Sample records for illinois basin wisconsin

  1. Basin analysis in the Illinois basin

    SciTech Connect (OSTI)

    Leighton, M.W. (Illinois State Geological Survey, Champaign (USA)); Haney, D. (Kentucky Geological Survey, Lexington (USA)); Hester, N. (Indiana Geological Survey, Bloomington (USA))

    1990-05-01T23:59:59.000Z

    In April 1989, the Illinois State Geological Survey and the Indiana and Kentucky Geological surveys formed the Illinois Basin Consortium (IBC) for the purpose of advancing the geologic understanding of the Illinois basin and of developing basin-wide studies for the assessment and wise development of the Illinois basin energy, mineral, and water resources. Cooperative efforts include work on the AAPG Interior Cratonic Sag Basin volume, Springfield coal study, Paducah CUSMAP study in cooperation with the US Geological Survey, Illinois Basin Cross Section Project, Geologic Society of America Coal Division field trip and workshop on Lower Pennsylvanian geology, workshops in basin analysis, and the Tri-State Committee on correlations in the Pennsylvanian System of the Illinois Basin. A network of 16 regional surface to basement cross sections portraying the structural and stratigraphic framework of the total sedimentary section of the entire basin is in preparation. Based on more than 140 of the deepest wells with wireline logs, the sections will show formation boundaries and gross lithofacies of the entire stratigraphic column. A set of basin-wide maps shows structure, thickness, and coal quality of the economically important Springfield coal seam. These maps were generated from recently joined computerized databases of the three member surveys of IBC. A unified stratigraphic nomenclature of the Pennsylvanian System is being developed, including seven new members and seven new formation names. The goal is to simplify, standardize, and gradually improve the stratigraphic terminology to be used in the Illinois basin.

  2. Silurian of Illinois basin - a carbonate ramp

    SciTech Connect (OSTI)

    Coburn, G.W.

    1986-05-01T23:59:59.000Z

    The Silurian of the Illinois basin has classically been defined as a shelf-basin sequence. According to the shelf-basin model, the Illinois basin is a deep-water basin in the extreme southern part (southern Illinois-Tennessee), with a slope in the south (Illinois-Indiana) and a shelf extending from central Illinois and Indiana northeast to the Michigan basin. Reef buildups are in a continuous trend along the shelf break. However, the author proposes that the silurian of the Illinois basin represents a carbonate ramp. The down-ramp position is located in southern Illinois and grades into deeper water environments south of Illinois. In this environment, reef buildups would form in the late Alexandrian of early St. Clair, and would begin in the down-ramp position. Therefore, using the new model, reef buildups are expected throughout the basin, rather than being confined to an imaginary shelf break. This model would facilitate exploration in southern Illinois, Indiana, and western Kentucky for reefal hydrocarbon deposits. A ramp model is indicated for the Illinois basin because: (1) the basin lacks a shelf-slope break; (2) the facies sequence is compatible with a ramp environment and incompatible with a shelf-slope environment; (3) discontinuous reef trends are typical of a ramp environment; and (4) facies changes and slope are gradual, extending over hundreds of miles as expected in a ramp environment. Modern carbonate models border on ocean basins. However, the Illinois basin is a cratonic basin, which may have affected the depositional environments. How much that environment differed from present-day models is unknown.

  3. Pre-Mississippian hydrocarbon potential of Illinois basin

    SciTech Connect (OSTI)

    Davis, H.G.

    1987-05-01T23:59:59.000Z

    The Illinois basin is primarily a Paleozoic epeirogenic basin located in the east-central US. Taken at its broadest possible definition, this basin contains a maximum of 20,000 ft of sedimentary rocks. These represent every Phanerozoic system except the Triassic and Jurassic. Seven important tectonic episodes are recognized. These begin with the establishment of Eocambrian basement rift faults, followed by six rejuvenation events of varying magnitude. More than 3.5 billion bbl of oil have been produced from the Illinois basin, mainly from Pennsylvanian and Mississippian rocks. These rocks represent only 20% of the total basin sedimentary volume. Source rock maturation studies suggest that none of this oil is indigenous to the Pennsylvanian or Mississippian, but all has migrated upward from at least three pre-Mississippian sources. If basin sedimentary volume is taken to be roughly proportional to hydrocarbon reserves, there may be as much as 12 billion BOE remaining to be found in the largely untested pre-Mississippian of the Illinois basin. A thermal history model and Lopatin analysis suggest that oil generation began in Ordovician time and continued through the Jurassic in the deepest part of the basin. At the present stage of exploration, the Hunton Megagroup (Silurian-Devonian) is recommended as the primary pre-Mississippian drilling target. However, understanding the interplay of the pre-Middle Devonian unconformity with contemporaneous paleotopographic-paleobathymetric expression of prospective features is critical to successful Hunton porosity prediction. This interplay is demonstrated at Centralia and Sandoval fields, Clinton and Marion counties, Illinois.

  4. Characterization of the surface properties of Illinois Basin Coals

    SciTech Connect (OSTI)

    Demir, I.

    1991-01-01T23:59:59.000Z

    The overall objective of this research project is to provide fundamental data on the physical and chemical surface properties of Illinois coals, specifically those of the Illinois Basin Coal Sample Program (IBCSP). This will help coal researchers achieve an optimal match between Illinois Basin coals and potential coal cleaning and conversion processes (or at least reduce the number of coals suitable for a particular process) and may lead to improved desulfurization and increased utilization of Illinois Basin coals. The specific tasks scheduled to meet our objective are: (1) Physical Characterization: Determine total surface area, porosity, pore size and volume distributions of IBCSP coals crushed to two particle sizes, {minus}100 and {minus}400 mesh (exclusive of IBC-108 which is available only in {minus}400 mesh form), in both an unoxidized and oxidized state. (2) Chemical Characterization: Determine the surface charge (electrokinetic mobility) as a function of pH by electrophoresis and analyze the surface chemical structure of the above samples using Diffuse Reflectance Infrared Spectroscopy (DRIS). (3) Multivariate Statistical Analyses: Explore possible relationships among the newly determined surface properties and other available characterization data, including chemical and petrographic compositions, vitrinite reflectance, free swelling index, ash yield, sulfur forms, and other relevant properties.

  5. First conference on ground control problems in the Illinois Coal Basin: proceedings

    SciTech Connect (OSTI)

    Chugh, Y.P.; Van Besien, A. (eds.)

    1980-06-01T23:59:59.000Z

    The first conference on ground control problems in the Illinois Coal Basin was held at the Southern Illinois University at Carbondale, Illinois, August 22-24, 1979. Twenty-one papers from the proceedings have been entered individually into EDB; one had been entered previously from other sources. (LTN)

  6. Carbon Dioxide Capture and Transportation Options in the Illinois Basin

    SciTech Connect (OSTI)

    M. Rostam-Abadi; S. S. Chen; Y. Lu

    2004-09-30T23:59:59.000Z

    This report describes carbon dioxide (CO{sub 2}) capture options from large stationary emission sources in the Illinois Basin, primarily focusing on coal-fired utility power plants. The CO{sub 2} emissions data were collected for utility power plants and industrial facilities over most of Illinois, southwestern Indiana, and western Kentucky. Coal-fired power plants are by far the largest CO{sub 2} emission sources in the Illinois Basin. The data revealed that sources within the Illinois Basin emit about 276 million tonnes of CO2 annually from 122 utility power plants and industrial facilities. Industrial facilities include 48 emission sources and contribute about 10% of total emissions. A process analysis study was conducted to review the suitability of various CO{sub 2} capture technologies for large stationary sources. The advantages and disadvantages of each class of technology were investigated. Based on these analyses, a suitable CO{sub 2} capture technology was assigned to each type of emission source in the Illinois Basin. Techno-economic studies were then conducted to evaluate the energy and economic performances of three coal-based power generation plants with CO{sub 2} capture facilities. The three plants considered were (1) pulverized coal (PC) + post combustion chemical absorption (monoethanolamine, or MEA), (2) integrated gasification combined cycle (IGCC) + pre-combustion physical absorption (Selexol), and (3) oxygen-enriched coal combustion plants. A conventional PC power plant without CO2 capture was also investigated as a baseline plant for comparison. Gross capacities of 266, 533, and 1,054 MW were investigated at each power plant. The economic study considered the burning of both Illinois No. 6 coal and Powder River Basin (PRB) coal. The cost estimation included the cost for compressing the CO{sub 2} stream to pipeline pressure. A process simulation software, CHEMCAD, was employed to perform steady-state simulations of power generation systems and CO{sub 2} capture processes. Financial models were developed to estimate the capital cost, operations and maintenance cost, cost of electricity, and CO{sub 2} avoidance cost. Results showed that, depending on the plant size and the type of coal burned, CO{sub 2} avoidance cost is between $47/t to $67/t for a PC +MEA plant, between $22.03/t to $32.05/t for an oxygen combustion plant, and between $13.58/t to $26.78/t for an IGCC + Selexol plant. A sensitivity analysis was conducted to evaluate the impact on the CO2 avoidance cost of the heat of absorption of solvent in an MEA plant and energy consumption of the ASU in an oxy-coal combustion plant. An economic analysis of CO{sub 2} capture from an ethanol plant was also conducted. The cost of CO{sub 2} capture from an ethanol plant with a production capacity of 100 million gallons/year was estimated to be about $13.92/t.

  7. Mining problems caused by tectonic stress in Illinois basin

    SciTech Connect (OSTI)

    Nelson, W.J. (Illinois State Geological Survey, Champaign (United States))

    1991-08-01T23:59:59.000Z

    The Illinois basin coalfield is subject to a contemporary tectonic stress field in which the principal compressive stress axis ({sigma}1) is horizontal and strikes N60{degree}E to east-west. This stress is responsible for widespread development of kind zones and directional roof failures in mine headings driven perpendicular to {sigma}1. Also, small thrust faults perpendicular to {sigma}1 and joints parallel to {sigma}1 weaken the mine roof and occasionally admit water and gas to workings, depending upon geologic setting. The direction of magnitude of stress have been identified by a variety of techniques that can be applied both prior to mining and during development. Mining experience shows that the best method of minimizing stress-related problems is to drive mine headings at about 45 to {sigma}1.

  8. RESOURCE ASSESSMENT & PRODUCTION TESTING FOR COAL BED METHANE IN THE ILLINOIS BASIN

    SciTech Connect (OSTI)

    Cortland Eble; James Drahovzal; David Morse; Ilham Demir; John Rupp; Maria Mastalerz; Wilfrido Solano

    2004-06-01T23:59:59.000Z

    The geological surveys of Illinois, Indiana and Kentucky have completed the initial geologic assessment of their respective parts of the Illinois Basin. Cumulative thickness maps have been generated and target areas for drilling have been selected. The first well in the Illinois area of the Illinois Basin coal bed methane project was drilled in White County, Illinois in October 2003. This well was cored in the major coal interval from the Danville to the Davis Coals and provided a broad spectrum of samples for further analyses. Sixteen coal samples and three black shale samples were taken from these cores for canister desorption tests and were the subject of analyses that were completed over the following months, including desorbed gas volume, gas chemical and isotope composition, coal proximate, calorific content and sulfur analyses. Drilling programs in Indiana and Kentucky are expected to begin shortly.

  9. Assessment of Basin-Scale Hydrologic Impacts of CO2 Sequestration, Illinois Basin1 Mark Person*1

    E-Print Network [OSTI]

    Gable, Carl W.

    70 The Illinois Basin hosts dozens of coal fired power plants which generates about 300 million Formation. We used 726 injection wells located near51 42 power plants to deliver 80 million metric tons technical constraints on the injection of CO2 into deep (>1.5 km) reservoirs under supercritical75

  10. Resource Assessment & Production Testing for Coal Bed Methane in the Illinois Basin

    SciTech Connect (OSTI)

    Cortland Eble; James Drahovzal; David Morse; Ilham Demir; John Rupp; Maria Mastalerz; Wilfrido Solano

    2005-11-01T23:59:59.000Z

    In order to assess the economic coal bed methane potential of the Illinois Basin, the geological surveys of Illinois, Indiana and Kentucky performed a geological assessment of their respective parts of the Illinois Basin. A considerable effort went into generating cumulative coal thickness and bed structure maps to identify target areas for exploratory drilling. Following this, the first project well was drilled in White County, Illinois in October 2003. Eight additional wells were subsequently drilled in Indiana (3) and Kentucky (5) during 2004 and 2005. In addition, a five spot pilot completion program was started with three wells being completed. Gas contents were found to be variable, but generally higher than indicated by historical data. Gas contents of more than 300 scf/ton were recovered from one of the bore holes in Kentucky. Collectively, our findings indicate that the Illinois Basin represents a potentially large source of economic coal bed methane. Additional exploration will be required to refine gas contents and the economics of potential production.

  11. Geochemical analysis of crude oil from northern Appalachian, eastern Illinois, and southern Michigan basins

    SciTech Connect (OSTI)

    Noel, J.A.; Cole, J.; Innes, C.; Juzwick, S.

    1987-09-01T23:59:59.000Z

    In May 1986, the Ohio Board of Regents awarded a research grant to Ashland College to investigate the basinal origin of crude oil through trace-element analysis. The major thrust of the project was to attempt to finger print crude oils of various ages and depths from the northern Appalachian, eastern Illinois, and southern Michigan basins, to learn if the oldest crudes may have migrated among the basins. This in turn might give a more definitive time for the separation of the three basins. Nickel to vanadium ratios, were chosen to be the discriminators. Nickel to vanadium ratios show that the Trenton oil from the fields at Lima, Ohio; Oak Harbor in Ottawa County, Ohio; Urbana, Indiana; Peru, Indiana; and Albion, Michigan, are all different. The Trempealeau oils in Harmony and Lincoln Townships, Morrow County, are similar but they are different from those in Peru and Bennington Townships. The Devonian oils of the Illinois and Appalachian basins are distinctly different. The Berea oil shows little or no variability along strike. The Mississippian oils of the Illinois basin are different from the Berea oils and the Salem oil is different from the Chester. The only thing consistent about the Clinton is its inconsistency.

  12. Characterization of the surface properties of Illinois Basin Coals. Technical report, September 1--November 30, 1991

    SciTech Connect (OSTI)

    Demir, I.

    1991-12-31T23:59:59.000Z

    The overall objective of this research project is to provide fundamental data on the physical and chemical surface properties of Illinois coals, specifically those of the Illinois Basin Coal Sample Program (IBCSP). This will help coal researchers achieve an optimal match between Illinois Basin coals and potential coal cleaning and conversion processes (or at least reduce the number of coals suitable for a particular process) and may lead to improved desulfurization and increased utilization of Illinois Basin coals. The specific tasks scheduled to meet our objective are: (1) Physical Characterization: Determine total surface area, porosity, pore size and volume distributions of IBCSP coals crushed to two particle sizes, {minus}100 and {minus}400 mesh (exclusive of IBC-108 which is available only in {minus}400 mesh form), in both an unoxidized and oxidized state. (2) Chemical Characterization: Determine the surface charge (electrokinetic mobility) as a function of pH by electrophoresis and analyze the surface chemical structure of the above samples using Diffuse Reflectance Infrared Spectroscopy (DRIS). (3) Multivariate Statistical Analyses: Explore possible relationships among the newly determined surface properties and other available characterization data, including chemical and petrographic compositions, vitrinite reflectance, free swelling index, ash yield, sulfur forms, and other relevant properties.

  13. Study of gas production potential of New Albany Shale (group) in the Illinois basin

    SciTech Connect (OSTI)

    Hasenmueller, N.R.; Boberg, W.S.; Comer, J.; Smidchens, Z. (Indiana Geological Survey, Bloomington (United States)); Frankie, W.T.; Lumm, D.K. (Illinois State Geological Survey, Champaign (United States)); Hamilton-Smith, T.; Walker, J.D. (Kentucky Geological Survey, Lexington (United States))

    1991-08-01T23:59:59.000Z

    The New Albany Shale (Devonian and Mississippian) is recognized as both a source rock and gas-producing reservoir in the Illinois basin. The first gas discovery was made in 1885, and was followed by the development of several small fields in Harrison County, Indiana, and Meade County, Kentucky. Recently, exploration for and production of New Albany gas has been encouraged by the IRS Section 29 tax credit. To identify technology gaps that have restricted the development of gas production form the shale gas resource in the basin, the Illinois Basin Consortium (IBC), composed of the Illinois, Indiana, and Kentucky geological surveys, is conducting a cooperative research project with the Gas Research Institute (GRI). An earlier study of the geological and geochemical aspects of the New Albany was conducted during 1976-1978 as part of the Eastern Gas Shales Project (EGSP) sponsored by the Department of Energy (DOE). The current IBC/GRI study is designed to update and reinterpret EGSP data and incorporate new data obtained since 1978. During the project, relationships between gas production and basement structures are being emphasized by constructing cross sections and maps showing thickness, structure, basement features, and thermal maturity. The results of the project will be published in a comprehensive final report in 1992. The information will provide a sound geological basis for ongoing shale-gas research, exploration, and development in the basin.

  14. Structure and morphology of the top of Precambrian crystalline rocks in the Illinois Basin region

    SciTech Connect (OSTI)

    Sargent, M.L. (Illinois State Geological Survey, Champaign, IL (United States)); Rupp, J.A. (Indiana Geological Survey, Bloomington, IN (United States)); Noger, M.C. (Kentucky Geological Survey, Lexington, KY (United States))

    1992-01-01T23:59:59.000Z

    New basement tests and seismic-reflection profiles in the Rough Creek Graben, Wabash Valley Fault System, and other parts of the Illinois Basin have significantly advanced the authors understanding of basement morphology and tectonics. Few details of the paleotopographic component of basement morphology are known, but 100 m or more of local paleotopographic relief is documented in a few places and more than 300 m of relief is known in the western part of the basin. Based on fewer than 50 wells in the Illinois Basin that penetrate Precambrian crystalline basement, it is composed principally of granite and rhyolite porphyry with small amounts of basalt/diabase or andesite. Most of the regional morphology must be projected from structure maps of key Paleozoic horizons, including the top of Middle Ordovician Trenton (Galena), the top of Middle Devonian carbonate (base of New Albany Shale), and other horizons where data are available. The shallowest Precambrian crystalline basement within the Illinois Basin occurs in north-central Illinois where it is [minus]1,000 m MSL. Paleozoic sedimentary fill thickens southward to over 7,000 m in deeper parts of the Rough Creek Graben where crystalline basement has been depressed tectonically and by sediment loading to below [minus]7,000 m MSL. Although trends in Paleozoic strata show continued thickening in the area of the Mississippi Embayment, maximum sediment fill is preserved in the Rough Creek Graben. The general shape of the basin at the level of Precambrian crystalline basement is largely inferred from structure mapped on Paleozoic strata. Half-grabens and other block-faulted features in basement rocks are manifest in small-scale structures near the surface or have no expression in younger strata.

  15. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  16. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  17. Abundances of sulfur, chlorine, and trace elements in Illinois Basin coals, USA

    SciTech Connect (OSTI)

    Chou, C.L. [Illinois State Geological Survey, Champaign, IL (United States)

    1997-12-31T23:59:59.000Z

    Abundances of sulfur, chlorine and 52 trace elements in 220 channel and drill-core samples of high volatile bituminous coals (Pennsylvanian age) from the Illinois Basin, USA, are evaluated for the purpose of better understanding geologic processes affecting trace element variation in the coal seams. Mean elemental abundances in Illinois Basin coals are listed in a table. Most Illinois Basin coals are high-sulfur (> 3% total sulfur). Peat was influenced by seawater during early diagenesis. However, low-medium sulfur coal (<3% total sulfur) occurs in restricted areas along the Walshville Channel, which is a contemporaneous river in the peat swamp. A comparison of trace element abundances between high-sulfur and low-medium sulfur coals showed that only seven elements (boron, sulfur, iron, molybdenum, mercury, thallium, and uranium) are clearly more abundant in high-sulfur coal than in low-medium sulfur coal. Apparently, boron, sulfur, molybdenum, and uranium in high-sulfur coals were derived from seawater that inundated the peat swamp and terminated peat accumulation. Iron, mercury, and thallium had a terrestrial source and were incorporated in pyrite during diagenesis. Their enrichment in high-sulfur coal is related to pyrite formation in a reducing environment. The chlorine content in Illinois Basin coals, including channel and drill core samples, varies from 0.01% to 0.8% (on a dry basis). Coal samples from surface mines (< 50 meter depth) are usually low in chlorine content (<0.1%). Samples from underground mines (> 50 meter depth) have a chlorine content ranging between 0.1% to 0.5%. Variation of chlorine content in each of the two coal seams shows that chlorine content increases with depth because the chloride in coal is in equilibrium with the chloride in the groundwater, which is also depth dependent. A low chlorine content in shallow regions of a coal seam is a result of leaching by fresh groundwater.

  18. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin

    SciTech Connect (OSTI)

    Robert Finley

    2005-09-30T23:59:59.000Z

    The Midwest Geological Sequestration Consortium (MGSC) has investigated the options for geological carbon dioxide (CO{sub 2}) sequestration in the 155,400-km{sup 2} (60,000-mi{sup 2}) Illinois Basin. Within the Basin, underlying most of Illinois, western Indiana, and western Kentucky, are relatively deeper and/or thinner coal resources, numerous mature oil fields, and deep salt-water-bearing reservoirs that are potentially capable of storing CO{sub 2}. The objective of this Assessment was to determine the technical and economic feasibility of using these geological sinks for long-term storage to avoid atmospheric release of CO{sub 2} from fossil fuel combustion and thereby avoid the potential for adverse climate change. The MGSC is a consortium of the geological surveys of Illinois, Indiana, and Kentucky joined by six private corporations, five professional business associations, one interstate compact, two university researchers, two Illinois state agencies, and two consultants. The purpose of the Consortium is to assess carbon capture, transportation, and storage processes and their costs and viability in the three-state Illinois Basin region. The Illinois State Geological Survey serves as Lead Technical Contractor for the Consortium. The Illinois Basin region has annual emissions from stationary anthropogenic sources exceeding 276 million metric tonnes (304 million tons) of CO{sub 2} (>70 million tonnes (77 million tons) carbon equivalent), primarily from coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year. Assessing the options for capture, transportation, and storage of the CO{sub 2} emissions within the region has been a 12-task, 2-year process that has assessed 3,600 million tonnes (3,968 million tons) of storage capacity in coal seams, 140 to 440 million tonnes (154 to 485 million tons) of capacity in mature oil reservoirs, 7,800 million tonnes (8,598 million tons) of capacity in saline reservoirs deep beneath geological structures, and 30,000 to 35,000 million tonnes (33,069 to 38,580 million tons) of capacity in saline reservoirs on a regional dip >1,219 m (4,000 ft) deep. The major part of this effort assessed each of the three geological sinks: coals, oil reservoirs, and saline reservoirs. We linked and integrated options for capture, transportation, and geological storage with the environmental and regulatory framework to define sequestration scenarios and potential outcomes for the region. Extensive use of Geographic Information Systems (GIS) and visualization technology was made to convey results to project sponsors, other researchers, the business community, and the general public. An action plan for possible technology validation field tests involving CO{sub 2} injection was included in a Phase II proposal (successfully funded) to the U.S. Department of Energy with cost sharing from Illinois Clean Coal Institute.

  19. Depositional history of the Mississippian Ullin and Fort Payne Formations in the Illinois Basin

    SciTech Connect (OSTI)

    Lasemi, Z.; Treworgy, J.D.; Norby, R.D. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-04-01T23:59:59.000Z

    Field and subsurface data suggest that the mid-Mississippian Ullin Limestone in the Illinois Basin is composed of coalesced Waulsortian-type mounds and porous bryozoan-dominated buildups. Waulsortian mounds in the basin contain a lime mudstone to wackestone core that is flanked and capped by in situ porous bryozoan bafflestone or transported crinoidal-bryozoan packstone and grainstone. The mound core facies appear to be most common in the lower part of the Ullin and is thicker in a deeper outer-ramp setting. Shoreward and up-section (upper part of the outer-ramp through mid-ramp setting), the core facies is generally thinner, while the flanking and capping facies are thicker. Isopachous maps of the Ullin and Fort Payne suggest the presence of several large areas of thick carbonate buildups (Ullin) surrounded by a deep-water, sub-oxic environment (Fort Payne) in the Illinois Basin. Progradation of these buildups and associated facies resulted in a shallower ramp setting during deposition of the upper Ullin. Storm-generated carbonate sandwaves became widespread on this ramp. Sandwaves were mobile and for the most part unfavorable sites for further development of thick mud mounds and/or in situ bryozoan buildups. However, isolated mounds and flanking buildups are present in the upper part of the Ullin, and, together with the sandwaves, formed an irregular topography that led to the development of oolitic grainstone shoals during deposition of the overlying Salem Limestone.

  20. Leakage Risk Assessment of CO{sub 2} Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois

    SciTech Connect (OSTI)

    Mazzoldi, A.; Oldenburg, C. M.

