Sample records for illinois pollution control

  1. Water Pollutant Discharge Act (Illinois)

    Broader source: Energy.gov [DOE]

    The discharge of oil in quantities which exceed the standards adopted by the Pollution Control Board, or the discharge of other pollutants directly or indirectly into the waters is prohibited....

  2. Toxic Pollution Prevention Act (Illinois)

    Broader source: Energy.gov [DOE]

    It is the purpose of this Act to reduce the disposal and release of toxic substances which may have adverse and serious health and environmental effects, to promote toxic pollution prevention as...

  3. Water Pollution Control (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Department of Environmental Management and the Water Pollution Control Board are tasked with the prevention of pollution in the waters of the state. The Board may adopt rules and...

  4. Water Pollution Control Act (Minnesota)

    Broader source: Energy.gov [DOE]

    This Act gives the Minnesota Pollution Control Agency broad responsibility to establish pollution standards for state waters; monitor water conditions and sources of pollution; review construction,...

  5. Pollution Control Facilities (South Carolina)

    Broader source: Energy.gov [DOE]

    For the purpose of this legislation, pollution control facilities are defined as any facilities designed for the elimination, mitigation or prevention of air or water pollution, including all...

  6. Kyoto Protocol Act of 1998 (Illinois)

    Broader source: Energy.gov [DOE]

    Effective immediately, the Illinois Environmental Protection Agency and the Pollution Control Board shall not propose or adopt any new rule for the intended purpose of addressing the adverse...

  7. Economic Development and Pollution Control (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation establishes possible financing avenues for pollution control facilities that may mitigate or reduce pollution, or treat substances in processed materials that may cause pollution....

  8. Controlling Pollution (Iowa)

    Broader source: Energy.gov [DOE]

    Permits are required for new or existing stationary potential sources of pollution, including anaerobic lagoons. Permits may also be required for modifications that may increase emissions. These...

  9. Noise Pollution Control (Minnesota)

    Broader source: Energy.gov [DOE]

    These regulations set noise standards and direct municipalities to take reasonable measures to prevent the establishment of land use activities with a high noise pollution potential.

  10. Mark Jankowski: Minnesota Pollution Control Agency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mark Jankowski: Minnesota Pollution Control Agency March 1, 2015 Mark Jankowski now at Minnesota Pollution Control Agency - 2 - Mark Jankowski worked at the Lab twice: first after...

  11. Water Pollution Control Authority (Alabama)

    Broader source: Energy.gov [DOE]

    The Water Pollution Control Revolving Loan Fund, is maintained in perpetuity and operated by the department as agent for the authority for the purposes stated herein. Grants from the federal...

  12. Electrotechnologies and Industrial Pollution Control

    E-Print Network [OSTI]

    Schmidt, P. S.

    The role of electrotechnologies in the control of emissions and effluents from industrial processes is discussed. Matrices are presented identifying those electrotechnologies which impact pollution in various industries. Specific examples...

  13. Municipal Water Pollution Control (Minnesota)

    Broader source: Energy.gov [DOE]

    This statute applies to a city, sanitary district, or other governmental subdivision or public corporation. The statute gives the Pollution Control Agency the authority to prepare and enforce a...

  14. Colorado Air Pollution Control Division - Construction Permits...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Air Pollution Control Division - Construction Permits Forms and Air Pollutant Emission...

  15. First conference on ground control problems in the Illinois Coal Basin: proceedings

    SciTech Connect (OSTI)

    Chugh, Y.P.; Van Besien, A. (eds.)

    1980-06-01T23:59:59.000Z

    The first conference on ground control problems in the Illinois Coal Basin was held at the Southern Illinois University at Carbondale, Illinois, August 22-24, 1979. Twenty-one papers from the proceedings have been entered individually into EDB; one had been entered previously from other sources. (LTN)

  16. Persistent pollutants urban rivers sediment survey: implications for pollution control

    E-Print Network [OSTI]

    Heal, Kate

    in the motor and construction industries; housekeeping measures to minimise storage and handling risks for oilPersistent pollutants urban rivers sediment survey: implications for pollution control C. Wilson.heal@ed.ac.uk) Abstract The impacts of diffuse urban sources of pollution on watercourses are quantified. A survey of nine

  17. Abatement of Air Pollution: Air Pollution Control Equipment and...

    Broader source: Energy.gov (indexed) [DOE]

    contain instructions for the operation and monitoring of air pollution control equipment, as well as comments on procedures in the event of equipment breakdown, failure, and...

  18. Arkansas Air Pollution Control Code (Arkansas)

    Broader source: Energy.gov [DOE]

    The Arkansas Air Pollution Control code is adopted pursuant to Subchapter 2 of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-4-101). ) By authority of the same State...

  19. Water Pollution Control Act (New Jersey)

    Broader source: Energy.gov [DOE]

    This act states the rules and regulations to prevent and control pollution of waters in the state. It is unlawful for any person to discharge any pollutant unless the discharge conforms with a...

  20. Water Pollution Control Act (West Virginia)

    Broader source: Energy.gov [DOE]

    The Water Pollution Control Act empowers the Division of Water and Waste Management of the West Virginia Department of Environmental Protection to maintain reasonable standards of purity and...

  1. Pollution Control Equipment Tax Deduction (Alabama)

    Broader source: Energy.gov [DOE]

    The Pollution Control Equipment Tax Deduction allows businesses to deduct from their Alabama net worth the net amount invested in all devices, facilities, or structures, and all identifiable...

  2. Pollution Control in a Manufacturing System Stochastic Models for Analysis and Control of Air Pollution

    E-Print Network [OSTI]

    Gosavi, Abhijit

    Pollution Control in a Manufacturing System Stochastic Models for Analysis and Control of Air Pollution in a Manufacturing System Jan, 1, 2005 Technical Report SOPTL-05-01 Missouri University of Science models that can be used for controlling pollution in a manufacturing system. The models are developed

  3. Water Pollution Control Facilities, Tax exemption (Michigan)

    Broader source: Energy.gov [DOE]

    The Water Pollution Control Exemption, PA 451 of 1994, Part 37, as amended, affords a 100% property and sales tax exemption to facilities that are designed and operated primarily for the control,...

  4. Impact of new pollution control technologies on all emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on all emissions: the specific problem of high ratio of NO2 at tail pipe downstream of certain pollution control devices Impact of new pollution control technologies on...

  5. Linearly Exchangable Permits for the Efficient Control of Multiple Pollutants

    E-Print Network [OSTI]

    California at Berkeley. University of

    PWP-019 Linearly Exchangable Permits for the Efficient Control of Multiple Pollutants James B;Linear Exchangeable Permits for the Ecient Control of Multiple Pollutants James B. Bushnell University of pollutants. Often a new polluter is required to purchase an "o-set" from an existing polluter prepared

  6. Pollution control: A Houston Ship Channel issue.

    E-Print Network [OSTI]

    Williams, Edward Barney

    1972-01-01T23:59:59.000Z

    . Mr. Smallhorst expressed the opinion that municipalities were equally responsible. Municipal sewage, in his opinion, posed a far greater health hazard than did industrial wastes. In 1964, Houston Public Works Director E. B. Cape placed principle... and water pollution . . . and. (urgej offending industries to contro the disposal of their waste materials. It [was to bej available to aid industrial management in finding ways and means of controlling pollution . . . . 5 Since his appointment, Dr...

  7. Water pollution Control Permit Fee Schedules (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule establishes schedules of permit application fees and annual permit fees for state water pollution control permits and national pollutant discharge elimination system permits issued by the...

  8. Pollution Control Act (South Carolina)

    Broader source: Energy.gov [DOE]

    This Act declares the maintenance of reasonable standards of purity of air and water to be the public policy of the state. The Act authorizes the Department of Health and Environmental Control to...

  9. San Joaquin Valley Unified Air Pollution Control District

    E-Print Network [OSTI]

    #12;San Joaquin Valley Unified Air Pollution Control District Best Available Control Technology.4.2 #12;San Joaquin Valley Air Pollution Control Distri RECEIVED ~ 2 ED ECEIVED www.valleyalr.org SJVAPCD-2370·(661)326-6900"FAX(661)326-6985 #12;San Joaquin Valley Unified Air Pollution Control District TITLE V MODIFICATION

  10. Executive Order 12088: Federal Compliance with Pollution Control...

    Broader source: Energy.gov (indexed) [DOE]

    actions are taken for the prevention, control, and abatement of environmental pollution with respect to Federal facilities and activities under the control of the agency....

  11. Urban Pollution Control Strategies Reading: pages 422-437

    E-Print Network [OSTI]

    Toohey, Darin W.

    ATOC 3500 Urban Pollution Control Strategies Reading: pages 422-437 Details to come #12;#12;Urban Pollution Control Strategies What we know so far: · Different regions have different issues, but two types, warm, NOx, HCs, ozone, CO) · Pollution is made worse by meteorological conditions called "inversions

  12. AGRICULTURAL BMP PLACEMENT FOR COST-EFFECTIVE POLLUTION CONTROL

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    AGRICULTURAL BMP PLACEMENT FOR COST-EFFECTIVE POLLUTION CONTROL AT THE WATERSHED LEVEL Tamie Lynne-EFFECTIVE POLLUTION CONTROL AT THE WATERSHED LEVEL Tamie Lynne Veith Abstract The overall goal of this research was to increase, relative to targeting recommendations, the cost-effectiveness of pollution reduction measures

  13. Proceedings of the American Control Conference Chicago, Illinois June 2000

    E-Print Network [OSTI]

    Yao, Bin

    coefficient of the valve. The approximation error of the nonlinear flow map- ping is deal with via certain Robust Control of Hydraulic Actuators Regulated by Proportional Directional Control Valves with Deadband-rod hydraulic actuators regulated by proportional directional control(PDC) valves with deadband and nonlinear

  14. E-Print Network 3.0 - air pollutant control Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Summary: pollution prevention and control regulations and guidelines. Air pollution control engineering. Global... .F. Warner and W.T. Davis, Air Pollution: Its...

  15. Development of Foamed Emulsion Bioreactor for Air Pollution Control

    E-Print Network [OSTI]

    Development of Foamed Emulsion Bioreactor for Air Pollution Control Eunsung Kan, Marc A. Deshusses: 10.1002/bit.10767 Abstract: A new type of bioreactor for air pollution con- trol has been developed. The new process relies on an organic-phase emulsion and actively growing pollutant- degrading

  16. Proceedingsof the American Control Conference Chicago, Illinois June 2000

    E-Print Network [OSTI]

    Peng, Huei

    as a generator, thus transforming mechanical power into electrical power. In theory, the battery could also controller was written in Matlab / Simulink. Modeled vehicle components include: internal combustion engine powertrain and the conventional powertrain can provide tractive power to the drive wheels simultaneously [2

  17. Greenidge Multi-Pollutant Control Project

    SciTech Connect (OSTI)

    Daniel Connell

    2008-10-18T23:59:59.000Z

    The Greenidge Multi-Pollutant Control Project was conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electric generating units (EGUs). There are about 400 units in the United States with capacities of 50-300 MW that currently are not equipped with selective catalytic reduction (SCR), flue gas desulfurization (FGD), or mercury control systems. Many of these units, which collectively represent more than 55 GW of installed capacity, are difficult to retrofit for deep emission reductions because of space constraints and unfavorable economies of scale, making them increasingly vulnerable to retirement or fuel switching in the face of progressively more stringent environmental regulations. The Greenidge Project sought to confirm the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs by offering a combination of deep emission reductions, low capital costs, small space requirements, applicability to high-sulfur coals, mechanical simplicity, and operational flexibility. The multi-pollutant control system includes a NO{sub x}OUT CASCADE{reg_sign} hybrid selective non-catalytic reduction (SNCR)/in-duct SCR system for NO{sub x} control and a Turbosorp{reg_sign} circulating fluidized bed dry scrubbing system (with a new baghouse) for SO{sub 2}, SO{sub 3}, HCl, HF, and particulate matter control. Mercury removal is provided as a co-benefit of the in-duct SCR, dry scrubber, and baghouse, and by injection of activated carbon upstream of the scrubber, if required. The multi-pollutant control system was installed and tested on the 107-MW{sub e}, 1953-vintage AES Greenidge Unit 4 by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. About 44% of the funding for the project was provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and the remaining 56% was provided by AES Greenidge. Project goals included reducing high-load NO{sub x} emissions to {le} 0.10 lb/mmBtu; reducing SO{sub 2}, SO{sub 3}, HCl, and HF emissions by at least 95%; and reducing Hg emissions by at least 90% while the unit fired 2-4% sulfur eastern U.S. bituminous coal and co-fired up to 10% biomass. This report details the final results from the project. The multi-pollutant control system was constructed in 2006, with a total plant cost of $349/kW and a footprint of 0.4 acre - both substantially less than would have been required to retrofit AES Greenidge Unit 4 with a conventional SCR and wet scrubber. Start-up of the multi-pollutant control system was completed in March 2007, and the performance of the system was then evaluated over an approximately 18-month period of commercial operation. Guarantee tests conducted in March-June 2007 demonstrated attainment of all of the emission reduction goals listed above. Additional tests completed throughout the performance evaluation period showed 96% SO{sub 2} removal, 98% mercury removal (with no activated carbon injection), 95% SO{sub 3} removal, and 97% HCl removal during longer-term operation. Greater than 95% SO{sub 2} removal efficiency was observed even when the unit fired high-sulfur coals containing up to 4.8 lb SO{sub 2}/mmBtu. Particulate matter emissions were reduced by more than 98% relative to the emission rate observed prior to installation of the technology. The performance of the hybrid SNCR/SCR system was affected by problems with large particle ash, ammonia slip, and nonideal combustion characteristics, and high-load NO{sub x} emissions averaged 0.14 lb/mmBtu during long-term operation. Nevertheless, the system has reduced the unit's overall NO{sub x} emiss

  18. Commonwealth of Virginia, State Air Pollution Control Board,...

    Broader source: Energy.gov (indexed) [DOE]

    Commonwealth of Virginia, State Air Pollution Control Board, Order by Concent Issued to Mirant Potomac River, LLC, Registration No. 70228 Commonwealth of Virginia, State Air...

  19. Minimum cost air pollution control for cotton gins

    E-Print Network [OSTI]

    Flannigan, Steven Shawnacy

    1997-01-01T23:59:59.000Z

    pollution control, in order to achieve compliance with air pollution regulations, reduces the profit margin of the ginning operation. Presently, the number of viable operating gins in the U.S. has declined and the imposition of expensive controls to comply...

  20. Water Pollution Control and Abatement (Maryland)

    Broader source: Energy.gov [DOE]

    The Department of the Environment is responsible for protecting the water quality of the state and enacting regulations to prevent and mitigate water pollution. The Water Management Administration ...

  1. Pollutant Discharge Prevention and Control Act (Florida)

    Broader source: Energy.gov [DOE]

    The Department of Environmental Protection is responsible for enacting regulations to prevent and mitigate the release of pollutants into the land and waters of the state. This legislation...

  2. Water Pollution (Illinois)

    Broader source: Energy.gov [DOE]

    This article states regulations for water quality standards, effluent standards, monitoring and reporting methods, sewer discharge criteria and information about permits. It is the purpose of...

  3. Mercury Specie and Multi-Pollutant Control

    SciTech Connect (OSTI)

    Rob James; Virgil Joffrion; John McDermott; Steve Piche

    2010-05-31T23:59:59.000Z

    This project was awarded to demonstrate the ability to affect and optimize mercury speciation and multi-pollutant control using non-intrusive advanced sensor and optimization technologies. The intent was to demonstrate plant-wide optimization systems on a large coal fired steam electric power plant in order to minimize emissions, including mercury (Hg), while maximizing efficiency and maintaining saleable byproducts. Advanced solutions utilizing state-of-the-art sensors and neural network-based optimization and control technologies were proposed to maximize the removal of mercury vapor from the boiler flue gas thereby resulting in lower uncontrolled releases of mercury into the atmosphere. Budget Period 1 (Phase I) - Included the installation of sensors, software system design and establishment of the as-found baseline operating metrics for pre-project and post-project data comparison. Budget Period 2 (Phase II) - Software was installed, data communications links from the sensors were verified, and modifications required to integrate the software system to the DCS were performed. Budget Period 3 (Phase III) - Included the validation and demonstration of all control systems and software, and the comparison of the optimized test results with the targets established for the project site. This report represents the final technical report for the project, covering the entire award period and representing the final results compared to project goals. NeuCo shouldered 61% of the total project cost; while DOE shouldered the remaining 39%. The DOE requires repayment of its investment. This repayment will result from commercial sales of the products developed under the project. NRG's Limestone power plant (formerly owned by Texas Genco) contributed the host site, human resources, and engineering support to ensure the project's success.

  4. Effects of Air Pollution Control on Climate

    E-Print Network [OSTI]

    Prinn, Ronald G.

    Urban air pollution and climate are closely connected due to shared generating processes (e.g., combustion) for emissions of the driving gases and aerosols. They are also connected because the atmospheric lifecycles of ...

  5. General Provisions on Air Pollution Control (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law that establishes the Ohio Environmental Protection Agency outlines the air pollution rules to secure and maintain levels of air quality that are consistent with the...

  6. Literature Review of Air Pollution Control Biofilters and Biotrickling

    E-Print Network [OSTI]

    Literature Review of Air Pollution Control Biofilters and Biotrickling Filters for Odor Emission Standards for Hazardous Air Pollutants and Title V permitting) as well as local and state for the treatment of complex odorous waste air containing hydrogen sulfide (H2S), organic reduced sulfur com- pounds

  7. E-Print Network 3.0 - atmospheric pollution control Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    854-8885, Email: vmf... pollution prevention and control regulations and guidelines. Air pollution control engineering. Global... .F. Warner and W.T. Davis, Air ... Source:...

  8. air pollution control: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 San Joaquin Valley Unified Air Pollution Control District Energy Storage, Conversion and Utilization Websites...

  9. air pollution controls: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 San Joaquin Valley Unified Air Pollution Control District Energy Storage, Conversion and Utilization Websites...

  10. Water Pollution Control Plant Solar Site Evaluation: San Jos

    Broader source: Energy.gov [DOE]

    This report describes the findings of a solar site evaluation conducted at the San Jose/Santa Clara Water Pollution Control Plant (Site) in the City of San Jose, California (City). This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

  11. Combined Flue Gas Heat Recovery and Pollution Control Systems

    E-Print Network [OSTI]

    Zbikowski, T.

    1979-01-01T23:59:59.000Z

    in the field of heat recovery now make it possible to recover a portion of the wasted heat and improve the working conditions of the air purification equipment. Proper design and selection of heat recovery and pollution control equipment as a combination...

  12. Greenridge Multi-Pollutant Control Project Preliminary Public Design Report

    SciTech Connect (OSTI)

    Daniel P. Connell

    2009-01-12T23:59:59.000Z

    The Greenidge Multi-Pollutant Control Project is being conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electrical generating units (EGUs). The multi-pollutant control system includes a hybrid selective non-catalytic reduction (SNCR)/in-duct selective catalytic reduction (SCR) system to reduce NOx emissions by {ge}60%, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, and HF by {ge}95%. Mercury removal of {ge}90% is also targeted via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. The technology is particularly well suited, because of its relatively low capital and maintenance costs and small space requirements, to meet the needs of coal-fired units with capacities of 50-300 MWe. There are about 440 such units in the United States that currently are not equipped with SCR, flue gas desulfurization (FGD), or mercury control systems. These smaller units are a valuable part of the nation's energy infrastructure, constituting about 60 GW of installed capacity. However, with the onset of the Clean Air Interstate Rule, Clean Air Mercury Rule, and various state environmental actions requiring deep reductions in emissions of SO{sub 2}, NO{sub x}, and mercury, the continued operation of these units increasingly depends upon the ability to identify viable air pollution control retrofit options for them. The large capital costs and sizable space requirements associated with conventional technologies such as SCR and wet FGD make these technologies unattractive for many smaller units. The Greenidge Project aims to confirm the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs. The multi-pollutant control system is being installed and tested on the AES Greenidge Unit 4 (Boiler 6) by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. All funding for the project is being provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and by AES Greenidge. AES Greenidge Unit 4 is a 107 MW{sub e} (net), 1950s vintage, tangentially-fired, reheat unit that is representative of many of the 440 smaller coal-fired units identified above. Following design and construction, the multi-pollutant control system will be demonstrated over an approximately 20-month period while the unit fires 2-4% sulfur eastern U.S. bituminous coal and co-fires up to 10% biomass. This Preliminary Public Design Report is the first in a series of two reports describing the design of the multi-pollutant control facility that is being demonstrated at AES Greenidge. Its purpose is to consolidate for public use all available nonproprietary design information on the Greenidge Multi-Pollutant Control Project. As such, the report includes a discussion of the process concept, design objectives, design considerations, and uncertainties associated with the multi-pollutant control system and also summarizes the design of major process components and balance of plant considerations for the AES Greenidge Unit 4 installation. The Final Public Design Report, the second report in the series, will update this Preliminary Public Design Report to reflect the final, as-built design of the facility and to incorporate data on capital costs and projected operating costs.

  13. Control of air pollution emissions from municipal waste combustors

    SciTech Connect (OSTI)

    Kolgroe, J.D. [Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Lab.; Licata, A. [Licata Energy and Environmental Consultants, Inc., Yonkers, NY (United States)

    1996-09-01T23:59:59.000Z

    The November 1990 Clear Air Act Amendments (CAAAs) directed EPA to establish municipal waste combustor (MWC) emissions limits for particulate matter, opacity, hydrogen chloride, sulfur dioxide, nitrogen oxides, carbon monoxide, dioxins, dibenzofurans, cadmium, lead, and mercury. Revised MWC air pollution regulations were subsequently proposed by EPA on September 20, 1994, and promulgated on December 19, 1995. The MWC emission limits were based on the application of maximum achievable control technology (MACT). This paper provides a brief overview of MWC technologies, a summary of EPA`s revised air pollution rules for MWCs, a review of current knowledge concerning formation and control of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, and a discussion of the behavior and control of mercury in MWC flue gases. 56 refs., 11 figs., 3 tabs.

  14. Oxy-fuel combustion with integrated pollution control

    DOE Patents [OSTI]

    Patrick, Brian R. (Chicago, IL); Ochs, Thomas Lilburn (Albany, OR); Summers, Cathy Ann (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul Chandler (Independence, OR)

    2012-01-03T23:59:59.000Z

    An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

  15. Illinois Coal Development Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

  16. Minnesota Pollution Control Agency Public Meeting -5/19/2011 Remedial Investigation of UMore Park East

    E-Print Network [OSTI]

    Netoff, Theoden

    Minnesota Pollution Control Agency Public Meeting - 5/19/2011 Remedial Investigation of UMore Park MINNESOTA POLLUTION CONTROL AGENCY University of Minnesota Remedial Investigation of UMore Park East Dakota Trail Rosemount, Minnesota Speakers: Gary Krueger Minnesota Pollution Control Agency Janet Dalgleish

  17. Air pollution and asthma control in the Epidemiological study on the Genetics and Environment of Asthma

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Air pollution and asthma control in the Epidemiological study on the Genetics and Environment Cedex, France Tel: +33 (0)1 45 59 50 12 Fax: +33 (0)1 45 59 51 69 Key words: air pollution, asthma;1 Abstract Background: The associations between exposure to air pollution and asthma control are not well

  18. Regulations of the Arkansas Plan of Implementation for Air Pollution Control (Arkansas)

    Broader source: Energy.gov [DOE]

    The Regulations of the Arkansas Plan of Implementation for Air Pollution Control are applicable to any stationary source that has the potential to emit any federally regulated air pollutant. The...

  19. Neural Modeling and Control of Diesel Engine with Pollution Constraints

    E-Print Network [OSTI]

    Ouladsine, Mustapha; Dovifaaz, Xavier; 10.1007/s10846-005-3806-y

    2009-01-01T23:59:59.000Z

    The paper describes a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose structure is mainly based on some physical equations describing the engine behaviour, is built for the rotation speed and the exhaust gas opacity. The model is composed of three interconnected neural submodels, each of them constituting a nonlinear multi-input single-output error model. The structural identi?cation and the parameter estimation from data gathered on a real engine are described. The neural direct model is then used to determine a neural controller of the engine, in a specialized training scheme minimising a multivariable criterion. Simulations show the effect of the pollution constraint weighting on a trajectory tracking of the engine speed. Neural networks, which are ?exible and parsimonious nonlinear black-box models, with universal approximation capabilities, can accurately describe or control complex nonlinear systems, with little a priori theoretical knowledge. The present...

  20. How information resources are used by state agencies in risk assessment applications - Illinois

    SciTech Connect (OSTI)

    Olson, C.S.

    1990-12-31T23:59:59.000Z

    The Environmental Protection Agency of the State of Illinois (Illinois EPA) has programs in water, air, and land pollution and water supplies paralleling those of the US Environmental Protection Agency (EPA). The organization is part of a tripartite arrangement in which the Pollution Control Board is the judicial arm, the Department of Energy and Natural Resources is the research arm, and the Illinois EPA is the enforcement arm. Other state agencies are also concerned with various aspects of the environment and may do risk assessments for chemicals. Although there are various risk assessment activities, both formal and informal, in our agency and in others, this paper will discuss only recent initiatives in water quality criteria.

