testing, and NMR zeugmatography. Then the various reconstruction algorithms are discussed in five classes: summation, or simple back-projection; convolution, or filtered back-projection; Fourier and other functional transforms; orthogonal function series expansion; and iterative methods. Certain more technical mathematical aspects of image reconstruction are considered from the standpoint of uniqueness, consistency, and stability of solution. The paper concludes by presenting certain open problems. 73 references. (RWR)

  18. Photothermal imaging scanning microscopy

    DOE Patents [OSTI]

    Chinn, Diane (Pleasanton, CA); Stolz, Christopher J. (Lathrop, CA); Wu, Zhouling (Pleasanton, CA); Huber, Robert (Discovery Bay, CA); Weinzapfel, Carolyn (Tracy, CA)

    2006-07-11T23:59:59.000Z

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  19. Restoring functional PET Images using Anatomical MR Images

    E-Print Network [OSTI]

    Mosegaard, Klaus

    Restoring functional PET Images using Anatomical MR Images Peter Alshede Philipsen, Ulrik Kjems,uk,pto,lkh@imm.dtu.dk Abstract In this paper we present a Bayesian method to enhance functional 3D PET images using apriori as a true PET­MR result, and further more show how to obtain the desired information from the MR images. 1

  20. Reflective optical imaging system

    DOE Patents [OSTI]

    Shafer, David R. (Fairfield, CT)

    2000-01-01T23:59:59.000Z

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.

  1. AN APPROACH FOR INTERSUBJECT ANALYSIS OF 3D BRAIN IMAGES BASED ON CONFORMAL GEOMETRY

    E-Print Network [OSTI]

    Hua, Jing

    ABSTRACT Recent advances in imaging technologies, such as Magnetic Resonance Imaging (MRI), Positron technologies have accelerated brain research in many aspects [10, 12, 13]. In order to enable comparison that it minimizes the landmark mismatch energy [4] and Wang et al. introduced the application of compound energy

  2. Spatially assisted down-track median filter for GPR image post-processing

    DOE Patents [OSTI]

    Paglieroni, David W; Beer, N Reginald

    2014-10-07T23:59:59.000Z

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  3. Zero source insertion technique to account for undersampling in GPR imaging

    DOE Patents [OSTI]

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W

    2014-02-25T23:59:59.000Z

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  4. Real-time system for imaging and object detection with a multistatic GPR array

    DOE Patents [OSTI]

    Paglieroni, David W; Beer, N Reginald; Bond, Steven W; Top, Philip L; Chambers, David H; Mast, Jeffrey E; Donetti, John G; Mason, Blake C; Jones, Steven M

    2014-10-07T23:59:59.000Z

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  5. Characterization of Diffraction-Enhanced Imaging

    SciTech Connect (OSTI)

    Kao, T.; Connor, D; Dilmanian, F; Faulconer, L; Liu, T; Parham, C; Pisano, E; Zhong, Z

    2009-01-01T23:59:59.000Z

    Diffraction-enhanced imaging (DEI) is a new x-ray imaging modality that has been shown to enhance contrast between normal and cancerous breast tissues. In this study, diffraction-enhanced imaging in computed tomography (DEI-CT) mode was used to quantitatively characterize the refraction contrasts of the organized structures associated with invasive human breast cancer. Using a high-sensitivity Si (3 3 3) reflection, the individual features of breast cancer, including masses, calcifications and spiculations, were observed. DEI-CT yields 14, 5 and 7 times higher CT numbers and 10, 9 and 6 times higher signal-to-noise ratios (SNR) for masses, calcifications and spiculations, respectively, as compared to conventional CT of the same specimen performed using the same detector, x-ray energy and dose. Furthermore, DEI-CT at ten times lower dose yields better SNR than conventional CT. In light of the recent development of a compact DEI prototype using an x-ray tube as its source, these results, acquired at a clinically relevant x-ray energy for which a pre-clinical DEI prototype currently exists, suggest the potential of clinical implementation of mammography with DEI-CT to provide high-contrast, high-resolution images of breast cancer (Parham 2006 PhD Dissertation University of North Carolina at Chapel Hill).

  6. Three Dimensional Molecular Imaging for Lignocellulosic Materials

    SciTech Connect (OSTI)

    Bohn, Paul W.; Sweedler, Jonathan V.

    2011-06-09T23:59:59.000Z

    The development of high efficiency, inexpensive processing protocols to render biomass components into fermentable substrates for the sequential processing of cell wall components into fuels and important feedstocks for the biorefinery of the future is a key goal of the national roadmap for renewable energy. Furthermore, the development of such protocols depends critically on detailed knowledge of the spatial and temporal infiltration of reagents designed to remove and separate the phenylpropenoid heteropolymer (lignin) from the processable sugar components sequestered in the rigid cell walls of plants. A detailed chemical and structural understanding of this pre-enzymatic processing in space and time was the focus of this program. We worked to develop new imaging strategies that produce real-time molecular speciation information in situ; extract sub-surface information about the effects of processing; and follow the spatial and temporal characteristics of the molecular species in the matrix and correlate this complex profile with saccharification. Spatially correlated SIMS and Raman imaging were used to provide high quality, high resolution subcellular images of Miscanthus cross sections. Furthermore, the combination of information from the mass spectrometry and Raman scattering allows specific chemical assignments of observed structures, difficult to assign from either imaging approach alone and lays the foundation for subsequent heterocorrelated imaging experiments targeted at more challenging biological systems, such as the interacting plant-microbe systems relevant to the rhizosphere.

  7. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    SciTech Connect (OSTI)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2014-11-01T23:59:59.000Z

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors conclude that Cerenkov light imaging of proton-induced positron is promising for proton therapy.

  8. BAYESIAN ENSEMBLE LEARNING FOR MEDICAL IMAGE DENOISING

    E-Print Network [OSTI]

    Oh, Hyuntaek

    2012-08-31T23:59:59.000Z

    Medical images are often affected by random noise because of both image acquisition from the medical modalities and image transmission from modalities to workspace in the main computer. Medical image denoising removes noise from the CT or MR images...

  9. Dark Energy Camera for Blanco

    SciTech Connect (OSTI)

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25T23:59:59.000Z

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.

  10. Sandia National Laboratories: News: Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear SecurityHomelandImage Gallery

  11. Feasibility of an image planning system for kilovoltage image-guided radiation therapy

    SciTech Connect (OSTI)

    Thapa, Bishnu B.; Molloy, Janelle A. [Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky 40536-0293 (United States)

    2013-06-15T23:59:59.000Z

    Purpose: Image guidance has become a standard of care for many treatment scenarios in radiation therapy. This is most typically accomplished by use of kV x-ray devices mounted onto the linear accelerator (Linac) gantry that yield planar, fluoroscopic, and cone-beam computed tomography (CBCT) images. Image acquisition parameters are chosen via preset techniques that rely on broad categorizations in patient anatomy and imaging goal. However, the optimal imaging technique results in detectability of the features of interest while exposing the patient to minimum dose. Herein, the authors present an investigation into the feasibility of developing an image planning system (IPS) for radiotherapy.Methods: In this first phase, the authors focused on developing an algorithm to predict tissue contrast produced by a common radiotherapy planar imaging chain. Input parameters include a CT dataset and simulated planar imaging technique settings that include kV and mAs. Energy-specific attenuation through each voxel of the CT dataset was calculated in the algorithm to derive a net transmitted intensity. The response of the flat panel detector was integrated into the image simulation algorithm. Verification was conducted by comparing simulated and measured images using four phantoms. Comparisons were made in both high and low contrast settings, as well as changes in the geometric appearance due to image saturation. Results: The authors studied a lung nodule test object to assess the planning system's ability to predict object contrast and detectability. Verification demonstrated that the slope of the pixel intensities is similar, the presence of the nodule is evident, and image saturation at high mAs values is evident in both images. The appearance of the lung nodule is a function of the image detector saturation. The authors assessed the dimensions of the lung nodule in measured and simulated images. Good quantitative agreement affirmed the algorithm's predictive capabilities. The invariance of contrast with kVp and mAs prior to saturation was predicted, as well as the gradual loss of object detectability as saturation was approached. Small changes in soft tissue density were studied using a mammography step wedge phantom. Data were acquired at beam qualities of 80 and 120 kVp and over exposure values ranging from 0.04 to 500 mAs. The data showed good agreement in terms of the absolute value of pixel intensities predicted, as well as small variations across the step wedge pattern. The saturation pixel intensity was consistent between the two beam qualities studied. Boney tissue contrast was assessed using two abdominal phantoms. Measured and calculated values agree in terms of predicting the mAs value at which detector saturation, and subsequent loss of contrast occurs. The lack of variation in contrast over mAs values lower than 10 suggests that there is wide latitude for minimizing patient dose. Conclusions: The authors developed and tested an algorithm that can be used to assist in kV imaging technique selection during localization for radiotherapy. Phantom testing demonstrated the algorithm's predictive accuracy for both low and high contrast imaging scenarios. Detector saturation with subsequent loss of imaging detail, both in terms of object size and contrast were accurately predicted by the algorithm.

  12. Experimental validation of a transport-based imaging method in highly scattering environments

    E-Print Network [OSTI]

    Bal, Guillaume

    wave energy data are used to reconstruct extended inclusions buried in scattering me- dia or hidden://www.columbia.edu/kr2002 1 #12;or equivalently for the wave energy density. One of the simplest models for the wave energy, one measures the statistically more robust wave energy density. Imaging in random media thus be- comes

  13. Deconvolution imaging conditions and cross-talk suppression Travis L. Poole1

    E-Print Network [OSTI]

    the possi- bility of eliminating crosstalk i.e., energy in the image due to reflected energy arriving at a location at the same time as inci- dent energy that did not cause the reflected energy when the full up thus reducing the risk of interfaces be- ing identified where they do not really exist. Finally

  14. Coded Aperture Imaging for Fluorescent X-rays-Biomedical Applications

    SciTech Connect (OSTI)

    Haboub, Abdel; MacDowell, Alastair; Marchesini, Stefano; Parkinson, Dilworth

    2013-06-01T23:59:59.000Z

    Employing a coded aperture pattern in front of a charge couple device pixilated detector (CCD) allows for imaging of fluorescent x-rays (6-25KeV) being emitted from samples irradiated with x-rays. Coded apertures encode the angular direction of x-rays and allow for a large Numerical Aperture x- ray imaging system. The algorithm to develop the self-supported coded aperture pattern of the Non Two Holes Touching (NTHT) pattern was developed. The algorithms to reconstruct the x-ray image from the encoded pattern recorded were developed by means of modeling and confirmed by experiments. Samples were irradiated by monochromatic synchrotron x-ray radiation, and fluorescent x-rays from several different test metal samples were imaged through the newly developed coded aperture imaging system. By choice of the exciting energy the different metals were speciated.