    2013-12-17T23:59:59.000Z

    The Illinois Basin Decatur Project (IBDP) is designed to confirm the ability of the Mt. Simon Sandstone, a major regional saline-water-bearing formation in the Illinois Basin, to store 1 million tons of carbon dioxide (CO{sub 2}) injected over a period of three years. The CO{sub 2} will be provided by Archer Daniels Midland (ADM) from its Decatur, Illinois, ethanol plant. In order to transport CO{sub 2} from the capture facility to the injection well (also located within the ADM plant boundaries), a high-pressure pipeline of length 3,200 ft (975 m) has been constructed, running above the ground surface within the ADM plant footprint. We have qualitatively evaluated risks associated with possible pipeline failure scenarios that lead to discharge of CO{sub 2} within the real-world environment of the ADM plant in which there are often workers and visitors in the vicinity of the pipeline. There are several aspects of CO{sub 2} that make its transportation and potential leakage somewhat different from other substances, most notable is its non-flammability and propensity to change to solid (dry ice) upon strong decompression. In this study, we present numerical simulations using Computational Fluid Dynamics (CFD) methods of the release and dispersion of CO{sub 2} from individual hypothetical pipeline failures (i.e., leaks). Failure frequency of the various components of a pipeline transportation system over time are taken from prior work on general pipeline safety and leakage modeling and suggest a 4.65% chance of some kind of pipeline failure over the three-years of operation. Following the Precautionary Principle (see below), we accounted for full-bore leakage scenarios, where the temporal evolution of the mass release rate from the high-pressure pipeline leak locations was simulated using a state-of-the-art Pipe model which considers the thermodynamic effects of decompression in the entire pipeline. Failures have been simulated at four representative locations along the pipeline route within the ADM plant. Leakage scenarios at sites along the route of the pipeline, where plant operations (e.g., vehicular and train transportation) seem to present a higher likelihood of accidental failure, for example due to vehicles or equipment crashing into the pipeline and completely severing it, were modeled by allowing them to have a double source consistent with the pipeline releasing high-pressure CO{sub 2} from both ends of the broken pipe after a full-bore offset rupture. Simulation results show that the built environment of the plant plays a significant role in the dispersion of the gas as leaking CO{sub 2} can impinge upon buildings and other infrastructure. In all scenarios simulated, the region of very high-concentration of CO{sub 2} is limited to a small area around the pipeline failure, suggesting the likelihood of widespread harmful CO{sub 2} exposure to plant personnel from pipeline leakage is low. An additional risk is posed by the blast wave that emanates from a high-pressure pipeline when it is breached quickly. We estimate the blast wave risk as low because it occurs only for a short time in the immediate vicinity of the rupture, and requires an instantaneous large-scale rupture to occur. We recommend consideration of signage and guard rails and posts to mitigate the likelihood of vehicles crashing into the pipeline. A standardized emergency response plan applicable to capture plants within industrial sites could be developed based on the IBDP that would be useful for other capture plants. Finally, we recommend carrying out coupled wellbore-reservoir blowout scenario modeling to understand the potential for hazardous conditions arising from an unexpected blowout at the wellhead.

  1. Characterization of the surface properties of Illinois Basin coals. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Demir, I.; Harvey, R.D.; Lizzio, A.A.

    1992-08-01T23:59:59.000Z

    Understanding the surface properties of coal is important for predicting the physical-chemical behavior of coal during coal cleaning combustion and conversion. Data on surface properties help coal scientists and engineers in the design of effective coal desulfurization processes, and thereby aid in the marketability of Illinois Basin coals. The main objective of this project is to characterize the surface properties (surface area, porosity, pore size distribution, surface charge, and surface chemical structure) of eight coals in the Illinois Basin Coal Sample Program (IBCSP), and explore statistical relationships between surface properties and other coal characteristics.

  2. Reservoir compartmentalization and management strategies: Lessons learned in the Illinois basin

    SciTech Connect (OSTI)

    Grube, J.P.; Crockett, J.E.; Huff, B.G. [and others

    1997-08-01T23:59:59.000Z

    A research project jointly sponsored by the US Department of Energy and the Illinois State Geological Survey focused on the Cypress and Aux Vases Formations (Mississippian), major clastic reservoirs in the Illinois Basin. Results from the research showed that understanding the nature and distribution of reservoir compartments, and using effective reservoir management strategies, can significantly improve recovery efficiencies from oil fields in this mature basin. Compartments can be most effectively drained where they are geologically well defined and reservoir management practices are coordinated through unified, compartment-wide, development programs. Our studies showed that the Cypress and Aux Vases reservoirs contain lateral and vertical permeability barriers forming compartments that range in size from isolated, interlaminated sandstone and shale beds to sandstone bodies tens of feet in thickness and more than a mile in length. Stacked or shingled, genetically similar sandstone bodies are commonly separated by thin impermeable intervals that can be difficult to distinguish on logs and can, therefore, cause correlation problems, even between wells drilled on spacing of less than ten acres. Lateral separation of sandstone bodies causes similar problems. Reservoir compartmentalization reduces primary and particularly secondary recovery by trapping pockets of by-passed or banked oil. Compartments can be detected by comparing recovery factors of genetically similar sandstone bodies within a field; using packers to separate commingled intervals and analyzing fluid recoveries and pressures; making detailed core-to-log calibrations that identify compartment boundaries; and analyzing pressure data from waterflood programs.

  3. An Assessment of Geological Carbon Storage Options in the Illinois Basin: Validation Phase

    SciTech Connect (OSTI)

    Robert Finley

    2012-12-01T23:59:59.000Z

    The Midwest Geological Sequestration Consortium (MGSC) assessed the options for geological carbon dioxide (CO{sub 2}) storage in the 155,400 km{sup 2} (60,000 mi{sup 2}) Illinois Basin, which underlies most of Illinois, western Indiana, and western Kentucky. The region has annual CO{sub 2} emissions of about 265 million metric tonnes (292 million tons), primarily from 122 coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year (U.S. Department of Energy, 2010). Validation Phase (Phase II) field tests gathered pilot data to update the Characterization Phase (Phase I) assessment of options for capture, transportation, and storage of CO{sub 2} emissions in three geological sink types: coal seams, oil fields, and saline reservoirs. Four small-scale field tests were conducted to determine the properties of rock units that control injectivity of CO{sub 2}, assess the total storage resources, examine the security of the overlying rock units that act as seals for the reservoirs, and develop ways to control and measure the safety of injection and storage processes. The MGSC designed field test operational plans for pilot sites based on the site screening process, MVA program needs, the selection of equipment related to CO{sub 2} injection, and design of a data acquisition system. Reservoir modeling, computational simulations, and statistical methods assessed and interpreted data gathered from the field tests. Monitoring, Verification, and Accounting (MVA) programs were established to detect leakage of injected CO{sub 2} and ensure public safety. Public outreach and education remained an important part of the project; meetings and presentations informed public and private regional stakeholders of the results and findings. A miscible (liquid) CO{sub 2} flood pilot project was conducted in the Clore Formation sandstone (Mississippian System, Chesterian Series) at Mumford Hills Field in Posey County, southwestern Indiana, and an immiscible CO{sub 2} flood pilot was conducted in the Jackson sandstone (Mississippian System Big Clifty Sandstone Member) at the Sugar Creek Field in Hopkins County, western Kentucky. Up to 12% incremental oil recovery was estimated based on these pilots. A CO{sub 2} huff â??nâ?? puff (HNP) pilot project was conducted in the Cypress Sandstone in the Loudon Field. This pilot was designed to measure and record data that could be used to calibrate a reservoir simulation model. A pilot project at the Tanquary Farms site in Wabash County, southeastern Illinois, tested the potential storage of CO{sub 2} in the Springfield Coal Member of the Carbondale Formation (Pennsylvanian System), in order to gauge the potential for large-scale CO{sub 2} storage and/or enhanced coal bed methane recovery from Illinois Basin coal beds. The pilot results from all four sites showed that CO{sub 2} could be injected into the subsurface without adversely affecting groundwater. Additionally, hydrocarbon production was enhanced, giving further evidence that CO{sub 2} storage in oil reservoirs and coal beds offers an economic advantage. Results from the MVA program at each site indicated that injected CO{sub 2} did not leave the injection zone. Topical reports were completed on the Middle and Late Devonian New Albany Shale and Basin CO{sub 2} emissions. The efficacy of the New Albany Shale as a storage sink could be substantial if low injectivity concerns can be alleviated. CO{sub 2} emissions in the Illinois Basin were projected to be dominated by coal-fired power plants.

  4. Effects of diagenesis on reservoir quality within two Cypress reservoirs in the Illinois basin

    SciTech Connect (OSTI)

    Scott, B.D.; McGee, K.R.; Seyler, B. (Illinois State Geological Survey, Champaign (United States))

    1991-08-01T23:59:59.000Z

    One billion bbl of oil have been produced from the Chesterian Cypress Formation in the Illinois basin. These heterogeneous reservoirs may consist of deltaic, marine-reworked deltaic, and/or reworked marine sandstone within mixed siliciclastic-carbonate environments. Thin section, x-ray diffraction, and scanning electron microscopy coupled with energy dispersive x-ray analysis indicate that the effects of diagenesis play a significant role in reservoir quality of Mattoon and Parkersburg fields in Illinois. Five separate Cypress sandstones may be present at Mattoon field (Coles County), a predominantly stratigraphic trap, produces from three distinct Cypress strata. In these fields, reservoir quality is reduced when quartz overgrowths and later stage, blocky mosaic ferroan-calcite cement occlude pore throats. Authigenic clay minerals occur as pore-lining particles that inhibit fluid-flow. Clay minerals preset are illite, mixed-layered illite/smectite, chlorite, and kaolinite. Reservoir quality is enhanced through dissolution of early ferroan-calcite cement, dissolution of detrital feldspar, and microfracturing. Completion, stimulation, and production programs within the heterogeneous Cypress sandstone reservoirs would be improved by recognition of mineral relationships and diagenetic overprints. Developments programs may need to include the use of clay stabilizers in mud clean-out acid treatments.

  5. Positive correspondence between the completeness of Late Quaternary fossiliferous lacustrine successions in Illinois and the basin index

    SciTech Connect (OSTI)

    Curry, B.B. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-04-01T23:59:59.000Z

    The basin index, defined as the ratio of the maximum area of a paleolake versus the area of the catchment (A[sub L]/A[sub C]), initially was used to compare the moisture balance of pluvial lakes in closed and semi-closed basins under arid climates. In this study the basin index also corresponds to the completeness of ostracode and pollen successions preserved in the basins. The basin indices of four breached kettles located in south-central Illinois as well as the thickness of fossiliferous zones determined from cores are compared. Collectively, the basins contain ostracode and pollen records spanning from the late Illinoian ([approx] 150 ka) to the Holocene. Hopwood Farm has the smallest index (0.03) and has a fossil record that terminates in Sangamonian clay. The fossil succession at Bald Knob Basin, with an intermediate basin index of 0.4, contains several lacuna in post-Sangamonian sediment and poorly preserved pollen in Holocene material. Raymond and Pittsburg Basins have indices > 1.0 and contain the most complete fossil records. The data indicate that the basin index is a useful guide for choosing sites with the greatest potential for yielding cores with conformable sediment successions.

  6. CO2 flood tests on whole core samples of the Mt. Simon sandstone, Illinois Basin

    SciTech Connect (OSTI)

    O'Connor, William K.; Rush, Gilbert E.

    2005-09-01T23:59:59.000Z

    Geological sequestration of CO2, whether by enhanced oil recovery (EOR), coal-bed methane (CBM) recovery, or saline aquifer injection is a promising near-term sequestration methodology. While tremendous experience exists for EOR, and CBM recovery has been demonstrated in existing fields, saline aquifer injection studies have only recently been initiated. Studies evaluating the availability of saline aquifers suitable for CO2 injection show great potential, however, the long-term fate of the CO2 injected into these ancient aqueous systems is still uncertain. For the subject study, a series of laboratory-scale CO2 flood tests were conducted on whole core samples of the Mt. Simon sandstone from the Illinois Basin. By conducting these tests on whole core samples rather than crushed core, an evaluation of the impact of the CO2 flood on the rock mechanics properties as well as the geochemistry of the core and brine solution has been possible. This empirical data could provide a valuable resource for the validation of reservoir models under development for these engineered CO2 systems.

  7. Variations of chlorites and illites and porosity in Mississippian sandstone reservoirs in the Illinois basin

    SciTech Connect (OSTI)

    Moore, D.M.; Hughes, R.E. (Illinois State Geological Survey, Champaign (United States))

    1991-03-01T23:59:59.000Z

    Shallow marine, Mississippian, siliclastics in the Illinois basin, although predominantly quartz, contain other minerals that directly influence the porosity and permeability of these reservoir rocks. These sandstones contain more chlorite and kaolinite, relative to illite, than the authors have observed for shales from other Chesterian and Valmeyeran strata. Clay mineral suites in reservoirs appear to be diagenetic. The Aux Vases Sandstone contains illite, illite/smectite, and chlorite; kaolinite is absent. The Cypress Sandstone contains illite, illite/smectite, chlorite, and kaolinite. Chlorite in the Aux Vases Sandstone varies from moderately Fe-rich to Mg-rich, whereas the chlorite in the Cypress Sandstone is uniformly Fe-rich. As the percentage of clay minerals in these rocks decreases, the proportion of chlorite to other clay minerals increases. In some chlorites, the width of the 003 and 005 peaks at half-height is greater than that of the 002 and 004 peaks. This suggests an interlayering of a 7{angstrom} mineral, probably berthierine- or serpentine-like. SEM photos show chlorite coating quartz grains. In some samples there are quartz overgrowths in spite of the presence of a coating of chlorite; in others, chlorite interlayered with the 7{angstrom} phase seems to have interfered with or suppressed overgrowths. Correspondingly, there is a correlation between the 7{angstrom} phase/chlorite and porosity. Therefore, identification of the type of chlorite in a potential reservoir may be an indicator of porosity, as well as a guide for selecting completion and stimulation treatments.

  8. An Evaluation of the Carbon Sequestration Potential of the Cambro?Ordovician Strata of the Illinois and Michigan Basins

    SciTech Connect (OSTI)

    Kirksey, Jim; Ansari, Sajjad; Malkewicz, Nick; Leetaru, Hannes

    2014-01-01T23:59:59.000Z

    The Knox Supergroup is a significant part of the Cambrian-Ordovician age sedimentary deposition in the Illinois Basin. While there is a very small amount of oil production associated with the upper Knox, it is more commonly used as a zone for both Class I and Class II disposal wells in certain areas around the state. Based on the three penetrations of the Knox Formation at the Illinois Basin – Decatur Project (IBDP) carbon dioxide (CO2) sequestration site in Macon County, Illinois, there is potential for certain zones in the Knox to be used for CO2 sequestration. More specifically, the Potosi member of the Knox Formation at about –3,670 feet (ft) subsea depth would be a candidate as all three penetrations had massive circulation losses while drilling through this interval. Each well required the setting of cement plugs to regain wellbore stability so that the intermediate casing could be set and successfully cemented to surface. Log and core analysis suggests significant karst porosity throughout the Potosi member. The purpose of this study is to develop a well plan for the drilling of a CO2 injection well with the capability to inject 3.5 million tons per annum (3.2 million tonnes per annum [MTPA] CO2 into the Knox Formation over a period of 30 years.

  9. Structural and tectonic implications of pre-Mt. Simon strata -- or a lack of such -- in the western part of the Illinois basin

    SciTech Connect (OSTI)

    Sargent, M.L. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01T23:59:59.000Z

    The discovery of a pre-Mt. Simon lithic arenite (arkose) in southwestern Ohio has lead to reevaluation of many basement tests in the region. Several boreholes in adjacent states have been reexamined by others and are now believed to bottom in the Middle Run Formation. Seismic-reflection sections in western Ohio and Indiana have indicated pre-Mt. Simon basins filled with layered rocks that are interpreted to be Middle Run, however, the pre-Mt. Simon basins and east of Illinois. Samples from Illinois basement tests were reexamined to determine whether they had encountered similar strata. All reported crystalline-basement tests in Illinois show diagnostic igneous textures and mineralogical associations. Coarsely crystalline samples in cores show intergrown subhedral grains of quartz, microcline, and sodic plagioclase. Medium-crystalline rocks in cuttings samples show numerous examples of micrographic intergrowths of quartz and K-feldspar. This texture cannot be authigenically grown in a sediment and probably could not have survived a single cycle of erosion and deposition. Aphanitic rocks show porphyritic and spherulitic textures that are distinctly igneous and would be destroyed by weathering. Substantial relief on the Precambrian crystalline surface in Illinois is postulated for major structural features like the LaSalle Anticlinorium, the Sparta Shelf, the Ste. Genevieve Fault zone, etc. Paleotopographic relief up to 300 m (1,000 feet) is documented from drilling on the western flank of the basin.

  10. Reservoir development in bryozoan bafflestone facies of the Ullin (Warsaw) Limestone (Middle Mississippian) in the Illinois basin

    SciTech Connect (OSTI)

    Lasemi, Z.; Treworgy, J.D.; Norby, R.D.; Grube, J.P. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-08-01T23:59:59.000Z

    Recent drilling in Enfield South and Johnsonville fields in southern Illinois has encountered prolific petroleum-producing zones within the Ullin (Warsaw) Limestone. This and large cumulative production from a number of older wells in the Illinois basin indicate that the Ullin has greater reservoir potential than previously recognized. The Ullin reservoir facies is mainly a fenestrate bryozoan-dominated bafflestone developed on the flanks of Waulsortian-type mud mounds or on transported skeletal sand buildups. Subsurface geology and petrography reveal such porous bryozoan bafflestone facies (some with shows of oil) at various horizons within the Ullin. However, in part because of water problems in some areas, only the upper part of the Ullin has been tested thus far and, as a result, significant reservoirs in the deeper part of the unit may have been missed. Preliminary data indicate several facies in the Ullin that vary in their aerial distribution in the basin. These facies include (1) skeletal sand-wave facies and/or bryozoan bafflestone in the upper Ullin, (2) bryozoan bafflestone with a dense Waulsortian mud mound core, (3) thick bryozoan bafflestone over a skeletal grainstone facies, and (4) thick mud mound-dominated facies with thin porous flanking bafflestone/grainstone facies. Areas with facies type 1 and 2 have the highest potential for commercial reservoir development. Facies type 3, although quite porous, is commonly wet, and the porous facies type 4 may be localized and not extensive enough to be commercial. Petrographic examination shows excellent preservation of primary intra- and interparticle porosities within the bryozoan bafflestone facies. The generally stable original mineralogy prevented extensive dissolution-reprecipitation and occlusion of porosity. Further, the stable mineralogy and minor early marine cementation prevented later compaction and burial diagenesis.

  11. A Systems Approach to Identifying Exploration and Development Opportunities in the Illinois Basin: Digital Portifolio of Plays in Underexplored Lower Paleozoic Rocks

    SciTech Connect (OSTI)

    Beverly Seyler; David Harris; Brian Keith; Bryan Huff; Yaghoob Lasemi

    2008-06-30T23:59:59.000Z

    This study examined petroleum occurrence in Ordovician, Silurian and Devonian reservoirs in the Illinois Basin. Results from this project show that there is excellent potential for additional discovery of petroleum reservoirs in these formations. Numerous exploration targets and exploration strategies were identified that can be used to increase production from these underexplored strata. Some of the challenges to exploration of deeper strata include the lack of subsurface data, lack of understanding of regional facies changes, lack of understanding the role of diagenetic alteration in developing reservoir porosity and permeability, the shifting of structural closures with depth, overlooking potential producing horizons, and under utilization of 3D seismic techniques. This study has shown many areas are prospective for additional discoveries in lower Paleozoic strata in the Illinois Basin. This project implemented a systematic basin analysis approach that is expected to encourage exploration for petroleum in lower Paleozoic rocks of the Illinois Basin. The study has compiled and presented a broad base of information and knowledge needed by independent oil companies to pursue the development of exploration prospects in overlooked, deeper play horizons in the Illinois Basin. Available geologic data relevant for the exploration and development of petroleum reservoirs in the Illinois Basin was analyzed and assimilated into a coherent, easily accessible digital play portfolio. The primary focus of this project was on case studies of existing reservoirs in Devonian, Silurian, and Ordovician strata and the application of knowledge gained to future exploration and development in these underexplored strata of the Illinois Basin. In addition, a review of published reports and exploration in the New Albany Shale Group, a Devonian black shale source rock, in Illinois was completed due to the recent increased interest in Devonian black shales across the United States. The New Albany Shale is regarded as the source rock for petroleum in Silurian and younger strata in the Illinois Basin and has potential as a petroleum reservoir. Field studies of reservoirs in Devonian strata such as the Geneva Dolomite, Dutch Creek Sandstone and Grassy knob Chert suggest that there is much additional potential for expanding these plays beyond their current limits. These studies also suggest the potential for the discovery of additional plays using stratigraphic concepts to develop a subcrop play on the subkaskaskia unconformity boundary that separates lower Devonian strata from middle Devonian strata in portions of the basin. The lateral transition from Geneva Dolomite to Dutch Creek Sandstone also offers an avenue for developing exploration strategies in middle Devonian strata. Study of lower Devonian strata in the Sesser Oil Field and the region surrounding the field shows opportunities for development of a subcrop play where lower Devonian strata unconformably overlie Silurian strata. Field studies of Silurian reservoirs along the Sangamon Arch show that opportunities exist for overlooked pays in areas where wells do not penetrate deep enough to test all reservoir intervals in Niagaran rocks. Mapping of Silurian reservoirs in the Mt. Auburn trend along the Sangamon Arch shows that porous reservoir rock grades laterally to non-reservoir facies and several reservoir intervals may be encountered in the Silurian with numerous exploration wells testing only the uppermost reservoir intervals. Mapping of the Ordovician Trenton and shallower strata at Centralia Field show that the crest of the anticline shifted through geologic time. This study illustrates that the axes of anticlines may shift with depth and shallow structure maps may not accurately predict structurally favorable reservoir locations at depth.

  12. Preliminary paleogeographic reconstruction of the Illinois basin during deposition of the Mississippian Aux Vases Formation: Implications for hydrocarbon recovery

    SciTech Connect (OSTI)

    Cole, R.D. (Illinois State Geological Survey, Champaign (United States))

    1991-03-01T23:59:59.000Z

    Extensive outcrop investigation and selective subsurface study allow definition of Illinois basin paleogeography during deposition of the Mississippian (Valmeyeran-Meramecian) Aux Vases Formation. The results incorporate an integrated approach utilizing field observations and petrographic analysis, wireline logs, subsurface maps, and cores. The Aux Vases Formation depositional system has been determined to be composed of subtidal to intertidal facies. Depositional facies in outcrop are based on rock body geometries, sedimentary structure assemblages, paleocurrent analysis, paleontology of body and trace fossils, facies relationships, and petrography. Depositional facies determined from subsurface data are based on correlation of lithologic interpretations from wireline logs, sand body geometries form isopach maps, and petrography. Specific depositional facies observed in outcrop and core and inferred from wireline logs and isopach maps are offshore bars and tidal channel complexes, extensive subtidal to lower intertidal, ripple-laminated, fine-grained quartzose sandstone. Carbonate facies occur as subtidal grainstones at or near the base of a sequence, or as high energy deposits which have been tidally reworked. This depositional system produces reservoir heterogeneities that complicate efficient hydrocarbon recovery. This diverse facies architecture is modified by tectonic and diagenetic overprinting, further segregating potential producing zones. To significantly improve recovery efficiency, predictions regarding compartmentalization can be used prior to designing a drilling program, an infill drilling program, or an application of enhanced recovery techniques.

  13. Characterization of the surface properties of Illinois basin coals. Technical report, March 1, 1992--May 31, 1992

    SciTech Connect (OSTI)

    Demir, I.; Harvey, R.D.; Lizzio, A.A. [Illinois State Geological Survey, Champaign, IL (United States)

    1992-10-01T23:59:59.000Z

    The main objective of this project is to characterize the surface properties (surface area, pore size distribution, surface charge, and surface chemical structure) of eight coals in the Illinois Basin Coal Sample Program (IBCSP), and explore statistical relationships between surface properties and other coal characteristics. We completed analyses of -100 and -400 mesh, unoxidized IBCSP coals for surface area and pore volume distribution. Two thirds or more of the measured surface area of the samples are derived from the micropores (3.5-20 {Angstrom}). The mesopore surface areas of IBC-101, IBC-102, and IBC-107 coals are higher than the other coals, and the mesopore surface area of the IBC-103 coal is the smallest among all the coals tested. The pore volume in pores less than about 1800 {Angstrom} in diameter varies about five-fold among the samples. The differences between the samples suggest that these coals may show different physical-chemical behavior during various processes involving preparation and utilization of coal. Statistical analyses of the measured and other available coal properties indicate that the micropore surface area correlates positively with carbon content and vitrinite reflectance and negatively with volatile matter. and hydrogen content of the coal. The mesopore surface area correlates negatively with carbon content but positively with oxygen and hydrogen contents of the coal. The statistical correlations can be used to predict one parameter from another one.

  14. Characterization of the surface properties of Illinois basin coals. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect (OSTI)

    Demir, I.; Harvey, R.D.; Lizzio, A.A. [Illinois State Geological Survey, Champaign, IL (United States)

    1992-12-31T23:59:59.000Z

    Surface area and pore volume distributions, surface charge, and surface chemical structure of the eight coals in the Illinois Basin Coal Sample Program (IBCSP) were determined. The IBC-101 coal has the lowest total and micropore (3.5-20.0 {Angstrom}) surface areas. The IBC-103 coal has the lowest mesopore (20-500 {Angstrom}) surface area. The mesopore surface areas of IBC-101, IBC-102, and IBC-107 coals are higher than the other four coals. Pore volume in pores <1800 {Angstrom} in diameter varies almost five-fold with IBC-103 coal having the lowest value. These differences may affect the reactivity of these coals during cleaning, conversion, and combustion processes. Surface charge and isoelectric points vary among the samples. The isoelectric point, where processes such as agglomeration and dewatering is most efficient, shifted to higher pH values for some of the samples upon exposure to air oxidation at room temperature. Diffuse reflectance infrared spectroscopy (DRIS) data indicate that the surfaces of the IBCSP coals contain aromatic hydrocarbon components, aliphatic hydrocarbons, and an aldehyde group. Ball-mill grinding reduced the organic hydroxyls and thus enriched relative concentrations of nonpolar aliphatic functional groups in the samples. The room temperature air oxidation did not cause any significant change on the surface chemical structure of the coals.