  1. Method oil shale pollutant sorption/NO.sub.x reburning multi-pollutant control

    DOE Patents [OSTI]

    Boardman, Richard D. (Idaho Falls, ID); Carrington, Robert A. (Idaho Falls, ID)

    2008-06-10T23:59:59.000Z

    A method of decreasing pollutants produced in a combustion process. The method comprises combusting coal in a combustion chamber to produce at least one pollutant selected from the group consisting of a nitrogen-containing pollutant, sulfuric acid, sulfur trioxide, carbonyl sulfide, carbon disulfide, chlorine, hydroiodic acid, iodine, hydrofluoric acid, fluorine, hydrobromic acid, bromine, phosphoric acid, phosphorous pentaoxide, elemental mercury, and mercuric chloride. Oil shale particles are introduced into the combustion chamber and are combusted to produce sorbent particulates and a reductant. The at least one pollutant is contacted with at least one of the sorbent particulates and the reductant to decrease an amount of the at least one pollutant in the combustion chamber. The reductant may chemically reduce the at least one pollutant to a benign species. The sorbent particulates may adsorb or absorb the at least one pollutant. A combustion chamber that produces decreased pollutants in a combustion process is also disclosed.

  2. Illinois Groundwater Protection Act (Illinois)

    Broader source: Energy.gov [DOE]

    It is the policy of the State of Illinois to restore, protect, and enhance the groundwaters of the State, as a natural and public resource. The State recognizes the essential and pervasive role of...

  3. Illinois Coal Revival Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

  4. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28T23:59:59.000Z

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  5. An Assessment of the Effectiveness of California's Local Air Pollution Controls

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    15 An Assessment of the Effectiveness of California's Local Air Pollution Controls on Agricultural Sources C.-Y. Cynthia Lin University of California at Davis USA 1. Introduction Air pollution has been [1]. Negative effects of air pollution have been extensively documented, and include impairment

  6. Cattle Feedlot Waste Management Practices -For Water and Air Pollution Control

    E-Print Network [OSTI]

    Mukhtar, Saqib

    Cattle Feedlot Waste Management Practices - For Water and Air Pollution Control John M. Sweeten in the potential for both water and air pollution. To prevent potential problems from developinginto real problems* Water Pollution and Wastewater Management This bulletin outlines some of the basic regulatory

  7. E-Print Network 3.0 - automotive pollution control Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all applicable laws regarding affirmative action and Summary: Combustion Engines CHE 4613 Air Pollution Control Design: Theory and Practice CHE 4423 Fundamentals... as a veteran or...

  8. Bankruptcy Risk and the Performance of Market-based Pollution Control Policies.

    E-Print Network [OSTI]

    Zhang, Wei

    2008-01-01T23:59:59.000Z

    ??We study the impacts of bankruptcy risk on the performance of market-based pollution control policies. In chapter one, we concentrate on emissions trading markets. We (more)

  9. Air Pollution Control Regulations: No. 7 - Emission of Air Contaminant...

    Broader source: Energy.gov (indexed) [DOE]

    with the enjoyment of life and property. The criteria for determining compliance is listed in the regulations, and is based on other air pollution and ambient air standards...

  10. Synergy between Pollution and Carbon Emissions Control: Comparing China and the U.S.

    E-Print Network [OSTI]

    Nam, Kyung-Min

    We estimate the potential synergy between pollution and climate control in the U.S. and China, summarizing the results as emissions cross-elasticities of control. We set a range of NOx and SO2 targets, and record the ...

  11. Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same

    DOE Patents [OSTI]

    Boardman, Richard D.; Carrington, Robert A.

    2010-05-04T23:59:59.000Z

    Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

  12. Control of agricultural nonpoint source pollution in Kranji Catchment, Singapore

    E-Print Network [OSTI]

    Hoff, Margaret A. (Margaret Ann)

    2013-01-01T23:59:59.000Z

    Singapore's Kranji Reservoir is highly sensitive to nutrient and bacterial pollution, both of which can be directly traced to agricultural runoff. Water quality samples were collected along the main drainage channel in the ...

  13. J Epidemiol Community Health . Author manuscript Air pollution and asthma control in the Epidemiological study on the

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    J Epidemiol Community Health . Author manuscript Page /1 12 Air pollution and asthma control between exposure to air pollution and asthma control are not well known. The objective is to assess air pollution and the three domains of asthma control (symptoms, exacerbations and lung function

  14. Producing and controlling of the pollutant in the coal`s coking process

    SciTech Connect (OSTI)

    Li, S. [Shanxi Environmental Protection Bureau (China); Fan, Z. [Shanxi Central Environmental Monitoring Station (China)

    1997-12-31T23:59:59.000Z

    In the process of heating and coke shaping, different pollutants and polluting factors will be produced and lost to the environment due to the different coking methods. The paper analyzes the production mechanism, type, emission, average quantity, and damage to the environment of the major pollutants and polluting factors produced in several kinds of coking processes in China at the present. Then, the paper concludes that an assessment for any coking method should include a comprehensive beneficial assessment of economical benefit, environmental benefit and social benefit. The items in the evaluation should consist of infrastructure investment, which includes production equipment and pollution control equipment, production cost, benefit and profit produced by one ton coal, whether the pollution complies with the environmental requirement, extent of the damage, influence to the social development, and etc.

  15. Building America Case Study: Advanced Boiler Load Monitoring Controllers, Chicago, Illinois (Fact Sheet)

    SciTech Connect (OSTI)

    PARR

    2014-09-01T23:59:59.000Z

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  16. E-Print Network 3.0 - air-pollution-control residues leaching...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    leaching Search Powered by Explorit Topic List Advanced Search Sample search results for: air-pollution-control residues leaching Page: << < 1 2 3 4 5 > >> 1 Solid Residues from...

  17. Looking at pollution control in a new light: Photochemistry for a cleaner environment

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This phamphet, from the National Renewable Energy Laboratory and Sandia National Laboratory, describes a major new development in the field of photochemistry. The NREL/Sandia team has developed a pollution control technique - photocatalytic oxidation (PCO) that uses the energy in light to destroy environmental contaminants. Applicable as both a waste clean-up and a pollution control technique, PCP could help thousands of businesses comply with environmental regulations.

  18. Evaluation of selected new technologies for animal waste pollution control

    E-Print Network [OSTI]

    Lazenby, Lynn Anne

    2006-10-30T23:59:59.000Z

    In 1998, two upper North Bosque River segments were designated as impaired due to the nonpoint source (NPS) pollution of phosphorus (P) to these segments in the watershed. As a result, two Total Maximum Daily Loads (TMDLs) were applied which called...

  19. Proceedings of ESTECH 2005 Conference, Technical Session in Contamination Control; Schaumburg, Illinois, May 1-3, 2005.

    E-Print Network [OSTI]

    ; Schaumburg, Illinois, May 1-3, 2005. This paper is produced from a research project funded by the California Energy Commission's Public Interest Energy Research (PIER) Industrial program (http://www.energy.ca.gov/). This work is supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office

  20. Hawaii Polluted Runoff Control Program Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer CountyCorridor | OpenOpen EnergyOpenOceanicPolluted Runoff

  1. Coal-fired power generation: Proven technologies and pollution control systems

    SciTech Connect (OSTI)

    Balat, M. [University of Mah, Trabzon (Turkey)

    2008-07-01T23:59:59.000Z

    During the last two decades, significant advances have been made in the reduction of emissions from coal-fired power generating plants. New technologies include better understanding of the fundamentals of the formation and destruction of criteria pollutants in combustion processes (low nitrogen oxides burners) and improved methods for separating criteria pollutants from stack gases (FGD technology), as well as efficiency improvements in power plants (clean coal technologies). Future demand for more environmentally benign electric power, however, will lead to even more stringent controls of pollutants (sulphur dioxide and nitrogen oxides) and greenhouse gases such as carbon dioxide.

  2. Controlling a Stock Pollutant with Endogenous Abatement Capital and Asymmetric Information

    E-Print Network [OSTI]

    Karp, Larry S.

    Controlling a Stock Pollutant with Endogenous Abatement Capital and Asymmetric Information Larry have asymmetric information about abatement costs, and all agents use Markov Per- fect decision rules to represent the problem of controlling greenhouse gasses. The endogeneity of abatement capital favors taxes

  3. Dioxin/furans and Air Pollution Control Dioxins and furans are chlorinated compounds produced during all

    E-Print Network [OSTI]

    Dioxin/furans and Air Pollution Control Dioxins and furans are chlorinated compounds produced baghouse. As a result of the new controls, the dioxin/furan emissions of WTE plants in the U (28 million tons of MSW combusted) emit less than six grams TEQ dioxins per year. In comparison

  4. Energy Impact Illinois

    Broader source: Energy.gov [DOE]

    Presents how Energy Impact Illinois overcame barriers in the multifamily sector through financing partnerships and expert advice.

  5. physics.illinois.edu The University of Illinois

    E-Print Network [OSTI]

    Ha, Taekjip

    .edu Illinois Physics REU Condensed matter physics Atomic & molecular optics Biophysics High Energy Physicsphysics.illinois.edu The University of Illinois Physics REU Program Kevin Pitts Department of Physics 13-Nov-13 1 http://physics.illinois.edu/undergrad/reu/ Contact/follow me! Email: kpitts@illinois

  6. f " International Conference on Wetland Systems for Water Pollution Control. Vienna 1996 XIII/4 -1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    96/0852 f í " International Conference on Wetland Systems for Water Pollution Control. Vienna 1996 XIII/4 - 1 TREATMENT OF SLUDGE FROM SEPTIC TANKS IN A REED-BED FILTERS PILOT PLANT. Alain Liénard and treatment of wastewater. Zones of collective and individual (on-site) treatment have to be defined. Local

  7. Risk-based corrective action: Lessons for brownfields from the Illinois rulemaking

    SciTech Connect (OSTI)

    Reott, R.T.; Grayson, E.L. [Jenner and Block, Chicago, IL (United States)

    1998-12-31T23:59:59.000Z

    As attention focuses on the redevelopment of brownfield properties, increasing numbers of stakeholders realize that one of the major stumbling blocks to the use of brownfields properties is the uncertainty over future cleanup costs. In Illinois, the Pollution Control Board recently completed a three-year rulemaking which has provided a new, risk-based system for determining corrective action objectives. 35 Ill. Adm. Code {section} 742 (1997). Armed with this system, Illinois property owners and developers may assess potential cleanup exposure with less site investigation than in the past. Because the system may be implemented quickly and predictably, it functions well in a transactional context where speed is critical. This presentation highlights the features of the new Illinois system and identifies potential issues that other states might wish to consider when they evaluate their own programs. Many states are in the process of implementing risk-based corrective action for some or all of their site remediation programs. The lessons learned in Illinois may help these states implement these programs more efficiently and with fewer developmental costs.

  8. Criminal sanctions applicable to Federal water pollution control measures. Master's thesis

    SciTech Connect (OSTI)

    Thompson, J.C.

    1991-09-30T23:59:59.000Z

    Overkill or not enough: Two decades ago, Congress realized that a system of civil remedies alone, devoid of any lasting punitive consequences, was inadequate to insure compliance with environmental protection statutes. Other than the Rivers and Harbors Act of 1899, which was designed to protect navigation, Federal criminal sanctions were not applicable to water pollution offenses. The Federal Water Pollution Control Act, more commonly known as the Clean Water Act (CWA), was twenty-four years old before Federal criminal enforcement of its provisions was allowed. But since the early 1970's, the criminal provisions of the CWA have been strengthened, the United States Department of Justice has beefed up its environmental enforcement efforts, and environmental polluters have been prosecuted. This Federal effort is now approaching overkill.

  9. Energy Impact Illinois

    Broader source: Energy.gov [DOE]

    This is a document from Energy Impact Illinois posted on the website of the U.S. Department of Energy's Better Buildings Neighborhood Program.

  10. Forestry Policies (Illinois)

    Broader source: Energy.gov [DOE]

    Illinois' Forests are managed by the State Department of Natural Resources, Division of Forest Resources. The Department issued in 2008 its "Statewide Forest Resource Assessments and Strategies"...

  11. Environmental Pollution Air Pollution Dispersion Practical Air Pollution Dispersion

    E-Print Network [OSTI]

    Moncrieff, John B.

    Environmental Pollution Air Pollution Dispersion 1 of 5 Practical ­ Air Pollution Dispersion in the lectures how such models can be used to explain observed concentrations of air pollutants in an area and to test `what-if' scenarios for pollution control and reduction. You will use the Gaussian Plume Model

  12. E-Print Network 3.0 - annual illinois energy Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    illinois energy Search Powered by Explorit Topic List Advanced Search Sample search results for: annual illinois energy Page: << < 1 2 3 4 5 > >> 1 Control and System Design for...

  13. Conference on alternatives for pollution control from coal-fired low emission sources, Plzen, Czech Republic. Plzen Proceedings

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The Conference on Alternatives for Pollution Control from Coal-Fired Emission Sources presented cost-effective approaches for pollution control of low emission sources (LES). It also identified policies and strategies for implementation of pollution control measures at the local level. Plzen, Czech Republic, was chosen as the conference site to show participants first hand the LES problems facing Eastern Europe today. Collectively, these Proceedings contain clear reports on: (a) methods for evaluating the cost effectiveness of alternative approaches to control pollution from small coal-fired boilers and furnaces; (b) cost-effective technologies for controlling pollution from coal-fired boilers and furnaces; (c) case studies of assessment of cost effective pollution control measures for selected cities in eastern Europe; and (d) approaches for actually implementing pollution control measures in cities in Eastern Europe. It is intended that the eastern/central European reader will find in these Proceedings useful measures that can be applied to control emissions and clean the air in his city or region. The conference was sponsored by the United States Agency for International Development (AID), the United States Department of Energy (DOE), and the Czech Ministry of Industry and Trade. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  14. Integrated Air Pollution Control System (IAPCS), Executable Model (Version 4. 0) (for microcomputers). Model-Simulation

    SciTech Connect (OSTI)

    Not Available

    1990-10-29T23:59:59.000Z

    The Integrated Air Pollution Control System (IAPCS) Cost Model is an IBM PC cost model that can be used to estimate the cost of installing SO2, NOx, and particulate matter control systems at coal-fired utility electric generating facilities. The model integrates various combinations of the following technologies: physical coal cleaning, coal switching, overfire air/low NOx burners, natural gas reburning, LIMB, ADVACATE, electrostatic precipitator, fabric filter, gas conditioning, wet lime or limestone FGD, lime spray drying/duct spray drying, dry sorbent injection, pressurized fluidized bed combustion, integrated gasification combined cycle, and pulverized coal burning boiler. The model generates capital, annualized, and unitized pollutant removal costs in either constant or current dollars for any year.

  15. Photosystem II John Whitmarsh, University of Illinois, Urbana, Illinois, USA

    E-Print Network [OSTI]

    Govindjee "Gov"

    of Illinois, Urbana, Illinois, USA Photosystem II is a specialized protein complex that uses light energyPhotosystem II John Whitmarsh, University of Illinois, Urbana, Illinois, USA Govindjee, University light. Introduction Photosynthetic organisms use light energy to produce organic molecules (Ort

  16. Apparatus for high flux photocatalytic pollution control using a rotating fluidized bed reactor

    DOE Patents [OSTI]

    Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric

    2003-06-24T23:59:59.000Z

    An apparatus based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to both low- and high-flux photoreactor design and scale-up. An apparatus for high-flux photocatalytic pollution control is based on the implementation of multifunctional metal oxide aerogels and other media in conjunction with a novel rotating fluidized particle bed reactor.

  17. POLLUTION AND LAND USE: OPTIMUM AND DECENTRALIZATION

    E-Print Network [OSTI]

    Hochman, Oded; Rausser, Gordon C.; Arnott, Richard J

    2008-01-01T23:59:59.000Z

    The case of internalizing pollution externalities, Journaltension between industrial pollution and households has beenas a means of controlling pollution. Separating polluter and

  18. Feasibility study: fuel cell cogeneration in a water pollution control facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-02-01T23:59:59.000Z

    A conceptual design study was conducted to investigate the technical and economic feasibility of a cogeneration fuel cell power plant operating in a large water pollution control facility. The fuel cell power plant would use methane-rich digester gas from the water pollution control facility as a fuel feedstock to provide electrical and thermal energy. Several design configurations were evaluated. These configurations were comprised of combinations of options for locating the fuel cell power plant at the site, electrically connecting it with the water pollution control facility, using the rejected power plant heat, supplying fuel to the power plant, and for ownership and operation. A configuration was selected which met institutional/regulatory constraints and provided a net cost savings to the industry and the electric utility. This volume of the report contains the appendices: (A) abbreviations and definitions, glossary; (B) 4.5 MWe utility demonstrator power plant study information; (C) rejected heat utilization; (D) availability; (E) conceptual design specifications; (F) details of the economic analysis; (G) detailed description of the selected configuration; and (H) fuel cell power plant penetration analysis. (WHK)

  19. Guarantee Testing Results from the Greenidge Mult-Pollutant Control Project

    SciTech Connect (OSTI)

    Daniel P. Connell; James E. Locke

    2008-02-01T23:59:59.000Z

    CONSOL Energy Inc. Research & Development (CONSOL R&D) performed flue gas sampling at AES Greenidge to verify the performance of the multi-pollutant control system recently installed by Babcock Power Environmental Inc. (BPEI) on the 107-megawatt (MW) Unit 4 (Boiler 6). The multi-pollutant control system includes combustion modifications and a hybrid selective non-catalytic reduction (SNCR)/induct selective catalytic reduction (SCR) system to reduce NO{sub x} emissions, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system and baghouse to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, HF, and particulate matter. Mercury removal is provided via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. Testing was conducted through ports located at the inlet and outlet of the SCR reactor to evaluate the performance of the hybrid NO{sub x} control system, as well as through ports located at the air heater outlet and baghouse outlet or stack to determine pollutant removal efficiencies across the Turbosorp{reg_sign} scrubber and baghouse. Data from the unit's stack continuous emission monitor (CEM) were also used for determining attainment of the performance targets for NO{sub x} emissions and SO{sub 2} removal efficiency.

  20. Air Pollution (Illinois) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReportingEnergyRetrospective Plan42.2Energy

  1. Approved Module Information for CE3104, 2014/5 Module Title/Name: Process & Pollution Control Module Code: CE3104

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    * Identify and quantify the environmental impact of a manufacturing process * Evaluate, select and specify Content: Pollution Prevention and Control: * Environmental Law - history, major legislation, IPC management systems, environmental impact assessment, monitoring and auditing, life cycle analysis * Solid

  2. Physics Illinois Undergraduate Programs

    E-Print Network [OSTI]

    Gilbert, Matthew

    Physics Illinois Undergraduate Programs Department of Physics College of Engineering University to undergraduate education. Over the last 15 years, in collaboration with our nationally recognized Physics Education Research Group, our faculty has reinvented the way undergraduate physics courses are taught

  3. Energy Impact Illinois Rebates

    Broader source: Energy.gov [DOE]

    The Energy Impact Illinois program offers rebates for implementing energy efficient measures. Homeowners and businesses can use the "Find Energy Savings Actions" tool to see all the programs they...

  4. Community Development Fund (Illinois)

    Broader source: Energy.gov [DOE]

    The Community Development Fund is a partnership between the Illinois Department of Commerce and Economic Opportunity (DCEO) and financial institutions. Up to $5 million in micro loans is available...

  5. Energy Impact Illinois Loans

    Broader source: Energy.gov [DOE]

    Energy Impact Illinois partners with local banks and credit unions to provide low-interest loans to help reduce the upfront costs associated with energy efficiency improvements. Loans can be used...

  6. Neural Modelling and Control of a Diesel Engine with Pollution Constraints Mustapha Ouladsine*, Grard Bloch**, Xavier Dovifaaz**

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    1 Neural Modelling and Control of a Diesel Engine with Pollution Constraints Mustapha Ouladsine a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose dynamics and outperform during transients the control schemes based on static mappings. Keywords: Diesel

  7. TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL ON THREE 90 MW COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Richard E. Johnson

    2004-07-30T23:59:59.000Z

    With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particle control device along with the other solid material, primarily fly ash. WE Energies has over 3,700 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x} and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90 MW units that burn Powder River Basin coal at the WE Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, WE Energies (the Participant) will design, install, and operate a TOXECON{trademark} (TOXECON) system designed to clean the combined flue gases of units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON is a patented process in which a fabric filter system (baghouse) installed down stream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single baghouse. Mercury will be controlled by injection of activated carbon or other novel sorbents, while NO{sub x} and SO{sub 2} will be controlled by injection of sodium based or other novel sorbents. Addition of the TOXECON baghouse will provide enhanced particulate control. Sorbents will be injected downstream of the existing particle collection device to allow for continued sale and reuse of captured fly ash from the existing particulate control device, uncontaminated by activated carbon or sodium sorbents. Methods for sorbent regeneration, i.e. mercury recovery from the sorbent, will be explored and evaluated. For mercury concentration monitoring in the flue gas streams, components available for use will be evaluated and the best available will be integrated into a mercury CEM suitable for use in the power plant environment. This project will provide for the use of a novel multi-pollutant control system to reduce emissions of mercury and other air pollutants, while minimizing waste, from a coal-fired power generation system.

  8. Control of nutrient pollution to U.S. waterways is an urgent issue for the nation. In 2013, the U.S. Environmental Protection Agency

    E-Print Network [OSTI]

    Control of nutrient pollution to U.S. waterways is an urgent issue for the nation. In 2013, the U solutions to nutrient pollution problems. Sustainable nitrogen (N) and phosphorus (P) management solutions sustainable solutions for reduction of nutrient pollution in the nation's water resources. The CLEAN CENTER

  9. Wastewater Regulations for National Pollutant Discharge Elimination System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent Limitations and Water Quality Certification (Mississippi)

    Broader source: Energy.gov [DOE]

    The Wastewater Regulations for National Pollutant Discharge Elimination System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent Limitations...

  10. MULTI-POLLUTANT CONTROL USING MEMBRANE--BASED UP-FLOW WET ELECTROSTATIC PRECIPITATION

    SciTech Connect (OSTI)

    James Reynolds

    2003-04-30T23:59:59.000Z

    This is the second quarterly report of the ''Multi-Pollutant Control Using Membrane-Based Upflow Wet Electrostatic Precipitation'' project funded by the US Department of Energy's National Energy Technology Laboratory under DOE Award No. DE-FC26-02NT41592 to Croll-Reynolds Clean Air Technologies (CRCAT). In this 18 month project, CRCAT and its team members will conduct detailed emission tests of metallic and new membrane collection material within a wet electrostatic precipitator (WESP) at First Energy's Penn Power's Bruce Mansfield (BMP) plant in Shippingport, Pa. Test results performed on the existing metallic WESP during November of 2002 showed consistent results with previous test results. Average collection efficiency of 89% on SO{sub 3} mist was achieved. Additionally, removal efficiencies of 62% were achieved at very high velocity, greater than 15 ft./sec. During the first quarter of 2003 final design and start of fabrication of the membrane wet ESP was undertaken.

  11. MULTI-POLLUTANT CONTROL USING MEMBRANE-BASED UP-FLOW WET ELECTROSTATIC PRECIPITATION

    SciTech Connect (OSTI)

    James Reynolds

    2003-01-01T23:59:59.000Z

    This is the first quarterly report of the ''Multi-Pollutant Control Using Membrane--Based Upflow Wet Electrostatic Precipitation'' project funded by the US Department of Energy's National Energy Technology Laboratory under DOE Award No. DE-FC26-02NT41592 to Croll-Reynolds Clean Air Technologies (CRCAT). In this 18 month project, CRCAT and its team members will conduct detailed emission tests of metallic and new membrane collection material within a wet electrostatic precipitator (WESP) at First Energy's Penn Power's Bruce Mansfield (BMP) plant in Shippingport, Pa. Test results performed on the existing metallic WESP during November of 2002 showed consistent results with previous test results. Average collection efficiency of 89% on SO{sub 3} mist was achieved. Additionally, removal efficiencies of 62% were achieved at very high velocity, greater than 15 ft./sec.

  12. MULTI-POLLUTANT CONTROL USING MEMBRANE--BASED UP-FLOW WET ELECTROSTATIC PRECIPITATION

    SciTech Connect (OSTI)

    James Reynolds

    2004-10-29T23:59:59.000Z

    This is the Final Report of the ''Multi-Pollutant Control Using Membrane-Based Up-flow Wet Electrostatic Precipitation'' project funded by the US Department of Energy's National Energy Technology Laboratory under DOE Award No. DE-FC26-02NT41592 to Croll-Reynolds Clean Air Technologies (CRCAT). In this 18 month project, CRCAT and its team members conducted detailed emission tests of metallic and new membrane collection material within a wet electrostatic precipitator (WESP) at First Energy's Penn Power's Bruce Mansfield (BMP) plant in Shippingport, Pa. The Membrane WESP was designed to be as similar as the metallic WESP in terms of collection area, air-flow, and electrical characteristics. Both units are two-field units. The membrane unit was installed during the 2nd and 3rd quarters of 2003. Testing of the metallic unit was performed to create a baseline since the Mansfield plant had installed selective catalytic reduction equipment for NOx control and a sodium bisulfate injection system for SO3 control during the spring of 2003. Tests results on the metallic WESP were consistent with previous testing for PM2.5, SO3 mist and mercury. Testing on the membrane WESP demonstrated no adverse impact and equivalent removal efficiencies as that of the metallic WESP. Testing on both units was performed at 8,000 acfm and 15,000 acfm. Summary results are shown.

  13. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01T23:59:59.000Z

    The Japanese Union of Air Pollution Prevention Associations,The Status of Indoor Air Pollution Research 1976, GeometAnnual Meeting of the Air Pollution Control Association,

  14. Stochastic Microenvironment Models for Air Pollution Exposure

    E-Print Network [OSTI]

    Naihua Duan

    2011-01-01T23:59:59.000Z

    human exposure to air pollution." SIMS Technical Report No.human exposure to air pollution." Environment International.Annual Meeting of the A i r Pollution Control Association,

  15. The Evolution of Economies of Scale Regarding Pollution Control: Cross-Sectional Evidence from a Transition Economy

    E-Print Network [OSTI]

    Earnhart, Dietrich H.; Lizal, Lubomir

    2011-01-01T23:59:59.000Z

    This paper assesses whether firms face economies and/or diseconomies of scale with respect to air pollution control by evaluating the effects of production on firm-level air emission levels. To achieve this objective, this paper uses an unbalanced...