  15. Multispectral imaging probe

    DOE Patents [OSTI]

    Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.

    1999-07-27T23:59:59.000Z

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.

  16. Variable waveband infrared imager

    DOE Patents [OSTI]

    Hunter, Scott R.

    2013-06-11T23:59:59.000Z

    A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

  17. Matter & Energy Solar Energy

    E-Print Network [OSTI]

    Rogers, John A.

    See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

  18. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Federal buildings which begin the planning process by 2020 to achieve zero-net energy by 2030 PotentialEnergy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Dr. Sunita of Energy Military Energy and Alternative Fuels Conference March 17-18, 2010 San Diego, CA #12;2 1. Overview

  19. Imaging detectors and electronics - A view of the future

    SciTech Connect (OSTI)

    Spieler, Helmuth

    2004-06-16T23:59:59.000Z

    Imaging sensors and readout electronics have made tremendous strides in the past two decades. The application of modern semiconductor fabrication techniques and the introduction of customized monolithic integrated circuits have made large scale imaging systems routine in high energy physics. This technology is now finding its way into other areas, such as space missions, synchrotron light sources, and medical imaging. I review current developments and discuss the promise and limits of new technologies. Several detector systems are described as examples of future trends. The discussion emphasizes semiconductor detector systems, but I also include recent developments for large-scale superconducting detector arrays.

  20. image superimposition | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Science Computing Facility: Quiet Wing Science Theme: Biosystem Dynamics & Design Terrestrial & Subsurface Ecosystems Energy Materials & Processes Atmospheric...

  1. National Clean Energy Business Plan Competition: Six Regional...

    Energy Savers [EERE]

    won the ACC Clean Energy Challenge for its software system that addresses cyber and control challenges facing the power grid. Image: Courtesy of Georgia Institute of...

  2. Inspiring and Building the Next Generation of Residential Energy...

    Energy Savers [EERE]

    and Mark Grimsrud. Image: Dennis Schroeder, National Renewable Energy Laboratory Second Win 8 of 10 Second Win Building Technologies Office Chief Architect Sam Rashkin (second...

  3. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOE Patents [OSTI]

    Engelstad, B.L.; Raymond, K.N.; Huberty, J.P.; White, D.L.

    1991-04-23T23:59:59.000Z

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided. No Drawings

  4. Time-Encoded Imagers.

    SciTech Connect (OSTI)

    Marleau, Peter; Brubaker, Erik

    2014-11-01T23:59:59.000Z

    This report provides a short overview of the DNN R&D funded project, Time-Encoded Imagers. The project began in FY11 and concluded in FY14. The Project Description below provides the overall motivation and objectives for the project as well as a summary of programmatic direction. It is followed by a short description of each task and the resulting deliverables.

  5. Fundamentals of Image Processing

    E-Print Network [OSTI]

    Erdem, Erkut

    Fourier transform Log power spectrum #12;Review - The Convolution Theorem · The Fourier transform components · Fourier (1807): Periodic functions could be represented as a weighted sum of sines and cosines Image courtesy of Technology Review #12;Review - Fourier Transform We want to understand

  6. \\NeuroImage" Informatics

    E-Print Network [OSTI]

    Nielsen, Finn Ã?rup

    International Neuroimaging Consortium Introduction Author cocitation analysis describes a scienti#12;c #12;eld on data collected by the Institute of Scien- ti#12;c Information among a limited set of key au- thors within a #12;eld. Here we work on data from a single journal (the journal \\NeuroImage") down- loaded from

  7. Efficient MR image reconstruction for compressed MR imaging Junzhou Huang

    E-Print Network [OSTI]

    Huang, Junzhou

    to be very powerful for the MR image reconstruction. First, we decompose the original problem into L1 and TV.V. All rights reserved. 1. Introduction Magnetic Resonance (MR) imaging has been widely used in medical. Computation became the bottleneck that prevented this good model (1) from being used in practical MR image

  8. Efficient MR Image Reconstruction for Compressed MR Imaging

    E-Print Network [OSTI]

    Huang, Junzhou

    demonstrate the superior performance of the proposed algorithm for com- pressed MR image reconstruction. 1 [1][2] show that it is possi- ble to accurately reconstruct the Magnetic Resonance (MR) images from for real MR images. Computation became the bottleneck that prevented this good model (1) from being used

  9. Fluid Imaging of Enhanced Geothermal Systems

    Broader source: Energy.gov (indexed) [DOE]

    for Fluids & Fractures - time lapse MTCSEM for fluid imaging - joint CSEM-MTseismic imaging ??? - use MEQ focal information with EM Imaging ScientificTechnical Approach...

  10. Learn how to develop your own net energy producing, alternative energy home.

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    Learn how to develop your own net energy producing, alternative energy home. The program consists of images and description of the development of the Alternative Energy Program at SNC from 1971 lower utility bills as well as improving home comfort. Ben Solomon is a Professor of Alternative Energy

  11. Mammographic quantitative image analysis and biologic image composition for breast lesion characterization and classification

    SciTech Connect (OSTI)

    Drukker, Karen, E-mail: kdrukker@uchicago.edu; Giger, Maryellen L.; Li, Hui [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States)] [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Duewer, Fred; Malkov, Serghei; Joe, Bonnie; Kerlikowske, Karla; Shepherd, John A. [Radiology Department, University of California, San Francisco, California 94143 (United States)] [Radiology Department, University of California, San Francisco, California 94143 (United States); Flowers, Chris I. [Department of Radiology, University of South Florida, Tampa, Florida 33612 (United States)] [Department of Radiology, University of South Florida, Tampa, Florida 33612 (United States); Drukteinis, Jennifer S. [Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612 (United States)] [Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612 (United States)

    2014-03-15T23:59:59.000Z

    Purpose: To investigate whether biologic image composition of mammographic lesions can improve upon existing mammographic quantitative image analysis (QIA) in estimating the probability of malignancy. Methods: The study population consisted of 45 breast lesions imaged with dual-energy mammography prior to breast biopsy with final diagnosis resulting in 10 invasive ductal carcinomas, 5 ductal carcinomain situ, 11 fibroadenomas, and 19 other benign diagnoses. Analysis was threefold: (1) The raw low-energy mammographic images were analyzed with an established in-house QIA method, “QIA alone,” (2) the three-compartment breast (3CB) composition measure—derived from the dual-energy mammography—of water, lipid, and protein thickness were assessed, “3CB alone”, and (3) information from QIA and 3CB was combined, “QIA + 3CB.” Analysis was initiated from radiologist-indicated lesion centers and was otherwise fully automated. Steps of the QIA and 3CB methods were lesion segmentation, characterization, and subsequent classification for malignancy in leave-one-case-out cross-validation. Performance assessment included box plots, Bland–Altman plots, and Receiver Operating Characteristic (ROC) analysis. Results: The area under the ROC curve (AUC) for distinguishing between benign and malignant lesions (invasive and DCIS) was 0.81 (standard error 0.07) for the “QIA alone” method, 0.72 (0.07) for “3CB alone” method, and 0.86 (0.04) for “QIA+3CB” combined. The difference in AUC was 0.043 between “QIA + 3CB” and “QIA alone” but failed to reach statistical significance (95% confidence interval [–0.17 to + 0.26]). Conclusions: In this pilot study analyzing the new 3CB imaging modality, knowledge of the composition of breast lesions and their periphery appeared additive in combination with existing mammographic QIA methods for the distinction between different benign and malignant lesion types.

  12. Regina, Saskatchewan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:bJumpRedSeismic Imaging,

  13. Energy Conservation Renewable Energy

    E-Print Network [OSTI]

    Delgado, Mauricio

    Energy Conservation Renewable Energy The Future at Rutgers University Facilities & Capital Planning Operations & Services Utilities Operations 6 Berrue Circle Piscataway, NJ 08854 #12;Energy Conservation Wh C ti ? R bl EWhy Conservation? Renewable Energy · Climate control reduces green house gases · Reduces

  14. Fourier Analysis of Ghost Imaging

    E-Print Network [OSTI]

    Honglin Liu; Jing Cheng; Yanfeng Bai; Shensheng Han

    2006-09-28T23:59:59.000Z

    Fourier analysis of ghost imaging (FAGI) is proposed in this paper to analyze the properties of ghost imaging with thermal light sources. This new theory is compatible with the general correlation theory of intensity fluctuation and could explain some amazed phenomena. Furthermore we design a series of experiments to verify the new theory and investigate the inherent properties of ghost imaging.

  15. Automated Very Low Magnification Imaging

    E-Print Network [OSTI]

    of the entire available imaging area on the grid. The VLM image can then be used as a reference map of Illinois at Urbana- Champaign, Urbana, IL 61801. A typical TEM specimen grid provides approximately a 2x2 mm area that is available for imaging. In order to identify and locate suitable targets on the grid

  16. NREL: Transportation Research - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmissionResearch Cutaway image of an

  17. Acoustic imaging microscope

    DOE Patents [OSTI]

    Deason, Vance A.; Telschow, Kenneth L.

    2006-10-17T23:59:59.000Z

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  18. User Science Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    but sodium and chloride being blocked. SlavaFull.png FES: Small Scale Experimental Plasma Research October 21, 2010 | Author(s): Vyacheslav Lukin (NRL) | Category: Fusion Energy |...