  15. An Evaluation of the Carbon Sequestration Potential of the Cambro?Ordovician Strata of the Illinois and Michigan Basins

    SciTech Connect (OSTI)

    Leetaru, Hannes

    2014-09-30T23:59:59.000Z

    The studies summarized herein were conducted during 2009–2014 to investigate the utility of the Knox Group and St. Peter Sandstone deeply buried geologic strata for underground storage of carbon dioxide (CO{sub 2}), a practice called CO{sub 2} sequestration (CCS). In the subsurface of the midwestern United States, the Knox and associated strata extend continuously over an area approaching 500,000 sq. km, about three times as large as the State of Illinois. Although parts of this region are underlain by the deeper Mt. Simon Sandstone, which has been proven by other Department of Energy?funded research as a resource for CCS, the Knox strata may be an additional CCS resource for some parts of the Midwest and may be the sole geologic storage (GS) resource for other parts. One group of studies assembles, analyzes, and presents regional?scale and point?scale geologic information that bears on the suitability of the geologic formations of the Knox for a CCS project. New geologic and geo?engineering information was developed through a small?scale test of CO{sub 2} injection into a part of the Knox, conducted in western Kentucky. These studies and tests establish the expectation that, at least in some locations, geologic formations within the Knox will (a) accept a commercial?scale flow rate of CO{sub 2} injected through a drilled well; (b) hold a commercial?scale mass of CO{sub 2} (at least 30 million tons) that is injected over decades; and (c) seal the injected CO{sub 2} within the injection formations for hundreds to thousands of years. In CCS literature, these three key CCS?related attributes are called injectivity, capacity, and containment. The regional?scale studies show that reservoir and seal properties adequate for commercial?scale CCS in a Knox reservoir are likely to extend generally throughout the Illinois and Michigan Basins. Information distinguishing less prospective subregions from more prospective fairways is included in this report. Another group of studies report the results of reservoir flow simulations that estimate the progress and outcomes of hypothetical CCS projects carried out within the Knox (particularly within the Potosi Dolomite subunit, which, in places, is highly permeable) and within the overlying St. Peter Sandstone. In these studies, the regional?scale information and a limited amount of detailed data from specific boreholes is used as the basis for modeling the CO{sub 2} injection process (dynamic modeling). The simulation studies were conducted progressively, with each successive study designed to refine the conclusions of the preceding one or to answer additional questions. The simulation studies conclude that at Decatur, Illinois or a geologically similar site, the Potosi Dolomite reservoir may provide adequate injectivity and capacity for commercial?scale injection through a single injection well. This conclusion depends on inferences from seismic?data attributes that certain highly permeable horizons observed in the wells represent laterally persistent, porous vuggy zones that are vertically more common than initially evident from wellbore data. Lateral persistence of vuggy zones is supported by isotopic evidence that the conditions that caused vug development (near?surface processes) were of regional rather than local scale. Other studies address aspects of executing and managing a CCS project that targets a Knox reservoir. These studies cover well drilling, public interactions, representation of datasets and conclusions using geographic information system (GIS) platforms, and risk management.

  16. Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases

    SciTech Connect (OSTI)

    Lee, C.W.; Srivastava, R.K.; Ghorishi, S.B.; Karwowski, J.; Hastings, T.H.; Hirschi, J.C. [US Environmental Protection Agency, Triangle Park, NC (United States)

    2006-05-15T23:59:59.000Z

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur (S) and chlorine (Cl)) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NO{sub x}) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg{sup 0}), decreasing the percentage of Hg{sup 0} at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg{sup 0} by the SCR catalyst, with the percentage of Hg{sup 0} decreasing from {approximately} 96% at the inlet of the reactor to {approximately} 80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation. 16 refs., 4 figs., 3 tabs.

  17. Preliminary hydrogeologic framework of the Silurian and Devonian carbonate aquifer system in the Midwestern Basins and Arches Region of Indiana, Ohio, Michigan, and Illinois

    SciTech Connect (OSTI)

    Casey, G.D. (Geological Survey, Columbus, OH (United States))

    1992-01-01T23:59:59.000Z

    The aquifer and confining units have been identified; data on the thickness, extent, and structural configuration of these units have been collected; and thickness and structure-contour maps have been generated. Hydrologic information for the confining units and the aquifer also has been compiled. Where present, the confining unit that caps the carbonate aquifer consists of shales of Middle and Upper Devonian age and Lower Mississippian age, however, these units have been eroded from a large part of the study area. The regional carbonate aquifer consists of Silurian and Devonian limestones and dolomites. The rocks that comprise the aquifer in Indiana and northwestern Illinois are grouped into four major stratigraphic units: Brassfield and Sexton Creek Limestones or the Cataract Formation, the Salamonie Dolomite, the Salina Group, and the Detroit River and Traverse Formations or the Muscatatuck Group. In Ohio and southern Michigan the aquifer is grouped into ten stratigraphic units: Brassfield Limestone and Cataract Formation, the Dayton Limestone, the Rochester Shale equivalent, the Lockport Dolomite, the Salina Formation, the Hillsboro Sandstone, the Detroit River Group, the Columbus Limestone, the Delaware Limestone, and the Traverse Formation. The thickness of the carbonate aquifer increases from the contact with the outcropping Ordovician shales in the south-central part of the study area from the contact into the Appalachian Foreland Structural Basin from 0 ft at the contact to more than 700 ft at the eastern boundary of the study area, to more than 1,000 ft beneath Lake Erie and greater than 1,200 ft in southeastern Michigan. At the edge of the Michigan Intercontinental Structural Basin in western Ohio and eastern Indiana, the thickness ranges from 700 to 900 ft. and from 200 ft to 300 ft in south-central Indiana along the northeastern edge of the Illinois Intercontinental Structural Basin.

  18. Complex facies relationships and regional stratigraphy of the Mississippian Ste. Genevieve, Paoli, and Aux Vases Formations, Illinois basin: A major hydrocarbon-producing interval

    SciTech Connect (OSTI)

    Cole, R.D.; Nelson, W.J. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01T23:59:59.000Z

    The Mississippian Ste. Genevieve and Paoli Limestones and sandstones of the Aux Vases Formation are lateral facies of one another. This interpretation is based on comprehensive investigations of outcrops, and selected cores, samples of well cuttings, and geophysical logs conducted over a period of four years. Both units exhibit similar sedimentological characteristics and represent open marine, shallow subtidal, and intertidal environments. The presence of low-angle cross-laminae, ripple- and plane-laminae, climbing ripples, and ooid shoals suggest most deposition occurred under low energy conditions. Lenticular, channel-like scour and fill structures that contain both fine-grained quartz sand and abraded, disarticulated fossil fragments indicate localized higher energy deposition. The authors studies indicate that siliciclastic vs. carbonate deposition was controlled strictly by available sediment, and not by regressive (siliciclastic) and transgressive (carbonate) events, as inferred by previous workers. This conclusion is based on lateral facies relationships, and the supplanting of carbonates by clastics occurring in the upper part of the Ste. Genevieve through the middle part of the Paoli. The Aux Vases is thickest, coarsest, and least mature in the northwestern part of the Illinois Basin, and pinches out to the southeast. This implies a northwesterly source for clastics, perhaps the Transcontinental Arch. After early Chesterian time, the Transcontinental Arch apparently supplied little or no sediment to any flanking basin. The Ste. Genevieve, Paoli, and Aux Vases are major oil-producing units in the Illinois Basin. New understanding of regional relationships should enhance exploratory success and improve recovery from established fields.

  19. Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes

    SciTech Connect (OSTI)

    Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

    1983-01-01T23:59:59.000Z

    The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

  20. RES Wisconsin

    Office of Energy Efficiency and Renewable Energy (EERE)

    The National Center for American Indian Enterprise Development (The National Center) is proud to announce RES Wisconsin, which will be held October 6th – 9th, 2014 at the Potawatomi Hotel & Casino in Milwaukee, Wisconsin.

  1. Wisconsin | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wisconsin Wisconsin Wisconsin Energy Efficiency (WE2) Milwaukee Energy Efficiency (Me2) Green Madison City of Racine Location: Milwaukee, Madison, and Racine, Wisconsin Seed...

  2. ILLINOIS STATE GEOLOGICAL SURVEY Interior Cratonic Basins, 1991, edited by M. W. Leighton, D. R. Kalata, D. F. Oltz,

    E-Print Network [OSTI]

    Bethke, Craig

    ) by that year. Significant quantities of petroleum are produced from fields widely separated from known oil sources. These oils apparently migrated laterally over paths of many tens of miles and perhaps more than reservoirs more than 125 mi (200 km) from the basin's depocenter, were derived from Devonian source rocks

  3. HOME OF THE ILLINOIS STATE SCIENTIFIC SURVEYS Illinois Natural History Survey Illinois State Archaeological Survey Illinois State

    E-Print Network [OSTI]

    Bashir, Rashid

    Archaeological Survey · Illinois State Geological Survey · Illinois State Water Survey · Illinois Sustainable

  4. Challenges and Opportunities for the Illinois Coal Industry

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Challenges and Opportunities for the Illinois Coal Industry Joseph DiJohn Director Metropolitan and Storage 11 3.5.2. Gasification, Liquefaction, and IGCC 12 4. Coal Market Projections 13 4.1. Consumption. Coal Production and Employment in Illinois, 1920 ­ 2000 4 Figure 2. The Illinois Basin 5 Figure 3

  5. Illinois Coal Development Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

  6. Wisconsin Agriculture SPECIAL ARTICLE

    E-Print Network [OSTI]

    Radeloff, Volker C.

    STATUS OF Wisconsin Agriculture 2009 · SPECIAL ARTICLE: Bioenergy and Agriculture in Wisconsin Economy Department of Agricultural and Applied Economics College of Agricultural and Life Sciences of Wisconsin Agriculture, 2009 An annual report by the University of Wisconsin-Madison Department

  7. Recovery Act: Understanding the Impact of CO{sub 2} Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology

    SciTech Connect (OSTI)

    Fouke, Bruce

    2013-03-31T23:59:59.000Z

    An integrated research and teaching program was developed to provide cross-­?disciplinary training opportunities in the emerging field of carbon capture and storage (CCS) for geobiology students attending the University of Illinois Urbana-­?Champaign (UIUC). Students from across the UIUC campus participated, including those from the departments of Geology, Microbiology, Biochemistry, Civil and Environmental Engineering, Animal Sciences and the Institute for Genomic Biology. The project took advantage of the unique opportunity provided by the drilling and sampling of the large-­?scale Phase III CCS demonstration Illinois Basin -­? Decatur Project (IBDP) in the central Illinois Basin at nearby Decatur, Illinois. The IBPD is under the direction of the Illinois State Geological Survey (ISGS, located on the UIUC campus) and the Midwest Geological Sequestration Consortium (MGSC). The research component of this project focused on the subsurface sampling and identification of microbes inhabiting the subsurface Cambrian-­?age Mt. Simon Sandstone. In addition to formation water collected from the injection and monitoring wells, sidewall rock cores were collected and analyzed to characterize the cements and diagenetic features of the host Mt. Simon Sandstone. This established a dynamic geobiological framework, as well as a comparative baseline, for future studies of how CO2 injection might affect the deep microbial biosphere at other CCS sites. Three manuscripts have been prepared as a result of these activities, which are now being finalized for submission to top-­?tier international peer-­?reviewed research journals. The training component of this project was structured to ensure that a broad group of UIUC students, faculty and staff gained insight into CCS issues. An essential part of this training was that the UIUC faculty mentored and involved undergraduate and graduate students, as well as postdocs and research scientists, at all stages of the project in order to develop CCS-­?focused classroom and field courses, as well as seminars. This program provided an excellent opportunity for participants to develop the background necessary to establish longer-­?term research in CCS-­?related geology and microbial ecology. Further, the program provided an ongoing dynamic platform to foster long-­?term collaboration with the regional ISGS and MGSC sequestration partnership, while offering hands-­?on, applied learning experiences.

  8. Chicago, Illinois

    Office of Environmental Management (EM)

    of Energy Chicago, Illinois August 8, 2014 ASSOCIATION OF AMERICAN RAILROADS SLIDE 2 Coal 5,769,626 40% Grain 936,098 6% Chemicals 1,238,773 8% Steel & other metal 534,849 4%...

  9. Illinois Coal Revival Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

  10.  Illinois Groundwater Protection Act (Illinois)

    Broader source: Energy.gov [DOE]

    It is the policy of the State of Illinois to restore, protect, and enhance the groundwaters of the State, as a natural and public resource. The State recognizes the essential and pervasive role of...

  11. 2013 REPORT ILLINOIS NATURAL HISTORY SURVEY

    E-Print Network [OSTI]

    Bashir, Rashid

    2013 REPORT ILLINOIS NATURAL HISTORY SURVEY ILLINOIS STATE ARCHAEOLOGICAL SURVEY ILLINOIS STATE State Geological Survey Illinois State Water Survey Illinois Sustainable Technology Center Awards GEOLOGICAL SURVEY ILLINOIS STATE WATER SURVEY ILLINOIS SUSTAINABLE TECHNOLOGY CENTER #12;#12;PRAIRIE RESEARCH

  12. Regional seismic reflection line, southern Illinois Basin, provides new data on Cambrian rift geometry, Hicks Dome genesis, and the Fluorspar Area Fault Complex

    SciTech Connect (OSTI)

    Potter, C.J.; Goldhaber, M.B.; Taylor, C.D. (U.S. Geological Survey, Denver, CO (United States)); Heigold, P.C. (Illinois State Geological Survey, Champaign, IL (United States))

    1992-01-01T23:59:59.000Z

    Detailed studies of the subsurface structure of the Cambrian Reelfoot rift (RFR) in the Midwestern US provide important insights into continental rifting processes and into the structural fabric of a zone of modern intracratonic seismicity (New Madrid zone). High-quality oil industry seismic reflection data show that in the area of transition between the RFR and the Rough Creek Graben (RCG) the geometry of the Cambrian rift system is that of a half-graben that thickens to the southeast. This contrasts with the northward-thickening half-graben observed to the east in the RCG and with the more symmetric graben to the south in the RFR. An 82.8-km segment of a northwest-southeast seismic reflection profile in southeastern Illinois and western Kentucky shows that near Hicks Dome, Illinois, Middle and Lower Cambrian syn-rift sedimentary rocks occupy about 0.35 s (two-way travel time) on the seismic reflection section (corresponding to a thickness of about 970 m). This stratigraphic interval occupies about 0.45 s (1,250 m) near the Ohio river and is thickest against the Tabb Fault System (TFS) in Kentucky, where it occupies 0.7 s (1,940 m). The seismic data show that in this part of the Cambrian rift the master fault was part of the TFS and that normal displacement on the TFS continued through middle Paleozoic time. The seismic data also provide new information on the late Paleozoic development of Hicks-Dome and the surrounding Fluorspar Area Fault Complex (FAFC) in southeastern Illinois and western Kentucky. A series of grabens and horsts in the FAFC document a late Paleozoic reactivation of the RFR. Comparison of the reflection data with surface mineralization patterns shows that in most cases mineralized graben-bounding faults clearly cut basement or are splays from faults that cut basement.

  13. Forestry Policies (Wisconsin)

    Broader source: Energy.gov [DOE]

    The State of Wisconsin has nearly 16 million acres of forested lands in the state. The Statewide Forest Plan, completed in 2004, is carried out by the Wisconsin Council on Forestry together with...

  14. Jobs Tax Credit (Wisconsin)

    Broader source: Energy.gov [DOE]

    Businesses relocating to Wisconsin or expanding in Wisconsin that are creating full-time employment may be eligible for The Jobs Tax Credit . Jobs created as a result of the tax credit must be...

  15. Eaton, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport, Maine: EnergyColorado: EnergyWisconsin:

  16. Edgar, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport,de NantesCryogenicsEdgar, Wisconsin:

  17. Menasha, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°,Meeteetse,Illinois: EnergyMenasha, Wisconsin:

  18. Wisconsin Agriculture Status of the Wisconsin Farm Economy

    E-Print Network [OSTI]

    Radeloff, Volker C.

    STATUS OF Wisconsin Agriculture 2011 · Status of the Wisconsin Farm Economy · Current Outlook: Farm of Agricultural and Applied Economics College of Agricultural and Life Sciences University of Wisconsin-Madison Cooperative Extension University of Wisconsin-Extension #12;Status of Wisconsin Agriculture, 2011 An annual

  19. Worth, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy ResourcesWoodsCenters JumpGeorgia: EnergyIllinois:

  20. Wisconsin Agriculture Status of the Wisconsin Farm Economy

    E-Print Network [OSTI]

    Radeloff, Volker C.

    STATUS OF Wisconsin Agriculture 2010 · Status of the Wisconsin Farm Economy · Current Outlook: Farm Products, Farm Inputs and the General Economy · Framing the Financial Crisis for Wisconsin Agriculture Farm Economy . . . . . . 1 II. Current Outlook . . . . . . . . . . . . . . . . . . . . . . . . 7

  1. Wisconsin Small Business Guarantee Program (Wisconsin)

    Broader source: Energy.gov [DOE]

    The Wisconsin Small Business Guarantee Program offers low-interest financing to small businesses for fixed assets, working capital, or inventory purchase. The loan guarantee maximum is 50 percent...

  2. Climate Action Plan (Wisconsin)

    Broader source: Energy.gov [DOE]

    In April 2007, Governor Doyle signed Executive Order 191 which brought together a prominent and diverse group of key Wisconsin business, industry, government, energy and environmental leaders to...

  3. Bioenergy Impact on Wisconsin's Workforce

    Broader source: Energy.gov [DOE]

    Troy Runge, Wisconsin Bioenergy Initiative, presents on bioenergy's impact on Wisconsin's workforce development for the Biomass/Clean Cities States webinar.

  4. Mapping karst regions of Illinois: Preliminary results

    SciTech Connect (OSTI)

    Weibel, C.P.; Panno, S.V. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01T23:59:59.000Z

    Groundwater contamination may be significant in shallow aquifers in the parts of Illinois where karst occurs. Problems with ground-water contamination in shallow aquifers in karst areas may be significant in parts of Illinois. A study is underway to study factors that contribute to karst development and to map the karst areas of the state, including areas where obvious diagnostic karst geomorphic features are absent. The following generalizations can be made about the structural and stratigraphic factors that control the extent and maturity of karst areas and the development of karstic terrain in Illinois: (1) karstification is restricted to the flanks of the Illinois Basin because most of the basin interior contains carbonate-poor Pennsylvanian bedrock; (2) karstic terrain generally occurs in thick, flatlying, carbonate-rich lithologic units; (3) carbonate to non-carbonate facies changes in formations and the presence of disconformities affect the degree of karstification; (4) structures (folds, faults) may either increase or decrease the likelihood of karstification; and (5) karstification is potentially greater in areas where overlying regolith is absent or thin.

  5. Forestry Policies (Illinois)

    Broader source: Energy.gov [DOE]

    Illinois' Forests are managed by the State Department of Natural Resources, Division of Forest Resources. The Department issued in 2008 its "Statewide Forest Resource Assessments and Strategies"...

  6. AGRICULTURE, 2001 Current Wisconsin Farm Financial Conditions

    E-Print Network [OSTI]

    Radeloff, Volker C.

    STATUS OF WISCONSIN AGRICULTURE, 2001 Current Wisconsin Farm Financial Conditions Situation and Outlook for Farm Products and Inputs Special Articles · Outlook for the National Economy and Agricultural Policies · Smart Growth and Wisconsin Agriculture · The Wisconsin Agricultural Economy: A Broader

  7. Helping Wisconsin Small Businesses Increase Sustainability

    Broader source: Energy.gov [DOE]

    Almost 100 Wisconsin small- and medium-sized businesses have been helped thanks to the Wisconsin Profitable Sustainability Initiative.

  8. PSERC 97-10 Cornell Berkeley Howard Illinois Wisconsin

    E-Print Network [OSTI]

    owned generation facilities. Based on the forecasted load profile for the next day and the information with a corresponding price schedule which will allow the system to meet the changing load while satisfying all

  9. Wisconsin: Wisconsin's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Wisconsin.

  10. Eau Claire County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport, Maine:Eau Claire County, Wisconsin:

  11. Woodford County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources JumpWood,Woodford County, Illinois: Energy

  12. Southern Illinois University Media Overview

    E-Print Network [OSTI]

    Nickrent, Daniel L.

    SIU Billboards December 2012 #12;SIU Billboards: Paducah, Southern Illinois, Cape Girardeau and St. Louis 3920 Park Avenue Paducah 10/15/12 1/20/13 Feels Like Rte. 37, South of Benton Southern Illinois 10

  13. Quaternary freshwater Ostracoda from the Great Salt Lake Basin

    E-Print Network [OSTI]

    Lister, K. H.

    1975-10-23T23:59:59.000Z

    Dissertation Fellowship. I appreciate loans of type specimens by The Illinois State Geological Survey; The United States National Museum; and the Geological Sur- 5 vey of Canada, Saskatchewan. Specimens of the Great Salt Lake Basin ostracodes studied have been... Dissertation Fellowship. I appreciate loans of type specimens by The Illinois State Geological Survey; The United States National Museum; and the Geological Sur- 5 vey of Canada, Saskatchewan. Specimens of the Great Salt Lake Basin ostracodes studied have been...

  14. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28T23:59:59.000Z

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  15. AGRICULTURE, 2003 Current Wisconsin Farm Financial Conditions

    E-Print Network [OSTI]

    Radeloff, Volker C.

    STATUS OF WISCONSIN AGRICULTURE, 2003 Current Wisconsin Farm Financial Conditions Situation and Challenges Department of Agricultural and Applied Economics College of Agricultural and Life Sciences OF WISCONSIN AGRICULTURE, 2003 An Annual Report by: Department of Agricultural and Applied Economics College

  16. Storm Water Discharge Permits (Wisconsin)

    Broader source: Energy.gov [DOE]

    Wisconsin's storm water runoff regulations include permitting requirements for construction sites and industrial facilities, including those processing or extracting coal or gas. The purpose of the...

  17. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  18. Wisconsin Poverty 101 Who is poor in Wisconsin?

    E-Print Network [OSTI]

    Sheridan, Jennifer

    at or below the 2010 state poverty rate of 10.3% under the Wisconsin Poverty Measure. Source: IRP tabulations estimated with the Wisconsin Poverty Measure and the official poverty measure. Source: IRP tabulations using 2010 American Community Survey data. ASHLAND BAYFIELD GRANT LAFAYETTE IOWA GREEN ROCK WALWORTH KENOSHA

  19. Water Use Permitting (Wisconsin)

    Broader source: Energy.gov [DOE]

    Withdrawers in the Great Lakes Basin who withdraw water in quantities that average 100,000 gallons per day or more in any 30-day period are required to get a water use permit. Two types of water...

  20. Part of the Wisconsin Poverty Project's Fourth Annual Report Series Wisconsin Poverty Report

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Part of the Wisconsin Poverty Project's Fourth Annual Report Series Wisconsin Poverty Report, and Katherine A. Thornton Institute for Research on Poverty University of Wisconsin­Madison May 2012 #12;ABOUT THE WISCONSIN POVERTY PROJECT The Wisconsin Poverty Project came into being in late 2008, when a group

  1. AGRICULTURE, 2002 Current Wisconsin Farm Financial Conditions

    E-Print Network [OSTI]

    Radeloff, Volker C.

    STATUS OF WISCONSIN AGRICULTURE, 2002 Current Wisconsin Farm Financial Conditions Situation of the Wisconsin Cranberry Industry Department of Agricultural and Applied Economics College of Agricultural-Extension #12;STATUS OF WISCONSIN AGRICULTURE, 2002 An Annual Report by: Department of Agricultural and Applied

  2. River Edge Redevelopment Zone (Illinois)

    Broader source: Energy.gov [DOE]

    The purpose of the River Edge Redevelopment Program is to revive and redevelop environmentally challenged properties adjacent to rivers in Illinois.

  3. New Market Tax Credit (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois New Markets Development Program provides supplemental funding for investment entities that have been approved for the Federal New Markets Tax Credit (NMTC) program. This program will...

  4. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  5. Regional Groundwater Evapotranspiration in Illinois

    E-Print Network [OSTI]

    Yeh, Pat J-F.; Famiglietti, J. S

    2009-01-01T23:59:59.000Z

    characteristics of groundwater outflow and baseflow fromtween precipitation and shallow groundwater in Illinois. J.Coauthors, 2006: Groundwater-supported evapo- transpiration

  6. Ameren Illinois- Lighting Rebates for Businesses

    Broader source: Energy.gov [DOE]

    Ameren Illinois offers their non-residential Illinois customers a wide range of incentives for the installation of lighting improvements. Customers must review all equipment requirements to ensure...

  7. Llandoverian to Ludlovian barrier reef complex in southeast Wisconsin

    SciTech Connect (OSTI)

    Rovey, C.W. (Univ. of Wisconsin, Milwaukee (USA))

    1989-08-01T23:59:59.000Z

    Subsurface exploration in the Michigan basin established that a carbonate bank and barrier reef complex prograded basinward during the late Wenlockian to early Ludlovian, but the corresponding Niagaran Series is generally undifferentiated. In southeast Wisconsin the series is well exposed; thus, a better record of depositional history is available. Until now, reefs in the Racine formation of southeast Wisconsin (upper Wenlockian through lower Ludlovian) were interpreted as patch reefs built landward of the barrier complex. However, the following criteria are consistent with an extension of Michigan's northern barrier complex beneath Lake Michigan to southeast Wisconsin: (1) Ubiquitous presence of reef facies along a southwest to northeast trend. This trend is coincident with thickening and a facies change indicative of a deep to shallow water transition, (2) similarity in depositional sequence of the overlying Salina Group in Wisconsin and Michigan. The Salina sediments surround, but are absent over, structures interpreted as pinnacle reefs and form a feather edge against the thicker belt interpreted as a barrier complex. Hence, the Racine reefs are reinterpreted as a barrier complex. Hence, the Racine reefs are reinterpreted as a barrier and pinnacle reef complex. Similar facies changes are also present in older formations. Intraformational truncation surfaces in the underlying Waukesha Dolomite (upper Llandoverian to lower Wenlockian) clearly indicate the presence of a nearby carbonate slope. Therefore, the carbonate buildup originated prior to the Wenlockian and migrated further basinward than previously believed.

  8. Southern Illinois University Media Overview

    E-Print Network [OSTI]

    Nickrent, Daniel L.