  16. CONTROL OF POLLUTANT EMISSIONS IN NATURAL GAS DIFFUSION FLAMES BY USING CASCADE BURNERS

    SciTech Connect (OSTI)

    Dr. Ala Qubbaj

    2001-12-30T23:59:59.000Z

    The goal of this exploratory research project is to control the pollutant emissions of diffusion flames by modifying the air infusion rate into the flame. The modification was achieved by installing a cascade of venturis around the burning gas jet. The basic idea behind this technique is controlling the stoichiometry of the flame through changing the flow dynamics and rates of mixing in the combustion zone with a set of venturis surrounding the flame. A natural gas jet diffusion flame at burner-exit Reynolds number of 5100 was examined with a set of venturis of specific sizes and spacing arrangement. The thermal and composition fields of the baseline and venturi-cascaded flames were numerically simulated using CFD-ACE+, an advanced computational environment software package. The instantaneous chemistry model was used as the reaction model. The concentration of NO was determined through CFD-POST, a post processing utility program for CFD-ACE+. The numerical results showed that, in the near-burner, midflame and far-burner regions, the venturi-cascaded flame had lower temperature by an average of 13%, 19% and 17%, respectively, and lower CO{sub 2} concentration by 35%, 37% and 32%, respectively, than the baseline flame. An opposite trend was noticed for O{sub 2} concentration; the cascaded flame has higher O{sub 2} concentration by 7%, 26% and 44%, in average values, in the near-burner, mid-flame and far-burner regions, respectively, than in the baseline case. The results also showed that, in the near-burner, mid-flame, and far-burner regions, the venturi-cascaded flame has lower NO concentrations by 89%, 70% and 70%, in average values, respectively, compared to the baseline case. The numerical results substantiate that venturi-cascading is a feasible method for controlling the pollutant emissions of a burning gas jet. In addition, the numerical results were useful to understand the thermo-chemical processes involved. The results showed that the prompt-NO mechanism plays an important role besides the conventional thermal-NO mechanism. The computational results of the present study need to be validated experimentally.

  17. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  18. New Market Tax Credit (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois New Markets Development Program provides supplemental funding for investment entities that have been approved for the Federal New Markets Tax Credit (NMTC) program. This program will...

  19. River Edge Redevelopment Zone (Illinois)

    Broader source: Energy.gov [DOE]

    The purpose of the River Edge Redevelopment Program is to revive and redevelop environmentally challenged properties adjacent to rivers in Illinois.

  20. Large Business Development Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Large Business Development Program, administered by the Illinois Department of Commerce and Economic Opportunity, provides grants to large businesses for bondable business activities, including...

  1. Ameren Illinois- Lighting Rebates for Businesses

    Broader source: Energy.gov [DOE]

    Ameren Illinois offers their non-residential Illinois customers a wide range of incentives for the installation of lighting improvements. Customers must review all equipment requirements to ensure...

  2. nuclear@illinois.edu | 217-333-2295 | npre.illinois.edu 216 Talbot Laboratory, MC 234 | 104 S. Wright Street | Urbana, IL 61801-2935

    E-Print Network [OSTI]

    Jain, Kanti

    nuclear@illinois.edu | 217-333-2295 | npre.illinois.edu 216 Talbot Laboratory, MC 234 | 104 S: · Production, transport and interactions of radiation with matter · Applications of nuclear processes · Nuclear fission for electric power production nuclear power operations and control · Plasma sciences, applied

  3. UNIVERSITY OF ILLINOIS GRADUATE COLLEGE

    E-Print Network [OSTI]

    Hurder, Steven

    THE UNIVERSITY OF ILLINOIS AT CHICAGO GRADUATE COLLEGE THESIS MANUAL The Graduate College (MC 192 that is consistent for all theses and dissertations developed at the University of Illinois at Chicago. #12;iii time and energy on a solution that may prove to be unacceptable. It is our intent to be helpful

  4. Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation

    E-Print Network [OSTI]

    Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

    2005-01-01T23:59:59.000Z

    species) control technology criteria pollutant air pollutantControl Cogen Urban Santa Maria Elevated Data sources: Emissions: 1999 National Emissions Inventory for Hazardous Air Pollutants (

  5. Integrated Air Pollution Control System (IAPCS), Executable Model and Source Model (version 4. 0) (for microcomputers). Model-Simulation

    SciTech Connect (OSTI)

    Not Available

    1990-10-29T23:59:59.000Z

    The Integrated Air Pollution Control System (IAPCS) Cost Model is an IBM PC cost model that can be used to estimate the cost of installing SO2, NOx, and particulate matter control systems at coal-fired utility electric generating facilities. The model integrates various combinations of the following technologies: physical coal cleaning, coal switching, overfire air/low NOx burners, natural gas reburning, LIMB, ADVACATE, electrostatic precipitator, fabric filter, gas conditioning, wet lime or limestone FGD, lime spray drying/duct spray drying, dry sorbent injection, pressurized fluidized bed combustion, integrated gasification combined cycle, and pulverized coal burning boiler. The model generates capital, annualized, and unitized pollutant removal costs in either constant or current dollars for any year.

  6. Environmental Evaluation for Installation of Solar Arrays at San Jose/Santa Clara Water Pollution Control Plant

    Broader source: Energy.gov [DOE]

    The purpose of this technical memorandum (TM) is to review the options to develop a potential solar array development (Project) within or adjacent to western burrowing owl (Athene cunicularia) habitat in the buffer lands that surround the San Jos/Santa Clara Water Pollution Control Plant (WPCP) and to determine if there is a ground-mounted solar photovoltaic (PV) configuration that would enable a workable co-existence between the burrowing owl habitat and the PV arrays.

  7. Illinois Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    include: evaluation of water treatment technology, source water protection planning, mitigation of nitrateIllinois Water Resources Center Annual Technical Report FY 2004 Introduction The Illinois Water of Illinois water resources. In 2004, IWRC hosted Illinois Water, a biennial conference on water issues

  8. the Physics Illinois inside this issue

    E-Print Network [OSTI]

    Gilbert, Matthew

    the Physics Illinois Bulletin inside this issue: Dark Energy Survey's first light Illinois 2012 Vol. 1 No. 1 Department of Physics College of Engineering University of Illinois at Urbana-Champaign #12;To Illinois Physics colleagues, alumni, and friends, We in the Department of Physics

  9. Environmental Protection Act (Illinois)

    Broader source: Energy.gov [DOE]

    This Act states general provisions for the protection of the environment. It also states specific regulations for air, water and land pollution as well as atomic radiation, toxic chemical and oil...

  10. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration

    SciTech Connect (OSTI)

    Damgaard, Anders, E-mail: and@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Riber, Christian [Ramboll, Consulting Engineers, Teknikerbyen 31, DK-2830 Virum (Denmark); Fruergaard, Thilde [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Hulgaard, Tore [Ramboll, Consulting Engineers, Teknikerbyen 31, DK-2830 Virum (Denmark); Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark)

    2010-07-15T23:59:59.000Z

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.

  11. Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Prevention Pollution Prevention Promoting green purchasing, reuse and recycling, and the conservation of fuel, energy, and water. April 17, 2012 Pollution prevention and...

  12. Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Prevention Goal 5: Pollution Prevention LANL is dedicated to finding ways to reduce waste, prevent pollution, and recycle waste that cannot be reduced. Energy...

  13. PROCESS DESIGN AND CONTROL Market-Based Pollution Abatement Strategies: Risk Management

    E-Print Network [OSTI]

    Maranas, Costas

    market-based pollution abatement instruments in the technology selection decision of a firm is developed://www.epa.gov/airmarkets/) launched by the U.S. Environmental Protection Agency (EPA). Title IV of the Clean Air Act set a goal in 1995 and affected 110 coal-burning electric utility plants located in 21 eastern and midwestern states

  14. BIODIESEL AS AN ALTERNATE FUEL FOR POLLUTION CONTROL IN DIESEL ENGINE

    E-Print Network [OSTI]

    Mr. Paresh K. Kasundra; Prof Ashish; V. Gohil

    Diesel vehicles are the major source for air pollution; there is great potential for global warming due to discharge of greenhouse gases like CO2 from vehicles. Many lung problems are connected with particulate matter emitted by diesel vehicle including dust, soot and smoke. People are exposed to pollution even as they talk or when stir up the dust when they walk. Biodiesel is a non-toxic, biodegradable and renewable fuel. Compared to diesel fuel, biodiesel produces no sulfur, no net carbon dioxide, less carbon monoxide and more oxygen. More free oxygen leads to the complete combustion and reduced emission. Overall biodiesel emissions are very less compared to diesel fuel emissions which is promising pollution free environment. Abundant source of vegetable oil in India and its ease of conversion to biodiesel help to save large expenditure done on import of petroleum products and economic growth of country. Biodiesel also generates huge rural employment and degraded lands can be restored due to plantation of oil plants which help in reducing pollution. Extensive research is going on in different countries on different types of vegetable oils like sunflower oil, karanj oil, linseed oil, soya been oil, palm oil, and many more, which can be used in those countries as per availability, our research is in progress on CNSL and its blend with diesel, research is going on in right direction and likely to get surprising

  15. A Better Method for Evaluating Heavy Metal Water Pollution

    E-Print Network [OSTI]

    Hering, Janet

    2002-01-01T23:59:59.000Z

    efforts to control heavy metal pollution have focused oncomponent of heavy metal pollution, Dr. Hering found thatthat makes measuring heavy metal pollution a moving target.

  16. Rev. 12172012 ILLINOIS INSTITUTE OF TECHNOLOGY VENDOR APPLICATION FORM

    E-Print Network [OSTI]

    Heller, Barbara

    Rev. 12172012 ILLINOIS INSTITUTE OF TECHNOLOGY ­ VENDOR APPLICATION FORM The addition of a new vendor to the IIT Vendor Database is a controlled process that starts with a vendor approaching IIT directly (self nomination) or an IIT employee nominating a vendor of a desired good or service. While IIT

  17. TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL-ON THREE 90 MW COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Richard E. Johnson

    2004-10-26T23:59:59.000Z

    With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particle control device along with the other solid material, primarily fly ash. We Energies has over 3,200 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x} and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90 MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, We Energies (the Participant) will design, install, and operate a TOXECON{trademark} (TOXECON) system designed to clean the combined flue gases of units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON is a patented process in which a fabric filter system (baghouse) installed down stream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single baghouse. Mercury will be controlled by injection of activated carbon or other novel sorbents, while NO{sub x} and SO{sub 2} will be controlled by injection of sodium based or other novel sorbents. Addition of the TOXECON baghouse will provide enhanced particulate control. Sorbents will be injected downstream of the existing particle collection device to allow for continued sale and reuse of captured fly ash from the existing particulate control device, uncontaminated by activated carbon or sodium sorbents. Methods for sorbent regeneration, i.e. mercury recovery from the sorbent, will be explored and evaluated. For mercury concentration monitoring in the flue gas streams, components available for use will be evaluated and the best available will be integrated into a mercury CEM suitable for use in the power plant environment. This project will provide for the use of a novel multi-pollutant control system to reduce emissions of mercury while minimizing waste, from a coal-fired power generation system.

  18. Environmental Assessment of Rail Infrastructure in Illinois

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    and agricultural lands Farmland Protection Policy Act; Illinois Farmland Preservation Act; Illinois Natural Areas Acres in high flood hazard area Flood Disaster Protection Act Acres in high seismic hazard area 49 CFR Species Act; Illinois Endangered Species Act Protect high-quality natural & agricultural landscapes Acres

  19. Illinois Coalition | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI SolarIdanha, Oregon:Ike SkeltonIllinoisIllinois

  20. Integrated process and apparatus for control of pollutants in coal-fired boilers

    DOE Patents [OSTI]

    Hunt, T.G.; Offen, G.R.

    1992-11-24T23:59:59.000Z

    A method and apparatus are described for reducing SO[sub x] and NO[sub x] levels in flue gases generated by the combustion of coal in a boiler in which low NO[sub x] burners and air staging ports are utilized to inhibit the amount of NO[sub x] initially produced in the combustion of the coal. A selected concentration of urea is introduced downstream of the combustion zone after the temperature has been reduced to the range of 1300 F to 2000 F, and a sodium-based reagent is introduced into the flue gas stream after further reducing the temperature of the stream to the range of 200 F to 900 F. Under certain conditions, calcium injection may be employed along with humidification of the flue gas stream for selective reduction of the pollutants. 7 figs.

  1. Mult-Pollutant Control Through Novel Approaches to Oxygen Enhanced Combustion

    SciTech Connect (OSTI)

    Richard Axelbaum; Pratim Biswas

    2009-02-28T23:59:59.000Z

    Growing concerns about global climate change have focused effortss on identifying approaches to stabilizing carbon dioxide levels in the atmosphere. One approach utilizes oxy-fuel combustion to produce a concentrated flue gas that will enable economical CO{sub 2} capture by direct methods. Oxy-fuel combustion rewuires an Air Separation Unit (ASU) to provide a high-purity stream of oxygen as well as a Compression and Purification Unit (CPU) to clean and compress the CO{sub 2} for long term storage. Overall plant efficiency will suffer from the parasitic load of both the ASU and CPU and researchers are investigating techniques to enhance other aspects of the combustion and gas cleanup proceses to improve the benefit-to-cost ratio. This work examines the influence of oxy-fuel combustion and non-carbon based sorbents on the formation and fate of multiple combustion pollutants both numerically and experimentally.

  2. Integrated process and apparatus for control of pollutants in coal-fired boilers

    DOE Patents [OSTI]

    Hunt, Terry G. (Aurora, CO); Offen, George R. (Woodside, CA)

    1992-01-01T23:59:59.000Z

    A method and apparatus for reducing SO.sub.x and NO.sub.x levels in flue gases generated by the combustion of coal in a boiler in which low NO.sub.x burners and air staging ports are utilized to inhibit the amount of NO.sub.x initially produced in the combustion of the coal, a selected concentration of urea is introduced downstream of the combustion zone after the temperature has been reduced to the range of 1300.degree. F. to 2000.degree. F., and a sodium-based reagent is introduced into the flue gas stream after further reducing the temperature of the stream to the range of 200.degree. F. to 900.degree. F. Under certain conditions, calcium injection may be employed along with humidification of the flue gas stream for selective reduction of the pollutants.

  3. Probe into Gaseous Pollution and Assessment of Air Quality Benefit under Sector Dependent Emission Control Strategies over Megacities in Yangtze River Delta, China

    SciTech Connect (OSTI)

    Dong, Xinyi; Gao, Yang; Fu, Joshua S.; Li, Juan; Huang, Kan; Zhuang, G.; Zhou, Ying

    2013-11-01T23:59:59.000Z

    On February 29th 2012, China published its new National Ambient Air Quality Standard (CH-NAAQS) aiming at revising the standards and measurements for both gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and also particle pollutants including PM10 and PM2.5. In order to understand the air pollution status regarding this new standard, the integrated MM5/CMAQ modeling system was applied over Yangtze River Delta (YRD) within this study to examine the criteria gaseous pollutants listed in the new CH-NAAQS. Sensitivity simulations were also conducted to assess the responses of gaseous pollutants under 8 different sector-dependent emission reduction scenarios in order to evaluate the potential control strategies. 2006 was selected as the simulation year in order to review the air quality condition at the beginning of Chinas 11th Five-Year-Plan (FYP, from 2006 to 2010), and also compared with air quality status in 2010 as the end of 11th FYP to probe into the effectiveness of the national emission control efforts. Base case simulation showed distinct seasonal variation for gaseous pollutants: SO2, and NO2 were found to have higher surface concentrations in winter while O3 was found to have higher concentrations in spring and summer than other seasons. According to the analyses focused on 3 megacities within YRD, Shanghai, Nanjing, and Hangzhou, we found different air quality conditions among the cities: NO2 was the primary pollutant that having the largest number of days exceeding the CH-NAAQS daily standard (80 ?g/m3) in Shanghai (59 days) and Nanjing (27 days); SO2 was the primary pollutant with maximum number of days exceeding daily air quality standard (150 ?g/m3) in Hangzhou (28 days), while O3 exceeding the daily maximum 8-hour standard (160 ?g/m3) for relatively fewer days in all the three cities (9 days in Shanghai, 14 days in Nanjing, and 11 days in Hangzhou). Simulation results from predefined potential applicable emission control scenarios suggested significant air quality improvements from emission reduction: 90% of SO2 emission removed from power plant in YRD would be able to reduce more than 85% of SO2 pollution, 85% NOx emission reduction from power plant would reduce more than 60% of NO2 pollution, in terms of reducing the number of days exceeding daily air quality standard. NOx emission reduction from transportation and industry were also found to effectively reduce NO2 pollution but less efficient than emission control from power plants. We also found that multi-pollutants emission control including both NOx and VOC would be a better strategy than independent NOx control over YRD which is Chinas 12th Five-Year-Plan (from 2011 to 2015), because O3 pollution would be increased as a side effect of NOx control and counteract NO2 pollution reduction benefit.

  4. Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube-Oil-Consumption Control

    E-Print Network [OSTI]

    Brown, Alan

    1 Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube the effectiveness of reducing engine lube-oil consumption as a means to reduce particulate pollutants. In this study-lube-oil-consumption designs, for example, could be an option with existing engines. AIR POLLUTION FROM SHIPS The motivation

  5. pollution | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pollution pollution Leads No leads are available at this time. Detailed Characterization of Particulates Emitted by Pre-Commercial Single-Cylinder Gasoline Compression Ignition...

  6. Low cost improvements in air pollution control for ARMCO's Ashland, Kentucky Works Sinter Plant

    SciTech Connect (OSTI)

    Felton, S.S. (ARMCO Inc., Ashland, KY (US))

    1987-01-01T23:59:59.000Z

    Particulate emissions from sinter plants can contribute a significant percentage of the total emissions from integrated steelmaking facilities. A well-known sinter plant air pollution phenomenon is called blue haze emissions. These emissions are caused when hydrocarbons introduced by filter cake, coke breeze, and mill scale are not burned in the sintering process and pass through the system as a very finely divided stable dispersed fog. The Sinter Plant at Ashland Works consists of Dravo-Lurgi traveling grate sintering machine which processes a mixture of materials including iron ore, iron pellet fines, blast furnace flue dust, limestone, melt shop slag, coke breeze and sinter return fines. This system is illustrated by the authors. Upon completion of the sintering process, the hot agglomerated sinter product is discharged to the sinter crusher. The sinter is then cooled and screened for use in Ashland Works' Amanda Blast Furnace. This system is illustrated. The Ashland Works Sinter Plant complex consists of a Sintering Machine Building, Sinter Screens Building and Ore Screens Building. For the purposes of this study, the Ore Transfer Tower Building was also included. The general layout of the complex is illustrated.

  7. TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL ON THREE 90-MW COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    Steven T. Derenne

    2006-04-28T23:59:59.000Z

    With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particulate control device along with the other solid material, primarily fly ash. We Energies has over 3,200 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x}, and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, We Energies (the Participant) will design, install, and operate a TOXECON{trademark} system designed to clean the combined flue gases of Units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON{trademark} is a patented process in which a fabric filter system (baghouse) installed downstream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single baghouse. Mercury will be controlled by injection of activated carbon or other novel sorbents, while NO{sub x} and SO{sub 2} will be controlled by injection of sodium-based or other novel sorbents. Addition of the TOXECON{trademark} baghouse will provide enhanced particulate control. Sorbents will be injected downstream of the existing particle collection device to allow for continued sale and reuse of captured fly ash from the existing particulate control device, uncontaminated by activated carbon or sodium sorbents. Methods for sorbent regeneration, i.e., mercury recovery from the sorbent, will be explored and evaluated. For mercury concentration monitoring in the flue gas streams, components available for use will be evaluated and the best available will be integrated into a mercury CEM suitable for use in the power plant environment. This project will provide for the use of a control system to reduce emissions of mercury while minimizing waste from a coal-fired power generation system.

  8. Vermont Air Pollution Control Regulations, Major Stationary Sources and Major Modifications (Vermont)

    Broader source: Energy.gov [DOE]

    This section of the air quality standards applies to all major sources and major modifications and outlines the required control technology to achieve the most stringent emission rate. Emission...

  9. Energy technology characterizations handbook: environmental pollution and control factors. Third edition

    SciTech Connect (OSTI)

    Not Available

    1983-03-01T23:59:59.000Z

    This Handbook deals with environmental characterization information for a range of energy-supply systems and provides supplementary information on environmental controls applicable to a select group of environmentally characterized energy systems. Environmental residuals, physical-resource requirements, and discussion of applicable standards are the principal information provided. The quantitative and qualitative data provided are useful for evaluating alternative policy and technical strategies and for assessing the environmental impact of facility siting, energy production, and environmental controls.

  10. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    SciTech Connect (OSTI)

    Rapp, VH; Singer, BC

    2014-03-01T23:59:59.000Z

    The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with ultra low-NO{sub X} burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase with increasing fuel Wobbe number.

  11. ILLINOIS ECONOMIC The Monthly Illinois Economic Review contains information on national, statewide, and local

    E-Print Network [OSTI]

    Shim, Moonsub

    ILLINOIS ECONOMIC REVIEW The Monthly Illinois Economic Review contains information on national, statewide, and local economic performance by measuring job growth, unemployment, and business activity. This information is compiled by IGPA Economist Geoffrey Hewings, director of the Regional Economics Applications

  12. Member Agency Community Health Charities of Illinois MGF OF ILLINOIS INTERN ROLE -2013

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Member Agency Community Health Charities of Illinois MGF OF ILLINOIS INTERN ROLE - 2013 What, seminars and press releases. Share your energy and social media experience to help us plan and conduct aid our mission by performing the duties described below. MGF of Illinois mission: We provide support

  13. Ameren Illinois (Gas)- Residential Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Ameren Illinois Utilities (AmerenIP, AmerenCIPS, and AmerenCILCO) offer residential customers incentives for certain energy efficiency upgrades and improvements. Incentives are currently available...

  14. Illinois Clean Energy Community Foundation Grants

    Broader source: Energy.gov [DOE]

    The Illinois Clean Energy Community Foundation (ICECF) was established in December 1999 as an independent foundation with a $225 million endowment provided by Commonwealth Edison. The ICECF invests...

  15. Qualifying RPS State Export Markets (Illinois)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Illinois as eligible sources towards their RPS targets or goals. For specific...

  16. Community Service Block Grant Loan Program (Illinois)

    Broader source: Energy.gov [DOE]

    Community Service Block Grant Loan Program is a partnership among the Department of Commerce and Economic Opportunity, community action agencies, and the Illinois Ventures for Community Action. The...

  17. Illinois Municipal Electric Agency- Electric Efficiency Program

    Broader source: Energy.gov [DOE]

    The Illinois Municipal Electric Agency (IMEA) offers rebates to member municipal utilities* (those who purchase wholesale electric service from IMEA) and retail customers for energy efficiency...

  18. Ameren Illinois (Electric)- Residential Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Ameren Illinois Utilities (AmerenIP, AmerenCIPS, and AmerenCILCO) offer residential customers incentives for certain energy efficiency upgrades and improvements. Incentives are currently available...

  19. EIS-0430: Taylorville Energy Center in Taylorville, Illinois...

    Broader source: Energy.gov (indexed) [DOE]

    0: Taylorville Energy Center in Taylorville, Illinois EIS-0430: Taylorville Energy Center in Taylorville, Illinois Documents Available for Download November 9, 2009 EIS-0430:...

  20. MERCURY REMOVAL IN A NON-THERMAL, PLASMA-BASED MULTI-POLLUTANT CONTROL TECHNOLOGY FOR UTILITY BOILERS

    SciTech Connect (OSTI)

    Christopher R. McLaron

    2004-12-01T23:59:59.000Z

    Powerspan has conducted pilot scale testing of a multi-pollutant control technology at FirstEnergy's Burger Power Plant under a cooperative agreement with the U.S. Department of Energy. The technology, Electro-Catalytic Oxidation (ECO), simultaneously removes sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), fine particulate matter (PM{sub 2.5}) and mercury (Hg) from the flue gas of coal-fired power plants. Powerspan's ECO{reg_sign} pilot test program focused on optimization of Hg removal in a 1-MWe slipstream pilot while maintaining greater than 90% removal of NO{sub x} and 98% removal of SO{sub 2}. This Final Technical Report discusses pilot operations, installation and maintenance of the Hg SCEMS instrumentation, and performance results including component and overall removal efficiencies of SO{sub 2}, NO{sub x}, PM and Hg from the flue gas and removal of captured Hg from the co-product fertilizer stream.

  1. Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers

    SciTech Connect (OSTI)

    Steven Derenne; Robin Stewart

    2009-09-30T23:59:59.000Z

    This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON{trademark} PAC/ash mixture in structural concrete were also successfully developed and tested. This project demonstrated a significant reduction in the rate of emissions from Presque Isle Units 7, 8, and 9, and substantial progress toward establishing the design criteria for one of the most promising mercury control retrofit technologies currently available. The Levelized Cost for 90% mercury removal at this site was calculated at $77,031 per pound of mercury removed with a capital cost of $63,189 per pound of mercury removed. Mercury removal at the Presque Isle Power Plant averages approximately 97 pounds per year.