  19. Imaging XPS | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a single layer of carbon atoms, has the potential to significantly improve supercapacitors for energy storage and delivery. However, it is... Enzyme evaluation Posted:...

  20. Manhattan Project: Events Images

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1Army

  1. Task-based strategy for optimized contrast enhanced breast imaging: Analysis of six imaging techniques for mammography and tomosynthesis

    SciTech Connect (OSTI)

    Ikejimba, Lynda C., E-mail: lci@duke.edu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Kiarashi, Nooshin [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States)] [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States); Ghate, Sujata V. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States)] [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States) [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27705 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705 (United States); Lo, Joseph Y. [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States) [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705 (United States)

    2014-06-15T23:59:59.000Z

    Purpose: The use of contrast agents in breast imaging has the capability of enhancing nodule detectability and providing physiological information. Accordingly, there has been a growing trend toward using iodine as a contrast medium in digital mammography (DM) and digital breast tomosynthesis (DBT). Widespread use raises concerns about the best way to use iodine in DM and DBT, and thus a comparison is necessary to evaluate typical iodine-enhanced imaging methods. This study used a task-based observer model to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: unsubtracted mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Methods: Imaging performance was characterized using a detectability index d{sup ?}, derived from the system task transfer function (TTF), an imaging task, iodine signal difference, and the noise power spectrum (NPS). The task modeled a 10 mm diameter lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d{sup ?} was generated as a function of dose and iodine concentration. Results: For all iodine concentrations and dose, temporal subtraction techniques for mammography and tomosynthesis yielded the highest d{sup ?}, while dual energy techniques for both modalities demonstrated the next best performance. Unsubtracted imaging resulted in the lowest d{sup ?} values for both modalities, with unsubtracted mammography performing the worst out of all six paradigms. Conclusions: At any dose, temporal subtraction imaging provides the greatest detectability, with temporally subtracted DBT performing the highest. The authors attribute the successful performance to excellent cancellation of inplane structures and improved signal difference in the lesion.

  2. THE NATIONAL COMMISSION ON ENERGY POLICY December 2004

    E-Print Network [OSTI]

    Laughlin, Robert B.

    ENERGY SUPPLIES 41 Introduction 41 A. Natural Gas 44 B. Advanced Coal Technologies 51 C. Nuclear EnergyTHE NATIONAL COMMISSION ON ENERGY POLICY December 2004 ENDING THE ENERGY STALEMATE A Bipartisan Strategy to Meet America's Energy Challenges #12;Cover: U.S. Government Satellite Images: Western

  3. Energy and Environment H A&S 220d Spring 2009

    E-Print Network [OSTI]

    and energy history of energy demand and development ....fossil fuels connections with evolution alternative#12;Energy and Environment ­ H A&S 220d Spring 2009 Peter Rhines Marcela Ewert with Eric Lindahl radiation imagers.gsfc.nasa.gov/ems/uv.html www.odysseymagazine.com/images #12;Energy can be `concentrated

  4. Ultra-high resolution computed tomography imaging

    DOE Patents [OSTI]

    Paulus, Michael J. (Knoxville, TN); Sari-Sarraf, Hamed (Knoxville, TN); Tobin, Jr., Kenneth William (Harriman, TN); Gleason, Shaun S. (Knoxville, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2002-01-01T23:59:59.000Z

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  5. Imaging the Antikythera Mechanism

    SciTech Connect (OSTI)

    Malzbender, Tom (Hewlett Packard Laboratories) [Hewlett Packard Laboratories

    2011-01-12T23:59:59.000Z

    In 1900, a party of sponge divers chanced on the wreck of a Roman merchant vessel between Crete and mainland Greece. It was found to contain numerous ancient Greek treasures, among them a mysterious lump of clay that split open to reveal 'mathematical gears' as it dried out. This object is now known as the Antikythera Mechanism, one of the most enlightening artifacts in terms of revealing the advanced nature of ancient Greek science and technology. In 2005 we travelled to the National Archeological Museum in Athens to apply our Reflectance Imaging methods to the mechanism in the hopes of revealing ancient writing on the device. We were successful, and along with the results of Microfocus CT imaging, we are able to decipher 3000 characters compared with the original 800 known. This lead to an understanding that the device was a mechanical, astronomical computer from 150 B.C.E. capable of predicting solar and lunar eclipses along with other celestial events. This talk will overview both the imaging methods as well as what they reveal about the Antikythera Mechanism.

  6. Fiducial marker for correlating images

    DOE Patents [OSTI]

    Miller, Lisa Marie (Rocky Point, NY); Smith, Randy J. (Wading River, NY); Warren, John B. (Port Jefferson, NY); Elliott, Donald (Hampton Bays, NY)

    2011-06-21T23:59:59.000Z

    The invention relates to a fiducial marker having a marking grid that is used to correlate and view images produced by different imaging modalities or different imaging and viewing modalities. More specifically, the invention relates to the fiducial marking grid that has a grid pattern for producing either a viewing image and/or a first analytical image that can be overlaid with at least one other second analytical image in order to view a light path or to image different imaging modalities. Depending on the analysis, the grid pattern has a single layer of a certain thickness or at least two layers of certain thicknesses. In either case, the grid pattern is imageable by each imaging or viewing modality used in the analysis. Further, when viewing a light path, the light path of the analytical modality cannot be visualized by viewing modality (e.g., a light microscope objective). By correlating these images, the ability to analyze a thin sample that is, for example, biological in nature but yet contains trace metal ions is enhanced. Specifically, it is desired to analyze both the organic matter of the biological sample and the trace metal ions contained within the biological sample without adding or using extrinsic labels or stains.

  7. Speckle-free laser imaging

    E-Print Network [OSTI]

    Redding, Brandon; Cao, Hui

    2011-01-01T23:59:59.000Z

    Many imaging applications require increasingly bright illumination sources, motivating the replacement of conventional thermal light sources with light emitting diodes (LEDs), superluminescent diodes (SLDs) and lasers. Despite their brightness, lasers and SLDs are poorly suited for full-field imaging applications because their high spatial coherence leads to coherent artifacts known as speckle that corrupt image formation. We recently demonstrated that random lasers can be engineered to provide low spatial coherence. Here, we exploit the low spatial coherence of specifically-designed random lasers to perform speckle-free full-field imaging in the setting of significant optical scattering. We quantitatively demonstrate that images generated with random laser illumination exhibit higher resolution than images generated with spatially coherent illumination. By providing intense laser illumination without the drawback of coherent artifacts, random lasers are well suited for a host of full-field imaging applicatio...

  8. Bistatic SAR: Imagery & Image Products.

    SciTech Connect (OSTI)

    Yocky, David A.; Wahl, Daniel E.; Jakowatz, Charles V,

    2014-10-01T23:59:59.000Z

    While typical SAR imaging employs a co-located (monostatic) RADAR transmitter and receiver, bistatic SAR imaging separates the transmitter and receiver locations. The transmitter and receiver geometry determines if the scattered signal is back scatter, forward scatter, or side scatter. The monostatic SAR image is backscatter. Therefore, depending on the transmitter/receiver collection geometry, the captured imagery may be quite different that that sensed at the monostatic SAR. This document presents imagery and image products formed from captured signals during the validation stage of the bistatic SAR research. Image quality and image characteristics are discussed first. Then image products such as two-color multi-view (2CMV) and coherent change detection (CCD) are presented.

  9. Casimir Energy in a Conical Wedge and a Conical Cavity

    E-Print Network [OSTI]

    H. Ahmedov; I. H. Duru

    2004-08-26T23:59:59.000Z

    Casimir energy for a massless scalar field for a conical wedge and a conical cavity are calculated. The group generated by the images is employed in deriving the Green functions as well as the wave functions and the energy spectrum.

  10. POLYMER IMAGING WITH FRESNEL PROJECTION MICROSCOPY VU THIEN BINH 1 , V. SEMET 1 and N. GARCIA 2

    E-Print Network [OSTI]

    Peters, Achim

    1 POLYMER IMAGING WITH FRESNEL PROJECTION MICROSCOPY VU THIEN BINH 1 , V. SEMET 1 and N. GARCIA 2 1 exploited in a compact low­energy electron microscope: the Fresnel Projection Microscope. Images size of the sources. The result is a high­resolution, low­energy electron microscope, the "Fresnel

  11. Staring 2-D hadamard transform spectral imager

    DOE Patents [OSTI]

    Gentry, Stephen M. (Albuquerque, NM); Wehlburg, Christine M. (Albuquerque, NM); Wehlburg, Joseph C. (Albuquerque, NM); Smith, Mark W. (Albuquerque, NM); Smith, Jody L. (Albuquerque, NM)

    2006-02-07T23:59:59.000Z

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  12. Status of thermal imaging technology as applied to conservation-update 1

    SciTech Connect (OSTI)

    Snow, F.J.; Wood, J.T.; Barthle, R.C.

    1980-07-01T23:59:59.000Z

    This document updates the 1978 report on the status of thermal imaging technology as applied to energy conservation in buildings. Thermal imaging technology is discussed in terms of airborne surveys, ground survey programs, and application needs such as standards development and lower cost equipment. Information on the various thermal imaging devices was obtained from manufacturer's standard product literature. Listings are provided of infrared projects of the DOE building diagnostics program, of aerial thermographic firms, and of aerial survey programs. (LCL)

  13. A Novel Linear Accelerator For Image Guided Radiation Therapy

    SciTech Connect (OSTI)

    Ding Xiaodong; Boucher, Salime [RadiaBeam Technologies, 1717 Stewart St., Santa Monica, CA 90404 (United States)

    2011-06-01T23:59:59.000Z

    RadiaBeam is developing a novel linear accelerator which produces both kilovoltage ({approx}100 keV) X-rays for imaging, and megavoltage (6 to 20 MeV) X-rays for therapy. We call this system the DEXITron: Dual Energy X-ray source for Imaging and Therapy. The Dexitron is enabled by an innovation in the electromagnetic design of the linac, which allows the output energy to be rapidly switched from high energy to low energy. In brief, the method involves switching the phase of the radiofrequency (RF) power by 180 degrees at some point in the linac such that, after that point, the linac decelerates the beam, rather than accelerating it. The Dexitron will have comparable cost to other linacs, and avoids the problems associated with current IGRT equipment.