    SIU Billboards January 2013 #12;SIU Billboards: Paducah, Southern Illinois, Cape Girardeau and St. Louis 1/21) 3920 Park Ave. Paducah 10/15/12 1/20/13 1/21/13 ­ 4/28/13 Feels Like Rte. 37, South on following pages #12;SIU Billboards: Paducah, Southern Illinois, Cape Girardeau and St. Louis (Contracted

  9. Long-Term Wisconsin Capital Assets Deferral and Wisconsin-Source Asset Exclusion Qualified Wisconsin Business Certification (Wisconsin)

    Broader source: Energy.gov [DOE]

    WEDC may certify businesses as a “Qualified Wisconsin Business”. The designation allows investors with WI capital gains tax liability to both defer that tax liability and if an investment is...

  10. Wisconsin SRF Electron Gun Commissioning

    SciTech Connect (OSTI)

    Bisognano, Joseph J. [University of Wisconsin-Madison; Bissen, M. [University of Wisconsin-Madison; Bosch, R. [University of Wisconsin-Madison; Efremov, M. [University of Wisconsin-Madison; Eisert, D. [University of Wisconsin-Madison; Fisher, M. [University of Wisconsin-Madison; Green, M. [University of Wisconsin-Madison; Jacobs, K. [University of Wisconsin-Madison; Keil, R. [University of Wisconsin-Madison; Kleman, K. [University of Wisconsin-Madison; Rogers, G. [University of Wisconsin-Madison; Severson, M. [University of Wisconsin-Madison; Yavuz, D. D. [University of Wisconsin-Madison; Legg, Robert A. [JLAB; Bachimanchi, Ramakrishna [JLAB; Hovater, J. Curtis [JLAB; Plawski, Tomasz [JLAB; Powers, Thomas J. [JLAB

    2013-12-01T23:59:59.000Z

    The University of Wisconsin has completed fabrication and commissioning of a low frequency (199.6 MHz) superconducting electron gun based on a quarter wave resonator (QWR) cavity. Its concept was optimized to be the source for a CW free electron laser facility. The gun design includes active tuning and a high temperature superconducting solenoid. We will report on the status of the Wisconsin SRF electron gun program, including commissioning experience and first beam measurements.

  11. Parallel Computing Research at Illinois The UPCRC Agenda

    E-Print Network [OSTI]

    @Illinois(www.parallel.illinois.edu)isthecollectiverepresentationofIllinois'currenteffortsin parallel computing research and education. These include: · UniversalParallelComputingResearchCenter · BlueWaters

  12. Wisconsin - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalTheE. Great Basin Oil andBOEWest4 PaulWisconsin

  13. Wisconsin - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalTheE. Great Basin Oil andBOEWest4Wisconsin

  14. Mastermind Session: Wisconsin Energy Conservation Corporation...

    Energy Savers [EERE]

    Corporation Better Buildings Neighborhood Program Peer Exchange Call: Program Sustainability Mastermind Session, featuring host Brian Driscoll, Wisconsin Energy Conservation...

  15. Southern Illinois University Media Overview

    E-Print Network [OSTI]

    Nickrent, Daniel L.

    Hearne | SIU 5 Emmy Chef Bill #12;SIU BillboardsSIU Billboards February 2013 #12;SIU Billboards: Paducah You 3920 Park Ave. Paducah 1/21/13 ­ 4/28/13 Feels Like Rte. 37, South of Benton Southern Illinois

  16. Wisconsin Rapids, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources Jump to: navigation, searchRapids, Wisconsin:

  17. SEA LAMPREY SPAWNING: Wisconsin and Minnesota Streams

    E-Print Network [OSTI]

    Examination of streams on Grand Island 3 Examination of streams in Wisconsin 3 Iron Counb7 3 Ashland County 3 5 3. Shoreline of Ashland County, Wisconsin 7 U* Shoreline of Cook County, Minnesota 12 5* Shoreline in Wisconsin (Iron, Ashland, and Bayfield Counties) were surveyed. In addition, all of the streams on Grand

  18. John A. Luczaj $ Department of Natural and Ap-plied Sciences, University of WisconsinGreen Bay,

    E-Print Network [OSTI]

    Luczaj, John A.

    earned his B.S. degree in geology from the University of Wisconsin­Oshkosh. This was followed by an M.S. degree in geology from the University of Kansas. He holds a Ph.D. in geology from Johns Hopkins Uni of Ordovician and Silurian carbonates in the central United States, oil and gas resources of the Michigan Basin

  19. 51 Gerty Drive Champaign, Illinois 61820

    E-Print Network [OSTI]

    Bashir, Rashid

    51 Gerty Drive Champaign, Illinois 61820 217-333-3996 University Primary school sUmmer camP www of Illinois) with this form to: University Primary School, 51 Gerty Drive Champaign, IL 61820. Detailed

  20. AGRICULTURE, 2006 Status of the Wisconsin Farm Economy

    E-Print Network [OSTI]

    Radeloff, Volker C.

    STATUS OF WISCONSIN AGRICULTURE, 2006 Status of the Wisconsin Farm Economy Situation and Outlook-Added Agriculture · Organic Farming in Wisconsin · A New Wisconsin Cooperative Law Department of Agricultural and Applied Economics College of Agricultural and Life Sciences University of Wisconsin-Madison Cooperative

  1. AGRICULTURE, 2008 Status of the Wisconsin Farm Economy

    E-Print Network [OSTI]

    Radeloff, Volker C.

    STATUS OF WISCONSIN AGRICULTURE, 2008 Status of the Wisconsin Farm Economy Situation and Outlook of Working Lands in Wisconsin · Hired Labor on Wisconsin Dairy Farms Department of Agricultural and Applied Economics College of Agricultural and Life Sciences University of Wisconsin-Madison Cooperative Extension

  2. Environmental Assessment of Rail Infrastructure in Illinois

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    and agricultural lands Farmland Protection Policy Act; Illinois Farmland Preservation Act; Illinois Natural Areas Acres in high flood hazard area Flood Disaster Protection Act Acres in high seismic hazard area 49 CFR Species Act; Illinois Endangered Species Act Protect high-quality natural & agricultural landscapes Acres

  3. AGRICULTURE, 2005 Status of the Wisconsin Farm Economy

    E-Print Network [OSTI]

    Radeloff, Volker C.

    STATUS OF WISCONSIN AGRICULTURE, 2005 Status of the Wisconsin Farm Economy Situation and Outlook: Farm Products, Farm Inputs and the General Economy Special Articles · Expansion, Modernization..............................................................................................................................v I. Status of the Wisconsin Farm Economy

  4. ENVIRONMENTAL CHEMISTRY AND TECHNOLOGY PROGRAM University of Wisconsin-Madison

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    ­ Material damage · Ecosystem Impacts ­ Nutrients ­ Toxics · Climate Change #12;ENVIRONMENTAL CHEMISTRYENVIRONMENTAL CHEMISTRY AND TECHNOLOGY PROGRAM University of Wisconsin-Madison Optimizing University of Wisconsin-Madison #12;ENVIRONMENTAL CHEMISTRY AND TECHNOLOGY PROGRAM University of Wisconsin

  5. This project was funded through the Illinois Department of Natural Resources and the Illinois State Geological Survey. Illinois State Water Survey Contract Report 2004-08.

    E-Print Network [OSTI]

    This project was funded through the Illinois Department of Natural Resources and the Illinois State Geological Survey. Illinois State Water Survey Contract Report 2004-08. Hydrologic Modeling of the Iroquois

  6. Executive Summary The University of Wisconsin Orthopedic Funds are part of the University of Wisconsin

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Executive Summary The University of Wisconsin Orthopedic Funds are part of the University, and rehabilitation of musculoskeletal injuries and conditions. Vision The University of Wisconsin Orthopedic Funds possible care for patients. Strategic Priorities The University of Wisconsin Orthopedic Funds will support

  7. The Fifth Annual Report of the Wisconsin Poverty Project Wisconsin Poverty Report

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    The Fifth Annual Report of the Wisconsin Poverty Project Wisconsin Poverty Report: Is the Safety Net Still Protecting Families from Poverty in 2011? Timothy M. Smeeding, Julia B. Isaacs, and Katherine A. Thornton Institute for Research on Poverty University of Wisconsin­Madison June 2013 #12;ABOUT

  8. The Fourth Annual Report of the Wisconsin Poverty Project Wisconsin Poverty Report

    E-Print Network [OSTI]

    Sheridan, Jennifer

    The Fourth Annual Report of the Wisconsin Poverty Project Wisconsin Poverty Report: How the Safety Net Protected Families from Poverty in 2010 Yiyoon Chung, Julia B. Isaacs, Timothy M. Smeeding, and Katherine A. Thornton Institute for Research on Poverty University of Wisconsin­Madison April 2012 #12;ABOUT

  9. Alternative Fuels Data Center: Wisconsin Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Wisconsin's Incentives and Laws, including the latest ones listed below. Sustainable Biofuels Production Practices Renewable Fuel Sales Volume Goals Alternative Fueling...

  10. Water Conservation and Water Use Efficiency (Wisconsin)

    Broader source: Energy.gov [DOE]

    Wisconsin has several statutes that promote water conservation and controlled water use, and this legislation establishes mandatory and voluntary programs in water conservation and water use...

  11. Wisconsin Business Sheds Light on Lighting

    Broader source: Energy.gov [DOE]

    Wisconsin-based Energy Performance Specialists LLC is helping clients reduce energy consumption in a very simple way?by just using less.

  12. Northern Illinois University Mechanical Engineering

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    and/or apply engineering knowledge to address societal needs; and to provide quality professionalNorthern Illinois University Mechanical Engineering Undergraduate Program 2013-2014 Engineering Building, room 226 Phone: 815-753-9979 www.niu.edu/me #12;DEPARTMENT OF MECHANICAL ENGINEERING NORTHERN

  13. Media Overview Southern Illinois University

    E-Print Network [OSTI]

    Nickrent, Daniel L.

    Research #12;SIU Billboards March 2013 #12;Lipman Hearne | SIU SIU Billboards: Paducah, Southern Illinois Ave. Paducah 1/21/13 ­ 4/28/13 Brain Meet Heart IL Rte 45, 1/2 Mi West of Interstate 24 Paducah 3

  14. NPRE at Illinois Three Paths

    E-Print Network [OSTI]

    Gilbert, Matthew

    and power systems · Thermal hydraulics and reactor safety · Alternate energy systems · Plasma modeling production; Nuclear power operations and control · Plasma sciences; Applied plasma physics; Nuclear fusionNPRE at Illinois Three Paths Students choose from three concentrations: · Plasma and Fusion · Power

  15. Wisconsin Summary of Reported Data | Department of Energy

    Energy Savers [EERE]

    partner Wisconsin. Wisconsin Summary of Reported Data More Documents & Publications Virginia -- SEP Summary of Reported Data Michigan -- SEP Summary of Reported Data Alabama...

  16. Wisconsin Dells, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI

  17. Qualifying RPS State Export Markets (Illinois)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Illinois as eligible sources towards their RPS targets or goals. For specific...

  18. Illinois Municipal Electric Agency- Electric Efficiency Program

    Broader source: Energy.gov [DOE]

    The Illinois Municipal Electric Agency (IMEA) offers rebates to member municipal utilities* (those who purchase wholesale electric service from IMEA) and retail customers for energy efficiency...

  19. Ameren Illinois (Gas)- Residential Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Ameren Illinois Utilities (AmerenIP, AmerenCIPS, and AmerenCILCO) offer residential customers incentives for certain energy efficiency upgrades and improvements. Incentives are currently available...

  20. Alternative Fuels Data Center: Illinois Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    - Illinois Propane Gas Association Natural Gas and Propane Vehicle Weight Exemption Biofuels Business Planning Grants Biofuels Production Facility Grants To look up nationwide...

  1. Community Service Block Grant Loan Program (Illinois)

    Broader source: Energy.gov [DOE]

    Community Service Block Grant Loan Program is a partnership among the Department of Commerce and Economic Opportunity, community action agencies, and the Illinois Ventures for Community Action. The...

  2. Argonne receives 2014 Illinois Governor's Sustainability Award...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    receives 2014 Illinois Governor's Sustainability Award By Else Tennessen * November 10, 2014 Tweet EmailPrint On Oct. 23, Argonne National Laboratory was presented with the...

  3. Kyoto Protocol Act of 1998 (Illinois)

    Broader source: Energy.gov [DOE]

    Effective immediately, the Illinois Environmental Protection Agency and the Pollution Control Board shall not propose or adopt any new rule for the intended purpose of addressing the adverse...

  4. Illinois Solar Energy Association- Renewable Energy Credit Aggregation Program

    Broader source: Energy.gov [DOE]

    The Illinois Solar Energy Association offers the Renewable Energy Credit Aggregation Program (RECAP) to Illinois solar photovoltaic (PV) system owners, providing them with an opportunity to recei...

  5. argonne illinois site: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;12;PRAIRIE RESEARCH Bashir, Rashid 18 Cooperative Illinois Institute of Technology Engineering Websites Summary: Student Cooperative Education Agreement Illinois Institute...

  6. Coos Bay Field Gulf Coast Coal Region Williston Basin Illinois

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX Imeans ofFHome PageCoos

  7. Figure 5. Collison Marsh, Vermilion Co., Illinois

    E-Print Network [OSTI]

    Taylor, Steven J.

    . Aquatic Hemiptera of Illinois. MS Thesis, University of Illinois, Urbana. xxii + 353 pp. Packauskas, RJ & JE McPherson. 1986. Life history and laboratory rearing of Ranatra fusca (Hemiptera: Nepidae Polhemus. 1994. Nepidae (Hemiptera) of the United States and Canada. Annals of the Entomological Society

  8. Hydrogeologic characterization of Illinois wetlands

    SciTech Connect (OSTI)

    Miner, J.J.; Miller, M.V.; Rorick, N.L.; Fucciolo, C.S. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-04-01T23:59:59.000Z

    The Illinois State Geological Survey (ISGS), under contract from the Illinois Department of Transportation (IDOT), is evaluating a series of selected wetlands and sites proposed for wetland construction and/or restoration. The program is associated with wetland mitigation for unavoidable effects of state highway construction. The goal of this ongoing program is: (1) to collect commonly lacking geologic, geomorphic, hydrologic, and geochemical data from various wetland sites; and (2) to create a database of this information for use by government agencies and the private sector. Some of the potential uses of this database include: (1) determination of history, role, and possible life cycle of various wetland types allowing more effective design criteria; (2) functional comparison of constructed or restored wetlands versus natural wetlands; (3) testing of wetland hypotheses and delineation techniques under a variety of known hydrogeologic conditions in Illinois; (4) hydrogeologic assessment of potential mitigation sites against a suite of known sites; and (5) determination of data and collection methods appropriate for hydrogeologic wetland studies. A series of tasks is required to complete each study. Historical information is collected from ISGS records, including data regarding topography, soils, sediments, bedrock, and local well records. A field-testing plan is prepared, which includes goals of the study, methods, research potential, and potential results. An initial report is prepared after geologic and geochemical characterization and the installation of needed ground water monitoring wells and surface water gauges. After one year of water-level monitoring, a final report is prepared regarding the present conditions of a site. Further monitoring may be required to determine the performance at constructed and/or restored sites.

  9. University of Illinois Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01T23:59:59.000Z

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) University of Illinois Project 29609 irradiation. The objective of this test was to assess the radiation performance of ferritic alloys for advanced reactor applications. The FeCr-based alloy system is considered the lead alloy system for a variety of advanced reactor components and applications. Irradiations of FeCr alloy samples were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in a static capsule in the A-11 position of the ATR.

  10. Scholarship Updated (date) Illinois State Wild Turkey Scholarship

    E-Print Network [OSTI]

    Karonis, Nicholas T.

    Scholarship Updated (date) Illinois State Wild Turkey Scholarship Scholarship source: Illinois State Wild Turkey Federation Address: Dr. Robert E. Reich, Chair Illinois State Wild Turkey Federation: The Illinois state wild turkey federation is awarding scholarships to 1 st , 2 nd , 3 rd , and 4 th year

  11. nuclear@illinois.edu | 217-333-2295 | npre.illinois.edu 216 Talbot Laboratory, MC 234 | 104 S. Wright Street | Urbana, IL 61801-2935

    E-Print Network [OSTI]

    Jain, Kanti

    .illinois.edu · Blue Waters Sustained Petascale Computing bluewaters.ncsa.illinois.edu Instructional and Research Areas

  12. Susan P. Taylor, MD Shorewood, Wisconsin

    E-Print Network [OSTI]

    Noxapater, Mississippi Corey W. Gilliland, MD Mesa, Arizona Jeanne V. Hamel, MD Elk Grove, California Steven Manhattan, Kansas Dean Afif Shoucair, DO Frankfort, Illinois John Mitchell Simson, MD Albuquerque, New

  13. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  14. ECM monitoring study, states of Illinois, Indiana, Michigan, Minnesota, Ohio and Wisconsin

    SciTech Connect (OSTI)

    Not Available

    1986-08-15T23:59:59.000Z

    The purposes of the energy conservation measures (ECM's) monitoring program are to: (1) determine if the grants are being conducted in accordance with the ICP regulations and with the terms and conditions of federal financial assistance programs in general; (2) determine if the grantees are on schedule and within budget; (3) ascertain whether required operation and maintenance procedures have been implemented; (4) where appropriate, identify any deviations from funded ECM's; (5) report on any energy savings being realized from the implementation of the operation and maintenance procedures and the funded ECM's; and (6) comment on the general progress of the grantees as a group.

  15. ECM monitoring study: States of Illinois, Indiana, Michigan, Minnesota, Ohio and Wisconsin. Final summary report

    SciTech Connect (OSTI)

    Not Available

    1985-09-16T23:59:59.000Z

    In 1978, in response to the Nation's increasing need for energy independence, the United States Congress passed the National Energy Conservation Policy Act (NECPA) (P.L. 95-619). Title III of NECPA, entitled ''Energy Conservation Programs for Schools and Hospitals and Buildings Owned by Units of Local Government and Public Care Institutions,'' (the Institutional Conservation Programs or ICP) mandated the establishment of a federal matching funds grants program for energy conservation in the four classifications of institutions named in the title. NECPA also gave the United States Department of Energy (DOE) the authority to formulate the rules and regulations that would govern the awarding of those grants, using the states as the initial review and approval agencies. The purposes of the monitoring program are to: (1) determine if the grants are being conducted in accordance with the ICP regulations and with the terms and conditions of federal financial assistance programs in general; (2) determine if the grantees are on schedule and within budget; (3) ascertain whether required operation and maintenance procedures have been implemented; (4) where appropriate, identify any deviations from funded ECM's; (5) report on any energy savings being realized from the implementation of the operation and maintenance procedures and the funded ECM's; and (6) comment on the general progress of the grantees as a group. The survey results are given in detailed tables.

  16. ECM monitoring study, states of Illinois, Indiana, Michigan, Minnesota, Ohio and Wisconsin. Final summary report

    SciTech Connect (OSTI)

    Not Available

    1986-08-15T23:59:59.000Z

    The purposes of the energy conservation measures (ECM`s) monitoring program are to: (1) determine if the grants are being conducted in accordance with the ICP regulations and with the terms and conditions of federal financial assistance programs in general; (2) determine if the grantees are on schedule and within budget; (3) ascertain whether required operation and maintenance procedures have been implemented; (4) where appropriate, identify any deviations from funded ECM`s; (5) report on any energy savings being realized from the implementation of the operation and maintenance procedures and the funded ECM`s; and (6) comment on the general progress of the grantees as a group.

  17. Gauging Employment Growth in Wisconsin: State-By-State Comparisons

    E-Print Network [OSTI]

    Saldin, Dilano

    Gauging Employment Growth in Wisconsin: State; 2 Employment growth in Wisconsin continues to lag both the national rate of job growth as well as the rates of employment increase in most other states

  18. Illinois

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14Has Hydrocarbon, a

  19. ILLINOIS INSTITUTE OF TECHNOLOGY SAFETY POLICY COMMITTEE

    E-Print Network [OSTI]

    Heller, Barbara

    ILLINOIS INSTITUTE OF TECHNOLOGY SAFETY POLICY COMMITTEE OFFICE SAFETY POLICY Approved: October 10 of pinch points before closing desk or file drawers. 3.14 File/desk drawers, bookcases, and cabinet doors

  20. Patterns in Illinois Educational School Data

    E-Print Network [OSTI]

    Stevens, Cacey S; Nagel, Sidney R

    2015-01-01T23:59:59.000Z

    We examine Illinois educational data from standardized exams and analyze primary factors affecting the achievement of public school students. We focus on the simplest possible models: representation of data through visualizations and regressions on single variables. Exam scores are shown to depend on school type, location, and poverty concentration. For most schools in Illinois, student test scores decline linearly with poverty concentration. However Chicago must be treated separately. Selective schools in Chicago, as well as some traditional and charter schools, deviate from this pattern based on poverty. For any poverty level, Chicago schools perform better than those in the rest of Illinois. Selective programs for gifted students show high performance at each grade level, most notably at the high school level, when compared to other Illinois school types. The case of Chicago charter schools is more complex. In the last six years, their students' scores overtook those of students in traditional Chicago high...

  1. Illinois Institute of Technology College of Architecture

    E-Print Network [OSTI]

    Heller, Barbara

    Illinois Institute of Technology College of Architecture Arch 434 Advanced Building Information relationships that facilitate efficient construction processes and energy efficient buildings. This course and exploit the database structure embedded within the roots of the REVIT environment. [Course Objectives

  2. Small Business Job Creation Tax Credit (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Small Business Jobs Creation Tax Credit program provides small business owners and non-profits with an extra boost to grow their business over the next four years. After creating one...

  3. Preliminary evaluation of resinite recovery from Illinois coal. Technical report, December 1, 1994--February 28, 1995

    SciTech Connect (OSTI)

    Crelling, J.C.

    1995-12-31T23:59:59.000Z

    Resinite is a naturally occurring substance found in coal and derived from original plant resins. It is ubiquitous in North American coals. It makes up one to four percent by volume of most Illinois coals. It has been commercially exploited in the western USA for use in adhesives, varnishes and thermal setting inks. The overall objective of this project is to compare the properties of the resinite contained in Illinois Basin coals to resinite being commercially exploited in the western United States, and to recover the resinite from Illinois coals by microbubble column floatation techniques. This project is relevant to priority 1.4A identified in ICCI/RFP93-1. The significance of this study is that it has the potential to show the way to recover a valuable chemical, resinite, from coal using only physical processing techniques. The value of the resinite at $1.00/kg or $0.50/lb makes it about fifty times more valuable than steam coal. The removal of resinite from coal does not decrease the value of the remaining coal in any way. The unique aspects are that: (1) it is the first examination of the resinite recovery potential of Illinois coal, (2) it integrates the latest characterization techniques such as density gradient centrifugation, microspectrofluorometry, and gas chromatography-mass spectrometry, and (3) it uses microbubble column flotation to determine the resinite recovery potential. During this quarter samples were obtained, information from both the databases of both the Illinois State Geological Survey (ISGS) and the Pennsylvania State University (PSU) was obtained and evaluated, and IBCSP samples from the Herrin No. 6, the Springfield No. 5 and the Colchester No. 2 seams were analyzed petrographically and the resinites in these samples were characterized by fluorescence spectral analysis.

  4. CFBC evaluation of fuels processed from Illinois coals. Technical report, March 1, 1992--May 31, 1992

    SciTech Connect (OSTI)

    Rajan, S. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes

    1992-10-01T23:59:59.000Z

    The combustion and emissions properties of (a) flotation slurry fuel beneficiated from coal fines at various stages of the cleaning process and (b) coal-sorbent pellets made from the flotation concentrate of the same beneficiation process using corn starch as binder is being investigated in a 4-inch internal diameter circulating fluidized bed combustor (CFBC). Combustion data such as SO{sub 2}, NO{sub x} emissions, combustion efficiency and ash mineral matter analyses from these fuels are compared with similar parameters from a reference coal burnt in the same fluidized bed combustor. In the last quarter, the CFBC was brought on line and tests were performed on standard coal No. 3 from the Illinois Basin Coal Sample Program (IBCSP). During this quarter, it was decided, that a more meaningful comparison could be obtained if, instead of using the IBCSP No. 3 coal as a standard, the run-of-mine Illinois No. 5 coal from the Kerr-McGee Galatia plant could be used as the reference coal for purposes of comparing the combustion and emissions performance, since the slurry and pellet fuels mentioned in (a) and (b) above were processed from fines recovered form this same Illinois No. 5 seam coal. Accordingly, run-of-the mine Illinois No. 5 coal from the Galatia plant were obtained, riffled and sieved to {minus}14+18 size for the combustion tests. Preliminary combustion tests have been made in the CFBC with this new coal. In preparation for the slurry tests, the moisture content of the beneficiated slurry samples was determined. Proximate and ultimate analyses of all the coal samples were performed. Using a Leeds and Northrup Model 7995-10 Microtrek particle size analyzer, the size distributions of the coal in the three slurry samples were determined. The mineral matter content of the coal in the three slurry samples and the Illinois No. 5 seam coal were investigated using energy dispersive x-ray analysis.

  5. Preliminary evaluation of resinite recovery from Illinois coal. [Quarterly] technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

    1994-12-31T23:59:59.000Z

    Resinite is a naturally occurring substance found in coal and derived from original plant resins. It is ubiquitous in North American coals. It makes up one to four percent by volume of most Illinois coals. It has been commercially exploited in the western USA for use in adhesives, varnishes and thermal setting inks. The overall objective of this project is to compare the properties of the resinite contained in Illinois Basin coals to resinite being commercially exploited in the western United States, and to recover the resinite from Illinois coals by microbubble column floatation techniques. The significance of this study is that it has the potential to show the way to recover a valuable chemical, resinite, from coal using only physical processing techniques. The value of the resinite at $1.00/kg or $0.50/lb makes it about fifty times more valuable than steam coal. The removal of resinite from coal does not decrease the value of the remaining coal in any way. The unique aspects are that: (1) it is the first examination of the resinite recovery potential of Illinois coal, (2) it integrates the latest characterization techniques such as density Gradient centrifugation, microspectrofluorometry, and gas chromatography- mass spectrometry, and (3) it uses microbubble column flotation to determine the resinite recovery potential. During this quarter samples were obtained, information from both the databases of both the Illinois State Geological Survey (ISGS) and the Pennsylvania State University (PSU) was obtained and evaluated, and EBCSP samples from the Herrin No. 6, the Springfield No. 5 and the Colchester No. 2 seams were analyzed petrographically and the resinites in these samples were characterized by fluorescence spectral analysis.