  2. Illinois Institute of Technology International Center

    E-Print Network [OSTI]

    Heller, Barbara

    : Transferring from the Illinois Institute of Technology to: Program Number of New School (ask InternationalIllinois Institute of Technology International Center 3201 S. State St. MTCC Room 203 Chicago, IL). Meet with an International Advisor at the International Center to discuss your intent to transfer

  3. University of Illinois Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01T23:59:59.000Z

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) University of Illinois Project 29609 irradiation. The objective of this test was to assess the radiation performance of ferritic alloys for advanced reactor applications. The FeCr-based alloy system is considered the lead alloy system for a variety of advanced reactor components and applications. Irradiations of FeCr alloy samples were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in a static capsule in the A-11 position of the ATR.

  4. Mississippian ''Warsaw'' play makes waves in Illinois basin

    SciTech Connect (OSTI)

    Lasemi, Z.; Grube, J.P. (Illinois State Geological Survey, Champaign, IL (United States))

    1995-01-09T23:59:59.000Z

    Recent completions of relatively prolific wells in the mid-Missippian Ullin limestone have generated considerable excitement about this Illinois basin play. Reservoirs found within this limestone, commonly referred to by industry as the Warsaw, are scattered and are prolific oil producers in some areas of the basin. The widespread development of reservoir quality facies at depths ranging from 2,400--4,400 ft and the stratigraphic proximity of thermally mature New Albany shale, the primary Illinois basin source rock are factors that make the Warsaw an excellent exploration target. The paper discusses a depositional model, reservoir development, reservoir facies of the upper and lower Warsaw, factors controlling porosity and permeability, and regional and structural considerations.

  5. Technological developments to improve combustion efficiency and pollution control in coal-fired power stations in Japan

    SciTech Connect (OSTI)

    Miyasaka, Tadahisa

    1993-12-31T23:59:59.000Z

    In 1975, approximately 60 percent of all power generating facilities in Japan were oil fired. The oil crisis in the 1970s, however, led Japanese power utilities to utilize alternatives to oil as energy sources, including nuclear power, coal, LNG, and others. As a result, by 1990, the percentage of oil-fired power generation facilities had declined to approximately 31 percent. On the other hand, coal-fired power generation, which accounted for 5.7 percent of all facilities in 1975, increased its share to 7.5 percent in 1990 and is anticipated to expand further to 13 percent by the year 2000. In order to increase the utilization of coal-fired power generation facilities in Japan, it is necessary to work out thorough measures to protect the environment, mainly to control air pollution. The technologies that are able to do this are already available. The second issue is how to improve efficiency. In this chapter, I would like to introduce technological developments that improve efficiency and that protect the environment which have been implemented in coal-fired power stations in Japan. Examples of the former, include the atmospheric fluidized bed combustion (AFBC) boiler, the pressurized fluidized bed combustion (PFBC) boiler, and the ultra super-critical (USC) steam condition turbine, and an example of the latter is the dry deSOx/deNOx. Although details are not provided in this paper, there are also ongoing projects focusing on the development of technology for integrated gasification combined cycle generation, fuel cells and other systems undertaken by the government, i.e., the Ministry of International Trade and Industry (MITI), which is committed to the New Energy and Industrial Technology Development Organization (NEDO).

  6. Groundwater Pollution David W. Watkins, Jr.

    E-Print Network [OSTI]

    Morton, David

    II 21 Mor 2003/10/14 page 391 i i i i i i i i Chapter 21 Groundwater Pollution Control David W pollution has resulted from the use of agricultural chemicals, and localized pollution has resulted from is frequently used to address groundwater pollution problems. In par- ticular, numerical groundwater simulation

  7. Biomass burning and urban air pollution over the Central Mexican Plateau

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    Biomass burning pollution over Central Mexico Edited by: S.Biomass burning pollution over Central Mexico spheric ozonebenefits from air pollution control in Mexico City, Environ.

  8. Scholarship Updated (date) Illinois State Wild Turkey Scholarship

    E-Print Network [OSTI]

    Karonis, Nicholas T.

    Scholarship Updated (date) Illinois State Wild Turkey Scholarship Scholarship source: Illinois State Wild Turkey Federation Address: Dr. Robert E. Reich, Chair Illinois State Wild Turkey Federation: The Illinois state wild turkey federation is awarding scholarships to 1 st , 2 nd , 3 rd , and 4 th year

  9. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  10. EMSL - pollution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pollution en Detailed Characterization of Particulates Emitted by Pre-Commercial Single-Cylinder Gasoline Compression Ignition Engine. http:www.emsl.pnl.govemslwebpublications...

  11. Illinois

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,992000

  12. Pollution prevention efforts recognized

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories Pollution prevention efforts recognized Pollution prevention efforts recognized Pollution prevention awards recognize individuals or teams whose efforts minimize waste,...

  13. Patterns in Illinois Educational School Data

    E-Print Network [OSTI]

    Stevens, Cacey S; Nagel, Sidney R

    2015-01-01T23:59:59.000Z

    We examine Illinois educational data from standardized exams and analyze primary factors affecting the achievement of public school students. We focus on the simplest possible models: representation of data through visualizations and regressions on single variables. Exam scores are shown to depend on school type, location, and poverty concentration. For most schools in Illinois, student test scores decline linearly with poverty concentration. However Chicago must be treated separately. Selective schools in Chicago, as well as some traditional and charter schools, deviate from this pattern based on poverty. For any poverty level, Chicago schools perform better than those in the rest of Illinois. Selective programs for gifted students show high performance at each grade level, most notably at the high school level, when compared to other Illinois school types. The case of Chicago charter schools is more complex. In the last six years, their students' scores overtook those of students in traditional Chicago high...

  14. Small Business Job Creation Tax Credit (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Small Business Jobs Creation Tax Credit program provides small business owners and non-profits with an extra boost to grow their business over the next four years. After creating one...

  15. Pre-clinical Measures of Eye Damage (Lens Opacity), Case-control Study of Tuberculosis, and Indicators of Indoor Air Pollution from Biomass Smoke

    E-Print Network [OSTI]

    Pokhrel, Amod Kumar

    2010-01-01T23:59:59.000Z

    K.R. , Biofuels, Air Pollution and Health: A Global Review.K.R. , Biofuels, Air Pollution and Health: A Global Review.K.R. , Biofuels, Air Pollution and Health: A Global Review.

  16. Decentralization and Environmental Quality: An International Analysis of Water Pollution

    E-Print Network [OSTI]

    Sigman, Hilary

    2009-01-01T23:59:59.000Z

    D. Political institutions and pollution control, Review ofAccounting Of?ce. Water Pollution: Differences in IssuingReal Story of the War on Air Pollution. Washington, DC: Cato

  17. Photosystem II Govindjee, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

    E-Print Network [OSTI]

    Govindjee "Gov"

    Photosystem II Govindjee, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA Jan F energy to drive the transfer of electrons from water to plastoquinone, resulting in the production is the physical-chemical process by which plants, algae and certain bacteria use light energy to build

  18. Discoveries in Photosynthesis University of Illinois at Urbana-Champaign, Urbana, Illinois, U.S.A.

    E-Print Network [OSTI]

    Govindjee "Gov"

    Discoveries in Photosynthesis Edited by Govindjee University of Illinois at Urbana-Champaign, Urbana, Illinois, U.S.A. J. Thomas Beatty University of British Columbia, Vancouver, B.C., Canada Howard. W. D. Larkum IV. Excitation Energy Transfer Photosynthetic exciton theory in the 1960s 147­154 R. M

  19. Statewide Savings Projections from the Adoption of Commercial Building Energy Codes in Illinois

    SciTech Connect (OSTI)

    Cort, Katherine A.; Belzer, David B.

    2002-09-30T23:59:59.000Z

    ANSI/ASHRAE/IESNA Standard 90.1-1999 Energy Standard for Buildings except Low-Rise Residential Buildings was developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. A number of jurisdictions in the state of Illinois are considering adopting ASHRAE 90.1-1999 as their commercial building energy code. This report builds on the results of a previous study, "Analysis of Potential Benefits and Costs of Adopting ASHRAE Standard 90.1-1999 as a Commercial Building Energy Code in Illinois Jurisdictions," to estimate the total potential impact of adopting ASHRAE 90.1-1999 as a statewide commercial building code in terms of Life-Cycle Cost (LCC) savings, total primary energy savings, and pollution emissions reductions.

  20. HEI/CDC/EPA Workshop on Tracking Air Pollution Health Effects A Report to the US Centers for Disease Prevention and Control

    E-Print Network [OSTI]

    HEI/CDC/EPA Workshop on Tracking Air Pollution Health Effects 1 #12;2 A Report to the US Centers Tracking of Air Pollution Effects January 15-16, 2008 #12;HEI/CDC/EPA Workshop on Tracking Air Pollution ........................................................................................................................................... 13 AN INCREMENTAL APPROACH TO PUBLIC HEALTH TRACKING OF AIR POLLUTION

  1. Focus Series - Chicago-Energy Impact Illinois (EI2) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Illinois (EI2) Focus Series - Chicago-energy Impact Illinois (EI2) - A community-based, boots-on-the-ground outreach campaign. Through a "house party" initiative, EI2 brought...

  2. Illinois: Ozinga Concrete Runs on Natural Gas and Opens Private...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Illinois: Ozinga Concrete Runs on Natural Gas and Opens Private Station Illinois: Ozinga Concrete Runs on Natural Gas and Opens Private Station November 6, 2013 - 12:00am Addthis...

  3. Air pollution control technology for municipal solid waste-to-energy conversion facilities: capabilities and research needs

    SciTech Connect (OSTI)

    Lynch, J F; Young, J C

    1980-09-01T23:59:59.000Z

    Three major categories of waste-to-energy conversion processes in full-scale operation or advanced demonstration stages in the US are co-combustion, mass incineration, and pyrolysis. These methods are described and some information on US conversion facilities is tabulated. Conclusions and recommendations dealing with the operation, performance, and research needs for these facilities are given. Section II identifies research needs concerning air pollution aspects of the waste-to-energy processes and reviews significant operating and research findings for the co-combustion, mass incinceration, and pyrolysis waste-to-energy systems.

  4. InsideIllinoisFeb. 20, 2014 Vol. 33, No. 15

    E-Print Network [OSTI]

    Lewis, Jennifer

    InsideIllinoisFeb. 20, 2014 Vol. 33, No. 15 F o r F a c u l t y a n d S t a f f , U n i v e r s i s . e d u / i i InThisIssue InsIde IllInoIs onlIne: news.illinois.edu/ii/ · To subscrIbe: go.illinois, researchers report. The conversion produces significantly more energy than it requires and results

  5. EA-1866: Modernization Planning at Argonne National Laboratory, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of proposed modernization planning at Argonne National Laboratory in DuPage County, Illinois.

  6. Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control

    SciTech Connect (OSTI)

    Robert A. Carrington; William C. Hecker; Reed Clayson

    2008-06-01T23:59:59.000Z

    Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established reburning chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

  7. The first Power and Energy Conference at Illinois was hosted

    E-Print Network [OSTI]

    Liu, Gang "Logan"

    ingenuity The first Power and Energy Conference at Illinois was hosted successfully February 12 STORY >> Students organize first Power and Energy Conference at Illinois By Susan Kantor ECE graduate by Tom Moone The keynote speaker at the first Power and Energy Conference at Illinois was Wanda Reder

  8. New Albany shale group of Illinois

    SciTech Connect (OSTI)

    Cluff, R.M.; Reinbold, M.L.; Lineback, J.A.

    1981-01-01T23:59:59.000Z

    The Illinois basin's New Albany shale group consists of nine formations, with the brownish-black laminated shales being the predominant lithology in southeastern Illinois and nearby parts of Kentucky where the group reaches its maximum thickness of 460 ft. A second depositional center lies in west-central Illinois and southeastern Iowa, where the group is about 300 ft thick and the predominant lithology is bioturbated olive-gray to greenish-gray shale. A northeast-trending area of thin strata (mostly interfingering gray and black shales) separates these two depocenters. The distribution and types of lithofacies in the New Albany suggest that the shale was deposited across a shelf-slope-basin transition in a marine, stratified anoxic basin. The record of depositional events in the shale group could serve as a baseline for interpreting the history of tectonically more complex sequences such as the Appalachian basin's Devonian shales.

  9. WHEN DOES COMPROMISE PREVENT MORE POLLUTION?

    E-Print Network [OSTI]

    Ferrara, Mike

    WHEN DOES COMPROMISE PREVENT MORE POLLUTION? C. CLEMONS1, J. COSSEY2, M. FERRARA3, S. FORCEY4, T an industrial firm has the option of voluntar- ily controlling the pollutants it originates. A regu- lating agency sets the tax rate on corporate profits as well as a Pigouvian pollution tax: preset per- centages

  10. Air Pollution, ATS555 Colorado State University

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Air Pollution, ATS555 Colorado State University Fall 2014 Mondays and Wednesdays @ 4:00 ­ 5:30 Room://ramct.colostate.edu/) Textbooks: Air Pollution: Its Origin and Control, 3rd Edition, by Wark, Warner and Davis, Addison Wesley. Specific objectives include: 1. Develop an understanding of types and sources of air pollution. 2. Examine

  11. Spaulding, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551°Farms LtdLLCCompaniesSpaulding, Illinois:

  12. Pollution Prevention Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Prevention Awards Pollution Prevention Awards Pollution Prevention awards are presented each year for minimized waste, conserved resources, and other sustainable...

  13. Nanoscience Research Internships in Illinois

    SciTech Connect (OSTI)

    Kronshage, Alisa [Executive Board

    2013-08-31T23:59:59.000Z

    NanoBusiness Talent Project Summary Report The NanoBusiness Alliance created the NanoBusiness Talent Program to ensure the future vitality of domestic scientists and entrepreneurs by engaging advanced high school students in cutting-edge nanotechnology development. This program commenced on September 1, 2008 and ran through August 31, 2010 with a very successful group of students. Several of these students went on to Stanford, Harvard and Yale, as well as many other prestigious Universities. We were able to procure the cooperation of several companies over the entire run of the program to voluntarily intern students at their companies and show them the possibilities that exist for their future. Companies ranged from NanoInk and Nanosphere to QuesTek and NanoIntegris all located in northern Illinois. During the 9-week internships, students worked at nanotechnology companies studying different ways in which nanotechnology is used for both commercial and consumer use. The students were both excited and invigorated at the prospect of being able to work with professional scientists in fields that previously may have just been a dream or an unreachable goal. All the students worked closely with mentors from each company to learn different aspects of procedures and scientific projects that they then used to present to faculty, parents, mentors and directors of the program at the end of each years program. The presentations were extremely well received and professionally created. We were able to see how much the students learned and absorbed through the course of their internships. During the last year of the program, we reached out to both North Carolina and Colorado high school students and received an extraordinary amount of applications. There were also numerous companies that were not only willing but excited at the prospect to engage highly intelligent high school students and to encourage them into the nanotechnology scientific field. Again, this program increase was highly received and the students were thoroughly engaged. Our program ended August 31, 2010 with our last class of students and their final presentations. From the pilot year to the end presentations, we received hundreds of applications from students excited for the opportunity to work in a scientific field. With our goal of inspiring the newest generation of potential scientists and mathematician, we not only found ourselves overwhelmingly impressed but encouraged that the greatest minds of the future will come from this next generation and many more generations.

  14. ILLINOIS INSTITUTE OF TECHNOLOGY SAFETY COMMITTEE

    E-Print Network [OSTI]

    Heller, Barbara

    or that is inconsistent with generally accepted safe work practices. 3.5. Notice of Non-Compliance (Safety) - A written or other generally accepted safe work practice. 3.6. Pre-Construction Safety Meeting ChecklistILLINOIS INSTITUTE OF TECHNOLOGY SAFETY COMMITTEE Contractor Safety Approved October 10, 2005

  15. AQUACULTURE EXTENSION Illinois -Indiana Sea Grant Program

    E-Print Network [OSTI]

    is a management tool useful for both planning and profitability analysis. With regard to business planning the Profitability of Hybrid Striped. Bass Cage Culture Jean Rosscup Riepe LaDon Swann Paul B. Brown Department of Illinois-lndirtna Deparment of Forestry Agricultural Economics Sea Grant Program and Natural Resources

  16. AQUACULTURE EXTENSION Illinois -Indiana Sea Grant Program

    E-Print Network [OSTI]

    can be traced to a lack of background information on the source of water used. Before final siteAQUACULTURE EXTENSION Illinois - Indiana Sea Grant Program Sea Grant # IL-IN-SG-Fs-93-l Water Quality Water Sources Used in Aquaculture LaDon Swann Ilinois-Indiana Sea Grant Program Purdue University

  17. MMAE 320 Thermodynamics Illinois Institute of Technology

    E-Print Network [OSTI]

    Heller, Barbara

    MMAE 320 Thermodynamics Fall 2011 Illinois Institute of Technology Instructor: Professor Shawn C of Engineering Thermodynamics, 7th Yes, you will probably be fine with an earlier edition, please buy and read. Work and Heat 4. First Law of Thermodynamics 5. Second Law of Thermodynamics 6. Entropy 7

  18. ILLINOIS INSTITUTE OF TECHNOLOGY COLLEGE OF ARCHITECTURE

    E-Print Network [OSTI]

    Heller, Barbara

    ILLINOIS INSTITUTE OF TECHNOLOGY COLLEGE OF ARCHITECTURE ARCH 423: ARCHITECTURAL PROGRAMMING assignments and their due dates will be announced.. They will be graded down if turned in late. 6 No computers Research material on Architectural Programming is on reserve in the Graham Resource Center. A listing

  19. HUMAN SERVICES TRANSPORTATION ILLINOIS HSTP REGION FIVE

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    in the creation of this plan. FROM RURAL AREAS Debbie Armentrout, MSW Projects of Henry Jeanine Beghtol, Galesburg of Galesburg B. Justin Meierkord, Marshall County Board Peg Meisinger, Senator David Koehler's office (rural by the Illinois Department of Transportation, consists of Fulton, Knox, Marshall, Peoria, Stark, Tazewell

  20. A Pet's Place University of Illinois

    E-Print Network [OSTI]

    Jain, Kanti

    A Pet's Place University of Illinois College of Veterinary Medicine vetmed Clinic *A Pet's Place Course Records Men: Eric Ollila, 15:54 (1995) Women: Jenny Marine, 19:04 (1994) See like to participate in the: _____5K run _____5K pet run _____5K walk _____5K pet walk Please check one

  1. Illinois Institute of Technology Housing & Residential Services

    E-Print Network [OSTI]

    Heller, Barbara

    Illinois Institute of Technology Housing & Residential Services Student Guide to 20102011 & assemble beds, etc); · Remove posters, paper, tape, sticky tack, etc from all surfaces; · Wipe clean all walls and furniture; · If living in an apartment, wipe clean the kitchen appliances, cabinets

  2. Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    secondary air pollutants after the drastic control measuresair quality and meteorology and different responses of secondary and primary pollutants to the controlair qual- ity. The increasing concentrations of secondary pollutants after the full control

  3. Hybrid ACOANN-Based Multi-objective SimulationOptimization Model for Pollutant Load Control at Basin Scale

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Introduction Structural Best Management Practices (BMPs) are often used for sediment and nutrient control and Water Assessment Tool (SWAT) as the simulation module for optimum management of total suspended solids in BMPs, have successfully been used for many years. They are known as the storm water control structures

  4. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    Sulfur Oxide Air Pollutants," National Air Pollution Controlthat, control the three primary air pollutants (Sax,Air Pollution Control,1I in Control Techni2ues for Particulate Air Pollutants,

  5. POLLUTION OF WATER Blank page retained for pagination

    E-Print Network [OSTI]

    CHAPTER XX POLLUTION OF WATER #12;Blank page retained for pagination #12;ASPECTS OF WATER POLLUTION IN THE COASTAL AREA OF THE GULF OF MEXICOl Prepared in the DIVISION of WATER POLLUTION CONTROL and SHELLFISH, and Welfare Principal natural resources of the Gulf that ap- pear susceptible to damages from water pollution

  6. Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive SolarCenterYou areConstruction PolicymakersPollution

  7. Sublette, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: MissouriPrograms | OpenSEI)Sublette, Illinois: Energy

  8. Lima, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster And Coolbaugh, 2007) JumpDesign JumpLily Lake, Illinois:

  9. Montgomery, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate Zone SubtypeSereno,Butler, Illinois7. It is25.

  10. Macomb, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger <IndustriesMacomb, Illinois: Energy

  11. Matteson, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a townLoadingMastic, NewMatteson, Illinois: Energy

  12. Addieville, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergyAd-Venta JumpAddieville, Illinois: Energy

  13. Westchester, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, searchInformationMaine:Westchester, Illinois:

  14. Golf, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy Resources Jump to:GloriaGoldenGolden,Cook County, Illinois. It

  15. Grandview, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy ResourcesGordon, Alabama:5812144° LoadingGrandview, Illinois:

  16. Riverwoods, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia BlueRiverwoods, Illinois: Energy Resources Jump to:

  17. Robbins, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia BlueRiverwoods, Illinois: EnergyCity County,

  18. Rochester, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia BlueRiverwoods, Illinois:239178°,

  19. Rosemont, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRoosevelt Gardens is° Loading map...Roselle, Illinois:

  20. Evanston, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart Grid Project) JumpEnergyEvanston, Illinois:

  1. Carpentersville, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility |Carpentersville, Illinois: Energy Resources Jump to:

  2. Illinois Capacitor Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI SolarIdanha, Oregon:Ike SkeltonIllinois

  3. Illinois Ventures LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI SolarIdanha, Oregon:IkeIllinois River Energy

  4. Illiopolis, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI SolarIdanha,Information Illinois.

  5. George Gollin, UIUC visit to FNAL and ANL, August 3, 2007 Illinois 1 .

    E-Print Network [OSTI]

    Gollin, George

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . IPhysicsP Illinois 4 . . .. . . .. .. . . . .. . . . . .. . . . . . .. .. . . . . . . Low energy beam tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . IPhysicsP Illinois 1 . . .. . . .. .. . . . .. . . . . .. . . . . . .. .. . . . . . . Tests at A? of a stripline kicker George Gollin Department of Physics University of Illinois at Urbana-Champaign g

  6. The Role of Illinois and the Midwest in Responding to the Challenges of Climate Change

    E-Print Network [OSTI]

    Scott, Douglas

    2009-01-01T23:59:59.000Z

    THE ROLE OF ILLINOIS (7) enhanced energy efficiency with a 2Illinois had worked through earlier, including hiring the same global energy andEnergy endeavor to build a near-zero-emission coal plant. Illinois

  7. American Society for Engineering Education April 1-2, 2005 Northern Illinois University, DeKalb, Illinois. 2005 IL/IN Sectional Conference

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Kalb, Illinois. 2005 IL/IN Sectional Conference Session B-T4-1 RENEWABLE ENERGY ALTERNATIVES: CURRENT STATUS ­ Northern Illinois University, DeKalb, Illinois. 2005 IL/IN Sectional Conference of our present energy baseAmerican Society for Engineering Education April 1-2, 2005 ­ Northern Illinois University, De

  8. NNSA hosts Illinois emergency responders during technical exchange...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog NNSA hosts Illinois emergency responders during technical ......

  9. ,"Illinois Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

  10. Commercial and Industrial Energy Conservation Programs in Illinois

    E-Print Network [OSTI]

    Thomas, S. K.

    1980-01-01T23:59:59.000Z

    This paper presents the State of Illinois' evolving role in assisting commercial and industrial firms in identifying and improving inefficiencies in the use of energy....

  11. Illinois and Texas Towns See Weatherization Boost | Department...

    Broader source: Energy.gov (indexed) [DOE]

    and Texas Towns See Weatherization Boost Illinois and Texas Towns See Weatherization Boost March 19, 2010 - 11:47am Addthis Stephen Graff Former Writer & editor for Energy...

  12. InsideIllinoisNov. 29, 2012 Vol. 32, No. 11

    E-Print Network [OSTI]

    Lewis, Jennifer

    InsideIllinoisNov. 29, 2012 Vol. 32, No. 11 F o r F a c u l t y a n d S t a f f , U n i v e r s i NOTES 7 DEATHS 2 ON THE JOB 3 InSIde IllInoIS onlIne: news.illinois.edu/ii/ · To SubScrIbe: go.illinois. "There is a great deal of positive energy, effort, focus and attention around diversity on our campus

  13. InsideIllinoisNov. 7, 2013 Vol. 33, No. 9

    E-Print Network [OSTI]

    Lewis, Jennifer

    InsideIllinoisNov. 7, 2013 Vol. 33, No. 9 F o r F a c u l t y a n d S t a f f , U n i v e r s i t y s . e d u / i i InThisIssue INsIde IllINoIs oNlINe: news.illinois.edu/ii/ · To subscrIbe: go.illinois incentive program is rewarding campus units that have the highest reduction in energy use. PAGE 3

  14. Retooled Machines Bring New Green Jobs to Illinois | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Reinvestment Act. The Illinois Energy Plan office aims to invest and develop the state's green economy, including renewable energy sources, energy efficiency and green buildings....

  15. University of Illinois at Urbana-Champaign's GATE Center for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Urbana-Champaign's GATE Center for Advanced Automotive Bio-Fuel Combustion Engines University of Illinois at Urbana-Champaign's GATE Center for Advanced Automotive Bio-Fuel...

  16. Ameren Illinois (Gas)- Cooking and Heating Business Efficiency Incentives

    Broader source: Energy.gov [DOE]

    Ameren Illinois offers several incentive programs that include efficient natural gas technologies. The programs are available only to non-residential customers that receive natural gas service from...