  14. Device for wavelength-selective imaging

    DOE Patents [OSTI]

    Frangioni, John V. (Wayland, MA)

    2010-09-14T23:59:59.000Z

    An imaging device captures both a visible light image and a diagnostic image, the diagnostic image corresponding to emissions from an imaging medium within the object. The visible light image (which may be color or grayscale) and the diagnostic image may be superimposed to display regions of diagnostic significance within a visible light image. A number of imaging media may be used according to an intended application for the imaging device, and an imaging medium may have wavelengths above, below, or within the visible light spectrum. The devices described herein may be advantageously packaged within a single integrated device or other solid state device, and/or employed in an integrated, single-camera medical imaging system, as well as many non-medical imaging systems that would benefit from simultaneous capture of visible-light wavelength images along with images at other wavelengths.

  15. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect (OSTI)

    Merrill, F E; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H

    2012-08-01T23:59:59.000Z

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  16. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    new Federal buildings which begin the planning process by 2020 to achieve zero net energy by 2030zero-net

  17. Multi-Material Decomposition Using Statistical Image Reconstruction in X-Ray CT

    E-Print Network [OSTI]

    Fessler, Jeffrey A.

    and Jeffrey A. Fessler Abstract--Dual-energy (DE) CT scans provide two sets of measurements at two different-mean-square (RMS) errors. Index Terms--Computed tomography, dual energy, multi- material decomposition, statistical image reconstruction I. INTRODUCTION Dual-energy (DE) CT reconstruction methods typically re- construct

  18. Blog Feed: Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    its North American debut at the Petit Le Mans in Georgia next Saturday. | Department of Energy Image | Photo by Erin Pierce Hybrid-Electric Porsche GT3R to Make North American...

  19. Low cost Image Transmission System

    SciTech Connect (OSTI)

    Skogmo, D.

    1994-06-01T23:59:59.000Z

    Throughout the Department of Energy (DOE) complex, sites protect themselves with intrusion detection systems. Some of these systems have sensors in remote areas. These sensors frequently alarm -- not because they have detected a terrorist skulking around the area, but because they have detected a horse, or a dog, or a bush moving in the breeze. Even though the local security force is 99% sure there is no real threat, they must assess each of these nuisance or false alarms. Generally, the procedure consists of dispatching an inspector to drive to the area and make an assessment. This is expensive in terms of manpower and the assessment is not timely. Often, by the time the inspector arrives, the cause of the alarm has vanished. A television camera placed to view the area protected by the sensor could be used to help in this assessment, but this requires the installation of high-quality cable, optical fiber, or a microwave link. Further, to be of use at the present time, the site must have had the foresight to have installed these facilities in the past and have them ready for use now. What is needed is a device to place between the television camera and a modem connecting to a low-bandwidth channel such as radio or a telephone line. This paper discusses the development of such a device: an Image Transmission System, or ITS.

  20. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    National Harbor #12;U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector 2 #12 · Efficiencies can be 60% (electrical) and 85% (with CHP) · > 90% reduction in criteria pollutants U.S. Department of Energy #12;7 Market Transformation Government acquisitions could significantly reduce the cost

  1. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News ReleasesDepartmentLendingX-Ray Imaging in

  2. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News ReleasesDepartmentLendingX-Ray Imaging

  3. Lensless MAD Imaging of Nonperiodic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless Imaging of4LenslessLensless

  4. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless Imaging

  5. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless ImagingLensless X-Ray

  6. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless ImagingLensless

  7. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless ImagingLenslessLensless

  8. WIPP - Passive Institutional Controls (PICs) Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural CommunitiesSchoolWindCompletionPICs Images

  9. First Direct Imaging of Swollen Microgel Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancing OpportunitiesDirect Evidence ofDirect Imaging

  10. First Direct Imaging of Swollen Microgel Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancing OpportunitiesDirect EvidenceDirect Imaging of

  11. Los Alamos imager aboard IBEX space mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is YourAwardspublicexceeds waste shipping goalImager aboard

  12. Fiji/ImageJ at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget »Travel andFifth Annual RadWaste SummitImageJ

  13. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal Financial Interventions andDirect Imaging of

  14. Direct Imaging of Antiferromagnetic Vortex States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal Financial Interventions andDirect Imaging

  15. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal Financial InterventionsDirect Imaging of

  16. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal Financial InterventionsDirect Imaging

  17. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederal Financial InterventionsDirect ImagingDirect

  18. Superconductive imaging surface magnetometer

    DOE Patents [OSTI]

    Overton, Jr., William C. (Los Alamos, NM); van Hulsteyn, David B. (Santa Fe, NM); Flynn, Edward R. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  19. Radiation imaging apparatus

    DOE Patents [OSTI]

    Anger, Hal O. (Berkeley, CA); Martin, Donn C. (Berkeley, CA); Lampton, Michael L. (Berkeley, CA)

    1983-01-01T23:59:59.000Z

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally.

  20. Radiation imaging apparatus

    DOE Patents [OSTI]

    Anger, H.O.; Martin, D.C.; Lampton, M.L.

    1983-07-26T23:59:59.000Z

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally. 15 figs.

  1. Sandia Energy - Installation Energy Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Installation Energy Security Home Stationary Power Grid Modernization Resilient Electric Infrastructures Military Installation Energy Security Installation Energy SecurityTara...

  2. Status of an Atmospheric Cherenkov Imaging Camera for the CANGAROOIII Experiment

    E-Print Network [OSTI]

    Enomoto, Ryoji

    Gamma Ray Observa- tory (CGRO) was launched in 1991. The EGRET detector [7] on board CGRO detected gamma]. The detection of gamma rays from an Active Galactic Nuclei(AGN), Markarian 421 [10], established the imaging of very high energy gamma rays from celestial objects in the southern sky. We use an array of 4 imaging

  3. OpenMSI: A High-Performance Web-Based Platform for Mass Spectrometry Imaging

    E-Print Network [OSTI]

    OpenMSI: A High-Performance Web-Based Platform for Mass Spectrometry Imaging Oliver Rübel, AnnetteMSI: A High-Performance Web-Based Platform for Mass Spectrometry Imaging Oliver Rubel,* Annette Greiner. Acknowledgements: This work was supported by and used resources of the National Energy Research Scientific

  4. PPPL-3458 PPPL-3458 Visual Tritium Imaging Of In-Vessel Surfaces

    E-Print Network [OSTI]

    PPPL-3458 PPPL-3458 UC-70 Visual Tritium Imaging Of In-Vessel Surfaces by C. A. Gentile, S. J: http://www.ntis.gov/ordering.htm #12;1 Visual Tritium Imaging Of In-Vessel Surfaces C. A. Gentile, S. J Energy Research Institute, Tritium Engineering Laboratory, Tokai, Ibaraki 319-1195, Japan Abstract

  5. User Science Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC repos m487, mp21, m1552 SlavaFull.png FES: Small Scale Experimental Plasma Research October 21, 2010 | Author(s): Vyacheslav Lukin (NRL) | Category: Fusion Energy |...

  6. User Science Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Prabhat (NERSC). NERSC repo m1204 SlavaFull.png FES: Small Scale Experimental Plasma Research October 21, 2010 | Author(s): Vyacheslav Lukin (NRL) | Category: Fusion Energy |...

  7. Broadband microwave imaging spectroscopy with a solardedicated array

    E-Print Network [OSTI]

    the thermal structure of the solar atmosphere, and to study energy release and particle energization the range 1-- 26.5 GHz. Keywords: Radio interferometry, spectroscopy, optical fiber, correlator 1Broad­band microwave imaging spectroscopy with a solar­dedicated array T.S. Bastian a , D.E. Gary b

  8. Hindawi Publishing Corporation EURASIP Journal on Image and Video Processing

    E-Print Network [OSTI]

    Duan, Ye

    stereo. Starting from an embedding space such as the visual hull, we will first conduct robust 3D depth, partially due to the intense competition in the huge consumer market. Furthermore, huge amounts of images surface by conducting volumetric data segmentation using global energy minimization approaches

  9. User Science Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4.

  10. Medical images simulation, storage, and processing on the European DataGrid testbed

    E-Print Network [OSTI]

    Boyer, Edmond

    acquisition centers throughout the territory. Although national regulation con- cerning medical images are heterogeneous in Europe, the current trend is: (i) a free access of patients to their medical data, and (ii Energy Physics

  11. Seismic Imaging of Receiver Ghosts of Primaries Instead of Primaries Themselves

    E-Print Network [OSTI]

    Ma, Nan

    2010-10-12T23:59:59.000Z

    The three key steps of modern seismic imaging are (1) multiple attenuation, (2) velocity estimation, and (3) migration. The multiple-attenuation step is essentially designed to remove the energy that has bounces at the free surface (also known...

  12. Fourier plane image amplifier

    DOE Patents [OSTI]

    Hackel, Lloyd A. (Livermore, CA); Hermann, Mark R. (San Ramon, CA); Dane, C. Brent (Livermore, CA); Tiszauer, Detlev H. (Tracy, CA)

    1995-01-01T23:59:59.000Z

    A solid state laser is frequency tripled to 0.3 .mu.m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only .about.1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power.

  13. Fourier plane image amplifier

    DOE Patents [OSTI]

    Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.

    1995-12-12T23:59:59.000Z

    A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.

  14. Impact of Control System Technologies on Industrial Energy Savings

    E-Print Network [OSTI]

    Parikh, P.; Pasmussen, B. P.

    2014-01-01T23:59:59.000Z

    to 2010 Image: U.S. Energy Information Administration's (EIA) Manufacturing Energy Consumption Survey (MECS) ESL-IE-14-05-40 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 INDUSTRIAL ENERGY... CONSUMPTION However, there’s still a need to look for newer energy saving ideas Image: U.S. Energy Information Administration's (EIA) http://www.eia.gov/forecasts/ieo/industrial.cfm Fresher energy saving ideas can be realized by focusing on the Control...

  15. Topics in genomic image processing

    E-Print Network [OSTI]

    Hua, Jianping

    2006-04-12T23:59:59.000Z

    : : : : : : : : : : : : : : : : : 10 A. Wavelet-based Medical Image Coding Schemes and M- FISH Image Compression . . . . . . . . . . . . . . . . . . . 10 B. Embedded M-FISH Image Coding (EMIC) . . . . . . . . . 12 1. Segmentation and Shape Coding . . . . . . . . . . . . 13 2. Integer... Wavelet Transform . . . . . . . . . . . . . . . 14 a. 2-D Shape-adaptive Integer Wavelet Transform . 14 b. 3-D Integer Wavelet Transform Structure . . . . . 15 3. Fractional Bit-plane Coding . . . . . . . . . . . . . . . 16 a. Object-based Coding...

  16. NAIS: Nuclear activation-based imaging spectroscopy

    SciTech Connect (OSTI)

    Günther, M. M.; Britz, A.; Harres, K.; Hoffmeister, G.; Nürnberg, F.; Otten, A.; Pelka, A.; Roth, M. [Institut für Kernphysik, Schlossgartenstr. 9, Technische Universität Darmstadt, D-64289 Darmstadt (Germany)] [Institut für Kernphysik, Schlossgartenstr. 9, Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Clarke, R. J. [Central Laser Facility, Rutherford Appelton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)] [Central Laser Facility, Rutherford Appelton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Vogt, K. [GSI – Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany)] [GSI – Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany)

    2013-07-15T23:59:59.000Z

    In recent years, the development of high power laser systems led to focussed intensities of more than 10{sup 22} W/cm{sup 2} at high pulse energies. Furthermore, both, the advanced high power lasers and the development of sophisticated laser particle acceleration mechanisms facilitate the generation of high energetic particle beams at high fluxes. The challenge of imaging detector systems is to acquire the properties of the high flux beam spatially and spectrally resolved. The limitations of most detector systems are saturation effects. These conventional detectors are based on scintillators, semiconductors, or radiation sensitive films. We present a nuclear activation-based imaging spectroscopy method, which is called NAIS, for the characterization of laser accelerated proton beams. The offline detector system is a combination of stacked metal foils and imaging plates (IP). After the irradiation of the stacked foils they become activated by nuclear reactions, emitting gamma decay radiation. In the next step, an autoradiography of the activated foils using IPs and an analysis routine lead to a spectrally and spatially resolved beam profile. In addition, we present an absolute calibration method for IPs.

  17. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this technique has been especially popular in imaging such complex structures as aerogels and yeast cells. When applying the CDI technique to a magnetic system, the same...

  18. Energy 101 | Algae-to-Fuel | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergy /newsroom/_assets/images/energy-icon.pngEnergy

  19. Fast Camera Imaging of Hall Thruster Ignition

    SciTech Connect (OSTI)

    C.L. Ellison, Y. Raitses and N.J. Fisch

    2011-02-24T23:59:59.000Z

    Hall thrusters provide efficient space propulsion by electrostatic acceleration of ions. Rotating electron clouds in the thruster overcome the space charge limitations of other methods. Images of the thruster startup, taken with a fast camera, reveal a bright ionization period which settles into steady state operation over 50 ?s. The cathode introduces azimuthal asymmetry, which persists for about 30 ?s into the ignition. Plasma thrusters are used on satellites for repositioning, orbit correction and drag compensation. The advantage of plasma thrusters over conventional chemical thrusters is that the exhaust energies are not limited by chemical energy to about an electron volt. For xenon Hall thrusters, the ion exhaust velocity can be 15-20 km/s, compared to 5 km/s for a typical chemical thruster

  20. Application of Parallel Imaging to Murine Magnetic Resonance Imaging

    E-Print Network [OSTI]

    Chang, Chieh-Wei 1980-

    2012-09-21T23:59:59.000Z

    . This dissertation describes foundational level work to enable parallel imaging of mice on a 4.7 Tesla/40 cm bore research scanner. Reducing the size of the hardware setup associated with typical parallel imaging was an integral part of achieving the work, as animal...

  1. Exploring Interaction Between Images and Texts for Web Image Categorization

    E-Print Network [OSTI]

    Li, Tao

    , Jingxuan Li1 , Tao Li1 1 School of Computing and Information Sciences Florida International University on a manually collected image dataset (consist- ing of images related to the events after disasters) demon users in mul- timedia databases is becoming more and more difficult and challenging. Particulary, web

  2. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy Storage Systems Permalink

  3. Total Energy Monitor

    SciTech Connect (OSTI)

    Friedrich, S

    2008-08-11T23:59:59.000Z

    The total energy monitor (TE) is a thermal sensor that determines the total energy of each FEL pulse based on the temperature rise induced in a silicon wafer upon absorption of the FEL. The TE provides a destructive measurement of the FEL pulse energy in real-time on a pulse-by-pulse basis. As a thermal detector, the TE is expected to suffer least from ultra-fast non-linear effects and to be easy to calibrate. It will therefore primarily be used to cross-calibrate other detectors such as the Gas Detector or the Direct Imager during LCLS commissioning. This document describes the design of the TE and summarizes the considerations and calculations that have led to it. This document summarizes the physics behind the operation of the Total Energy Monitor at LCLS and derives associated engineering specifications.

  4. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied &ClimateContactEnergyEnergy

  5. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy Storage Systems PermalinkEnergy Storage

  6. User Science Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4.CCSM4large.jpg BER: Earth's Climate

  7. User Science Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4.CCSM4large.jpg BER: Earth's

  8. User Science Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4.CCSM4large.jpg BER:

  9. Nuclear Imaging | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One of the great scientificResearch Jefferson

  10. Environmental Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovationEnvironment,682 DOEServicesEnergy

  11. User Defined Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSite Map SiteResearchMichiganAbout OverviewUser

  12. Imaging synthetic aperture radar

    DOE Patents [OSTI]

    Burns, Bryan L. (Tijeras, NM); Cordaro, J. Thomas (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  13. Geosciences 466/566 Digital Image Processing

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    Geosciences 466/566 Digital Image Processing Winter 2007 Instructor Dr. Anne Nolin Wilkinson 120 This course focuses on the digital image processing of satellite image data. Topics include: data types, image://my.oregonstate.edu Textbook Jensen, J. R., Digital Image Processing: A Remote Sensing Perspective, 3rd Edition, Prentice Hall

  14. Simultaneous acquisition of differing image types

    DOE Patents [OSTI]

    Demos, Stavros G

    2012-10-09T23:59:59.000Z

    A system in one embodiment includes an image forming device for forming an image from an area of interest containing different image components; an illumination device for illuminating the area of interest with light containing multiple components; at least one light source coupled to the illumination device, the at least one light source providing light to the illumination device containing different components, each component having distinct spectral characteristics and relative intensity; an image analyzer coupled to the image forming device, the image analyzer decomposing the image formed by the image forming device into multiple component parts based on type of imaging; and multiple image capture devices, each image capture device receiving one of the component parts of the image. A method in one embodiment includes receiving an image from an image forming device; decomposing the image formed by the image forming device into multiple component parts based on type of imaging; receiving the component parts of the image; and outputting image information based on the component parts of the image. Additional systems and methods are presented.

  15. Image texture analysis of elastograms

    E-Print Network [OSTI]

    Hussain, Fasahat

    1999-01-01T23:59:59.000Z

    generated elastograms to obtain effective texture features. Four image analysis techniques, co-occurrence statistics, wavelet decomposition, fractal analysis and granulomeay are used to extract a number of features from each image. The inclusions...-RESOLUTION FRACTAL ANALYSIS . . . . . . E. GRANULOMETRIC FEATURES . . F. DATA NORMALIZATION . G. SEPARABILITY MEASURE 13 13 . . . . . 14 . . . . . 20 . . . . . 29 33 36 36 IV TEXTURE ANALYSIS OF SIMULATED ELASTOGRAMS. . . . . . . . . . . 38 A. SIMULATION...

  16. Video surveillance with speckle imaging

    DOE Patents [OSTI]

    Carrano, Carmen J. (Livermore, CA); Brase, James M. (Pleasanton, CA)

    2007-07-17T23:59:59.000Z

    A surveillance system looks through the atmosphere along a horizontal or slant path. Turbulence along the path causes blurring. The blurring is corrected by speckle processing short exposure images recorded with a camera. The exposures are short enough to effectively freeze the atmospheric turbulence. Speckle processing is used to recover a better quality image of the scene.

  17. Image Mining: Detecting Deforestation Patterns

    E-Print Network [OSTI]

    Camara, Gilberto

    54 Chapter IV Image Mining: Detecting Deforestation Patterns Through Satellites Marcelino Pereira to analyze satellite images and extract knowledge from this kind of data. The Amazonia deforestation problem of change on deforested areas of Amazonia. The purpose of the authors is to present relevant technologies

  18. Monte Carlo simulation study of scanning Auger electron images

    SciTech Connect (OSTI)

    Li, Y. G.; Ding, Z. J. [Department of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Z. M. [Department of Astronomy and Applied Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2009-07-15T23:59:59.000Z

    Simulation of contrast formation in Auger electron imaging of surfaces is helpful for analyzing scanning Auger microscopy/microanalysis (SAM) images. In this work, we have extended our previous Monte Carlo model and the simulation method for calculation of scanning electron microscopy (SEM) images to SAM images of complex structures. The essentials of the simulation method are as follows. (1) We use a constructive solid geometry modeling for a sample geometry, which is complex in elemental distribution, as well as in topographical configuration and a ray-tracing technique in the calculation procedure of electron flight steps that across the different element zones. The combination of the basic objects filled with elements, alloys, or compounds enables the simulation to a variety of sample geometries. (2) Sampled Auger signal electrons with a characteristic energy are generated in the simulation following an inner-shell ionization event, whose description is based on the Castani's inner-shell ionization cross section. This paper discusses in detail the features of simulated SAM images and of line scans for structured samples, i.e., the objects embedded in a matrix, under various experimental conditions (object size, location depth, beam energy, and the incident angle). Several effects are predicted and explained, such as the contrast reversion for nanoparticles in sizes of 10-60 nm, the contrast enhancement for particles made of different elements and wholly embedded in a matrix, and the artifact contrast due to nearby objects containing different elements. The simulated SAM images are also compared with the simulated SEM images of secondary electrons and of backscattered electrons. The results indicate that the Monte Carlo simulation can play an important role in quantitative SAM mapping.

  19. Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum TechnologyEnergyImaging Ahead ofin EGS

  20. Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum TechnologyEnergyImaging Ahead ofin EGSin EGS

  1. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    In the United States: > 200 fuel cell vehicles > 20 fuel cell buses ~ 60 fueling stations Production & Delivery biomass & solar). · Potential U.S. employment from fuel cell and hydrogen industries of up to 925,000 jobsEnergy Efficiency & Renewable Energy DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program

  2. Energy 101: Geothermal Energy

    SciTech Connect (OSTI)

    None

    2014-05-27T23:59:59.000Z

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  3. Energy 101: Geothermal Energy

    ScienceCinema (OSTI)

    None

    2014-06-23T23:59:59.000Z

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  4. Capturing the Energy of a Picture: An Introduction to Variational Models

    E-Print Network [OSTI]

    Zanibbi, Richard

    . Time permitting, I will present applications and alternative energies. Speaker Bio Todd WittmanCapturing the Energy of a Picture: An Introduction to Variational Models in Image Processing Todd problems. The basic idea behind the method is to describe "good" images with a simple energy, usually

  5. Distribution of excited species in plasmas by monochromatic imaging

    SciTech Connect (OSTI)

    Hareland, W.A.; Buss, R.J. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States)

    1996-02-01T23:59:59.000Z

    Optical emissions from glow discharges have been measured for more than a century and have yielded much of the data on atomic and molecular spectroscopy. In recent years, measuring the intensity of specific emission lines from processing plasmas has become a routine method for process monitoring and control. Here, spatial maps of individual argon atomic emissions are measured in the GEC (gaseous electronic conference) reference reactor by monochromatic imaging. The plasma discharge is viewed through a grating monochromator, and the images are recorded with an intensified charge-coupled device (CCD) array detector. Each atomic emission has a unique spatial profile that is related to the spatial energy distribution in the plasma.

  6. Energy Policy

    Broader source: Energy.gov [DOE]

    The Energy Department is focusing on an all-of-the-above energy policy, investing in all sources of American energy.

  7. Instrumentation for parallel magnetic resonance imaging

    E-Print Network [OSTI]

    Brown, David Gerald

    2007-04-25T23:59:59.000Z

    Parallel magnetic resonance (MR) imaging may be used to increase either the throughput or the speed of the MR imaging experiment. As such, parallel imaging may be accomplished either through a "parallelization" of the MR experiment, or by the use...

  8. Digital holographic imaging of aquatic species

    E-Print Network [OSTI]

    Domínguez-Caballero, José Antonio

    2006-01-01T23:59:59.000Z

    The aim of this thesis is to design, develop and implement a digital holographic imaging (DHI) system, capable of capturing three-dimensional (3D) images of aquatic species. The images produced by this system are used in ...

  9. Imaging Oxygen Molecules Up Close | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Oxygen Molecules Up Close Imaging Oxygen Molecules Up Close Released: March 20, 2011 ARRA-enabled upgrades enhance research capabilities STM images of the same TiO2(110)...

  10. Neutron Imaging of Advanced Engine Technologies

    Broader source: Energy.gov (indexed) [DOE]

    Highly sensitive to water and hydrocarbonsfuel * Can image carbon soot layer due to absorption of water and HC - Image is based on absence of neutrons * X-ray imaging relies upon...

  11. Medical Image Registration: A Quick Win

    E-Print Network [OSTI]

    Ansorge, Richard

    2008-11-11T23:59:59.000Z

    Medical Image Registration A Quick Win Richard Ansorge The problem CT, MRI, PET and Ultrasound produce 3D volume images Typically 256 x 256 x 256 = 16,777,216 image voxels. Combining modalities (inter modality) gives extra information. Repeated... imaging over time same modality, e.g. MRI, (intra modality) equally important. Have to spatially register the images. Example – brain lesion CT MRI PET PET-MR Fusion The PET image shows...

  12. Sandia Energy - Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home Stationary Power EnergyRenewable Energy

  13. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware HometdheinrWater/Energy

  14. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy CouncilEnergy Surety Home

  15. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia'sEventNotECWillie LukEnergy

  16. Image indexing using color correlograms

    DOE Patents [OSTI]

    Huang, Jing (Ossining, NY); Kumar, Shanmugasundaram Ravi (San Jose, CA); Mitra, Mandar (Calcutta, IN); Zhu, Wei-Jing (Ossining, NY)

    2001-01-01T23:59:59.000Z

    A color correlogram is a three-dimensional table indexed by color and distance between pixels which expresses how the spatial correlation of color changes with distance in a stored image. The color correlogram may be used to distinguish an image from other images in a database. To create a color correlogram, the colors in the image are quantized into m color values, c.sub.i . . . c.sub.m. Also, the distance values k.epsilon.[d] to be used in the correlogram are determined where [d] is the set of distances between pixels in the image, and where dmax is the maximum distance measurement between pixels in the image. Each entry (i, j, k) in the table is the probability of finding a pixel of color c.sub.i at a selected distance k from a pixel of color c.sub.i. A color autocorrelogram, which is a restricted version of the color correlogram that considers color pairs of the form (i,i) only, may also be used to identify an image.

  17. Correlated Biofilm Imaging, Transport and Metabolism Measurements...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofilm Imaging, Transport and Metabolism Measurements via Combined Nuclear Magnetic Resonance and Confocal Correlated Biofilm Imaging, Transport and Metabolism Measurements via...

  18. Flow Imaging Using MRI: Quantification and Analysis

    E-Print Network [OSTI]

    Jiraraksopakun, Yuttapong

    2010-07-14T23:59:59.000Z

    dynamics (CFD) and the conventional optimal flow imaging based on particle image velocimetry (PIV). The results demonstrated the improvement from the quantification using solely the conventional HARP method....

  19. Nanometer Resolution Imaging by SIngle Molecule Switching. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanometer Resolution Imaging by SIngle Molecule Switching. Nanometer Resolution Imaging by SIngle Molecule Switching. Abstract: The fluorescence intensity of single molecules can...

  20. ORNL microscopy directly images problematic lithium dendrites...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    865.574.7308 ORNL microscopy directly images problematic lithium dendrites in batteries ORNL electron microscopy captured the first real-time nanoscale images of the nucleation and...

  1. Sandia Energy - Renewable Energy Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    need to integrate renewable energy, improve energy efficiency, and allow consumers more control over their energy consumption. One of the challenges of renewable power generation...

  2. Department of Energy - Energy Sources

    Broader source: Energy.gov (indexed) [DOE]

    295 en Using Passive Solar Design to Save Money and Energy http:energy.govenergysaverarticlesusing-passive-solar-design-save-money-and-energy

  3. Energy Sources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    has launched the Energy Data Initiative (EDI). May 17, 2012 The Energy Department's digital team tested out Apps for Energy submissions in preparation for public voting. |...

  4. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to Mainstream: The Growth of the Global Clean Energy Marketplace Analyzing the past, present and future of the global clean energy marketplace. January 17, 2013 The Energy...

  5. Renewable Energy | Department of Energy

    Office of Environmental Management (EM)

    Science & Innovation Energy Sources Renewable Energy Renewable Energy Watch as these fourth grade students go from learning about electricity to making their own electricity...

  6. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Future On Monday, the Energy Information Administration (EIA) issued the Annual Energy Outlook 2012 Early Release. This preview report provides updated projections for U.S....

  7. Energy Sources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    September 13, 2013 Energy Analysis Energy analysis informs EERE decision-making by delivering analytical products in four main areas: Data Resources, Market Intelligence, Energy...

  8. Symmetry Energy

    E-Print Network [OSTI]

    P. Danielewicz

    2006-07-15T23:59:59.000Z

    Examination of symmetry energy is carried out on the basis of an elementary binding-energy formula. Constraints are obtained on the energy value at the normal nuclear density and on the density dependence of the energy at subnormal densities.

  9. Image Storage in Hot Vapors

    E-Print Network [OSTI]

    L. Zhao; T. Wang; Y. Xiao; S. F. Yelin

    2007-10-22T23:59:59.000Z

    We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

  10. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765o

  11. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReport Posted North American

  12. Sandia Energy - Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H. KobosRandall

  13. Sandia Energy - Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia's Stan AtcittyRenewablesAnalysis

  14. Sandia Energy - Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia's Stan

  15. Sandia Energy » Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This author hasSandia StudentSandia

  16. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    design style of homes dotted throughout historic Norfolk, Virginia. August 11, 2011 Hydro Research Foundation Fellows. | Image courtesy of the Hydro Research Foundation...

  17. U.S. Department of Energy and International Association of Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partner to Improve Energy Efficiency in Lighting Systems Image containing the DOE logo and the International Association of Lighting Designers (IALD) logo. The DOE logo is a...

  18. Space charge effects in ultrafast electron diffraction and imaging

    SciTech Connect (OSTI)

    Tao Zhensheng; Zhang He; Duxbury, P. M.; Berz, Martin; Ruan, Chong-Yu [Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824-2320 (United States)

    2012-02-15T23:59:59.000Z

    Understanding space charge effects is central for the development of high-brightness ultrafast electron diffraction and microscopy techniques for imaging material transformation with atomic scale detail at the fs to ps timescales. We present methods and results for direct ultrafast photoelectron beam characterization employing a shadow projection imaging technique to investigate the generation of ultrafast, non-uniform, intense photoelectron pulses in a dc photo-gun geometry. Combined with N-particle simulations and an analytical Gaussian model, we elucidate three essential space-charge-led features: the pulse lengthening following a power-law scaling, the broadening of the initial energy distribution, and the virtual cathode threshold. The impacts of these space charge effects on the performance of the next generation high-brightness ultrafast electron diffraction and imaging systems are evaluated.

  19. Laser radiography forming bremsstrahlung radiation to image an object

    DOE Patents [OSTI]

    Perry, Michael D.; Sefcik, Joseph A.

    2004-01-13T23:59:59.000Z

    A method of imaging an object by generating laser pulses with a short-pulse, high-power laser. When the laser pulse strikes a conductive target, bremsstrahlung radiation is generated such that hard ballistic high-energy electrons are formed to penetrate an object. A detector on the opposite side of the object detects these electrons. Since laser pulses are used to form the hard x-rays, multiple pulses can be used to image an object in motion, such as an exploding or compressing object, by using time gated detectors. Furthermore, the laser pulses can be directed down different tubes using mirrors and filters so that each laser pulse will image a different portion of the object.

  20. A ring imaging Cherenkov detector for CLAS12

    SciTech Connect (OSTI)

    Montgomery, Rachel A. [Glasgow University

    2013-12-01T23:59:59.000Z

    The energy increase of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) to 12 GeV promises to greatly extend the physics reach of its experiments. This will include an upgrade of the CEBAF Large Acceptance Spectrometer (CLAS) to CLAS12, offering unique possibilities to study internal nucleon dynamics. For this excellent hadron identification over the full kinematical range of 3–8 GeV/c is essential. This will be achieved by the installation of a Ring Imaging CHerenkov (RICH) detector. A novel hybrid imaging design incorporating mirrors, aerogel radiators and Hamamatsu H8500 multianode photomultiplier tubes is proposed. Depending on the incident particle track angle, Cherenkov light will either be imaged directly or after two reflections and passes through the aerogel. The detector design is described, along with preliminary results on individual detector components tests and from recent testbeam studies.

  1. Two wide-angle imaging neutral-atom spectrometers

    SciTech Connect (OSTI)

    McComas, D.J.

    1997-12-31T23:59:59.000Z

    The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission provides a new capability for stereoscopically imaging the magnetosphere. By imaging the charge exchange neutral atoms over a broad energy range (1 < E , {approximately} 100 keV) using two identical instruments on two widely-spaced high-altitude, high-inclination spacecraft, TWINS will enable the 3-dimensional visualization and the resolution of large scale structures and dynamics within the magnetosphere for the first time. These observations will provide a leap ahead in the understanding of the global aspects of the terrestrial magnetosphere and directly address a number of critical issues in the ``Sun-Earth Connections`` science theme of the NASA Office of Space Science.

  2. NERSC Visualizations Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed NUGPresentationsUsers

  3. Image & Video Galleries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITER SubscribeIlya Prigogine,Systems

  4. ARM - Measurement - Aerosol image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, AlaskaWhenimage ARM Data Discovery Browse

  5. ARM - Measurement - Hydrometeor image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow,ice particleSize Distribution ARM

  6. User Science Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAbout

  7. Fermilab | Press Room | Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013Focusreceives .1 million Tevatron

  8. Fermilab | Press Room | Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013Focusreceives .1 million Tevatron Fermilab

  9. Fermilab | Press Room | Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013Focusreceives .1 million Tevatron Fermilab

  10. Fermilab | Press Room | Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013Focusreceives .1 million Tevatron Fermilab

  11. MedImaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDispositionMechanical R&D Mechanical

  12. ImageGear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed

  13. Sunlight + Water = Tomorrow's Energy

    SciTech Connect (OSTI)

    Jones, Anne Katherine

    2013-07-18T23:59:59.000Z

    Representing the Center for Bio-Inspired Solar Fuel Production (BISfuel), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of BISfuel is to construct a complete system for solar-powered production of hydrogen fuel via water splitting; design principles are drawn from the fundamental concepts that underlie photosynthetic energy conversion.

  14. Quantum ghost imaging through turbulence

    E-Print Network [OSTI]

    Dixon, P. Ben

    We investigate the effect of turbulence on quantum ghost imaging. We use entangled photons and demonstrate that for a specific experimental configuration the effect of turbulence can be greatly diminished. By decoupling ...

  15. Scanning strategies for imaging arrays

    E-Print Network [OSTI]

    A. Kovacs

    2008-06-30T23:59:59.000Z

    Large-format (sub)millimeter wavelength imaging arrays are best operated in scanning observing modes rather than traditional position-switched (chopped) modes. The choice of observing mode is critical for isolating source signals from various types of noise interference, especially for ground-based instrumentation operating under a bright atmosphere. Ideal observing strategies can combat 1/f noise, resist instrumental defects, sensitively recover emission on large scales, and provide an even field coverage -- all under feasible requirements of telescope movement. This work aims to guide the design of observing patterns that maximize scientific returns. It also compares some of the popular choices of observing modes for (sub)millimeter imaging, such as random, Lissajous, billiard, spiral, On-The-Fly (OTF), DREAM, chopped and stare patterns. Many of the conclusions are also applicable other imaging applications and imaging in one dimension (e.g. spectroscopic observations).

  16. Imaging atoms in 3-D

    ScienceCinema (OSTI)

    Ercius, Peter

    2014-06-27T23:59:59.000Z

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  17. Motion Estimation from Disparity Images

    E-Print Network [OSTI]

    Demirdjian, D.

    2001-05-07T23:59:59.000Z

    A new method for 3D rigid motion estimation from stereo is proposed in this paper. The appealing feature of this method is that it directly uses the disparity images obtained from stereo matching. We assume that the stereo ...

  18. VAX-based ''IMAGE'' backup

    SciTech Connect (OSTI)

    Harris, D.D.

    1985-10-01T23:59:59.000Z

    Increasing usage of the Applicon IMAGE systems at Bendix Kansas City Division (BKC) conflicts with the need to do daily backup of changed AGS files. This paper describes a VAX-based method for automated, unattended, off-shift backup.

  19. Imaging atoms in 3-D

    SciTech Connect (OSTI)

    Ercius, Peter

    2013-10-31T23:59:59.000Z

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  20. Imaging Liquids Using Microfluidic Cells

    SciTech Connect (OSTI)

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li

    2013-05-10T23:59:59.000Z

    Chemistry occurring in the liquid and liquid surface is important in many applications. Chemical imaging of liquids using vacuum based analytical techniques is challenging due to the difficulty in working with liquids with high volatility. Recent development in microfluidics enabled and increased our capabilities to study liquid in situ using surface sensitive techniques such as electron microscopy and spectroscopy. Due to its small size, low cost, and flexibility in design, liquid cells based on microfluidics have been increasingly used in studying and imaging complex phenomena involving liquids. This paper presents a review of microfluidic cells that were developed to adapt to electron microscopes and various spectrometers for in situ chemical analysis and imaging of liquids. The following topics will be covered including cell designs, fabrication techniques, unique technical features for vacuum compatible cells, and imaging with electron microscopy and spectroscopy. Challenges are summarized and recommendations for future development priority are proposed.

  1. Thomas Jefferson: image and ideology 

    E-Print Network [OSTI]

    Wilson, Gaye N. S. B.

    2012-11-30T23:59:59.000Z

    This thesis explores the public image of Thomas Jefferson as recorded in his major life portraits. It consults the traditions that surrounded eighteenth-century portraiture and the history of the portrait as a means of ...

  2. Identifying structural damage from images

    E-Print Network [OSTI]

    Chen, ZhiQiang

    2009-01-01T23:59:59.000Z

    Pattern Recognition, 26 PDC. Paci?c disater center, 2008.which were acquired from the Paci?c Disaster Center (PDC) (PDC, 2008). These images cover Banda Aceh and its

  3. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Blog Energy Blog RSS July 11, 2013 Climate Change: Effects on Our Energy A new report shows how a changing climate has impacted and may continue to affect our energy...

  4. Sandia Energy - Enabling Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling Energy Efficiency Home Energy Research EFRCs Solid-State Lighting Science EFRC Enabling Energy Efficiency Enabling Energy EfficiencyTara Camacho-Lopez2015-03-26T16:33:50+0...

  5. Radiopharmaceuticals for imaging the heart

    DOE Patents [OSTI]

    Green, M.A.; Tsang, B.W.

    1994-06-28T23:59:59.000Z

    Radiopharmaceuticals for imaging myocardial tissues are prepared by forming lipophilic, cationic complexes of radioactive metal ions with metal chelating ligands comprising the Schiff base adducts of triamines and tetraamines with optionally substituted salicylaldehydes. The lipophilic, cationic, radioactive complexes of the invention exhibit high uptake and retention in myocardial tissues. Preferred gallium-68(III) complexes in accordance with this invention can be used to image the heart using positron emission tomography. 6 figures.

  6. Radiopharmaceuticals for imaging the heart

    DOE Patents [OSTI]

    Green, Mark A. (West Lafayette, IN); Tsang, Brenda W. (Lafayette, IN)

    1994-01-01T23:59:59.000Z

    Radiopharmaceuticals for imaging myocardial tissues are prepared by forming lipophilic, cationic complexes of radioactive metal ions with metal chelating ligands comprising the Schiff base adducts of triamines and tetraamines with optionally substituted salicylaldehydes. The lipophilic, cationic, radioactive complexes of the invention exhibit high uptake and retention in myocardial tissues. Preferred gallium-68(III) complexes in accordance with this invention can be used to image the heart using positron emission tomography.

  7. The Focusing Optics x-ray Solar Imager: FOXSI Sam Kruckera,b, Steven Christec, Lindsay Glesenera,d, Shin-nosuke Ishikawaa, Stephen

    E-Print Network [OSTI]

    California at Berkeley, University of

    University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan ABSTRACT The Focusing Optics x-ray Solar Imager. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI, solar physics, solar flares, silicon strip detectors, grazing-incidence optics, high-energy x-ray optics

  8. Mapping daily snow//ice shortwave broadband albedo from Moderate Resolution Imaging Spectroradiometer (MODIS): The improved

    E-Print Network [OSTI]

    Liang, Shunlin

    and global energy balances when snow coverage is variable. In the polar regions, the high surface albedo acts the Advanced Very High Resolution Radiometer (AVHRR) satellite data in polar regions [De Abreu et al., 1994 variable in surface energy balance calculations. The Moderate Resolution Imaging Spectroradiometer (MODIS

  9. Global auroral imaging in the ILWS era E. Donovan a,*, T. Trondsen a

    E-Print Network [OSTI]

    California at Berkeley, University of

    Helsinki, FIN 00101, Finland l Department of Physics, University of Alberta, Edmonton, Canada T6G 2J1 m of characteristic energy and energy flux of precipitating electrons, continuous global auroral imaging for time a comet-shaped cavity out of the solar wind called a magnetosphere. The other- wise dipolar magnetic field

  10. 4746 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 12, DECEMBER 2012 Compressive Light Field Sensing

    E-Print Network [OSTI]

    Granada, Universidad de

    : MIPRCV under Grant CSD2007-00018, and the Department of Energy under Grant DE-NA0000457. Preliminary results of this paper appeared at the IEEE Conference on Image Processing, Cairo, Egypt, 2009 [2, or the light energy of all rays in 3D space passing through

  11. HIGHER ORDER POTENTIALS WITH SUPERPIXEL NEIGHBOURHOOD (HSN) FOR SEMANTIC IMAGE SEGMENTATION

    E-Print Network [OSTI]

    Rajamani, Sriram K.

    S. Ibrahim, Motaz El-Saban Cairo Microsoft Innovation Lab Microsoft Research Cairo, Egypt ABSTRACT is in formulating an energy minimization expressed on top of a conditional random field (CRF) over image pixels in the CRF energy function yielding promising results. These potentials encourage pixels within the same

  12. X-ray tests of a two-dimensional stigmatic imaging scheme with variable magnifications

    SciTech Connect (OSTI)

    Lu, J., E-mail: jlu@pppl.gov [Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University, Chongqing 400030 (China); Bitter, M.; Hill, K. W.; Delgado-Aparicio, L. F.; Efthimion, P. C.; Pablant, N. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Beiersdorfer, P. [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Caughey, T. A.; Brunner, J. [Inrad Optics, 181 Legrand Avenue, Northvale, New Jersey 07647 (United States)

    2014-11-15T23:59:59.000Z

    A two-dimensional stigmatic x-ray imaging scheme, consisting of two spherically bent crystals, one concave and one convex, was recently proposed [M. Bitter et al., Rev. Sci. Instrum. 83, 10E527 (2012)]. The Bragg angles and the radii of curvature of the two crystals of this imaging scheme are matched to eliminate the astigmatism and to satisfy the Bragg condition across both crystal surfaces for a given x-ray energy. In this paper, we consider more general configurations of this imaging scheme, which allow us to vary the magnification for a given pair of crystals and x-ray energy. The stigmatic imaging scheme has been validated for the first time by imaging x-rays generated by a micro-focus x-ray source with source size of 8.4 ?m validated by knife-edge measurements. Results are presented from imaging the tungsten L?1 emission at 8.3976 keV, using a convex Si-422 crystal and a concave Si-533 crystal with 2d-spacings of 2.21707 Å and 1.65635 Å and radii of curvature of 500 ± 1 mm and 823 ± 1 mm, respectively, showing a spatial resolution of 54.9 ?m. This imaging scheme is expected to be of interest for the two-dimensional imaging of laser produced plasmas.

  13. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O'Gallagher, Joseph J. (Flossmoor, IL)

    1991-04-09T23:59:59.000Z

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  14. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09T23:59:59.000Z

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  15. Credit Enhancements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy This partAsAmanda McAlpinManagers |Full CreditAn image of

  16. Scottish Energy Research Academy Energy Industry Doctorates

    E-Print Network [OSTI]

    Painter, Kevin

    Scottish Energy Research Academy (SERA) Energy Industry Doctorates in Renewable Energy Technologies ­ Notes for Guidance 1. Introduction The Energy Technology Partnership (ETP) has established an Energy · Solar energy · Energy conversion and storage · Energy materials · Grid and networks · Energy utilisation

  17. The Imaging and Medical Beam Line at the Australian Synchrotron

    SciTech Connect (OSTI)

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton; Campbell, Colin [Australian Synchrotron Company, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2010-07-23T23:59:59.000Z

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the 'Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stem cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1 - monochromatic and white - to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.

  18. Chemical imaging of thermoplastic olefin (TPO) surface architecture

    SciTech Connect (OSTI)

    Morris, H.R. [Duquesne Univ., Pittsburgh, PA (United States). School of Pharmacy] [Duquesne Univ., Pittsburgh, PA (United States). School of Pharmacy; Turner, J.F. II [Carnegie Mellon Univ., Pittsburgh, PA (United States). Center for Light Microscope Imaging and Biotechnology] [Carnegie Mellon Univ., Pittsburgh, PA (United States). Center for Light Microscope Imaging and Biotechnology; Munro, B.; Ryntz, R.A. [Visteon Automotive Systems, Dearborn, MI (United States)] [Visteon Automotive Systems, Dearborn, MI (United States); Treado, P.J. [ChemIcon Inc., Pittsburgh, PA (United States)] [ChemIcon Inc., Pittsburgh, PA (United States)

    1999-04-13T23:59:59.000Z

    In the automotive industry, ethylene-propylene rubber (EPR) is mixed with polypropylene (PP) to form a thermoplastic olefin (TPO) for use as car bumpers and fascia. An adhesion promoting primer, chlorinated polyolefin (CPO), is spray coated onto the TPO surface to increase adhesion of the base and clear coat paints to the low surface free energy TPO substrate. The surface morphology of rubber domains within the CPO-coated TPO substrate contributes strongly to the material characteristics, including impact resistance and adhesion properties. However, elastomer-phase analysis is challenging using traditional microanalysis imaging techniques. The authors employ fluorescence and Raman chemical imaging to characterize the TPO architecture in order to better understand the surface properties of coated TPO. Fluorescence imaging makes use of Nile red (NR), a fluorescent solvatochromic dye, solvated in the primer, which is effective in differentiating rubber from polypropylene on the basis of large variations in the fluorescence quantum efficiency. Confocal fluorescence chemical imaging performed on T PO coated with NR-doped CPO shows a thin (2--3 {micro}m) layer of elastomer that has migrated to the TPO surface. Raman chemical imaging is in direct agreement with the fluorescence experiments by measuring the intrinsic vibrational signatures of CPO, EPR, and PP without the need for dyes or stains. Raman contrast is enhanced using cosine correlation analysis, a novel multivariate processing technique that provides chemical contrast on the basis of differences in spectral shape.

  19. The image quality of ion computed tomography at clinical imaging dose levels

    SciTech Connect (OSTI)

    Hansen, David C., E-mail: dch@oncology.au.dk [Department of Experimental Clinical Oncology, Aarhus University Hospital, 8000 Aarhus (Denmark); Bassler, Niels [Department of Physics and Astronomy, Aarhus University, 8000 Aarhus (Denmark); Sørensen, Thomas Sangild [Department of Computer Science, Aarhus University, 8000 Aarhus, Denmark and Department of Clinical Medicine, Aarhus University, 8000 Aarhus (Denmark); Seco, Joao [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School,Boston, Massachusetts 02114 (United States)

    2014-11-01T23:59:59.000Z

    Purpose: Accurately predicting the range of radiotherapy ions in vivo is important for the precise delivery of dose in particle therapy. Range uncertainty is currently the single largest contribution to the dose margins used in planning and leads to a higher dose to normal tissue. The use of ion CT has been proposed as a method to improve the range uncertainty and thereby reduce dose to normal tissue of the patient. A wide variety of ions have been proposed and studied for this purpose, but no studies evaluate the image quality obtained with different ions in a consistent manner. However, imaging doses ion CT is a concern which may limit the obtainable image quality. In addition, the imaging doses reported have not been directly comparable with x-ray CT doses due to the different biological impacts of ion radiation. The purpose of this work is to develop a robust methodology for comparing the image quality of ion CT with respect to particle therapy, taking into account different reconstruction methods and ion species. Methods: A comparison of different ions and energies was made. Ion CT projections were simulated for five different scenarios: Protons at 230 and 330 MeV, helium ions at 230 MeV/u, and carbon ions at 430 MeV/u. Maps of the water equivalent stopping power were reconstructed using a weighted least squares method. The dose was evaluated via a quality factor weighted CT dose index called the CT dose equivalent index (CTDEI). Spatial resolution was measured by the modulation transfer function. This was done by a noise-robust fit to the edge spread function. Second, the image quality as a function of the number of scanning angles was evaluated for protons at 230 MeV. In the resolution study, the CTDEI was fixed to 10 mSv, similar to a typical x-ray CT scan. Finally, scans at a range of CTDEI’s were done, to evaluate dose influence on reconstruction error. Results: All ions yielded accurate stopping power estimates, none of which were statistically different from the ground truth image. Resolution (as defined by the modulation transfer function = 10% point) was the best for the helium ions (18.21 line pairs/cm) and worst for the lower energy protons (9.37 line pairs/cm). The weighted quality factor for the different ions ranged from 1.23 for helium to 2.35 for carbon ions. For the angle study, a sharp increase in absolute error was observed below 45 distinct angles, giving the impression of a threshold, rather than smooth, limit to the number of angles. Conclusions: The method presented for comparing various ion CT modalities is feasible for practical use. While all studied ions would improve upon x-ray CT for particle range estimation, helium appears to give the best results and deserves further study for imaging.

  20. Image description. Cover Image End of image description. NATIONAL CENTER FOR EDUCATION STATISTICS

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    a context for examining the data they submitted to IPEDS. Our goal is to produce a report that is useful University 2 #12;Image description. Bar chart with 10 groups with 2 items per group.Y scale titled Percent