  6. Adapting to Climate Change in Wisconsin Strategies for Conservation Professionals

    E-Print Network [OSTI]

    Sheridan, Jennifer

    -SARP, Wisconsin Sea Grant, UW-Extension and UW-Madison College of Engineering #12;Wisconsin Initiative on Climate · Wisconsin's changing climate · Expected impacts · Adaptation strategies #12;Visible Light Energy in = Energy out Absorbed by ozone Absorbed by the earth Greenhouse effect UV radiation Solar radiation Reflected

  7. AGRICULTURE, 2004 Status of the Wisconsin Farm Economy

    E-Print Network [OSTI]

    Radeloff, Volker C.

    STATUS OF WISCONSIN AGRICULTURE, 2004 Status of the Wisconsin Farm Economy Situation and Outlook Situation: Implications for U.S. Agriculture · The Evolution and Current Status of Livestock Production and Meat Processing in Wisconsin Department of Agricultural and Applied Economics College of Agricultural

  8. Wisconsin Agriculture Department of Agricultural and Applied Economics

    E-Print Network [OSTI]

    Radeloff, Volker C.

    Wisconsin Agriculture 2012 STATUS OF Department of Agricultural and Applied Economics · Status­Extension College of Agricultural & Life Sciences UNIVERSITY OF WISCONSIN­MADISON #12;#12;Status of Wisconsin Agriculture, 2012 An annual report by the Department of Agricultural and Applied Economics, UW

  9. AGRICULTURE, 2007 Status of the Wisconsin Farm Economy

    E-Print Network [OSTI]

    Radeloff, Volker C.

    STATUS OF WISCONSIN AGRICULTURE, 2007 Status of the Wisconsin Farm Economy Situation and Outlook and Challenges · Current Prospects for the 2007 Farm Bill Department of Agricultural and Applied Economics College of Agricultural and Life Sciences University of Wisconsin-Madison Cooperative Extension University

  10. The Medical College of Wisconsin 6 THE MEDICAL COLLEGE OF WISCONSIN MEDICAL SCHOOL ACADEMIC BULLETIN 2011-2012

    E-Print Network [OSTI]

    for engagement in leading-edge science for students aspiring to advance medical knowledge through researchThe Medical College of Wisconsin 6 THE MEDICAL COLLEGE OF WISCONSIN MEDICAL SCHOOL ACADEMIC BULLETIN 2011-2012 The Medical College of Wisconsin offers MD, PhD, MA, MS and MPH degrees. There are more

  11. Withee, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources Jump to:WiseEnergy JumpWithee, Wisconsin:

  12. Wood, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources JumpWood, Wisconsin: Energy Resources Jump

  13. Wisconsin Public Service Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWindManitoba, Canada)WisconsinWisconsin

  14. Department of Energy Names Virginia and Illinois Electric Cooperatives...

    Office of Environmental Management (EM)

    Department of Energy Names Virginia and Illinois Electric Cooperatives Wind Co-ops of the Year Department of Energy Names Virginia and Illinois Electric Cooperatives Wind Co-ops of...

  15. Illinois: Ozinga Concrete Runs on Natural Gas and Opens Private...

    Energy Savers [EERE]

    Illinois: Ozinga Concrete Runs on Natural Gas and Opens Private Station Illinois: Ozinga Concrete Runs on Natural Gas and Opens Private Station November 6, 2013 - 12:00am Addthis...

  16. Wisconsinan and Sangamonian climate interpreted from fossil ostracodes and vegetation in south-central Illinois

    SciTech Connect (OSTI)

    Curry, B.B. (Illinois State Geological Survey, Champaign, IL (United States)); Forester, R.M. (Geological Survey, Denver, CO (United States)); Zhu, Hong; Baker, R.G. (Univ. of Iowa, Iowa City, IA (United States). Dept. of Geology)

    1992-01-01T23:59:59.000Z

    The interpretation of paleoclimate during the late Illinoian, Sangamonian, and Wisconsinan Ages in the region of present south-central Illinois has been based on plant macrofossil, pollen, and vertebrate records. The ostracode records identify periods of flow across the basins and perhaps characteristics of groundwater discharge or recharge. Basins with the largest lake-to-catchment-area ratio were most sensitive to changes in effective moisture and hydrochemistry. The Sangamonian included three intervals during which the winters were warmer than those of historical record. These intervals are represented by sediment containing relatively abundant arboreal pollen, notably bald cypress and sweet gum, and the ostracode Heterocypris punctata, which lives in subtropical to tropical lakes and estuaries. H. punctata occurs with other ostracodes that require low salinity; their association indicates that precipitation typically exceeded evaporation and that the basin was affected by throughflow. The Sangamonian ended with two warm, wet episodes that sandwich an interval implying prairie lake conditions. Warmth-loving species are abundantly represented in upper Sangamonian sediments. Such warm, wet episodes are not known to have occurred in the Midcontinent during the Holocene. The top of the Sangamonian in all except the Pittsburgh Basin is capped by a layer of reworked sediment containing fluvial ostracodes and exotic mixtures of pollen, including both spruce and sweet gum but dominated by chenopods. The reworked layer is overlain by Wisconsinan sediment containing abundant pollen of boreal taxa and ostracodes that indicate basin throughflow.

  17. EA-1866: Modernization Planning at Argonne National Laboratory, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of proposed modernization planning at Argonne National Laboratory in DuPage County, Illinois.

  18. Planning for Climate Impacts Wisconsin's Coastal Communities

    E-Print Network [OSTI]

    Sheridan, Jennifer

    in = Energy out Absorbed by ozone Absorbed by the earth Greenhouse effect UV radiation Solar radiation. Liebl Support provided by NOAA-SARP, Wisconsin Sea Grant, UW-Extension and UW-Madison College" ­ The Cornhill Magazine, 1860 Köppen climate subdivisions -1884 (30 year averages) NOAA #12;Visible Light Energy

  19. University of Wisconsin Fusion Technology Institute

    E-Print Network [OSTI]

    California at Los Angeles, University of

    with the MELCOR Code University of Wisconsin ­Madison Department of Engineering Physics Fusion Technology as fast as 800 kPa/s · MELCOR calculations were performed to determine whether the pressurization rate can be simulated · This paper reviews these experiments and utilizes MELCOR to simulate the experiments #12

  20. MEDICAL COLLEGE OF WISCONSIN Public Safety

    E-Print Network [OSTI]

    student from entering clerkship. At any time during an investigation, lockers are subject to searchMEDICAL COLLEGE OF WISCONSIN Public Safety Student Locker Assignment Record The following terms without prior notice. Your signature below indicates you have read and understand the terms and conditions

  1. Stormwater, Climate Change and Wisconsin's Coastal Communities

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Stormwater, Climate Change and Wisconsin's Coastal Communities Johnson Foundation at Wingspread · Precipitation and high water · Adapting to our changing climate · Assisting coastal communities Photo: WDNR #12 source of risk from changing climate. City of Green Bay watershed - #12;Predicted climate includes

  2. University of Wisconsin Department of Economics

    E-Print Network [OSTI]

    Sheridan, Jennifer

    University of Wisconsin Department of Economics Economics 548: The Economics of Health Care Spring, uncertainty, government involvement, and externalities, the economics of the health care sector and its will learn how to apply microeconomic tools to study the medical care system and analyze the economic aspects

  3. DEPARTMENT OF STATISTICS University of Wisconsin

    E-Print Network [OSTI]

    Chung, Moo K.

    approach. The theoretical construction and the numerical implementation issues are explainedDEPARTMENT OF STATISTICS University of Wisconsin 1300 University Ave. Madison, WI 53706 TECHNICAL-SPHARM generalizes the classical-SPHARM with an additional parameter that modulates the high frequency content

  4. UNIVERSITY OF WISCONSIN-MILWAUKEE UWM LIBRARIES

    E-Print Network [OSTI]

    Saldin, Dilano

    UNIVERSITY OF WISCONSIN-MILWAUKEE UWM LIBRARIES that the Kurzweil will be reading will be highlighted in yellow and will change to green as it reads the word. Use will be highlighted in yellow and will change to green as it reads the word. Use the toolbar controls or the function

  5. UNIVERSITY OF WISCONSIN-MADISON MASTER'S THESIS

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    result from un- realistic representations of aerosol optical properties and biases in model cloud cover this study evaluate the radiative effects of aerosols on the climate system and offer new insightsUNIVERSITY OF WISCONSIN-MADISON MASTER'S THESIS A Global Survey of Aerosol Direct Effects Author

  6. Agricultural & Biological Engineering Alumni Newsletter. Winter 2009 ABE@Illinois

    E-Print Network [OSTI]

    Gilbert, Matthew

    Agricultural & Biological Engineering Alumni Newsletter. Winter 2009 ABE@Illinois WINTER2009 Triple Crown for Illinois's Agricultural and Biological Engineering Program The Agricultural and Biological of Agricultural and Biological Engineering held its first annual "Celebrate ABE@Illinois" on September 5th and 6th

  7. Illinois Junior Academy of Science Policy & Procedure Manual

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Illinois Junior Academy of Science Policy & Procedure Manual September 2010 ­ August 2012 or paper. While the Illinois Junior Academy of Science would like for all schools and regions to follow all these policies at the school or regional level. However, the Illinois Junior Academy of Science will insist

  8. Illinois State Geological Survey Evaluation of CO2 Capture Options from Ethanol Plants

    SciTech Connect (OSTI)

    Robert Finley

    2006-09-30T23:59:59.000Z

    The Illinois State Geological Survey and the Midwest Geological Sequestration Consortium are conducting CO{sub 2} sequestration and enhanced oil recovery testing at six different sites in the Illinois Basin. The capital and operating costs for equipment to capture and liquefy CO{sub 2} from ethanol plants in the Illinois area were evaluated so that ethanol plants could be considered as an alternate source for CO{sub 2} in the event that successful enhanced oil recovery tests create the need for additional sources of CO{sub 2} in the area. Estimated equipment and operating costs needed to capture and liquefy 68 metric tonnes/day (75 tons/day) and 272 tonnes/day (300 tons/day) of CO{sub 2} for truck delivery from an ethanol plant are provided. Estimated costs are provided for food/beverage grade CO{sub 2} and also for less purified CO{sub 2} suitable for enhanced oil recovery or sequestration. The report includes preliminary plant and equipment designs and estimates major capital and operating costs for each of the recovery options. Availability of used equipment was assessed.

  9. Preliminary evaluation of resinite recovery from Illinois coal. Technical report, March 1--May 31, 1995

    SciTech Connect (OSTI)

    Crelling, J.C.

    1995-12-31T23:59:59.000Z

    Resinite is a naturally occurring substance found in coal and derived from original plant resins. It has been commercially exploited in the western USA for use in adhesives, varnishes and thermal setting inks. The overall objective of this project is to compare the properties of the resinite contained in Illinois Basin coals to resinite being commercially exploited in the western US, and to recover the resinite from Illinois coals by microbubble column floatation techniques. The significance of this study is that it has the potential to show the way to recover a valuable chemical, resinite, from coal using only physical processing techniques. The value of the resinite at $1.00/kg or $0.50/lb makes it about fifty times more valuable than steam coal. The removal of resinite from coal does not decrease the value of the remaining coal in any way. During this quarter pure concentrates of resinite from Herrin No. 6 Seam were produced by the density gradient centrifugation technique. This material is also now being characterized by petrographic and chemical methods. Another accomplishment this quarter was the completion of a series of microbubble column flotation tests under eight different conditions. The tests were successful in producing concentrates that are now being evaluated. The significance of the work done during this quarter is the confirmation that the resinite in an Illinois coal can be successfully separated in quantities useful for testing and analysis.

  10. Research on improved and enhanced oil recovery in Illinois through reservoir characterization

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-01-01T23:59:59.000Z

    This project will provide information that can maximize hydrocarbon production minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir's capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of by-passed, mobile oil.

  11. ICRF IN THE WISCONSIN TOKAMAK AND TOKAPOLE II (Presented at the 20th Annual Meeting, Division

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    ICRF IN THE WISCONSIN TOKAMAK AND TOKAPOLE II (Presented at the 20th Annual Meeting, Division in the Wisconsin Tokamak and Tokapole I 1.* A.P. BIDDLE and J.C. SPROTT. U. of Wisconsin, Madison, Wisconsin. Studies of wave coupi iI1g at powers !::!. :t50 watts in the Wisconsin Tokamak using insulated, unshielded

  12. Wisconsin Poverty Report: Jobs Recover to Help Reduce Poverty in 2012

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Wisconsin Poverty Report: Jobs Recover to Help Reduce Poverty in 2012 The Sixth Annual Report of the Wisconsin Poverty Project Timothy M. Smeeding Julia B. Isaacs Katherine A. Thornton Institute for Research on Poverty University of Wisconsin­Madison May 2014 #12;ABOUT THE WISCONSIN POVERTY PROJECT The Wisconsin

  13. Eastern Illinois Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: Energy ResourcesRutherford,Eastern Illinois Elec Coop

  14. Nanoscience Research Internships in Illinois

    SciTech Connect (OSTI)

    Kronshage, Alisa [Executive Board

    2013-08-31T23:59:59.000Z

    NanoBusiness Talent Project Summary Report The NanoBusiness Alliance created the NanoBusiness Talent Program to ensure the future vitality of domestic scientists and entrepreneurs by engaging advanced high school students in cutting-edge nanotechnology development. This program commenced on September 1, 2008 and ran through August 31, 2010 with a very successful group of students. Several of these students went on to Stanford, Harvard and Yale, as well as many other prestigious Universities. We were able to procure the cooperation of several companies over the entire run of the program to voluntarily intern students at their companies and show them the possibilities that exist for their future. Companies ranged from NanoInk and Nanosphere to QuesTek and NanoIntegris all located in northern Illinois. During the 9-week internships, students worked at nanotechnology companies studying different ways in which nanotechnology is used for both commercial and consumer use. The students were both excited and invigorated at the prospect of being able to work with professional scientists in fields that previously may have just been a dream or an unreachable goal. All the students worked closely with mentors from each company to learn different aspects of procedures and scientific projects that they then used to present to faculty, parents, mentors and directors of the program at the end of each year’s program. The presentations were extremely well received and professionally created. We were able to see how much the students learned and absorbed through the course of their internships. During the last year of the program, we reached out to both North Carolina and Colorado high school students and received an extraordinary amount of applications. There were also numerous companies that were not only willing but excited at the prospect to engage highly intelligent high school students and to encourage them into the nanotechnology scientific field. Again, this program increase was highly received and the students were thoroughly engaged. Our program ended August 31, 2010 with our last class of students and their final presentations. From the pilot year to the end presentations, we received hundreds of applications from students excited for the opportunity to work in a scientific field. With our goal of inspiring the newest generation of potential scientists and mathematician, we not only found ourselves overwhelmingly impressed but encouraged that the greatest minds of the future will come from this next generation and many more generations.

  15. HUMAN SERVICES TRANSPORTATION ILLINOIS HSTP REGION FIVE

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    in the creation of this plan. FROM RURAL AREAS Debbie Armentrout, MSW Projects of Henry Jeanine Beghtol, Galesburg of Galesburg B. Justin Meierkord, Marshall County Board Peg Meisinger, Senator David Koehler's office (rural by the Illinois Department of Transportation, consists of Fulton, Knox, Marshall, Peoria, Stark, Tazewell

  16. A Pet's Place University of Illinois

    E-Print Network [OSTI]

    Jain, Kanti

    A Pet's Place University of Illinois College of Veterinary Medicine vetmed Clinic *A Pet's Place Course Records Men: Eric Ollila, 15:54 (1995) Women: Jenny Marine, 19:04 (1994) See like to participate in the: _____5K run _____5K pet run _____5K walk _____5K pet walk Please check one

  17. AQUACULTURE EXTENSION Illinois -Indiana Sea Grant Program

    E-Print Network [OSTI]

    by this bacterium primarily affects freshwater fish such as cattfish, several species of bass, and many species and Treatment of "Aeromonas hydrophila" Infection of Fish LaDon Swann Illinois-Indiana Sea Grant Program Purdue University Introduction Aeromonas hydrophila causes disease in fish known as "Motile Aeromonas Septicemia

  18. MMAE 320 Thermodynamics Illinois Institute of Technology

    E-Print Network [OSTI]

    Heller, Barbara

    MMAE 320 Thermodynamics Fall 2011 Illinois Institute of Technology Instructor: Professor Shawn C of Engineering Thermodynamics, 7th Yes, you will probably be fine with an earlier edition, please buy and read. Work and Heat 4. First Law of Thermodynamics 5. Second Law of Thermodynamics 6. Entropy 7

  19. Illinois Institute of Technology Housing & Residential Services

    E-Print Network [OSTI]

    Heller, Barbara

    Illinois Institute of Technology Housing & Residential Services Student Guide to 20102011 Room and Board Contract Cancellation The Housing & Residential Services 20102011 Room and Board, if applicable, within two business days by email. Upon MoveOut, Housing & Residential Services will update

  20. Worden, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy ResourcesWoods

  1. Wisconsin Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act State Memo Wisconsin has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA)is making a meaningful down...

  2. The Economic Impact of Aurora Health Care in Wisconsin

    E-Print Network [OSTI]

    Saldin, Dilano

    The Economic Impact of Aurora Health Care in Wisconsin A report prepared for Aurora Health Care #12; 2 ABOUT THIS REPORT This study was prepared for Aurora

  3. SEP Success Story: Helping Wisconsin Small Businesses Increase...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the Wisconsin Economic Development Corporation and funding from a grant from the Energy Department's State Energy Program, this specific program has been able to increase its...

  4. Madison, Wisconsin: Solar in Action (Brochure), Solar America...

    Broader source: Energy.gov (indexed) [DOE]

    Madison, Wisconsin Includes case studies on: * Allowing Solar Energy Systems in Historic Districts * Helping Prospective Solar Owners Make Purchase Decisions * Developing Online...

  5. Easton, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: Energy

  6. Vehicle Technologies Office Merit Review 2014: Alternative Fuel Market Development Program- Forwarding Wisconsin’s Fuel Choice

    Broader source: Energy.gov [DOE]

    Presentation given by Wisconsin Department of Administration at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  7. Illinois Jobs Index release 11/28/2011 www.real.illinois.edu page 1 For August Illinois Job Index, the state and the Nation had positive job growth, the RMW had negative job growth.

    E-Print Network [OSTI]

    Frank, Thomas D.

    Illinois Jobs Index release 11/28/2011 www.real.illinois.edu page 1 For August Illinois Job Index, the state and the Nation had positive job growth, the RMW had negative job growth. The Illinois Job Index Positive Sep 2011­ Oct 2011 Last 12 months Oct 2011 Total non-farm employment Growth Rate % Number of Jobs

  8. Illinois Jobs Index release 07/25/2011 www.real.illinois.edu page 1 For July Illinois Job Index, the state had negative job growth while the Nation and the RMW both had positive job growth.

    E-Print Network [OSTI]

    Shim, Moonsub

    Illinois Jobs Index release 07/25/2011 www.real.illinois.edu page 1 For July Illinois Job Index, the state had negative job growth while the Nation and the RMW both had positive job growth. The monthly Illinois Job Index and MSA Report are issued monthly as tools for elected officials, policy leaders

  9. Illinois Jobs Index release 3/14/2011 www.real.illinois.edu page 1 For January Illinois Job Index, the Nation, RMW and the state all had positive job growth.

    E-Print Network [OSTI]

    Anastasio, Thomas J.

    Illinois Jobs Index release 3/14/2011 www.real.illinois.edu page 1 For January Illinois Job Index, the Nation, RMW and the state all had positive job growth. The monthly Illinois Job Index and MSA Report months Jan 2011 Total non-farm employment Growth Rate % Number of Jobs Growth Rate% Number of Jobs Shadow

  10. Illinois Jobs Index release 4/25/2011 www.real.illinois.edu page 1 For March Illinois Job Index, the Nation, RMW and the state all had positive job growth.

    E-Print Network [OSTI]

    Anastasio, Thomas J.

    Illinois Jobs Index release 4/25/2011 www.real.illinois.edu page 1 For March Illinois Job Index, the Nation, RMW and the state all had positive job growth. The monthly Illinois Job Index and MSA Report months Mar 2011 Total non-farm employment Growth Rate % Number of Jobs Growth Rate% Number of Jobs Shadow

  11. Illinois Jobs Index release 06/27/2011 www.real.illinois.edu page 1 For June Illinois Job Index, the RMW had negative job growth while the Nation and the state both had positive job growth.

    E-Print Network [OSTI]

    Shim, Moonsub

    Illinois Jobs Index release 06/27/2011 www.real.illinois.edu page 1 For June Illinois Job Index, the RMW had negative job growth while the Nation and the state both had positive job growth. The monthly Illinois Job Index and MSA Report are issued monthly as tools for elected officials, policy leaders

  12. Illinois Jobs Index release 10/31/2011 www.real.illinois.edu page 1 For August Illinois Job Index, the state and the Nation had positive job growth, the RMW had negative job growth.

    E-Print Network [OSTI]

    Frank, Thomas D.

    Illinois Jobs Index release 10/31/2011 www.real.illinois.edu page 1 For August Illinois Job Index, the state and the Nation had positive job growth, the RMW had negative job growth. The Illinois Job Index Positive Aug 2011­ Sep 2011 Last 12 months Sep 2011 Total non-farm employment Growth Rate % Number of Jobs

  13. Illinois Jobs Index release 01/31/2011 www.real.illinois.edu page 1 For November Illinois Job Index, the state and the Nation had positive job growth, the RMW had negative job growth.

    E-Print Network [OSTI]

    Frank, Thomas D.

    Illinois Jobs Index release 01/31/2011 www.real.illinois.edu page 1 For November Illinois Job Index, the state and the Nation had positive job growth, the RMW had negative job growth. The Illinois Job Index Negative Nov 2011­ Dec 2011 Last 12 months Dec 2011 Total non-farm employment Growth Rate % Number of Jobs

  14. SEP Success Story: Helping Wisconsin Small Businesses Increase Sustainability

    Broader source: Energy.gov [DOE]

    The Wisconsin Profitable Sustainability Initiative (PSI) is designed to implement sustainable business practices within small- and medium-sized manufacturers. Thanks to financial support from the Wisconsin Economic Development Corporation and funding from a grant from the Energy Department’s State Energy Program, this specific program has been able to increase its outreach and support to local organizations. Learn more.

  15. The Economic Impacts of Agriculture in Wisconsin Counties

    E-Print Network [OSTI]

    Radeloff, Volker C.

    The Economic Impacts of Agriculture in Wisconsin Counties Steven Deller Department of Agricultural and Applied Economics University of Wisconsin­Madison/Extension David Williams Agricultural and Natural-Extension, Cooperative Extension program areas of Agriculture and Natural Resources and Community, Natural Resource

  16. University of Wisconsin 1998 Aspen Particle Physics Conference

    E-Print Network [OSTI]

    W. Badgett University of Wisconsin 1998 Aspen Particle Physics Conference 27­Jan­1998 Recent at the 1998 Aspen Particle Physics Winter Conference #12; W. Badgett University of Wisconsin 1998 Aspen 1998 Aspen Particle Physics Conference 27­Jan­1998 The HERA ep Collider at DESY 3 360m R=797m 360m 820

  17. Soil Test P vs. Total P in Wisconsin Soils

    E-Print Network [OSTI]

    Balser, Teri C.

    Soil Test P vs. Total P in Wisconsin Soils Larry G. Bundy & Laura W. Good Department of Soil Science University of Wisconsin-Madison #12;Introduction · Soil test P is often measured · Little information is available on total P content of soils · Why do we care about total P now? ­ Soil total P

  18. Soil Horizons Some Noteworthy Soil Science in Wisconsin

    E-Print Network [OSTI]

    Mladenoff, David

    Soil Horizons Some Noteworthy Soil Science in Wisconsin Alfred E. Hartemink The impact and benefits of soil science have only partly been documented. Here I highlight four noteworthy soil science achievements from the state of Wisconsin that took place between 1870 and the early 1980s: (i) the first soil

  19. Soil maps of Wisconsin Alfred E. Hartemink a,

    E-Print Network [OSTI]

    Mladenoff, David

    Soil maps of Wisconsin Alfred E. Hartemink a, , Birl Lowery a , Carl Wacker b a University of Wisconsin-Madison, Department of Soil Science, FD Hole Soils Lab, 1525 Observatory Drive, Madison, WI 53706 May 2012 Accepted 15 May 2012 Available online xxxx Keywords: Soil maps Historical maps Digital soil

  20. University of Wisconsin-Madison Archives and Records Management

    E-Print Network [OSTI]

    Sheridan, Jennifer

    University of Wisconsin-Madison Archives and Records Management University Records and Information Governance 2011 University of Wisconsin-Madison, Archives and Records Management http://archives.library.wisc.edu/ recmgmt@library.wisc.edu 608-262-3284 UNIVERSITY RECORDS MANAGEMENT PROGRAM The University's teaching

  1. ILLINOIS -RailTEC Optimal Grade Crossing Project Selection

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    BNSF Railway Global Level Crossing Safety Symposium - August 5th, 2014 #12;Slide 2 ILLINOIS - Rail,000,000~$1,000,000 #12;Slide 4 ILLINOIS - RailTEC Corridor Improvements Passenger rail corridor involves a series ILLINOIS - RailTEC 240 120 60 45 40 33 29 23 18 0 50 100 150 200 250 300 0 25 50 75 100 125 150 175 200 225

  2. Illinois scrap-tire management study

    SciTech Connect (OSTI)

    Wietting, N.E.

    1989-10-01T23:59:59.000Z

    Pursuant to the mandate under Public Act 85-1196 (HB 3389), the Illinois Department of Energy and Natural Resources initiated a study that reports on feasible methods for recycling of scrap motor vehicle tires which may be available to municipalities and counties. The study answers that mandate. It examines various methods for the recovery or reuse of motor vehicle tires. In addition, the study provides a detailed economic analysis of two alternative systems judged to be effective uses of scrap tires that can be implemented at this time. Finally, a discussion of policy issues is provided to assist the State of Illinois in determining which combination of uses and legislation would be an effective means of controlling the growing problem of scrap tires.