  17. ILLINOIS RAILROAD ENGINEERING Using the RTC Simulation Model to

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    Slide 1 ILLINOIS RAILROAD ENGINEERING Using the RTC Simulation Model to Evaluate Effects) ­ Simulation models include detailed infrastructure configuration and mimics train dispatcher logic · Closest

  18. Regulations For State Administration Of The National Pollutant Discharge Elimination System (Arkansas)

    Broader source: Energy.gov [DOE]

    The Regulations For State Administration Of The National Pollutant Discharge Elimination System (NPDES) is created Pursuant to the provisions of the Arkansas Water and Air Pollution Control Act,...

  19. E-Print Network 3.0 - air pollutants submittal Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RECOVERY Summary: limitations have been formulated for certain well-defined sources of air pollution. Likewise, state and local... air pollution control agencies have imposed...

  20. E-Print Network 3.0 - area cordova illinois Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sample search results for: area cordova illinois Page: << < 1 2 3 4 5 > >> 1 CURRICULUM VITAE Carlos E. Cordova, Ph.D. Summary: . Carbondale: Southern Illinois University....

  1. Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2012-12-20T23:59:59.000Z

    This report details a study into the demand response potential of a large wastewater treatment facility in San Francisco. Previous research had identified wastewater treatment facilities as good candidates for demand response and automated demand response, and this study was conducted to investigate facility attributes that are conducive to demand response or which hinder its implementation. One years' worth of operational data were collected from the facility's control system, submetered process equipment, utility electricity demand records, and governmental weather stations. These data were analyzed to determine factors which affected facility power demand and demand response capabilities The average baseline demand at the Southeast facility was approximately 4 MW. During the rainy season (October-March) the facility treated 40% more wastewater than the dry season, but demand only increased by 4%. Submetering of the facility's lift pumps and centrifuges predicted load shifts capabilities of 154 kW and 86 kW, respectively, with large lift pump shifts in the rainy season. Analysis of demand data during maintenance events confirmed the magnitude of these possible load shifts, and indicated other areas of the facility with demand response potential. Load sheds were seen to be possible by shutting down a portion of the facility's aeration trains (average shed of 132 kW). Load shifts were seen to be possible by shifting operation of centrifuges, the gravity belt thickener, lift pumps, and external pump stations These load shifts were made possible by the storage capabilities of the facility and of the city's sewer system. Large load reductions (an average of 2,065 kW) were seen from operating the cogeneration unit, but normal practice is continuous operation, precluding its use for demand response. The study also identified potential demand response opportunities that warrant further study: modulating variable-demand aeration loads, shifting operation of sludge-processing equipment besides centrifuges, and utilizing schedulable self-generation.

  2. Behaviours and attitudes in the management of nonpoint source pollution: Ping River Basin, Thailand

    E-Print Network [OSTI]

    Bumbudsanpharoke, Wimolpat

    2010-01-01T23:59:59.000Z

    Agricultural nonpoint source pollution is recognised as a major cause of water pollution. The characteristics of nonpoint source pollution suggest that an efficient approach should focus on a source control and hence land-use management. Recently...

  3. Multi-Pollutant Emissions Control: Pilot Plant Study of Technologies for Reducing Hg, SO3, NOx and CO2 Emissions

    SciTech Connect (OSTI)

    Michael L. Fenger; Richard A. Winschel

    2005-08-31T23:59:59.000Z

    A slipstream pilot plant was built and operated to investigate technology to adsorb mercury (Hg) onto the existing particulate (i.e., fly ash) by cooling flue gas to 200-240 F with a Ljungstrom-type air heater or with water spray. The mercury on the fly ash was then captured in an electrostatic precipitator (ESP). An alkaline material, magnesium hydroxide (Mg(OH){sub 2}), is injected into flue gas upstream of the air heater to control sulfur trioxide (SO{sub 3}), which prevents acid condensation and corrosion of the air heater and ductwork. The slipstream was taken from a bituminous coal-fired power plant. During this contract, Plant Design and Construction (Task 1), Start Up and Maintenance (Task 2), Baseline Testing (Task 3), Sorbent Testing (Task 4), Parametric Testing (Task 5), Humidification Tests (Task 6), Long-Term Testing (Task 7), and a Corrosion Study (Task 8) were completed. The Mercury Stability Study (Task 9), ESP Report (Task 11), Air Heater Report (Task 12) and Final Report (Task 14) were completed. These aspects of the project, as well as progress on Public Outreach (Task 15), are discussed in detail in this final report. Over 90% mercury removal was demonstrated by cooling the flue gas to 200-210 F at the ESP inlet; baseline conditions with 290 F flue gas gave about 26% removal. Mercury removal is sensitive to flue gas temperature and carbon content of fly ash. At 200-210 F, both elemental and oxidized mercury were effectively captured at the ESP. Mg(OH){sub 2} injection proved effective for removal of SO{sub 3} and eliminated rapid fouling of the air heater. The pilot ESP performed satisfactorily at low temperature conditions. Mercury volatility and leaching tests did not show any stability problems. No significant corrosion was detected at the air heater or on corrosion coupons at the ESP. The results justify larger-scale testing/demonstration of the technology. These conclusions are presented and discussed in two presentations given in July and September of 2005 and are included in Appendices E and F.

  4. Air Pollution Issues of the 1990's

    E-Print Network [OSTI]

    Myers, J. C.

    of 1990 will contain. However, many political and economic battles remain to be fought. Currently, the Environmental Protection Agency (EPA) estimates that more than $30 billion a year is being spent to control air pollution in this country (1... or simply air toxics. Like ambient ozone nonattainment, air toxics exemplify the pollution problems of the 1990's. Toxic air emissions often occur in tiny amounts compared to criteria pollutants. The causes and effects can vary dramatically from city...

  5. Engineering May 11, 2013 UIC University of Illinois at Chicago

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Engineering May 11, 2013 UIC University of Illinois at Chicago Dear Engineering Graduates Nelson Dean and Professor #12;Engineering May 11, 2013 UIC University of Illinois at Chicago Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PhD, Master of Science, Master of Energy Engineering, and Master of Engineering SINGING OF "THE STAR

  6. iiSHAREDAMBITION The Universityof Illinois at Chicago

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    iiSHAREDAMBITION The Universityof Illinois at Chicago and NorthLawndalearehonoredto presentTheBarackObama Foundation withourproposal tohost the Barack Obama Presidential Library #12;3 2 The University of Illinois. This is not its destination but rather the origination of something greater: energy emanating outward in shallow

  7. Challenges and Opportunities for the Illinois Coal Industry

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    . Illinois Coal Consumption by State, 2007 6 Figure 4. Added Capacity by Energy Source, 2003-2009 8 Figure 5 Figure 7. Change in U.S. Coal Consumption by Sector, 2009-2011 (Forecast) 13 Figure 8. U.S. Coal Kawamura Department Head Urban Planning and Public Policy University of Illinois ­ Chicago Associate

  8. Geochemistry of speleothem records from southern Illinois: Development of (234

    E-Print Network [OSTI]

    Fouke, Bruce W.

    Hackleyb , Brandon Curryb a Department of Geology, University of Illinois Urbana Champaign, 1301 W. Green St., 245 NHB, Urbana, IL 61801, United States b Illinois State Geological Survey, 615 E. Peabody 2004; accepted 22 February 2005 Abstract Natural waters universally show fractionation of uranium

  9. EA-1823: Rockford Solar, Rockford, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide Federal funding to the Illinois Department of Commerce and Economic Opportunity (DCEO) under the State Energy Program (SEP). DCEO is seeking to provide $4 million of its SEP funds to Rockford Solar Partners LLC (RSP), who would use these funds for the design, permitting, and construction of a solar photovoltaic facility with a generating capacity of up to 20 megawatts (MW). DOEs Proposed Action would authorize $4,025,000 million in grant expenditures. The total cost of Rockford Solar Partners proposed project would be approximately $127 million.

  10. Categorical Exclusion Determinations: Illinois | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:JuneNovember 26, 20149Department of Energy Health,Illinois

  11. Coatsburg, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy, -105.3774934° LoadingCoatsburg, Illinois: Energy

  12. Curran, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)Crowley County,Curran, Illinois: Energy Resources Jump to:

  13. Darien, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation, searchIllinois: Energy Resources Jump to: navigation, search

  14. Decatur, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618b NoIllinois: Energy Resources Jump to:

  15. Virgil, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpenVerona,HamptonVinland, Wisconsin:Virgil, Illinois: Energy

  16. Wayne, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDSWawarsing, New York: Energy2479453°,Tennessee:Illinois:

  17. Barrington, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine:Barbers Point Housing, Hawaii:Barrington, Illinois: Energy Resources Jump

  18. Bartlett, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine:Barbers Point Housing,Illinois: Energy Resources Jump to: navigation,

  19. Batavia, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine:Barbers Point Housing,Illinois: Energy ResourcesInformation 2Batavia,

  20. Bloomingdale, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form ViewBlackBloomfield, Connecticut:Illinois: Energy

  1. Bloomington, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form ViewBlackBloomfield, Connecticut:Illinois:

  2. Brookfield, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a village in Cook County, Illinois. It falls under

  3. Liberty Power Corp. (Illinois) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach,October, 2012LeeCalifornia References:Illinois

  4. Markham, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a town inRiver93. It is classifiedMarkham, Illinois:

  5. Willowbrook, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamson County, Tennessee: EnergyWillis,Grove,Illinois:697533°,

  6. Woodridge, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamson County,Bay,°Trap,Woodhull,Woodridge, Illinois: Energy

  7. Rochelle, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia BlueRiverwoods, Illinois:239178°, -89.0687073° Loading

  8. Rock Energy Cooperative (Illinois) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia BlueRiverwoods, Illinois:239178°,is a927003°,At Silver

  9. Roselle, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRoosevelt Gardens is° Loading map...Roselle, Illinois: Energy

  10. Springfield, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551°FarmsSESLogMillsSpringdale is

  11. Steward, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota: Energy Resources JumpStepover orSteward, Illinois: Energy

  12. Strategic Energy LLC (Illinois) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota: Energy ResourcesStockbridge isIllinois) Jump to:

  13. Huntley, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,is a town inHuntley, Illinois:

  14. Illinois River Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI SolarIdanha, Oregon:IkeIllinois River Energy LLC

  15. Illinois Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI SolarIdanha, Oregon:IkeIllinois River EnergyWind

  16. Brownfield landfill remediation under the Illinois EPA site remediation program

    SciTech Connect (OSTI)

    Beck, J.; Bruce, B.; Miller, J.; Wey, T.

    1999-07-01T23:59:59.000Z

    Brownfield type landfill remediation was completed at the Ft. Sheridan Historic Landmark District, a former Army Base Realignment and Closure Facility, in conjunction with the future development of 551 historic and new homes at this site. The project was completed during 1998 under the Illinois Environmental Protection Agency (Illinois EPA) Site Remediation Program. This paper highlights the Illinois EPA's Site Remediation Program and the remediation of Landfills 3 and 4 at Fort Sheridan. The project involved removal of about 200,000 cubic yards of landfill waste, comprised of industrial and domestic refuse and demolition debris, and post-removal confirmation sampling of soils, sediment, surface water, and groundwater. The sample results were compared to the Illinois Risk-Based Cleanup levels for residential scenarios. The goal of the removal project was to obtain a No Further Remediation letter from the Illinois EPA to allow residential development of the landfill areas.

  17. Air Pollution Control Regulations: No. 9 - Air Pollution Control...

    Broader source: Energy.gov (indexed) [DOE]

    Fed. Government Industrial Institutional Investor-Owned Utility Local Government MunicipalPublic Utility Rural Electric Cooperative Tribal Government Utility Program Info State...

  18. Air Pollution Control Regulations: No. 9 - Air Pollution Control Permits

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed. Government CommercialProgram andDetrimental to

  19. Pre-clinical Measures of Eye Damage (Lens Opacity), Case-control Study of Tuberculosis, and Indicators of Indoor Air Pollution from Biomass Smoke

    E-Print Network [OSTI]

    Pokhrel, Amod Kumar

    2010-01-01T23:59:59.000Z

    Indoor air pollution from biomass fuels and respiratoryTuberculosis and Indoor Biomass and Kerosene Use in Nepal: AR.D. Retherford, and K.R. Smith, Biomass cooking fuels and

  20. Performance of two fluid bed sludge incinerators with air pollution control systems consisting of a venturi scrubber and wet electrostatic precipitator

    SciTech Connect (OSTI)

    Zaman, R.U. [Hankin Environmental Systems Inc., Somerville, NJ (United States)

    1995-12-31T23:59:59.000Z

    Performance tests were recently conducted on two new Hankin Fluid Bed Incineration Systems installed at publicly owned sewage treatment works in New Jersey. The purpose of the tests was to show that the systems met emission limits set by the New Jersey Department of Environmental Protection and Energy (NJDEPE), and that the systems met throughput and fuel consumption requirements. These systems, consisting of a fluid bed incinerator, heat exchanger, venturi scrubber, tray cooler, and wet electrostatic precipitator, were tested for emissions of heavy metals, sulfur oxides, nitrogen oxides, hydrogen chloride, carbon monoxide, volatile organic compounds, and opacity. Both yielded emissions that were well within the stringent limits set by the NJDEPE in the operating permits. The incinerators exhibited a high level of fuel efficiency with fuel oil consumption averaging 5.5 and 6.0 gallons per ton of wet sludge. In addition, combustion efficiency was high, with a maximum average CO of 7.39 ppmvd and VOCs of 1.39 ppmvd (both corrected to 7% O{sub 2}). The air pollution control equipment showed very high removal efficiencies. Except for Mercury, collection efficiencies for all heavy metals fell within 98.7% to 99.999%. Particulate collection efficiency averaged 99.97 and 99.99%. Collection efficiency for HCl averaged 99.2% and 99.92%, and for SO{sub 2} averages were 97.1% and 94.8%. Finally, the level of NO{sub x} in the stack was extremely low with averages of 17.33 ppmvd and 14.19 ppmvd (corrected to 7% O{sub 2}) for the two systems.

  1. Air Pollution Spring 2010

    E-Print Network [OSTI]

    ATS 555 Air Pollution Spring 2010 T Th 11:00 ­ 12:15, NESB 101 Instructor: Prof. Sonia Kreidenweis an understanding of types and sources of air pollution. 2. Examine concentrations of air pollutants and their effects on health and welfare. Review regulations governing air pollution. 3. Examine the meteorological

  2. FRASER POLLUTION ABATEMENT OFFICE

    E-Print Network [OSTI]

    are to build partnerships, clean up pollution, and renew the productivity of the natural environment Environmental Protection Act and the pollution prevention provisions of the Fisheries Act. The pollution clean#12;FRASER POLLUTION ABATEMENT OFFICE PROGRESS REPORT 1994-95 Prepared By Maggie M. Paquet MAIA

  3. Research Experience for Undergraduates At the University of Illinois at UrbanaChampaign

    E-Print Network [OSTI]

    Gilbert, Matthew

    Physics Research Experience for Undergraduates At the University of Illinois at Urbana.illinois.edu/undergrad/reu/http://physics.illinois.edu/undergrad/reu/ The University of Illinois REU/Cosmology · Biological Physics · Condensed Matter Physics · High Energy Physics · Nuclear Physics · Physics Education

  4. University of Illinois at ChicagoUniversity of Illinois at ChicagoUniversity of Illinois at ChicagoUniversity of Illinois at Chicago ----BioE Seminar SeriesBioE Seminar SeriesBioE Seminar SeriesBioE Seminar Series FridayFridayFridayFriday,,,, SeptemberSep

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    University of Illinois at ChicagoUniversity of Illinois at ChicagoUniversity of Illinois at ChicagoUniversity of Illinois at Chicago ---- BioE Seminar SeriesBioE Seminar SeriesBioE Seminar SeriesBioE Seminar Series 60607606076060760607 The Second Law of Energy Degradation Including Biological and Intelligent Processes The Second Law

  5. Water Pollution Control (South Dakota)

    Broader source: Energy.gov [DOE]

    It is the public policy of the state of South Dakota to conserve the waters of the state and to protect, maintain, and improve their quality for water supplies, for the propagation of wildlife,...

  6. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A; Taylor, Margaret R

    2007-01-01T23:59:59.000Z

    hazardous air pollutant removal, Proceeding of SO 2 Controlto control emissions of harmful air pollutants from electric

  7. INFORMATION: Management Alert on the Department's Monitoring of the Weatherization Assistance Program in the State of Illinois

    SciTech Connect (OSTI)

    None

    2009-12-01T23:59:59.000Z

    Under the American Recovery and Reinvestment Act of 2009 (Recovery Act), the Department of Energy's Weatherization Assistance Program received $5 billion to improve the energy efficiency of homes owned or occupied by low income persons, reduce their total residential expenditures, and improve their health and safety. Since the Recovery Act was enacted in February 2009, the Department has awarded weatherization grants to every state, the District of Columbia and five territories. Because of the unprecedented level of funding and the risks associated with spending vast amounts of money in a relatively short period of time, the Office of Inspector General (OIG) initiated a series of audits designed to evaluate the Program's internal control structures at both the Federal and state levels. As part of our work, we are in the process of reviewing Weatherization Program internal controls for the State of Illinois. We are also currently performing identical audits in the States of North Carolina, Pennsylvania and Virginia. Under the Recovery Act and the Department's Program, the State of Illinois received $242 million to weatherize 26,933 homes. The State of Illinois awarded these funds to 35 local agencies responsible for determining recipients' eligibility, contracting for the installation of the weatherization work, and conducting final inspections to ensure that work on homes was done in accordance with requirements. Inspectors working for the local agencies are required to evaluate the quality of mechanical and architectural improvements, such as furnace installations and window caulking, and certify that the work performed meets established standards. Under a Department approved plan in place at the time of our review, state officials were required to evaluate the sufficiency of local agency monitoring controls and to inspect the work performed on at least five percent of the units weatherized with Department funds during the program year for each local agency. We identified significant internal control deficiencies in the management of the Weatherization Program in Illinois which require immediate attention. Specifically, our audit testing revealed significant problems with on-site monitoring and inspection of the Illinois Home Weatherization Assistance Program (Illinois). We noted that the Department had not fulfilled its requirement to perform monitoring visits at the State level. In addition, Illinois officials had not complied with the Department's requirements for inspecting weatherization work conducted by local agencies. Finally, we found that a weatherization inspection for one of the local agencies failed to detect substandard installation of energy saving materials. This case involved a furnace gas leak that could have resulted in serious injury to the occupants and material damage to the structure. This is an interim report and our audit work remains in progress.

  8. Pollutant measurements Nils Mole, Finn Palmgren & Hao Zhang

    E-Print Network [OSTI]

    Mole, Nils

    as the only/main tool for control of com- pliance with limit values; but air pollution measure- ments we deal with measurement techniques and strategies appropriate to major pollutants in both air and water, and also with the effects of unavoidable measurement errors. Pollutant Measurements in Air

  9. Air Quality: Air Pollutants, SLAC Emissions Sources, and Regulatory Reference

    E-Print Network [OSTI]

    Wechsler, Risa H.

    permit regulations are designed to track, record, and control air pollutants belonging to severalAir Quality: Air Pollutants, SLAC Emissions Sources, and Regulatory Reference Department: Chemical on chemical classifications. This reference outlines major categories of air pollutants found at SLAC

  10. Coordinated study of the Devonian black shale in the Illinois Basin: Illinois, Indiana, and western Kentucky. Final report

    SciTech Connect (OSTI)

    Lineback, J.A.

    1980-12-31T23:59:59.000Z

    An evaluation of the resource potential of the Devonian shales, called the Eastern Gas Shales Project (EGSP) was begun. A study of the stratigraphy, structure, composition, and gas content of the Devonian shale in the Illinois Basin was undertaken by the State Geological Surveys of Illinois, Indiana, and Kentucky, under contract to the U.S. DOE as a part of the EGSP. Certain additional data were also developed by other research organizations (including Monsanto Research Corporation-Mound Facility and Battelle-Columbus Laboratory) on cores taken from the Illinois Basin. This report, an overview of geological data on the Illinois basin and interpretations of this data resulting from the EGSP, highlights areas of potential interest as exploration targets for possible natural gas resources in the Devonian shale of the basin. The information in this report was compiled during the EGSP from open file data available at the three State Geological surveys and from new data developed on cores taken by the DOE from the basin specifically for the EGSP. The organically richest shale is found in southeastern Illinois and in most of the Indiana and Kentucky portions of the Illinois Basin. The organic-rich shales in the New Albany are thickest near the center of the basin in southeastern Illinois, southwestern Indiana, and adjacent parts of Kentucky portions of the Illinois Basin. The organic-rich shales in the New Albany are thickest near the center of the basin in southeastern Illinois, southwestern Indiana, and adjacent parts of Kentucky. Natural fractures in the shale may aid in collecting gas from a large volume of shale. These fractures may be more abundant and interconnected to a greater degree in the vicinity of major faults. Major faults along the Rough Creek Lineament and Wabash Valley Fault System cross the deeper part of the basin.

  11. Devonian shale gas resource assessment, Illinois basin

    SciTech Connect (OSTI)

    Cluff, R.M.; Cluff, S.G.; Murphy, C.M. [Discovery Group, Inc., Denver, CO (United States)

    1996-12-31T23:59:59.000Z

    In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r{sup 2}=0.95) and gas content (r{sup 2}=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

  12. Devonian shale gas resource assessment, Illinois basin

    SciTech Connect (OSTI)

    Cluff, R.M.; Cluff, S.G.; Murphy, C.M. (Discovery Group, Inc., Denver, CO (United States))

    1996-01-01T23:59:59.000Z

    In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r[sup 2]=0.95) and gas content (r[sup 2]=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

  13. on man, nature & air pollution

    E-Print Network [OSTI]

    Finlayson-Pitts, Barbara J

    2008-01-01T23:59:59.000Z

    on man, nature & air pollution About three decades ago, itand episodes of air pollution the following summer. Wetthe increase in air pollution. This hypothesis generated

  14. University of Illinois Facilities & Services &Who We Are

    E-Print Network [OSTI]

    Shim, Moonsub

    , the organization offers facility planning, engineering, mainte- nance, construction, custodial services; parking Construction Division ............................................7 Engineering ServicesUniversity of Illinois Facilities & Services &Who We Are What We Do #12;#12;Jack Dempsey Executive

  15. InsideIllinoisMarch 6, 2014 Vol. 33, No. 16

    E-Print Network [OSTI]

    Lewis, Jennifer

    to enact positive changes in agricul- tural landscapes, particularly through second- generation perennial,saysJodyEndres,aprofessorofbioenergy,environmentalandnatural resourceslawatIllinois. it we decide to devote to biofuels crops, particularly in areas of water stress

  16. Illinois Junior Academy of Science Policy & Procedure Manual

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    should be given to all Science Project Sponsors and Student Participants This Manual May Be Downloaded, and guidelines of the Illinois Junior Academy of Science. Projects that are sent to the State Science Exposition ....................................................................................2 THE SCIENCE PROJECT ­ CATEGORIES

  17. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439

    E-Print Network [OSTI]

    Harilal, S. S.

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439 ANL-ET/02. Hassanein Energy Technology Division July 2002 #12;Argonne National Laboratory, a U.S. Department of Energy

  18. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439

    E-Print Network [OSTI]

    Harilal, S. S.

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439 ANL-ET/02-23 DEVELOPMENT. Hassanein Energy Technology Division July 2002 #12;Argonne National Laboratory, a U.S. Department of Energy

  19. EECBG Success Story: Illinois Town Launches Toilet Rebate Program...

    Broader source: Energy.gov (indexed) [DOE]

    Town Launches Toilet Rebate Program June 11, 2010 - 2:23pm Addthis The city of Aurora, Illinois, has launched a rebate program that aims to help residents avoid flushing money...

  20. InsideIllinoisNov. 21, 2013 Vol. 33, No. 10

    E-Print Network [OSTI]

    Lewis, Jennifer

    by the Illinois Department of Commerce and Eco- nomic Opportunity. The office is expected to solidify and expand relation- ships with Chinese academic and business leaders, Khanna said. An inauguration ceremony

  1. Illinois Company Implementing Solar Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Company Implementing Solar Energy Illinois Company Implementing Solar Energy March 23, 2010 - 2:00pm Addthis J.F. Electric will soon install its own solar rooftop solar panels,...

  2. Economic Development for a Growing Economy Tax Credit Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Economic Development for a Growing Economy Tax Credit Program encourages companies to remain, expand, or locate in Illinois. The program provides tax credits to qualifying companies equal to...

  3. Montgomery County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate Zone SubtypeSereno,Butler, Illinois Coalton, Illinois

  4. City of Princeton, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby, Illinois (UtilityPortland Place: Michigan References:Illinois

  5. City of St Charles, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby, IllinoisSchulenburg,Spencer Place: NebraskaTennesseeIllinois

  6. Pollution Control: Erosion and Sedimentation Control (Maine)

    Broader source: Energy.gov [DOE]

    A person who conducts, or causes to be conducted, an activity that involves filling, displacing or exposing soil or other earthen materials shall take measures to prevent unreasonable erosion of...