  3. University of Illinois at Urbana-Champaign's GATE Center for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Urbana-Champaign's GATE Center for Advanced Automotive Bio-Fuel Combustion Engines University of Illinois at Urbana-Champaign's GATE Center for Advanced Automotive Bio-Fuel...

  4. NNSA hosts Illinois emergency responders during technical exchange...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog NNSA hosts Illinois emergency responders during technical ......

  5. Secretary Bodman in Illinois Highlights Scientific Research Investment...

    Energy Savers [EERE]

    Bodman in Illinois Highlights Scientific Research Investments to Advance America's Innovation April 11, 2007 - 12:36pm Addthis ROMEOVILLE, IL - U.S. Secretary of Energy...

  6. Commercial and Industrial Energy Conservation Programs in Illinois

    E-Print Network [OSTI]

    Thomas, S. K.

    1980-01-01T23:59:59.000Z

    This paper presents the State of Illinois' evolving role in assisting commercial and industrial firms in identifying and improving inefficiencies in the use of energy....

  7. Illinois Home Performance: DOE REES-- Driving Demand: Successful Marketing Strategies

    Broader source: Energy.gov [DOE]

    Presents Illinois Home Performance's successful marketing strategies, from more than 100,000 direct mailings to multi-pronged online outreach, July 2012.

  8. Retooled Machines Bring New Green Jobs to Illinois | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Reinvestment Act. The Illinois Energy Plan office aims to invest and develop the state's green economy, including renewable energy sources, energy efficiency and green buildings....

  9. Ameren Illinois (Gas)- Cooking and Heating Business Efficiency Incentives

    Broader source: Energy.gov [DOE]

    Ameren Illinois offers several incentive programs that include efficient natural gas technologies. The programs are available only to non-residential customers that receive natural gas service from...

  10. Abbotsford, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratios inAS s2Wisconsin: Energy

  11. Ackley, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00AboutAchille, Oklahoma:Ackley, Wisconsin:

  12. Adell, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara,Addington, Oklahoma:Addyston,Adell, Wisconsin:

  13. Ainsworth, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) |Agawam,Ahmeek,Wisconsin: Energy Resources Jump

  14. Akan, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airway Heights, Washington:Akan, Wisconsin:

  15. Brodhead, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable and Innovative EnergyHeights, Ohio:Brodhead, Wisconsin: Energy

  16. Brokaw, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable and Innovative EnergyHeights, Ohio:Brodhead, Wisconsin:Brokaw,

  17. Burke, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,Burke County, Georgia: Energy ResourcesWisconsin:

  18. Butler, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska: Energy Resources JumpButlerWisconsin:

  19. Cambridge, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual Jump to:(RECP) in Product: GeneralWisconsin:

  20. Warner, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpageWalthallFacility | OpenWarner, Wisconsin: Energy

  1. Weston, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills,2732°, -76.7798172° ShowWisconsin: Energy

  2. Windsor, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon:WindPoleWisconsin: Energy Resources

  3. Winneconne, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville,Winneconne, Wisconsin: Energy Resources Jump

  4. Wisconsin Electric Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources Jump to: navigation, search Equivalent

  5. Wisconsin Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources Jump to: navigation, search

  6. Sherry, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: EnergySumoncle SolarNebraska:Sherry, Wisconsin: Energy

  7. Evansville, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: Energy Resources(RECP) inEuricoOpenCompanyWisconsin: Energy

  8. Evansville, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: Energy Resources(RECP) inEuricoOpenCompanyWisconsin:

  9. Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project JumpWisconsin: Energy Resources Jump to:

  10. Jefferson, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJaneJefferson, Iowa: Energy Resources JumpWisconsin:

  11. Knowlton, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermalKnowlton, Wisconsin: Energy

  12. Hartland, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformation HandbookOhio:Connecticut:Wisconsin: Energy

  13. Hendren, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|InformationInformation Station -YingeTexas:Hendren, Wisconsin:

  14. Xcel Energy Wisconsin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York:State ParksWyrulec1991)

  15. Mastermind Session: Wisconsin Energy Conservation Corporation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & GasTechnical Publications »of Energy Wisconsin Energy

  16. Ottawa, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York: Energy ResourcesOtsego,Wisconsin: Energy

  17. Porter, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards, Wisconsin:Porter County,

  18. Poygan, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards,PoseyPoudrePowers Energy ofPoygan, Wisconsin:

  19. Primrose, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for EnergyWister AreaPrime GLP IncWisconsin:

  20. Fermilab Today | University of Wisconsin Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013 NAME: University ofWisconsin June 27,

  1. Spencer, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast ColoradoOhio: Energy Resources Jump to:Wisconsin:

  2. Stettin, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt.Steep Gradient FlumeEnergyStettin, Wisconsin: Energy

  3. Stoughton, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt.SteepStimulationStoneacre EnergyLake,Wisconsin:

  4. Summit, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, searchNewOpen Energy(Colorado)Wisconsin: Energy

  5. Sussex, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co Ltd Place:Mclaren,Sussex, Wisconsin: Energy

  6. Newark, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania:Information296593°, -122.0402399° Show MapOhio:Wisconsin:

  7. Marathon, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca,Marana, Arizona: EnergyMarathonWisconsin:

  8. Maribel, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca,Marana, Arizona:Ohio:Maribel, Wisconsin:

  9. Menomonie, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee Falls, Wisconsin: Energy Resources

  10. Mentor, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee Falls, Wisconsin: Energy ResourcesMentarix Pte

  11. Cooperstown, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| ExplorationCooperstown, Wisconsin: Energy Resources

  12. Delafield, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNewDeafDeerDel Aire,Delafield, Wisconsin:

  13. Marshfield, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNew Hampshire:MarinWisconsin: Energy Resources

  14. Montrose, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County,Monticello, Indiana: EnergyMontroseWisconsin:

  15. Mosinee, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill, California:Morse, Louisiana:Mosinee, Wisconsin:

  16. Nekimi, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergy InformationNaturaSystems |LLCNekimi, Wisconsin:

  17. Avon, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:Auriga EnergyAuxinWisconsin: Energy Resources Jump

  18. Wisconsin River Power Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWindManitoba,Wisconsin River Power Company

  19. Richfield, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,Maze - MakingMinnesota: EnergyWisconsin: Energy

  20. Rockdale, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy JumpRockdale County,Wisconsin:

  1. Roxbury, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County, Michigan:RotokawaRoxborough Park,Wisconsin:

  2. Rutland, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont:Kentucky:Wisconsin: Energy Resources Jump

  3. Fulton, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604°Wisconsin: Energy Resources Jump to: navigation,

  4. Genesee, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpenEnergyOrderWisconsin: Energy

  5. Vienna, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeter Logging Jump to:Vicksburg,VideoconWisconsin: Energy

  6. University of Illinois at Urbana Champaigns GATE Center forAdvanced...

    Energy Savers [EERE]

    of Illinois at Urbana Champaigns GATE Center forAdvanced Automotive Bio-Fuel Combustion Engines University of Illinois at Urbana Champaigns GATE Center forAdvanced...

  7. Element flow in aquatic systems surrounding coal-fired power plants. Wisconsin power plant impact study

    SciTech Connect (OSTI)

    Andren, A.; Anderson, M.; Loux, N.; Talbot, R.

    1980-07-01T23:59:59.000Z

    Water quality parameters of a 192-ha (480-acre) cooling pond adjacent to the Columbia Generating Station, Portage, Wisconsin, have been investigated. Analyses were made for major and minor elements, nutrients, pH, alkalinity, O2, chlorogranics, phenols, and polyaromatic hydrocarbons. Similar parameters were also measured in the nearby fly ash discharge basin and its associated drainage stream. Laboratory dissolution and precipitation studies of fly ash were performed in an effort to understand the chemistry of the discharged ash water and its potential effects on receiving waters. Mass balance calculations were made and are presented to ascertain whether the cooling pond acts as an efficient sink for inorganic and organic compounds, and if so, what the fate of these compounds is.

  8. Brookfield, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable and Innovative EnergyHeights,Illinois: Energy Resources

  9. Edgerton, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport,deEdgecombe-Martin County E

  10. Elderon, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh UniversityMirage,Reno,Elaine,Elberta,Elderon,

  11. Mazomanie, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy ResourcesMavi Innovations IncMayfield,Illinois:

  12. Franzen, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° Show Map LoadingIllinois:Frannie, Wyoming:

  13. Leakage Risk Assessment of CO2 Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois

    E-Print Network [OSTI]

    Mazzoldi, A.

    2014-01-01T23:59:59.000Z

    International Conference on Clean Coal Technologies for ourof Sequestration, Hydrogen, and Clean Coal Fuels, National

  14. Leakage Risk Assessment of CO2 Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois

    E-Print Network [OSTI]

    Mazzoldi, A.

    2014-01-01T23:59:59.000Z

    leak from an above-ground pipeline, the jet flow of CO 2 impinges on the ground without reconverting to gas.

  15. Leakage Risk Assessment of CO2 Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois

    E-Print Network [OSTI]

    Mazzoldi, A.

    2014-01-01T23:59:59.000Z

    S.M. , 2007, Natural Gas Pipeline Technology Overview.high-pressure natural- gas pipelines: J. Loss Prevention inrisk assessments of CO 2 pipelines, in Elsevier, ed. , 9th

  16. Leakage Risk Assessment of CO2 Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois

    E-Print Network [OSTI]

    Mazzoldi, A.

    2014-01-01T23:59:59.000Z

    Conference on Clean Coal Technologies for our Futureand Clean Coal Fuels, National Energy Technology Laboratory.

  17. Comparison of Home Retrofit Programs in Wisconsin

    SciTech Connect (OSTI)

    Cunningham, K.; Hannigan, E.

    2013-03-01T23:59:59.000Z

    To explore ways to reduce customer barriers and increase home retrofit completions, several different existing home retrofit models have been implemented in the state of Wisconsin. This study compared these programs' performance in terms of savings per home and program cost per home to assess the relative cost-effectiveness of each program design. However, given the many variations in these different programs, it is difficult to establish a fair comparison based on only a small number of metrics. Therefore, the overall purpose of the study is to document these programs' performance in a case study approach to look at general patterns of these metrics and other variables within the context of each program. This information can be used by energy efficiency program administrators and implementers to inform home retrofit program design. Six different program designs offered in Wisconsin for single-family energy efficiency improvements were included in the study. For each program, the research team provided information about the programs' approach and goals, characteristics, achievements and performance. The program models were then compared with performance results -- program cost and energy savings -- to help understand the overall strengths and weaknesses or challenges of each model.

  18. Novel carbons from Illinois coal for natural gas storage. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Rostam-Abadi, M.; Sun, J.; Lizzio, A.A. [Illinois State Geological Survey, Champaign, IL (United States); Fatemi, M. [Amoco Research Center, Naperville, IL (United States)

    1994-12-31T23:59:59.000Z

    The goal of this project is to develop a technology for producing microengineered adsorbent carbons from Illinois coal and to evaluate the potential application of these novel materials for storing natural gas for use in emerging low pressure, natural gas vehicles (NGV). Potentially, about two million tons of adsorbent could be consumed in natural gas vehicles by year 2000. If successful, the results obtained in this project could lead to the use of Illinois coal in a growing and profitable market that could exceed 6 million tons per year. During this reporting period, a pyrolysis-gasification reactor system was designed and assembled. Four carbon samples were produced from a {minus}20+100 mesh size fraction of an Illinois Basin Coal (IBC-106) using a three-step process. The three steps were: coal oxidation in air at 250 C, oxicoal (oxidized coal) devolatilization in nitrogen at 425 C and char gasification in 50% steam-50% nitrogen at 860 C. These initial tests were designed to evaluate the effects of pre-oxidation on the surface properties of carbon products, and to determine optimum reaction time and process conditions to produce an activated carbon with high surface area. Nitrogen-BET surface areas of the carbon products ranged from 700--800 m{sup 2}/g. Work is in progress to further optimize reaction conditions in order to produce carbons with higher surface areas. A few screening tests were made with a pressurized thermogravimetric (PTGA) to evaluate the suitability of this instrument for obtaining methane adsorption isotherms at ambient temperature and pressures ranging from one to 30 atmospheres. The preliminary results indicate that PTGA can be used for both the adsorption kinetic and equilibrium studies.

  19. Spring 2011 University of Illinois at Urbana-Champaign

    E-Print Network [OSTI]

    Liu, Gang "Logan"

    Spring 2011 University of Illinois at Urbana-Champaign ELECTRICAL AND COMPUTER ENGINEERING 440...................................................................................... 9-11 Prerequisite: Physics 214 and credit or concurrent registration in ECE 329. Graduate credit not allowed toward degrees in electrical and computer engineering. 3 HOURS. #12;ECE 440 Univ. Illinois Urbana

  20. InsideIllinoisFeb. 21, 2013 Vol. 32, No. 15

    E-Print Network [OSTI]

    Lewis, Jennifer

    thousands of research studies, genetically modified foods are overregulated. PAGE 4 bAM! KA-PoW! A new study.illinois.edu/ii/ · To subscrIbe: go.illinois.edu/iisubscribe regulating GM foods A U. of I. researcher believes that after

  1. Discoveries in Photosynthesis University of Illinois at Urbana-Champaign, Urbana, Illinois, U.S.A.

    E-Print Network [OSTI]

    Govindjee "Gov"

    Discoveries in Photosynthesis Edited by Govindjee University of Illinois at Urbana, J.F. Allen and Govindjee A personal tribute to an eminent photosynthesis researcher, Martin D. Kamen. Editorials Celebrating the Golden Jubilee of the 1952 Conference on Photosynthesis (Gatlinburg, Tennessee

  2. Research on improved and enhanced oil recovery in Illinois through reservoir characterization, March 28, 1992--June 28, 1992

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-01-01T23:59:59.000Z

    This project will provide information that can maximize hydrocarbon production, minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir's capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of bypassed, mobile oil. Accomplishment for this period are summarized for the following tasks: mapping, cross-sections; subsurface depo-systems; outcrop studies; oil and gas development maps; engineering work; SEM/EDX; and clay minerals.

  3. Research on improved and enhanced oil recovery in Illinois through reservoir characterization, March 28, 1992--June 28, 1992

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-09-01T23:59:59.000Z

    This project will provide information that can maximize hydrocarbon production, minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir`s capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of bypassed, mobile oil. Accomplishment for this period are summarized for the following tasks: mapping, cross-sections; subsurface depo-systems; outcrop studies; oil and gas development maps; engineering work; SEM/EDX; and clay minerals.

  4. Production of carbon molecular sieves from Illinois coal. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect (OSTI)

    Lizzio, A.A.; Rostam-Abadi, M. [Illinois State Geological Survey, Champaign, IL (United States)

    1993-09-01T23:59:59.000Z

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recover processes. The overall objective of this project is to determine whether Illinois Basin coals are suitable feedstocks for the production of CMS and to evaluate the potential application of these products in commercial gas separation processes. In Phase I of this project, gram quantities of char were prepared from Illinois coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. Chars having surface areas of 1500--2100 m{sup 2}/g were produced by chemical activation using potassium hydroxide (KOH) as the activant. These high surface area chars had more than twice the adsorption capacity of commercial molecular sieves. The kinetics of adsorption of various gases, e.g., N{sub 2}, O{sub 2}, CO{sub 2}, CH{sub 4}, CO and H{sub 2}, on these chars at 25{degrees}C was determined. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4} and CH{sub 4}/H{sub 2} separation; both a high adsorption capacity and selectivity were achieved. The full potential of these materials in commercial gas separations has yet to be realized. In Phase II of this project, larger quantities of char are being prepared from Illinois coal in a batch fluidized-bed reactor and in a continuous rotary tube kiln.

  5. Brownfield landfill remediation under the Illinois EPA site remediation program

    SciTech Connect (OSTI)

    Beck, J.; Bruce, B.; Miller, J.; Wey, T.

    1999-07-01T23:59:59.000Z

    Brownfield type landfill remediation was completed at the Ft. Sheridan Historic Landmark District, a former Army Base Realignment and Closure Facility, in conjunction with the future development of 551 historic and new homes at this site. The project was completed during 1998 under the Illinois Environmental Protection Agency (Illinois EPA) Site Remediation Program. This paper highlights the Illinois EPA's Site Remediation Program and the remediation of Landfills 3 and 4 at Fort Sheridan. The project involved removal of about 200,000 cubic yards of landfill waste, comprised of industrial and domestic refuse and demolition debris, and post-removal confirmation sampling of soils, sediment, surface water, and groundwater. The sample results were compared to the Illinois Risk-Based Cleanup levels for residential scenarios. The goal of the removal project was to obtain a No Further Remediation letter from the Illinois EPA to allow residential development of the landfill areas.

  6. Gasifier feed - Tailor-made from Illinois coals

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III (Illinois State Geological Survey, Champaign, IL (United States)); Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. (Illinois State Geological Survey, Champaign, IL (United States) DESTEC Energy (United States) Williams Technology, (United States) Illinois Coal Association (United States))

    1992-01-01T23:59:59.000Z

    The main purpose of this project is to produce a feedstock from preparation plant fines from an illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is higher not only because of the higher Btu value of the coal but also because Illinois coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for Illinois coal as compared to approximately 45% for most western coals.

  7. Winfield, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon:WindPoleWisconsin:

  8. Winnetka, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville,Winneconne, Wisconsin:080834°, -87.735895°

  9. Woodridge, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources JumpWood,WoodfordLandfillWoodmoor,

  10. Elmhurst, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,Energy Information Elkhorn HotGrove, Wisconsin:Elmhurst,

  11. Illinois Turning Landfill Trash into Future Cash

    Broader source: Energy.gov [DOE]

    Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the electricity could reach $1 million annually.

  12. Energy Incentive Programs, Illinois | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFact SheetColoradoGeorgiaIllinois

  13. Lemont, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:New York: EnergyVillage, NewLemhiIllinois:

  14. Loraine, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole, Nebraska:Longboard CapitalEnergyLoraine, Illinois:

  15. Granite City, Illinois, Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ," POSTGranite City, Illinois,

  16. Abingdon, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratiosAbernathy,Illinois: Energy

  17. Brookfield, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable and Innovative EnergyHeights,Illinois: Energy Resources Jump to:

  18. Buffalo, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda, Washington: Energy ResourcesBuffalo, Illinois: Energy

  19. Williamsville, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho:Wildwood Crest,9179271°,Illinois: Energy Resources

  20. Willowbrook, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho:WildwoodWilloughby, Ohio: EnergyPark,Illinois:

  1. Sherman, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: EnergySumoncle SolarNebraska: EnergyIllinois: Energy

  2. Skokie, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG Solar GmbHKentucky:SinosolSitalceaSkokie, Illinois:

  3. Illinois Sustainable Technologies Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinois Institute for RuralSustainable

  4. Illinois/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind FarmInformationIllinois/Wind Resources <

  5. Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind FarmInformationIllinois/Wind

  6. Hillside, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey: Energy Resources JumpHillside, Illinois:

  7. Pawnee, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,Parle Biscuits PvtPaw Paw, Illinois:Oklahoma:

  8. Peotone, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,ParleInformationPenobscotPeotone, Illinois: Energy

  9. Phoenix, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources JumpPfhotonikaPhoenicia, New York:JumpIllinois:

  10. Plainfield, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S A JumpPiute County, Utah:PlainIllinois:

  11. Plainville, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S A JumpPiute County,PCOR JumpIllinois:

  12. Normal, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:NeppelsourceNormal, Illinois: Energy Resources

  13. Elburn, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh UniversityMirage,Reno,Elaine,Elberta,

  14. Elwood, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,Energy Information ElkhornElwood, Illinois: Energy Resources

  15. Matteson, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy Resources JumpMastic, NewMattapoisett,Matteson, Illinois:

  16. Maywood, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy ResourcesMavi Innovations IncMayfield,Illinois: Energy

  17. Mechanicsburg, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°, -88.864698° ShowMeade County,Place,PageIllinois:

  18. Mendon, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°,Meeteetse,Illinois:Mendocino County,Mendon,

  19. Crete, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings LlcCrenshawCrete, Illinois: Energy

  20. Darien, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database Data and Resources11-DNADalyDanishDarajatDarien, Illinois:

  1. Symerton, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0 - WarehousesSymerton, Illinois: Energy

  2. Ameren Illinois Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan Blanch GreenAmeren Illinois Company Jump to:

  3. Mokena, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysisMogadore, Ohio:Mokena, Illinois:

  4. Naperville, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy ResourcesOceanNanostellar Inc JumpNapaIllinois: Energy

  5. Berkeley, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina: Energy Resources JumpWest Virginia:Illinois:

  6. Quincy, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublicPutnamQuailValley, Arizona:Illinois:

  7. Rochester, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio: EnergyTennessee:Rochelle,Illinois: Energy

  8. Roselle, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County, Michigan: Energy ResourcesRoselle, Illinois:

  9. Geneva, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/PuestaGeneva County, Alabama:Illinois:

  10. Columbus, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York:Governor s(Redirected fromElectricIllinois: Energy

  11. US hydropower resource assessment for Wisconsin

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1996-05-01T23:59:59.000Z

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Wisconsin.

  12. Adapting to Climate Change in WisconsinAdapting to Climate Change in Wisconsin Strategies for Conservation ProfessionalsStrategies for Conservation Professionals

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Adapting to Climate Change in WisconsinAdapting to Climate Change in Wisconsin ­ Strategies Association December 9, 2010 David S. Liebl #12;Overview · Understanding climate change · Wisconsin's changing Vegetation indicators #12;Indicators of a changing climate J. Magnuson Source: IPCC 2007 Potter, et al

  13. Department of Agricultural and Applied Economics Cooperative ExtensionCooperative Extension University of Wisconsin-ExtensionUniversity of Wisconsin-Extension

    E-Print Network [OSTI]

    Williams, Justin

    the Drought ·The Wisconsin Farm Economy · Current Outlook · Feeding Nine Billion Department of Agricultural of agricultural and applied economics, university of Wisconsin-Madison. Because of the large and complex effects of the 2012 drought on Wisconsin agriculture, we begin this issue with a summary of the nature and impacts

  14. University of Wisconsin-Madison Improves Fuel Efficiency in Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    of Wisconsin-Madison completed an EERE-supported project to develop high-efficiency combustion engines for light- and heavy-duty vehicles. By combining a number of different...

  15. Towards sustainable land stewardship : reframing development in Wisconsin's dairy gateway

    E-Print Network [OSTI]

    Finlayson, Ian James, 1974-

    2005-01-01T23:59:59.000Z

    Changing economic realities in the dairy industry have profoundly affected the viability of the dairy farming community in Wisconsin. In addition they face mounting local opposition to dairy modernization and expansion, ...

  16. Regulation of Dams and Bridges Affecting Navigable Waters (Wisconsin)

    Broader source: Energy.gov [DOE]

    Chapter 31 of the Wisconsin Statutes lays out the regulations relevant to dams and bridges on or near navigable waters. This statute establishes that the Department of Natural Resources has...

  17. University of Wisconsin-Madison Department of Agricultural & Applied Economics

    E-Print Network [OSTI]

    Radeloff, Volker C.

    University of Wisconsin-Madison Department of Agricultural & Applied Economics Staff Paper No. 561 and Nguyen Van Chan __________________________________ AGRICULTURAL & APPLIED ECONOMICS the nominal objectives-- reduced growth rates of air pollution, water pollution and solid waste--will also

  18. Annual Report Co-Directors, University of Wisconsin-Madison

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Annual Report 2007 Co-Directors, University of Wisconsin-Madison Dr. Molly Carnes, Jean Manchester .................................................................................................9 C. Funding Sources.............................................................................................12 V. WISELI Management and Infrastructure............12 A. Funding Sources

  19. Documentation of the database: Wisconsin power plant impact study

    SciTech Connect (OSTI)

    Shacham, S.; Chesters, G.; McLellan, H.

    1984-01-01T23:59:59.000Z

    This volume describes the data base of the first phase of the Wisconsin power plant impact study. Data were collected by investigators at the University of Wisconsin-Madison from 1971 to 1978 during their study of the Columbia Generating Station near Portage, Wisconsin. This volume serves as a communications link within the Wisconsin power plant impact study and as a means of making these data available to outside users for further analysis and synthesis. This volume provides a brief description of the data sets; a more extensive documentation of these sets are being published by the U.S. Environmental Protection Agency. The number accompanying each data set is unique and serves to identify a data set within the data base.

  20. University of Wisconsin-Madison Department of Agricultural & Applied Economics

    E-Print Network [OSTI]

    Radeloff, Volker C.

    Paper No. 481 Biodiesel Feasibility Study: An Evaluation of Biodiesel Feasibility in Wisconsin By T notice appears on all such copies. #12;Biodiesel Feasibility Study: An Evaluation of Biodiesel IS BIODIESEL.......................................................................6 ADVANTAGES OF BIODIESEL

  1. University of Wisconsin Water Resources Institute Annual Technical Report

    E-Print Network [OSTI]

    modeling studies and applications designed to preserve or improve groundwater quality. ChargedUniversity of Wisconsin Water Resources Institute Annual Technical Report FY 2001 Introduction into the following four thematic areas: groundwater, surface water, groundwater/surface water interactions

  2. University of Wisconsin Water Resources Institute Annual Technical Report

    E-Print Network [OSTI]

    modeling studies and applications designed to preserve or improve groundwater quality. The following reportUniversity of Wisconsin Water Resources Institute Annual Technical Report FY 2000 Introduction: groundwater, surface water, groundwater/surface water interactions, and drinking water initiatives. Faculty

  3. Water Basins Civil Engineering

    E-Print Network [OSTI]

    Provancher, William

    Water Basins Civil Engineering Objective · Connect the study of water, water cycle, and ecosystems with engineering · Discuss how human impacts can effect our water basins, and how engineers lessen these impacts: · The basic concepts of water basins are why they are important · To use a topographic map · To delineate

  4. Microsoft Word - Illinois State DOE Exec Summary.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window SHGC: .45 Heat Pump HSPF: 9.2 Heat Pump SEER: 17.8 Water Heater EF: .93 Key Statistics: Location: Normal, Illinois 2009 IECC Climate Zone: 5A Square Feet: 1,428 Number of...

  5. Economic Development for a Growing Economy Tax Credit Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Economic Development for a Growing Economy Tax Credit Program encourages companies to remain, expand, or locate in Illinois. The program provides tax credits to qualifying companies equal to...

  6. Turning methane into usable liquid fuel: Illinois Institute of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    liquid fuel: Illinois Institute of Technology and Argonne to receive 2M for hybrid fuel cells August 4, 2014 Tweet EmailPrint Researchers from the US Department of Energy's...

  7. InsideIllinoisMarch 6, 2014 Vol. 33, No. 16

    E-Print Network [OSTI]

    Lewis, Jennifer

    to enact positive changes in agricul- tural landscapes, particularly through second- generation perennial,saysJodyEndres,aprofessorofbioenergy,environmentalandnatural resourceslawatIllinois. it we decide to devote to biofuels crops, particularly in areas of water stress

  8. Alcohol, Tobacco, and Other Drug Use in Illinois: Prevalence

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Assessment Program. Rod R. Blagojevich, Governor #12;#12;Alcohol, Tobacco, and Other Drug Use in Illinois by the federal Office of Management and Budget. Theodora Binion-Taylor, Associate Director 100 West Randolph

  9. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439

    E-Print Network [OSTI]

    Harilal, S. S.

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439 ANL-ET/02-23 DEVELOPMENT. Hassanein Energy Technology Division July 2002 #12;Argonne National Laboratory, a U.S. Department of Energy

  10. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439

    E-Print Network [OSTI]

    Harilal, S. S.

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439 ANL-ET/02. Hassanein Energy Technology Division July 2002 #12;Argonne National Laboratory, a U.S. Department of Energy

  11. area cordova illinois: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.0: Using Web 2.0 to Connect with Donors Lynne M. Thomas, Northern Illinois University Society of American Archivists 2009 Conference Session 401: The Potential of Web 2.0 for...

  12. InsideIllinoisNov. 21, 2013 Vol. 33, No. 10

    E-Print Network [OSTI]

    Lewis, Jennifer

    by the Illinois Department of Commerce and Eco- nomic Opportunity. The office is expected to solidify and expand relation- ships with Chinese academic and business leaders, Khanna said. An inauguration ceremony

  13. Ichnotaxonomic assessment of Mazon Creek area trace fossils, Illinois, USA

    E-Print Network [OSTI]

    LoBue, David J.

    2010-08-12T23:59:59.000Z

    The Francis Creek Shale Member (FCSM) of the Mid-Pennsylvanian Carbondale Formation along Mazon Creek in northern Illinois is known for soft-bodied organisms preserved within siderite concretions. Trace fossils, though ...

  14. Status of Wisconsin Agriculture, 2012 An annual report by the Department of Agricultural and

    E-Print Network [OSTI]

    Radeloff, Volker C.

    Status of Wisconsin Agriculture, 2012 An annual report by the Department of AgriculturalSconSin agriculture 2012 i #12;ii StatuS of WiSconSin agriculture 2012 #12;Preface Status of Wisconsin Agriculture is an annual agricultural situation and outlook report authored (except where noted) by faculty

  15. The Carbon Balance of Bioenergy Production in Wisconsin Keith R. Cronin

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    of the GREET model. Finally, I am grateful to the Wisconsin Focus on Energy program for funding this research potentially supply Wisconsin with a domestic energy source and supplement income for Wisconsin producers from the National Agricultural Statistics Service (NASS) and crop enterprise budgets, produced

  16. Department of Chemical and Biological Engineering University of WisconsinMadison

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Department of Chemical and Biological Engineering University of Wisconsin­Madison Annual Report 2008-09 #12;Department of Chemical and Biological Engineering University of Wisconsin­Madison 1415://www.engr.wisc.edu/che DEPARTMENT OF CHEMICAL AND BIOLOGICAL ENGINEERING University of Wisconsin­Madison Annual Report for 2008

  17. Status of Wisconsin Agriculture, 2013 An annual report by the Department of Agricultural and Applied

    E-Print Network [OSTI]

    Williams, Justin

    of agricultural and applied economics, university of Wisconsin-Madison. Because of the large and complex effects of the 2012 drought on Wisconsin agriculture, we begin this issue with a summary of the nature and impactsSconSin agriculture 2013 #12;StatuS of WiSconSin agriculture 2013--executiVe SuMMary iii Drought, high temperatures

  18. Survey of Job Openings in the 7 Counties of Southeastern Wisconsin: Week of May 25, 2009

    E-Print Network [OSTI]

    Saldin, Dilano

    Survey of Job Openings in the 7 Counties of Southeastern Wisconsin: Week of May 25, 2009 Prepared by the Department of Labor Employment and Training WIRED grant." #12;Job Openings Survey for Southeastern Wisconsin and Training Institute 1 Survey of Job Openings in the 7 Counties of Southeastern Wisconsin: Week of May 25

  19. River Basin Commissions (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

  20. Wolf River, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources Jump to:WiseEnergyRiver, Wisconsin: Energy

  1. Portage County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards, Wisconsin: EnergyReading,Wisconsin: Energy

  2. Monitoring littoral sediment accretion and erosion at Forest Park Beach, Lake Forest, Illinois

    SciTech Connect (OSTI)

    Trask, C.B.; Chrzastowski, M.J. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01T23:59:59.000Z

    Forest Park Beach, a coastal-development project on the shore of Lake Michigan at Lake Forest, Illinois, consists of a series of segmented, rubble-mound breakwaters that form four beach cells and a small-boat launch basin. The project was designed to have minimal impact on local littoral-transport processes. The 9-hectare footprint extends no more than 107 m lakeward of the preconstruction shoreline; the arcuate plan for the project was designed to facilitate littoral sediment bypass. In order to evaluate the project's impact on littoral processes, the City of Lake Forest is required to conduct a monitoring program to identify any adverse effects such as updrift accretion and downdrift erosion. Annual and semi-annual monitoring has been underway since project completion in 1987. In 1991, the Illinois State Geological Survey (ISGS) began independent data collection and review of the annual monitoring data. As of the 1992 ISGS monitoring, the project is allowing for the development of natural bypass by the littoral-sediment stream. A bar occurs in 0.9 to 1.2 m of water on the north side of the project and continues as an accretionary wedge along the lakeward side of the breakwaters for approximately two-thirds of the project length. One adverse impact is that the beach cells are acting as traps for fine sand, with the greatest entrapment in the three northern (updrift) cells. Comparison of 1987 and 1992 profiles from the beach cells indicates nearshore accretion of as much as two meters. To date no detrimental effects to shoreline properties have been documented downdrift of the project.

  3. Nicor, Peoples, and North Shore Gas- Small Business Energy Savings Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Energy Efficiency Loan Program, administered through AFC First and funded by participating utilities, provides loans to customers of Ameren Illinois, ComEd, Nicor, North Shore Gas, and...

  4. Energy Impact Illinois - Final Technical Report

    SciTech Connect (OSTI)

    Olson, Daniel [Senior Energy Efficiency Planner] [Senior Energy Efficiency Planner; Plagman, Emily [Senior Energy Planner] [Senior Energy Planner; Silberhorn, Joey-Lin [Energy Efficiency Program Assistant] [Energy Efficiency Program Assistant

    2014-02-18T23:59:59.000Z

    Energy Impact Illinois (EI2) is an alliance of government organizations, nonprofits, and regional utility companies led by the Chicago Metropolitan Agency for Planning (CMAP) that is dedicated to helping communities in the Chicago metropolitan area become more energy efficient. Originally organized as the Chicago Region Retrofit Ramp-Up (CR3), EI2 became part of the nationwide Better Buildings Neighborhood Program (BBNP) in May 2010 after receiving a $25 million award from the U.S. Department of Energy (DOE) authorized through the American Recovery and Reinvestment Act of 2009 (ARRA). The program’s primary goal was to fund initiatives that mitigate barriers to energy efficiency retrofitting activities across residential, multifamily, and commercial building sectors in the seven-county CMAP region and to help to build a sustainable energy efficiency marketplace. The EI2 Final Technical Report provides a detailed review of the strategies, implementation methods, challenges, lessons learned, and final results of the EI2 program during the initial grant period from 2010-2013. During the program period, EI2 successfully increased direct retrofit activity in the region and was able to make a broader impact on the energy efficiency market in the Chicago region. As the period of performance for the initial grant comes to an end, EI2’s legacy raises the bar for the region in terms of helping homeowners and building owners to take action on the continually complex issue of energy efficiency.

  5. Production of carbon molecular sieves from Illinois coal. Final technical report, 1 September, 1992--31 August 1993

    SciTech Connect (OSTI)

    Lizzio, A.A.; Rostam-Abadi, M. [Illinois State Geological Survey, Champaign, IL (United States)

    1993-12-31T23:59:59.000Z

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recovery processes. The overall objective of this project is to determine whether Illinois Basin coals are a suitable feedstock for the production of CMS and to evaluate the potential application of these products in commercial gas separation processes. In Phase 1 of this project, gram quantities of char were prepared from Illinois coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. Chars having surface areas of 1,500--2,100 m{sup 2}/g were produced by chemical activation using potassium hydroxide (KOH) as the chemical activant. These high surface area (HSA) chars had more than twice the adsorption capacity of commercial molecular sieves. The kinetics of adsorption of various gases, e.g., O{sub 2}, N{sub 2}, CO{sub 2}, CH{sub 4}, and H{sub 2}, on these chars at 25 C was determined. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4} and CH{sub 4}/H{sub 2} separation. In Phase 2 of this project, larger quantities of char are being prepared from Illinois coal in a batch fluidized-bed reactor and in a continuous rotary tube kiln. The ability of these chars to separate binary gas mixtures is tested in an adsorption column/gas chromatography system. Oxygen and nitrogen breakthrough curves obtained for selected chars were compared to those of a commercial zeolite. Selected chars were subjected to a nitric acid oxidation treatment. The air separation capability of nitric acid treated char was strongly dependent on the outgassing conditions used prior to an O{sub 2}/N{sub 2} adsorption experiment. An outgassing temperature of 130--160 C produced chars with the most favorable air separation properties. 61 refs.

  6. K Basin safety analysis

    SciTech Connect (OSTI)

    Porten, D.R.; Crowe, R.D.

    1994-12-16T23:59:59.000Z

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  7. HEALTHIER WISCONSIN PARNTERSHIP PROGRAM Direct, Indirect and Unallowable Costs

    E-Print Network [OSTI]

    HEALTHIER WISCONSIN PARNTERSHIP PROGRAM Direct, Indirect and Unallowable Costs Direct and Indirect Costs The decision of whether a cost is direct or indirect is based on the ability to specifically identify the cost with the project, rather than on the nature of the goods and services. Failure to mention

  8. Climate Change Science and Impacts in Northeast Wisconsin

    E-Print Network [OSTI]

    Sheridan, Jennifer

    in = Energy out Absorbed by ozone Absorbed by the earth Greenhouse effect UV radiation Solar radiation. Liebl Support provided by NOAA-SARP, Wisconsin Sea Grant, UW-Extension and UW-Madison College" ­ The Cornhill Magazine, 1860 Köppen climate subdivisions -1884 (30 year averages) NOAA #12;Visible Light Energy

  9. UNIVERSITY OF WISCONSIN MADISON 2014 YOUTH EVENT HEALTH FORM

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    -the-counter medications are available from camp health staff. Name of primary care provider: Phone Number: Medications 111/8/2013 UNIVERSITY OF WISCONSIN ­ MADISON 2014 YOUTH EVENT HEALTH FORM Event Name: Dates of insurance card here) Policy #: HEALTH INFORMATION (CHECK ALL THAT APPLY) Asthma Is an inhaler required

  10. UNIVERSITY OF WISCONSIN-MADISON UNIVERSITY HEALTH SERVICES

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    (s) authorized by this form to receive your health information are not health care providers or other people whoUNIVERSITY OF WISCONSIN-MADISON UNIVERSITY HEALTH SERVICES HIM (Medical Records) 333 East Campus FOR RELEASE OF OCCUPATIONAL HEALTH RECORDS 1. Regarding Patient COMPLETE IN FULL (See reverse side for further

  11. UNIVERSITY OF WISCONSIN-MADISON CENTER FOR THE MATHEMATICAL SCIENCES

    E-Print Network [OSTI]

    Liblit, Ben

    as well as in multivariate polynomial interpolation. In this paper we characterize the dual space P are discussed as well. In section 2, after defining the space P and its associated differential operators, weUNIVERSITY OF WISCONSIN-MADISON CENTER FOR THE MATHEMATICAL SCIENCES On two polynomial spaces

  12. University of Wisconsin-Madison Department of Agricultural & Applied Economics

    E-Print Network [OSTI]

    Radeloff, Volker C.

    April 2008 The Effect of Ethanol Production on the U.S. National Corn Price By T. Randall Fortenbery that this copyright notice appears on all such copies. #12;The Effect of Ethanol Production on the U.S. National Corn, University of Wisconsin at Madison. Senior authorship not assigned. #12;The Effect of Ethanol Production

  13. INNOVATIONS Electrical and Computer Engineering University ofWisconsin-Madison

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    INNOVATIONS Electrical and Computer Engineering University ofWisconsin-Madison 2013 www and students of the UW-Madison Department of Electrical and Computer Engineering continue to push boundaries it possible to give students hands-on experience with electrical and computer engineering concepts earlier

  14. CenterPulse Wisconsin National Primate Research Center

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Welcome to our year in review, CenterPulse. We hope you enjoy the new format. In making our news more Primate Center Seminars 15 What's new at the WNPRC? 2009 Year in Review Since our last newsletter as assistant director, for the many people they have CenterPulse 2009 Year in Review 1 Views of the Wisconsin

  15. Wisconsin DOT 1. Briefly summarize your current pavement smoothness requirements.

    E-Print Network [OSTI]

    Wisconsin DOT 1. Briefly summarize your current pavement smoothness requirements. We currently-contact profiling equipment. Most PCC pavements are profiled using lightweight profilers when the project is still closed to traffic. Most HMA pavements are profiled using high speed profilers (with the same measuring

  16. University of Wisconsin-Madison Department of Agricultural & Applied Economics

    E-Print Network [OSTI]

    Radeloff, Volker C.

    support for this work was provided by the Center for World Affairs and the Global Economy (WAGE section I very briefly describe the "globalization" of the world economy and what it does and does August 2010 Economic Impact of Foreign Exports on the Wisconsin Economy By Steven Deller

  17. Department of Spanish and Portuguese University of Wisconsin-Madison

    E-Print Network [OSTI]

    Scharer, John E.

    Department of Spanish and Portuguese University of Wisconsin-Madison 1018 Van Hise Hall 1220 Linden Drive Madison, WI 53706 Tel: 608-262-2093 h p://spanport.lss.wisc.edu SPANISH Why Study Spanish? The Spanish-speaking popula on of the United States is the country's largest growing minority. It is forecast

  18. Department of Spanish and Portuguese University of Wisconsin-Madison

    E-Print Network [OSTI]

    Scharer, John E.

    Department of Spanish and Portuguese University of Wisconsin-Madison 1018 Van Hise Hall 1220 Linden. Contact the Department of Spanish and Portuguese for details. 2013-2014 Courses Open to Incoming Students on & Composi on PORTUG 301 Intensive Portuguese for Spanish speakers PORTUG 311 Fourth Year Composi

  19. UNIVERSITY HEALTH SERVICES UNIVERSITY OF WISCONSIN-MADISON

    E-Print Network [OSTI]

    Scharer, John E.

    are pre-paid by the Student Health Fee. I understand that I will be informed if a health care providerUNIVERSITY HEALTH SERVICES UNIVERSITY OF WISCONSIN-MADISON 333 East Campus Mall Madison, WI 53715-1381 http://www.uhs.wisc.edu MR# Name BD Gender ID# Date University Health Services (UHS) Information

  20. TRANSFER AGREEMENT SCHOOL OF INFORMATION STUDIES AT UNIVERSITY OF WISCONSIN

    E-Print Network [OSTI]

    Saldin, Dilano

    : Information Security Specialist SCHOOL OF INFORMATION STUDIES AT UNIVERSITY OF WISCONSIN ­ MILWAUKEE: (SOIS at UWM) B.S. in Information Resources RATIONALE: The Information Security Specialist associate degree will prepare you to develop information security strategies, perform risk analysis, install security software

  1. COLLEGE OF ENGINEERING UNIVERSITY OF WISCONSIN-MADISON ANNUAL REPORT

    E-Print Network [OSTI]

    will be in finding substitutes for some critical materials NickBerard 3 that are often concentrated within one UNIVERSITY OF WISCONSIN­MADISON #12;Message from the Dean Ian Robertson: On becoming an engine of materials research innovation Materials play such a foundational role in advancing civilization

  2. University of Wisconsin-Madison Department of Agricultural & Applied Economics

    E-Print Network [OSTI]

    Radeloff, Volker C.

    * Ian Coxhead** University of Wisconsin Sisira Jayasuriya University of Melbourne "Environmental damage there is more than one sectoral source of environmental damage, a policy or price shock may have unexpected environmental and welfare results. Key Words: Trade policy, pollution, deforestation, developing countries. JEL

  3. University of Wisconsin Faculty Document 1994 Madison 7 May 2007

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    University of Wisconsin Faculty Document 1994 Madison 7 May 2007 As adopted by the Faculty Senate IN MANAGING THEIR PUBLISHING RIGHTS AND AGREEMENTS Submitted by the Library Committee Background The UW authors in managing their publishing rights and agreements. Institutions and organizations around

  4. Research on improved and enhanced oil recovery in Illinois through reservoir characterization. [Quarterly technical report], December 28, 1991--March 28, 1992

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-04-01T23:59:59.000Z

    This project will provide information that can maximize hydrocarbon production minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir`s capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of by-passed, mobile oil.

  5. Gasifier feed - Tailor-made from Illinois coals

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III (Illinois State Geological Survey, Champaign, IL (United States)); Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. (Illinois State Geological Survey, Champaign, IL (United States) DESTEC Energy (United States) Williams Technology (United States) Illinois Coal Association (United States))

    1992-01-01T23:59:59.000Z

    The main purpose of this project is to produce a feedstock from preparation plant fines from an Illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. This project will bring the expertise of four organizations together to perform the various tasks. The Illinois Coal Association will help direct the project to be the most beneficial to the Illinois coal industry. DESTEC Energy, a wholly-owned subsidiary of Dow Chemical Company, will provide guidelines and test compatibility of the slurries developed for gasification feedstock. Williams Technology will provide their expertise in long distance slurry pumping, and test selected products for viscosity, pumpability, and handlability. The Illinois State Geological Survey will study methods for producing clean coal/water slurries from preparation plant wastes including the concentration of pyritic sulfur into the coal slurry to increase the revenue from elemental sulfur produced during gasification operations, and decrease the pyritic sulfur content of the waste streams. ISGS will also test the gasification reactivity of the coals. As reported earlier, a variety of possible samples of coal have been analyzed and the gasification performance evaluation reported. Additionally, commercial sized samples of -28 mesh {times} 100 mesh coal -100 {times} 0 coal were subjected to pumpability testing. Neither the coarse product nor the fine product by themselves proved to be good candidates for trouble free pumping, but the mix of the two proved to be a very acceptable product

  6. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23T23:59:59.000Z

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  7. K Basins Hazard Analysis

    SciTech Connect (OSTI)

    WEBB, R.H.

    1999-12-29T23:59:59.000Z

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  8. Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment

    SciTech Connect (OSTI)

    Zhou, Q.; Birkholzer, J.T.; Mehnert, E.; Lin, Y.-F.; Zhang, K.

    2009-08-15T23:59:59.000Z

    Integrated modeling of basin- and plume-scale processes induced by full-scale deployment of CO{sub 2} storage was applied to the Mt. Simon Aquifer in the Illinois Basin. A three-dimensional mesh was generated with local refinement around 20 injection sites, with approximately 30 km spacing. A total annual injection rate of 100 Mt CO{sub 2} over 50 years was used. The CO{sub 2}-brine flow at the plume scale and the single-phase flow at the basin scale were simulated. Simulation results show the overall shape of a CO{sub 2} plume consisting of a typical gravity-override subplume in the bottom injection zone of high injectivity and a pyramid-shaped subplume in the overlying multilayered Mt. Simon, indicating the important role of a secondary seal with relatively low-permeability and high-entry capillary pressure. The secondary-seal effect is manifested by retarded upward CO{sub 2} migration as a result of multiple secondary seals, coupled with lateral preferential CO{sub 2} viscous fingering through high-permeability layers. The plume width varies from 9.0 to 13.5 km at 200 years, indicating the slow CO{sub 2} migration and no plume interference between storage sites. On the basin scale, pressure perturbations propagate quickly away from injection centers, interfere after less than 1 year, and eventually reach basin margins. The simulated pressure buildup of 35 bar in the injection area is not expected to affect caprock geomechanical integrity. Moderate pressure buildup is observed in Mt. Simon in northern Illinois. However, its impact on groundwater resources is less than the hydraulic drawdown induced by long-term extensive pumping from overlying freshwater aquifers.

  9. Southern Illinois University Watercraft & Equipment Operating Boat Operation Eligibility

    E-Print Network [OSTI]

    that a stream of water is flowing from the motor for engine cooling. 8. Click in gear hard, don't grind. D the Illinois Boaters Safety Exam. General Boating Safety Guidelines All boat operations must comply with state is in distress, a fire extinguisher and engine cut-off safety lanyard for all boats with internal combustion

  10. InsideIllinoisNov. 17, 2005 Vol. 25, No. 10

    E-Print Network [OSTI]

    Lewis, Jennifer

    retirees and tell you how they fill their days. PAGE 9 Wind turbines, solar power to bring renewable energy at the UI's Urbana-Champaign campus, thanks to a blossoming student-initiative and a $2 million grant from the Illinois Clean Energy Commu- nity Foundation. Three 1.5-megawatt wind turbines will be built in the South

  11. Curing Corruption in Illinois: Anti-Corruption Report Number 1

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    ` Curing Corruption in Illinois: Anti-Corruption Report Number 1 February 3, 2009 Authored By would come to local officials for housing and work, thus turning public office into the market for jobs and franchises to enrich themselves. They even awarded the city's gas business to a fictional company they had

  12. Illinois' State FossilTullimonstrum gregarium The ancient landscape

    E-Print Network [OSTI]

    Cochran-Stafira, D. Liane

    that accumulated in the swamps was buried and converted to coal, an important economic resource for Illinois, it's likely the Tully monster was an active swimmer. Perhaps, like a modern squid, it hovered near of shale that overlies a valuable coal seam. In the 1920s, when strip mining operations began south

  13. Minjung Kwak e-mail: kwak14@illinois.edu

    E-Print Network [OSTI]

    Kim, Harrison

    -of-life products has become a promising solu- tion to the waste problem in the consumer electronic industry the quantities of electronic waste (i.e., e-waste) that must be disposed and bring about economic and social bene, University of Illinois at Urbana-Champaign, Urbana, IL 61801 E-Waste Stream Analysis and Design Implications

  14. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439

    E-Print Network [OSTI]

    Harilal, S. S.

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439 ANL-ET/02-04 DEVELOPMENT of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department to the public, and perform publicly and display publicly, by or on behalf of the Government. #12;Argonne

  15. As ECE students know the University of Illinois Board of

    E-Print Network [OSTI]

    Liu, Gang "Logan"

    we were looking at for this building's energy use, we realized that we were very close to net-zero consumption. If we can achieve that, the new building will be the nation's largest net-zero energy project The University of Illinois has mandated that new cam- pus buildings achieve a Leadership in Energy and Environ

  16. Aux Vases Sandstone diagenesis: Implications for hydrocarbon recovery from southern Illinois reservoirs

    SciTech Connect (OSTI)

    Seyler, B.D.; Beaty, D.S.; Huff, B.G. (Illinois State Geological Survey, Champaign (United States))

    1991-03-01T23:59:59.000Z

    The Aux Vases Sandstone (Mississippian) is a problematic yet productive reservoir in the Illinois basin. The Aux Vases Formation was deposited in a mixed siliciclastic-carbonate offshore environment. Hydrocarbon reservoirs are dominantly elongate sandstone bodies interpreted as subtidal facies within a prograding tidally influenced deposystem. Oil saturated zones, in most cases, are composed of fine-grained, cross-bedded, friable, feldspathic quartz sandstone. Resistivity logs, even from productive wells, are typically characterized by unusually low resistivities (2-4 ohms) that lead to high calculated water saturations. X-ray diffraction, SEM/EDS, and thin section studies were used to analyze diagenetic processes that may affect hydrocarbon production in several Aux Vases reservoirs. Diagenetic processes common to the field studied include: (1) early calcite cementation occluding primary porosity and inhibiting compaction, (2) dissolution of feldspar grains to form authigenic clay, (3) dissolution of early calcite cement, (4) diagenesis of detrital clay minerals into new authigenic clay minerals, and (5) multiple stages of quartz overgrowths that reduce porosity. Commonly used drilling and completion practices may adversely affect reservoir quality by reacting with diagenetic products. Loosening of the fine mineral fraction that causes migration of fines and swelling of expandable clay minerals are examples of this type of damage. Knowledge of reservoir mineralogy and diagenesis may influence drilling and completion practices and affect selection of secondary and tertiary recovery methods.

  17. Wisconsin's 4th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources Jump to: navigation,

  18. Instituto Babcock Pamela Ruegg, Dam Rasmussen, y Doug Reinemann, Universidad de Wisconsin Instituto Babcock

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Instituto Babcock © Pamela Ruegg, Dam Rasmussen, y Doug Reinemann, Universidad de Wisconsin. Pamela Ruegg, Dam Rasmussen, and Doug Reinemann Traductor: Matías Fernandez Introducción La producción y

  19. Sedimentation in Michigan basin during earliest Salina: evidence for an excursion from eustacy

    SciTech Connect (OSTI)

    Cercone, K.R.