  7. Perinatal Risk Factors and Autism in Los Angeles County: The Role of Air Pollution, Maternal Race/Ethnicity and Nativity

    E-Print Network [OSTI]

    Becerra, Tracy Ann

    2013-01-01T23:59:59.000Z

    control study of autism and air pollution, individual pollutantsair pollution exposures and autistic disorder, conditional logistic regression analysis using matched controls, adjusted two-pollutantair pollutant measurements, and 2) land-use regression (LUR) to model traffic related air pollution exposures, using a matched case-control

  8. awareness and pollution prevention

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Hazard awareness and pollution prevention for contractors and visitors at UCSD #12;Hazard Awareness and Pollution Prevention For Contractors and Visitors at UC San Diego This booklet was developed by UC San Diego ..............................................5 Storm Water Pollution Prevention.....................5 Sanitary Sewer System Management

  9. FRASER POLLUTION ABATEMENT OFFICE

    E-Print Network [OSTI]

    #12;-. FRASER POLLUTION ABATEMENT OFFICE 1992-93 Progress Report By MaggieM. Paquet MAIAPublishingLtd. 302 E. 6th Street NorthVancouver,BC V7L 1P6 For FraserPollutionAbatementOffice EnvironmentCanada 224W abatement. The Fraser Pollution Abatement Office (FPAO) of the Fraser River Action Plan was established

  10. Personal and Ambient Air Pollution Exposures and Lung Function Decrements in Children with Asthma

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    air pollutant using linear mixed-effects models, with each subject serving as his or her own control (

  11. Energy Impact Illinois - Final Technical Report

    SciTech Connect (OSTI)

    Olson, Daniel [Senior Energy Efficiency Planner] [Senior Energy Efficiency Planner; Plagman, Emily [Senior Energy Planner] [Senior Energy Planner; Silberhorn, Joey-Lin [Energy Efficiency Program Assistant] [Energy Efficiency Program Assistant

    2014-02-18T23:59:59.000Z

    Energy Impact Illinois (EI2) is an alliance of government organizations, nonprofits, and regional utility companies led by the Chicago Metropolitan Agency for Planning (CMAP) that is dedicated to helping communities in the Chicago metropolitan area become more energy efficient. Originally organized as the Chicago Region Retrofit Ramp-Up (CR3), EI2 became part of the nationwide Better Buildings Neighborhood Program (BBNP) in May 2010 after receiving a $25 million award from the U.S. Department of Energy (DOE) authorized through the American Recovery and Reinvestment Act of 2009 (ARRA). The programs primary goal was to fund initiatives that mitigate barriers to energy efficiency retrofitting activities across residential, multifamily, and commercial building sectors in the seven-county CMAP region and to help to build a sustainable energy efficiency marketplace. The EI2 Final Technical Report provides a detailed review of the strategies, implementation methods, challenges, lessons learned, and final results of the EI2 program during the initial grant period from 2010-2013. During the program period, EI2 successfully increased direct retrofit activity in the region and was able to make a broader impact on the energy efficiency market in the Chicago region. As the period of performance for the initial grant comes to an end, EI2s legacy raises the bar for the region in terms of helping homeowners and building owners to take action on the continually complex issue of energy efficiency.

  12. School of IntegratIve BIology University of illinois at Urbana-Champaign

    E-Print Network [OSTI]

    Kent, Angela

    School of IntegratIve BIology University of illinois at Urbana-Champaign sib.illinois.edu fall 2012 and the private sector. New initiatives in the ecology of infectious diseases, bio- energy and sustainability

  13. Nicor, Peoples, and North Shore Gas- Small Business Energy Savings Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Energy Efficiency Loan Program, administered through AFC First and funded by participating utilities, provides loans to customers of Ameren Illinois, ComEd, Nicor, North Shore Gas, and...

  14. Preliminary assessment of hydrocarbon potential in southern Illinois

    SciTech Connect (OSTI)

    Crockett, J.E.; Oltz, D.F. (Illinois State Geological Survey, Champaign (USA))

    1989-08-01T23:59:59.000Z

    Hydrocarbon exploration has been sparse south of the Cottage Grove fault system in southern Illinois. Over 240,000 ac in this area are within the Shawnee National Forest (SNF). Upcoming review of mineral exploration policy on SNF land and a recent amendment to the Mineral Leasing Act (1987) will result in release of portions of the SNF for competitive and potentially noncompetitive bidding for mineral exploration tracts in the near future. Preliminary assessment of hydrocarbon potential has been carried out in southern Illinois. Numerous oil shows occur in Paleozoic strata south of the Cottage Grove fault system, which, at present, describes the southern boundary of most oil production in Illinois. Only Mitchellsville oil field in southern Saline County lies south of the Cottage Grove fault system. The Upper Devonian New Albany Shale, though to be the primary source rock for Illinois basin hydrocarbons, underlies most of the area. Older potential source rocks may be present. Depositional trends of prolific oil-productive Mississippian strata in Illinois continue southward through the area. Few drill holes have tested strata older than Mississippian in the area. Complex faulting in the Rough Creek-Shawneetown fault system may have improved the potential for hydrocarbon emplacement and entrapment in this region. Preliminary assessment of hydrocarbon potential indicates that this wildcat region deserves further tests.

  15. Proceedingsof the American Control Conference Chicago, Illinois June 2000

    E-Print Network [OSTI]

    Chen, Sheng

    Hangzhou, 310027, P. R. China jwu@iipc .zju.edu.cn Gang Li The school of EEE Singapore egli@ntu are presented to illustrate the effectiveness of the pro- posed strategy. Index Terms-Finite word length-point arith- metic. The FWL effects have been well studied in digital sig- nal processing, especially

  16. Article original Pollution fluore

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Article original Pollution fluorée et croissance radiale des conifères en Maurienne (Savoie, France; accepté le 24 juillet 1989) Résumé - La recherche de l'impact de la pollution fluorée sur la croissance en en fonction de l'éloignement des sources de pollution, l'exposition et l'altitude. L'é- tude porte

  17. Diffuse PollutionDiffuse Pollution Monitoring andMonitoring and

    E-Print Network [OSTI]

    Sridhar, Srinivas

    pollution andnor can resolve the current NP pollution and water shortages problemswater shortages problems and pollution mass balance of sources andpollution mass balance of sources and receiving water bodiesreceiving water bodies Water body, watershed and pollutionWater body, watershed and pollution assessmentassessment

  18. Demo: Illinois Vehicular Project, Live Data Sampling and Energy-efficient Node Discovery

    E-Print Network [OSTI]

    Kravets, Robin

    Demo: Illinois Vehicular Project, Live Data Sampling and Energy-efficient Node Discovery Riccardo Crepaldi, Mehedi Bakht, Tarek Abdelzaher, Robin Kravets University of Illinois at Urbana-Champaign {rcrepal2,mbakht2, zaher, rhk}@illinois.edu Embedded sensors in mobile devices such as cars and smart phones

  19. NEWS FOR ECE ILLINOIS ALUMNI AND FRIENDS WINtER 20092010

    E-Print Network [OSTI]

    Liu, Gang "Logan"

    to study renewable energy 2 ECE news briefs 3 Andreas Cangellaris named head of ECE ILLINOIS 4 ArchitectNEWS FOR ECE ILLINOIS ALUMNI AND FRIENDS WINtER 2009­2010 Also in this issue: Goddard receives 2009­2010 To alumni and friends of ECE ILLINOIS, Speaking at a special session on scientific

  20. CEEDepartment of Civil and Environmental Engineering University of Illinois at Urbana-Champaign

    E-Print Network [OSTI]

    Minsker, Barbara S.

    CEEDepartment of Civil and Environmental Engineering University of Illinois at Urbana-Champaign Summer 2012 The nexus of water, energy and the environment Alumni news and features Energized #12;CEE at the University of Illinois at Urbana-Champaign. Those alumni who donate annually to CEE at Illinois receive every

  1. METROPOLITAN TRANSPORTATION SUPPORT INITIATIVE For the Illinois Department of Transportation (IDOT)

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    METROPOLITAN TRANSPORTATION SUPPORT INITIATIVE METSI For the Illinois Department of Transportation University of Illinois at Chicago 412 South Peoria Street, Suite 340 Chicago, Illinois 60607 Tel: (312) 996 on Sustainability and Energy. -UTC staff either sponsored or participated in eight workshops during the period

  2. Climate Change, the Clean Air Act, and Industrial Pollution

    E-Print Network [OSTI]

    Kaswan, Alice

    2012-01-01T23:59:59.000Z

    and control strategies for criteria pollu- tants and hazardous air pollutantsair pollutants by ninety percent, despite the absence of an identified controlpollutant Controls? Some might acknowledge the continued air

  3. Illinois - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID4,2,"Alabama","Alabama","Electric6"10 IBM CorporationIllinoisIllinois

  4. E-Print Network 3.0 - air pollutant penetration Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Jets for Incinerator SIlloke Control Summary: are important design considerations for air pollution control. The paper reports on the investigation... commendations are given...

  5. "BLUE BOX" POWER ELECTRONICS CONTROL MODULES FOR LABORATORY-BASED EDUCATION

    E-Print Network [OSTI]

    Kimball, Jonathan W.

    "BLUE BOX" POWER ELECTRONICS CONTROL MODULES FOR LABORATORY-BASED EDUCATION R. S. BALOG, J. W of Illinois at Urbana/Champaign Urbana, Illinois 61801 #12;#12;UILU-ENG-2004-2504 "BLUE BOX" POWER ELECTRONICS of design documents detailing the design and fabrication of "blue box" power electronics control modules

  6. Atmospheric Pollution Research 1 (2010) 220228 Atmospheric Pollution Research

    E-Print Network [OSTI]

    Boyer, Edmond

    Atmospheric Pollution Research 1 (2010) 220228 Atmospheric Pollution Research www in modeling of the associated multiphase processes. Iron redox species are important pollutants. The oxidative capacity of the atmospheric cloud water decreases when dissolution is included

  7. ORIGINAL ARTICLE Ambient Air Pollution

    E-Print Network [OSTI]

    Mulholland, James A.

    ORIGINAL ARTICLE Ambient Air Pollution and Cardiovascular Emergency Department Visits Kristi Busico ambient air pollutants and cardiovascular disease (CVD), the roles of the physicochemical components the relation between ambient air pollution and cardiovascular conditions using ambient air quality data

  8. NORTHERN ILLINOIS UNIVERSITY Distinguished NanoScience Fellowship Application

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    NORTHERN ILLINOIS UNIVERSITY Distinguished NanoScience Fellowship Application Students should submit this form to the Nanoscience Fellowship Committee by the applicant advisor. Attach a brief summary of your performed and proposed research in nanoscience, together with a resume or curriculum vitae (if

  9. InsideIllinoisDec. 7, 2006 Vol. 26, No. 11

    E-Print Network [OSTI]

    Lewis, Jennifer

    Illinois prod- ucts to the public, to promote the Allerton name and in- crease food service (at the re, food service administrator; and Eric Larson, pastry chef in the Housing Division, were among 20 Dog tile, an Allerton T-shirt and hat, and other items, and the Allerton Label Food Basket contains

  10. InsideIllinoisMarch 5, 2009 Vol. 28, No. 15

    E-Print Network [OSTI]

    Lewis, Jennifer

    of the Sustainable University Compact, which outlines 12 initiatives that Illinois colleges and universities can plan to increase patrols around campus build- ings and in Campustown during the event, focusing Auditorium that sustained damage in the past. "Our goal is that the staff members who support us

  11. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439

    E-Print Network [OSTI]

    Harilal, S. S.

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439 ANL-ET/02-04 DEVELOPMENT of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department to the public, and perform publicly and display publicly, by or on behalf of the Government. #12;Argonne

  12. InsideIllinoisJune 19, 2008 Vol. 27, No. 22

    E-Print Network [OSTI]

    Lewis, Jennifer

    -ride vehicles are electric- powered. Both have top speeds of 25 mph, the speed limit in the University Distric service vehicles. The eight Mini Trucks are powered by gas but are smaller and fuel efficient. The eInsideIllinoisJune 19, 2008 Vol. 27, No. 22 InThisIssue Pedal power Staff members share what they

  13. Illinois' State FossilTullimonstrum gregarium The ancient landscape

    E-Print Network [OSTI]

    Cochran-Stafira, D. Liane

    of shale that overlies a valuable coal seam. In the 1920s, when strip mining operations began south that accumulated in the swamps was buried and converted to coal, an important economic resource for Illinois-collecting. To expose the coal beds, the mining operation stripped off the shale containing the fossil-bearing nodules

  14. Illinois Institute of Technology 3300 S. Federal St.

    E-Print Network [OSTI]

    Heller, Barbara

    IIT Press Illinois Institute of Technology 3300 S. Federal St. Main Building 301 Chicago, IL 60616 Dissertation Printing Form Student's Signature Date Advisor's Signature Date Graduate College Approval Date r Dissertation to be printed exactly as approved by the thesis committee and the thesis defense examiner. r

  15. Southern Illinois University Watercraft & Equipment Operating Boat Operation Eligibility

    E-Print Network [OSTI]

    that a stream of water is flowing from the motor for engine cooling. 8. Click in gear hard, don't grind. D the Illinois Boaters Safety Exam. General Boating Safety Guidelines All boat operations must comply with state is in distress, a fire extinguisher and engine cut-off safety lanyard for all boats with internal combustion

  16. InsideIllinoisNov. 17, 2005 Vol. 25, No. 10

    E-Print Network [OSTI]

    Lewis, Jennifer

    retirees and tell you how they fill their days. PAGE 9 Wind turbines, solar power to bring renewable energy are proud to work with the Illinois Clean Energy Community Foundation in promoting sustainable energy By Jim Barlow News Bureau Staff Writer In the coming years, wind and sun- light will help generate power

  17. Updated October 24, 2011 Illinois Institute of Technology

    E-Print Network [OSTI]

    Heller, Barbara

    Updated October 24, 2011 Illinois Institute of Technology Housing & Residential Services Student posters, paper, tape, sticky tack, etc from all surfaces; · Wipe clean all walls and furniture; · If living in an apartment, wipe clean the kitchen appliances, cabinets, and floor; and clean the bathroom

  18. Updated March 12, 2012 Illinois Institute of Technology

    E-Print Network [OSTI]

    Heller, Barbara

    Updated March 12, 2012 Illinois Institute of Technology Housing & Residential Services Student posters, paper, tape, sticky tack, etc from all surfaces; · Wipe clean all walls and furniture; · If living in an apartment, wipe clean the kitchen appliances, cabinets, and floor; and clean the bathroom

  19. Updated September 26, 2013 Illinois Institute of Technology

    E-Print Network [OSTI]

    Heller, Barbara

    Updated September 26, 2013 Illinois Institute of Technology Housing & Residential Services Student beds, etc); · Remove posters, paper, tape, sticky tack, etc from all surfaces; · Wipe clean all walls and furniture; · If living in an apartment, wipe clean the kitchen appliances, cabinets, and floor; and clean

  20. InsideIllinoisMarch 17, 2011 Vol. 30, No. 17

    E-Print Network [OSTI]

    Bashir, Rashid

    and plugging things in every night can relate to wanting a cell phone or laptop whose batteries can last://go.illinois.edu/popcensus statue. The cost and extent of the needed work is still unknown. "All of that dripping and run- ning the nuclear fuel inside the reactor pressure vessel be- comes so hot that it melts. This situation would occur

  1. Grow Iron, Slow Pollution | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grow Iron, Slow Pollution Grow Iron, Slow Pollution Scientists connect previous studies on electron transport in hematite Making a Deposit: Scanning electron micrographs of...

  2. UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN (UIUC). The Department of Civil and Environmental Engineering (CEE) at the University of Illinois at Urbana-Champaign invites applications for four

    E-Print Network [OSTI]

    Lee, Tonghun

    , enhanced environmental sensing, biomimicry, green chemistry, and pollution control and treatment in air excavations for resilient underground space; and energy applications, including mining, hydraulic fracturing. This area addresses understanding how coupled energy and air/water flows interact with biogeochemical

  3. NORTHERN ILLINOIS UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    generator and displays the output in waveform chart. III) To show how to perform basic LabVIEW operations click on the front panel opens a pop up menu which display numerous controls/indicators (i.e. inputs/outputs) provided by the software. 4) Select the numerical controls and place it on the Front Panel, repeat the step

  4. Abatement of Air Pollution: Air Pollution Control Equipment and Monitoring

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office of FossilMembershipoftheManagementHasdec DCDepartmentEquipment

  5. An Assessment of Geological Carbon Storage Options in the Illinois Basin: Validation Phase

    SciTech Connect (OSTI)

    Robert Finley

    2012-12-01T23:59:59.000Z

    The Midwest Geological Sequestration Consortium (MGSC) assessed the options for geological carbon dioxide (CO{sub 2}) storage in the 155,400 km{sup 2} (60,000 mi{sup 2}) Illinois Basin, which underlies most of Illinois, western Indiana, and western Kentucky. The region has annual CO{sub 2} emissions of about 265 million metric tonnes (292 million tons), primarily from 122 coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year (U.S. Department of Energy, 2010). Validation Phase (Phase II) field tests gathered pilot data to update the Characterization Phase (Phase I) assessment of options for capture, transportation, and storage of CO{sub 2} emissions in three geological sink types: coal seams, oil fields, and saline reservoirs. Four small-scale field tests were conducted to determine the properties of rock units that control injectivity of CO{sub 2}, assess the total storage resources, examine the security of the overlying rock units that act as seals for the reservoirs, and develop ways to control and measure the safety of injection and storage processes. The MGSC designed field test operational plans for pilot sites based on the site screening process, MVA program needs, the selection of equipment related to CO{sub 2} injection, and design of a data acquisition system. Reservoir modeling, computational simulations, and statistical methods assessed and interpreted data gathered from the field tests. Monitoring, Verification, and Accounting (MVA) programs were established to detect leakage of injected CO{sub 2} and ensure public safety. Public outreach and education remained an important part of the project; meetings and presentations informed public and private regional stakeholders of the results and findings. A miscible (liquid) CO{sub 2} flood pilot project was conducted in the Clore Formation sandstone (Mississippian System, Chesterian Series) at Mumford Hills Field in Posey County, southwestern Indiana, and an immiscible CO{sub 2} flood pilot was conducted in the Jackson sandstone (Mississippian System Big Clifty Sandstone Member) at the Sugar Creek Field in Hopkins County, western Kentucky. Up to 12% incremental oil recovery was estimated based on these pilots. A CO{sub 2} huff ??n?? puff (HNP) pilot project was conducted in the Cypress Sandstone in the Loudon Field. This pilot was designed to measure and record data that could be used to calibrate a reservoir simulation model. A pilot project at the Tanquary Farms site in Wabash County, southeastern Illinois, tested the potential storage of CO{sub 2} in the Springfield Coal Member of the Carbondale Formation (Pennsylvanian System), in order to gauge the potential for large-scale CO{sub 2} storage and/or enhanced coal bed methane recovery from Illinois Basin coal beds. The pilot results from all four sites showed that CO{sub 2} could be injected into the subsurface without adversely affecting groundwater. Additionally, hydrocarbon production was enhanced, giving further evidence that CO{sub 2} storage in oil reservoirs and coal beds offers an economic advantage. Results from the MVA program at each site indicated that injected CO{sub 2} did not leave the injection zone. Topical reports were completed on the Middle and Late Devonian New Albany Shale and Basin CO{sub 2} emissions. The efficacy of the New Albany Shale as a storage sink could be substantial if low injectivity concerns can be alleviated. CO{sub 2} emissions in the Illinois Basin were projected to be dominated by coal-fired power plants.

  6. Sustainable Sites SS Prerequisite 1: Construction Activity Pollution Prevention

    E-Print Network [OSTI]

    Zaferatos, Nicholas C.

    the environmental impact from the location of a building on a site. Requirements Do not develop buildings, hardscapeSustainable Sites SS Prerequisite 1: Construction Activity Pollution Prevention Required Intent Reduce pollution from construction activities by controlling soil erosion, waterway sedimentation

  7. Engineering Identifying the source of an atmospheric pollutant

    E-Print Network [OSTI]

    Chemical Engineering Abstract Identifying the source of an atmospheric pollutant or phenomena this question using combinations of atmospheric models and remote sensing observations will be presented challenge currently facing the US EPA in developing secondary standards for the control of this pollutant

  8. Session II-D-3 American Society for Engineering Education March 27, 2004 Bradley University/Illinois Central College, Peoria, Illinois

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    % Otto (gasoline) engine 25-35 Diesel engine 30-40 Gas turbine 30-40 Steam turbine 30-40 Nuclear, steamSession II-D-3 American Society for Engineering Education March 27, 2004 Bradley University/Illinois Central College, Peoria, Illinois 2004 IL/IN Sectional Conference FUEL-CELL AND HEAT-ENGINE ENERGY

  9. American Society of Engineering Education April 1-2, 2005-Northern Illinois University, DeKalb, Illinois. 2005 IL/IN Sectional Conference.

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    , and the subject of site planning belongs to both of the civil and architectural engineering professions. SometimesAmerican Society of Engineering Education April 1-2, 2005-Northern Illinois University, DeKalb, Illinois. 2005 IL/IN Sectional Conference. Session D-T1-2 OVERLAP BETWEEN MECHANICAL AND CIVIL ENGINEERING

  10. American Society for Engineering Education April 1-2, 2005 Northern Illinois University, DeKalb, Illinois. 2005 IL/IN Sectional Conference

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    American Society for Engineering Education April 1-2, 2005 ­ Northern Illinois University, DeKalb, Illinois. 2005 IL/IN Sectional Conference Session D-T3-3 INTRODUCING CREATIVITY AND ARTISTIC EXPRESSION INTO ENGINEERING TECHNOLOGY COURSES David P. Devine Indiana University Purdue University Fort Wayne, Fort Wayne

  11. Traffic-related air toxics and preterm birth: a population-based case-control study in Los Angeles County, California

    E-Print Network [OSTI]

    Wilhelm, Michelle; Ghosh, Jo Kay; Su, Jason; Cockburn, Myles; Jerrett, Michael; Ritz, Beate

    2011-01-01T23:59:59.000Z

    air pollution exposures and preterm birth based on single pollutant models Exposure Metric Adjusted a Crude N (cases, controls)

  12. Implementing the Pecos River Watershed Protection Plan through Invasive Species Control and by Providing Technical and Financial Assistance to Reduce Agricultural Nonpoint Source Pollution

    E-Print Network [OSTI]

    Gregory, L.; Porter, A.; Knutson, A.; Muegge, M.

    2013-01-01T23:59:59.000Z

    leaf beetle Successful defoliation of saltcedar continued in 2013 as well and with the extensive distribution of beetles from their release sites, beetle collections were kept to a minimum. In some locations, beetles have been observed about 50.../salt-cedar-bugs-found-eddy- county; https://today.agrilife.org/2013/07/29/theres-a-new-bug-in-town/). [9] Figure 6: Saltcedar biological release sites and chemical control distribution south of I-10 Figure 7: Saltcedar biological release...

  13. Suez Energy Resources North America (Illinois) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: MissouriPrograms |Illinois References: EIA Form EIA-861

  14. North Aurora, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City)Norristown, Pennsylvania:North Aurora, Illinois:

  15. Lakewood Shores, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) Jump to: navigation, searchShores, Illinois:

  16. West Brooklyn, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDSWawarsing,WebbWellsboro,InformationIllinois: Energy

  17. Integrys Energy Services, Inc. (Illinois) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climate compatible development Jump to:Fraunhofer2002)Illinois

  18. MidAmerican Energy Co (Illinois) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area Energy Efficiency, Renewable Energy,RuralIllinois)

  19. Scott County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVISantonOpen EnergyScio, Oregon:ScotoilIllinois:

  20. South Holland, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois: Energy Resources Jump to: navigation, search

  1. Whiteside County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to:Westview,Geothermal ProjectWhiteside County, Illinois: Energy

  2. Willow Springs, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamson County, Tennessee: EnergyWillis,Grove,Illinois: Energy

  3. Glendale Heights, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformationGilroy,Glasscock40.805378°,Glenburn,Illinois:

  4. Richland County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge AndREIIReykjanesMinnesota.Richland County, Illinois

  5. Peoria County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources Jump to: navigation,Peoria County, Illinois:

  6. Franklin Grove, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates9. ItFranklin Grove, Illinois:

  7. Carroll County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility |Carpentersville, Illinois: Energy Resources3 Climate

  8. City of Allendale, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuoCatalystPathways CalculatorinAcworth,Allendale, Illinois

  9. City of Altamont, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuoCatalystPathwaysAltamont City of Place: Illinois

  10. City of Geneseo, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (Utility Company)Galion, Ohio (Utility Company) JumpGeneseo, Illinois

  11. City of Highland, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (Utility Company)Galion,Harrisonville,Hickman Place:Illinois (Utility

  12. City of Newton, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (UtilityHolyrood,Martinsville,Moultrie,NelsonNew RossNewton, Illinois

  13. City of Oglesby, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby, Illinois (Utility Company) Jump to: navigation, search Name:

  14. City of Peru, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby, Illinois (Utility Company) JumpPaullina, Iowa

  15. City of Red Bud, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby, Illinois (UtilityPortland Place:Radium, Kansas (Utility

  16. City of Springfield, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby, IllinoisSchulenburg,Spencer Place: Nebraska

  17. Southern View, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551°

  18. Illinois' 11th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI SolarIdanha, Oregon:IkeIllinois River

  19. Illinois' 12th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI SolarIdanha, Oregon:IkeIllinois

  20. Illinois' 15th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI SolarIdanha, Oregon:IkeIllinoisInformation

  1. Illinois' 2nd congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI SolarIdanha,Information Illinois. Registered

  2. Illinois' 6th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyNameInformation Illinois.

  3. Illinois SB 1987: the Clean Coal Portfolio Standard Law

    SciTech Connect (OSTI)

    NONE

    2009-01-15T23:59:59.000Z

    On January 12, 2009, Governor Rod Blagojevich signed SB 1987, the Clean Coal Portfolio Standard Law. The legislation establishes emission standards for new coal-fueled power plants power plants that use coal as their primary feedstock. From 2009-2015, new coal-fueled power plants must capture and store 50 percent of the carbon emissions that the facility would otherwise emit; from 2016-2017, 70 percent must be captured and stored; and after 2017, 90 percent must be captured and stored. SB 1987 also establishes a goal of having 25 percent of electricity used in the state to come from cost-effective coal-fueled power plants that capture and store carbon emissions by 2025. Illinois is the first state to establish a goal for producing electricity from coal-fueled power plants with carbon capture and storage (CCS). To support the commercial development of CCS technology, the legislation guarantees purchase agreements for the first Illinois coal facility with CCS technology, the Taylorville Energy Center (TEC); Illinois utilities are required to purchase at least 5 percent of their electricity supply from the TEC, provided that customer rates experience only modest increases. The TEC is expected to be completed in 2014 with the ability to capture and store at least 50 percent of its carbon emissions.

  4. Towards an Emissions Trading Scheme for Air Pollutants in India

    E-Print Network [OSTI]

    Duflo, Esther

    Emissions trading schemes have great potential to lower pollution while minimizing compliance costs for firms in many areas now subject to traditional command-and-control regulation. This paper connects experience with ...

  5. E-Print Network 3.0 - argonne illinois site Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    site Search Powered by Explorit Topic List Advanced Search Sample search results for: argonne illinois site Page: << < 1 2 3 4 5 > >> 1 self-assembling nanomaterials: Argonne...

  6. High school students use nation's top X-rays to study Illinois...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industry, medical schools, and other research institutions. Click to enlarge. High school students use nation's top X-rays to study Illinois fossils By Chelsea Leu * October 2,...

  7. Petroleum potential of the Upper Ordovician Maquoketa Group in Illinois: A coordinated geological and geochemical study

    SciTech Connect (OSTI)

    Crockett, J.E.; Oltz, D.F. (Illinois State Geological Survey, Champaign (USA)); Kruge, M.A. (Southern Illinois Univ., Carbondale (USA))

    1990-05-01T23:59:59.000Z

    The Ordovician Maquoketa Group in Illinois, predominantly composed of shale, calcareous shale, and carbonates, has long been considered a potential source for Illinois basin hydrocarbons. Methods used to better define the petroleum potential of the Maquoketa in the Illinois basin were lithostratigraphic study, Rock-Eval (pyrolysis) analyses, comparison of molecular markers from whole-rock extracts and produced oil, and construction of burial history models. Organic-rich submature Maquoketa potential source rocks are present in western Illinois at shallow depths on the basin flank. Deeper in the basin in southern Illinois, Rock-Eval analyses indicate that the Maquoketa shale is within the oil window. Solvent extracts of the Maquoketa from western Illinois closely resemble the Devonian New Albany Shale, suggesting that past studies may have erroneously attributed Maquoketa-generated petroleum to a New Albany source or failed to identify mixed source oils. Subtle differences between Maquoketa and New Albany solvent extracts include differences in pristane/phytane ratios, proportions of steroids, and distribution of dimethyldibenzothiophene isomers. Maquoketa solvent extracts show little resemblance to Middle Ordovician oils from the Illinois or Michigan basins. Lithostratigraphic studies identified localized thick carbonate facies in the Maquoketa, suggesting depositional response to upper Ordovician paleostructures. Sandstone facies in the Maquoketa in southwestern Illinois offer a potential source/trap play, as well as serving as potential carrier beds for hydrocarbon migration. Maquoketa source and carrier beds may feed older Ordovician rocks in faulted areas along and south of the Cottage Grove fault system in southern Illinois.

  8. E-Print Network 3.0 - auditorium chicago illinois Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of - Energy and Geoscience Institute, Geothermal Research Group Collection: Renewable Energy ; Geosciences 7 Translational Science Seminar The University of Illinois at Chicago...

  9. Reclamation of abandoned mined lands along th Upper Illinois Waterway using dredged material

    SciTech Connect (OSTI)

    Van Luik, A; Harrison, W

    1982-01-01T23:59:59.000Z

    Sediments were sampled and characterized from 28 actual or proposed maintenance-dredging locations in the Upper Illinois Waterway, that is, the Calumet-Sag Channel, the Des Plaines River downstream of its confluence with the Calumet-Sag Channel, and the Illinois River from the confluence of the Kankakee and Des Plaines rivers to Havana, Illinois. Sufficient data on chemical constituents and physical sediments were obtained to allow the classification of these sediments by currently applicable criteria of the Illinois Environmental Protection Agency for the identification of hazardous, persistent, and potentially hazardous wastes. By these criteria, the potential dredged materials studied were not hazardous, persistent, or potentially hazardous; they are a suitable topsoil/ reclamation medium. A study of problem abandoned surface-mined land sites (problem lands are defined as being acidic and/or sparsely vegetated) along the Illinois River showed that three sites were particularly well suited to the needs of the Corps of Engineers (COE) for a dredged material disposal/reclamation site. Thes sites were a pair of municipally owned sites in Morris, Illinois, and a small corporately owned site east of Ottawa, Illinois, and adjacent to the Illinois River. Other sites were also ranked as to suitability for COE involvement in their reclamation. Reclamation disposal was found to be an economically competitive alternative to near-source confined disposal for Upper Illinois Waterway dredged material.

  10. E-Print Network 3.0 - agencies illinois institute Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Resources ; Energy Storage, Conversion and Utilization 48 LEADERSHIP FORUM "Health Care Reform -Leadership in a Time of Chaos" Summary: served as di- rector of the Illinois...

  11. University of Illinois at Urbana-Champaigns GATE Center for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Urbana-Champaigns GATE Center for Advanced Automotive Bio-Fuel Combustion Engines University of Illinois at Urbana-Champaigns GATE Center for Advanced Automotive Bio-Fuel...

  12. University of Illinois at Urbana Champaigns GATE Center forAdvanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Urbana Champaigns GATE Center forAdvanced Automotive Bio-Fuel Combustion Engines University of Illinois at Urbana Champaigns GATE Center forAdvanced Automotive Bio-Fuel...

  13. Production of cements from Illinois coal ash. Technical report, September 1, 1995--November 30, 1995

    SciTech Connect (OSTI)

    Wagner, J.C. [Institute of Gas Technology, Chicago, IL (United States); Bhatty, J.I.; Mishulovich, A. [Construction Technology Labs., Inc., Washington, DC (United States)

    1995-12-31T23:59:59.000Z

    The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. Currently only about 30% of the 5 million tons of these coal combustion residues generated in Illinois each year are utilized, mainly as aggregate. These residues are composed largely Of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. The process being developed in this program will use the residues directly in the manufacture of cement products. Therefore, a much larger amount of residues can be utilized. To achieve the above objective, in the first phase (current year) samples of coal combustion residues will be blended and mixed, as needed, with a lime or cement kiln dust (CKD) to adjust the CaO composition. Six mixtures will be melted in a laboratory-scale furnace at CTL. The resulting products will then be tested for cementitious properties. Two preliminary blends have been tested. One blend used fly ash with limestone, while the other used fly ash with CKD. Each blend was melted and then quenched, and the resulting product samples were ground to a specific surface area similar to portland cement. Cementitious properties of these product samples were evaluated by compression testing of 1-inch cube specimens. The specimens were formed out of cement paste where a certain percentage of the cement paste is displaced by one of the sample products. The specimens were cured for 24 hours at 55{degrees}C and 100% relative humidity. The specimens made with the product samples obtained 84 and 89% of the strength of a pure portland cement control cube. For comparison, similar (pozzolanic) materials in standard concrete practice are required to have a compressive strength of at least 75% of that of the control.

  14. STORM WATER POLLUTION PREVENTION PLAN BUILDING B51 AND BEVATRON DEMOLITION PROJECT

    E-Print Network [OSTI]

    STORM WATER POLLUTION PREVENTION PLAN FOR: BUILDING B51 AND BEVATRON DEMOLITION PROJECT PROJECT NO;Storm Water Pollution Prevention Plan (SWPPP) Building B51 and Bevatron Demolition Project Lawrence............................................................................................300-3 300.4 Project Schedule/Water Pollution Control Schedule

  15. Water Quality Control Act (Tennessee)

    Broader source: Energy.gov [DOE]

    The Water Quality Control Act (WQCA) establishes the water pollution control program. The WQCA identifies the responsibilities and extent of authority for the Commissioner of the Water Quality...

  16. Synergies and conflicts in multimedia pollution control related to utility compliance with Title IV of the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Bailey, K.A.; Loeb, A.P.; Formento, J.W.; South, D.W.

    1994-01-01T23:59:59.000Z

    Most analyses of utility strategies for meeting Title IV requirements in the Clean Air Act Amendments of 1990 have focused on factors relating directly to utilities` sulfur dioxide control costs; however, there are a number of additional environmental requirements that utilities must meet at the same time they comply with the acid rain program. To illuminate the potential synergies and conflicts that these other regulatory mandates may have in connection with the acid rain program, it is necessary to conduct a thorough, simultaneous examination of the various programs. This report (1) reviews the environmental mandates that utilities must plant to meet in the next decade concurrently with those of the acid rain program, (2) evaluates the technologies that utilities may select to meet these requirements, (3) reviews the impacts of public utility regulation on the acid rain program, and (4) analyzes the interactions among the various programs for potential synergies and conflicts. Generally, this report finds that the lack of coordination among current and future regulatory programs may result in higher compliance costs than necessary. Failure to take advantage of cost-effective synergies and incremental compliance planning will increase control costs and reduce environmental benefits.

  17. Detoxification of aromatic pollutants by fungal enzymes

    SciTech Connect (OSTI)

    Bollag, J.M.; Dec, J. [Pennsylvania State Univ., University Park, PA (United States)

    1995-12-31T23:59:59.000Z

    Fungal enzymes, such as laccase, peroxidase, and tyrosinase, play a prominent role in catalyzing the transformation of various aromatic compounds in the environment. The enzyme-mediated oxidative coupling reaction results in covalent binding of chlorinated phenols and anilines to soil organic matter or polymerization of the substrates in aquatic systems. Both of these processes are accompanied by a detoxification effect. Therefore, it has been postulated that they be exploited for the treatment of polluted soil and water. The mechanism and efficiency of oxidative coupling in pollutant removal were studied by incubation of chlorinated phenols and anilines with various humic substances or soil and analysis of the reaction products by chromatography and mass and {sup 13}C nuclear magnetic resonance (NMR) spectrometry. The decontamination effect could be enhanced by optimization of the reaction conditions and immobilization of enzymes on solid materials. The results obtained strongly support the concept of using enzymes for control of environmental pollution.

  18. Concentrations of indoor pollutants database: User's manual

    SciTech Connect (OSTI)

    Not Available

    1992-05-01T23:59:59.000Z

    This manual describes the computer-based database on indoor air pollutants. This comprehensive database alloys helps utility personnel perform rapid searches on literature related to indoor air pollutants. Besides general information, it provides guidance for finding specific information on concentrations of indoor air pollutants. The manual includes information on installing and using the database as well as a tutorial to assist the user in becoming familiar with the procedures involved in doing bibliographic and summary section searches. The manual demonstrates how to search for information by going through a series of questions that provide search parameters such as pollutants type, year, building type, keywords (from a specific list), country, geographic region, author's last name, and title. As more and more parameters are specified, the list of references found in the data search becomes smaller and more specific to the user's needs. Appendixes list types of information that can be input into the database when making a request. The CIP database allows individual utilities to obtain information on indoor air quality based on building types and other factors in their own service territory. This information is useful for utilities with concerns about indoor air quality and the control of indoor air pollutants. The CIP database itself is distributed by the Electric Power Software Center and runs on IBM PC-compatible computers.

  19. Synergies and conflicts in multimedia pollution control related to utility compliance with Title IV of the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    South, D.W.; Bailey, K.A.

    1993-11-01T23:59:59.000Z

    Most analyses of the alternative strategies used by utilities to comply with Title IV requirements have focused on factors directly related to controlling sulfur dioxide (SO{sub 2}) emissions. However, utilities must meet a number of additional environmental requirements at the same tune they comply with the acid rain program. To illuminate the potential synergies and conflicts that might exist between the other regulatory mandates and the acid rain program, a thorough examination of all the various programs and their interrelationships must be conducted. This paper reviews the environmental mandates that utilities will have to plan to meet in the next decade concurrently with the acid rain program, and it analyzes the interactions among the various programs to identify potential synergies and conflicts.

  20. Pollution Prevention Tracking and Reporting System | Department...

    Energy Savers [EERE]

    Pollution Prevention Tracking and Reporting System Pollution Prevention Tracking and Reporting System Welcome to the Department of Energy's Pollution Prevention Tracking and...

  1. Review: Integrating Climate, Energy and Air Pollution

    E-Print Network [OSTI]

    Toohey, David E.

    2013-01-01T23:59:59.000Z

    Climate, Energy and Air Pollution By Gary Bryner with RobertEnergy, and Air Pollution. Cambridge, Massachusetts, The MITClimate, Energy, and Air Pollution provides a well-

  2. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2010-01-01T23:59:59.000Z

    The Status of Indoor Air Pollution Research 1976. GeometNovakov, T. : Formation of Pollution Particulate NitrogenGENERATED INDOOR AIR POLLUTION Dr. C. D. Hollowell, Dr. R.

  3. Los Alamos wins 2008 Pollution Prevention awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2008 Pollution Prevention awards Los Alamos wins 2008 Pollution Prevention awards Winner of two Best-in-Class Pollution Prevention awards and six Environmental Stewardship awards...

  4. Air Pollution & Health in Rapidly Developing Countries

    E-Print Network [OSTI]

    Bucher, Scott

    2005-01-01T23:59:59.000Z

    For example, Air Pollution and Health Studies in theAssessment of Air Pollution and Health is illustrative inReview: Air Pollution & Health in Rapidly Developing

  5. Pollution prevention cost savings potential

    SciTech Connect (OSTI)

    Celeste, J.

    1994-12-01T23:59:59.000Z

    The waste generated by DOE facilities is a serious problem that significantly impacts current operations, increases future waste management costs, and creates future environmental liabilities. Pollution Prevention (P2) emphasizes source reduction through improved manufacturing and process control technologies. This concept must be incorporated into DOE`s overall operating philosophy and should be an integral part of Total Quality Management (TQM) program. P2 reduces the amount of waste generated, the cost of environmental compliance and future liabilities, waste treatment, and transportation and disposal costs. To be effective, P2 must contribute to the bottom fine in reducing the cost of work performed. P2 activities at LLNL include: researching and developing innovative manufacturing; evaluating new technologies, products, and chemistries; using alternative cleaning and sensor technologies; performing Pollution Prevention Opportunity Assessments (PPOAs); and developing outreach programs with small business. Examples of industrial outreach are: innovative electroplating operations, printed circuit board manufacturing, and painting operations. LLNL can provide the infrastructure and technical expertise to address a wide variety of industrial concerns.

  6. and Pollutant Safeguarding Buildings

    E-Print Network [OSTI]

    commercial buildings, these flows are driven primarily by the building's ventilation system, but natural2004 Airflow and Pollutant Transport Group Safeguarding Buildings Against Chemical and Biological research since 1998 to protect buildings and building occupants from threats posed by airborne chemical

  7. RCW - 43.21B - Environmental and Land Use Hearings Office - Pollution...

    Open Energy Info (EERE)

    1B - Environmental and Land Use Hearings Office - Pollution Control Hearings Board Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  8. E-Print Network 3.0 - air pollutants volume Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geosciences 2 Are You Good Enough? The First Crossword on Biological Techniques for Air Pollution Control. By Marc Deshusses, University of California. http:...

  9. E-Print Network 3.0 - abatement jof pollutants Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health & Safety Summary: prior to any asbestos abatement project start up. The local air pollution control agency for King... asbestos abatement contractor to perform asbestos...

  10. 5 CCR 1001-5 Colorado Stationary Source Permitting and Air Pollution...

    Open Energy Info (EERE)

    Colorado Stationary Source Permitting and Air Pollution Control Emission Notice Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: 5 CCR...

  11. Acute cardiovascular effects of exposure to air pollution: components, vascular mechanisms and protecting the public

    E-Print Network [OSTI]

    Langrish, Jeremy Patrick

    2012-11-30T23:59:59.000Z

    Exposure to air pollution, particularly fine and ultrafine particulate matter derived from combustion sources, has been consistently associated with increased cardiovascular morbidity and mortality. Recent controlled exposure ...

  12. E-Print Network 3.0 - aza-aromatic pollutants adsorbed Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ; Chemistry 4 Are You Good Enough? The First Crossword on Biological Techniques for Air Pollution Control. By Marc Deshusses, University of California. http:...

  13. E-Print Network 3.0 - atmospheric pollutants levels Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dispersion a. Maximum ground-level ambient concentration b... Pollution Prevention, Control and Sustainability Instructor: V.M. Fthenakis, Tel: (212) 854-8885, Email: vmf......

  14. Engineering at Illinois delivers successful partnerships that impact businesses. Illinois has a strong track record of technology innovation and commercialization. We also lead the nation in funding from the National Science

    E-Print Network [OSTI]

    Lewis, Jennifer

    » Dow Chemical » Intel » Bloom Energy » BP » Flex-n-Gate » PayPal » Yelp » YouTube Illinois Talent BuiltEngineering at Illinois delivers successful partnerships that impact businesses. Illinois has areas including: Big Data/Data Analytics/ Computing, Biomedical/Bioengineering, and Energy Technologies

  15. ORIGINAL ARTICLE Ambient Air Pollution

    E-Print Network [OSTI]

    Mulholland, James A.

    ORIGINAL ARTICLE Ambient Air Pollution and Respiratory Emergency Department Visits Jennifer L. Peel pollution and respiratory outcomes. More refined assessment has been limited by study size and available air quality data. Methods: Measurements of 5 pollutants (particulate matter PM10 , ozone, nitrogen dioxide NO2

  16. 6, 1332313366, 2006 Regional pollution

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 13323­13366, 2006 Regional pollution potentials of major population centers M. G. Lawrence a Creative Commons License. Atmospheric Chemistry and Physics Discussions Regional pollution potentials. Lawrence (lawrence@mpch-mainz.mpg.de) 13323 #12;ACPD 6, 13323­13366, 2006 Regional pollution potentials

  17. Air Pollution Socio-Economic

    E-Print Network [OSTI]

    Minnesota, University of

    Traffic Air Pollution and Socio-Economic Status Gregory C Pratt PhD Kristie Ellickson PhD #12 · Relationships #12;Living near traffic increases exposure to air pollution and is associated with adverse health exposed to traffic and air pollution. They are also more vulnerable and have an increased risk of adverse

  18. Alejandro D. Dominguez-Garcia University of Illinois at Urbana-Champaign

    E-Print Network [OSTI]

    Liberzon, Daniel

    @ILLINOIS.EDU +1 217 333 3953 (P) +1 217 333 1162 (F) http://energy.ece.illinois.edu/aledan Education MASSACHUSETTS 2001 Valedictorian). Thesis: Refurbishment and Improvement of a 27/5 kV - 10 MVA Power Substation Research Positions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Laboratory for Electromagnetic and Electronic

  19. GCI Monthly A publication of the Great Cities Institute at the University of Illinois at Chicago

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    1 GCI Monthly A publication of the Great Cities Institute at the University of Illinois. I hope the summer treated you well, and that you can join us at Great Cities with renewed energy at the University of Illinois at Chicago. She holds a PhD degree in Computer Science from the University of Toronto

  20. M. KOSTIC'S 2010 SUBBATICAL ACTIVITIES REPORT Page 1 NORTHERN ILLINOIS UNIVERSITY www.niu.edu

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    with external experts it has been concluded that development of a Northern Illinois Regional Energy CenterM. KOSTIC'S 2010 SUBBATICAL ACTIVITIES REPORT Page 1 NORTHERN ILLINOIS UNIVERSITY www activities at NIU as related to national and global "Energy and Ecology Challenges." In addition, the goal

  1. Newsletter of the Department of Aerospace Engineering University of Illinois at Urbana-Champaign

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    Newsletter of the Department of Aerospace Engineering University of Illinois at Urbana interesting and exciting things have happened in the Illinois AE Department over the last year, and we and energy of our students and alumni, they naturally have achieved great things. Many examples

  2. IllInoIs InstItute of technology's WInd energy research consortIum

    E-Print Network [OSTI]

    Heller, Barbara

    IllInoIs InstItute of technology's WInd energy research consortIum Wanger Institute for Sustainable Energy Research (WISER) Illinois Institute of Technology On-campus wind turbine [OVER] The U.S. Department of Energy has invested $8 Million in the IIT-led Wind Energy Consortium to improve wind generation

  3. Carbon Dioxide Capture and Transportation Options in the Illinois Basin

    SciTech Connect (OSTI)

    M. Rostam-Abadi; S. S. Chen; Y. Lu

    2004-09-30T23:59:59.000Z

    This report describes carbon dioxide (CO{sub 2}) capture options from large stationary emission sources in the Illinois Basin, primarily focusing on coal-fired utility power plants. The CO{sub 2} emissions data were collected for utility power plants and industrial facilities over most of Illinois, southwestern Indiana, and western Kentucky. Coal-fired power plants are by far the largest CO{sub 2} emission sources in the Illinois Basin. The data revealed that sources within the Illinois Basin emit about 276 million tonnes of CO2 annually from 122 utility power plants and industrial facilities. Industrial facilities include 48 emission sources and contribute about 10% of total emissions. A process analysis study was conducted to review the suitability of various CO{sub 2} capture technologies for large stationary sources. The advantages and disadvantages of each class of technology were investigated. Based on these analyses, a suitable CO{sub 2} capture technology was assigned to each type of emission source in the Illinois Basin. Techno-economic studies were then conducted to evaluate the energy and economic performances of three coal-based power generation plants with CO{sub 2} capture facilities. The three plants considered were (1) pulverized coal (PC) + post combustion chemical absorption (monoethanolamine, or MEA), (2) integrated gasification combined cycle (IGCC) + pre-combustion physical absorption (Selexol), and (3) oxygen-enriched coal combustion plants. A conventional PC power plant without CO2 capture was also investigated as a baseline plant for comparison. Gross capacities of 266, 533, and 1,054 MW were investigated at each power plant. The economic study considered the burning of both Illinois No. 6 coal and Powder River Basin (PRB) coal. The cost estimation included the cost for compressing the CO{sub 2} stream to pipeline pressure. A process simulation software, CHEMCAD, was employed to perform steady-state simulations of power generation systems and CO{sub 2} capture processes. Financial models were developed to estimate the capital cost, operations and maintenance cost, cost of electricity, and CO{sub 2} avoidance cost. Results showed that, depending on the plant size and the type of coal burned, CO{sub 2} avoidance cost is between $47/t to $67/t for a PC +MEA plant, between $22.03/t to $32.05/t for an oxygen combustion plant, and between $13.58/t to $26.78/t for an IGCC + Selexol plant. A sensitivity analysis was conducted to evaluate the impact on the CO2 avoidance cost of the heat of absorption of solvent in an MEA plant and energy consumption of the ASU in an oxy-coal combustion plant. An economic analysis of CO{sub 2} capture from an ethanol plant was also conducted. The cost of CO{sub 2} capture from an ethanol plant with a production capacity of 100 million gallons/year was estimated to be about $13.92/t.

  4. Subscriber access provided by UNIV ILLINOIS URBANA Journal of Medicinal Chemistry is published by the American Chemical Society.

    E-Print Network [OSTI]

    Hergenrother, Paul J.

    Subscriber access provided by UNIV ILLINOIS URBANA Journal of Medicinal Chemistry is published of Chemistry, Roger Adams Laboratory, UniVersity of Illinois, Urbana, Illinois 61801 ReceiVed September 17 activity. Introduction Apoptosis is an energy-dependent pathway used by higher eukaryotes to selectively

  5. Assessment of Basin-Scale Hydrologic Impacts of CO2 Sequestration, Illinois Basin1 Mark Person*1

    E-Print Network [OSTI]

    Gable, Carl W.

    : Mount Simon, Illinois Basin, CO2, earthquakes, pressure, brine transport69 #12;Page | 3 1. IntroductionPage | 1 Assessment of Basin-Scale Hydrologic Impacts of CO2 Sequestration, Illinois Basin1 2 3 4 sharp-interface models of CO2 injection were constructed for the Illinois49 Basin in which porosity

  6. Lily Lake, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster And Coolbaugh, 2007) JumpDesign JumpLily Lake, Illinois: Energy

  7. Crystal Lawns, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)Crowley County, Colorado: EnergyOpen EnergyLawns, Illinois:

  8. Illinois - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID4,2,"Alabama","Alabama","Electric6"10 IBM CorporationIllinois

  9. Deer Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618b NoIllinois:

  10. Douglas County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1DeringDolgeville, NewDorchester, Wisconsin:Colorado:Illinois.

  11. Villa Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpenVerona, NewViking-McBain Biomass Facility JumpIllinois:

  12. Village of Bethany, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpenVerona, NewViking-McBain BiomassBeach City Place:Illinois

  13. Village of Ladd, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpenVerona,Hampton Place: Nebraska References:Ladd, Illinois

  14. Washington County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana: EnergyWasco County,WashingtonIllinois: Energy

  15. Ultrasound-promoted chemical desulfurization of Illinois coals

    SciTech Connect (OSTI)

    Chao, S.S.

    1991-01-01T23:59:59.000Z

    The overall objectives of the program were to investigate the use of ultrasound to promote coal desulfurization reactions and to evaluate chemical coal desulfurization schemes under mild conditions through a fundamental understanding of their reaction mechanisms and kinetics. The ultimate goal was to develop an economically feasible mild chemical process to reduce the total sulfur content of Illinois Basin Coals, while retaining their original physical characteristics, such as calorific value and volatile matter content. During the program, potential chemical reactions with coal were surveyed under various ultrasonic irradiation conditions for desulfurization, to formulate preliminary reaction pathways, and to select a few of the more promising chemical processes for more extensive study.

  16. Big Rock, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey: EnergyBerthoud,BiodieselRapids is a city inIllinois:

  17. Brown County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a village in CookEnergyBrookwood,Illinois. Its FIPS County

  18. North Dakota Natural Gas Processed in Illinois (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper Thousand Cubic Feet) YearBarrels)Illinois

  19. CO2 Injection Begins in Illinois | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins in Illinois CO2 Injection Begins in

  20. South Elgin, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZ Partner Central Energy FundInformationSouthIllinois: Energy

  1. Maple Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a town in CarrollManteca,ChangeBluff,city inIllinois:

  2. Will County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois: Energy Resources Jump

  3. Rock Island County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia BlueRiverwoods, Illinois:239178°,is a927003°,At

  4. Constellation NewEnergy, Inc (Illinois) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text is derivedCo Jump to:NewEnergy, Inc (Illinois)

  5. Calhoun County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: Crystalline RockCaldera2 2013 NextCalhoun CountyIllinois.

  6. City of Fairfield, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLakeWyomingDurant, IowaEstelline, SouthFairfield, Illinois

  7. City of Metropolis, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Nebraska (Utility Company)LivingstonMcCleary,Metropolis, Illinois

  8. City of Rock Falls, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Nebraska (UtilityGeorgiaArkansas References:Robertsdale, AlabamaIllinois

  9. Clear Lake, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouthSolar TypeCleanstarIllinois: Energy

  10. Illinois Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut Regions National11-12, 2005Idaho RegionsIllinois

  11. Illinois' 18th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIIIDriveMitigationInformation Illinois

  12. Illinois' 3rd congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyNameInformation Illinois. Registered Networking

  13. Illinois' 4th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyNameInformation Illinois. Registered

  14. Illinois' 5th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyNameInformation Illinois. RegisteredInformation

  15. Illinois' 7th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyNameInformation Illinois.Information Registered

  16. Illinois' 8th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyNameInformation Illinois.Information

  17. Stormwater Pollution Prevention Plan Prepared by

    E-Print Network [OSTI]

    Eisen, Michael

    Stormwater Pollution Prevention Plan Prepared by: Environment, Health, Safety, and Security .....................................................16 3.0 Potential Sources of Pollution

  18. RESOURCE ASSESSMENT & PRODUCTION TESTING FOR COAL BED METHANE IN THE ILLINOIS BASIN

    SciTech Connect (OSTI)

    Cortland Eble; James Drahovzal; David Morse; Ilham Demir; John Rupp; Maria Mastalerz; Wilfrido Solano

    2004-06-01T23:59:59.000Z

    The geological surveys of Illinois, Indiana and Kentucky have completed the initial geologic assessment of their respective parts of the Illinois Basin. Cumulative thickness maps have been generated and target areas for drilling have been selected. The first well in the Illinois area of the Illinois Basin coal bed methane project was drilled in White County, Illinois in October 2003. This well was cored in the major coal interval from the Danville to the Davis Coals and provided a broad spectrum of samples for further analyses. Sixteen coal samples and three black shale samples were taken from these cores for canister desorption tests and were the subject of analyses that were completed over the following months, including desorbed gas volume, gas chemical and isotope composition, coal proximate, calorific content and sulfur analyses. Drilling programs in Indiana and Kentucky are expected to begin shortly.

  19. JV Task 124 - Understanding Multi-Interactions of SO3, Mercury, Selenium, and Arsenic in Illinois Coal Flue Gas

    SciTech Connect (OSTI)

    Ye Zhuang; Christopher Martin; John Pavlish

    2009-03-31T23:59:59.000Z

    This project consisted of pilot-scale combustion testing with a representative Illinois basin coal to explore the multi-interactions of SO{sub 3}, mercury, selenium and arsenic. The parameters investigated for SO{sub 3} and mercury interactions included different flue gas conditions, i.e., temperature, moisture content, and particulate alkali content, both with and without activated carbon injection for mercury control. Measurements were also made to track the transformation of selenium and arsenic partitioning as a function of flue gas temperature through the system. The results from the mercury-SO{sub 3} testing support the concept that SO{sub 3} vapor is the predominant factor that impedes efficient mercury removal with activated carbon in an Illinois coal flue gas, while H{sub 2}SO{sub 4} aerosol has less impact on activated carbon injection performance. Injection of a suitably mobile and reactive additives such as sodium- or calcium-based sorbents was the most effective strategy tested to mitigate the effect of SO{sub 3}. Transformation measurements indicate a significant fraction of selenium was associated with the vapor phase at the electrostatic precipitator inlet temperature. Arsenic was primarily particulate-bound and should be captured effectively with existing particulate control technology.

  20. Management of wildlife causing damage at Argonne National Laboratory-East, DuPage County, Illinois

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The DOE, after an independent review, has adopted an Environmental Assessment (EA) prepared by the US Department of Agriculture (USDA) which evaluates use of an Integrated Wildlife Damage Management approach at Argonne National Laboratory-East (ANL-E) in DuPage County, Illinois (April 1995). In 1994, the USDA issued a programmatic Environmental Impact Statement (EIS) that covers nationwide animal damage control activities. The EA for Management of Wildlife Causing Damage at ANL-E tiers off this programmatic EIS. The USDA wrote the EA as a result of DOE`s request to USDA to prepare and implement a comprehensive Wildlife Management Damage Plan; the USDA has authority for animal damage control under the Animal Damage Control Act of 1931, as amended, and the Rural Development, Agriculture and Related Agencies Appropriations Act of 1988. DOE has determined, based on the analysis in the EA, that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an EIS is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  1. Tiger team assessment of the Argonne Illinois site

    SciTech Connect (OSTI)

    Not Available

    1990-10-19T23:59:59.000Z

    This report documents the results of the Department of Energy's (DOE) Tiger Team Assessment of the Argonne Illinois Site (AIS) (including the DOE Chicago Operations Office, DOE Argonne Area Office, Argonne National Laboratory-East, and New Brunswick Laboratory) and Site A and Plot M, Argonne, Illinois, conducted from September 17 through October 19, 1990. The Tiger Team Assessment was conducted by a team comprised of professionals from DOE, contractors, consultants. The purpose of the assessment was to provide the Secretary of Energy with the status of Environment, Safety, and Health (ES H) Programs at AIS. Argonne National Laboratory-East (ANL-E) is the principal tenant at AIS. ANL-E is a multiprogram laboratory operated by the University of Chicago for DOE. The mission of ANL-E is to perform basic and applied research that supports the development of energy-related technologies. There are a significant number of ES H findings and concerns identified in the report that require prompt management attention. A significant change in culture is required before ANL-E can attain consistent and verifiable compliance with statutes, regulations and DOE Orders. ES H activities are informal, fragmented, and inconsistently implemented. Communication is seriously lacking, both vertically and horizontally. Management expectations are not known or commondated adequately, support is not consistent, and oversight is not effective.

  2. Protecting Our Water: Tracking Sources of Bacterial Contamination Numerous surface waterbodies in Texas are classified as having high levels of fecal coliform bacteria, an indicator of fecal pollution.

    E-Print Network [OSTI]

    in Texas are classified as having high levels of fecal coliform bacteria, an indicator of fecal pollution. coli and other fecal coliform bacteria do not provide information on whether the source of pollution of pollution need to be identified to implement effective pollution control strategies to improve water quality

  3. Multi-Pollutant Legislation and Regulations (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    The 108th Congress proposed and debated a variety of bills addressing pollution control at electric power plants but did not pass any of them into law. In addition, the Environmental Protection Agency (EPA) currently is preparing two regulations-a proposed Clean Air Interstate Rule (pCAIR) and a Clean Air Mercury Rule (CAMR)-to address emissions from coal-fired power plants. Several states also have taken legislative actions to limit pollutants from power plants in their jurisdictions. This section discusses three Congressional air pollution bills and the EPA's pCAIR and CAMR regulations.

  4. Water Pollution Control Permit Regulations (Vermont)

    Broader source: Energy.gov [DOE]

    These regulations outline the permits and permitting processes for point discharges to surface waters and outline the monitoring and reporting requirements.

  5. Pollution Control: Storm Water Management (Maine)

    Broader source: Energy.gov [DOE]

    A person may not construct, or cause to be constructed, a project that includes one acre or more of disturbed area without prior approval from the department. A person proposing a project shall...

  6. WATER POLLUTION CONTROL GENERAL PERMIT GNEV93001

    National Nuclear Security Administration (NNSA)

    and permeability limit in force at that time. I.F.3. No waste waters containing petroleum products will be discharged into treatment works without first being processed...

  7. WATER POLLUTION CONTROL GENERAL PERMIT GNEV93001

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review ScientificUSAFi

  8. Air Pollution Control (Indiana) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReportingEnergyRetrospective

  9. Air Pollution Control (Michigan) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReportingEnergyRetrospectiveMichigan Program Type

  10. Air Pollution Control (Oklahoma) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReportingEnergyRetrospectiveMichigan Program

  11. Air Pollution Controls | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed. Government CommercialProgram

  12. NPS Pollution Control Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Information Exploration/DevelopmentLegal Document-

  13. Minnesota Pollution Control Agency | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrelBirds JumpMilnerMinn-Dakota

  14. Mark Jankowski: Minnesota Pollution Control Agency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale Landscape Print For3MarinaDepartmentMark H.MarkMark

  15. Pollution Prevention Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic TheoryPlant 242-ZPolaronRetaliationPollution Prevention

  16. E-Print Network 3.0 - air pollution pollution Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution pollution Page: << < 1 2 3 4 5 > >> 1 Air Pollution Physics and Chemistry...

  17. Mathematics and Computers in Simulation 65 (2004) 557577 Parallel runs of a large air pollution model on a

    E-Print Network [OSTI]

    -three decades. The need to establish reliable control strategies for the air pollution levels will become evenMathematics and Computers in Simulation 65 (2004) 557­577 Parallel runs of a large air pollution 20 January 2004; accepted 21 January 2004 Abstract Large-scale air pollution models can successfully

  18. Small Wind Electric Systems: An Illinois Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01T23:59:59.000Z

    Small Wind Electric Systems: An Illinois Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  19. High Energy Physics at the University of Illinois

    SciTech Connect (OSTI)

    Liss, Tony M. [University of Illinois] [University of Illinois; Thaler, Jon J. [University of Illinois] [University of Illinois

    2013-07-26T23:59:59.000Z

    This is the final report for DOE award DE-FG02-91ER40677 (High Energy Physics at the University of Illinois), covering the award period November 1, 2009 through April 30, 2013. During this period, our research involved particle physics at Fermilab and CERN, particle physics related cosmology at Fermilab and SLAC, and theoretical particle physics. Here is a list of the activities described in the final report: * The CDF Collaboration at the Fermilab Tevatron * Search For Lepton Flavor Violation in the Mu2e Experiment At Fermilab * The ATLAS Collaboration at the CERN Large Hadron Collider * the Study of Dark Matter and Dark Energy: DES and LSST * Lattice QCD * String Theory and Field Theory * Collider Phenomenology

  20. Environmental feasibility study for gasoline from coal in New Athens, Illinois

    SciTech Connect (OSTI)

    Not Available

    1981-09-01T23:59:59.000Z

    Appendix 2 consists mostly of base line ecology of the proposed site in St. Clair County, southwestern Illinois including air quality, geology, stratigraphy, soils, climates, etc. Socio-economic factors are also considered. The environmental impact is considered. (LTN)

  1. Weatherization Spans the Efficiency Spectrum in Illinois: Weatherization Assistance Close-Up Fact Sheet

    SciTech Connect (OSTI)

    D& R International

    2001-10-10T23:59:59.000Z

    Illinois demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  2. Citizen Noise Pollution Monitoring Maisonneuve

    E-Print Network [OSTI]

    TAGora project

    [Information Systems Applications]: Miscellaneous General Terms Management, Measurement, Human Factors-localisation, tagging, mobile phones. 1. INTRODUCTION Noise pollution is a major problem in urban environments problems such as air and water pollution. With this background, there is a clear need to manage

  3. Use and disposal of waste-water sludge in Illinois. Final report

    SciTech Connect (OSTI)

    John, S.F.; Kane, D.N.; Hinesly, T.D.

    1992-02-01T23:59:59.000Z

    The United States Environmental Protection Agency (USEPA) proposed Part 503 Rules on sludge were first published in February 1989. Part 503 proposed sludge regulations address five categories of sludge use or disposal: land application, distribution and marketing, monofills, surface disposal sites, and incineration. The report on sludge management in Illinois examines the probable effects that the proposed federal rules on use and disposal of sewage sludge will have on current practices by Illinois publicly owned treatment works outside the City of Chicago.

  4. Southern IllInoIS unIverSIty Brand Book NOVEMBER 2011 The SIU Brand

    E-Print Network [OSTI]

    Nickrent, Daniel L.

    , or particular color. Those things are all part of delivering a brand--along with the image we conveySouthern IllInoIS unIverSIty Brand Book NOVEMBER 2011 The SIU Brand WITHIN REACH #12;Southern IllInoIS unIverSIty Brand Book 2 1.0 ThE SIU BRaNd WIThIN REach 1.1 Why We've Created This Book 1

  5. A QUALITY CONTROL FRAMEWORK FOR BUS SCHEDULE RELIABILITY

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    A QUALITY CONTROL FRAMEWORK FOR BUS SCHEDULE RELIABILITY JIE LIN*, University of Illinois Institute A QUALITY CONTROL FRAMEWORK FOR BUS SCHEDULE RELIABILITY Abstract This paper develops and demonstrates a quality control framework for bus schedule reliability. Automatic Vehicle Location (AVL) devices

  6. Global Pollution: How Much Is Too Much?

    E-Print Network [OSTI]

    Trevors, Jack T.; Saier, Milton H.

    2009-01-01T23:59:59.000Z

    009-0252-0 Global Pollution: How Much Is Too Much? Jack T.1) How much global pollution can our planet tolerate andThere is already more pollution on our planet than we can

  7. Air Pollution 7.1 INTRODUCTION

    E-Print Network [OSTI]

    Kammen, Daniel M.

    CHAPTER 7 Air Pollution 7.1 INTRODUCTION 7.2 OVERVIEW OF EMISSIONS 7.3 THE CLEAN AIR ACT 7.4 THE POLLUTANT STANDARDS INDEX 7.5 CRITERIA POLLUTANTS 7.6 TOXIC AIR POLLUTANTS 7.7 AIR POLLUTION IN THE WORLD'S MEGACITIES 7.8 MOTOR VEHICLE EMISSIONS 7.9 STATIONARY SOURCES 7.10 AIR POLLUTION AND METEOROLOGY 7

  8. Guidance on Incorporating EPA's Pollution Prevention Strategy...

    Broader source: Energy.gov (indexed) [DOE]

    The guidance discusses the Environmental Protection Agency's definition of pollution prevention; how to incorporate pollution prevention into the EPA environmental review process...

  9. InsideIllinoisSept. 4, 2014 Vol. 34, No. 5

    E-Print Network [OSTI]

    Bashir, Rashid

    , because a nice little garden caf does not want to be next to an oil refinery." "You want industries near polluted waterways By Dusty Rhodes Arts and Humanities Editor T here's no such thing as a good, a professor of nat- ural resources and environmental sciences, and Andrew Greenlee, a professor of urban

  10. GEOGRAPHIC INFORMATION SYSTEM APPROACH FOR PLAY PORTFOLIOS TO IMPROVE OIL PRODUCTION IN THE ILLINOIS BASIN

    SciTech Connect (OSTI)

    Beverly Seyler; John Grube

    2004-12-10T23:59:59.000Z

    Oil and gas have been commercially produced in Illinois for over 100 years. Existing commercial production is from more than fifty-two named pay horizons in Paleozoic rocks ranging in age from Middle Ordovician to Pennsylvanian. Over 3.2 billion barrels of oil have been produced. Recent calculations indicate that remaining mobile resources in the Illinois Basin may be on the order of several billion barrels. Thus, large quantities of oil, potentially recoverable using current technology, remain in Illinois oil fields despite a century of development. Many opportunities for increased production may have been missed due to complex development histories, multiple stacked pays, and commingled production which makes thorough exploitation of pays and the application of secondary or improved/enhanced recovery strategies difficult. Access to data, and the techniques required to evaluate and manage large amounts of diverse data are major barriers to increased production of critical reserves in the Illinois Basin. These constraints are being alleviated by the development of a database access system using a Geographic Information System (GIS) approach for evaluation and identification of underdeveloped pays. The Illinois State Geological Survey has developed a methodology that is being used by industry to identify underdeveloped areas (UDAs) in and around petroleum reservoirs in Illinois using a GIS approach. This project utilizes a statewide oil and gas Oracle{reg_sign} database to develop a series of Oil and Gas Base Maps with well location symbols that are color-coded by producing horizon. Producing horizons are displayed as layers and can be selected as separate or combined layers that can be turned on and off. Map views can be customized to serve individual needs and page size maps can be printed. A core analysis database with over 168,000 entries has been compiled and assimilated into the ISGS Enterprise Oracle database. Maps of wells with core data have been generated. Data from over 1,700 Illinois waterflood units and waterflood areas have been entered into an Access{reg_sign} database. The waterflood area data has also been assimilated into the ISGS Oracle database for mapping and dissemination on the ArcIMS website. Formation depths for the Beech Creek Limestone, Ste. Genevieve Limestone and New Albany Shale in all of the oil producing region of Illinois have been calculated and entered into a digital database. Digital contoured structure maps have been constructed, edited and added to the ILoil website as map layers. This technology/methodology addresses the long-standing constraints related to information access and data management in Illinois by significantly simplifying the laborious process that industry presently must use to identify underdeveloped pay zones in Illinois.

  11. Leakage Risk Assessment of CO{sub 2} Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois

    SciTech Connect (OSTI)

    Mazzoldi, A.; Oldenburg, C. M.

    2013-12-17T23:59:59.000Z

    The Illinois Basin Decatur Project (IBDP) is designed to confirm the ability of the Mt. Simon Sandstone, a major regional saline-water-bearing formation in the Illinois Basin, to store 1 million tons of carbon dioxide (CO{sub 2}) injected over a period of three years. The CO{sub 2} will be provided by Archer Daniels Midland (ADM) from its Decatur, Illinois, ethanol plant. In order to transport CO{sub 2} from the capture facility to the injection well (also located within the ADM plant boundaries), a high-pressure pipeline of length 3,200 ft (975 m) has been constructed, running above the ground surface within the ADM plant footprint. We have qualitatively evaluated risks associated with possible pipeline failure scenarios that lead to discharge of CO{sub 2} within the real-world environment of the ADM plant in which there are often workers and visitors in the vicinity of the pipeline. There are several aspects of CO{sub 2} that make its transportation and potential leakage somewhat different from other substances, most notable is its non-flammability and propensity to change to solid (dry ice) upon strong decompression. In this study, we present numerical simulations using Computational Fluid Dynamics (CFD) methods of the release and dispersion of CO{sub 2} from individual hypothetical pipeline failures (i.e., leaks). Failure frequency of the various components of a pipeline transportation system over time are taken from prior work on general pipeline safety and leakage modeling and suggest a 4.65% chance of some kind of pipeline failure over the three-years of operation. Following the Precautionary Principle (see below), we accounted for full-bore leakage scenarios, where the temporal evolution of the mass release rate from the high-pressure pipeline leak locations was simulated using a state-of-the-art Pipe model which considers the thermodynamic effects of decompression in the entire pipeline. Failures have been simulated at four representative locations along the pipeline route within the ADM plant. Leakage scenarios at sites along the route of the pipeline, where plant operations (e.g., vehicular and train transportation) seem to present a higher likelihood of accidental failure, for example due to vehicles or equipment crashing into the pipeline and completely severing it, were modeled by allowing them to have a double source consistent with the pipeline releasing high-pressure CO{sub 2} from both ends of the broken pipe after a full-bore offset rupture. Simulation results show that the built environment of the plant plays a significant role in the dispersion of the gas as leaking CO{sub 2} can impinge upon buildings and other infrastructure. In all scenarios simulated, the region of very high-concentration of CO{sub 2} is limited to a small area around the pipeline failure, suggesting the likelihood of widespread harmful CO{sub 2} exposure to plant personnel from pipeline leakage is low. An additional risk is posed by the blast wave that emanates from a high-pressure pipeline when it is breached quickly. We estimate the blast wave risk as low because it occurs only for a short time in the immediate vicinity of the rupture, and requires an instantaneous large-scale rupture to occur. We recommend consideration of signage and guard rails and posts to mitigate the likelihood of vehicles crashing into the pipeline. A standardized emergency response plan applicable to capture plants within industrial sites could be developed based on the IBDP that would be useful for other capture plants. Finally, we recommend carrying out coupled wellbore-reservoir blowout scenario modeling to understand the potential for hazardous conditions arising from an unexpected blowout at the wellhead.

  12. Strontium isotopic study of subsurface brines from Illinois basin

    SciTech Connect (OSTI)

    hetherington, E.A.; Stueber, A.M.; Pushkar, P.

    1986-05-01T23:59:59.000Z

    The abundance of the radiogenic isotope /sup 87/Sr in a subsurface brine can be used as a tracer of brine origin, evolution, and diagenetic effects. The authors have determined the /sup 87/Sr//sup 86/Sr ratios of over 60 oil-field waters from the Illinois basin, where brine origin is perplexing because of the absence of any significant evaporite strata. Initially, they analyzed brines from 15 petroleum-producing sandstone and carbonate units; waters from Ordovician, Silurian, Devonian, and Mississippian strata have /sup 87/Sr//sup 86/Sr ratios in the range 0.7079-0.7108. All but those from the Ste. Genevieve Limestone (middle Mississippian) are more radiogenic in /sup 87/Sr//sup 86/Sr than seawater values for this interval of geologic time. The detrital source of the more radiogenic /sup 87/Sr may be the New Albany Shale group, considered to be a major petroleum source rock in the basin. The /sup 87/Sr//sup 86/Sr ratios of Ste. Genevieve brines apparently evolved without a contribution from fluid-shale interaction.

  13. Baldwin Thermal Treatment Facility, Baldwin, Illinois: Organics and contaminated soils

    SciTech Connect (OSTI)

    Kipin, P.

    1997-12-31T23:59:59.000Z

    The Baldwin Thermal Treatment Facility is located at the Illinois Power Company`s Baldwin Power Plant, east of St. Louis, Missouri. It consists of two coal fired cyclone boilers and one pulverized coal boiler. Wastes are fed to the two cyclone boilers, at present. Future expansion to the pulverizer unit is planned. The boilers burn at 3,000 F with six seconds retention. This exceeds blast furnaces and most incinerators. An added feature is that the coal and waste materials are injected directly into the hottest zone immediately preventing any possible creation of dioxins. Up to 600 tons of waste per day can be fed to the boilers. This will increase when the third boiler is added to the permit. The facility can take a wide range of sizes and concentrations of coal tars and oils. The on-site process equipment will process these with on-site coal in varying proportions as required to ensure a stable uniform feed to the boiler. The on-site process equipment can process intermixed rock, metal, concrete, soil into a uniform blend with coal tars and coal. On-site decontamination of scrap metal is also provided for.

  14. PCA and PMF based methodology for air pollution sources identification and apportionment

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    PCA and PMF based methodology for air pollution sources identification and apportionment Marie pollution is a wide concern for human health and requires the development of air quality control strategies burning, mining, construction activity or agriculture. This air pollu- tion is a complex mixture

  15. PCA and PMF based methodology for air pollution sources identification and apportionment

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    PCA and PMF based methodology for air pollution sources identification and apportionment Marie pollution is a wide concern for human health and requires the development of air quality control strategies, mining, construction activity or agriculture. This air pollu- tion is a complex mixture of extremely

  16. Air Pollution Control Regulations: No.27 - Control of Nitrogen...

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Industrial Investor-Owned Utility MunicipalPublic Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations...

  17. Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed. Government CommercialProgram andDetrimental

  18. Pollution Prevention and New Industrial Estates

    E-Print Network [OSTI]

    Heal, Kate

    1 Pollution Prevention and New Industrial Estates Chris Pittner Associate Director WSP 21 May 2012 POLLUTION PREVENTION AND NEW INDUSTRIAL ESTATES Pollution within Industrial Estates Legal Framework and Guidance Surface Water Management Project Examples #12;2 POLLUTION WITHIN INDUSTRIAL ESTATES Sources Poor

  19. Risk assessment of toxic pollutants from fossil fuel power plants: Final report

    SciTech Connect (OSTI)

    Bolten, J.G.; Morrison, P.F.; Solomon, K.A.

    1987-08-01T23:59:59.000Z

    This report describes the development and application of a methodology for assessing the control costs and chronic health risks of toxic pollutant emissions from coal-fired electric power plants. The approach emphasizes surface water discharges and pollution, but incorporates emissions to air, water, soil, and groundwater and transfers of pollutants between these media. The components of the general framework include (1) pollutant emission characterization, (2) environmental transport and fate analysis, (3) population exposure calculation, and (4) quantitative health risk assessment. The report provides a basic overview of the approach, discusses each component in detail, and describes its application to an hypothetical, simplified case study. 234 refs., 32 figs., 32 tabs.

  20. Roofing in the Urban Environment: Pollution Source of Opportunity for

    E-Print Network [OSTI]

    Clark, Shirley E.

    demand ­ surrogate for organics · Heavy metals and major cations (copper, h i d i l d i ichromium1 Roofing in the Urban Environment: Pollution Source of Opportunity for Source Control? Shirley E Facility Metal Range (mg/L) Average % COV (%) Direct roof runoff from 7 storms Metal Range (mg/L) Average