    1986-08-01T23:59:59.000Z

    A basal A-1 evaporite member of the Upper Silurian Salina Group, a marine evaporite sequence, appears to record a time of lowered sea level in the Michigan basin. Indicators of shallow sabkha deposition, such as nodular anhydrite and nonplanar stromatolites, occur in parts of the A-1 evaporite. This unit also contains scattered nodules of borate, a nonmarine evaporite, and the bittern salt sylvite. The petrologic evidence for lowered sea level is supported by studies showing that Middle Silurian reefal buildups within the Michigan basin were subaerially exposed during or immediately prior to A-1 evaporite deposition. However, other studies concluded that carbonate platforms in Indiana and Illinois continued to host flourishing Silurian reef communities throughout A-1 evaporite deposition, under conditions of high global sea levels. The conflicting evidence can be resolved only by postulating that the Michigan basin became isolated from surrounding epeiric seas during A-1 evaporite deposition. Tidal and peritidal carbonates - the Greenfield, Limberlost, Sugar Run, and Engadine dolomites - were deposited at the edge of the Michigan basin during this time. These units could have served both as sills and as shorelines that separated open epeiric seas from a partly desiccated basin. Evaporating brines, pooled below sea level in the basin, could have been replenished by seawater and meteoric water flowing through shallow inlets or seeping into the basin through the subsurface. Basin isolation may have been enhanced by minor eustatic fluctuations in sea level and by the constraints on shallow-water circulation in epeiric seas. Therefore, in analogy to the Miocene desiccation of the Mediterranean, the large apparent drop in sea level recorded by the A-1 evaporite would have been a local rather than a eustatic change.

  20. Evolution of Extensional Basins and Basin and Range Topography...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Evolution of Extensional Basins and Basin and Range Topography West of Death Valley California...

  1. Geology, exploration status of Uruguay's sedimentary basins

    SciTech Connect (OSTI)

    Goso, C.; Santa Ana, H. de (Administracion Nacional de Combustibles, Alcohol y Portland (Uruguay))

    1994-02-07T23:59:59.000Z

    This article attempts to present the geological characteristics and tectonic and sedimentary evolution of Uruguayan basins and the extent to which they have been explored. Uruguay is on the Atlantic coast of South America. The country covers about 318,000 sq km, including offshore and onshore territories corresponding to more than 65% of the various sedimentary basins. Four basins underlie the country: the Norte basin, the Santa Lucia basin, the offshore Punta del Este basin, and the offshore-onshore Pelotas-Merin basin. The Norte basin is a Paleozoic basin while the others are Mesozoic basins. Each basin has been explored to a different extent, as this paper explains.

  2. American Society of Engineering Education April 1-2, 2005-Northern Illinois University, DeKalb, Illinois. 2005 IL/IN Sectional Conference.

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    , and the subject of site planning belongs to both of the civil and architectural engineering professions. SometimesAmerican Society of Engineering Education April 1-2, 2005-Northern Illinois University, DeKalb, Illinois. 2005 IL/IN Sectional Conference. Session D-T1-2 OVERLAP BETWEEN MECHANICAL AND CIVIL ENGINEERING

  3. A Study of the Effect of Using Electrodynamic Wheels in University of Wisconsin-Madison

    E-Print Network [OSTI]

    Lipo, Thomas

    -Madison College of Engineering Wisconsin Power Electronics Research Center 2559D Engineering Hall 1415 Engineering. & Comp. Engr. University of Wisconsin-Madison 1415 Engineering Drive Madison, WI 53706 #12;A STUDY permanent magnet Halbach array above a conducting, non-magnetic, track generates a travelling time

  4. University of WisconsinMadison Federal Research Highlights and Impacts 2014

    E-Print Network [OSTI]

    Yavuz, Deniz

    been consistently in the top five in annual research spending every year over the last two decades to Wisconsin's economy. Not only do research universities spur the development of new companies, but at timesUniversity of Wisconsin­Madison Federal Research Highlights and Impacts 2014 #12;UNIVERSITY

  5. Helping Keep the State's Economy Afloat Economic Impact of Wisconsin's Commercial Ports

    E-Print Network [OSTI]

    Minnesota, University of

    of water transportation #12;Wisconsin's International connections are made through the St. Lawrence Seaway via the Great Lakes http://www.lre.usace.army.mil/_storage/Pages/1721/seaway(SLSMC).jpg #12;The-output information for 425 Wisconsin industries § Contains spending and consumption patterns for private and public

  6. Reclamation of abandoned mined lands along th Upper Illinois Waterway using dredged material

    SciTech Connect (OSTI)

    Van Luik, A; Harrison, W

    1982-01-01T23:59:59.000Z

    Sediments were sampled and characterized from 28 actual or proposed maintenance-dredging locations in the Upper Illinois Waterway, that is, the Calumet-Sag Channel, the Des Plaines River downstream of its confluence with the Calumet-Sag Channel, and the Illinois River from the confluence of the Kankakee and Des Plaines rivers to Havana, Illinois. Sufficient data on chemical constituents and physical sediments were obtained to allow the classification of these sediments by currently applicable criteria of the Illinois Environmental Protection Agency for the identification of hazardous, persistent, and potentially hazardous wastes. By these criteria, the potential dredged materials studied were not hazardous, persistent, or potentially hazardous; they are a suitable topsoil/ reclamation medium. A study of problem abandoned surface-mined land sites (problem lands are defined as being acidic and/or sparsely vegetated) along the Illinois River showed that three sites were particularly well suited to the needs of the Corps of Engineers (COE) for a dredged material disposal/reclamation site. Thes sites were a pair of municipally owned sites in Morris, Illinois, and a small corporately owned site east of Ottawa, Illinois, and adjacent to the Illinois River. Other sites were also ranked as to suitability for COE involvement in their reclamation. Reclamation disposal was found to be an economically competitive alternative to near-source confined disposal for Upper Illinois Waterway dredged material.

  7. University of Illinois at Urbana-Champaigns GATE Center for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Urbana-Champaigns GATE Center for Advanced Automotive Bio-Fuel Combustion Engines University of Illinois at Urbana-Champaigns GATE Center for Advanced Automotive Bio-Fuel...

  8. High school students use nation's top X-rays to study Illinois...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industry, medical schools, and other research institutions. Click to enlarge. High school students use nation's top X-rays to study Illinois fossils By Chelsea Leu * October 2,...

  9. E-Print Network 3.0 - annual illinois energy Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control -VII, Revitalizing Operational Reliability August 19-24, 2007, Charleston, SC, USA Summary: Illinois Electricity Auction Matias Negrete-Pincetic and George Gross...

  10. E-Print Network 3.0 - agencies illinois institute Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Resources ; Energy Storage, Conversion and Utilization 48 LEADERSHIP FORUM "Health Care Reform -Leadership in a Time of Chaos" Summary: served as di- rector of the Illinois...

  11. Funded Clinical Trial with a Novel Anticancer Agent University of Illinois Cancer Care Clinic and

    E-Print Network [OSTI]

    Hergenrother, Paul J.

    Funded Clinical Trial with a Novel Anticancer Agent University of Illinois Cancer Care Clinic or clinical coagulopathy · Dogs must weight > or = 20 kg Diagnostics: · Diagnostics include: 1) Screening

  12. Illinois SB 1987: the Clean Coal Portfolio Standard Law

    SciTech Connect (OSTI)

    NONE

    2009-01-15T23:59:59.000Z

    On January 12, 2009, Governor Rod Blagojevich signed SB 1987, the Clean Coal Portfolio Standard Law. The legislation establishes emission standards for new coal-fueled power plants power plants that use coal as their primary feedstock. From 2009-2015, new coal-fueled power plants must capture and store 50 percent of the carbon emissions that the facility would otherwise emit; from 2016-2017, 70 percent must be captured and stored; and after 2017, 90 percent must be captured and stored. SB 1987 also establishes a goal of having 25 percent of electricity used in the state to come from cost-effective coal-fueled power plants that capture and store carbon emissions by 2025. Illinois is the first state to establish a goal for producing electricity from coal-fueled power plants with carbon capture and storage (CCS). To support the commercial development of CCS technology, the legislation guarantees purchase agreements for the first Illinois coal facility with CCS technology, the Taylorville Energy Center (TEC); Illinois utilities are required to purchase at least 5 percent of their electricity supply from the TEC, provided that customer rates experience only modest increases. The TEC is expected to be completed in 2014 with the ability to capture and store at least 50 percent of its carbon emissions.

  13. Illinois coal reserve assessment and database development. Final report

    SciTech Connect (OSTI)

    Treworgy, C.G.; Prussen, E.I.; Justice, M.A.; Chenoweth, C.A. [and others

    1997-11-01T23:59:59.000Z

    The new demonstrated reserve base estimate of coal of Illinois is 105 billion short tons. This estimate is an increase from the 78 billion tons in the Energy Information Administration`s demonstrated reserve base of coal, as of January 1, 1994. The new estimate arises from revised resource calculations based on recent mapping in a number of countries, as well as significant adjustments for depletion due to past mining. The new estimate for identified resources is 199 billion tons, a revision of the previous estimate of 181 billion tons. The new estimates incorporate the available analyses of sulfur, heat content, and rank group appropriate for characterizing the remaining coal resources in Illinois. Coal-quality data were examined in conjunction with coal resource mapping. Analyses of samples from exploration drill holes, channel samples from mines and outcrops, and geologic trends were compiled and mapped to allocate coal resource quantities to ranges of sulfur, heat content, and rank group. The new allocations place almost 1% of the demonstrated reserve base of Illinois in the two lowest sulfur categories, in contrast to none in the previous allocation used by the Energy Information Administration (EIA). The new allocations also place 89% of the demonstrated reserve base in the highest sulfur category, in contrast to the previous allocation of 69% in the highest category.

  14. Oneida Tribe of Indians of Wisconsin Energy Optimization Model

    SciTech Connect (OSTI)

    Troge, Michael [Project Manager

    2014-12-30T23:59:59.000Z

    Oneida Nation is located in Northeast Wisconsin. The reservation is approximately 96 square miles (8 miles x 12 miles), or 65,000 acres. The greater Green Bay area is east and adjacent to the reservation. A county line roughly splits the reservation in half; the west half is in Outagamie County and the east half is in Brown County. Land use is predominantly agriculture on the west 2/3 and suburban on the east 1/3 of the reservation. Nearly 5,000 tribally enrolled members live in the reservation with a total population of about 21,000. Tribal ownership is scattered across the reservation and is about 23,000 acres. Currently, the Oneida Tribe of Indians of Wisconsin (OTIW) community members and facilities receive the vast majority of electrical and natural gas services from two of the largest investor-owned utilities in the state, WE Energies and Wisconsin Public Service. All urban and suburban buildings have access to natural gas. About 15% of the population and five Tribal facilities are in rural locations and therefore use propane as a primary heating fuel. Wood and oil are also used as primary or supplemental heat sources for a small percent of the population. Very few renewable energy systems, used to generate electricity and heat, have been installed on the Oneida Reservation. This project was an effort to develop a reasonable renewable energy portfolio that will help Oneida to provide a leadership role in developing a clean energy economy. The Energy Optimization Model (EOM) is an exploration of energy opportunities available to the Tribe and it is intended to provide a decision framework to allow the Tribe to make the wisest choices in energy investment with an organizational desire to establish a renewable portfolio standard (RPS).

  15. Cenozoic basin development in Hispaniola

    SciTech Connect (OSTI)

    Mann, P.; Burke, K.

    1984-04-01T23:59:59.000Z

    Four distinct generations of Cenozoic basins have developed in Hispaniola (Haiti and Dominican Republic) as a result of collisional or strike-slip interactions between the North America and Caribbean plates. First generation basins formed when the north-facing Hispaniola arc collided with the Bahama platform in the middle Eocene; because of large post-Eocene vertical movements, these basins are preserved locally in widely separated areas but contain several kilometers of arc and ophiolite-derived clastic marine sediments, probably deposited in thrust-loaded, flexure-type basins. Second generation basins, of which only one is exposed at the surface, formed during west-northwesterly strike-slip displacement of southern Cuba and northern Hispaniola relative to central Hispaniola during the middle to late Oligocene; deposition occurred along a 5-km (3-mi) wide fault-angle depression and consisted of about 2 km (1 mi) of submarine fan deposits. Third generation basins developed during post-Oligocene convergent strike-slip displacement across a restraining bend formed in central Hispaniola; the southern 2 basins are fairly symmetrical, thrust-bounded ramp valleys, and the third is an asymmetrical fault-angle basin. Fourth generation basins are pull-aparts formed during post-Miocene divergent strike-slip motion along a fault zone across southern Hispaniola. As in other Caribbean areas, good source rocks are present in all generations of basins, but suitable reservoir rocks are scarce. Proven reservoirs are late Neogene shallow marine and fluvial sandstones in third generation basins.

  16. Brown County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable and InnovativeBrookmont, Maryland:BroomeSouth Dakota:Wisconsin:

  17. Washington County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide PermitInformationIsland: Energy Resources JumpWisconsin:

  18. Wisconsin's 3rd congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources Jump to: navigation, searchRapids,

  19. Wisconsin's 5th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources Jump to: navigation,Information 5th

  20. Wisconsin's 8th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources Jump to: navigation,Information

  1. City of Clintonville, Wisconsin (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity of Aplington,City of Clintonville, Wisconsin

  2. Wood County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project JumpWisconsin: Energy ResourcesWolverine

  3. City of Stoughton, Wisconsin (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCity of Spencer, IowaCity ofStoughton, Wisconsin

  4. Port Edwards, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards, Wisconsin: Energy Resources Jump to:

  5. Grand Rapids, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County,Texas: Energy Resources JumpWisconsin:

  6. Green County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska:Ethanol LLC GOsourceWisconsin: Energy

  7. Elm Grove, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,Energy Information Elkhorn HotGrove, Wisconsin: Energy

  8. Oneida County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOffice ofInformationOnChip PowerIdaho:Wisconsin:

  9. Menomonee Falls, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee Falls, Wisconsin: Energy Resources (Redirected from

  10. Menomonee Falls, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee Falls, Wisconsin: Energy Resources (Redirected

  11. Cross Plains, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp HoldingsCrofutt'sWyoming:Plains, Wisconsin:

  12. DeForest, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNew Jersey: EnergyDeForest, Wisconsin:

  13. Door County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:EmerlingDoor County, Wisconsin: Energy Resources

  14. Wisconsin Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShadesVirginia RegionsWisconsin Regions

  15. Wisconsin Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShadesVirginia RegionsWisconsin

  16. Ashland County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford, Alabama: Energy ResourcesOhio:Wisconsin:

  17. New Berlin, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergyPPCR)Nevis Engine Company JumpWisconsin: Energy

  18. Wisconsin Electric Power Co (Michigan) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWindManitoba, Canada) JumpWisconsin

  19. Wisconsin Power & Light Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWindManitoba, Canada)Wisconsin Power &

  20. Wisconsin Power and Light Company Smart Grid Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWindManitoba, Canada)Wisconsin Power

  1. Wisconsin Public Service Corp (Michigan) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWindManitoba, Canada)Wisconsin

  2. Rusk County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont: EnergyEasementsRushville, Ohio:Wisconsin:

  3. Francis Creek, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga,Francis Creek, Wisconsin: Energy

  4. Two Rivers, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships Jump to:TwiggsJemez Mountains,Wisconsin:

  5. Vilas County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeter Logging JumpWorkstreamVilas County, Wisconsin:

  6. Village of Cashton, Wisconsin (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeter LoggingVillage of Cashton, Wisconsin (Utility

  7. Lake Wazeecha, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois:Lake Region ElectricShore,Alabama:Wazeecha,

  8. La Prairie, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups < LEDSGP‎LEE JumpPalma,Illinois:

  9. Pepin County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,ParleInformationPenobscotPeotone, Illinois:

  10. UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN (UIUC). The Department of Civil and Environmental Engineering (CEE) at the University of Illinois at Urbana-Champaign invites applications for four

    E-Print Network [OSTI]

    Lee, Tonghun

    resources will be available on one of the most powerful computers in the world (http://engineering.illinois.edu/bluewaters

  11. [sup 14]C and [sup 10]Be evidence for no incursion of the Lake Michigan lobe in northern Illinois from ca. 170 to 25 ka

    SciTech Connect (OSTI)

    Curry, B.B. (Illinois State Geological Survey, Champaign, IL (United States)); Pavich, M.J. (Geological Survey, Reston, VA (United States))

    1994-04-01T23:59:59.000Z

    Uncorrected [sup 10]Be inventories of a 2.7 m-long section of core indicate surface exposure lasting 115 ka during development of the Sangamon Geosol and 30 ka for a soil complex developed in overlying loessial sediment (Robein Silt). The latter estimate is in agreement with [sup 14]C assays in the region. Taking into account the age of overlying late Wisconsin drift, the new data indicate an age of about 170 ka for the onset of Sangamon pedogenesis in northern Illinois. Previous to this study, there have been no numerical-age determinations for the start of the last interglacial in northern IL. The data confirm a previous hypothesis that the Lake Michigan Lobe did not invade IL contemporaneous with deposition of Roxana Silt, or during the other period of midcontinental loess deposition suggest by TL ages of ca. 70 to 85 ka. The core was collected immediately south of the IL-WI border (42[degree] 30 minutes N, 88[degree] 30 minutes W) near Hebron, IL. Buried by 14 m of late Wisconsin drift, and the interval assayed for [sup 10]Be included 2.0 m of pedogenically-altered Illinoian sand and gravel, and 0.7 m of Wisconsin silt. One AMS [sup 14]C assay of carbonized fragments from the A-horizon of the Sangamon Geosol yielded an age of 38,500 [+-] 5,000 yr B.P.; conventional [sup 14]C ages for the overlying silt are from wood fragments (24,780 [times] 360 yr B.P.) and a bulk soil sample (26,030 [+-] 450 yr B.P.). The range of ages is typical for this stratigraphic sequence in IL. The [sup 10]Be concentration in the lowest part of the silt is 600 atoms/gm. This value is three times greater than the concentration typical of calcareous Mississippi River valley loess and of the C-horizon of the Sangamon Geosol in the core. High concentration of [sup 10]Be in the Robein Silt likely was caused by redeposition of [sup 10]Be-rich B-horizon material eroded from soil profiles elsewhere in the paleobasin.

  12. The Wisconsin Home Energy Rating System: Final report

    SciTech Connect (OSTI)

    Ebisch, L.

    1986-09-30T23:59:59.000Z

    The Wisconsin Home Energy Rating System (HERS) has been developed by the Department of Industry, Labor, and Human Relations under contract to the Department of Administration, Division of State Energy. The contract is funded by the US Department of Energy. The contract calls for development of a home energy rating system for 1- and 2-family dwellings, or adaptation of an already existing one, for one by the State of Wisconsin. The rating system was to be developed in the form of a simple rating tool which could be distributed for testing through municipal building inspectors. At the time it was distributed, results were to be returned and analyzed for accuracy and ease of use. Computer modeling was to be used to verify accuracy. An Ad Hoc Committee of people involved in the home market, in utilities, and in state government energy conservation agencies was established to advise DILHR and DSE staff on development of the rating system. (See Appendix G for a list of the Ad Hoc Committee members). The Ad Hoc Committee had a number of concerns about how the HERS might affect the real estate market, and whether it was worth doing. Their input helped set the direction the HERS was to aim at, and their advice, from several different angles of the home market, was very helpful to staff. This report will give some background on the process of development of the HERS and the Ad Hoc Committee, and then will give details of the technical development.

  13. Alejandro D. Dominguez-Garcia University of Illinois at Urbana-Champaign

    E-Print Network [OSTI]

    Liberzon, Daniel

    @ILLINOIS.EDU +1 217 333 3953 (P) +1 217 333 1162 (F) http://energy.ece.illinois.edu/aledan Education MASSACHUSETTS 2001 Valedictorian). Thesis: Refurbishment and Improvement of a 27/5 kV - 10 MVA Power Substation Research Positions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Laboratory for Electromagnetic and Electronic

  14. Research on improved and enhanced oil recovery in Illinois through reservoir characterization

    SciTech Connect (OSTI)

    Not Available

    1990-06-25T23:59:59.000Z

    The Illinois Department of Energy and Natural Resources through a Memorandum of Understanding with the US Department of Energy has commenced a research program in Improved and Enhanced Oil Recovery from Illinois Reservoirs Through Reservoir Characterization.'' The program will include studies on mineralogy, petrography of reservoir rock, database management, engineering assessment, seismic studies and acoustic logs, and mapping. 8 figs. (CBS)

  15. Session II-D-3 American Society for Engineering Education March 27, 2004 Bradley University/Illinois Central College, Peoria, Illinois

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    , Peoria, Illinois 2004 IL/IN Sectional Conference associated vibrations and noise. These devices, known-20 Windmill 30-40 (59% limit) Hydro turbine 80-85 Electro-mechanical motor/generator 80-95 NOTE: Thermal

  16. Gasifier feed - Tailor-made from Illinois coals. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III [Illinois State Geological Survey, Champaign, IL (United States); Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. [Illinois State Geological Survey, Champaign, IL (United States)]|[DESTEC Energy (United States)]|[Williams Technology, (United States)]|[Illinois Coal Association (United States)

    1992-08-01T23:59:59.000Z

    The main purpose of this project is to produce a feedstock from preparation plant fines from an illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is higher not only because of the higher Btu value of the coal but also because Illinois coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for Illinois coal as compared to approximately 45% for most western coals.

  17. Warren County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpageWalthallFacility | OpenWarner, Wisconsin:8758777°,

  18. Winnebago County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon:WindPoleWisconsin:Wing,Winn,County,

  19. Wood Dale, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources Jump to:WiseEnergyRiver,Lake,54345°,Dale,

  20. Knox County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermalKnowlton, Wisconsin: EnergyKnox

  1. Mercer County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee Falls, Wisconsin: Energy

  2. Richland County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,Maze - MakingMinnesota: EnergyWisconsin:

  3. Rappahannock River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

  4. Susquehanna River Basin Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

  5. Sidney W. Bijou: The Illinois Years, 1965–1975

    E-Print Network [OSTI]

    Morris, Edward K.

    2008-09-01T23:59:59.000Z

    was the genesis of later home-based parent interventions, notably Shearer and Shearer’s (1972) Portage Early Childhood Education Project (estab- lished in 1969), which Bijou would champion at Illinois. In sum, ac- cording to Kazdin (1978), ‘‘Bijou, Wolf, and Baer... as to the Universidad Nacional Auto´n- oma de Me´xico (1974) and the Universidad Central de Venezuela, Caracas (1974). He also continued to champion the Portage Project (see Bijou, 1980). Commissions and task forces. Al- though not involved in APA Division 25 governance...

  6. Gasifier feed: Tailor-made from Illinois coals

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III.

    1991-01-01T23:59:59.000Z

    The purpose of this research is to develop a coal slurry from waste streams using Illinois coal that is ideally suited for a gasification feed. The principle items to be studied are (1) methods of concentrating pyrite and decreasing other ash forming minerals into a high grade gasification feed using froth flotation and gravity separation techniques; (2) chemical and particle size analyses of coal slurries; (3) determination of how that slurry can be densified and to what degree of densification is optimum from the pumpability and combustibility analyses; and (4) reactivity studies.

  7. Lake County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois: Energy Resources Jump to: navigation,

  8. Lakewood Shores, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois:LakeIowa: EnergyClub, Michigan:

  9. Lawrence County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy DevelopmentLaurentianIllinois: Energy Resources

  10. Madison County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECOFlorida: Energy Resources JumpIllinois:

  11. Brown County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable and InnovativeBrookmont, Maryland:Broome County, NewIllinois:

  12. Camp Point, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual Jump to:(RECP)Point, Illinois: Energy

  13. North Dakota Natural Gas Processed in Illinois (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear Jan Feb MarBarrels)Illinois (Million

  14. West Brooklyn, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to:Ohio:Wendel,Brooklyn, Illinois: Energy Resources Jump

  15. West Chicago, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to:Ohio:Wendel,Brooklyn, Illinois:Chatham,

  16. Cass County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformation Cashtown-McKnightstown,Illinois: Energy

  17. City of Bushnell, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity of Aplington, IowaCityCity of Bushnell, Illinois

  18. Fayette County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolisFairway,FarmersFastcapAlabama: EnergyIllinois:

  19. Illinois Town Launches Toilet Rebate Program | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37EnergySubmitRoad | DepartmentIllinois Town

  20. Illinois: EERE-Sponsored Clean Energy Competition Launches 2012 a

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37EnergySubmitRoad | DepartmentIllinois

  1. Jasper County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJane Capital Partners Jump to:JapunguIllinois: Energy

  2. Jefferson County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJane Capital PartnersGeorgia: EnergyGeorgia:Illinois:

  3. La Prairie, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups < LEDSGP‎LEE JumpPalma,Illinois: Energy

  4. La Salle County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups < LEDSGP‎LEEPuente, California:Illinois:

  5. Illinois Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million Cubic Feet) Illinois

  6. Illinois Institute for Rural Affairs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinois Institute for Rural Affairs

  7. Illinois Rural Electric Cooperative Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinois Institute for Rural

  8. Illinois' 10th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinois Institute for

  9. Illinois' 13th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinois Institute forInformation

  10. Illinois' 14th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinois Institute

  11. Illinois' 17th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinois InstituteInformation

  12. Illinois' 18th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinois

  13. Illinois' 19th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinoisInformation MAB National

  14. Illinois' 1st congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinoisInformation MAB

  15. Illinois' 3rd congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinoisInformation

  16. Illinois' 4th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinoisInformationInformation

  17. Illinois/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind FarmInformationIllinois/Wind Resources

  18. Kane County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island, Florida:Kane County, Illinois: Energy

  19. Hickory Hills, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, search Name: Hi-GtelTennessee:Hills, Illinois:

  20. Homer Glen, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey:Heights,Holyoke,HomeHomer Glen, Illinois: