Sample records for illinois ameren illinois

  1. Ameren Illinois (Gas)- Residential Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Ameren Illinois Utilities (AmerenIP, AmerenCIPS, and AmerenCILCO) offer residential customers incentives for certain energy efficiency upgrades and improvements. Incentives are currently available...

  2. Ameren Illinois- Lighting Rebates for Businesses

    Broader source: Energy.gov [DOE]

    Ameren Illinois offers their non-residential Illinois customers a wide range of incentives for the installation of lighting improvements. Customers must review all equipment requirements to ensure...

  3. Ameren Illinois (Gas)- Cooking and Heating Business Efficiency Incentives

    Broader source: Energy.gov [DOE]

    Ameren Illinois offers several incentive programs that include efficient natural gas technologies. The programs are available only to non-residential customers that receive natural gas service from...

  4. Ameren Illinois Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan Blanch GreenAmeren Illinois Company Jump to:

  5. Ameren Energy Marketing (Illinois) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgouraAlbatechFuels JumpKineticsAmdaAmeren

  6. HOME OF THE ILLINOIS STATE SCIENTIFIC SURVEYS Illinois Natural History Survey Illinois State Archaeological Survey Illinois State

    E-Print Network [OSTI]

    Bashir, Rashid

    Archaeological Survey ˇ Illinois State Geological Survey ˇ Illinois State Water Survey ˇ Illinois Sustainable

  7. Illinois Coal Development Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

  8. Nicor, Peoples, and North Shore Gas- Small Business Energy Savings Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Energy Efficiency Loan Program, administered through AFC First and funded by participating utilities, provides loans to customers of Ameren Illinois, ComEd, Nicor, North Shore Gas, and...

  9. Chicago, Illinois

    Office of Environmental Management (EM)

    of Energy Chicago, Illinois August 8, 2014 ASSOCIATION OF AMERICAN RAILROADS SLIDE 2 Coal 5,769,626 40% Grain 936,098 6% Chemicals 1,238,773 8% Steel & other metal 534,849 4%...

  10. Illinois Coal Revival Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

  11.  Illinois Groundwater Protection Act (Illinois)

    Broader source: Energy.gov [DOE]

    It is the policy of the State of Illinois to restore, protect, and enhance the groundwaters of the State, as a natural and public resource. The State recognizes the essential and pervasive role of...

  12. 2013 REPORT ILLINOIS NATURAL HISTORY SURVEY

    E-Print Network [OSTI]

    Bashir, Rashid

    2013 REPORT ILLINOIS NATURAL HISTORY SURVEY ILLINOIS STATE ARCHAEOLOGICAL SURVEY ILLINOIS STATE State Geological Survey Illinois State Water Survey Illinois Sustainable Technology Center Awards GEOLOGICAL SURVEY ILLINOIS STATE WATER SURVEY ILLINOIS SUSTAINABLE TECHNOLOGY CENTER #12;#12;PRAIRIE RESEARCH

  13. Ameren Illinois (Gas)- Business Efficiency Incentives

    Broader source: Energy.gov [DOE]

    The Specialty Equipment Application offers incentives on steamers, griddles, fryers, and other commercial kitchen equipment. The Steam Trap /Process Steam Incentive Program offers incentives on s...

  14. Ameren Illinois Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan Blanch Green

  15. Forestry Policies (Illinois)

    Broader source: Energy.gov [DOE]

    Illinois' Forests are managed by the State Department of Natural Resources, Division of Forest Resources. The Department issued in 2008 its "Statewide Forest Resource Assessments and Strategies"...

  16. Southern Illinois University Media Overview

    E-Print Network [OSTI]

    Nickrent, Daniel L.

    SIU Billboards December 2012 #12;SIU Billboards: Paducah, Southern Illinois, Cape Girardeau and St. Louis 3920 Park Avenue Paducah 10/15/12 1/20/13 Feels Like Rte. 37, South of Benton Southern Illinois 10

  17. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28T23:59:59.000Z

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  18. River Edge Redevelopment Zone (Illinois)

    Broader source: Energy.gov [DOE]

    The purpose of the River Edge Redevelopment Program is to revive and redevelop environmentally challenged properties adjacent to rivers in Illinois.

  19. New Market Tax Credit (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois New Markets Development Program provides supplemental funding for investment entities that have been approved for the Federal New Markets Tax Credit (NMTC) program. This program will...

  20. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  1. Regional Groundwater Evapotranspiration in Illinois

    E-Print Network [OSTI]

    Yeh, Pat J-F.; Famiglietti, J. S

    2009-01-01T23:59:59.000Z

    characteristics of groundwater outflow and baseflow fromtween precipitation and shallow groundwater in Illinois. J.Coauthors, 2006: Groundwater-supported evapo- transpiration

  2. Southern Illinois University Media Overview

    E-Print Network [OSTI]

    Nickrent, Daniel L.

    SIU Billboards January 2013 #12;SIU Billboards: Paducah, Southern Illinois, Cape Girardeau and St. Louis 1/21) 3920 Park Ave. Paducah 10/15/12 1/20/13 1/21/13 ­ 4/28/13 Feels Like Rte. 37, South on following pages #12;SIU Billboards: Paducah, Southern Illinois, Cape Girardeau and St. Louis (Contracted

  3. Parallel Computing Research at Illinois The UPCRC Agenda

    E-Print Network [OSTI]

    @Illinois(www.parallel.illinois.edu)isthecollectiverepresentationofIllinois'currenteffortsin parallel computing research and education. These include: ˇ UniversalParallelComputingResearchCenter ˇ BlueWaters

  4. Southern Illinois University Media Overview

    E-Print Network [OSTI]

    Nickrent, Daniel L.

    Hearne | SIU 5 Emmy Chef Bill #12;SIU BillboardsSIU Billboards February 2013 #12;SIU Billboards: Paducah You 3920 Park Ave. Paducah 1/21/13 ­ 4/28/13 Feels Like Rte. 37, South of Benton Southern Illinois

  5. 51 Gerty Drive Champaign, Illinois 61820

    E-Print Network [OSTI]

    Bashir, Rashid

    51 Gerty Drive Champaign, Illinois 61820 217-333-3996 University Primary school sUmmer camP www of Illinois) with this form to: University Primary School, 51 Gerty Drive Champaign, IL 61820. Detailed

  6. Environmental Assessment of Rail Infrastructure in Illinois

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    and agricultural lands Farmland Protection Policy Act; Illinois Farmland Preservation Act; Illinois Natural Areas Acres in high flood hazard area Flood Disaster Protection Act Acres in high seismic hazard area 49 CFR Species Act; Illinois Endangered Species Act Protect high-quality natural & agricultural landscapes Acres

  7. Ameren Illinois (Electric)- Custom, HVAC, and Motor Business Efficiency Incentives

    Broader source: Energy.gov [DOE]

    Prescriptive rebates are available for many HVAC and motor efficiency improvements. Pre-approval is required for all rebates. The programs are available only to non-residential customers that...

  8. This project was funded through the Illinois Department of Natural Resources and the Illinois State Geological Survey. Illinois State Water Survey Contract Report 2004-08.

    E-Print Network [OSTI]

    This project was funded through the Illinois Department of Natural Resources and the Illinois State Geological Survey. Illinois State Water Survey Contract Report 2004-08. Hydrologic Modeling of the Iroquois

  9. Northern Illinois University Mechanical Engineering

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    and/or apply engineering knowledge to address societal needs; and to provide quality professionalNorthern Illinois University Mechanical Engineering Undergraduate Program 2013-2014 Engineering Building, room 226 Phone: 815-753-9979 www.niu.edu/me #12;DEPARTMENT OF MECHANICAL ENGINEERING NORTHERN

  10. Media Overview Southern Illinois University

    E-Print Network [OSTI]

    Nickrent, Daniel L.

    Research #12;SIU Billboards March 2013 #12;Lipman Hearne | SIU SIU Billboards: Paducah, Southern Illinois Ave. Paducah 1/21/13 ­ 4/28/13 Brain Meet Heart IL Rte 45, 1/2 Mi West of Interstate 24 Paducah 3

  11. NPRE at Illinois Three Paths

    E-Print Network [OSTI]

    Gilbert, Matthew

    and power systems ˇ Thermal hydraulics and reactor safety ˇ Alternate energy systems ˇ Plasma modeling production; Nuclear power operations and control ˇ Plasma sciences; Applied plasma physics; Nuclear fusionNPRE at Illinois Three Paths Students choose from three concentrations: ˇ Plasma and Fusion ˇ Power

  12. Qualifying RPS State Export Markets (Illinois)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Illinois as eligible sources towards their RPS targets or goals. For specific...

  13. Illinois Municipal Electric Agency- Electric Efficiency Program

    Broader source: Energy.gov [DOE]

    The Illinois Municipal Electric Agency (IMEA) offers rebates to member municipal utilities* (those who purchase wholesale electric service from IMEA) and retail customers for energy efficiency...

  14. Alternative Fuels Data Center: Illinois Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    - Illinois Propane Gas Association Natural Gas and Propane Vehicle Weight Exemption Biofuels Business Planning Grants Biofuels Production Facility Grants To look up nationwide...

  15. Community Service Block Grant Loan Program (Illinois)

    Broader source: Energy.gov [DOE]

    Community Service Block Grant Loan Program is a partnership among the Department of Commerce and Economic Opportunity, community action agencies, and the Illinois Ventures for Community Action. The...

  16. Argonne receives 2014 Illinois Governor's Sustainability Award...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    receives 2014 Illinois Governor's Sustainability Award By Else Tennessen * November 10, 2014 Tweet EmailPrint On Oct. 23, Argonne National Laboratory was presented with the...

  17. Kyoto Protocol Act of 1998 (Illinois)

    Broader source: Energy.gov [DOE]

    Effective immediately, the Illinois Environmental Protection Agency and the Pollution Control Board shall not propose or adopt any new rule for the intended purpose of addressing the adverse...

  18. Illinois Solar Energy Association- Renewable Energy Credit Aggregation Program

    Broader source: Energy.gov [DOE]

    The Illinois Solar Energy Association offers the Renewable Energy Credit Aggregation Program (RECAP) to Illinois solar photovoltaic (PV) system owners, providing them with an opportunity to recei...

  19. argonne illinois site: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;12;PRAIRIE RESEARCH Bashir, Rashid 18 Cooperative Illinois Institute of Technology Engineering Websites Summary: Student Cooperative Education Agreement Illinois Institute...

  20. Silurian of Illinois basin - a carbonate ramp

    SciTech Connect (OSTI)

    Coburn, G.W.

    1986-05-01T23:59:59.000Z

    The Silurian of the Illinois basin has classically been defined as a shelf-basin sequence. According to the shelf-basin model, the Illinois basin is a deep-water basin in the extreme southern part (southern Illinois-Tennessee), with a slope in the south (Illinois-Indiana) and a shelf extending from central Illinois and Indiana northeast to the Michigan basin. Reef buildups are in a continuous trend along the shelf break. However, the author proposes that the silurian of the Illinois basin represents a carbonate ramp. The down-ramp position is located in southern Illinois and grades into deeper water environments south of Illinois. In this environment, reef buildups would form in the late Alexandrian of early St. Clair, and would begin in the down-ramp position. Therefore, using the new model, reef buildups are expected throughout the basin, rather than being confined to an imaginary shelf break. This model would facilitate exploration in southern Illinois, Indiana, and western Kentucky for reefal hydrocarbon deposits. A ramp model is indicated for the Illinois basin because: (1) the basin lacks a shelf-slope break; (2) the facies sequence is compatible with a ramp environment and incompatible with a shelf-slope environment; (3) discontinuous reef trends are typical of a ramp environment; and (4) facies changes and slope are gradual, extending over hundreds of miles as expected in a ramp environment. Modern carbonate models border on ocean basins. However, the Illinois basin is a cratonic basin, which may have affected the depositional environments. How much that environment differed from present-day models is unknown.

  1. Figure 5. Collison Marsh, Vermilion Co., Illinois

    E-Print Network [OSTI]

    Taylor, Steven J.

    . Aquatic Hemiptera of Illinois. MS Thesis, University of Illinois, Urbana. xxii + 353 pp. Packauskas, RJ & JE McPherson. 1986. Life history and laboratory rearing of Ranatra fusca (Hemiptera: Nepidae Polhemus. 1994. Nepidae (Hemiptera) of the United States and Canada. Annals of the Entomological Society

  2. Hydrogeologic characterization of Illinois wetlands

    SciTech Connect (OSTI)

    Miner, J.J.; Miller, M.V.; Rorick, N.L.; Fucciolo, C.S. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-04-01T23:59:59.000Z

    The Illinois State Geological Survey (ISGS), under contract from the Illinois Department of Transportation (IDOT), is evaluating a series of selected wetlands and sites proposed for wetland construction and/or restoration. The program is associated with wetland mitigation for unavoidable effects of state highway construction. The goal of this ongoing program is: (1) to collect commonly lacking geologic, geomorphic, hydrologic, and geochemical data from various wetland sites; and (2) to create a database of this information for use by government agencies and the private sector. Some of the potential uses of this database include: (1) determination of history, role, and possible life cycle of various wetland types allowing more effective design criteria; (2) functional comparison of constructed or restored wetlands versus natural wetlands; (3) testing of wetland hypotheses and delineation techniques under a variety of known hydrogeologic conditions in Illinois; (4) hydrogeologic assessment of potential mitigation sites against a suite of known sites; and (5) determination of data and collection methods appropriate for hydrogeologic wetland studies. A series of tasks is required to complete each study. Historical information is collected from ISGS records, including data regarding topography, soils, sediments, bedrock, and local well records. A field-testing plan is prepared, which includes goals of the study, methods, research potential, and potential results. An initial report is prepared after geologic and geochemical characterization and the installation of needed ground water monitoring wells and surface water gauges. After one year of water-level monitoring, a final report is prepared regarding the present conditions of a site. Further monitoring may be required to determine the performance at constructed and/or restored sites.

  3. University of Illinois Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01T23:59:59.000Z

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) University of Illinois Project 29609 irradiation. The objective of this test was to assess the radiation performance of ferritic alloys for advanced reactor applications. The FeCr-based alloy system is considered the lead alloy system for a variety of advanced reactor components and applications. Irradiations of FeCr alloy samples were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in a static capsule in the A-11 position of the ATR.

  4. Scholarship Updated (date) Illinois State Wild Turkey Scholarship

    E-Print Network [OSTI]

    Karonis, Nicholas T.

    Scholarship Updated (date) Illinois State Wild Turkey Scholarship Scholarship source: Illinois State Wild Turkey Federation Address: Dr. Robert E. Reich, Chair Illinois State Wild Turkey Federation: The Illinois state wild turkey federation is awarding scholarships to 1 st , 2 nd , 3 rd , and 4 th year

  5. nuclear@illinois.edu | 217-333-2295 | npre.illinois.edu 216 Talbot Laboratory, MC 234 | 104 S. Wright Street | Urbana, IL 61801-2935

    E-Print Network [OSTI]

    Jain, Kanti

    .illinois.edu ˇ Blue Waters Sustained Petascale Computing bluewaters.ncsa.illinois.edu Instructional and Research Areas

  6. Basin analysis in the Illinois basin

    SciTech Connect (OSTI)

    Leighton, M.W. (Illinois State Geological Survey, Champaign (USA)); Haney, D. (Kentucky Geological Survey, Lexington (USA)); Hester, N. (Indiana Geological Survey, Bloomington (USA))

    1990-05-01T23:59:59.000Z

    In April 1989, the Illinois State Geological Survey and the Indiana and Kentucky Geological surveys formed the Illinois Basin Consortium (IBC) for the purpose of advancing the geologic understanding of the Illinois basin and of developing basin-wide studies for the assessment and wise development of the Illinois basin energy, mineral, and water resources. Cooperative efforts include work on the AAPG Interior Cratonic Sag Basin volume, Springfield coal study, Paducah CUSMAP study in cooperation with the US Geological Survey, Illinois Basin Cross Section Project, Geologic Society of America Coal Division field trip and workshop on Lower Pennsylvanian geology, workshops in basin analysis, and the Tri-State Committee on correlations in the Pennsylvanian System of the Illinois Basin. A network of 16 regional surface to basement cross sections portraying the structural and stratigraphic framework of the total sedimentary section of the entire basin is in preparation. Based on more than 140 of the deepest wells with wireline logs, the sections will show formation boundaries and gross lithofacies of the entire stratigraphic column. A set of basin-wide maps shows structure, thickness, and coal quality of the economically important Springfield coal seam. These maps were generated from recently joined computerized databases of the three member surveys of IBC. A unified stratigraphic nomenclature of the Pennsylvanian System is being developed, including seven new members and seven new formation names. The goal is to simplify, standardize, and gradually improve the stratigraphic terminology to be used in the Illinois basin.

  7. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  8. Illinois

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14Has Hydrocarbon, a

  9. ILLINOIS INSTITUTE OF TECHNOLOGY SAFETY POLICY COMMITTEE

    E-Print Network [OSTI]

    Heller, Barbara

    ILLINOIS INSTITUTE OF TECHNOLOGY SAFETY POLICY COMMITTEE OFFICE SAFETY POLICY Approved: October 10 of pinch points before closing desk or file drawers. 3.14 File/desk drawers, bookcases, and cabinet doors

  10. Patterns in Illinois Educational School Data

    E-Print Network [OSTI]

    Stevens, Cacey S; Nagel, Sidney R

    2015-01-01T23:59:59.000Z

    We examine Illinois educational data from standardized exams and analyze primary factors affecting the achievement of public school students. We focus on the simplest possible models: representation of data through visualizations and regressions on single variables. Exam scores are shown to depend on school type, location, and poverty concentration. For most schools in Illinois, student test scores decline linearly with poverty concentration. However Chicago must be treated separately. Selective schools in Chicago, as well as some traditional and charter schools, deviate from this pattern based on poverty. For any poverty level, Chicago schools perform better than those in the rest of Illinois. Selective programs for gifted students show high performance at each grade level, most notably at the high school level, when compared to other Illinois school types. The case of Chicago charter schools is more complex. In the last six years, their students' scores overtook those of students in traditional Chicago high...

  11. Illinois Institute of Technology College of Architecture

    E-Print Network [OSTI]

    Heller, Barbara

    Illinois Institute of Technology College of Architecture Arch 434 Advanced Building Information relationships that facilitate efficient construction processes and energy efficient buildings. This course and exploit the database structure embedded within the roots of the REVIT environment. [Course Objectives

  12. Small Business Job Creation Tax Credit (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Small Business Jobs Creation Tax Credit program provides small business owners and non-profits with an extra boost to grow their business over the next four years. After creating one...

  13. Department of Energy Names Virginia and Illinois Electric Cooperatives...

    Office of Environmental Management (EM)

    Department of Energy Names Virginia and Illinois Electric Cooperatives Wind Co-ops of the Year Department of Energy Names Virginia and Illinois Electric Cooperatives Wind Co-ops of...

  14. Illinois: Ozinga Concrete Runs on Natural Gas and Opens Private...

    Energy Savers [EERE]

    Illinois: Ozinga Concrete Runs on Natural Gas and Opens Private Station Illinois: Ozinga Concrete Runs on Natural Gas and Opens Private Station November 6, 2013 - 12:00am Addthis...

  15. EA-1866: Modernization Planning at Argonne National Laboratory, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of proposed modernization planning at Argonne National Laboratory in DuPage County, Illinois.

  16. Challenges and Opportunities for the Illinois Coal Industry

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Challenges and Opportunities for the Illinois Coal Industry Joseph DiJohn Director Metropolitan and Storage 11 3.5.2. Gasification, Liquefaction, and IGCC 12 4. Coal Market Projections 13 4.1. Consumption. Coal Production and Employment in Illinois, 1920 ­ 2000 4 Figure 2. The Illinois Basin 5 Figure 3

  17. Agricultural & Biological Engineering Alumni Newsletter. Winter 2009 ABE@Illinois

    E-Print Network [OSTI]

    Gilbert, Matthew

    Agricultural & Biological Engineering Alumni Newsletter. Winter 2009 ABE@Illinois WINTER2009 Triple Crown for Illinois's Agricultural and Biological Engineering Program The Agricultural and Biological of Agricultural and Biological Engineering held its first annual "Celebrate ABE@Illinois" on September 5th and 6th

  18. Illinois Junior Academy of Science Policy & Procedure Manual

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Illinois Junior Academy of Science Policy & Procedure Manual September 2010 ­ August 2012 or paper. While the Illinois Junior Academy of Science would like for all schools and regions to follow all these policies at the school or regional level. However, the Illinois Junior Academy of Science will insist

  19. Eastern Illinois Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: Energy ResourcesRutherford,Eastern Illinois Elec Coop

  20. Nanoscience Research Internships in Illinois

    SciTech Connect (OSTI)

    Kronshage, Alisa [Executive Board

    2013-08-31T23:59:59.000Z

    NanoBusiness Talent Project Summary Report The NanoBusiness Alliance created the NanoBusiness Talent Program to ensure the future vitality of domestic scientists and entrepreneurs by engaging advanced high school students in cutting-edge nanotechnology development. This program commenced on September 1, 2008 and ran through August 31, 2010 with a very successful group of students. Several of these students went on to Stanford, Harvard and Yale, as well as many other prestigious Universities. We were able to procure the cooperation of several companies over the entire run of the program to voluntarily intern students at their companies and show them the possibilities that exist for their future. Companies ranged from NanoInk and Nanosphere to QuesTek and NanoIntegris all located in northern Illinois. During the 9-week internships, students worked at nanotechnology companies studying different ways in which nanotechnology is used for both commercial and consumer use. The students were both excited and invigorated at the prospect of being able to work with professional scientists in fields that previously may have just been a dream or an unreachable goal. All the students worked closely with mentors from each company to learn different aspects of procedures and scientific projects that they then used to present to faculty, parents, mentors and directors of the program at the end of each year’s program. The presentations were extremely well received and professionally created. We were able to see how much the students learned and absorbed through the course of their internships. During the last year of the program, we reached out to both North Carolina and Colorado high school students and received an extraordinary amount of applications. There were also numerous companies that were not only willing but excited at the prospect to engage highly intelligent high school students and to encourage them into the nanotechnology scientific field. Again, this program increase was highly received and the students were thoroughly engaged. Our program ended August 31, 2010 with our last class of students and their final presentations. From the pilot year to the end presentations, we received hundreds of applications from students excited for the opportunity to work in a scientific field. With our goal of inspiring the newest generation of potential scientists and mathematician, we not only found ourselves overwhelmingly impressed but encouraged that the greatest minds of the future will come from this next generation and many more generations.

  1. HUMAN SERVICES TRANSPORTATION ILLINOIS HSTP REGION FIVE

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    in the creation of this plan. FROM RURAL AREAS Debbie Armentrout, MSW Projects of Henry Jeanine Beghtol, Galesburg of Galesburg B. Justin Meierkord, Marshall County Board Peg Meisinger, Senator David Koehler's office (rural by the Illinois Department of Transportation, consists of Fulton, Knox, Marshall, Peoria, Stark, Tazewell

  2. A Pet's Place University of Illinois

    E-Print Network [OSTI]

    Jain, Kanti

    A Pet's Place University of Illinois College of Veterinary Medicine vetmed Clinic *A Pet's Place Course Records Men: Eric Ollila, 15:54 (1995) Women: Jenny Marine, 19:04 (1994) See like to participate in the: _____5K run _____5K pet run _____5K walk _____5K pet walk Please check one

  3. AQUACULTURE EXTENSION Illinois -Indiana Sea Grant Program

    E-Print Network [OSTI]

    by this bacterium primarily affects freshwater fish such as cattfish, several species of bass, and many species and Treatment of "Aeromonas hydrophila" Infection of Fish LaDon Swann Illinois-Indiana Sea Grant Program Purdue University Introduction Aeromonas hydrophila causes disease in fish known as "Motile Aeromonas Septicemia

  4. MMAE 320 Thermodynamics Illinois Institute of Technology

    E-Print Network [OSTI]

    Heller, Barbara

    MMAE 320 Thermodynamics Fall 2011 Illinois Institute of Technology Instructor: Professor Shawn C of Engineering Thermodynamics, 7th Yes, you will probably be fine with an earlier edition, please buy and read. Work and Heat 4. First Law of Thermodynamics 5. Second Law of Thermodynamics 6. Entropy 7

  5. Illinois Institute of Technology Housing & Residential Services

    E-Print Network [OSTI]

    Heller, Barbara

    Illinois Institute of Technology Housing & Residential Services Student Guide to 20102011 Room and Board Contract Cancellation The Housing & Residential Services 20102011 Room and Board, if applicable, within two business days by email. Upon MoveOut, Housing & Residential Services will update

  6. Mapping karst regions of Illinois: Preliminary results

    SciTech Connect (OSTI)

    Weibel, C.P.; Panno, S.V. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01T23:59:59.000Z

    Groundwater contamination may be significant in shallow aquifers in the parts of Illinois where karst occurs. Problems with ground-water contamination in shallow aquifers in karst areas may be significant in parts of Illinois. A study is underway to study factors that contribute to karst development and to map the karst areas of the state, including areas where obvious diagnostic karst geomorphic features are absent. The following generalizations can be made about the structural and stratigraphic factors that control the extent and maturity of karst areas and the development of karstic terrain in Illinois: (1) karstification is restricted to the flanks of the Illinois Basin because most of the basin interior contains carbonate-poor Pennsylvanian bedrock; (2) karstic terrain generally occurs in thick, flatlying, carbonate-rich lithologic units; (3) carbonate to non-carbonate facies changes in formations and the presence of disconformities affect the degree of karstification; (4) structures (folds, faults) may either increase or decrease the likelihood of karstification; and (5) karstification is potentially greater in areas where overlying regolith is absent or thin.

  7. Illinois Jobs Index release 11/28/2011 www.real.illinois.edu page 1 For August Illinois Job Index, the state and the Nation had positive job growth, the RMW had negative job growth.

    E-Print Network [OSTI]

    Frank, Thomas D.

    Illinois Jobs Index release 11/28/2011 www.real.illinois.edu page 1 For August Illinois Job Index, the state and the Nation had positive job growth, the RMW had negative job growth. The Illinois Job Index Positive Sep 2011­ Oct 2011 Last 12 months Oct 2011 Total non-farm employment Growth Rate % Number of Jobs

  8. Illinois Jobs Index release 07/25/2011 www.real.illinois.edu page 1 For July Illinois Job Index, the state had negative job growth while the Nation and the RMW both had positive job growth.

    E-Print Network [OSTI]

    Shim, Moonsub

    Illinois Jobs Index release 07/25/2011 www.real.illinois.edu page 1 For July Illinois Job Index, the state had negative job growth while the Nation and the RMW both had positive job growth. The monthly Illinois Job Index and MSA Report are issued monthly as tools for elected officials, policy leaders

  9. Illinois Jobs Index release 3/14/2011 www.real.illinois.edu page 1 For January Illinois Job Index, the Nation, RMW and the state all had positive job growth.

    E-Print Network [OSTI]

    Anastasio, Thomas J.

    Illinois Jobs Index release 3/14/2011 www.real.illinois.edu page 1 For January Illinois Job Index, the Nation, RMW and the state all had positive job growth. The monthly Illinois Job Index and MSA Report months Jan 2011 Total non-farm employment Growth Rate % Number of Jobs Growth Rate% Number of Jobs Shadow

  10. Illinois Jobs Index release 4/25/2011 www.real.illinois.edu page 1 For March Illinois Job Index, the Nation, RMW and the state all had positive job growth.

    E-Print Network [OSTI]

    Anastasio, Thomas J.

    Illinois Jobs Index release 4/25/2011 www.real.illinois.edu page 1 For March Illinois Job Index, the Nation, RMW and the state all had positive job growth. The monthly Illinois Job Index and MSA Report months Mar 2011 Total non-farm employment Growth Rate % Number of Jobs Growth Rate% Number of Jobs Shadow

  11. Illinois Jobs Index release 06/27/2011 www.real.illinois.edu page 1 For June Illinois Job Index, the RMW had negative job growth while the Nation and the state both had positive job growth.

    E-Print Network [OSTI]

    Shim, Moonsub

    Illinois Jobs Index release 06/27/2011 www.real.illinois.edu page 1 For June Illinois Job Index, the RMW had negative job growth while the Nation and the state both had positive job growth. The monthly Illinois Job Index and MSA Report are issued monthly as tools for elected officials, policy leaders

  12. Illinois Jobs Index release 10/31/2011 www.real.illinois.edu page 1 For August Illinois Job Index, the state and the Nation had positive job growth, the RMW had negative job growth.

    E-Print Network [OSTI]

    Frank, Thomas D.

    Illinois Jobs Index release 10/31/2011 www.real.illinois.edu page 1 For August Illinois Job Index, the state and the Nation had positive job growth, the RMW had negative job growth. The Illinois Job Index Positive Aug 2011­ Sep 2011 Last 12 months Sep 2011 Total non-farm employment Growth Rate % Number of Jobs

  13. Illinois Jobs Index release 01/31/2011 www.real.illinois.edu page 1 For November Illinois Job Index, the state and the Nation had positive job growth, the RMW had negative job growth.

    E-Print Network [OSTI]

    Frank, Thomas D.

    Illinois Jobs Index release 01/31/2011 www.real.illinois.edu page 1 For November Illinois Job Index, the state and the Nation had positive job growth, the RMW had negative job growth. The Illinois Job Index Negative Nov 2011­ Dec 2011 Last 12 months Dec 2011 Total non-farm employment Growth Rate % Number of Jobs

  14. ILLINOIS -RailTEC Optimal Grade Crossing Project Selection

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    BNSF Railway Global Level Crossing Safety Symposium - August 5th, 2014 #12;Slide 2 ILLINOIS - Rail,000,000~$1,000,000 #12;Slide 4 ILLINOIS - RailTEC Corridor Improvements Passenger rail corridor involves a series ILLINOIS - RailTEC 240 120 60 45 40 33 29 23 18 0 50 100 150 200 250 300 0 25 50 75 100 125 150 175 200 225

  15. Illinois scrap-tire management study

    SciTech Connect (OSTI)

    Wietting, N.E.

    1989-10-01T23:59:59.000Z

    Pursuant to the mandate under Public Act 85-1196 (HB 3389), the Illinois Department of Energy and Natural Resources initiated a study that reports on feasible methods for recycling of scrap motor vehicle tires which may be available to municipalities and counties. The study answers that mandate. It examines various methods for the recovery or reuse of motor vehicle tires. In addition, the study provides a detailed economic analysis of two alternative systems judged to be effective uses of scrap tires that can be implemented at this time. Finally, a discussion of policy issues is provided to assist the State of Illinois in determining which combination of uses and legislation would be an effective means of controlling the growing problem of scrap tires.

  16. University of Illinois at Urbana-Champaign's GATE Center for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Urbana-Champaign's GATE Center for Advanced Automotive Bio-Fuel Combustion Engines University of Illinois at Urbana-Champaign's GATE Center for Advanced Automotive Bio-Fuel...

  17. NNSA hosts Illinois emergency responders during technical exchange...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog NNSA hosts Illinois emergency responders during technical ......

  18. Secretary Bodman in Illinois Highlights Scientific Research Investment...

    Energy Savers [EERE]

    Bodman in Illinois Highlights Scientific Research Investments to Advance America's Innovation April 11, 2007 - 12:36pm Addthis ROMEOVILLE, IL - U.S. Secretary of Energy...

  19. Commercial and Industrial Energy Conservation Programs in Illinois

    E-Print Network [OSTI]

    Thomas, S. K.

    1980-01-01T23:59:59.000Z

    This paper presents the State of Illinois' evolving role in assisting commercial and industrial firms in identifying and improving inefficiencies in the use of energy....

  20. Illinois Home Performance: DOE REES-- Driving Demand: Successful Marketing Strategies

    Broader source: Energy.gov [DOE]

    Presents Illinois Home Performance's successful marketing strategies, from more than 100,000 direct mailings to multi-pronged online outreach, July 2012.

  1. Retooled Machines Bring New Green Jobs to Illinois | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Reinvestment Act. The Illinois Energy Plan office aims to invest and develop the state's green economy, including renewable energy sources, energy efficiency and green buildings....

  2. University of Illinois at Urbana Champaigns GATE Center forAdvanced...

    Energy Savers [EERE]

    of Illinois at Urbana Champaigns GATE Center forAdvanced Automotive Bio-Fuel Combustion Engines University of Illinois at Urbana Champaigns GATE Center forAdvanced...

  3. Spring 2011 University of Illinois at Urbana-Champaign

    E-Print Network [OSTI]

    Liu, Gang "Logan"

    Spring 2011 University of Illinois at Urbana-Champaign ELECTRICAL AND COMPUTER ENGINEERING 440...................................................................................... 9-11 Prerequisite: Physics 214 and credit or concurrent registration in ECE 329. Graduate credit not allowed toward degrees in electrical and computer engineering. 3 HOURS. #12;ECE 440 Univ. Illinois Urbana

  4. InsideIllinoisFeb. 21, 2013 Vol. 32, No. 15

    E-Print Network [OSTI]

    Lewis, Jennifer

    thousands of research studies, genetically modified foods are overregulated. PAGE 4 bAM! KA-PoW! A new study.illinois.edu/ii/ ˇ To subscrIbe: go.illinois.edu/iisubscribe regulating GM foods A U. of I. researcher believes that after

  5. Discoveries in Photosynthesis University of Illinois at Urbana-Champaign, Urbana, Illinois, U.S.A.

    E-Print Network [OSTI]

    Govindjee "Gov"

    Discoveries in Photosynthesis Edited by Govindjee University of Illinois at Urbana, J.F. Allen and Govindjee A personal tribute to an eminent photosynthesis researcher, Martin D. Kamen. Editorials Celebrating the Golden Jubilee of the 1952 Conference on Photosynthesis (Gatlinburg, Tennessee

  6. Brownfield landfill remediation under the Illinois EPA site remediation program

    SciTech Connect (OSTI)

    Beck, J.; Bruce, B.; Miller, J.; Wey, T.

    1999-07-01T23:59:59.000Z

    Brownfield type landfill remediation was completed at the Ft. Sheridan Historic Landmark District, a former Army Base Realignment and Closure Facility, in conjunction with the future development of 551 historic and new homes at this site. The project was completed during 1998 under the Illinois Environmental Protection Agency (Illinois EPA) Site Remediation Program. This paper highlights the Illinois EPA's Site Remediation Program and the remediation of Landfills 3 and 4 at Fort Sheridan. The project involved removal of about 200,000 cubic yards of landfill waste, comprised of industrial and domestic refuse and demolition debris, and post-removal confirmation sampling of soils, sediment, surface water, and groundwater. The sample results were compared to the Illinois Risk-Based Cleanup levels for residential scenarios. The goal of the removal project was to obtain a No Further Remediation letter from the Illinois EPA to allow residential development of the landfill areas.

  7. Gasifier feed - Tailor-made from Illinois coals

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III (Illinois State Geological Survey, Champaign, IL (United States)); Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. (Illinois State Geological Survey, Champaign, IL (United States) DESTEC Energy (United States) Williams Technology, (United States) Illinois Coal Association (United States))

    1992-01-01T23:59:59.000Z

    The main purpose of this project is to produce a feedstock from preparation plant fines from an illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is higher not only because of the higher Btu value of the coal but also because Illinois coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for Illinois coal as compared to approximately 45% for most western coals.

  8. Illinois Turning Landfill Trash into Future Cash

    Broader source: Energy.gov [DOE]

    Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the electricity could reach $1 million annually.

  9. Energy Incentive Programs, Illinois | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFact SheetColoradoGeorgiaIllinois

  10. Lemont, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:New York: EnergyVillage, NewLemhiIllinois:

  11. Loraine, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole, Nebraska:Longboard CapitalEnergyLoraine, Illinois:

  12. Granite City, Illinois, Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ," POSTGranite City, Illinois,

  13. Abingdon, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratiosAbernathy,Illinois: Energy

  14. Brookfield, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable and Innovative EnergyHeights,Illinois: Energy Resources Jump to:

  15. Buffalo, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda, Washington: Energy ResourcesBuffalo, Illinois: Energy

  16. Williamsville, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho:Wildwood Crest,9179271°,Illinois: Energy Resources

  17. Willowbrook, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho:WildwoodWilloughby, Ohio: EnergyPark,Illinois:

  18. Sherman, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: EnergySumoncle SolarNebraska: EnergyIllinois: Energy

  19. Skokie, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG Solar GmbHKentucky:SinosolSitalceaSkokie, Illinois:

  20. Illinois Sustainable Technologies Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinois Institute for RuralSustainable

  1. Illinois/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind FarmInformationIllinois/Wind Resources <

  2. Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind FarmInformationIllinois/Wind

  3. Hillside, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey: Energy Resources JumpHillside, Illinois:

  4. Worth, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy ResourcesWoodsCenters JumpGeorgia: EnergyIllinois:

  5. Pawnee, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,Parle Biscuits PvtPaw Paw, Illinois:Oklahoma:

  6. Peotone, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,ParleInformationPenobscotPeotone, Illinois: Energy

  7. Phoenix, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources JumpPfhotonikaPhoenicia, New York:JumpIllinois:

  8. Plainfield, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S A JumpPiute County, Utah:PlainIllinois:

  9. Plainville, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S A JumpPiute County,PCOR JumpIllinois:

  10. Normal, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:NeppelsourceNormal, Illinois: Energy Resources

  11. Elburn, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh UniversityMirage,Reno,Elaine,Elberta,

  12. Elwood, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,Energy Information ElkhornElwood, Illinois: Energy Resources

  13. Matteson, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy Resources JumpMastic, NewMattapoisett,Matteson, Illinois:

  14. Maywood, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy ResourcesMavi Innovations IncMayfield,Illinois: Energy

  15. Mechanicsburg, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°, -88.864698° ShowMeade County,Place,PageIllinois:

  16. Mendon, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°,Meeteetse,Illinois:Mendocino County,Mendon,

  17. Crete, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings LlcCrenshawCrete, Illinois: Energy

  18. Darien, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database Data and Resources11-DNADalyDanishDarajatDarien, Illinois:

  19. Symerton, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0 - WarehousesSymerton, Illinois: Energy

  20. Mokena, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysisMogadore, Ohio:Mokena, Illinois:

  1. Naperville, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy ResourcesOceanNanostellar Inc JumpNapaIllinois: Energy

  2. Berkeley, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina: Energy Resources JumpWest Virginia:Illinois:

  3. Quincy, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublicPutnamQuailValley, Arizona:Illinois:

  4. Rochester, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio: EnergyTennessee:Rochelle,Illinois: Energy

  5. Roselle, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County, Michigan: Energy ResourcesRoselle, Illinois:

  6. Geneva, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/PuestaGeneva County, Alabama:Illinois:

  7. Columbus, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York:Governor s(Redirected fromElectricIllinois: Energy

  8. Microsoft Word - Illinois State DOE Exec Summary.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window SHGC: .45 Heat Pump HSPF: 9.2 Heat Pump SEER: 17.8 Water Heater EF: .93 Key Statistics: Location: Normal, Illinois 2009 IECC Climate Zone: 5A Square Feet: 1,428 Number of...

  9. Economic Development for a Growing Economy Tax Credit Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Economic Development for a Growing Economy Tax Credit Program encourages companies to remain, expand, or locate in Illinois. The program provides tax credits to qualifying companies equal to...

  10. Turning methane into usable liquid fuel: Illinois Institute of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    liquid fuel: Illinois Institute of Technology and Argonne to receive 2M for hybrid fuel cells August 4, 2014 Tweet EmailPrint Researchers from the US Department of Energy's...

  11. InsideIllinoisMarch 6, 2014 Vol. 33, No. 16

    E-Print Network [OSTI]

    Lewis, Jennifer

    to enact positive changes in agricul- tural landscapes, particularly through second- generation perennial,saysJodyEndres,aprofessorofbioenergy,environmentalandnatural resourceslawatIllinois. it we decide to devote to biofuels crops, particularly in areas of water stress

  12. Alcohol, Tobacco, and Other Drug Use in Illinois: Prevalence

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Assessment Program. Rod R. Blagojevich, Governor #12;#12;Alcohol, Tobacco, and Other Drug Use in Illinois by the federal Office of Management and Budget. Theodora Binion-Taylor, Associate Director 100 West Randolph

  13. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439

    E-Print Network [OSTI]

    Harilal, S. S.

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439 ANL-ET/02-23 DEVELOPMENT. Hassanein Energy Technology Division July 2002 #12;Argonne National Laboratory, a U.S. Department of Energy

  14. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439

    E-Print Network [OSTI]

    Harilal, S. S.

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439 ANL-ET/02. Hassanein Energy Technology Division July 2002 #12;Argonne National Laboratory, a U.S. Department of Energy

  15. area cordova illinois: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.0: Using Web 2.0 to Connect with Donors Lynne M. Thomas, Northern Illinois University Society of American Archivists 2009 Conference Session 401: The Potential of Web 2.0 for...

  16. InsideIllinoisNov. 21, 2013 Vol. 33, No. 10

    E-Print Network [OSTI]

    Lewis, Jennifer

    by the Illinois Department of Commerce and Eco- nomic Opportunity. The office is expected to solidify and expand relation- ships with Chinese academic and business leaders, Khanna said. An inauguration ceremony

  17. Ichnotaxonomic assessment of Mazon Creek area trace fossils, Illinois, USA

    E-Print Network [OSTI]

    LoBue, David J.

    2010-08-12T23:59:59.000Z

    The Francis Creek Shale Member (FCSM) of the Mid-Pennsylvanian Carbondale Formation along Mazon Creek in northern Illinois is known for soft-bodied organisms preserved within siderite concretions. Trace fossils, though ...

  18. Ameren Illinois (Electric & Gas)- Multi-Family Properties Energy Efficiency Incentives

    Broader source: Energy.gov [DOE]

    The shell measure segment offers incentives for air sealing the shell of multifamily buildings. Incentives will be paid based on the total CFM reduction. Insulation incentives will be based on sq...

  19. Ameren Illinois (Electric)- Multi-Family Properties Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Multi-Family Properties Energy Efficiency Rebate Program aims to increase the energy efficiency of multi-family properties by implementing simple measures. There are two programs within this...

  20. Energy Impact Illinois - Final Technical Report

    SciTech Connect (OSTI)

    Olson, Daniel [Senior Energy Efficiency Planner] [Senior Energy Efficiency Planner; Plagman, Emily [Senior Energy Planner] [Senior Energy Planner; Silberhorn, Joey-Lin [Energy Efficiency Program Assistant] [Energy Efficiency Program Assistant

    2014-02-18T23:59:59.000Z

    Energy Impact Illinois (EI2) is an alliance of government organizations, nonprofits, and regional utility companies led by the Chicago Metropolitan Agency for Planning (CMAP) that is dedicated to helping communities in the Chicago metropolitan area become more energy efficient. Originally organized as the Chicago Region Retrofit Ramp-Up (CR3), EI2 became part of the nationwide Better Buildings Neighborhood Program (BBNP) in May 2010 after receiving a $25 million award from the U.S. Department of Energy (DOE) authorized through the American Recovery and Reinvestment Act of 2009 (ARRA). The program’s primary goal was to fund initiatives that mitigate barriers to energy efficiency retrofitting activities across residential, multifamily, and commercial building sectors in the seven-county CMAP region and to help to build a sustainable energy efficiency marketplace. The EI2 Final Technical Report provides a detailed review of the strategies, implementation methods, challenges, lessons learned, and final results of the EI2 program during the initial grant period from 2010-2013. During the program period, EI2 successfully increased direct retrofit activity in the region and was able to make a broader impact on the energy efficiency market in the Chicago region. As the period of performance for the initial grant comes to an end, EI2’s legacy raises the bar for the region in terms of helping homeowners and building owners to take action on the continually complex issue of energy efficiency.

  1. First conference on ground control problems in the Illinois Coal Basin: proceedings

    SciTech Connect (OSTI)

    Chugh, Y.P.; Van Besien, A. (eds.)

    1980-06-01T23:59:59.000Z

    The first conference on ground control problems in the Illinois Coal Basin was held at the Southern Illinois University at Carbondale, Illinois, August 22-24, 1979. Twenty-one papers from the proceedings have been entered individually into EDB; one had been entered previously from other sources. (LTN)

  2. Gasifier feed - Tailor-made from Illinois coals

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III (Illinois State Geological Survey, Champaign, IL (United States)); Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. (Illinois State Geological Survey, Champaign, IL (United States) DESTEC Energy (United States) Williams Technology (United States) Illinois Coal Association (United States))

    1992-01-01T23:59:59.000Z

    The main purpose of this project is to produce a feedstock from preparation plant fines from an Illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. This project will bring the expertise of four organizations together to perform the various tasks. The Illinois Coal Association will help direct the project to be the most beneficial to the Illinois coal industry. DESTEC Energy, a wholly-owned subsidiary of Dow Chemical Company, will provide guidelines and test compatibility of the slurries developed for gasification feedstock. Williams Technology will provide their expertise in long distance slurry pumping, and test selected products for viscosity, pumpability, and handlability. The Illinois State Geological Survey will study methods for producing clean coal/water slurries from preparation plant wastes including the concentration of pyritic sulfur into the coal slurry to increase the revenue from elemental sulfur produced during gasification operations, and decrease the pyritic sulfur content of the waste streams. ISGS will also test the gasification reactivity of the coals. As reported earlier, a variety of possible samples of coal have been analyzed and the gasification performance evaluation reported. Additionally, commercial sized samples of -28 mesh {times} 100 mesh coal -100 {times} 0 coal were subjected to pumpability testing. Neither the coarse product nor the fine product by themselves proved to be good candidates for trouble free pumping, but the mix of the two proved to be a very acceptable product

  3. Southern Illinois University Watercraft & Equipment Operating Boat Operation Eligibility

    E-Print Network [OSTI]

    that a stream of water is flowing from the motor for engine cooling. 8. Click in gear hard, don't grind. D the Illinois Boaters Safety Exam. General Boating Safety Guidelines All boat operations must comply with state is in distress, a fire extinguisher and engine cut-off safety lanyard for all boats with internal combustion

  4. InsideIllinoisNov. 17, 2005 Vol. 25, No. 10

    E-Print Network [OSTI]

    Lewis, Jennifer

    retirees and tell you how they fill their days. PAGE 9 Wind turbines, solar power to bring renewable energy at the UI's Urbana-Champaign campus, thanks to a blossoming student-initiative and a $2 million grant from the Illinois Clean Energy Commu- nity Foundation. Three 1.5-megawatt wind turbines will be built in the South

  5. Curing Corruption in Illinois: Anti-Corruption Report Number 1

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    ` Curing Corruption in Illinois: Anti-Corruption Report Number 1 February 3, 2009 Authored By would come to local officials for housing and work, thus turning public office into the market for jobs and franchises to enrich themselves. They even awarded the city's gas business to a fictional company they had

  6. Illinois' State FossilTullimonstrum gregarium The ancient landscape

    E-Print Network [OSTI]

    Cochran-Stafira, D. Liane

    that accumulated in the swamps was buried and converted to coal, an important economic resource for Illinois, it's likely the Tully monster was an active swimmer. Perhaps, like a modern squid, it hovered near of shale that overlies a valuable coal seam. In the 1920s, when strip mining operations began south

  7. Minjung Kwak e-mail: kwak14@illinois.edu

    E-Print Network [OSTI]

    Kim, Harrison

    -of-life products has become a promising solu- tion to the waste problem in the consumer electronic industry the quantities of electronic waste (i.e., e-waste) that must be disposed and bring about economic and social bene, University of Illinois at Urbana-Champaign, Urbana, IL 61801 E-Waste Stream Analysis and Design Implications

  8. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439

    E-Print Network [OSTI]

    Harilal, S. S.

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne Illinois 60439 ANL-ET/02-04 DEVELOPMENT of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department to the public, and perform publicly and display publicly, by or on behalf of the Government. #12;Argonne

  9. As ECE students know the University of Illinois Board of

    E-Print Network [OSTI]

    Liu, Gang "Logan"

    we were looking at for this building's energy use, we realized that we were very close to net-zero consumption. If we can achieve that, the new building will be the nation's largest net-zero energy project The University of Illinois has mandated that new cam- pus buildings achieve a Leadership in Energy and Environ

  10. Characterization of the surface properties of Illinois Basin Coals

    SciTech Connect (OSTI)

    Demir, I.

    1991-01-01T23:59:59.000Z

    The overall objective of this research project is to provide fundamental data on the physical and chemical surface properties of Illinois coals, specifically those of the Illinois Basin Coal Sample Program (IBCSP). This will help coal researchers achieve an optimal match between Illinois Basin coals and potential coal cleaning and conversion processes (or at least reduce the number of coals suitable for a particular process) and may lead to improved desulfurization and increased utilization of Illinois Basin coals. The specific tasks scheduled to meet our objective are: (1) Physical Characterization: Determine total surface area, porosity, pore size and volume distributions of IBCSP coals crushed to two particle sizes, {minus}100 and {minus}400 mesh (exclusive of IBC-108 which is available only in {minus}400 mesh form), in both an unoxidized and oxidized state. (2) Chemical Characterization: Determine the surface charge (electrokinetic mobility) as a function of pH by electrophoresis and analyze the surface chemical structure of the above samples using Diffuse Reflectance Infrared Spectroscopy (DRIS). (3) Multivariate Statistical Analyses: Explore possible relationships among the newly determined surface properties and other available characterization data, including chemical and petrographic compositions, vitrinite reflectance, free swelling index, ash yield, sulfur forms, and other relevant properties.

  11. American Society of Engineering Education April 1-2, 2005-Northern Illinois University, DeKalb, Illinois. 2005 IL/IN Sectional Conference.

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    , and the subject of site planning belongs to both of the civil and architectural engineering professions. SometimesAmerican Society of Engineering Education April 1-2, 2005-Northern Illinois University, DeKalb, Illinois. 2005 IL/IN Sectional Conference. Session D-T1-2 OVERLAP BETWEEN MECHANICAL AND CIVIL ENGINEERING

  12. Pre-Mississippian hydrocarbon potential of Illinois basin

    SciTech Connect (OSTI)

    Davis, H.G.

    1987-05-01T23:59:59.000Z

    The Illinois basin is primarily a Paleozoic epeirogenic basin located in the east-central US. Taken at its broadest possible definition, this basin contains a maximum of 20,000 ft of sedimentary rocks. These represent every Phanerozoic system except the Triassic and Jurassic. Seven important tectonic episodes are recognized. These begin with the establishment of Eocambrian basement rift faults, followed by six rejuvenation events of varying magnitude. More than 3.5 billion bbl of oil have been produced from the Illinois basin, mainly from Pennsylvanian and Mississippian rocks. These rocks represent only 20% of the total basin sedimentary volume. Source rock maturation studies suggest that none of this oil is indigenous to the Pennsylvanian or Mississippian, but all has migrated upward from at least three pre-Mississippian sources. If basin sedimentary volume is taken to be roughly proportional to hydrocarbon reserves, there may be as much as 12 billion BOE remaining to be found in the largely untested pre-Mississippian of the Illinois basin. A thermal history model and Lopatin analysis suggest that oil generation began in Ordovician time and continued through the Jurassic in the deepest part of the basin. At the present stage of exploration, the Hunton Megagroup (Silurian-Devonian) is recommended as the primary pre-Mississippian drilling target. However, understanding the interplay of the pre-Middle Devonian unconformity with contemporaneous paleotopographic-paleobathymetric expression of prospective features is critical to successful Hunton porosity prediction. This interplay is demonstrated at Centralia and Sandoval fields, Clinton and Marion counties, Illinois.

  13. Reclamation of abandoned mined lands along th Upper Illinois Waterway using dredged material

    SciTech Connect (OSTI)

    Van Luik, A; Harrison, W

    1982-01-01T23:59:59.000Z

    Sediments were sampled and characterized from 28 actual or proposed maintenance-dredging locations in the Upper Illinois Waterway, that is, the Calumet-Sag Channel, the Des Plaines River downstream of its confluence with the Calumet-Sag Channel, and the Illinois River from the confluence of the Kankakee and Des Plaines rivers to Havana, Illinois. Sufficient data on chemical constituents and physical sediments were obtained to allow the classification of these sediments by currently applicable criteria of the Illinois Environmental Protection Agency for the identification of hazardous, persistent, and potentially hazardous wastes. By these criteria, the potential dredged materials studied were not hazardous, persistent, or potentially hazardous; they are a suitable topsoil/ reclamation medium. A study of problem abandoned surface-mined land sites (problem lands are defined as being acidic and/or sparsely vegetated) along the Illinois River showed that three sites were particularly well suited to the needs of the Corps of Engineers (COE) for a dredged material disposal/reclamation site. Thes sites were a pair of municipally owned sites in Morris, Illinois, and a small corporately owned site east of Ottawa, Illinois, and adjacent to the Illinois River. Other sites were also ranked as to suitability for COE involvement in their reclamation. Reclamation disposal was found to be an economically competitive alternative to near-source confined disposal for Upper Illinois Waterway dredged material.

  14. University of Illinois at Urbana-Champaigns GATE Center for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Urbana-Champaigns GATE Center for Advanced Automotive Bio-Fuel Combustion Engines University of Illinois at Urbana-Champaigns GATE Center for Advanced Automotive Bio-Fuel...

  15. High school students use nation's top X-rays to study Illinois...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industry, medical schools, and other research institutions. Click to enlarge. High school students use nation's top X-rays to study Illinois fossils By Chelsea Leu * October 2,...

  16. E-Print Network 3.0 - annual illinois energy Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control -VII, Revitalizing Operational Reliability August 19-24, 2007, Charleston, SC, USA Summary: Illinois Electricity Auction Matias Negrete-Pincetic and George Gross...

  17. E-Print Network 3.0 - agencies illinois institute Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Resources ; Energy Storage, Conversion and Utilization 48 LEADERSHIP FORUM "Health Care Reform -Leadership in a Time of Chaos" Summary: served as di- rector of the Illinois...

  18. Funded Clinical Trial with a Novel Anticancer Agent University of Illinois Cancer Care Clinic and

    E-Print Network [OSTI]

    Hergenrother, Paul J.

    Funded Clinical Trial with a Novel Anticancer Agent University of Illinois Cancer Care Clinic or clinical coagulopathy ˇ Dogs must weight > or = 20 kg Diagnostics: ˇ Diagnostics include: 1) Screening

  19. Illinois SB 1987: the Clean Coal Portfolio Standard Law

    SciTech Connect (OSTI)

    NONE

    2009-01-15T23:59:59.000Z

    On January 12, 2009, Governor Rod Blagojevich signed SB 1987, the Clean Coal Portfolio Standard Law. The legislation establishes emission standards for new coal-fueled power plants power plants that use coal as their primary feedstock. From 2009-2015, new coal-fueled power plants must capture and store 50 percent of the carbon emissions that the facility would otherwise emit; from 2016-2017, 70 percent must be captured and stored; and after 2017, 90 percent must be captured and stored. SB 1987 also establishes a goal of having 25 percent of electricity used in the state to come from cost-effective coal-fueled power plants that capture and store carbon emissions by 2025. Illinois is the first state to establish a goal for producing electricity from coal-fueled power plants with carbon capture and storage (CCS). To support the commercial development of CCS technology, the legislation guarantees purchase agreements for the first Illinois coal facility with CCS technology, the Taylorville Energy Center (TEC); Illinois utilities are required to purchase at least 5 percent of their electricity supply from the TEC, provided that customer rates experience only modest increases. The TEC is expected to be completed in 2014 with the ability to capture and store at least 50 percent of its carbon emissions.

  20. Illinois coal reserve assessment and database development. Final report

    SciTech Connect (OSTI)

    Treworgy, C.G.; Prussen, E.I.; Justice, M.A.; Chenoweth, C.A. [and others

    1997-11-01T23:59:59.000Z

    The new demonstrated reserve base estimate of coal of Illinois is 105 billion short tons. This estimate is an increase from the 78 billion tons in the Energy Information Administration`s demonstrated reserve base of coal, as of January 1, 1994. The new estimate arises from revised resource calculations based on recent mapping in a number of countries, as well as significant adjustments for depletion due to past mining. The new estimate for identified resources is 199 billion tons, a revision of the previous estimate of 181 billion tons. The new estimates incorporate the available analyses of sulfur, heat content, and rank group appropriate for characterizing the remaining coal resources in Illinois. Coal-quality data were examined in conjunction with coal resource mapping. Analyses of samples from exploration drill holes, channel samples from mines and outcrops, and geologic trends were compiled and mapped to allocate coal resource quantities to ranges of sulfur, heat content, and rank group. The new allocations place almost 1% of the demonstrated reserve base of Illinois in the two lowest sulfur categories, in contrast to none in the previous allocation used by the Energy Information Administration (EIA). The new allocations also place 89% of the demonstrated reserve base in the highest sulfur category, in contrast to the previous allocation of 69% in the highest category.

  1. UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN (UIUC). The Department of Civil and Environmental Engineering (CEE) at the University of Illinois at Urbana-Champaign invites applications for four

    E-Print Network [OSTI]

    Lee, Tonghun

    resources will be available on one of the most powerful computers in the world (http://engineering.illinois.edu/bluewaters

  2. Alejandro D. Dominguez-Garcia University of Illinois at Urbana-Champaign

    E-Print Network [OSTI]

    Liberzon, Daniel

    @ILLINOIS.EDU +1 217 333 3953 (P) +1 217 333 1162 (F) http://energy.ece.illinois.edu/aledan Education MASSACHUSETTS 2001 Valedictorian). Thesis: Refurbishment and Improvement of a 27/5 kV - 10 MVA Power Substation Research Positions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Laboratory for Electromagnetic and Electronic

  3. Research on improved and enhanced oil recovery in Illinois through reservoir characterization

    SciTech Connect (OSTI)

    Not Available

    1990-06-25T23:59:59.000Z

    The Illinois Department of Energy and Natural Resources through a Memorandum of Understanding with the US Department of Energy has commenced a research program in Improved and Enhanced Oil Recovery from Illinois Reservoirs Through Reservoir Characterization.'' The program will include studies on mineralogy, petrography of reservoir rock, database management, engineering assessment, seismic studies and acoustic logs, and mapping. 8 figs. (CBS)

  4. Session II-D-3 American Society for Engineering Education March 27, 2004 Bradley University/Illinois Central College, Peoria, Illinois

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    , Peoria, Illinois 2004 IL/IN Sectional Conference associated vibrations and noise. These devices, known-20 Windmill 30-40 (59% limit) Hydro turbine 80-85 Electro-mechanical motor/generator 80-95 NOTE: Thermal

  5. RESOURCE ASSESSMENT & PRODUCTION TESTING FOR COAL BED METHANE IN THE ILLINOIS BASIN

    SciTech Connect (OSTI)

    Cortland Eble; James Drahovzal; David Morse; Ilham Demir; John Rupp; Maria Mastalerz; Wilfrido Solano

    2004-06-01T23:59:59.000Z

    The geological surveys of Illinois, Indiana and Kentucky have completed the initial geologic assessment of their respective parts of the Illinois Basin. Cumulative thickness maps have been generated and target areas for drilling have been selected. The first well in the Illinois area of the Illinois Basin coal bed methane project was drilled in White County, Illinois in October 2003. This well was cored in the major coal interval from the Danville to the Davis Coals and provided a broad spectrum of samples for further analyses. Sixteen coal samples and three black shale samples were taken from these cores for canister desorption tests and were the subject of analyses that were completed over the following months, including desorbed gas volume, gas chemical and isotope composition, coal proximate, calorific content and sulfur analyses. Drilling programs in Indiana and Kentucky are expected to begin shortly.

  6. Gasifier feed - Tailor-made from Illinois coals. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III [Illinois State Geological Survey, Champaign, IL (United States); Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. [Illinois State Geological Survey, Champaign, IL (United States)]|[DESTEC Energy (United States)]|[Williams Technology, (United States)]|[Illinois Coal Association (United States)

    1992-08-01T23:59:59.000Z

    The main purpose of this project is to produce a feedstock from preparation plant fines from an illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is higher not only because of the higher Btu value of the coal but also because Illinois coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for Illinois coal as compared to approximately 45% for most western coals.

  7. Carbon Dioxide Capture and Transportation Options in the Illinois Basin

    SciTech Connect (OSTI)

    M. Rostam-Abadi; S. S. Chen; Y. Lu

    2004-09-30T23:59:59.000Z

    This report describes carbon dioxide (CO{sub 2}) capture options from large stationary emission sources in the Illinois Basin, primarily focusing on coal-fired utility power plants. The CO{sub 2} emissions data were collected for utility power plants and industrial facilities over most of Illinois, southwestern Indiana, and western Kentucky. Coal-fired power plants are by far the largest CO{sub 2} emission sources in the Illinois Basin. The data revealed that sources within the Illinois Basin emit about 276 million tonnes of CO2 annually from 122 utility power plants and industrial facilities. Industrial facilities include 48 emission sources and contribute about 10% of total emissions. A process analysis study was conducted to review the suitability of various CO{sub 2} capture technologies for large stationary sources. The advantages and disadvantages of each class of technology were investigated. Based on these analyses, a suitable CO{sub 2} capture technology was assigned to each type of emission source in the Illinois Basin. Techno-economic studies were then conducted to evaluate the energy and economic performances of three coal-based power generation plants with CO{sub 2} capture facilities. The three plants considered were (1) pulverized coal (PC) + post combustion chemical absorption (monoethanolamine, or MEA), (2) integrated gasification combined cycle (IGCC) + pre-combustion physical absorption (Selexol), and (3) oxygen-enriched coal combustion plants. A conventional PC power plant without CO2 capture was also investigated as a baseline plant for comparison. Gross capacities of 266, 533, and 1,054 MW were investigated at each power plant. The economic study considered the burning of both Illinois No. 6 coal and Powder River Basin (PRB) coal. The cost estimation included the cost for compressing the CO{sub 2} stream to pipeline pressure. A process simulation software, CHEMCAD, was employed to perform steady-state simulations of power generation systems and CO{sub 2} capture processes. Financial models were developed to estimate the capital cost, operations and maintenance cost, cost of electricity, and CO{sub 2} avoidance cost. Results showed that, depending on the plant size and the type of coal burned, CO{sub 2} avoidance cost is between $47/t to $67/t for a PC +MEA plant, between $22.03/t to $32.05/t for an oxygen combustion plant, and between $13.58/t to $26.78/t for an IGCC + Selexol plant. A sensitivity analysis was conducted to evaluate the impact on the CO2 avoidance cost of the heat of absorption of solvent in an MEA plant and energy consumption of the ASU in an oxy-coal combustion plant. An economic analysis of CO{sub 2} capture from an ethanol plant was also conducted. The cost of CO{sub 2} capture from an ethanol plant with a production capacity of 100 million gallons/year was estimated to be about $13.92/t.

  8. Sidney W. Bijou: The Illinois Years, 1965–1975

    E-Print Network [OSTI]

    Morris, Edward K.

    2008-09-01T23:59:59.000Z

    was the genesis of later home-based parent interventions, notably Shearer and Shearer’s (1972) Portage Early Childhood Education Project (estab- lished in 1969), which Bijou would champion at Illinois. In sum, ac- cording to Kazdin (1978), ‘‘Bijou, Wolf, and Baer... as to the Universidad Nacional Auto´n- oma de Me´xico (1974) and the Universidad Central de Venezuela, Caracas (1974). He also continued to champion the Portage Project (see Bijou, 1980). Commissions and task forces. Al- though not involved in APA Division 25 governance...

  9. Gasifier feed: Tailor-made from Illinois coals

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III.

    1991-01-01T23:59:59.000Z

    The purpose of this research is to develop a coal slurry from waste streams using Illinois coal that is ideally suited for a gasification feed. The principle items to be studied are (1) methods of concentrating pyrite and decreasing other ash forming minerals into a high grade gasification feed using froth flotation and gravity separation techniques; (2) chemical and particle size analyses of coal slurries; (3) determination of how that slurry can be densified and to what degree of densification is optimum from the pumpability and combustibility analyses; and (4) reactivity studies.

  10. Lake County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois: Energy Resources Jump to: navigation,

  11. Lakewood Shores, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois:LakeIowa: EnergyClub, Michigan:

  12. Lawrence County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy DevelopmentLaurentianIllinois: Energy Resources

  13. Madison County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECOFlorida: Energy Resources JumpIllinois:

  14. Brown County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable and InnovativeBrookmont, Maryland:Broome County, NewIllinois:

  15. Camp Point, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual Jump to:(RECP)Point, Illinois: Energy

  16. North Dakota Natural Gas Processed in Illinois (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear Jan Feb MarBarrels)Illinois (Million

  17. West Brooklyn, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to:Ohio:Wendel,Brooklyn, Illinois: Energy Resources Jump

  18. West Chicago, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to:Ohio:Wendel,Brooklyn, Illinois:Chatham,

  19. Woodford County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources JumpWood,Woodford County, Illinois: Energy

  20. Cass County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformation Cashtown-McKnightstown,Illinois: Energy

  1. City of Bushnell, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity of Aplington, IowaCityCity of Bushnell, Illinois

  2. Fayette County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolisFairway,FarmersFastcapAlabama: EnergyIllinois:

  3. Illinois Town Launches Toilet Rebate Program | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37EnergySubmitRoad | DepartmentIllinois Town

  4. Illinois: EERE-Sponsored Clean Energy Competition Launches 2012 a

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37EnergySubmitRoad | DepartmentIllinois

  5. Jasper County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJane Capital Partners Jump to:JapunguIllinois: Energy

  6. Jefferson County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJane Capital PartnersGeorgia: EnergyGeorgia:Illinois:

  7. La Prairie, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups < LEDSGP‎LEE JumpPalma,Illinois: Energy

  8. La Salle County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups < LEDSGP‎LEEPuente, California:Illinois:

  9. Illinois Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million Cubic Feet) Illinois

  10. Illinois Institute for Rural Affairs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinois Institute for Rural Affairs

  11. Illinois Rural Electric Cooperative Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinois Institute for Rural

  12. Illinois' 10th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinois Institute for

  13. Illinois' 13th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinois Institute forInformation

  14. Illinois' 14th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinois Institute

  15. Illinois' 17th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinois InstituteInformation

  16. Illinois' 18th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinois

  17. Illinois' 19th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinoisInformation MAB National

  18. Illinois' 1st congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinoisInformation MAB

  19. Illinois' 3rd congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinoisInformation

  20. Illinois' 4th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm JumpIllinoisInformationInformation

  1. Illinois/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind FarmInformationIllinois/Wind Resources

  2. Kane County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island, Florida:Kane County, Illinois: Energy

  3. Hickory Hills, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, search Name: Hi-GtelTennessee:Hills, Illinois:

  4. Homer Glen, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey:Heights,Holyoke,HomeHomer Glen, Illinois:

  5. Consolidated Edison Sol Inc (Illinois) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentrating Solar PowerConsolidated Edison Sol Inc (Illinois)

  6. Paw Paw, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,Parle Biscuits PvtPaw Paw, Illinois: Energy Resources

  7. Peoria County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,ParleInformationPenobscot County,PenstarIllinois:

  8. Perry County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources Jump to: navigation, searchP2 JumpIllinois: Energy

  9. Pike County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicket Lake,Hampshire:Illinois: Energy Resources

  10. Pleasant Plains, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S APlataforma ItaipuIowa:Plains, Illinois:

  11. Preston Heights, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for EnergyWister Area (DOE GTP)Heights, Illinois:

  12. Lee County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow TankOpen Energyin DevelopingIllinois:

  13. City of Allendale, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport | OpenChristianCimarronCityAllendale, Illinois

  14. City of Carlyle, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |City ofBlue Earth,CityCityCarlyle, Illinois

  15. City of Marshall, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCityCityLongmont,CityCityMarshall, Illinois

  16. City of Red Bud, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona,Plummer, IdahoCity ofRed Bud, Illinois

  17. St. Charles, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast ColoradoOhio:Maine:Panchajanya PowerCounty,Illinois:

  18. Stark County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(Redirected fromStarSolarIllinois: Energy

  19. Sugar Grove, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, searchNew Jersey) JumpIllinois: Energy

  20. East Hazel Crest, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: Energy Resources Jump to: navigation, search Equivalent

  1. Edgar County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport,de NantesCryogenics LLCEdenspace

  2. Edwards County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh University aka Wave

  3. Effingham County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh University aka WaveKansas:New

  4. Elk Grove Village, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:EdinburghEldoradoElectronVaultStationGrove Village,

  5. Elmwood Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,Energy Information Elkhorn HotGrove,Elmore, Ohio:Illinois:

  6. Maple Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca, California:Park, Illinois: Energy

  7. Melrose Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°,Meeteetse,Illinois: Energy Resources Jump to:

  8. Menard County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°,Meeteetse,Illinois: Energy Resources(2009)Menard

  9. Cook County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| Exploration Technique:Illinois: Energy Resources Jump

  10. Crawford County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings Llc Jump to:Cranbury,CratechIllinois:

  11. Crest Hill, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings LlcCrenshaw County,Crest Hill, Illinois:

  12. Douglas County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:EmerlingDoorDothan, Alabama:Illinois: Energy

  13. Illinois Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdaho Regions National ScienceIllinois

  14. Illinois at Urbana-Champaign, Professor Michael J.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed in the PlenaryIllinois

  15. Bond County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |BleckleyMotionBocaBond County, Illinois: Energy

  16. Boone County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022Illinois: Energy Resources Jump to: navigation,

  17. Pulaski County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic Power &EnergyOpenPuenteIllinois:

  18. Richton Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,Maze -Richton Park, Illinois: Energy Resources Jump to:

  19. Forest Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity, Florida: EnergyMichigan:Illinois:

  20. Franklin County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga,FrancisAlabama: EnergyGeorgia:Illinois:

  1. Franklin Grove, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° Show Map Loading map...Texas:Grove, Illinois:

  2. Franklin Park, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° Show Map LoadingIllinois: Energy Resources Jump

  3. Gallatin County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: Energy Resources Jump to:Gallant PrecisionIllinois:

  4. Village of Bethany, Illinois (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeter Logging JumpWorkstreamVilasBethany, Illinois

  5. Clark County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNew York: Energy ResourcesClark County,Illinois:

  6. Clay County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNew York:Information Systems:Illinois: Energy

  7. Tiger team assessment of the Argonne Illinois site

    SciTech Connect (OSTI)

    Not Available

    1990-10-19T23:59:59.000Z

    This report documents the results of the Department of Energy's (DOE) Tiger Team Assessment of the Argonne Illinois Site (AIS) (including the DOE Chicago Operations Office, DOE Argonne Area Office, Argonne National Laboratory-East, and New Brunswick Laboratory) and Site A and Plot M, Argonne, Illinois, conducted from September 17 through October 19, 1990. The Tiger Team Assessment was conducted by a team comprised of professionals from DOE, contractors, consultants. The purpose of the assessment was to provide the Secretary of Energy with the status of Environment, Safety, and Health (ES H) Programs at AIS. Argonne National Laboratory-East (ANL-E) is the principal tenant at AIS. ANL-E is a multiprogram laboratory operated by the University of Chicago for DOE. The mission of ANL-E is to perform basic and applied research that supports the development of energy-related technologies. There are a significant number of ES H findings and concerns identified in the report that require prompt management attention. A significant change in culture is required before ANL-E can attain consistent and verifiable compliance with statutes, regulations and DOE Orders. ES H activities are informal, fragmented, and inconsistently implemented. Communication is seriously lacking, both vertically and horizontally. Management expectations are not known or commondated adequately, support is not consistent, and oversight is not effective.

  8. Proposed environmental remediation at Argonne National Laboratory, Argonne, Illinois

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an Environmental Assessment evaluating proposed environmental remediation activity at Argonne National Laboratory-East (ANL-E), Argonne, Illinois. The environmental remediation work would (1) reduce, eliminate, or prevent the release of contaminants from a number of Resource Conservation and Recovery Act (RCRA) Solid Waste Management Units (SWMUs) and two radiologically contaminated sites located in areas contiguous with SWMUs, and (2) decrease the potential for exposure of the public, ANL-E employees, and wildlife to such contaminants. The actions proposed for SWMUs are required to comply with the RCRA corrective action process and corrective action requirements of the Illinois Environmental Protection Agency; the actions proposed are also required to reduce the potential for continued contaminant release. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required.

  9. Small Wind Electric Systems: An Illinois Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01T23:59:59.000Z

    Small Wind Electric Systems: An Illinois Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  10. High Energy Physics at the University of Illinois

    SciTech Connect (OSTI)

    Liss, Tony M. [University of Illinois] [University of Illinois; Thaler, Jon J. [University of Illinois] [University of Illinois

    2013-07-26T23:59:59.000Z

    This is the final report for DOE award DE-FG02-91ER40677 (“High Energy Physics at the University of Illinois”), covering the award period November 1, 2009 through April 30, 2013. During this period, our research involved particle physics at Fermilab and CERN, particle physics related cosmology at Fermilab and SLAC, and theoretical particle physics. Here is a list of the activities described in the final report: * The CDF Collaboration at the Fermilab Tevatron * Search For Lepton Flavor Violation in the Mu2e Experiment At Fermilab * The ATLAS Collaboration at the CERN Large Hadron Collider * the Study of Dark Matter and Dark Energy: DES and LSST * Lattice QCD * String Theory and Field Theory * Collider Phenomenology

  11. Mining problems caused by tectonic stress in Illinois basin

    SciTech Connect (OSTI)

    Nelson, W.J. (Illinois State Geological Survey, Champaign (United States))

    1991-08-01T23:59:59.000Z

    The Illinois basin coalfield is subject to a contemporary tectonic stress field in which the principal compressive stress axis ({sigma}1) is horizontal and strikes N60{degree}E to east-west. This stress is responsible for widespread development of kind zones and directional roof failures in mine headings driven perpendicular to {sigma}1. Also, small thrust faults perpendicular to {sigma}1 and joints parallel to {sigma}1 weaken the mine roof and occasionally admit water and gas to workings, depending upon geologic setting. The direction of magnitude of stress have been identified by a variety of techniques that can be applied both prior to mining and during development. Mining experience shows that the best method of minimizing stress-related problems is to drive mine headings at about 45 to {sigma}1.

  12. Updated 8/27/14 UNIVERSITY OF ILLINOIS COLLEGE OF MEDICINE @ URBANA-CHAMPAIGN

    E-Print Network [OSTI]

    Gilbert, Matthew

    Updated 8/27/14 UNIVERSITY OF ILLINOIS COLLEGE OF MEDICINE @ URBANA-CHAMPAIGN Office of Student Graduation Requirements for Medical Scholars Program Fellows: Progress Towards Meeting Graduation in Medicine Honor Society (GHHS), and Graduation with Honors Transportation Residency Information

  13. Significant Improvement in Energy Efficiency in Manufacturing at Rohm and Haas’ Kankakee, Illinois, Plant 

    E-Print Network [OSTI]

    Brinkley, T.

    2007-01-01T23:59:59.000Z

    Significant improvement in energy efficiency was achieved at Rohm and Haas’ Kankakee, Illinois facility last year through the combined efforts of all plant personnel. In total, a 24% reduction in energy requirements per pound of product produced...

  14. Significant Improvement in Energy Efficiency in Manufacturing at Rohm and Haas’ Kankakee, Illinois, Plant

    E-Print Network [OSTI]

    Brinkley, T.

    2007-01-01T23:59:59.000Z

    Significant improvement in energy efficiency was achieved at Rohm and Haas’ Kankakee, Illinois facility last year through the combined efforts of all plant personnel. In total, a 24% reduction in energy requirements per pound of product produced...

  15. Environmental feasibility study for gasoline from coal in New Athens, Illinois

    SciTech Connect (OSTI)

    Not Available

    1981-09-01T23:59:59.000Z

    Appendix 2 consists mostly of base line ecology of the proposed site in St. Clair County, southwestern Illinois including air quality, geology, stratigraphy, soils, climates, etc. Socio-economic factors are also considered. The environmental impact is considered. (LTN)

  16. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction

    SciTech Connect (OSTI)

    Chou, M.I.M.

    1991-01-01T23:59:59.000Z

    A pre-combustion coal desulfurization process at 120{degree}C using perchloroethylene (PCE) to remove up to 70% of the organic sulfur has been developed by the Midwest Ore Processing Co. (MWOPC). However, this process has not yet proven to be as successful with Illinois coals as it has for Ohio and Indiana coals. The organic sulfur removal has been achieved only with highly oxidized Illinois coals containing high sulfatic sulfur. A logical explanation for this observation is vital to successful process optimization for the use of Illinois coals. In addition, the high levels of organic sulfur removals observed by the MWOPC may be due to certain errors involved in the ASTM data interpretation; this needs verification. For example, elemental sulfur extracted by the PCE may be derived from pyrite oxidation during coal pre-oxidation, but it may be interpreted as organic sulfur removed by the PCE using ASTM analysis. The goals of this research are: (1) to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process reported by the MWOPC, (2) to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation, and (3) to determine the suitability of Illinois coals for use in the PCE desulfurization process. This project involves the Illinois State Geological Survey (ISGS), Eastern Illinois University (EIU), the University of Illinois-Urbana/Champaign (UI-UC), and the University of Kentucky, Lexington (UK). This is the first year of a two-year project.

  17. Ameren Missouri- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Ameren Missouri offers rebates to its customers for the installation of net metered photovoltaic (PV) systems on their properties. The rebate is set at $2.00 per DC watt with a maximum rebate of ...

  18. Leakage Risk Assessment of CO{sub 2} Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois

    SciTech Connect (OSTI)

    Mazzoldi, A.; Oldenburg, C. M.

    2013-12-17T23:59:59.000Z

    The Illinois Basin Decatur Project (IBDP) is designed to confirm the ability of the Mt. Simon Sandstone, a major regional saline-water-bearing formation in the Illinois Basin, to store 1 million tons of carbon dioxide (CO{sub 2}) injected over a period of three years. The CO{sub 2} will be provided by Archer Daniels Midland (ADM) from its Decatur, Illinois, ethanol plant. In order to transport CO{sub 2} from the capture facility to the injection well (also located within the ADM plant boundaries), a high-pressure pipeline of length 3,200 ft (975 m) has been constructed, running above the ground surface within the ADM plant footprint. We have qualitatively evaluated risks associated with possible pipeline failure scenarios that lead to discharge of CO{sub 2} within the real-world environment of the ADM plant in which there are often workers and visitors in the vicinity of the pipeline. There are several aspects of CO{sub 2} that make its transportation and potential leakage somewhat different from other substances, most notable is its non-flammability and propensity to change to solid (dry ice) upon strong decompression. In this study, we present numerical simulations using Computational Fluid Dynamics (CFD) methods of the release and dispersion of CO{sub 2} from individual hypothetical pipeline failures (i.e., leaks). Failure frequency of the various components of a pipeline transportation system over time are taken from prior work on general pipeline safety and leakage modeling and suggest a 4.65% chance of some kind of pipeline failure over the three-years of operation. Following the Precautionary Principle (see below), we accounted for full-bore leakage scenarios, where the temporal evolution of the mass release rate from the high-pressure pipeline leak locations was simulated using a state-of-the-art Pipe model which considers the thermodynamic effects of decompression in the entire pipeline. Failures have been simulated at four representative locations along the pipeline route within the ADM plant. Leakage scenarios at sites along the route of the pipeline, where plant operations (e.g., vehicular and train transportation) seem to present a higher likelihood of accidental failure, for example due to vehicles or equipment crashing into the pipeline and completely severing it, were modeled by allowing them to have a double source consistent with the pipeline releasing high-pressure CO{sub 2} from both ends of the broken pipe after a full-bore offset rupture. Simulation results show that the built environment of the plant plays a significant role in the dispersion of the gas as leaking CO{sub 2} can impinge upon buildings and other infrastructure. In all scenarios simulated, the region of very high-concentration of CO{sub 2} is limited to a small area around the pipeline failure, suggesting the likelihood of widespread harmful CO{sub 2} exposure to plant personnel from pipeline leakage is low. An additional risk is posed by the blast wave that emanates from a high-pressure pipeline when it is breached quickly. We estimate the blast wave risk as low because it occurs only for a short time in the immediate vicinity of the rupture, and requires an instantaneous large-scale rupture to occur. We recommend consideration of signage and guard rails and posts to mitigate the likelihood of vehicles crashing into the pipeline. A standardized emergency response plan applicable to capture plants within industrial sites could be developed based on the IBDP that would be useful for other capture plants. Finally, we recommend carrying out coupled wellbore-reservoir blowout scenario modeling to understand the potential for hazardous conditions arising from an unexpected blowout at the wellhead.

  19. Baldwin Thermal Treatment Facility, Baldwin, Illinois: Organics and contaminated soils

    SciTech Connect (OSTI)

    Kipin, P.

    1997-12-31T23:59:59.000Z

    The Baldwin Thermal Treatment Facility is located at the Illinois Power Company`s Baldwin Power Plant, east of St. Louis, Missouri. It consists of two coal fired cyclone boilers and one pulverized coal boiler. Wastes are fed to the two cyclone boilers, at present. Future expansion to the pulverizer unit is planned. The boilers burn at 3,000 F with six seconds retention. This exceeds blast furnaces and most incinerators. An added feature is that the coal and waste materials are injected directly into the hottest zone immediately preventing any possible creation of dioxins. Up to 600 tons of waste per day can be fed to the boilers. This will increase when the third boiler is added to the permit. The facility can take a wide range of sizes and concentrations of coal tars and oils. The on-site process equipment will process these with on-site coal in varying proportions as required to ensure a stable uniform feed to the boiler. The on-site process equipment can process intermixed rock, metal, concrete, soil into a uniform blend with coal tars and coal. On-site decontamination of scrap metal is also provided for.

  20. Waterfowl habitats on reclaimed surface mined lands in southwestern Illinois

    SciTech Connect (OSTI)

    O'Leary, W.G.; Klimstra, W.D.; Nawrot, J.R.

    1984-12-01T23:59:59.000Z

    Loss of quality wetland habitat is probably the most important factor affecting populations of waterfowl in the United States. To counteract this problem programs for protecting critical habitats have been established and research for innovative methods to create wetlands are being pursued. Recently, attention has been given to evaluation of wetland habitats on lands surface-mined and to methods of reclamation to enhance their development as part of future planning. These data indicate quality wetland habitats can be a legitimate aspect of reclaimed surface-mined lands; and selective overburden handling, grading so as to maximize biologically productive zones and selective plantings contribute importantly to their value. Currently bond release criteria by the Illinois regulatory authority for wildlife habitat and developed water resources discourages reclamation that would maximize quality wetland habitats. Suggested changes in these criteria include alternative vegetation requirements for wetland habitats, more leniency on seasonally inundated shallow water areas, and variation from topsoil requirements when adequate unconsolidated substitute material is available. It is believed that such allowances would result in incentives for the industry to develop wetland habitats so vital to continued enjoyment of waterfowl resources.

  1. Resource Assessment & Production Testing for Coal Bed Methane in the Illinois Basin

    SciTech Connect (OSTI)

    Cortland Eble; James Drahovzal; David Morse; Ilham Demir; John Rupp; Maria Mastalerz; Wilfrido Solano

    2005-11-01T23:59:59.000Z

    In order to assess the economic coal bed methane potential of the Illinois Basin, the geological surveys of Illinois, Indiana and Kentucky performed a geological assessment of their respective parts of the Illinois Basin. A considerable effort went into generating cumulative coal thickness and bed structure maps to identify target areas for exploratory drilling. Following this, the first project well was drilled in White County, Illinois in October 2003. Eight additional wells were subsequently drilled in Indiana (3) and Kentucky (5) during 2004 and 2005. In addition, a five spot pilot completion program was started with three wells being completed. Gas contents were found to be variable, but generally higher than indicated by historical data. Gas contents of more than 300 scf/ton were recovered from one of the bore holes in Kentucky. Collectively, our findings indicate that the Illinois Basin represents a potentially large source of economic coal bed methane. Additional exploration will be required to refine gas contents and the economics of potential production.

  2. GIS techniques applied to non-point contamination predictions in Illinois groundwater

    SciTech Connect (OSTI)

    Schock, S.C. (Environmental Protection Agency, Cincinnati, OH (United States)); Keefer, D.; Mehnert, E. (Illinois State Geological Survey, Champaign, IL (United States)); Ray, C. (Illinois State Water Survey, Champaign, IL (United States))

    1994-03-01T23:59:59.000Z

    The Illinois State Water Survey and the Illinois State Geological Survey, parts of the Illinois Department of Energy and Natural Resources, as part of the mandates of the Illinois Groundwater Protection Act, undertook a project to determine the potential for vulnerability to contamination by agricultural chemicals in private domestic wells throughout the State. GIS techniques were heavily relied upon to establish four categories of potential vulnerability to such contamination. Information from several sources, Federal, State and Local, were used to develop the coverages which were finally overlain to create the map. Criteria for the evaluation of the potential for vulnerability included location with respect to agricultural chemical application, storage, and preparation, urban vs. rural setting land use, depth below surface to aquifer materials, and soils information. Illinois has more in-depth information on these kinds of information than many of the States, and still there were problems in accumulating the needed data. These included, lack of availability, poor documentation of data collection and storage protocols, and the lack of adequate detail within datasets. Supplementation of information before the application of GIS techniques was needed.

  3. Controlled interface profile in SmCo/Fe exchange-spring magnets Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

    E-Print Network [OSTI]

    Liu, J. Ping

    Division, Argonne National Laboratory, Argonne, Illinois 60439 and Department of Physics, University Division, Argonne National Laboratory, Argonne, Illinois 60439 J. J. Kavichb and J. W. Freeland Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 J. P. Liu Department of Physics

  4. Pavement Smoothness for Illinois DOT -Doug Dirks 1. Briefly summarize your current pavement smoothness requirements. See below.

    E-Print Network [OSTI]

    Pavement Smoothness for Illinois DOT - Doug Dirks 1. Briefly summarize your current pavement? N/A Illinois has both standard specifications and a special provision for pavement smoothness-Depth HMA pavements, and PCC Pavements are all included in this special provision. http

  5. How information resources are used by state agencies in risk assessment applications - Illinois

    SciTech Connect (OSTI)

    Olson, C.S.

    1990-12-31T23:59:59.000Z

    The Environmental Protection Agency of the State of Illinois (Illinois EPA) has programs in water, air, and land pollution and water supplies paralleling those of the US Environmental Protection Agency (EPA). The organization is part of a tripartite arrangement in which the Pollution Control Board is the judicial arm, the Department of Energy and Natural Resources is the research arm, and the Illinois EPA is the enforcement arm. Other state agencies are also concerned with various aspects of the environment and may do risk assessments for chemicals. Although there are various risk assessment activities, both formal and informal, in our agency and in others, this paper will discuss only recent initiatives in water quality criteria.

  6. Trace elements in Illinois coals before and after conventional coal preparation

    SciTech Connect (OSTI)

    Demir, I.; Harvey, R.D.; Ruch, R.R.; Steele, J.D. [Illinois State Geological Survey, Champaign, IL (United States)] [and others

    1994-12-31T23:59:59.000Z

    Responding to recent technological advances and renewed environmental concerns requires improved characterization of Illinois and other US coals. Much of the existing trace element data on Illinois coals are on channel samples; these data need to be supplemented with data on an-shipped coals. Such data will provide a factual basis for the assessment of noxious emissions at coal-fired electric power plants. The purpose of this study was to determine the trace element concentration in as-shipped coals from Illinois mines, and compare the results to data on channel samples thast represent coal in place prior to mining. Radioactivity of the as-shipped samples was calculated from concentrations of uranium, thorium, and potassium in the samples.

  7. Gasifier feed - Tailor-made from Illinois coals. [Quarterly] report, March 1, 1992--May 31, 1992

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III [Illinois State Geological Survey, Champaign, IL (United States); Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. [Illinois State Geological Survey, Champaign, IL (United States)]|[DESTEC Energy (United States)]|[Williams Technology (United States)]|[Illinois Coal Association (United States)

    1992-10-01T23:59:59.000Z

    The main purpose of this project is to produce a feedstock from preparation plant fines from an Illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. This project will bring the expertise of four organizations together to perform the various tasks. The Illinois Coal Association will help direct the project to be the most beneficial to the Illinois coal industry. DESTEC Energy, a wholly-owned subsidiary of Dow Chemical Company, will provide guidelines and test compatibility of the slurries developed for gasification feedstock. Williams Technology will provide their expertise in long distance slurry pumping, and test selected products for viscosity, pumpability, and handlability. The Illinois State Geological Survey will study methods for producing clean coal/water slurries from preparation plant wastes including the concentration of pyritic sulfur into the coal slurry to increase the revenue from elemental sulfur produced during gasification operations, and decrease the pyritic sulfur content of the waste streams. ISGS will also test the gasification reactivity of the coals. As reported earlier, a variety of possible samples of coal have been analyzed and the gasification performance evaluation reported. Additionally, commercial sized samples of -28 mesh {times} 100 mesh coal -100 {times} 0 coal were subjected to pumpability testing. Neither the coarse product nor the fine product by themselves proved to be good candidates for trouble free pumping, but the mix of the two proved to be a very acceptable product

  8. EA-1800: DOE’s Proposed Financial Assistance to Illinois for the Monarch Warren County Wind Turbine Project, Lenox Township, Warren County, Illinois

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has provided Federal funding to the Illinois Department of Commerce and Economic Opportunity (DCEO) under the State Energy Program (SEP). DCEO is seeking to provide $5 million of its SEP funds to Monarch Wind Power (MWP), who would use these funds for the design, permitting, and construction of 12, 1.6-megawatt wind turbines, for a combined generation capacity of 19.2 megawatts.

  9. University of Illinois at Chicago College of Urban Planning & and Public Affairs

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    : What is in the Future for Regional Planning Agencies? Location: Illini Center, 200 S. Wacker Drive (atUniversity of Illinois at Chicago College of Urban Planning & and Public Affairs Alumni Association, Harlem Irving Companies, Inc. Location: Prairie Avenue Bookshop, 418 South Wabash Avenue, Chicago 60605

  10. Assured Information Distillation in Social Sensing University of Illinois at Urbana-Champaign

    E-Print Network [OSTI]

    Garibaldi, Skip

    Colloquium Assured Information Distillation in Social Sensing Dong Wang University of Illinois. This opens up unprecedented challenges and opportunities in social sensing, where the goal is to distill, social and physical networks. The talk will also introduce a new information distillation system we built

  11. IllInoIs InstItute of technology's WInd energy research consortIum

    E-Print Network [OSTI]

    Heller, Barbara

    for blades, and improved aero elastic models to advance wind turbine performance and reliability. The plan Energy Research (WISER) Illinois Institute of Technology On-campus wind turbine [OVER] The U-based and offshore wind turbine performance and reliability ˇ Provide career and educational opportunities

  12. Science, Technology, Engineering, and Mathematics Education | University of Illinois at Urbana-Champaign EDUCATION INITIATIVE

    E-Print Network [OSTI]

    Bashir, Rashid

    Science, Technology, Engineering, and Mathematics Education | University of Illinois at Urbana and technology to solve some of today's most intractable problems. As noted in the 2007 National Academy, technology, engineering, and mathematics (STEM) fields is in decline. Perhaps at no time in our nation

  13. ORIGINAL PAPER Application of the DNDC model to tile-drained Illinois

    E-Print Network [OSTI]

    David, Mark B.

    . Modeling efficiency ranged from 0.25 to 0.85 in comparison with measured drainage and leachate valuesORIGINAL PAPER Application of the DNDC model to tile-drained Illinois agroecosystems: model Springer Science+Business Media B.V. 2007 Abstract We applied the Denitrification- Decomposition (DNDC

  14. THE TOP QUARK Updated December 2011 by T.M. Liss (Univ. Illinois) and A.

    E-Print Network [OSTI]

    ­ 1­ THE TOP QUARK Updated December 2011 by T.M. Liss (Univ. Illinois) and A. Quadt (Univ. G¨ottingen). A. Introduction: The top quark is the Q = 2/3, T3 = +1/2 member of the weak-isospin doublet" for more information). This note summarizes the properties of the top quark (mass, production cross section

  15. ABE@IllinoisAgricultural and Biological Engineering Alumni Newsletter. Spring 2009 Rausch Travels to Brazil with

    E-Print Network [OSTI]

    Gilbert, Matthew

    Rausch Travels to Brazil with ACES Academy for Global Engagement Kent Rausch, Ph.D. '93 AgE, an associate, an overarching theme in the College has been biofuels," said Rausch. "So our class chose to go to Brazil, since of Rausch Travels to Brazil ...Continued http://abe.illinois.edu Page 2 Mato Grosso. "Mato Grosso could

  16. Fiscal Sustainability and Retirement Security: A Reform Proposal for the Illinois State Universities

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    situation: health care and retirement. First, Medicaid expenditures, already a substantial share of state1 Fiscal Sustainability and Retirement Security: A Reform Proposal for the Illinois State errors, are those of the authors alone. I.The Urgent Need for Reform Public pension reform is a national

  17. SURVEY RESEARCH LABORATORY UNIVERSITY OF ILLINOIS AT CHICAGO Conference on Health Survey Research Methods

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    SURVEY RESEARCH LABORATORY ˇ UNIVERSITY OF ILLINOIS AT CHICAGO 10th Conference on Health Survey Research Methods April 8­11, 2011 CALL FOR PAPERS The Tenth Conference on Health Survey research methods that improve the quality of health survey data. The CHSRM will bring together researchers

  18. Northwestern University Archives Evanston, Illinois Department of Geology Field Notebooks and Catalogs, 1881-1953

    E-Print Network [OSTI]

    geology. Mathematical techniques were applied to the exploitation of oil-bearing formations and otherNorthwestern University Archives ˇ Evanston, Illinois Department of Geology Field Notebooks, instructors, and students of the Geology Department between the years 1881 through 1953. History Geology

  19. College of Veterinary Medicine University of Illinois Faculty and Staff Awards

    E-Print Network [OSTI]

    Gilbert, Matthew

    College of Veterinary Medicine ˇ University of Illinois g Faculty and Staff Awards For the past 13 years, the College has held a fall awards ceremony to recognize faculty, graduate students, and staff members for their service and achievements. Listed here are the award winners from both 2004 and 2005

  20. Risk-based corrective action: Lessons for brownfields from the Illinois rulemaking

    SciTech Connect (OSTI)

    Reott, R.T.; Grayson, E.L. [Jenner and Block, Chicago, IL (United States)

    1998-12-31T23:59:59.000Z

    As attention focuses on the redevelopment of brownfield properties, increasing numbers of stakeholders realize that one of the major stumbling blocks to the use of brownfields properties is the uncertainty over future cleanup costs. In Illinois, the Pollution Control Board recently completed a three-year rulemaking which has provided a new, risk-based system for determining corrective action objectives. 35 Ill. Adm. Code {section} 742 (1997). Armed with this system, Illinois property owners and developers may assess potential cleanup exposure with less site investigation than in the past. Because the system may be implemented quickly and predictably, it functions well in a transactional context where speed is critical. This presentation highlights the features of the new Illinois system and identifies potential issues that other states might wish to consider when they evaluate their own programs. Many states are in the process of implementing risk-based corrective action for some or all of their site remediation programs. The lessons learned in Illinois may help these states implement these programs more efficiently and with fewer developmental costs.

  1. Characterization of the surface properties of Illinois Basin Coals. Technical report, September 1--November 30, 1991

    SciTech Connect (OSTI)

    Demir, I.

    1991-12-31T23:59:59.000Z

    The overall objective of this research project is to provide fundamental data on the physical and chemical surface properties of Illinois coals, specifically those of the Illinois Basin Coal Sample Program (IBCSP). This will help coal researchers achieve an optimal match between Illinois Basin coals and potential coal cleaning and conversion processes (or at least reduce the number of coals suitable for a particular process) and may lead to improved desulfurization and increased utilization of Illinois Basin coals. The specific tasks scheduled to meet our objective are: (1) Physical Characterization: Determine total surface area, porosity, pore size and volume distributions of IBCSP coals crushed to two particle sizes, {minus}100 and {minus}400 mesh (exclusive of IBC-108 which is available only in {minus}400 mesh form), in both an unoxidized and oxidized state. (2) Chemical Characterization: Determine the surface charge (electrokinetic mobility) as a function of pH by electrophoresis and analyze the surface chemical structure of the above samples using Diffuse Reflectance Infrared Spectroscopy (DRIS). (3) Multivariate Statistical Analyses: Explore possible relationships among the newly determined surface properties and other available characterization data, including chemical and petrographic compositions, vitrinite reflectance, free swelling index, ash yield, sulfur forms, and other relevant properties.

  2. Preliminary evaluation of resinite recovery from Illinois coal. Technical report, December 1, 1994--February 28, 1995

    SciTech Connect (OSTI)

    Crelling, J.C.

    1995-12-31T23:59:59.000Z

    Resinite is a naturally occurring substance found in coal and derived from original plant resins. It is ubiquitous in North American coals. It makes up one to four percent by volume of most Illinois coals. It has been commercially exploited in the western USA for use in adhesives, varnishes and thermal setting inks. The overall objective of this project is to compare the properties of the resinite contained in Illinois Basin coals to resinite being commercially exploited in the western United States, and to recover the resinite from Illinois coals by microbubble column floatation techniques. This project is relevant to priority 1.4A identified in ICCI/RFP93-1. The significance of this study is that it has the potential to show the way to recover a valuable chemical, resinite, from coal using only physical processing techniques. The value of the resinite at $1.00/kg or $0.50/lb makes it about fifty times more valuable than steam coal. The removal of resinite from coal does not decrease the value of the remaining coal in any way. The unique aspects are that: (1) it is the first examination of the resinite recovery potential of Illinois coal, (2) it integrates the latest characterization techniques such as density gradient centrifugation, microspectrofluorometry, and gas chromatography-mass spectrometry, and (3) it uses microbubble column flotation to determine the resinite recovery potential. During this quarter samples were obtained, information from both the databases of both the Illinois State Geological Survey (ISGS) and the Pennsylvania State University (PSU) was obtained and evaluated, and IBCSP samples from the Herrin No. 6, the Springfield No. 5 and the Colchester No. 2 seams were analyzed petrographically and the resinites in these samples were characterized by fluorescence spectral analysis.

  3. CFBC evaluation of fuels processed from Illinois coals. Technical report, March 1, 1992--May 31, 1992

    SciTech Connect (OSTI)

    Rajan, S. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes

    1992-10-01T23:59:59.000Z

    The combustion and emissions properties of (a) flotation slurry fuel beneficiated from coal fines at various stages of the cleaning process and (b) coal-sorbent pellets made from the flotation concentrate of the same beneficiation process using corn starch as binder is being investigated in a 4-inch internal diameter circulating fluidized bed combustor (CFBC). Combustion data such as SO{sub 2}, NO{sub x} emissions, combustion efficiency and ash mineral matter analyses from these fuels are compared with similar parameters from a reference coal burnt in the same fluidized bed combustor. In the last quarter, the CFBC was brought on line and tests were performed on standard coal No. 3 from the Illinois Basin Coal Sample Program (IBCSP). During this quarter, it was decided, that a more meaningful comparison could be obtained if, instead of using the IBCSP No. 3 coal as a standard, the run-of-mine Illinois No. 5 coal from the Kerr-McGee Galatia plant could be used as the reference coal for purposes of comparing the combustion and emissions performance, since the slurry and pellet fuels mentioned in (a) and (b) above were processed from fines recovered form this same Illinois No. 5 seam coal. Accordingly, run-of-the mine Illinois No. 5 coal from the Galatia plant were obtained, riffled and sieved to {minus}14+18 size for the combustion tests. Preliminary combustion tests have been made in the CFBC with this new coal. In preparation for the slurry tests, the moisture content of the beneficiated slurry samples was determined. Proximate and ultimate analyses of all the coal samples were performed. Using a Leeds and Northrup Model 7995-10 Microtrek particle size analyzer, the size distributions of the coal in the three slurry samples were determined. The mineral matter content of the coal in the three slurry samples and the Illinois No. 5 seam coal were investigated using energy dispersive x-ray analysis.

  4. Preliminary evaluation of resinite recovery from Illinois coal. [Quarterly] technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

    1994-12-31T23:59:59.000Z

    Resinite is a naturally occurring substance found in coal and derived from original plant resins. It is ubiquitous in North American coals. It makes up one to four percent by volume of most Illinois coals. It has been commercially exploited in the western USA for use in adhesives, varnishes and thermal setting inks. The overall objective of this project is to compare the properties of the resinite contained in Illinois Basin coals to resinite being commercially exploited in the western United States, and to recover the resinite from Illinois coals by microbubble column floatation techniques. The significance of this study is that it has the potential to show the way to recover a valuable chemical, resinite, from coal using only physical processing techniques. The value of the resinite at $1.00/kg or $0.50/lb makes it about fifty times more valuable than steam coal. The removal of resinite from coal does not decrease the value of the remaining coal in any way. The unique aspects are that: (1) it is the first examination of the resinite recovery potential of Illinois coal, (2) it integrates the latest characterization techniques such as density Gradient centrifugation, microspectrofluorometry, and gas chromatography- mass spectrometry, and (3) it uses microbubble column flotation to determine the resinite recovery potential. During this quarter samples were obtained, information from both the databases of both the Illinois State Geological Survey (ISGS) and the Pennsylvania State University (PSU) was obtained and evaluated, and EBCSP samples from the Herrin No. 6, the Springfield No. 5 and the Colchester No. 2 seams were analyzed petrographically and the resinites in these samples were characterized by fluorescence spectral analysis.

  5. Ameren Missouri (Electric)- Business Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Ameren Missouri offers cash incentives to non-residential customers for virtually any cost-effective energy efficiency project. Standard incentives are available for lighting, controls, HVAC,...

  6. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin

    SciTech Connect (OSTI)

    Robert Finley

    2005-09-30T23:59:59.000Z

    The Midwest Geological Sequestration Consortium (MGSC) has investigated the options for geological carbon dioxide (CO{sub 2}) sequestration in the 155,400-km{sup 2} (60,000-mi{sup 2}) Illinois Basin. Within the Basin, underlying most of Illinois, western Indiana, and western Kentucky, are relatively deeper and/or thinner coal resources, numerous mature oil fields, and deep salt-water-bearing reservoirs that are potentially capable of storing CO{sub 2}. The objective of this Assessment was to determine the technical and economic feasibility of using these geological sinks for long-term storage to avoid atmospheric release of CO{sub 2} from fossil fuel combustion and thereby avoid the potential for adverse climate change. The MGSC is a consortium of the geological surveys of Illinois, Indiana, and Kentucky joined by six private corporations, five professional business associations, one interstate compact, two university researchers, two Illinois state agencies, and two consultants. The purpose of the Consortium is to assess carbon capture, transportation, and storage processes and their costs and viability in the three-state Illinois Basin region. The Illinois State Geological Survey serves as Lead Technical Contractor for the Consortium. The Illinois Basin region has annual emissions from stationary anthropogenic sources exceeding 276 million metric tonnes (304 million tons) of CO{sub 2} (>70 million tonnes (77 million tons) carbon equivalent), primarily from coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year. Assessing the options for capture, transportation, and storage of the CO{sub 2} emissions within the region has been a 12-task, 2-year process that has assessed 3,600 million tonnes (3,968 million tons) of storage capacity in coal seams, 140 to 440 million tonnes (154 to 485 million tons) of capacity in mature oil reservoirs, 7,800 million tonnes (8,598 million tons) of capacity in saline reservoirs deep beneath geological structures, and 30,000 to 35,000 million tonnes (33,069 to 38,580 million tons) of capacity in saline reservoirs on a regional dip >1,219 m (4,000 ft) deep. The major part of this effort assessed each of the three geological sinks: coals, oil reservoirs, and saline reservoirs. We linked and integrated options for capture, transportation, and geological storage with the environmental and regulatory framework to define sequestration scenarios and potential outcomes for the region. Extensive use of Geographic Information Systems (GIS) and visualization technology was made to convey results to project sponsors, other researchers, the business community, and the general public. An action plan for possible technology validation field tests involving CO{sub 2} injection was included in a Phase II proposal (successfully funded) to the U.S. Department of Energy with cost sharing from Illinois Clean Coal Institute.

  7. Statewide Savings Projections from the Adoption of Commercial Building Energy Codes in Illinois

    SciTech Connect (OSTI)

    Cort, Katherine A.; Belzer, David B.

    2002-09-30T23:59:59.000Z

    ANSI/ASHRAE/IESNA Standard 90.1-1999 Energy Standard for Buildings except Low-Rise Residential Buildings was developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. A number of jurisdictions in the state of Illinois are considering adopting ASHRAE 90.1-1999 as their commercial building energy code. This report builds on the results of a previous study, "Analysis of Potential Benefits and Costs of Adopting ASHRAE Standard 90.1-1999 as a Commercial Building Energy Code in Illinois Jurisdictions," to estimate the total potential impact of adopting ASHRAE 90.1-1999 as a statewide commercial building code in terms of Life-Cycle Cost (LCC) savings, total primary energy savings, and pollution emissions reductions.

  8. IllinoisGRMHD: An Open-Source, User-Friendly GRMHD Code for Dynamical Spacetimes

    E-Print Network [OSTI]

    Etienne, Zachariah B; Haas, Roland; Moesta, Philipp; Shapiro, Stuart L

    2015-01-01T23:59:59.000Z

    In the extreme violence of merger and mass accretion, compact objects like black holes and neutron stars are thought to launch some of the most luminous outbursts of electromagnetic and gravitational wave energy in the Universe. Modeling these systems realistically is a central problem in theoretical astrophysics, but has proven extremely challenging, requiring the development of numerical relativity codes that solve Einstein's equations for the spacetime, coupled to the equations of general relativistic (ideal) magnetohydrodynamics (GRMHD) for the magnetized fluids. Over the past decade, the Illinois Numerical Relativity (ILNR) Group's dynamical spacetime, GRMHD code has proven itself as one of the most robust and reliable tools for theoretical modeling of such GRMHD phenomena. Despite the code's outstanding reputation, it was written "by experts and for experts" of the code, with a steep learning curve that would severely hinder community adoption if it were open-sourced. Here we present IllinoisGRMHD, whic...

  9. Faunal studies of the type Chesteran, Upper Mississippian of southwestern Illinois

    E-Print Network [OSTI]

    Furnish, W. M.; Saunders, W. B.; Burdick, D. W.; Strimple, H. L.

    1971-01-08T23:59:59.000Z

    THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS January 8, 1971 Paper 51 FAUNAL STUDIES OF THE TYPE CHESTERAN, UPPER MISSISSIPPIAN OF SOUTHWESTERN ILLINOIS W. M. FURNISH, W. BRUCE SAUNDERS, D. W. BURDICK, and H. L. STRIMPLE The University... of Iowa, Iowa City Present address of W. BRUCE SAUNDERS, Department of Geology, Bryn Mawr College, Bryn Mawr, Pennsylvania PART 1 AMMONOIDS FROM THE MIDDLE CHESTER BEECH CREEK LIMESTONE, ST. CLAIR COUNTY W. M. FURNISH and W. BRUCE SAUNDERS ABSTRACT...

  10. Abundances of sulfur, chlorine, and trace elements in Illinois Basin coals, USA

    SciTech Connect (OSTI)

    Chou, C.L. [Illinois State Geological Survey, Champaign, IL (United States)

    1997-12-31T23:59:59.000Z

    Abundances of sulfur, chlorine and 52 trace elements in 220 channel and drill-core samples of high volatile bituminous coals (Pennsylvanian age) from the Illinois Basin, USA, are evaluated for the purpose of better understanding geologic processes affecting trace element variation in the coal seams. Mean elemental abundances in Illinois Basin coals are listed in a table. Most Illinois Basin coals are high-sulfur (> 3% total sulfur). Peat was influenced by seawater during early diagenesis. However, low-medium sulfur coal (<3% total sulfur) occurs in restricted areas along the Walshville Channel, which is a contemporaneous river in the peat swamp. A comparison of trace element abundances between high-sulfur and low-medium sulfur coals showed that only seven elements (boron, sulfur, iron, molybdenum, mercury, thallium, and uranium) are clearly more abundant in high-sulfur coal than in low-medium sulfur coal. Apparently, boron, sulfur, molybdenum, and uranium in high-sulfur coals were derived from seawater that inundated the peat swamp and terminated peat accumulation. Iron, mercury, and thallium had a terrestrial source and were incorporated in pyrite during diagenesis. Their enrichment in high-sulfur coal is related to pyrite formation in a reducing environment. The chlorine content in Illinois Basin coals, including channel and drill core samples, varies from 0.01% to 0.8% (on a dry basis). Coal samples from surface mines (< 50 meter depth) are usually low in chlorine content (<0.1%). Samples from underground mines (> 50 meter depth) have a chlorine content ranging between 0.1% to 0.5%. Variation of chlorine content in each of the two coal seams shows that chlorine content increases with depth because the chloride in coal is in equilibrium with the chloride in the groundwater, which is also depth dependent. A low chlorine content in shallow regions of a coal seam is a result of leaching by fresh groundwater.

  11. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry.

  12. The past, present, and future of littoral transport processes along the Illinois coast of Lake Michigan

    SciTech Connect (OSTI)

    Chrzastowski, M.J.; Trask, C.B. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-04-01T23:59:59.000Z

    The 101-km Illinois coast of Lake Michigan incorporates diverse settings, ranging from the most intensely engineered shoreline along the Great lakes to a natural shoreline along a well-developed beach-ridge plain. The estimated rate of littoral transport along the Illinois coast, prior to any coastal engineering, was approximately 80,000 cubic m/year. No obstructions interrupted the continuous net southerly transport to a drift terminus along the Indiana coast. Jetties built in the 1830s to defend the mouth of the Chicago River formed the first barriers to littoral transport, and substantial downdrift erosion resulted. Additional coastal structures that form both total and partial barriers to littoral transport have segmented the original single littoral-transport cell into a series of 6 primary cells (bounded by total barriers) and 18 secondary cells (bounded by partial barriers). As a result, the supply of littoral sediment from the Illinois coast that once nourished the Indiana coast has been eliminated. Future management of sand resources along the Illinois coast should recognize and be compatible with the segmentation of the littoral-transport system into separate cells. Rather than viewing littoral-drift nourishment from the standpoint of the entire coastline, sand volumes within the cells should be conserved. Under this approach, sediment nourishment would be used to maintain sediment volumes within cells at some desired level; updrift backpassing of sand among subcells would recycle most littoral sediment within each cell. Artificial bypassing of the total barriers between cells in an attempt to reestablish the preengineered littoral-transport system is unrealistic.

  13. Structure and morphology of the top of Precambrian crystalline rocks in the Illinois Basin region

    SciTech Connect (OSTI)

    Sargent, M.L. (Illinois State Geological Survey, Champaign, IL (United States)); Rupp, J.A. (Indiana Geological Survey, Bloomington, IN (United States)); Noger, M.C. (Kentucky Geological Survey, Lexington, KY (United States))

    1992-01-01T23:59:59.000Z

    New basement tests and seismic-reflection profiles in the Rough Creek Graben, Wabash Valley Fault System, and other parts of the Illinois Basin have significantly advanced the authors understanding of basement morphology and tectonics. Few details of the paleotopographic component of basement morphology are known, but 100 m or more of local paleotopographic relief is documented in a few places and more than 300 m of relief is known in the western part of the basin. Based on fewer than 50 wells in the Illinois Basin that penetrate Precambrian crystalline basement, it is composed principally of granite and rhyolite porphyry with small amounts of basalt/diabase or andesite. Most of the regional morphology must be projected from structure maps of key Paleozoic horizons, including the top of Middle Ordovician Trenton (Galena), the top of Middle Devonian carbonate (base of New Albany Shale), and other horizons where data are available. The shallowest Precambrian crystalline basement within the Illinois Basin occurs in north-central Illinois where it is [minus]1,000 m MSL. Paleozoic sedimentary fill thickens southward to over 7,000 m in deeper parts of the Rough Creek Graben where crystalline basement has been depressed tectonically and by sediment loading to below [minus]7,000 m MSL. Although trends in Paleozoic strata show continued thickening in the area of the Mississippi Embayment, maximum sediment fill is preserved in the Rough Creek Graben. The general shape of the basin at the level of Precambrian crystalline basement is largely inferred from structure mapped on Paleozoic strata. Half-grabens and other block-faulted features in basement rocks are manifest in small-scale structures near the surface or have no expression in younger strata.

  14. Illinois State Geological Survey Evaluation of CO2 Capture Options from Ethanol Plants

    SciTech Connect (OSTI)

    Robert Finley

    2006-09-30T23:59:59.000Z

    The Illinois State Geological Survey and the Midwest Geological Sequestration Consortium are conducting CO{sub 2} sequestration and enhanced oil recovery testing at six different sites in the Illinois Basin. The capital and operating costs for equipment to capture and liquefy CO{sub 2} from ethanol plants in the Illinois area were evaluated so that ethanol plants could be considered as an alternate source for CO{sub 2} in the event that successful enhanced oil recovery tests create the need for additional sources of CO{sub 2} in the area. Estimated equipment and operating costs needed to capture and liquefy 68 metric tonnes/day (75 tons/day) and 272 tonnes/day (300 tons/day) of CO{sub 2} for truck delivery from an ethanol plant are provided. Estimated costs are provided for food/beverage grade CO{sub 2} and also for less purified CO{sub 2} suitable for enhanced oil recovery or sequestration. The report includes preliminary plant and equipment designs and estimates major capital and operating costs for each of the recovery options. Availability of used equipment was assessed.

  15. Geochemical analysis of crude oil from northern Appalachian, eastern Illinois, and southern Michigan basins

    SciTech Connect (OSTI)

    Noel, J.A.; Cole, J.; Innes, C.; Juzwick, S.

    1987-09-01T23:59:59.000Z

    In May 1986, the Ohio Board of Regents awarded a research grant to Ashland College to investigate the basinal origin of crude oil through trace-element analysis. The major thrust of the project was to attempt to finger print crude oils of various ages and depths from the northern Appalachian, eastern Illinois, and southern Michigan basins, to learn if the oldest crudes may have migrated among the basins. This in turn might give a more definitive time for the separation of the three basins. Nickel to vanadium ratios, were chosen to be the discriminators. Nickel to vanadium ratios show that the Trenton oil from the fields at Lima, Ohio; Oak Harbor in Ottawa County, Ohio; Urbana, Indiana; Peru, Indiana; and Albion, Michigan, are all different. The Trempealeau oils in Harmony and Lincoln Townships, Morrow County, are similar but they are different from those in Peru and Bennington Townships. The Devonian oils of the Illinois and Appalachian basins are distinctly different. The Berea oil shows little or no variability along strike. The Mississippian oils of the Illinois basin are different from the Berea oils and the Salem oil is different from the Chester. The only thing consistent about the Clinton is its inconsistency.

  16. Preliminary evaluation of resinite recovery from Illinois coal. Technical report, March 1--May 31, 1995

    SciTech Connect (OSTI)

    Crelling, J.C.

    1995-12-31T23:59:59.000Z

    Resinite is a naturally occurring substance found in coal and derived from original plant resins. It has been commercially exploited in the western USA for use in adhesives, varnishes and thermal setting inks. The overall objective of this project is to compare the properties of the resinite contained in Illinois Basin coals to resinite being commercially exploited in the western US, and to recover the resinite from Illinois coals by microbubble column floatation techniques. The significance of this study is that it has the potential to show the way to recover a valuable chemical, resinite, from coal using only physical processing techniques. The value of the resinite at $1.00/kg or $0.50/lb makes it about fifty times more valuable than steam coal. The removal of resinite from coal does not decrease the value of the remaining coal in any way. During this quarter pure concentrates of resinite from Herrin No. 6 Seam were produced by the density gradient centrifugation technique. This material is also now being characterized by petrographic and chemical methods. Another accomplishment this quarter was the completion of a series of microbubble column flotation tests under eight different conditions. The tests were successful in producing concentrates that are now being evaluated. The significance of the work done during this quarter is the confirmation that the resinite in an Illinois coal can be successfully separated in quantities useful for testing and analysis.

  17. Sediment entrapment by coastal structures along the Illinois shore of Lake Michigan

    SciTech Connect (OSTI)

    Shabica, C.W.; Pranschke, F.A. (Northeastern Illinois Univ., Chicago, IL (United States). Dept. of Earth Science); Chrzastowski, M.J. (Illinois State Geological Survey, Champaign, IL (United States))

    1992-01-01T23:59:59.000Z

    Sand diversion and entrapment by harbors and lakefills are acknowledged to be important causes for depletion of the littoral stream sands along the Illinois shore of Lake Michigan north of Chicago. Until now estimates of material trapped as sand fillets by structural barriers has been based mainly on maps and air photos. Only a small amount of core or drill data, necessary for detailed estimates, is available. In a survey sponsored by Illinois/Indiana Sea Grant, Northeastern Illinois University and the US Geological Survey Branch of Atlantic Marine Geology, beach and lake bottom sands adjacent to structural barriers were measured using a hydraulic probe. Locations include Waukegan Harbor, Great Lakes Naval Training Center, Forest Park Beach in Lake Forest, Winnetka Waterworks, Wilmette Harbor and Northwestern University lakefill. Results show the Waukegan Harbor has trapped or diverted more than 16,000,000 cubic meters of sand. Substantially lesser amounts were found at the remaining barriers, all of which are downdrift from Waukegan Harbor.

  18. Study of gas production potential of New Albany Shale (group) in the Illinois basin

    SciTech Connect (OSTI)

    Hasenmueller, N.R.; Boberg, W.S.; Comer, J.; Smidchens, Z. (Indiana Geological Survey, Bloomington (United States)); Frankie, W.T.; Lumm, D.K. (Illinois State Geological Survey, Champaign (United States)); Hamilton-Smith, T.; Walker, J.D. (Kentucky Geological Survey, Lexington (United States))

    1991-08-01T23:59:59.000Z

    The New Albany Shale (Devonian and Mississippian) is recognized as both a source rock and gas-producing reservoir in the Illinois basin. The first gas discovery was made in 1885, and was followed by the development of several small fields in Harrison County, Indiana, and Meade County, Kentucky. Recently, exploration for and production of New Albany gas has been encouraged by the IRS Section 29 tax credit. To identify technology gaps that have restricted the development of gas production form the shale gas resource in the basin, the Illinois Basin Consortium (IBC), composed of the Illinois, Indiana, and Kentucky geological surveys, is conducting a cooperative research project with the Gas Research Institute (GRI). An earlier study of the geological and geochemical aspects of the New Albany was conducted during 1976-1978 as part of the Eastern Gas Shales Project (EGSP) sponsored by the Department of Energy (DOE). The current IBC/GRI study is designed to update and reinterpret EGSP data and incorporate new data obtained since 1978. During the project, relationships between gas production and basement structures are being emphasized by constructing cross sections and maps showing thickness, structure, basement features, and thermal maturity. The results of the project will be published in a comprehensive final report in 1992. The information will provide a sound geological basis for ongoing shale-gas research, exploration, and development in the basin.

  19. Production of a pellet fuel from Illinois coal fines. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Rapp, D.; Lytle, J.; Berger, R.

    1994-12-31T23:59:59.000Z

    The primary goal of this research is to produce a pellet fuel from low-sulfur Illinois coal fines which could burn with emissions of less than 1.8 lbs SO{sub 2}/10{sup 6} Btu in stoker-fired boilers. The significance of 1.8 lbs SO{sub 2}/10{sup 6} Btu is that in the Chicago (9 counties) and St. Louis (2 counties) metropolitan areas, industrial users of coal currently must comply with this level of emissions. Stokers are an attractive market for pellets because pellets are well-suited for this application and because western coal is not a competitor in the stoker market. Compliance stoker fuels come from locations such as Kentucky and West Virginia and the price for fuels from these locations is high relative to the current price of Illinois coal. This market offers the most attractive near-term economic environment for commercialization of pelletization technology. For this effort, the authors will be investigating the use of fines from two Illinois mines which currently mine relatively low-sulfur reserves and that discard their fines fraction (minus 100 mesh). The research will involve investigation of multiple unit operations including column flotation, filtration and pellet production. The end result of the effort will allow for an evaluation of the commercial viability of the approach. This quarter pellet production work commenced and planning for collection and processing of a preparation plant fines fraction is underway.

  20. Research on improved and enhanced oil recovery in Illinois through reservoir characterization

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-01-01T23:59:59.000Z

    This project will provide information that can maximize hydrocarbon production minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir's capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of by-passed, mobile oil.

  1. IllinoisGRMHD: An Open-Source, User-Friendly GRMHD Code for Dynamical Spacetimes

    E-Print Network [OSTI]

    Zachariah B. Etienne; Vasileios Paschalidis; Roland Haas; Philipp Moesta; Stuart L. Shapiro

    2015-01-28T23:59:59.000Z

    In the extreme violence of merger and mass accretion, compact objects like black holes and neutron stars are thought to launch some of the most luminous outbursts of electromagnetic and gravitational wave energy in the Universe. Modeling these systems realistically is a central problem in theoretical astrophysics, but has proven extremely challenging, requiring the development of numerical relativity codes that solve Einstein's equations for the spacetime, coupled to the equations of general relativistic (ideal) magnetohydrodynamics (GRMHD) for the magnetized fluids. Over the past decade, the Illinois Numerical Relativity (ILNR) Group's dynamical spacetime, GRMHD code has proven itself as one of the most robust and reliable tools for theoretical modeling of such GRMHD phenomena. Despite the code's outstanding reputation, it was written "by experts and for experts" of the code, with a steep learning curve that would severely hinder community adoption if it were open-sourced. Here we present IllinoisGRMHD, which is an open-source, highly-extensible rewrite of the original closed-source GRMHD code of the ILNR Group. Reducing the learning curve was the primary focus of this rewrite, facilitating community involvement in the code's use and development, as well as the minimization of human effort in generating new science. IllinoisGRMHD also saves computer time, generating roundoff-precision identical output to the original code on adaptive-mesh grids, but nearly twice as fast at scales of hundreds to thousands of cores.

  2. Ferromagnetic Mn moments at SrRuO3/SrMnO3 interfaces Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

    E-Print Network [OSTI]

    Haskel, Daniel

    Ferromagnetic Mn moments at SrRuO3/SrMnO3 interfaces Y. Choia Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 Y. Z. Yoo, O. Chmaissem, A. Ullah, S. Kolesnik, and C. W University, DeKalb, Illinois 60115 D. Haskel Advanced Photon Source, Argonne National Laboratory, Argonne

  3. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  4. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  5. Characterization of available coals from Illinois mines. Final technical report, September 1, 1992--August 31, 1993

    SciTech Connect (OSTI)

    Demir, I.; Harvey, R.D.; Ruch, R.R.; Chaven, C.; Damberger, H.H.; Steele, J.D.; Frankie, W.T. [Illinois State Geological Survey, Champaign, IL (United States)

    1993-12-31T23:59:59.000Z

    The goal of this project was to characterize available product coals from Illinois mines. The characterization parameters that were determined include the concentration of all trace and minor elements that are of environmental concern, the pyrite size distribution and maceral association, preliminary froth flotation cleanability, slagging and fouling characteristics, chlorine forms and distribution, and certain gasification and rheology parameters. The available trace element data on Illinois coals, mainly on channel samples, was edited and updated with new records. The determinations of the trace and minor elements in 34 collected cleaned coal samples, as well as the proximate and ultimate compositions of 34 samples, were completed. In comparison with the previous channel sample data, the results indicated that the cleaning at existing preparation plants reduced the average concentrations of most of the trace elements in the coals. The data also indicated that the trace element concentrations in the product coals could be reduced further by advanced physical cleaning techniques. A sequential (hot water, dilute ammonia, and dilute sodium hydroxide) extraction procedure on three samples indicated variable chloride reductions. The pyrite cleanability index was determined microscopically for each sample. This index is a relative measure of the ease of pyrite removal from the tested sample. The froth flotation test data on 15 of the samples provided a measure of further cleanability of the product coals by physical fine coal cleaning. Viscosities of the 50% solid and <60 mesh particle size slurries of the same 15 samples revealed that these coals can be pumped in slurry form through a pipeline. Slagging and fouling indices, calculated for all 34 samples, indicated that most of the samples are of low to medium slagging and fouling types. Calculation of the gasification parameters indicated that the Illinois coals are in general amenable to gasification.

  6. Novel carbons from Illinois coal for natural gas storage. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Rostam-Abadi, M.; Sun, J.; Lizzio, A.A. [Illinois State Geological Survey, Champaign, IL (United States); Fatemi, M. [Amoco Research Center, Naperville, IL (United States)

    1994-12-31T23:59:59.000Z

    The goal of this project is to develop a technology for producing microengineered adsorbent carbons from Illinois coal and to evaluate the potential application of these novel materials for storing natural gas for use in emerging low pressure, natural gas vehicles (NGV). Potentially, about two million tons of adsorbent could be consumed in natural gas vehicles by year 2000. If successful, the results obtained in this project could lead to the use of Illinois coal in a growing and profitable market that could exceed 6 million tons per year. During this reporting period, a pyrolysis-gasification reactor system was designed and assembled. Four carbon samples were produced from a {minus}20+100 mesh size fraction of an Illinois Basin Coal (IBC-106) using a three-step process. The three steps were: coal oxidation in air at 250 C, oxicoal (oxidized coal) devolatilization in nitrogen at 425 C and char gasification in 50% steam-50% nitrogen at 860 C. These initial tests were designed to evaluate the effects of pre-oxidation on the surface properties of carbon products, and to determine optimum reaction time and process conditions to produce an activated carbon with high surface area. Nitrogen-BET surface areas of the carbon products ranged from 700--800 m{sup 2}/g. Work is in progress to further optimize reaction conditions in order to produce carbons with higher surface areas. A few screening tests were made with a pressurized thermogravimetric (PTGA) to evaluate the suitability of this instrument for obtaining methane adsorption isotherms at ambient temperature and pressures ranging from one to 30 atmospheres. The preliminary results indicate that PTGA can be used for both the adsorption kinetic and equilibrium studies.

  7. Gasifier feed: Tailor-made from Illinois coals. Interim final technical report, September 1, 1991--August 31, 1992

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III; Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. [Illinois State Geological Survey, Champaign, IL (United States)

    1992-12-31T23:59:59.000Z

    The main purpose of this project is to produce a feedstock from preparation plant fines from an Illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is higher not only because of the higher Btu value of the coal but also because Illinois coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for Illinois coal as compared to approximately 45% for most western coals. Destec Energy, a wholly-owned subsidiary of Dow Chemical Company, will provide guidelines and test compatibility of the slurries developed for gasification feedstock. Williams Technologies, Inc., will provide their expertise in long distance slurry pumping, and test selected products for viscosity, pumpability, and handleability. The Illinois State Geological Survey will study methods for producing clean coal/water slurries from preparation plant wastes including the concentration of pyritic sulfur into the coal slurry to increase the revenue from elemental sulfur produced during gasification operations, and decrease the pyritic sulfur content of the waste streams. ISGS will also test the gasification reactivity of the coals.

  8. Evaluation of Machine Guarding course taught in Chicago, Illinois June 2, 1992--June 4, 1992

    SciTech Connect (OSTI)

    Wright, T.S.

    1992-10-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, Machine Guarding which was conducted June 2{endash}4 at Argonne National Laboratory, in Chicago, Illinois. This class was the third pilot course of the Machine Guarding class. This summary presents the quantitative course evaluations that trainees provided upon completion of the course. Appendix A provides a transcript of the trainees` written comments. Numeric course ratings were generally positive, and show that the course material and instruction were effective. Results from the final examination indicated that the students gained significant knowledge from the course.

  9. Evaluation of Machine Guarding course taught in Chicago, Illinois June 2, 1992--June 4, 1992

    SciTech Connect (OSTI)

    Wright, T.S.

    1992-10-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, Machine Guarding which was conducted June 2[endash]4 at Argonne National Laboratory, in Chicago, Illinois. This class was the third pilot course of the Machine Guarding class. This summary presents the quantitative course evaluations that trainees provided upon completion of the course. Appendix A provides a transcript of the trainees' written comments. Numeric course ratings were generally positive, and show that the course material and instruction were effective. Results from the final examination indicated that the students gained significant knowledge from the course.

  10. Gasifier feed: Tailor-made from Illinois coals. Technical report, September 1, 1991--November 30, 1991

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III

    1991-12-31T23:59:59.000Z

    The purpose of this research is to develop a coal slurry from waste streams using Illinois coal that is ideally suited for a gasification feed. The principle items to be studied are (1) methods of concentrating pyrite and decreasing other ash forming minerals into a high grade gasification feed using froth flotation and gravity separation techniques; (2) chemical and particle size analyses of coal slurries; (3) determination of how that slurry can be densified and to what degree of densification is optimum from the pumpability and combustibility analyses; and (4) reactivity studies.

  11. Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37EnergySubmitRoad | DepartmentIllinoisHybrids

  12. Characterization of the surface properties of Illinois Basin coals. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Demir, I.; Harvey, R.D.; Lizzio, A.A.

    1992-08-01T23:59:59.000Z

    Understanding the surface properties of coal is important for predicting the physical-chemical behavior of coal during coal cleaning combustion and conversion. Data on surface properties help coal scientists and engineers in the design of effective coal desulfurization processes, and thereby aid in the marketability of Illinois Basin coals. The main objective of this project is to characterize the surface properties (surface area, porosity, pore size distribution, surface charge, and surface chemical structure) of eight coals in the Illinois Basin Coal Sample Program (IBCSP), and explore statistical relationships between surface properties and other coal characteristics.

  13. Analysis of Illinois Home Performance with ENERGY STAR(R) Measure Packages

    SciTech Connect (OSTI)

    Baker, J.; Yee, S.; Brand, L.

    2013-09-01T23:59:59.000Z

    Through the Chicagoland Single Family Housing Characterization and Retrofit Prioritization report, the Partnership for Advanced Residential Retrofit characterized 15 housing types in the Chicagoland region based on assessor data, utility billing history, and available data from prior energy efficiency programs. Within these 15 groups, a subset showed the greatest opportunity for energy savings based on BEopt Version 1.1 modeling of potential energy efficiency package options and the percent of the housing stock represented by each group. In this project, collected field data from a whole-home program in Illinois are utilized to compare marketplace-installed measures to the energy saving optimal packages previously developed for the 15 housing types. Housing type, conditions, energy efficiency measures installed, and retrofit cost information were collected from 19 homes that participated in the Illinois Home Performance with ENERGY STAR program in 2012, representing eight of the characterized housing groups. Two were selected for further case study analysis to provide an illustration of the differences between optimal and actually installed measures. Taken together, these homes are representative of 34.8% of the Chicagoland residential building stock. In one instance, actual installed measures closely matched optimal recommended measures.

  14. Illinois department of public health H1N1/A pandemic communications evaluation survey.

    SciTech Connect (OSTI)

    Walsh, D.; Decision and Information Sciences

    2010-09-16T23:59:59.000Z

    Because of heightened media coverage, a 24-hour news cycle and the potential miscommunication of health messages across all levels of government during the onset of the H1N1 influenza outbreak in spring 2009, the Illinois Department of Public Health (IDPH) decided to evaluate its H1N1 influenza A communications system. IDPH wanted to confirm its disease information and instructions were helping stakeholders prepare for and respond to a novel influenza outbreak. In addition, the time commitment involved in preparing, issuing, monitoring, updating, and responding to H1N1 federal guidelines/updates and media stories became a heavy burden for IDPH staff. The process and results of the H1N1 messaging survey represent a best practice that other health departments and emergency management agencies can replicate to improve coordination efforts with stakeholder groups during both emergency preparedness and response phases. Importantly, the H1N1 survey confirmed IDPH's messages were influencing stakeholders decisions to activate their pandemic plans and initiate response operations. While there was some dissatisfaction with IDPH's delivery of information and communication tools, such as the fax system, this report should demonstrate to IDPH that its core partners believe it has the ability and expertise to issue timely and accurate instructions that can help them respond to a large-scale disease outbreak in Illinois. The conclusion will focus on three main areas: (1) the survey development process, (2) survey results: best practices and areas for improvement and (3) recommendations: next steps.

  15. Characterization of available coals from Illinois mines. Technical report, December 1, 1992--February 28, 1993

    SciTech Connect (OSTI)

    Demir, I.; Harvey, R.D.; Ruch, R.R.; Chaven, C.; Damberger, H.H.; Dreher, G.B.; Frankie, W.T. [Illinois Dept. of Energy and Natural Resources, Springfield, IL (United States). Geological Survey; Ho, K.K. [Illinois Clean Coal Inst., Carterville, IL (United States)

    1993-05-01T23:59:59.000Z

    The goal of this project is to characterize marketed coals from Illinois mines. The results generated by this project will promote Illinois coals for prospective new markets as feed materials for advanced gasification processes, for synthetic organic chemicals, and help asses future environmental requirements for abatement of noxious trace elements. The properties that are being determined include the concentration of all trace elements that are of environmental concern, the pyrite size distribution and maceral association, preliminary froth flotation cleanability, slagging and fouling characteristics relevant to the coal`s behavior in utility boilers, chlorine forms and distribution, and certain gasification and rheology parameters. We completed collection and processing of samples of 34 marketed coals that represent the products from a total of 40 mines. All the samples were submitted for standard coal and trace element analyses, and some of the analytical tasks were completed. There was a considerable amount of trace element data on face channel samples scattered in various files at the ISGS. In order to establish useful correlations between the marketed coal and face channel samples, the existing files were integrated and edited for accuracy and completeness.

  16. Reservoir compartmentalization and management strategies: Lessons learned in the Illinois basin

    SciTech Connect (OSTI)

    Grube, J.P.; Crockett, J.E.; Huff, B.G. [and others

    1997-08-01T23:59:59.000Z

    A research project jointly sponsored by the US Department of Energy and the Illinois State Geological Survey focused on the Cypress and Aux Vases Formations (Mississippian), major clastic reservoirs in the Illinois Basin. Results from the research showed that understanding the nature and distribution of reservoir compartments, and using effective reservoir management strategies, can significantly improve recovery efficiencies from oil fields in this mature basin. Compartments can be most effectively drained where they are geologically well defined and reservoir management practices are coordinated through unified, compartment-wide, development programs. Our studies showed that the Cypress and Aux Vases reservoirs contain lateral and vertical permeability barriers forming compartments that range in size from isolated, interlaminated sandstone and shale beds to sandstone bodies tens of feet in thickness and more than a mile in length. Stacked or shingled, genetically similar sandstone bodies are commonly separated by thin impermeable intervals that can be difficult to distinguish on logs and can, therefore, cause correlation problems, even between wells drilled on spacing of less than ten acres. Lateral separation of sandstone bodies causes similar problems. Reservoir compartmentalization reduces primary and particularly secondary recovery by trapping pockets of by-passed or banked oil. Compartments can be detected by comparing recovery factors of genetically similar sandstone bodies within a field; using packers to separate commingled intervals and analyzing fluid recoveries and pressures; making detailed core-to-log calibrations that identify compartment boundaries; and analyzing pressure data from waterflood programs.

  17. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    SciTech Connect (OSTI)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. (Argonne National Lab., IL (United States)); Banerjee, D.D. (Illinois Clean Coal Inst., Carterville, IL (United States))

    1993-01-01T23:59:59.000Z

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950[degree]C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  18. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    SciTech Connect (OSTI)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. [Argonne National Lab., IL (United States); Banerjee, D.D. [Illinois Clean Coal Inst., Carterville, IL (United States)

    1993-04-01T23:59:59.000Z

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950{degree}C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  19. Environment, Safety and Health Progress Assessment of the Argonne Illinois Site

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    This report documents the results of the US Department of Energy (DOE) Environment, Safety and Health (ES&H) Progress Assessment of the Argonne Illinois Site (AIS), near Chicago, Illinois, conducted from October 25 through November 9, 1993. During the Progress Assessment, activities included a selective review of the ES&H management systems and programs with principal focus on the DOE Office of Energy Research (ER); CH, which includes the Argonne Area Office; the University of Chicago; and the contractor`s organization responsible for operation of Argonne National Laboratory (ANL). The ES&H Progress Assessments are part of DOE`s continuing effort to institutionalize line management accountability and the self-assessment process throughout DOE and its contractor organizations. The purpose of the AIS ES&H Progress Assessment was to provide the Secretary of Energy, senior DOE managers, and contractor management with concise independent information on the following: change in culture and attitude related to ES&H activities; progress and effectiveness of the ES&H corrective actions resulting from the previous Tiger Team Assessment; adequacy and effectiveness of the ES&H self-assessment process of the DOE line organizations, the site management, and the operating contractor; and effectiveness of DOE and contractor management structures, resources, and systems to effectively address ES&H problems and new ES&H initiatives.

  20. Preliminary evidence of paleo-earthquakes along the Wabash River in southeastern Illinois

    SciTech Connect (OSTI)

    Su, W.J.; Follmer, L.R. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01T23:59:59.000Z

    Historical accounts (about 200 years) and instrumental records (less than 50 years) of earthquakes along the Wabash River do not cover a sufficient length of time to aid in fully understanding the regional seismicity. Many areas around the world with a history of high seismicity have been identified by studies of Quaternary faulting and soft-sediment structures. The Wabash Valley Seismic Zone appears to lack surface faults, but soft-sediment structures may allow assessment of the pattern of seismicity. During the last two years, the US Geological survey and the Illinois and Indiana State Geological surveys have been studying paleo-liquefaction dikes and other soft-sediment structures along the Wabash River. Investigations in southeastern Illinois include the mapping and description of liquefaction dikes and other soft-sediment structures in late- and post-glacial Quaternary lake and alluvial sediments. The dike width and the character of the dike material may allow assessment of the seismic energy that caused them if the original ground conditions can be reconstructed. However, genesis of the dikes is still somewhat controversial. Because existing information is quite limited, a conservative approach to assess seismic energy is essential. The maximum credible earthquake that may occur in the region is uncertain and debatable. From a scientific perspective, the historical and instrument records that existed in the area are just too limited to comprehensively understand the regional seismic activity. Drawing far-reaching conclusions at this time from the limited information is not warranted.

  1. Depositional history of the Mississippian Ullin and Fort Payne Formations in the Illinois Basin

    SciTech Connect (OSTI)

    Lasemi, Z.; Treworgy, J.D.; Norby, R.D. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-04-01T23:59:59.000Z

    Field and subsurface data suggest that the mid-Mississippian Ullin Limestone in the Illinois Basin is composed of coalesced Waulsortian-type mounds and porous bryozoan-dominated buildups. Waulsortian mounds in the basin contain a lime mudstone to wackestone core that is flanked and capped by in situ porous bryozoan bafflestone or transported crinoidal-bryozoan packstone and grainstone. The mound core facies appear to be most common in the lower part of the Ullin and is thicker in a deeper outer-ramp setting. Shoreward and up-section (upper part of the outer-ramp through mid-ramp setting), the core facies is generally thinner, while the flanking and capping facies are thicker. Isopachous maps of the Ullin and Fort Payne suggest the presence of several large areas of thick carbonate buildups (Ullin) surrounded by a deep-water, sub-oxic environment (Fort Payne) in the Illinois Basin. Progradation of these buildups and associated facies resulted in a shallower ramp setting during deposition of the upper Ullin. Storm-generated carbonate sandwaves became widespread on this ramp. Sandwaves were mobile and for the most part unfavorable sites for further development of thick mud mounds and/or in situ bryozoan buildups. However, isolated mounds and flanking buildups are present in the upper part of the Ullin, and, together with the sandwaves, formed an irregular topography that led to the development of oolitic grainstone shoals during deposition of the overlying Salem Limestone.

  2. Characterization of available coals from Illinois mines. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect (OSTI)

    Demir, I.; Harvey, R.D.; Ruch, R.R.; Chaven, C.; Damberger, H.H.; Steele, J.D.; Frankie, W.T. [Illinois State Geological Survey, Champaign, IL (United States)

    1993-09-01T23:59:59.000Z

    The goal of this project is to characterize marketed coals from Illinois mines. The characterization parameters that are being determined include the concentration of all trace and minor elements that are of environmental concern, proximate and ultimate compositions, the pyrite size distribution and maceral association, preliminary froth flotation cleanability, slagging and fouling characteristics relevant to the coal`s behavior in utility boilers, chlorine forms and distribution, and certain gasification and rheology parameters. During the third quarter, the trace element data base on Illinois coals was fully checked and edited. The determinations of the trace and minor element contents and proximate and ultimate compositions of the 34 project samples were largely completed. The pyritic S content, still high in some of the marketed samples, could be reduced further in the samples by advanced physical cleaning techniques. Results from the analysis of all 34 samples for Ba, Hg, Mn, and Zr indicate that these elements are primarily or partly associated with mineral matter and, therefore, their concentrations could also be reduced further in the product coals by advanced physical cleaning techniques. A sequential extraction of Cl from two of the samples revealed that regardless of the initial chlorine concentration of the two coals, the total combined amount of chlorine extracted by water, ammonia, and sodium hydroxide is about the same.

  3. Effects of diagenesis on reservoir quality within two Cypress reservoirs in the Illinois basin

    SciTech Connect (OSTI)

    Scott, B.D.; McGee, K.R.; Seyler, B. (Illinois State Geological Survey, Champaign (United States))

    1991-08-01T23:59:59.000Z

    One billion bbl of oil have been produced from the Chesterian Cypress Formation in the Illinois basin. These heterogeneous reservoirs may consist of deltaic, marine-reworked deltaic, and/or reworked marine sandstone within mixed siliciclastic-carbonate environments. Thin section, x-ray diffraction, and scanning electron microscopy coupled with energy dispersive x-ray analysis indicate that the effects of diagenesis play a significant role in reservoir quality of Mattoon and Parkersburg fields in Illinois. Five separate Cypress sandstones may be present at Mattoon field (Coles County), a predominantly stratigraphic trap, produces from three distinct Cypress strata. In these fields, reservoir quality is reduced when quartz overgrowths and later stage, blocky mosaic ferroan-calcite cement occlude pore throats. Authigenic clay minerals occur as pore-lining particles that inhibit fluid-flow. Clay minerals preset are illite, mixed-layered illite/smectite, chlorite, and kaolinite. Reservoir quality is enhanced through dissolution of early ferroan-calcite cement, dissolution of detrital feldspar, and microfracturing. Completion, stimulation, and production programs within the heterogeneous Cypress sandstone reservoirs would be improved by recognition of mineral relationships and diagenetic overprints. Developments programs may need to include the use of clay stabilizers in mud clean-out acid treatments.

  4. An Assessment of Geological Carbon Storage Options in the Illinois Basin: Validation Phase

    SciTech Connect (OSTI)

    Robert Finley

    2012-12-01T23:59:59.000Z

    The Midwest Geological Sequestration Consortium (MGSC) assessed the options for geological carbon dioxide (CO{sub 2}) storage in the 155,400 km{sup 2} (60,000 mi{sup 2}) Illinois Basin, which underlies most of Illinois, western Indiana, and western Kentucky. The region has annual CO{sub 2} emissions of about 265 million metric tonnes (292 million tons), primarily from 122 coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year (U.S. Department of Energy, 2010). Validation Phase (Phase II) field tests gathered pilot data to update the Characterization Phase (Phase I) assessment of options for capture, transportation, and storage of CO{sub 2} emissions in three geological sink types: coal seams, oil fields, and saline reservoirs. Four small-scale field tests were conducted to determine the properties of rock units that control injectivity of CO{sub 2}, assess the total storage resources, examine the security of the overlying rock units that act as seals for the reservoirs, and develop ways to control and measure the safety of injection and storage processes. The MGSC designed field test operational plans for pilot sites based on the site screening process, MVA program needs, the selection of equipment related to CO{sub 2} injection, and design of a data acquisition system. Reservoir modeling, computational simulations, and statistical methods assessed and interpreted data gathered from the field tests. Monitoring, Verification, and Accounting (MVA) programs were established to detect leakage of injected CO{sub 2} and ensure public safety. Public outreach and education remained an important part of the project; meetings and presentations informed public and private regional stakeholders of the results and findings. A miscible (liquid) CO{sub 2} flood pilot project was conducted in the Clore Formation sandstone (Mississippian System, Chesterian Series) at Mumford Hills Field in Posey County, southwestern Indiana, and an immiscible CO{sub 2} flood pilot was conducted in the Jackson sandstone (Mississippian System Big Clifty Sandstone Member) at the Sugar Creek Field in Hopkins County, western Kentucky. Up to 12% incremental oil recovery was estimated based on these pilots. A CO{sub 2} huff â??nâ?? puff (HNP) pilot project was conducted in the Cypress Sandstone in the Loudon Field. This pilot was designed to measure and record data that could be used to calibrate a reservoir simulation model. A pilot project at the Tanquary Farms site in Wabash County, southeastern Illinois, tested the potential storage of CO{sub 2} in the Springfield Coal Member of the Carbondale Formation (Pennsylvanian System), in order to gauge the potential for large-scale CO{sub 2} storage and/or enhanced coal bed methane recovery from Illinois Basin coal beds. The pilot results from all four sites showed that CO{sub 2} could be injected into the subsurface without adversely affecting groundwater. Additionally, hydrocarbon production was enhanced, giving further evidence that CO{sub 2} storage in oil reservoirs and coal beds offers an economic advantage. Results from the MVA program at each site indicated that injected CO{sub 2} did not leave the injection zone. Topical reports were completed on the Middle and Late Devonian New Albany Shale and Basin CO{sub 2} emissions. The efficacy of the New Albany Shale as a storage sink could be substantial if low injectivity concerns can be alleviated. CO{sub 2} emissions in the Illinois Basin were projected to be dominated by coal-fired power plants.

  5. Assessment of Basin-Scale Hydrologic Impacts of CO2 Sequestration, Illinois Basin1 Mark Person*1

    E-Print Network [OSTI]

    Gable, Carl W.

    70 The Illinois Basin hosts dozens of coal fired power plants which generates about 300 million Formation. We used 726 injection wells located near51 42 power plants to deliver 80 million metric tons technical constraints on the injection of CO2 into deep (>1.5 km) reservoirs under supercritical75

  6. NEW at Northern Illinois University: A Unique Gen-Ed Interdisciplinary Course for Everybody MEE 101 Energy and the Environment

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    NEW at Northern Illinois University: A Unique Gen-Ed Interdisciplinary Course for Everybody MEE 101 Energy and the Environment Development and current status of energy sources, technologies, consumption patterns, conservation, and energy policies. Emphasis on environmental effects of various choices made

  7. Department of Industrial Engineering and Management Sciences Northwestern University, Evanston, Illinois 60208-3119, U.S.A.

    E-Print Network [OSTI]

    Hazen, Gordon

    , Illinois 60208-3119, U.S.A. Working Paper No. 05-06 A Comparative Study of the K-Means Algorithm 2005 #12;Abstract This paper gives a comparative study of the K-means algorithm and the mixture model; Clustering; Data mining; EM algorithm; K-means algorithm; Misclassification rate; Mixture model; Prior

  8. Dear Prospective Dental Hygiene Student: Thank you for your interest in the Dental Hygiene Program at Southern Illinois University

    E-Print Network [OSTI]

    Nickrent, Daniel L.

    2014 Dear Prospective Dental Hygiene Student: Thank you for your interest in the Dental Hygiene Program at Southern Illinois University Carbondale. The Dental Hygiene Program is nationally recognized Hygiene program. Only completed files of qualified students will be evaluated, so please follow

  9. Clinic Information and Application (Fall 2012) Revised 04/11/2012 Northern Illinois University College of Law

    E-Print Network [OSTI]

    Karonis, Nicholas T.

    Clinic Information and Application (Fall 2012) Revised 04/11/2012 Northern Illinois University College of Law Zeke Giorgi Legal Clinic CIVIL CLINIC INFORMATION (FALL 2012) Credits: 4 credits ­ Pass / Fail Students will be registered for: Domestic Abuse Clinic - two credits Elder Law Clinic ­ two

  10. This article was downloaded by: [Southern Illinois University], [Jennifer Haegele] On: 16 September 2014, At: 09:02

    E-Print Network [OSTI]

    Hexmoor, Henry

    2130, Carbondale, IL 62901, USA b Criminology and Criminal Justice Department, Southern Illinois with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims. This article may be used for research, teaching, and private study purposes. Any substantial or systematic

  11. Digital Media Specialist Internship The College of Medicine-Urbana at the University of Illinois seeks students to participate in

    E-Print Network [OSTI]

    Gilbert, Matthew

    Digital Media Specialist Internship The College of Medicine-Urbana at the University of Illinois the opportunity to work on a range of projects including print, Web, video, and new media. Each Digital Media proficiency in new media technologies. The emphasis will be on the effective use of digital images, text

  12. Desulfurization of hot fuel gas produced from high-chlorine Illinois coals. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    O`Brien, W.S. [Southern Illinois Univ., Carbondale, IL (United States); Gupta, R.P. [Research Triangle Inst., Durham, NC (United States)

    1992-09-01T23:59:59.000Z

    There is a primary need to increase the utilization of Illinois coal resources by developing new methods of converting the coal into electricity by highly efficient and environmentally acceptable systems. New coal gasification processes are now being developed that can generate electricity with high thermal efficiency in either an integrated gasification combined cycle (IGCC) system or a molten carbonate fuel cell (MCFC). Both of-these new coal-to-electricity pathways require that the coal-derived fuel gas be at a high temperature and be free of potential pollutants, such as-sulfur compounds. Unfortunately, some high-sulfur Illinois coals also contain significant chlorine which converts into hydrogen chloride (HCI) in the coal gas. This project investigates the effect of HCI, in concentrations typical of a gasifier fed by high-chlorine Illinois coals, on zinc-titanate sorbents that are currently being developed for H{sub 2}S and COS removal from hot coal gas. This study is designed to identify any deleterious changes in the sorbent caused by HCI, both in adsorptive operation and in the regeneration cycle, and will pave the way to modify the sorbent formulation or the process operating procedure to remove HCl along with the H{sub 2}S and COS from hot coal gas. This will negate any harmful consequences Of utilizing high-chlorine Illinois coal in these processes.

  13. INFORMATION: Management Alert on the Department's Monitoring of the Weatherization Assistance Program in the State of Illinois

    SciTech Connect (OSTI)

    None

    2009-12-01T23:59:59.000Z

    Under the American Recovery and Reinvestment Act of 2009 (Recovery Act), the Department of Energy's Weatherization Assistance Program received $5 billion to improve the energy efficiency of homes owned or occupied by low income persons, reduce their total residential expenditures, and improve their health and safety. Since the Recovery Act was enacted in February 2009, the Department has awarded weatherization grants to every state, the District of Columbia and five territories. Because of the unprecedented level of funding and the risks associated with spending vast amounts of money in a relatively short period of time, the Office of Inspector General (OIG) initiated a series of audits designed to evaluate the Program's internal control structures at both the Federal and state levels. As part of our work, we are in the process of reviewing Weatherization Program internal controls for the State of Illinois. We are also currently performing identical audits in the States of North Carolina, Pennsylvania and Virginia. Under the Recovery Act and the Department's Program, the State of Illinois received $242 million to weatherize 26,933 homes. The State of Illinois awarded these funds to 35 local agencies responsible for determining recipients' eligibility, contracting for the installation of the weatherization work, and conducting final inspections to ensure that work on homes was done in accordance with requirements. Inspectors working for the local agencies are required to evaluate the quality of mechanical and architectural improvements, such as furnace installations and window caulking, and certify that the work performed meets established standards. Under a Department approved plan in place at the time of our review, state officials were required to evaluate the sufficiency of local agency monitoring controls and to inspect the work performed on at least five percent of the units weatherized with Department funds during the program year for each local agency. We identified significant internal control deficiencies in the management of the Weatherization Program in Illinois which require immediate attention. Specifically, our audit testing revealed significant problems with on-site monitoring and inspection of the Illinois Home Weatherization Assistance Program (Illinois). We noted that the Department had not fulfilled its requirement to perform monitoring visits at the State level. In addition, Illinois officials had not complied with the Department's requirements for inspecting weatherization work conducted by local agencies. Finally, we found that a weatherization inspection for one of the local agencies failed to detect substandard installation of energy saving materials. This case involved a furnace gas leak that could have resulted in serious injury to the occupants and material damage to the structure. This is an interim report and our audit work remains in progress.

  14. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades vs. Cost-Optimized Solutions; Chicago, Illinois (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01T23:59:59.000Z

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for fifteen Chicagoland single family housing archetypes, called housing groups. In the present study, 800 IHP homes are first matched to one of these fifteen housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations. Additionally, a measure-level sensitivity analysis conducted for one housing group reveals which measures may be contributing the most to gas and electric savings. Overall, the study finds not only that for some housing groups, the average IHP retrofit results in more energy savings than would result from cost-optimal, BEopt-recommended measure packages, but also that linking home categorization to standardized retrofit measure packages provides an opportunity to streamline the process for single family home energy retrofits and maximize both energy savings and cost-effectiveness.

  15. Paper presented at Che Ninth Symposium on Engineering Problems of Pus ion Research, Chicago, Illinois, October 26-29, 1981; also for

    E-Print Network [OSTI]

    Abdou, Mohamed

    007644 NEUTRONIC ANALYSIS OF GRAPHITE-MODERATED SOLID BREEDER DESIGN FOR INTOR J. Jung and M. A. Abdou DESIGNS FOR INTOR J. Jung and M. A. Abdou Argonne National Laboratory Argonne, Illinois 60439 Abstract

  16. Monitoring littoral sediment accretion and erosion at Forest Park Beach, Lake Forest, Illinois

    SciTech Connect (OSTI)

    Trask, C.B.; Chrzastowski, M.J. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01T23:59:59.000Z

    Forest Park Beach, a coastal-development project on the shore of Lake Michigan at Lake Forest, Illinois, consists of a series of segmented, rubble-mound breakwaters that form four beach cells and a small-boat launch basin. The project was designed to have minimal impact on local littoral-transport processes. The 9-hectare footprint extends no more than 107 m lakeward of the preconstruction shoreline; the arcuate plan for the project was designed to facilitate littoral sediment bypass. In order to evaluate the project's impact on littoral processes, the City of Lake Forest is required to conduct a monitoring program to identify any adverse effects such as updrift accretion and downdrift erosion. Annual and semi-annual monitoring has been underway since project completion in 1987. In 1991, the Illinois State Geological Survey (ISGS) began independent data collection and review of the annual monitoring data. As of the 1992 ISGS monitoring, the project is allowing for the development of natural bypass by the littoral-sediment stream. A bar occurs in 0.9 to 1.2 m of water on the north side of the project and continues as an accretionary wedge along the lakeward side of the breakwaters for approximately two-thirds of the project length. One adverse impact is that the beach cells are acting as traps for fine sand, with the greatest entrapment in the three northern (updrift) cells. Comparison of 1987 and 1992 profiles from the beach cells indicates nearshore accretion of as much as two meters. To date no detrimental effects to shoreline properties have been documented downdrift of the project.

  17. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. Technical report, September 1, 1991--November 30, 1991

    SciTech Connect (OSTI)

    Chou, M.I.M.

    1991-12-31T23:59:59.000Z

    A pre-combustion coal desulfurization process at 120{degree}C using perchloroethylene (PCE) to remove up to 70% of the organic sulfur has been developed by the Midwest Ore Processing Co. (MWOPC). However, this process has not yet proven to be as successful with Illinois coals as it has for Ohio and Indiana coals. The organic sulfur removal has been achieved only with highly oxidized Illinois coals containing high sulfatic sulfur. A logical explanation for this observation is vital to successful process optimization for the use of Illinois coals. In addition, the high levels of organic sulfur removals observed by the MWOPC may be due to certain errors involved in the ASTM data interpretation; this needs verification. For example, elemental sulfur extracted by the PCE may be derived from pyrite oxidation during coal pre-oxidation, but it may be interpreted as organic sulfur removed by the PCE using ASTM analysis. The goals of this research are: (1) to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process reported by the MWOPC, (2) to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation, and (3) to determine the suitability of Illinois coals for use in the PCE desulfurization process. This project involves the Illinois State Geological Survey (ISGS), Eastern Illinois University (EIU), the University of Illinois-Urbana/Champaign (UI-UC), and the University of Kentucky, Lexington (UK). This is the first year of a two-year project.

  18. Evaluating the potential impact of transmission constraints on the operation of a competitive electricity market in Illinois.

    SciTech Connect (OSTI)

    Cirillo, R.; Thimmapuram, P.; Veselka, T.; Koritarov, V.; Conzelmann, G.; Macal, C.; Boyd, G.; North, M.; Overbye, T.; Cheng, X.; Decision and Information Sciences; Univ. of Illinois

    2006-04-30T23:59:59.000Z

    Despite the current adequacy of the generation and transmission system in Illinois, there is concern that the uncertainties of electricity restructuring warrant a more detailed analysis to determine if there might be pitfalls that have not been identified under current conditions. The problems experienced elsewhere in the country emphasize the need for an evaluation of how Illinois might fare under a restructured electricity market. The Illinois Commerce Commission (ICC) commissioned this study to be undertaken as a joint effort by the University of Illinois at Urbana-Champaign and Argonne National Laboratory to evaluate the Illinois situation in the 2007 period when restructuring is scheduled to be fully implemented in the State. The purpose of this study is to make an initial determination if the transmission system in Illinois and the surrounding region would be able to support a competitive electricity market, would allow for effective competition to keep prices in check, and would allow for new market participants to effectively compete for market share. The study seeks to identify conditions that could reasonably be expected to occur that would enable a company to exercise market power in one or more portions of the State and thereby create undue pressure on the prices charged to customers and/or inhibit new market participants from entering the market. The term 'market power' has many different definitions, and there is no universal agreement on how to measure it. For the purposes of this study, the term is defined as the ability to raise prices and increase profitability by unilateral action. A more complete definition is provided later. With this definition, the central question of this analysis becomes: 'Can a company, acting on its own, raise electricity prices and increase its profits?' It should be noted that the intent of the study is not to predict whether or not such market power would be exercised by any company. Rather, it is designed to determine if a set of reasonably expected conditions could allow any company to do so. It should also be emphasized that this study is not intended to be a comprehensive evaluation of the electric power system in the State. Rather, it is intended to identify some issues that may impact the effective functioning of a competitive market.

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Incentives are currently available... Eligibility: Residential Savings Category: Heat Pumps, Lighting Ameren Illinois (Gas)- Cooking and Heating Business Efficiency...

  20. LWA demonstration applications using Illinois coal gasification slag: Phase II. Technical report, 1 March--31 May 1994

    SciTech Connect (OSTI)

    Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Steck, P. [Harvey Cement Products, Inc. (United States)

    1994-09-01T23:59:59.000Z

    The major objective of this project is to demonstrate the suitability of using ultra-lightweight aggregates (ULWA) produced by thermal expansion of solid residues (slag) generated during the gasification of Illinois coals as substitutes for conventional aggregates, which are typically produced by pyroprocessing of perlite ores. To meet this objective, expanded slag aggregates produced from an Illinois coal slag feed in Phase I will be subjected to characterization and applications-oriented testing. Target applications include the following: aggregates in precast products (blocks and rooftiles); construction aggregates (loose fill insulation and insulating concrete); and other applications as identified from evaluation of expanded slag properties. The production of value-added products from slag is aimed at eliminating a solid waste and possibly enhancing the overall economics of the gasification process, especially when the avoided costs of disposal are taken into consideration.

  1. An Evaluation of the Carbon Sequestration Potential of the Cambro?Ordovician Strata of the Illinois and Michigan Basins

    SciTech Connect (OSTI)

    Kirksey, Jim; Ansari, Sajjad; Malkewicz, Nick; Leetaru, Hannes

    2014-01-01T23:59:59.000Z

    The Knox Supergroup is a significant part of the Cambrian-Ordovician age sedimentary deposition in the Illinois Basin. While there is a very small amount of oil production associated with the upper Knox, it is more commonly used as a zone for both Class I and Class II disposal wells in certain areas around the state. Based on the three penetrations of the Knox Formation at the Illinois Basin – Decatur Project (IBDP) carbon dioxide (CO2) sequestration site in Macon County, Illinois, there is potential for certain zones in the Knox to be used for CO2 sequestration. More specifically, the Potosi member of the Knox Formation at about –3,670 feet (ft) subsea depth would be a candidate as all three penetrations had massive circulation losses while drilling through this interval. Each well required the setting of cement plugs to regain wellbore stability so that the intermediate casing could be set and successfully cemented to surface. Log and core analysis suggests significant karst porosity throughout the Potosi member. The purpose of this study is to develop a well plan for the drilling of a CO2 injection well with the capability to inject 3.5 million tons per annum (3.2 million tonnes per annum [MTPA] CO2 into the Knox Formation over a period of 30 years.

  2. Research on improved and enhanced oil recovery in Illinois through reservoir characterization, March 28, 1992--June 28, 1992

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-01-01T23:59:59.000Z

    This project will provide information that can maximize hydrocarbon production, minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir's capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of bypassed, mobile oil. Accomplishment for this period are summarized for the following tasks: mapping, cross-sections; subsurface depo-systems; outcrop studies; oil and gas development maps; engineering work; SEM/EDX; and clay minerals.

  3. Research on improved and enhanced oil recovery in Illinois through reservoir characterization, March 28, 1992--June 28, 1992

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-09-01T23:59:59.000Z

    This project will provide information that can maximize hydrocarbon production, minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir`s capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of bypassed, mobile oil. Accomplishment for this period are summarized for the following tasks: mapping, cross-sections; subsurface depo-systems; outcrop studies; oil and gas development maps; engineering work; SEM/EDX; and clay minerals.

  4. Production of carbon molecular sieves from Illinois coal. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect (OSTI)

    Lizzio, A.A.; Rostam-Abadi, M. [Illinois State Geological Survey, Champaign, IL (United States)

    1993-09-01T23:59:59.000Z

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recover processes. The overall objective of this project is to determine whether Illinois Basin coals are suitable feedstocks for the production of CMS and to evaluate the potential application of these products in commercial gas separation processes. In Phase I of this project, gram quantities of char were prepared from Illinois coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. Chars having surface areas of 1500--2100 m{sup 2}/g were produced by chemical activation using potassium hydroxide (KOH) as the activant. These high surface area chars had more than twice the adsorption capacity of commercial molecular sieves. The kinetics of adsorption of various gases, e.g., N{sub 2}, O{sub 2}, CO{sub 2}, CH{sub 4}, CO and H{sub 2}, on these chars at 25{degrees}C was determined. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4} and CH{sub 4}/H{sub 2} separation; both a high adsorption capacity and selectivity were achieved. The full potential of these materials in commercial gas separations has yet to be realized. In Phase II of this project, larger quantities of char are being prepared from Illinois coal in a batch fluidized-bed reactor and in a continuous rotary tube kiln.

  5. CO2 flood tests on whole core samples of the Mt. Simon sandstone, Illinois Basin

    SciTech Connect (OSTI)

    O'Connor, William K.; Rush, Gilbert E.

    2005-09-01T23:59:59.000Z

    Geological sequestration of CO2, whether by enhanced oil recovery (EOR), coal-bed methane (CBM) recovery, or saline aquifer injection is a promising near-term sequestration methodology. While tremendous experience exists for EOR, and CBM recovery has been demonstrated in existing fields, saline aquifer injection studies have only recently been initiated. Studies evaluating the availability of saline aquifers suitable for CO2 injection show great potential, however, the long-term fate of the CO2 injected into these ancient aqueous systems is still uncertain. For the subject study, a series of laboratory-scale CO2 flood tests were conducted on whole core samples of the Mt. Simon sandstone from the Illinois Basin. By conducting these tests on whole core samples rather than crushed core, an evaluation of the impact of the CO2 flood on the rock mechanics properties as well as the geochemistry of the core and brine solution has been possible. This empirical data could provide a valuable resource for the validation of reservoir models under development for these engineered CO2 systems.

  6. Management of wildlife causing damage at Argonne National Laboratory-East, DuPage County, Illinois

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The DOE, after an independent review, has adopted an Environmental Assessment (EA) prepared by the US Department of Agriculture (USDA) which evaluates use of an Integrated Wildlife Damage Management approach at Argonne National Laboratory-East (ANL-E) in DuPage County, Illinois (April 1995). In 1994, the USDA issued a programmatic Environmental Impact Statement (EIS) that covers nationwide animal damage control activities. The EA for Management of Wildlife Causing Damage at ANL-E tiers off this programmatic EIS. The USDA wrote the EA as a result of DOE`s request to USDA to prepare and implement a comprehensive Wildlife Management Damage Plan; the USDA has authority for animal damage control under the Animal Damage Control Act of 1931, as amended, and the Rural Development, Agriculture and Related Agencies Appropriations Act of 1988. DOE has determined, based on the analysis in the EA, that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an EIS is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  7. Tidally dominated depositional environment for the Mt. Simon Sandstone in central Illinois

    SciTech Connect (OSTI)

    Sargent, M.L.; Lasemi, Z. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01T23:59:59.000Z

    Several hundred feet of core from the upper part of the Mt. Simon in central Illinois have been examined macroscopically. Grain sizes and their systematics, bedding characteristics, sedimentary structures, and relationships among beds show that the upper Mt. Simon Sandstone is composed of a series of fining-upward cycles up to 10 m (30 feet) thick. A typical cycle consists, in ascending order, of a sandy subtidal facies, a mixed sand and mud intertidal-flat facies, and a muddy upper tidal-flat facies upward through the succession, the maximum and average grain size becomes progressively finer and the cycles thinner. The lower sandstone of each cycle contains beds that are massive to cross bedded and cross laminated; some beds show scoured reactivation surfaces. A few cycles contain a middle unit characterized by flaser and lenticular bedding and abundant mudcracks. Mudcracks also are common in the shale beds at the top of each cycle. Sedimentary structures such as reactivation surfaces, flaser and lenticular bedding, and mudcracks suggest that these cycles were deposited in peritidal environments. The presence of Skolithos in some cycles suggests very shallow marine conditions. The within-cycle upward fining is caused by regression or progradation that reflects a progressive decrease in current velocity from subtidal to intertidal parts of the tidal flat. Frequent flooding of the tidal flat resulted in repeated fining-upward cycles within the upper part of the Mt. Simon Sandstone.

  8. Wisconsinan and Sangamonian climate interpreted from fossil ostracodes and vegetation in south-central Illinois

    SciTech Connect (OSTI)

    Curry, B.B. (Illinois State Geological Survey, Champaign, IL (United States)); Forester, R.M. (Geological Survey, Denver, CO (United States)); Zhu, Hong; Baker, R.G. (Univ. of Iowa, Iowa City, IA (United States). Dept. of Geology)

    1992-01-01T23:59:59.000Z

    The interpretation of paleoclimate during the late Illinoian, Sangamonian, and Wisconsinan Ages in the region of present south-central Illinois has been based on plant macrofossil, pollen, and vertebrate records. The ostracode records identify periods of flow across the basins and perhaps characteristics of groundwater discharge or recharge. Basins with the largest lake-to-catchment-area ratio were most sensitive to changes in effective moisture and hydrochemistry. The Sangamonian included three intervals during which the winters were warmer than those of historical record. These intervals are represented by sediment containing relatively abundant arboreal pollen, notably bald cypress and sweet gum, and the ostracode Heterocypris punctata, which lives in subtropical to tropical lakes and estuaries. H. punctata occurs with other ostracodes that require low salinity; their association indicates that precipitation typically exceeded evaporation and that the basin was affected by throughflow. The Sangamonian ended with two warm, wet episodes that sandwich an interval implying prairie lake conditions. Warmth-loving species are abundantly represented in upper Sangamonian sediments. Such warm, wet episodes are not known to have occurred in the Midcontinent during the Holocene. The top of the Sangamonian in all except the Pittsburgh Basin is capped by a layer of reworked sediment containing fluvial ostracodes and exotic mixtures of pollen, including both spruce and sweet gum but dominated by chenopods. The reworked layer is overlain by Wisconsinan sediment containing abundant pollen of boreal taxa and ostracodes that indicate basin throughflow.

  9. Biostratigraphic correlation of eustatic cyclothems (basic Pennsylvanian sequence units) from Midcontinent to Texas and Illinois

    SciTech Connect (OSTI)

    Heckel, P.H.; Lambert, L.L. (Univ. of Iowa, Iowa City (United States)); Barrick, J.E.; Boardman, D.R. (Texas Tech Univ., Lubbock (United States)); Watney, W.L. (Kansas Geological Survey, Lawrence (United States)); Weibel, C.P. (Illinois State Geological Survey, Champaign (United States))

    1991-03-01T23:59:59.000Z

    The basic Midcontinent Pennsylvanian eustatic cyclothem (transgressive limestone, offshore shale, regressive limestone, nearshore/terrestrial shale/paleosol) has sequence stratigraphic counterparts (major eustatic cycles) in Texas and Illinois, in which the limestone members are poorly developed or localized because of proximity to detrital influx. The gray to black phosphatic facies of the offshore shales in all three areas, however, are characterized by abundant conodont faunas that not only are conspecific at each level across the entire region but also are diagnostic of individual cycles. These faunas, supplemented at several horizons by distinctive fusulinids and ammonoids, allow correlation of up to 16 of the major eustatic cycles at a time scale of about 400,000 years across a large area of North America. This correlation can be refined to perhaps 100,000 years when the intervening minor eustatic cycles are matched between the biostratigraphically diagnostic horizons. Similar successions of conodont faunas are reported in preliminary work on marine horizons in the Appalachians and in published work on the Russian platform augur well for eventual worldwide correlation of eustatic cycles on a time scale within the Milankovitch band of the Earth's orbital parameters during a period of time when glacial eustasy seems to have controlled inundation and withdrawal of the sea over large portions of the continents.

  10. Variations of chlorites and illites and porosity in Mississippian sandstone reservoirs in the Illinois basin

    SciTech Connect (OSTI)

    Moore, D.M.; Hughes, R.E. (Illinois State Geological Survey, Champaign (United States))

    1991-03-01T23:59:59.000Z

    Shallow marine, Mississippian, siliclastics in the Illinois basin, although predominantly quartz, contain other minerals that directly influence the porosity and permeability of these reservoir rocks. These sandstones contain more chlorite and kaolinite, relative to illite, than the authors have observed for shales from other Chesterian and Valmeyeran strata. Clay mineral suites in reservoirs appear to be diagenetic. The Aux Vases Sandstone contains illite, illite/smectite, and chlorite; kaolinite is absent. The Cypress Sandstone contains illite, illite/smectite, chlorite, and kaolinite. Chlorite in the Aux Vases Sandstone varies from moderately Fe-rich to Mg-rich, whereas the chlorite in the Cypress Sandstone is uniformly Fe-rich. As the percentage of clay minerals in these rocks decreases, the proportion of chlorite to other clay minerals increases. In some chlorites, the width of the 003 and 005 peaks at half-height is greater than that of the 002 and 004 peaks. This suggests an interlayering of a 7{angstrom} mineral, probably berthierine- or serpentine-like. SEM photos show chlorite coating quartz grains. In some samples there are quartz overgrowths in spite of the presence of a coating of chlorite; in others, chlorite interlayered with the 7{angstrom} phase seems to have interfered with or suppressed overgrowths. Correspondingly, there is a correlation between the 7{angstrom} phase/chlorite and porosity. Therefore, identification of the type of chlorite in a potential reservoir may be an indicator of porosity, as well as a guide for selecting completion and stimulation treatments.

  11. Aux Vases Sandstone diagenesis: Implications for hydrocarbon recovery from southern Illinois reservoirs

    SciTech Connect (OSTI)

    Seyler, B.D.; Beaty, D.S.; Huff, B.G. (Illinois State Geological Survey, Champaign (United States))

    1991-03-01T23:59:59.000Z

    The Aux Vases Sandstone (Mississippian) is a problematic yet productive reservoir in the Illinois basin. The Aux Vases Formation was deposited in a mixed siliciclastic-carbonate offshore environment. Hydrocarbon reservoirs are dominantly elongate sandstone bodies interpreted as subtidal facies within a prograding tidally influenced deposystem. Oil saturated zones, in most cases, are composed of fine-grained, cross-bedded, friable, feldspathic quartz sandstone. Resistivity logs, even from productive wells, are typically characterized by unusually low resistivities (2-4 ohms) that lead to high calculated water saturations. X-ray diffraction, SEM/EDS, and thin section studies were used to analyze diagenetic processes that may affect hydrocarbon production in several Aux Vases reservoirs. Diagenetic processes common to the field studied include: (1) early calcite cementation occluding primary porosity and inhibiting compaction, (2) dissolution of feldspar grains to form authigenic clay, (3) dissolution of early calcite cement, (4) diagenesis of detrital clay minerals into new authigenic clay minerals, and (5) multiple stages of quartz overgrowths that reduce porosity. Commonly used drilling and completion practices may adversely affect reservoir quality by reacting with diagenetic products. Loosening of the fine mineral fraction that causes migration of fines and swelling of expandable clay minerals are examples of this type of damage. Knowledge of reservoir mineralogy and diagenesis may influence drilling and completion practices and affect selection of secondary and tertiary recovery methods.

  12. Ameren Energy Marketing | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan Blanch Green FuelsEnergyAmandusAmecoAmenia,Ameren

  13. Illinois Clean Coal Institute 2005 annual report. Final technical report for the period September 1st, 2004, through August 31, 2005 on projects funded by the Illinois Department of Commerce and Economic Opportunity

    SciTech Connect (OSTI)

    NONE

    2005-11-08T23:59:59.000Z

    This final technical report contains the abstracts and executive summaries of projects funded through the Illinois Clean Coal Institute solicitation entitled 'Request for proposals No. 04-1(ICCI/RFP04-1)'. Support of these projects is by the Office of Coal Development and Department of Commerce and Economic Opportunity. The projects fall into the following categories: advanced coal mining technologies; coal preparation and coal production business practice; management of coal combustion byproducts; commercialization and technology transfer. Final project extensions are also recorded.

  14. Washability of trace elements in product coals from Illinois mines. Technical report, 1 March--31 May 1994

    SciTech Connect (OSTI)

    Demir, I.; Ruch, R.R.; Harvey, R.D.; Steele, J.D.; Khan, S.

    1994-09-01T23:59:59.000Z

    Existing washability data on trace elements in Illinois coals were generated using float-sink methods, which are not applicable to modern froth flotation or column flotation processes. Particularly, there is a lack of washability data on product (as-shipped) coals from modern preparation plants. The goal of this project is to provide the needed trace element washability (release analysis) data on as-shipped Illinois coals using a froth flotation/release analysis (FF/RA) procedure. The results generated by this project will promote industrial utilization of Illinois coals and help assess the effect of new environmental requirements on the use of these coals in utility steam generation. During the third quarter, preparation and submission of all samples for chemical analysis were completed. Analyses of the samples produced by cleaning 34 as-shipped coals using FF/RA were completed for ash, moisture, S, heating value (BTU), and F, and some for Mn and oxide composition. The rest of the analytical work is in progress. The analytical data are being used to evaluate removal of ash, S, and trace elements from the as-shipped coals at the chosen flotation conditions and particles sizes. Available data on the FF/RA of five as-shipped coals at {minus}100, {minus}200, {minus}400 mesh sizes indicate that ash and F rejections increase with decreasing particle size. For the {minus}400 mesh tests, 70--90% of the ash and 35--74% of F were rejected at a BTU or combustibles recovery of 80%. One of the as-shipped coals was previously subjected to FF/RA tests at {minus}100 and {minus}400 mesh sizes to investigate mass balances achievable for the procedure. Preliminary results on ash and F contents of complete set of flotation products from the two tests indicate a mass balance of 95 to 100%.

  15. Production of carbon molecular sieves from Illinois coal. Final technical report, 1 September, 1992--31 August 1993

    SciTech Connect (OSTI)

    Lizzio, A.A.; Rostam-Abadi, M. [Illinois State Geological Survey, Champaign, IL (United States)

    1993-12-31T23:59:59.000Z

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recovery processes. The overall objective of this project is to determine whether Illinois Basin coals are a suitable feedstock for the production of CMS and to evaluate the potential application of these products in commercial gas separation processes. In Phase 1 of this project, gram quantities of char were prepared from Illinois coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. Chars having surface areas of 1,500--2,100 m{sup 2}/g were produced by chemical activation using potassium hydroxide (KOH) as the chemical activant. These high surface area (HSA) chars had more than twice the adsorption capacity of commercial molecular sieves. The kinetics of adsorption of various gases, e.g., O{sub 2}, N{sub 2}, CO{sub 2}, CH{sub 4}, and H{sub 2}, on these chars at 25 C was determined. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4} and CH{sub 4}/H{sub 2} separation. In Phase 2 of this project, larger quantities of char are being prepared from Illinois coal in a batch fluidized-bed reactor and in a continuous rotary tube kiln. The ability of these chars to separate binary gas mixtures is tested in an adsorption column/gas chromatography system. Oxygen and nitrogen breakthrough curves obtained for selected chars were compared to those of a commercial zeolite. Selected chars were subjected to a nitric acid oxidation treatment. The air separation capability of nitric acid treated char was strongly dependent on the outgassing conditions used prior to an O{sub 2}/N{sub 2} adsorption experiment. An outgassing temperature of 130--160 C produced chars with the most favorable air separation properties. 61 refs.

  16. Pilot plant testing of Illinois coal for blast furnace injection. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

    1994-12-31T23:59:59.000Z

    The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900 C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter a sample of the Herrin No. 6 coal (IBCSP 112) was delivered to the CANMET facility and testing is scheduled for the week of 11 December 1994. Also at this time, all of the IBCSP samples are being evaluated for blast furnace injection using the CANMET computer model.

  17. Sequestration and Enhanced Coal Bed Methane: Tanquary Farms Test Site, Wabash County, Illinois

    SciTech Connect (OSTI)

    Scott Frailey; Thomas Parris; James Damico; Roland Okwen; Ray McKaskle; Charles Monson; Jonathan Goodwin; E. Beck; Peter Berger; Robert Butsch; Damon Garner; John Grube; Keith Hackley; Jessica Hinton; Abbas Iranmanesh; Christopher Korose; Edward Mehnert; Charles Monson; William Roy; Steven Sargent; Bracken Wimmer

    2012-05-01T23:59:59.000Z

    The Midwest Geological Sequestration Consortium (MGSC) carried out a pilot project to test storage of carbon dioxide (CO{sub 2}) in the Springfield Coal Member of the Carbondale Formation (Pennsylvanian System), in order to gauge the potential for large-scale CO{sub 2} sequestration and/or enhanced coal bed methane recovery from Illinois Basin coal beds. The pilot was conducted at the Tanquary Farms site in Wabash County, southeastern Illinois. A four-well designâ?? an injection well and three monitoring wellsâ??was developed and implemented, based on numerical modeling and permeability estimates from literature and field data. Coal cores were taken during the drilling process and were characterized in detail in the lab. Adsorption isotherms indicated that at least three molecules of CO{sub 2} can be stored for each displaced methane (CH{sub 4}) molecule. Microporosity contributes significantly to total porosity. Coal characteristics that affect sequestration potential vary laterally between wells at the site and vertically within a given seam, highlighting the importance of thorough characterization of injection site coals to best predict CO{sub 2} storage capacity. Injection of CO{sub 2} gas took place from June 25, 2008, to January 13, 2009. A â??continuousâ? injection period ran from July 21, 2008, to December 23, 2008, but injection was suspended several times during this period due to equipment failures and other interruptions. Injection equipment and procedures were adjusted in response to these problems. Approximately 92.3 tonnes (101.7 tons) of CO{sub 2} were injected over the duration of the project, at an average rate of 0.93 tonne (1.02 tons) per day, and a mode injection rate of 0.6â??0.7 tonne/day (0.66â??0.77 ton/day). A Monitoring, Verification, and Accounting (MVA) program was set up to detect CO{sub 2 leakage. Atmospheric CO{sub 2} levels were monitored as were indirect indicators of CO{sub 2} leakage such as plant stress, changes in gas composition at wellheads, and changes in several shallow groundwater characteristics (e.g., alkalinity, pH, oxygen content, dissolved solids, mineral saturation indices, and isotopic distribution). Results showed that there was no CO{sub 2} leakage into groundwater or CO{sub 2} escape at the surface. Post-injection cased hole well log analyses supported this conclusion. Numerical and analytical modeling achieved a relatively good match with observed field data. Based on the model results the plume was estimated to extend 152 m (500 ft) in the face cleat direction and 54.9 m (180 ft) in the butt cleat direction. Using the calibrated model, additional injection scenariosâ??injection and production with an inverted five-spot pattern and a line drive patternâ??could yield CH{sub 4} recovery of up to 70%.

  18. Data report: Illinois, Indiana, Kentucky, Tennessee, and Ohio. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance

    SciTech Connect (OSTI)

    Sargent, K A; Cook, J R; Fay, W M

    1982-02-01T23:59:59.000Z

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Illinois, Indiana, Kentucky, Tennessee, and Ohio. The following sample types were collected in each state: Illinois - 716 stream sediment, 1046 ground water, 337 stream water; Indiana - 126 stream sediment, 443 ground water, 111 stream water; Kentucky - 4901 stream sediment, 6408 ground water, 3966 stream water; Tennessee - 3309 stream sediment, 3574 ground water, 1584 stream water; Ohio - 1214 stream sediment, 2049 ground water, 1205 stream water. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. Supplementary analyses by other techniques are reported for U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn. These analyses were made on 248 sediment samples from Tennessee. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation.

  19. One-Pot Methamphetamine Cooks Pose New Danger Law enforcement in Southern Illinois are reporting that they are finding full blown methamphetamine cooks taking place in Coleman

    E-Print Network [OSTI]

    US Army Corps of Engineers

    One-Pot Methamphetamine Cooks Pose New Danger Law enforcement in Southern Illinois are reporting. Inexperienced officers have picked these items up and moved them around without knowing the dangers involved. The idea is to reduce the amount of time needed for the overall process. The danger to subjects and to law

  20. 422 1EEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-30,NO. 6, JUNE 1983 the Coordinated Science Laboratory, University of Illinois. Since August

    E-Print Network [OSTI]

    Ghosh, Bijoy K.

    . His interests include modeling and control of large scale systems with applica- tions to power systems Laboratory, University of Illinois, Urbana-Champaign.He has taught control theoryandconductedresearchin model, economic models, and communication networks. + P&u V. Kokotovic (SM'74-F'SO) did his graduate work

  1. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1993 and research proposal for FY 1994

    SciTech Connect (OSTI)

    Birnbaum, H.K.

    1993-03-01T23:59:59.000Z

    The materials research laboratory program is about 30% of total Materials Science and Engineering effort on the Univ. of Illinois campus. Coordinated efforts are being carried out in areas of structural ceramics, grain boundaries, field responsive polymeric and organic materials, molecular structure of solid-liquid interfaces and its relation to corrosion, and x-ray scattering science.

  2. Structural and tectonic implications of pre-Mt. Simon strata -- or a lack of such -- in the western part of the Illinois basin

    SciTech Connect (OSTI)

    Sargent, M.L. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01T23:59:59.000Z

    The discovery of a pre-Mt. Simon lithic arenite (arkose) in southwestern Ohio has lead to reevaluation of many basement tests in the region. Several boreholes in adjacent states have been reexamined by others and are now believed to bottom in the Middle Run Formation. Seismic-reflection sections in western Ohio and Indiana have indicated pre-Mt. Simon basins filled with layered rocks that are interpreted to be Middle Run, however, the pre-Mt. Simon basins and east of Illinois. Samples from Illinois basement tests were reexamined to determine whether they had encountered similar strata. All reported crystalline-basement tests in Illinois show diagnostic igneous textures and mineralogical associations. Coarsely crystalline samples in cores show intergrown subhedral grains of quartz, microcline, and sodic plagioclase. Medium-crystalline rocks in cuttings samples show numerous examples of micrographic intergrowths of quartz and K-feldspar. This texture cannot be authigenically grown in a sediment and probably could not have survived a single cycle of erosion and deposition. Aphanitic rocks show porphyritic and spherulitic textures that are distinctly igneous and would be destroyed by weathering. Substantial relief on the Precambrian crystalline surface in Illinois is postulated for major structural features like the LaSalle Anticlinorium, the Sparta Shelf, the Ste. Genevieve Fault zone, etc. Paleotopographic relief up to 300 m (1,000 feet) is documented from drilling on the western flank of the basin.

  3. Public health assessment for Sandoval Zinc Company, Sandoval, Marion County, Illinois, Region 5: CERCLIS number ILD053980454. Final report

    SciTech Connect (OSTI)

    Not Available

    1999-06-10T23:59:59.000Z

    The Sandoval Zinc site occupies about 13 acres southeast of Sandoval in Marion County, Illinois. It is an abandoned primary and secondary zinc smelter that was next to a coal mining operation. Smelting waste may have been transported off the site and used as fill in Sandoval and other nearby communities. Airborne emissions occurred during regular operations and accidental fires. Surface water runoff transported wastes from the site into adjacent ditches, creeks, ponds, and farm properties. Overall, the Sandoval Zinc site poses no apparent public health hazard to most of the population in Sandoval. The site may be a public health hazard to preschool children with excessive hand-to-mouth activity exposed to residential surface soils with high levels of lead. However, blood sample results from children in a day care near the site did not show elevated levels of lead.

  4. Copyright 2001 by The National Speleological Society Journal of Cave and Karst Studies, December 2001 99 Mark J. Wetzel and Steven J. Taylor -First records of freshwater oligochaetes (Annelida, Clitellata) from caves in Illinois and Missouri, USA. Journ

    E-Print Network [OSTI]

    Taylor, Steven J.

    : Fogelpole Cave, Illinois Caverns, and Krueger-Dry Run Cave (all in Monroe County) and Stemler Cave (St (Gibert et al. 1994; Rodriguez 1996; Rodriguez & Coates 1996; Strayer 2001; Strayer et al. 1995

  5. Washability of trace elements in product coals from Illinois mines. Technical report, 1 December 1993--28 February 1994

    SciTech Connect (OSTI)

    Demir, I.; Ruch, R.R.; Harvey, R.D.; Steele, J.D.; Khan, S. [Illinois State Geological Survey, Champaign, IL (United States)

    1994-06-01T23:59:59.000Z

    The existing trace element washability data on Illinois coals are based on float-sink methods, and these data are not applicable to modern froth flotation or column flotation processes. Particularly, there is a lack of washability data on samples from modern preparation plants, as well as other product (as-shipped) coals. The goal of this project is to provide the needed trace element washability data on as-shipped coals that were collected during 1992--1993 from Illinois mines. During the second quarter, froth flotation/release analysis (FF/RA) tests on 34 project samples were completed at {minus}100, {minus}200, and {minus}400 mesh particle sizes. Products from the FF/RA tests were analyzed for ash, moisture, and some for total S and heating value (BTU), and the resulting data are being used to construct a series of washability curves. For example, these curves can show variation in BTU or combustible recovery as a function of the amount of ash or S rejected. Composite samples, each having 80% of the total BTU (or combustibles), were prepared for the {minus}100 and {minus}200 mesh FF/RA tests and submitted for trace element analysis. The composite samples for the {minus}400 mesh FF/RA tests will be submitted soon, and the analytical results are expected to be available in 3--4 months. The trace element data on the composite samples will indicate the potential for the removal of each element from the coals at the chosen flotation conditions and particle sizes.

  6. Production of low-sulfur binder pitch from high-sulfur Illinois coals. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Knight, R.A. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-12-31T23:59:59.000Z

    The objective of this project is to produce electrode binder pitch with sulfur content below 0.6 wt% from high-sulfur Illinois coal mild gasification liquids. In this project, two approaches to sulfur reduction are being explored in conjunction with thermocracking: (1) the use of conventionally cleaned coal with low ({approximately}1%) sulfur as a mild gasification feedstock, and (2) direct biodesulfurization of the liquids prior to thermocracking. In Case 1, the crude pitch is being produced by mild gasification of IBC-109 coal in an existing IGT bench-scale reactor, followed by distillation of the scrubbing solvent and light-to-middle oils to isolate the crude pitch. In Case 2, the crude pitch for biodesulfurization is the same material previously studied, which was obtained from Illinois No. 6 coal tests conducted in the IGT mild gasification PRU in 1990. Biodesulfurization is to be performed by contacting the pitch with Rhodococcus Rhodochrous either as live cultures or in the form of concentrated biocatalyst. Following preparation of the crude pitches, pitch upgrading experiments are to be conducted in a continuous flash thermocracker (FTC) constructed in previous ICCI-sponsored studies. The finished pitch is then characterized for physical and chemical properties (density, softening point, QI, TI, coking value, and elemental composition), and compared to typical specifications for binder pitches. This quarter, 45 kg of IBC-109 coal was obtained and sized to 40 x 80 mesh for mild gasification. Laboratory experiments were conducted to identify means of dispersing or emulsifying pitch in water to render is accessible to biocatalysts, and exploratory desulfurization tests on one-gram pitch samples were begun.

  7. Reservoir development in bryozoan bafflestone facies of the Ullin (Warsaw) Limestone (Middle Mississippian) in the Illinois basin

    SciTech Connect (OSTI)

    Lasemi, Z.; Treworgy, J.D.; Norby, R.D.; Grube, J.P. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-08-01T23:59:59.000Z

    Recent drilling in Enfield South and Johnsonville fields in southern Illinois has encountered prolific petroleum-producing zones within the Ullin (Warsaw) Limestone. This and large cumulative production from a number of older wells in the Illinois basin indicate that the Ullin has greater reservoir potential than previously recognized. The Ullin reservoir facies is mainly a fenestrate bryozoan-dominated bafflestone developed on the flanks of Waulsortian-type mud mounds or on transported skeletal sand buildups. Subsurface geology and petrography reveal such porous bryozoan bafflestone facies (some with shows of oil) at various horizons within the Ullin. However, in part because of water problems in some areas, only the upper part of the Ullin has been tested thus far and, as a result, significant reservoirs in the deeper part of the unit may have been missed. Preliminary data indicate several facies in the Ullin that vary in their aerial distribution in the basin. These facies include (1) skeletal sand-wave facies and/or bryozoan bafflestone in the upper Ullin, (2) bryozoan bafflestone with a dense Waulsortian mud mound core, (3) thick bryozoan bafflestone over a skeletal grainstone facies, and (4) thick mud mound-dominated facies with thin porous flanking bafflestone/grainstone facies. Areas with facies type 1 and 2 have the highest potential for commercial reservoir development. Facies type 3, although quite porous, is commonly wet, and the porous facies type 4 may be localized and not extensive enough to be commercial. Petrographic examination shows excellent preservation of primary intra- and interparticle porosities within the bryozoan bafflestone facies. The generally stable original mineralogy prevented extensive dissolution-reprecipitation and occlusion of porosity. Further, the stable mineralogy and minor early marine cementation prevented later compaction and burial diagenesis.

  8. Problems encountered in establishing a historical erosion-rate database for the Illinois coast of Lake Michigan

    SciTech Connect (OSTI)

    Chrzastowski, M.J.; Erdmann, A.L.; Stohr, C.J. (Illinois State Geological Survey, Champaign, IL (United States))

    1992-01-01T23:59:59.000Z

    Erosion rates for segments of the Lake Michigan coast at Lake County, Illinois were determined from historical maps prepared by the US Lake Survey and aerial photographs collected for the State of Illinois. Shorelines and blufflines were digitized at 1:20,000 scale for 1872--73, 1910--11, 1947, and 1987; these data were registered to 1:24,000-scale USGS digital line graphs. Erosion rates were calculated from temporal changes on shore-normal transects at 50-m spacing. Three major factors were identified pertinent to future digital mapping of historical coastal changes along similar Great Lakes coasts. (1) Ground-control points and points for rubber sheeting must be carefully selected to ensure these points were stable. For example, road intersections had changed position 15 m or more between early and late data sets. (2) Unlike US ocean coasts, the Great Lakes do not have a standard datum for shoreline mapping, and shorelines are commonly shown for the lake level at the time of the survey. Variation in historical, monthly mean lake level (1.9 m max. range for Lake Michigan) can cause significant shoreline differences between data sets. Shoreline translations of tens of meters may be needed to adjust to a common datum. (3) The bluff crest may not always be an ideal reference line for documenting rates of coastal change. Locally and temporally, recession of the bluff crest may be caused by a variety of slope processes that are independent of wave erosion. Along some bluff coasts, the bluff toe, if carefully defined, may be a more appropriate reference for calculating erosion rates strictly due to coastal processes.

  9. A Systems Approach to Identifying Exploration and Development Opportunities in the Illinois Basin: Digital Portifolio of Plays in Underexplored Lower Paleozoic Rocks

    SciTech Connect (OSTI)

    Beverly Seyler; David Harris; Brian Keith; Bryan Huff; Yaghoob Lasemi

    2008-06-30T23:59:59.000Z

    This study examined petroleum occurrence in Ordovician, Silurian and Devonian reservoirs in the Illinois Basin. Results from this project show that there is excellent potential for additional discovery of petroleum reservoirs in these formations. Numerous exploration targets and exploration strategies were identified that can be used to increase production from these underexplored strata. Some of the challenges to exploration of deeper strata include the lack of subsurface data, lack of understanding of regional facies changes, lack of understanding the role of diagenetic alteration in developing reservoir porosity and permeability, the shifting of structural closures with depth, overlooking potential producing horizons, and under utilization of 3D seismic techniques. This study has shown many areas are prospective for additional discoveries in lower Paleozoic strata in the Illinois Basin. This project implemented a systematic basin analysis approach that is expected to encourage exploration for petroleum in lower Paleozoic rocks of the Illinois Basin. The study has compiled and presented a broad base of information and knowledge needed by independent oil companies to pursue the development of exploration prospects in overlooked, deeper play horizons in the Illinois Basin. Available geologic data relevant for the exploration and development of petroleum reservoirs in the Illinois Basin was analyzed and assimilated into a coherent, easily accessible digital play portfolio. The primary focus of this project was on case studies of existing reservoirs in Devonian, Silurian, and Ordovician strata and the application of knowledge gained to future exploration and development in these underexplored strata of the Illinois Basin. In addition, a review of published reports and exploration in the New Albany Shale Group, a Devonian black shale source rock, in Illinois was completed due to the recent increased interest in Devonian black shales across the United States. The New Albany Shale is regarded as the source rock for petroleum in Silurian and younger strata in the Illinois Basin and has potential as a petroleum reservoir. Field studies of reservoirs in Devonian strata such as the Geneva Dolomite, Dutch Creek Sandstone and Grassy knob Chert suggest that there is much additional potential for expanding these plays beyond their current limits. These studies also suggest the potential for the discovery of additional plays using stratigraphic concepts to develop a subcrop play on the subkaskaskia unconformity boundary that separates lower Devonian strata from middle Devonian strata in portions of the basin. The lateral transition from Geneva Dolomite to Dutch Creek Sandstone also offers an avenue for developing exploration strategies in middle Devonian strata. Study of lower Devonian strata in the Sesser Oil Field and the region surrounding the field shows opportunities for development of a subcrop play where lower Devonian strata unconformably overlie Silurian strata. Field studies of Silurian reservoirs along the Sangamon Arch show that opportunities exist for overlooked pays in areas where wells do not penetrate deep enough to test all reservoir intervals in Niagaran rocks. Mapping of Silurian reservoirs in the Mt. Auburn trend along the Sangamon Arch shows that porous reservoir rock grades laterally to non-reservoir facies and several reservoir intervals may be encountered in the Silurian with numerous exploration wells testing only the uppermost reservoir intervals. Mapping of the Ordovician Trenton and shallower strata at Centralia Field show that the crest of the anticline shifted through geologic time. This study illustrates that the axes of anticlines may shift with depth and shallow structure maps may not accurately predict structurally favorable reservoir locations at depth.

  10. Advanced characterization of forms of chlorine, organic sulfur, and trace elements in available coals from operating Illinois mines. [Quarterly] technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Chou, M.I.M.; Demir, I.; Ruch, J.M. [Illinois State Geological Survey (United States)] [and others

    1994-12-31T23:59:59.000Z

    A set of 34 as-shipped coal samples from operating Illinois mines is available for this study to determine the forms of chlorine and sulfur and leachability of chlorine during wet grinding and froth flotation. The forms of chlorine may be inorganic, ionic, and organic. The forms of organic sulfur will include organic sulfide and thiophenic sulfur. Chlorine can be leached from coal during wet grinding. The potential for removal of chlorine from the samples during fine ({minus}200 mesh) and ultrafine ({minus}400 mesh) wet-grinding and during froth flotation designed primarily for removal of pyrite and ash will be determined. In addition, the organic/inorganic affinities of trace elements in as-shipped Illinois coals will be assessed so that the current physical coal cleaning results may be better interpreted.

  11. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Chou, M.I.M; Lytle, J.M.; Ruch, R.R.; Kruse, C.W.; Chaven, C.; Hackley, K.C.; Hughes, R.E.; Harvey, R.D.; Frost, J.K. [Illinois State Geological Survey, Champaign, IL (United States); Buchanan, D.H. [Eastern Illinois Univ., Charleston, IL (United States); Stucki, J.W. [Illinois Univ., Urbana, IL (United States); Huffman, G.; Huggins, F.E. [Kentucky Univ., Lexington, KY (United States)

    1992-09-01T23:59:59.000Z

    A pre-combustion coal desulfurization process at 120{degree}C using perchloroethylene (PCE) to remove up to 70% of the organic sulfur has been developed by the Midwest Ore Processing Co. (MWOPC). However, this process has not yet proven to be as successful with Illinois coals as it has for Ohio and Indiana coals. In addition, the high levels of organic sulfur removals observed by the MWOPC may be due to certain errors involved in the ASTM data interpretation; this needs verification. For example, elemental sulfur extracted by the PCE may be derived from pyrite oxidation during coal preoxidation, but it may be interpreted as organic sulfur removed by the PCE using ASTM analysis. The purposes of this research are to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process reported by the MWOPC and to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation.

  12. The spatial analysis of a prehistoric hunting adaptation: model development and testing for the Noble-Wieting site (ML 28), McLean County, Illinois

    E-Print Network [OSTI]

    Coleman, Roger Eugene

    1984-01-01T23:59:59.000Z

    THE SPATIAL ANALYSIS OF A PREHISTORIC HUNTING ADAPTATION: MODEL DEVELOPMENT AND TESTING FOR THE NOBLE-WIETING SITE (ML 28), MCLEAN COUNTY, ILLINOIS A Thesis ROGER EUGENE COLEMAN Submitted to the Graduate College of Texas ASM University... in partial fulfillment of the requirements for the degree of MASTER OF ARTS May 1984 Major subject: Anthropology THE SPATIAL ANALYSIS OF A PREHISTORIC HUNTING ADAPTATION: MODEL DEVELOPMENT AND TESTING FOR THE NOBLE-WIETING SITE (ML 28)g MCLEAN COUNTY...

  13. Production of low sulfur binder pitich from high-sulfur Illinois coals. Quarterly report, 1 March 1995--31 May 1995

    SciTech Connect (OSTI)

    Knight, R.A.

    1995-12-31T23:59:59.000Z

    The objective of this project is to produce electrode binder pitch with sulfur content below 0.6 wt% from high-sulfur Illinois coal mild gasification liquids. Previously, flash thermocracking (FTC) was used to successfully upgrade the properties of mild gasification pitch, yielding a suitable blending stock for use as a binder in the production of carbon electrodes for the aluminum industry. However, in pitches from high-sulfur (4%) Illinois coal, the pitch sulfur content (2%) was still higher than preferred. In this project two approaches to sulfur reduction are being explored in conjunction with FTC: (1) the use of a moderate-sulfur (1.2%) Illinois coal as mild gasification feedstock, and (2) direct biodesulfurization of the liquids from high-sulfur coal prior to FTC. In Case 1, the liquids are being produced by mild gasification of IBC-109 coal in a bench-scale fluidized-bed reactor, followed by distillation to isolate the crude pitch. In Case 2, biodesulfurization with Rhodococcus Rhodochrous IGTS8 biocatalyst is being performed on crude pitch obtained from Illinois No. 6 coal tests conducted in the IGT MILDGAS PRU in 1990. Following preparation of the crude pitches, pitch upgrading experiments are being conducted in a continuous FTC reactor constructed in previous ICCI-sponsored studies. This quarter, mild gasification of IBC-109 coal was completed, producing 450 g of coal liquids, which were then distilled to recover 329 g of Case 1 crude pitch. Next month, the pitch will be subjected to FTC treatment and evaluated. Biodesulfurization experiments were performed on Case 2 pitch dispersed in l-undecanol, resulting in sulfur reductions of 15.1 to 21.4%. This was marginally lower than the 24.8% desulfurization obtained in l-dodecanol, but separation of pitch from the dispersant was facilitated by the greater volatility of l-undecanol.

  14. Production of low-sulfur binder pitch from high-sulfur Illinois coals. Technical report, December 1, 1994--February 28, 1995

    SciTech Connect (OSTI)

    Knight, R.A.

    1996-03-01T23:59:59.000Z

    The objective of this project is to produce electrode binder pitch with sulfur content below 0.6 wt% from high-sulfur Illinois coal mild gasification liquids. In previous ICCI projects at IGT, flash thermocracking (FTC) was used to successfully upgrade the properties of mild gasification pitch, yielding a suitable blending stock for use as a binder in the production of carbon electrodes for the aluminum industry. However, in pitches from high-sulfur (4%) Illinois coal, the pitch sulfur content is still unacceptably high at 2%. In this project, two approaches to sulfur reduction are being explored in conjunction with FTC: (1) the use of conventionally cleaned coal with low ({approximately}1%) sulfur as a mild gasification feedstock, and (2) direct biodesulfurization of the liquids prior to FTC. In Case 1, the crude pitch is being produced by mild gasification of IBC-109 coal in an existing IGT bench-scale reactor, followed by distillation to isolate the crude pitch. In Case 2, the crude pitch for biodesulfurization was obtained from Illinois No. 6 coal tests conducted in the IGT mild gasification PRU in 1990. Biodesulfurization is to be performed by contacting the pitch with Rhodococcus Rhodochrous IGTS8 biocatalyst. Following preparation of the crude pitches, pitch upgrading experiments are to be conducted in a continuous FTC reactor constructed in previous ICCI-sponsored studies. The finished pitch is then characterized for physical and chemical properties (density, softening point, QI, TI, coking value, and elemental composition), and compared to typical specifications for binder pitches.

  15. Research on improved and enhanced oil recovery in Illinois through reservoir characterization. [Quarterly technical report], December 28, 1991--March 28, 1992

    SciTech Connect (OSTI)

    Oltz, D.F.

    1992-04-01T23:59:59.000Z

    This project will provide information that can maximize hydrocarbon production minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir`s capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of by-passed, mobile oil.

  16. An Evaluation of the Carbon Sequestration Potential of the Cambro?Ordovician Strata of the Illinois and Michigan Basins

    SciTech Connect (OSTI)

    Leetaru, Hannes

    2014-09-30T23:59:59.000Z

    The studies summarized herein were conducted during 2009–2014 to investigate the utility of the Knox Group and St. Peter Sandstone deeply buried geologic strata for underground storage of carbon dioxide (CO{sub 2}), a practice called CO{sub 2} sequestration (CCS). In the subsurface of the midwestern United States, the Knox and associated strata extend continuously over an area approaching 500,000 sq. km, about three times as large as the State of Illinois. Although parts of this region are underlain by the deeper Mt. Simon Sandstone, which has been proven by other Department of Energy?funded research as a resource for CCS, the Knox strata may be an additional CCS resource for some parts of the Midwest and may be the sole geologic storage (GS) resource for other parts. One group of studies assembles, analyzes, and presents regional?scale and point?scale geologic information that bears on the suitability of the geologic formations of the Knox for a CCS project. New geologic and geo?engineering information was developed through a small?scale test of CO{sub 2} injection into a part of the Knox, conducted in western Kentucky. These studies and tests establish the expectation that, at least in some locations, geologic formations within the Knox will (a) accept a commercial?scale flow rate of CO{sub 2} injected through a drilled well; (b) hold a commercial?scale mass of CO{sub 2} (at least 30 million tons) that is injected over decades; and (c) seal the injected CO{sub 2} within the injection formations for hundreds to thousands of years. In CCS literature, these three key CCS?related attributes are called injectivity, capacity, and containment. The regional?scale studies show that reservoir and seal properties adequate for commercial?scale CCS in a Knox reservoir are likely to extend generally throughout the Illinois and Michigan Basins. Information distinguishing less prospective subregions from more prospective fairways is included in this report. Another group of studies report the results of reservoir flow simulations that estimate the progress and outcomes of hypothetical CCS projects carried out within the Knox (particularly within the Potosi Dolomite subunit, which, in places, is highly permeable) and within the overlying St. Peter Sandstone. In these studies, the regional?scale information and a limited amount of detailed data from specific boreholes is used as the basis for modeling the CO{sub 2} injection process (dynamic modeling). The simulation studies were conducted progressively, with each successive study designed to refine the conclusions of the preceding one or to answer additional questions. The simulation studies conclude that at Decatur, Illinois or a geologically similar site, the Potosi Dolomite reservoir may provide adequate injectivity and capacity for commercial?scale injection through a single injection well. This conclusion depends on inferences from seismic?data attributes that certain highly permeable horizons observed in the wells represent laterally persistent, porous vuggy zones that are vertically more common than initially evident from wellbore data. Lateral persistence of vuggy zones is supported by isotopic evidence that the conditions that caused vug development (near?surface processes) were of regional rather than local scale. Other studies address aspects of executing and managing a CCS project that targets a Knox reservoir. These studies cover well drilling, public interactions, representation of datasets and conclusions using geographic information system (GIS) platforms, and risk management.

  17. Material Sample Collection with Tritium and Gamma Analyses at the University of Illinois's Nuclear Research Laboratory TRIGA Nuclear Research Reactor

    SciTech Connect (OSTI)

    Charters, G.; Aggarwal, S. [New Millennium Nuclear Technologies, 575 Union Blvd, Suite 102, Lakewood, CO 80228 (United States)

    2006-07-01T23:59:59.000Z

    The University of Illinois in Champaign-Urbana has an Advanced TRIGA reactor facility which was built in 1960 and operated until August 1998. The facility was shutdown for a variety of reasons, primarily due to a lack of usage by the host institution. In 1998 the reactor went into SAFSTOR and finally shipped its fuel in 2004. At the present time a site characterization and decommissioning plan are in process and hope to be submitted to the NRC in early 2006. The facility had to be fully characterized and part of this characterization involved the collection and analysis of samples. This included various solid media such as, concrete, graphite, metals, and sub-slab surface soils for immediate analysis of Activation and Tritium contamination well below the easily measured surfaces. This detailed facility investigation provided a case to eliminate historical unknowns, increasing the confidence for the segregation and packaging of high specific activity Low Level Radwaste (LLRW), from which a strategy of 'surgical-demolition' and segregation could be derived thus maximizing the volumes of 'clean material'. Performing quantitative volumetric concrete or metal radio-analyses safer and faster (without lab intervention) was a key objective of this dynamic characterization approach. Currently, concrete core bores are shipped to certified laboratories where the concrete residue is run through a battery of tests to determine the contaminants. The existing core boring operation volatilises or washes out some of the contaminants (like tritium) and oftentimes cross-contaminates the are a around the core bore site. The volatilization of the contaminants can lead to airborne problems in the immediate vicinity of the core bore. Cross-contamination can increase the contamination area and thereby increase the amount of waste generated that needs to be treated and stabilized before disposal. The goal was to avoid those field activities that could cause this type of release. Therefore, TRUPRO{sup R}, a sampling and profiling tool in conjunction with radiometric instrumentation was utilized to produce contamination profiles through the material being studied. All samples (except metals) on-site were analyzed within 10 minutes for tritium using a calibrated portable liquid scintillation counter (LSC) and analyzed for gamma activation products using a calibrated ISOCS. Improved sample collection with near real time analysis along with more historical hazard analysis enhanced significantly over the baseline coring approach the understanding of the depth distribution of contaminants. The water used in traditional coring can result in a radioactive liquid waste that needs to be dealt with. This would have been an issue at University of Illinois. Considerable time, risk reduction and money are saved using this profiling approach. (authors)

  18. Utilization of Illinois coal gasification slags for production of ultra-lightweight aggregates. Final technical report, September 1, 1992--August 31, 1993

    SciTech Connect (OSTI)

    Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Zimmerle, T. [Silbrico Corp. (United States)

    1993-12-31T23:59:59.000Z

    This research was aimed at testing and developing the expansion potential of solid residues (slag) from gasification of Illinois coals to manufacture ultra-lightweight aggregates (ULWA). Conventional ULWAs are manufactured by pyroprocessing perlite or vermiculite ores and have unit weights in the 5--12 lb/ ft{sup 3} range. These materials sell for approximately $200/ton ($1.00/ft{sup 3}) and have numerous applications. The incentive for this effort was based on previous experimental results in which lightweight aggregates (LWA) with unit weights of 25--55 lb/ft{sup 3} were produced from Illinois slag using a direct-fired furnace. In this program, bench-scale expansion tests conducted with two Illinois coal slags resulted in product unit weights of 12 and 18.5 lb/ ft{sup 3}, thus confirming the feasibility of producing ULWA from Illinois slags. During initial pilot vertical shaft furnace test runs, two Illinois slags were expanded to generate products with unit weights of 12.5--26.5 and 20--52 lb/ ft{sup 3}. Further attempts to lower the product unit weights resulted in fusion of the slag. This problem could be overcome by methods including surface treatment of the slag, blending the slag with other materials, or utilization of indirect firing methods. To lower the product unit weights, an indirect-fired horizontal shaft furnace was used and products with unit weights of 12.4--52.0 lb/ft{sup 3} were generated, thus indicating that this method can be used to produce a wide range of expanded products. A large batch of expanded slag was produced using an 18-in. diameter x 12-ft long indirect-fired pilot furnace. A sample from this batch was characterized. Specimens of insulating concrete made from expanded slag had a unit weight 43.3 lb/ft{sup 3} and thermal conductivity of 1.34 Btu-in./h/ft{sup 2}/{degrees}F. This compares well with a value of 1. 2 Btu-in./h/ft{sup 2}/{degrees}F for insulating concrete of a similar weight made from perlite, as per ASTM C 332-82.

  19. Design and fabrication of advanced materials from Illinois coal wastes. [Quarterly] technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Malhotra, V.M.; Wright, M.A. [Southern Illinois Univ., Carbondale, IL (United States)

    1994-12-31T23:59:59.000Z

    The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. During the first quarter of the project, the thrust of the work was directed towards setting up the experimental facilities and undertaking preliminary tests to gauge the ability of coal tar derived binder in fabricating the brake skeletons. In addition systematic scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and differential thermal analysis (DTA) were conducted on PCC fly ash (Baldwin), fly ash (ADM), FBC fly ash, FBC spent bed bottom ash, bottom ash (ADM), and scrubber sludge residues to characterize their geometrical shape and thermal stability. The PCC fly ash particles being highly spherical in shape and thermally inert up to 1100{degrees}C will make an excellent raw material for our composites. This is born out by fabricating brake skeletons from PCC fly ash colloids. Unlike the PCC fly ash and FBC fly ash, the scrubber sludge particles are not suitable hosts for our brake lining materials because of a whisker-like particle structure. Six different compositions of various combustion residues were tested in the fabrication of brake skeletons, and our tar derived binder shows great promise in the fabrication of composite materials.

  20. Production of carbon molecular sieves from Illinois coal. [Quarterly] technical report, December 1, 1993--February 28, 1994

    SciTech Connect (OSTI)

    Lizzio, A.A.; Rostam-Abadi, M. [Illinois State Geological Survey, Champaign, IL (United States); Vyas, S.N. [Indian Institute of Technology, Bombay (India)

    1994-06-01T23:59:59.000Z

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recovery processes. The overall objective of this project is to determine whether Illinois coal is a suitable feedstock for the production of CMS and to evaluate the potential application of the products in commercial gas separation processes. In Phase I of this project, gram quantities of char were produced from IBC-102 coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. The kinetics of adsorption of various gases, i.e., O{sub 2}, N{sub 2}, CO{sub 2}, CH{sub 4} and H{sub 2}, on these chars at 25{degree}C was studied. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4}, CO{sub 2}H{sub 2} and CH{sub 4}/H{sub 2} separation; both high adsorption capacities and selectivities were achieved. The full potential of these materials in commercial gas separations has yet to be realized. In Phase II, the optimal char preparation conditions determined in Phase I are applied to production of larger quantities of CMS in a batch fluidized-bed reactor (FBR) and a continuous rotary tube kiln (RTFK).

  1. Preliminary paleogeographic reconstruction of the Illinois basin during deposition of the Mississippian Aux Vases Formation: Implications for hydrocarbon recovery

    SciTech Connect (OSTI)

    Cole, R.D. (Illinois State Geological Survey, Champaign (United States))

    1991-03-01T23:59:59.000Z

    Extensive outcrop investigation and selective subsurface study allow definition of Illinois basin paleogeography during deposition of the Mississippian (Valmeyeran-Meramecian) Aux Vases Formation. The results incorporate an integrated approach utilizing field observations and petrographic analysis, wireline logs, subsurface maps, and cores. The Aux Vases Formation depositional system has been determined to be composed of subtidal to intertidal facies. Depositional facies in outcrop are based on rock body geometries, sedimentary structure assemblages, paleocurrent analysis, paleontology of body and trace fossils, facies relationships, and petrography. Depositional facies determined from subsurface data are based on correlation of lithologic interpretations from wireline logs, sand body geometries form isopach maps, and petrography. Specific depositional facies observed in outcrop and core and inferred from wireline logs and isopach maps are offshore bars and tidal channel complexes, extensive subtidal to lower intertidal, ripple-laminated, fine-grained quartzose sandstone. Carbonate facies occur as subtidal grainstones at or near the base of a sequence, or as high energy deposits which have been tidally reworked. This depositional system produces reservoir heterogeneities that complicate efficient hydrocarbon recovery. This diverse facies architecture is modified by tectonic and diagenetic overprinting, further segregating potential producing zones. To significantly improve recovery efficiency, predictions regarding compartmentalization can be used prior to designing a drilling program, an infill drilling program, or an application of enhanced recovery techniques.

  2. Characterization of the surface properties of Illinois basin coals. Technical report, March 1, 1992--May 31, 1992

    SciTech Connect (OSTI)

    Demir, I.; Harvey, R.D.; Lizzio, A.A. [Illinois State Geological Survey, Champaign, IL (United States)

    1992-10-01T23:59:59.000Z

    The main objective of this project is to characterize the surface properties (surface area, pore size distribution, surface charge, and surface chemical structure) of eight coals in the Illinois Basin Coal Sample Program (IBCSP), and explore statistical relationships between surface properties and other coal characteristics. We completed analyses of -100 and -400 mesh, unoxidized IBCSP coals for surface area and pore volume distribution. Two thirds or more of the measured surface area of the samples are derived from the micropores (3.5-20 {Angstrom}). The mesopore surface areas of IBC-101, IBC-102, and IBC-107 coals are higher than the other coals, and the mesopore surface area of the IBC-103 coal is the smallest among all the coals tested. The pore volume in pores less than about 1800 {Angstrom} in diameter varies about five-fold among the samples. The differences between the samples suggest that these coals may show different physical-chemical behavior during various processes involving preparation and utilization of coal. Statistical analyses of the measured and other available coal properties indicate that the micropore surface area correlates positively with carbon content and vitrinite reflectance and negatively with volatile matter. and hydrogen content of the coal. The mesopore surface area correlates negatively with carbon content but positively with oxygen and hydrogen contents of the coal. The statistical correlations can be used to predict one parameter from another one.

  3. Positive correspondence between the completeness of Late Quaternary fossiliferous lacustrine successions in Illinois and the basin index

    SciTech Connect (OSTI)

    Curry, B.B. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-04-01T23:59:59.000Z

    The basin index, defined as the ratio of the maximum area of a paleolake versus the area of the catchment (A[sub L]/A[sub C]), initially was used to compare the moisture balance of pluvial lakes in closed and semi-closed basins under arid climates. In this study the basin index also corresponds to the completeness of ostracode and pollen successions preserved in the basins. The basin indices of four breached kettles located in south-central Illinois as well as the thickness of fossiliferous zones determined from cores are compared. Collectively, the basins contain ostracode and pollen records spanning from the late Illinoian ([approx] 150 ka) to the Holocene. Hopwood Farm has the smallest index (0.03) and has a fossil record that terminates in Sangamonian clay. The fossil succession at Bald Knob Basin, with an intermediate basin index of 0.4, contains several lacuna in post-Sangamonian sediment and poorly preserved pollen in Holocene material. Raymond and Pittsburg Basins have indices > 1.0 and contain the most complete fossil records. The data indicate that the basin index is a useful guide for choosing sites with the greatest potential for yielding cores with conformable sediment successions.

  4. Characterization of the surface properties of Illinois basin coals. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect (OSTI)

    Demir, I.; Harvey, R.D.; Lizzio, A.A. [Illinois State Geological Survey, Champaign, IL (United States)

    1992-12-31T23:59:59.000Z

    Surface area and pore volume distributions, surface charge, and surface chemical structure of the eight coals in the Illinois Basin Coal Sample Program (IBCSP) were determined. The IBC-101 coal has the lowest total and micropore (3.5-20.0 {Angstrom}) surface areas. The IBC-103 coal has the lowest mesopore (20-500 {Angstrom}) surface area. The mesopore surface areas of IBC-101, IBC-102, and IBC-107 coals are higher than the other four coals. Pore volume in pores <1800 {Angstrom} in diameter varies almost five-fold with IBC-103 coal having the lowest value. These differences may affect the reactivity of these coals during cleaning, conversion, and combustion processes. Surface charge and isoelectric points vary among the samples. The isoelectric point, where processes such as agglomeration and dewatering is most efficient, shifted to higher pH values for some of the samples upon exposure to air oxidation at room temperature. Diffuse reflectance infrared spectroscopy (DRIS) data indicate that the surfaces of the IBCSP coals contain aromatic hydrocarbon components, aliphatic hydrocarbons, and an aldehyde group. Ball-mill grinding reduced the organic hydroxyls and thus enriched relative concentrations of nonpolar aliphatic functional groups in the samples. The room temperature air oxidation did not cause any significant change on the surface chemical structure of the coals.

  5. Gasifier feed: Tailor-made from Illinois coals. Final technical report, September 1, 1991--December 31, 1992

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III [Illinois State Geological Survey, Champaign, IL (United States); Lytle, J.M.; Frost, R.R.; Lizzio, A.A.; Kohlenberger, L.B.; Brewer, K.K. [Illinois State Geological Survey, Champaign, IL (United States)]|[DESTEC Energy (United States)]|[Williams Technologies, Inc. (United States)]|[Illinois Coal Association (United States)

    1992-12-31T23:59:59.000Z

    The main purpose of this project was to produce a feedstock from preparation plant fines from an Illinois (IL) coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high-sulfur content and high-Btu value of IL coals are Particularly advantageous in such a gasifier; preliminary-calculations indicate that the increased cost of removing sulfur from the gas from a high-sulfur coal is more than offset b the increased revenue from the sale of the elemental sulfur; additionally the high-Btu IL coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is--higher not only because of the hither Btu value of the coal but also because IL coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for IL coal as compared to approximately 45% for most western coals. During the contract extension, additional coal testing was completed confirming the fact that coal concentrates can be made from plant waste under a variety of flotation conditions 33 tests were conducted, yielding an average of 13326 Btu with 9.6% ash while recovering 86.0%-Of the energy value.

  6. Illinois Solid Waste Management Act (Illinois)

    Broader source: Energy.gov [DOE]

     It is the purpose of this Act to reduce reliance on land disposal of solid waste, to encourage and promote alternative means of managing solid waste, and to assist local governments with solid...

  7. Illinois Gas Pipeline Safety Act (Illinois)

    Broader source: Energy.gov [DOE]

    Standards established under this Act may apply to the design, installation, inspection, testing, construction, extension, operation, replacement, and maintenance of pipeline facilities. Whenever...

  8. Fermilab | Illinois Accelerator Research Center | Illinois Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹

  9. Enhancing the use of coals by gas reburning-sorbent injection: Volume 3 -- Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company. Final report

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x} and SO{sub 2} from a wall fired unit at Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the as found baseline of 0.98 lb/MBtu and to reduce emissions of SO{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an SO{sub 2} limit of 1.8 lb/MBtu, the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with SO{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The system was designed to inject sorbent at a rate corresponding to a calcium (sorbent) to sulfur (coal) molar ratio of 2.0. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

  10. Regional seismic reflection line, southern Illinois Basin, provides new data on Cambrian rift geometry, Hicks Dome genesis, and the Fluorspar Area Fault Complex

    SciTech Connect (OSTI)

    Potter, C.J.; Goldhaber, M.B.; Taylor, C.D. (U.S. Geological Survey, Denver, CO (United States)); Heigold, P.C. (Illinois State Geological Survey, Champaign, IL (United States))

    1992-01-01T23:59:59.000Z

    Detailed studies of the subsurface structure of the Cambrian Reelfoot rift (RFR) in the Midwestern US provide important insights into continental rifting processes and into the structural fabric of a zone of modern intracratonic seismicity (New Madrid zone). High-quality oil industry seismic reflection data show that in the area of transition between the RFR and the Rough Creek Graben (RCG) the geometry of the Cambrian rift system is that of a half-graben that thickens to the southeast. This contrasts with the northward-thickening half-graben observed to the east in the RCG and with the more symmetric graben to the south in the RFR. An 82.8-km segment of a northwest-southeast seismic reflection profile in southeastern Illinois and western Kentucky shows that near Hicks Dome, Illinois, Middle and Lower Cambrian syn-rift sedimentary rocks occupy about 0.35 s (two-way travel time) on the seismic reflection section (corresponding to a thickness of about 970 m). This stratigraphic interval occupies about 0.45 s (1,250 m) near the Ohio river and is thickest against the Tabb Fault System (TFS) in Kentucky, where it occupies 0.7 s (1,940 m). The seismic data show that in this part of the Cambrian rift the master fault was part of the TFS and that normal displacement on the TFS continued through middle Paleozoic time. The seismic data also provide new information on the late Paleozoic development of Hicks-Dome and the surrounding Fluorspar Area Fault Complex (FAFC) in southeastern Illinois and western Kentucky. A series of grabens and horsts in the FAFC document a late Paleozoic reactivation of the RFR. Comparison of the reflection data with surface mineralization patterns shows that in most cases mineralized graben-bounding faults clearly cut basement or are splays from faults that cut basement.

  11. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect (OSTI)

    Chou, M.I.M.; Lytle, J.M. [Illinois State Geological Survey, Champaign, IL (United States); Buchanan, D.H. [Eastern Illinois Univ., Charleston, IL (United States)] [and others

    1992-12-31T23:59:59.000Z

    The purposes of this Testing and Materials (ASTM) forms of sulfur analysis. The purposes of this research are to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process and to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation. Problem that limits commercial application of the PCE process is the high chlorine content in the PCE-treated coals. Hence, to develop a dechlorination procedure to remove excess PCE from the PCE-treated coal is an additional goal of this investigation. MWOPC`s results have been repeated on fresh IBC-104 coal. Oxidation of coals was found to affect subsequent PCE desulfurization. Elemental sulfur is more amenable to removal by PCE. Ohio 5/6 coal appears to produce elemental sulfur more readily than Illinois coal during oxidation. Data from X-Ray Diffraction spectroscopy indicate that sulfate in the oxidized Illinois IBC-104 coal is mainly in gypsum form, whereas, sulfate in oxidized Ohio 5/6 sample is mainly in szomolnokite form. These data suggest that the oxidation reaction for Ohio 5/6 coal might occur under catalytic conditions which readily convert pyrite to produce FeSO{sub 4} and elemental sulfur. The higher elemental sulfur content in that coal results in higher ASTM organic sulfur removal by PCE extraction. From mass balance calculation, 96% of the total sulfur and greater than 95% of total iron were accounted for during our PCE tests with both long-term ambient-oxidized IBC-104 coal and ambient-oxidized Ohio 516 coal.

  12. Design and fabrication of advanced materials from Illinois coal wastes. Quarterly report, 1 March 1995--31 May 1995

    SciTech Connect (OSTI)

    Malhotra, V.M.; Wright, M.A.

    1995-12-31T23:59:59.000Z

    The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), differential thermal analysis (DTA), and transmission-Fourier transform infrared (FTIR) were conducted on PCC fly ash (Baldwin), FBC fly ash (ADM unit1-6), FBC fly ash (S.I. coal), FBC spent bed ash (ADM unit1-6), bottom ash, and scrubber sludge (CWLP) residues to characterize their geometrical shapes, mineral phases, and thermal stability. Our spectroscopic results indicate that the scrubber sludge is mainly composed of a gypsum-like phase whose lattice structure is different from the lattice structure of conventional gypsum, and sludge does not contain hannebachite (CaSO{sub 3}0.5H{sub 2}O) phase. In the second and third quarters the focus of research has been on developing protocols for the formation of advanced brake composites and structural composites. Our attempts to fabricate brake frictional shoes, in the form of 1.25 inch disks, from PCC fly ash, FBC spent bed ash, scrubber sludge, coal char, iron particles, and coal tar were successful. Based on the experience gained and microscopic analyses, we have now upscaled our procedures to fabricate 2.5 inch diameter disks from coal combustion residues. The SEM and Young`s modulus analyses of brake composites fabricated at 400 psi < Pressure < 2200 psi suggest pressure has a strong influence on the particle packing and the filling of interstices in our composites.

  13. Design and fabrication of advanced materials from Illinois coal wastes. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect (OSTI)

    Malhotra, V.M.; Wright, M.A. [Southern Illinois Univ., Carbondale, IL (United States)

    1995-12-31T23:59:59.000Z

    The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. During the first two quarters of the project, the thrust of the work directed towards characterizing the various coal combustion residues and FGD residue, i.e., scrubber sludge. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), differential thermal analysis (DTA), and transmission-Fourier transform infrared (FTIR) were conducted on PCC fly ash (Baldwin), FBC fly ash (ADK unit l-6), FBC fly ash (S.I. coal), FBC spent bed ash (ADM, unit l-6), bottom ash, and scrubber sludge (CWLP) residues to characterize their geometrical shapes, mineral phases, and thermal stability. Our spectroscopic results indicate that the scrubber sludge is mainly composed of a gypsum-like phase whose lattice structure is different from the lattice structure of conventional gypsum, and sludge does not contain hannebachite (CaSO{sub 3}.0.5H{sub 2}O) phase. Our attempts to fabricate brake frictional shoes, in the form of 1.25 inch disks, from PCC fly ash, FBC spent bed ash, scrubber sludge, coal char, iron particles, and coal tar were successful. Based on the experience gained and microscopic analyses, we have now upscaled our procedures to fabricate 2.5 inch diameter disk,- from coal combustion residues. This has been achieved. The SEM and Young`s modulus analyses of brake composites fabricated at 400 psi < Pressure < 2200 psi suggest pressure has a strong influence on the particle packing and the filling of interstices in our composites. Also, these results along with mechanical behavior of the fabricated disks lead us to believe that the combination of surface altered PCC fly ash and scrubber sludge particles, together ed ash particles are ideal for our composite materials.

  14. Evaluating the Suitability for CO2 Storage at the FutureGen 2.0 Site, Morgan County, Illinois, USA

    SciTech Connect (OSTI)

    Bonneville, Alain; Gilmore, Tyler J.; Sullivan, E. C.; Vermeul, Vincent R.; Kelley, Mark E.; White, Signe K.; Appriou, Delphine; Bjornstad, Bruce N.; Gerst, Jacqueline L.; Gupta, Neeraj; Horner, Jacob A.; McNeil, Caitlin; Moody, Mark A.; Rike, William M.; Spane, Frank A.; Thorne, Paul D.; Zeller, Evan R.; Zhang, Z. F.; Hoffman, Jeffrey; Humphreys, Kenneth K.

    2013-08-05T23:59:59.000Z

    FutureGen 2.0 site will be the first near-zero emission power plant with fully integrated long-term storage in a deep, non-potable saline aquifer in the United States. The proposed FutureGen 2.0 CO2 storage site is located in northeast Morgan County, Illinois, U.S.A., forty-eight kilometres from the Meredosia Energy Center where a large-scale oxy-combustion demonstration will be conducted. The demonstration will involve > 90% carbon capture, which will produce more than one million metric tons (MMT) of CO2 per year. The CO2 will be compressed at the power plant and transported via pipeline to the storage site. To examine CO2 storage potential of the site, a 1,467m characterization well (FGA#1) was completed in December 2011. The target reservoir for CO2 storage is the Mt. Simon Sandstone and Elmhurst Sandstone Member of the lower Eau Claire Formation for a combined thickness of 176 m. Confining beds of the overlying Lombard and Proviso Members (upper Eau Claire Formation) reach a thickness of 126 m. Characterization of the target injection zone and the overlying confining zone was based on wellbore data, cores, and geophysical logs, along with surface geophysical (2-D seismic profiles, magnetic and gravity), and structural data collected during the initial stage of the project . Based on this geological model, 3D simulations of CO2 injection and redistribution were conducted using STOMP-CO2, a multiphase flow and transport simulator. After this characterization stage, it appears that the injection site is a suitable geologic system for CO2 sequestration and that the injection zone is sufficient to receive up to 33 MMT of CO2 at a rate of 1.1 MMT/yr. GHGT-11 conference

  15. Production of carbon molecular sieves from Illinois coal; [Quarterly] technical report, September 1, 1993--November 30, 1993

    SciTech Connect (OSTI)

    Lizzio, A.A.; Rostam-Abadi, M. [Illinois State Geological Survey, Champaign, IL (United States); Vyas, S.N. [Indian Institute of Technology, Bombay (India)

    1994-03-01T23:59:59.000Z

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recovery processes. The overall objective of this project is to determine whether Illinois Basin coal is a suitable feedstock for the production of CMS and to evaluate the potential application of these products in commercial gas separation processes. In Phase I of this project, gram quantities of char were produced from IBC-102 coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. Chars having surface areas. of 1500--2100 m{sup 2}/g were produced by chemical activation using potassium hydroxide as the activant. These high surface area chars had more than twice the adsorption capacity of commercial molecular sieves. The kinetics of adsorption of various gases, i.e., O{sub 2}, N{sub 2}, CO{sub 2}, CH{sub 4} and H{sub 2} on these chars at 25{degree}C was studied. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4}, CO{sub 2}/H{sub 2} and CH{sub 4}/H{sub 2} separation; both high adsorption capacities and selectivities were achieved. The full potential of these materials in commercial gas separations has yet to be realized. In Phase II, the optimal preparation conditions determined in Phase I will be applied to production of larger quantities of CMS in a batch fluidized-bed reactor (FBR) and continuous rotary tube kiln (RTK).

  16. Evaluation of S-101 course Supervisors' Orientation to Occupational Safety in DOE'' taught in Argonne, Illinois, August 18--21, 1992

    SciTech Connect (OSTI)

    Wright, T.S.

    1993-03-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, Supervisors' Orientation to Occupational Safety in DOE'', (S-101) which was conducted August 18--21 at Argonne National Laboratory, in Argonne, Illinois. Sections 1.1 and 1.2 of this report summarize the quantitative course evaluations that trainees provided upon completion of the course. Section 1.3 provides written comments, and section 1.4 provides the attendees examination results. Appendix A provides a transcript of the trainees' written comments. The students commented that both instructors were knowledgeable and interesting. This is reflected in the ratings. Appendix B provides the trainee evaluation form.

  17. Evaluation of S-101 course ``Supervisors` Orientation to Occupational Safety in DOE`` taught in Argonne, Illinois, August 18--21, 1992

    SciTech Connect (OSTI)

    Wright, T.S.

    1993-03-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, ``Supervisors` Orientation to Occupational Safety in DOE``, (S-101) which was conducted August 18--21 at Argonne National Laboratory, in Argonne, Illinois. Sections 1.1 and 1.2 of this report summarize the quantitative course evaluations that trainees provided upon completion of the course. Section 1.3 provides written comments, and section 1.4 provides the attendees examination results. Appendix A provides a transcript of the trainees` written comments. The students commented that both instructors were knowledgeable and interesting. This is reflected in the ratings. Appendix B provides the trainee evaluation form.

  18. Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases

    SciTech Connect (OSTI)

    Lee, C.W.; Srivastava, R.K.; Ghorishi, S.B.; Karwowski, J.; Hastings, T.H.; Hirschi, J.C. [US Environmental Protection Agency, Triangle Park, NC (United States)

    2006-05-15T23:59:59.000Z

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur (S) and chlorine (Cl)) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NO{sub x}) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg{sup 0}), decreasing the percentage of Hg{sup 0} at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg{sup 0} by the SCR catalyst, with the percentage of Hg{sup 0} decreasing from {approximately} 96% at the inlet of the reactor to {approximately} 80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation. 16 refs., 4 figs., 3 tabs.

  19. Applications of advanced petroleum production technology and water alternating gas injection for enhanced oil recovery -- Mattoon Oil Field, Illinois. First quarterly technical progress report, 1993

    SciTech Connect (OSTI)

    Baroni, M.R.

    1993-05-24T23:59:59.000Z

    For work during the first quarter of 1993, American Oil Recovery, Inc. targeted completion of the following specific objectives: Convene meetings of Mattoon Project subcontractors in order to plan and coordinate Project activities. Confirm organizational arrangements and plans for implementation of Mattoon Project. Complete most work on detailed analysis of reservoir geology of productive leases in the Mattoon Project. Identify first Facies Defined Subunit for initial injectivity testing to be commenced near the beginning of the second quarter. Identify additional Facies Defined Subunits for injectivity testing and characterization during the second and third quarters. Award subcontract to the Illinois State Geological Survey and commence work on preparation of a geostatistical model (STRATAMODEL) of more than 100 wells on 1,000 acres within the Mattoon Project Area. Obtain oil samples from wells in the identified Facies Subunit for reservoir rock, fluid, and CO{sub 2} compatibility testing by the Illinois State Geological Survey. Design CO{sub 2} injection pumps and injection monitoring equipment configuration. Obtain bids for required pumps and diesel motor. Accomplishments for this quarter are reported.

  20. Final Report for the portion performed in the University of Illinois on the project entitled "Optimizing the Cloud-Aerosol-Radiation Ensemble Modeling System to Improve Future Climate Change Projections at Regional to Local Scales"

    SciTech Connect (OSTI)

    Liang, Xin-Zhong

    2011-01-31T23:59:59.000Z

    This is the final report for the closure of the research tasks on the project that have performed during the entire reporting period in the University of Illinois. It contains a summary of the achievements and details of key results as well as the future plan for this project to be continued in the University of Maryland.

  1. The University of Illinois at Chicago School of Public Health (UIC SPH) is one of six health science schools in the leading public university in the Chicago area. The

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    health care facilities, UIC SPH is housed in two campus buildings which provide modern, wellThe University of Illinois at Chicago School of Public Health (UIC SPH) is one of six health of public health -- locally, statewide, nationally and internationally. The UIC Great Cities Initiative

  2. Enhancing the use of coals by gas reburning-sorbent injection. Volume 3, Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company

    SciTech Connect (OSTI)

    NONE

    1994-10-01T23:59:59.000Z

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x}, and SO{sub 2} from a wall fired unit. A GR-SI system was designed for Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The unit is rated at 117 MW(e) (net) and is front wall fired with a pulverized bituminous coal blend. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the ``as found`` baseline of 0.98 lb/MBtu (420 mg/MJ), and to reduce emissions of S0{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an S0{sub 2} limit Of 1.8 lb/MBtu (770 mg/MJ), the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. The design natural gas input corresponds to 18% of the total heat input. Burnout (overfire) air is injected at a higher elevation to burn out fuel combustible matter at a normal excess air level of 18%. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with S0{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

  3. Air Pollution (Illinois)

    Broader source: Energy.gov [DOE]

    This article states regulations for monitoring air pollution, methods for permit applications, emission limitations for pollutants and air quality standards.

  4. Public Utilities Act (Illinois)

    Broader source: Energy.gov [DOE]

    This act aims to make energy services in the state reliable and efficient, while preserving the quality if the environment. It states the duties of public utilities in terms of accounts and reports...

  5. Atomic Radiation (Illinois)

    Broader source: Energy.gov [DOE]

    This article states permissible levels of radiation in unrestricted areas, environmental standards for uranium fuel cycle and information about notification of incidents.

  6. Environmental Protection Act (Illinois)

    Broader source: Energy.gov [DOE]

    This Act states general provisions for the protection of the environment. It also states specific regulations for air, water and land pollution as well as atomic radiation, toxic chemical and oil...

  7. Water Pollution (Illinois)

    Broader source: Energy.gov [DOE]

    This article states regulations for water quality standards, effluent standards, monitoring and reporting methods, sewer discharge criteria and information about permits. It is the purpose of...

  8. Waste Disposal (Illinois)

    Broader source: Energy.gov [DOE]

    This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

  9. Illinois Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals NA NA NA NA NA NA 1991-2014 From Gas Wells NA NA NA NA NA NA 1991-2014 From Oil Wells NA NA NA NA NA NA 1991-2014 From Shale Gas Wells NA NA NA NA NA NA 2007-2014...

  10. Gas Storage Act (Illinois)

    Broader source: Energy.gov [DOE]

    Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

  11. Physics Illinois Undergraduate Programs

    E-Print Network [OSTI]

    Gilbert, Matthew

    , and business. In order to support the diverse career goals of our students, we have infused our programs

  12. Illinois Natural Gas Prices

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million Cubic Feet)Plant2009

  13. Illinois Natural Gas Prices

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million Cubic

  14. Illinois Natural Gas Summary

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million

  15. Illinois Proved Nonproducing Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumptionper Thousand Cubic4 15 0 0 0 0

  16. Energy Impact Illinois

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |in STEMEnergyI.ofTrack 1 Track 2 Track 3SAVERS

  17. Illinois Applied Research Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springsemployed in the Plenary

  18. Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood

    SciTech Connect (OSTI)

    Seyler, Beverly; Grube, John; Huff, Bryan; Webb, Nathan; Damico, James; Blakley, Curt; Madhavan, Vineeth; Johanek, Philip; Frailey, Scott

    2012-12-21T23:59:59.000Z

    Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) is estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses were used to better understand porosity and permeability trends in the region and to characterize barriers and define flow units. Diagenetic alterations that impact porosity and permeability include development of quartz overgrowths, sutured quartz grains, dissolution of feldspar grains, formation of clay mineral coatings on grains, and calcite cementation. Many of these alterations are controlled by facies. Mapping efforts identified distinct flow units in the northern part of the field showing that the Pennsylvanian Bridgeport consists of a series of thick incised channel fill sequences. The sandstones are about 75-150 feet thick and typically consist of medium grained and poorly sorted fluvial to distributary channel fill deposits at the base. The sandstones become indistinctly bedded distributary channel deposits in the main part of the reservoir before fining upwards and becoming more tidally influenced near their top. These channel deposits have core permeabilities ranging from 20 md to well over 1000 md. The tidally influenced deposits are more compartmentalized compared to the thicker and more continuous basal fluvial deposits. Fine grained sandstones that are laterally equivalent to the thicker channel type deposits have permeabilities rarely reaching above 250 md. Most of the unrecovered oil in Lawrence Field is contained in Pennsylvanian Age Bridgeport sandstones and Mississippian Age Cypress sandstones. These reservoirs are highly complex and compartmentalized. Detailed reservoir characterization including the development of 3-D geologic and geocellular models of target areas in the field were completed to identify areas with the best potential to recover remaining reserves including unswept and by-passed oil. This project consisted of tasks designed to compile, interpret, and analyze the data required to conduct reservoir characterization for the Bridgeport and Cypress sandstones in pilot areas in anticipation of expanded implementation of ASP flooding in Lawrence Field. Geologic and geocellular modeling needed for reservoir characterization and res

  19. Evaluation of P-101 course Orientation to occupational safety compliance in DOE'' Argonne National Laboratory Argonne, Illinois July 16, 1991--July 26, 1991

    SciTech Connect (OSTI)

    Colley, D.L.

    1992-01-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, Orientation to Occupational Safety Compliance in DOE,'' (P-101) which was conducted July 16 to 26, 1991 at Argonne National Laboratory, in Argonne, Illinois. The first part of the report summarizes the quantitative course evaluations that trainees provided upon completion of the course. Appendix A provides a transcript of the trainees' written comments. Numeric course ratings were generally positive and show that the course material and instruction was very effective. Written comments supported the positive numeric ratings. The course content and knowledge gained by the trainees exceeded most of the students' expectations of the course. Results from the final examination showed that students gained appropriate knowledge from the course.

  20. Evaluation of P-101 course ``Orientation to occupational safety compliance in DOE`` Argonne National Laboratory Argonne, Illinois July 16, 1991--July 26, 1991

    SciTech Connect (OSTI)

    Colley, D.L.

    1992-01-01T23:59:59.000Z

    This report summarizes trainee evaluations for the Safety Training Section course, ``Orientation to Occupational Safety Compliance in DOE,`` (P-101) which was conducted July 16 to 26, 1991 at Argonne National Laboratory, in Argonne, Illinois. The first part of the report summarizes the quantitative course evaluations that trainees provided upon completion of the course. Appendix A provides a transcript of the trainees` written comments. Numeric course ratings were generally positive and show that the course material and instruction was very effective. Written comments supported the positive numeric ratings. The course content and knowledge gained by the trainees exceeded most of the students` expectations of the course. Results from the final examination showed that students gained appropriate knowledge from the course.

  1. Preliminary hydrogeologic framework of the Silurian and Devonian carbonate aquifer system in the Midwestern Basins and Arches Region of Indiana, Ohio, Michigan, and Illinois

    SciTech Connect (OSTI)

    Casey, G.D. (Geological Survey, Columbus, OH (United States))

    1992-01-01T23:59:59.000Z

    The aquifer and confining units have been identified; data on the thickness, extent, and structural configuration of these units have been collected; and thickness and structure-contour maps have been generated. Hydrologic information for the confining units and the aquifer also has been compiled. Where present, the confining unit that caps the carbonate aquifer consists of shales of Middle and Upper Devonian age and Lower Mississippian age, however, these units have been eroded from a large part of the study area. The regional carbonate aquifer consists of Silurian and Devonian limestones and dolomites. The rocks that comprise the aquifer in Indiana and northwestern Illinois are grouped into four major stratigraphic units: Brassfield and Sexton Creek Limestones or the Cataract Formation, the Salamonie Dolomite, the Salina Group, and the Detroit River and Traverse Formations or the Muscatatuck Group. In Ohio and southern Michigan the aquifer is grouped into ten stratigraphic units: Brassfield Limestone and Cataract Formation, the Dayton Limestone, the Rochester Shale equivalent, the Lockport Dolomite, the Salina Formation, the Hillsboro Sandstone, the Detroit River Group, the Columbus Limestone, the Delaware Limestone, and the Traverse Formation. The thickness of the carbonate aquifer increases from the contact with the outcropping Ordovician shales in the south-central part of the study area from the contact into the Appalachian Foreland Structural Basin from 0 ft at the contact to more than 700 ft at the eastern boundary of the study area, to more than 1,000 ft beneath Lake Erie and greater than 1,200 ft in southeastern Michigan. At the edge of the Michigan Intercontinental Structural Basin in western Ohio and eastern Indiana, the thickness ranges from 700 to 900 ft. and from 200 ft to 300 ft in south-central Indiana along the northeastern edge of the Illinois Intercontinental Structural Basin.

  2. Complex facies relationships and regional stratigraphy of the Mississippian Ste. Genevieve, Paoli, and Aux Vases Formations, Illinois basin: A major hydrocarbon-producing interval

    SciTech Connect (OSTI)

    Cole, R.D.; Nelson, W.J. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01T23:59:59.000Z

    The Mississippian Ste. Genevieve and Paoli Limestones and sandstones of the Aux Vases Formation are lateral facies of one another. This interpretation is based on comprehensive investigations of outcrops, and selected cores, samples of well cuttings, and geophysical logs conducted over a period of four years. Both units exhibit similar sedimentological characteristics and represent open marine, shallow subtidal, and intertidal environments. The presence of low-angle cross-laminae, ripple- and plane-laminae, climbing ripples, and ooid shoals suggest most deposition occurred under low energy conditions. Lenticular, channel-like scour and fill structures that contain both fine-grained quartz sand and abraded, disarticulated fossil fragments indicate localized higher energy deposition. The authors studies indicate that siliciclastic vs. carbonate deposition was controlled strictly by available sediment, and not by regressive (siliciclastic) and transgressive (carbonate) events, as inferred by previous workers. This conclusion is based on lateral facies relationships, and the supplanting of carbonates by clastics occurring in the upper part of the Ste. Genevieve through the middle part of the Paoli. The Aux Vases is thickest, coarsest, and least mature in the northwestern part of the Illinois Basin, and pinches out to the southeast. This implies a northwesterly source for clastics, perhaps the Transcontinental Arch. After early Chesterian time, the Transcontinental Arch apparently supplied little or no sediment to any flanking basin. The Ste. Genevieve, Paoli, and Aux Vases are major oil-producing units in the Illinois Basin. New understanding of regional relationships should enhance exploratory success and improve recovery from established fields.

  3. Authorized limits for disposal of PCB capacitors from Buildings 361 and 391 at Argonne National Laboratory, Argonne, Illinois.

    SciTech Connect (OSTI)

    Cheng, J.-J.; Chen, S.-Y.; Environmental Science Division

    2009-12-22T23:59:59.000Z

    This report contains data and analyses to support the approval of authorized release limits for the clearance from radiological control of polychlorinated biphenyl (PCB) capacitors in Buildings 361 and 391 at Argonne National Laboratory, Argonne, Illinois. These capacitors contain PCB oil that must be treated and disposed of as hazardous waste under the Toxic Substances Control Act (TSCA). However, they had been located in radiological control areas where the potential for neutron activation existed; therefore, direct release of these capacitors to a commercial facility for PCB treatment and landfill disposal is not allowable unless authorized release has been approved. Radiological characterization found no loose contamination on the exterior surface of the PCB capacitors; gamma spectroscopy analysis also showed the radioactivity levels of the capacitors were either at or slightly above ambient background levels. As such, conservative assumptions were used to expedite the analyses conducted to evaluate the potential radiation exposures of workers and the general public resulting from authorized release of the capacitors; for example, the maximum averaged radioactivity levels measured for capacitors nearest to the beam lines were assumed for the entire batch of capacitors. This approach overestimated the total activity of individual radionuclide identified in radiological characterization by a factor ranging from 1.4 to 640. On the basis of this conservative assumption, the capacitors were assumed to be shipped from Argonne to the Clean Harbors facility, located in Deer Park, Texas, for incineration and disposal. The Clean Harbors facility is a state-permitted TSCA facility for treatment and disposal of hazardous materials. At this facility, the capacitors are to be shredded and incinerated with the resulting incineration residue buried in a nearby landfill owned by the company. A variety of receptors that have the potential of receiving radiation exposures were analyzed. Based on the dose assessment results, it is indicated that, if the disposition activities are completed within a year, the maximum individual dose would be about 0.021 mrem/yr, which is about 0.02% of the primary dose limit of 100 mrem/yr set by U.S. Department of Energy (DOE) for members of the public. The maximum individual dose was associated with a conservative and unlikely scenario involving a hypothetical farmer who intruded the landfill area to set up a subsistence living above the disposal area 30 years after burial of the incineration residue. Potential collective dose for worker and the general public combined was estimated to be less than 4 x 10{sup -4} person-rem/yr, about 0.004% of the DOE authorized release objective of 10 person-rem/yr for collective exposure. In reality, the actual radiation doses incurred by workers and the general public are expected to be at least two orders of magnitude lower than the estimated values. To follow the ALARA (as low as reasonably achievable) principle of reducing potential radiation exposures associated with authorized release of the PCB capacitors, a dose constraint of 1 mrem/yr, corresponding to a small fraction of the 25 mrem/yr limit set by DOE, was initially used as a reference to derive the authorized release limits. On the basis of the dose assessment results, the following authorized release limits are proposed - 0.6 pCi/g for Mn-54, 0.6 pCi/g for Na-22, 0.1 pCi/g for Co-57, and 2.3 pCi/g for Co-60, with a corresponding maximum individual dose of 0.21 mrem/yr. This maximum dose, about 0.2% of the DOE primary dose limit of 100 mrem/yr for members of the public from all sources and exposure pathways, was then selected as the final dose constraint for releasing the PCB capacitors through the authorized process. The proposed authorized release limits would satisfy the DOE requirements for the release of non-real properties to a commercial treatment and disposal facility. In addition, due to the relatively short half-lives (< 5.27 years) of radionuclides of concern, there will be no long-term buil

  4. Construction of Blaze at the University of Illinois at Chicago: A Shared, High-Performance, Visual Computer for Next-Generation Cyberinfrastructure-Accelerated Scientific, Engineering, Medical and Public Policy Research

    SciTech Connect (OSTI)

    Brown, Maxine D. [Acting Director, EVL; Leigh, Jason [PI

    2014-02-17T23:59:59.000Z

    The Blaze high-performance visual computing system serves the high-performance computing research and education needs of University of Illinois at Chicago (UIC). Blaze consists of a state-of-the-art, networked, computer cluster and ultra-high-resolution visualization system called CAVE2(TM) that is currently not available anywhere in Illinois. This system is connected via a high-speed 100-Gigabit network to the State of Illinois' I-WIRE optical network, as well as to national and international high speed networks, such as the Internet2, and the Global Lambda Integrated Facility. This enables Blaze to serve as an on-ramp to national cyberinfrastructure, such as the National Science Foundation’s Blue Waters petascale computer at the National Center for Supercomputing Applications at the University of Illinois at Chicago and the Department of Energy’s Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory. DOE award # DE-SC005067, leveraged with NSF award #CNS-0959053 for “Development of the Next-Generation CAVE Virtual Environment (NG-CAVE),” enabled us to create a first-of-its-kind high-performance visual computing system. The UIC Electronic Visualization Laboratory (EVL) worked with two U.S. companies to advance their commercial products and maintain U.S. leadership in the global information technology economy. New applications are being enabled with the CAVE2/Blaze visual computing system that is advancing scientific research and education in the U.S. and globally, and help train the next-generation workforce.

  5. Elemental Modes of Occurrence in an Illinois #6 Coal and Fractions Prepared by Physical Separation Techniques at a Coal Preparation Plant

    SciTech Connect (OSTI)

    Huggins, F.; Seidu, L; Shah, N; Huffman, G; Honaker, R; Kyger, J; Higgins, B; Robertson, J; Pal, S; Seehra, M

    2009-01-01T23:59:59.000Z

    In order to gain better insight into elemental partitioning between clean coal and tailings, modes of occurrence have been determined for a number of major and trace elements (S, K, Ca, V, Cr, Mn, Fe, Zn, As, Se, Pb) in an Illinois No.6 coal and fractions prepared by physical separation methods at a commercial coal preparation plant. Elemental modes of occurrence were largely determined directly by XAFS or Moessbauer spectroscopic methods because the concentrations of major minerals and wt.% ash were found to be highly correlated for this coal and derived fractions, rendering correlations between individual elements and minerals ambiguous for inferring elemental modes of occurrence. Of the major elements investigated, iron and potassium are shown to be entirely inorganic in occurrence. Most (90%) of the iron is present as pyrite, with minor fractions in the form of clays and sulfates. All potassium is present in illitic clays. Calcium in the original coal is 80-90% inorganic and is divided between calcite, gypsum, and illite, with the remainder of the calcium present as carboxyl-bound calcium. In the clean coal fraction, organically associated Ca exceeds 50% of the total calcium. This organically-associated form of Ca explains the poorer separation of Ca relative to both K and ash. Among the trace elements, V and Cr are predominantly inorganically associated with illite, but minor amounts (5-15% Cr, 20-30% V) of these elements are also organically associated. Estimates of the V and Cr contents of illite are 420 ppm and 630 ppm, respectively, whereas these elements average 20 and 8 ppm in the macerals. Arsenic in the coal is almost entirely associated with pyrite, with an average As content of about 150 ppm, but some As ({approx} 10%) is present as arsenate due to minor oxidation of the pyrite. The mode of occurrence of Zn, although entirely inorganic, is more complex than normally noted for Illinois basin coals; about 2/3 is present in sphalerite, with lesser amounts associated with illite and a third form yet to be conclusively identified. The non-sulfide zinc forms are removed predominantly by the first stage of separation (rotary breaker), whereas the sphalerite is removed by the second stage (heavy media). Germanium is the only trace element determined to have a predominantly organic association.

  6. Recovery Act: Understanding the Impact of CO{sub 2} Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology

    SciTech Connect (OSTI)

    Fouke, Bruce

    2013-03-31T23:59:59.000Z

    An integrated research and teaching program was developed to provide cross-­?disciplinary training opportunities in the emerging field of carbon capture and storage (CCS) for geobiology students attending the University of Illinois Urbana-­?Champaign (UIUC). Students from across the UIUC campus participated, including those from the departments of Geology, Microbiology, Biochemistry, Civil and Environmental Engineering, Animal Sciences and the Institute for Genomic Biology. The project took advantage of the unique opportunity provided by the drilling and sampling of the large-­?scale Phase III CCS demonstration Illinois Basin -­? Decatur Project (IBDP) in the central Illinois Basin at nearby Decatur, Illinois. The IBPD is under the direction of the Illinois State Geological Survey (ISGS, located on the UIUC campus) and the Midwest Geological Sequestration Consortium (MGSC). The research component of this project focused on the subsurface sampling and identification of microbes inhabiting the subsurface Cambrian-­?age Mt. Simon Sandstone. In addition to formation water collected from the injection and monitoring wells, sidewall rock cores were collected and analyzed to characterize the cements and diagenetic features of the host Mt. Simon Sandstone. This established a dynamic geobiological framework, as well as a comparative baseline, for future studies of how CO2 injection might affect the deep microbial biosphere at other CCS sites. Three manuscripts have been prepared as a result of these activities, which are now being finalized for submission to top-­?tier international peer-­?reviewed research journals. The training component of this project was structured to ensure that a broad group of UIUC students, faculty and staff gained insight into CCS issues. An essential part of this training was that the UIUC faculty mentored and involved undergraduate and graduate students, as well as postdocs and research scientists, at all stages of the project in order to develop CCS-­?focused classroom and field courses, as well as seminars. This program provided an excellent opportunity for participants to develop the background necessary to establish longer-­?term research in CCS-­?related geology and microbial ecology. Further, the program provided an ongoing dynamic platform to foster long-­?term collaboration with the regional ISGS and MGSC sequestration partnership, while offering hands-­?on, applied learning experiences.

  7. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades Versus Cost-Optimized Solutions

    SciTech Connect (OSTI)

    Yee, S.; Milby, M.; Baker, J.

    2014-06-01T23:59:59.000Z

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR(R) (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for fifteen Chicagoland single family housing archetypes, called housing groups. In the present study, 800 IHP homes are first matched to one of these fifteen housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations. Additionally, a measure-level sensitivity analysis conducted for one housing group reveals which measures may be contributing the most to gas and electric savings. Overall, the study finds not only that for some housing groups, the average IHP retrofit results in more energy savings than would result from cost-optimal, BEopt recommended measure packages, but also that linking home categorization to standardized retrofit measure packages provides an opportunity to streamline the process for single family home energy retrofits and maximize both energy savings and cost-effectiveness.

  8. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect (OSTI)

    Chou, M.I.M. [Illinois State Geological Survey, Champaign, IL (United States); Buchanan, D.H. [Eastern Illinois Univ., Charleston, IL (United States); Stucki, J.W. [Illinois Univ., Urbana, IL (United States)

    1993-09-01T23:59:59.000Z

    The purposes of this project are: to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE process developed by the Midwest Ore Processing Co. (MWOPC), to verify the forms-of-sulfur determination using the ASTM method for evaluation of the PCE process, and to develop a dechlorination procedure to remove excess PCE from the PCE-treated coal. The objectives for the second year are: to verify the possible effects of PCE treatment on coal-derived FeS{sub 2}, FeSO{sub 4}, and Fe{sub 2}(SO{sub 4}){sub 3} on ASTM coal analysis, to investigate the behavior of sulfur during oxidation and PCE desulfurization using the isotopically signatured coal sample, to investigate the effects of conditions and/or reagents on the oxidation of the organic-sulfur-model compounds, to evaluate the extended oxidation condition on the organic sulfur removal by PCE desulfurization, and to study other innovative pretreatment processes for the removal of organic sulfur from coal under mild conditions.

  9. Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes

    SciTech Connect (OSTI)

    Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

    1983-01-01T23:59:59.000Z

    The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

  10. Cooperative research on the combustion characteristics of cofired desulfurized Illinois coal and char with natural gas. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect (OSTI)

    Buckius, R.O.; Wu, Cheng-Kang; Krier, H.; Peters, J.E. [Illinois Univ., Urbana-Champaign, IL (United States)

    1992-12-31T23:59:59.000Z

    The DTFF is extended to larger sample collecting capability and higher temperatures, resulting in the establishment of the Ash Characterization Facility and the High Temperature Drop Tube Furnace. The Ash Characterization Facility enables continuous coal injection and sampling under controlled conditions. Several hundred milligrams of char or ash can be collected in one-half hour. The High Temperature Drop Tube Furnace uses a plasma torch to preheat the gas to over 2000 K and inject it into a ceramic tube which enters a furnace designed for 1700{degrees}C (1973 K) operation, so that temperatures and heating rates encountered by pulverized coal particles in the flames of large boilers or in the advanced slagging cyclone combustors can be simulated. An aerodynamic coal feeder works well in supplying coal continuously to the drop tube. A watercooled, Helium-quench sampling probe collects the solid samples. A scanning electron microscope is used to study the morphology of ash and char particles. A sulfur determinator, a gas chromatograph provide analytical means in the laboratory, and the Illinois State Geological Survey performs other necessary analyses of the samples. Tests on cofiring coal with I to 4% methane show that sulfur retention in ash was related to temperature and residence time. The addition of methane caused changes in gas temperature profile in the tube and also changes in chemical composition of the gases. The overall effect on sulfur retention is seen to be a result of several complex interacting factors. Further detailed studies are necessary to clarify the contribution of each factor and to provide clues to the mechanism of the process.

  11. Use of a constant electrode-separation resistivity survey to locate buried cavities associated with regolith-collapse sinkholes in southern Illinois

    SciTech Connect (OSTI)

    Weibel, C.P.; Panno, S.V.; Heigold, P.C.; Reed, P.C. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-04-01T23:59:59.000Z

    Three regolith-collapse sinkholes formed near a school and a church in the southern Illinois village of Dongola (Union County) during the spring of 1993. The appearance of the sinkholes over a 3-month period coincided with development of a new municipal well, which was drilled through clay-rich, valley-fill sediment into karstified limestone bedrock. The piezometric surface of the limestone aquifer is above land surface, indicating an upward hydraulic gradient in the valley and that the valley-fill is acting as a confining unit. Pumping during development of the well lowered the piezometric surface of the limestone aquifer to an elevation below the base of the valley-fill. It is hypothesized that drainage of water from the sediments, the resulting loss of both hydrostatic pressure and buoyant force in overlying sediments, increased intergranular pressure, and the initiation of ground-water flow toward the well resulted in rapid sediment transport, subsurface erosion, and subsequent collapse of the valley-fill sediment. The sinkholes follow an approximately east-west alignment, which is consistent with one of the two dominant alignments of nearby joint-controlled caves. A constant electrode-separation resistivity survey of the school playground was conducted to locate areas that might contain incipient sinkholes. The survey revealed a linear, positive resistivity anomaly, between 5 and 10 m wide, and with a trend that either intersects or is immediately adjacent to the three sinkholes. The anomaly is interpreted to be a series of pumping-induced cavities in the valley-fill sediments that formed over a pre-existing crevice in the karstified bedrock limestone.

  12. [sup 14]C and [sup 10]Be evidence for no incursion of the Lake Michigan lobe in northern Illinois from ca. 170 to 25 ka

    SciTech Connect (OSTI)

    Curry, B.B. (Illinois State Geological Survey, Champaign, IL (United States)); Pavich, M.J. (Geological Survey, Reston, VA (United States))

    1994-04-01T23:59:59.000Z

    Uncorrected [sup 10]Be inventories of a 2.7 m-long section of core indicate surface exposure lasting 115 ka during development of the Sangamon Geosol and 30 ka for a soil complex developed in overlying loessial sediment (Robein Silt). The latter estimate is in agreement with [sup 14]C assays in the region. Taking into account the age of overlying late Wisconsin drift, the new data indicate an age of about 170 ka for the onset of Sangamon pedogenesis in northern Illinois. Previous to this study, there have been no numerical-age determinations for the start of the last interglacial in northern IL. The data confirm a previous hypothesis that the Lake Michigan Lobe did not invade IL contemporaneous with deposition of Roxana Silt, or during the other period of midcontinental loess deposition suggest by TL ages of ca. 70 to 85 ka. The core was collected immediately south of the IL-WI border (42[degree] 30 minutes N, 88[degree] 30 minutes W) near Hebron, IL. Buried by 14 m of late Wisconsin drift, and the interval assayed for [sup 10]Be included 2.0 m of pedogenically-altered Illinoian sand and gravel, and 0.7 m of Wisconsin silt. One AMS [sup 14]C assay of carbonized fragments from the A-horizon of the Sangamon Geosol yielded an age of 38,500 [+-] 5,000 yr B.P.; conventional [sup 14]C ages for the overlying silt are from wood fragments (24,780 [times] 360 yr B.P.) and a bulk soil sample (26,030 [+-] 450 yr B.P.). The range of ages is typical for this stratigraphic sequence in IL. The [sup 10]Be concentration in the lowest part of the silt is 600 atoms/gm. This value is three times greater than the concentration typical of calcareous Mississippi River valley loess and of the C-horizon of the Sangamon Geosol in the core. High concentration of [sup 10]Be in the Robein Silt likely was caused by redeposition of [sup 10]Be-rich B-horizon material eroded from soil profiles elsewhere in the paleobasin.

  13. ELECTR-5419; No of Pages 13 Please cite this article in press as: L. de Castro, et al., Product Definition for Future Electricity Supply Auctions: The 2006 Illinois Experience, Electr. J. (2008), doi:10.1016/j.tej.2008.08.008

    E-Print Network [OSTI]

    Gross, George

    2008-01-01T23:59:59.000Z

    ELECTR-5419; No of Pages 13 Please cite this article in press as: L. de Castro, et al., Product be that the product definition is not important. As we will argue here, for the case of electricity supply Definition for Future Electricity Supply Auctions: The 2006 Illinois Experience, Electr. J. (2008), doi:10

  14. Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Sales (MWh) 723681 Total Consumers 388107 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  15. Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Sales (MWh) 635952 Total Consumers 375832 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  16. Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Sales (MWh) 458221 Total Consumers 378624 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  17. REMRSEC Office 1500 Illinois Street

    E-Print Network [OSTI]

    a proposal with the organizers of a recent International Materials Institute for Solar Energy to develop substantial international research ties with China on the solar energy frontier. In particular, Mu@mines.edu (303) 273-3756 Professor Mark Lusk is awarded a grant for joint China-US research In the spring of 2012

  18. Water Pollutant Discharge Act (Illinois)

    Broader source: Energy.gov [DOE]

    The discharge of oil in quantities which exceed the standards adopted by the Pollution Control Board, or the discharge of other pollutants directly or indirectly into the waters is prohibited....

  19. Toxic Pollution Prevention Act (Illinois)

    Broader source: Energy.gov [DOE]

    It is the purpose of this Act to reduce the disposal and release of toxic substances which may have adverse and serious health and environmental effects, to promote toxic pollution prevention as...

  20. Illinois Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

  1. Recovery Act State Memos Illinois

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (CM) 3 2 16.4 State and Local Energy Assurance and Regulatory Assistance (F) 5 3.1 Smart Grid Workforce Training (CM) 2 7.5 TOTAL Electric Grid 9 27.0 Transportation Clean...

  2. REMRSEC Office 1500 Illinois Street

    E-Print Network [OSTI]

    in electrochemical power source technologies: batteries, super capacitors and fuel cells. Their main role

  3. Randy Hultgren Congressman Representing Illinois'...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hultgren has committed himself to working for fiscal sanity, real healthcare reform, and pro-growth policies that will put Americans back to work. In the current 114th...

  4. ILLINOIS | LAW DONORS AND VOLUNTEERS

    E-Print Network [OSTI]

    Gilbert, Matthew

    ,000 and Above Karen Gatsis Anderson '77 Kimball R. Anderson '77 Anthony J. Augustine, Jr. '73 Fred H. Bartlit. Miller '68 Mary Molo Steven F. Molo '82 Joan G. Monts Michael A. Monts '76 Daniel A. Murray Lynn H Richard K. Smith '80 Richard C. Stevens '60 Richard S. Stockton '00 Alane S. Wanda Mark J. Wanda '86 Mary

  5. Illinois Company Implementing Solar Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    J.F. Family Limited Partnership has been awarded $191,000 through the Recovery Act toward the use of solar energy at its Lakefront Parkway property in Edwardsville, Ill., which is the company headquarters for J.F. Electric Inc. The funding will be used to install a 75-kW solar photovoltaic system on the building’s roof, creating electricity on-site and creating or saving a total of 14 jobs.

  6. Madison, Illinois, Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E A research project in the

  7. Illinois Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade Year-0Elements)Gas WellsSametotal

  8. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade Year-0Elements)GasByronLaSalle

  9. Illinois Coalition | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolidIdaho‎ |Idylwood,Ike SkeltonInc Jump

  10. University of Chicago, Chicago, Illinois,

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V4100 DOE/EA-1452D E P"-EP

  11. Feasibility Study of Economics and Performance of Biopower at the Chanute Air Force Base in Rantoul, Illinois. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Scarlata, C.; Mosey, G.

    2013-05-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Former Chanute Air Force Base site in Rantoul, Illinois, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) was contacted to provide technical assistance for this project. The purpose of this study was to assess the site for a possible biopower system installation and estimate the cost, performance, and impacts of different biopower options.

  12. SIMULTANEOUS OBSERVATIONS OF COMET C/2002 T7 (LINEAR) WITH THE BERKELEY-ILLINOIS-MARYLAND ASSOCIATION AND OWENS VALLEY RADIO OBSERVATORY INTERFEROMETERS: HCN AND CH{sub 3}OH

    SciTech Connect (OSTI)

    Hogerheijde, Michiel R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA, Leiden (Netherlands); Qi Chunhua [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); De Pater, Imke; Wright, M. C. H. [Department of Astronomy, 601 Campbell Hall, University of California at Berkeley, Berkeley, CA 94720 (United States); Blake, Geoffrey A. [Division of Geophysics and Planetary Science, MS 150-21, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Friedel, D. N.; Snyder, L. E. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Forster, J. R. [Hat Creek Radio Observatory, 42231 Bidwell Road, Hat Creek, CA 96040 (United States); Palmer, Patrick [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Remijan, Anthony J. [National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22901 (United States)], E-mail: michiel@strw.leidenuniv.nl

    2009-06-15T23:59:59.000Z

    We present observations of HCN J = 1-0 and CH{sub 3}OH J(K{sub a} , K{sub c} ) = 3(1, 3)-4(0, 4) A{sup +} emission from comet C/2002 T7 (LINEAR) obtained simultaneously with the Owens Valley Radio Observatory (OVRO) and Berkeley-Illinois-Maryland Association (BIMA) millimeter interferometers. We combined the data from both arrays to increase the (u, v) sampling and signal to noise of the detected line emission. We also report the detection of CH{sub 3}OH J(K{sub a} , K{sub c} ) = 8(0, 8)-7(1, 7) A{sup +} with OVRO data alone. Using a molecular excitation code that includes the effects of collisions with water and electrons, as well as pumping by the Solar infrared photons (for HCN alone), we find a production rate of HCN of 2.9 x 10{sup 26} s{sup -1} and for CH{sub 3}OH of 2.2 x 10{sup 27} s{sup -1}. Compared to the adopted water production rate of 3 x 10{sup 29} s{sup -1}, this corresponds to an HCN/H{sub 2}O ratio of 0.1% and a CH{sub 3}OH/H{sub 2}O ratio of 0.7%. We critically assess the uncertainty of these values due to the noise ({approx}10%), the uncertainties in the adopted comet model ({approx}50%), and the uncertainties in the adopted collisional excitation rates (up to a factor of 2). Pumping by Solar infrared photons is found to be a minor effect for HCN, because our 15'' synthesized beam is dominated by the region in the coma where collisions dominate. Since the uncertainties in the derived production rates are at least as large as one-third of the differences found between comets, we conclude that reliable collision rates and an accurate comet model are essential. Because the collisionally dominated region critically depends on the water production rate, using the same approximate method for different comets may introduce biases in the derived production rates. Multiline observations that directly constrain the molecular excitation provide much more reliable production rates.

  13. University of Illinois Extension Purdue Extension

    E-Print Network [OSTI]

    Ginzel, Matthew

    Capital Poison Center If you have a poison emergency, call 1-800-222-1222 This is the single telephone for poison emergencies in the United States. It is supported by a network of 65 poison centers around the country. When you call, you will be automatically connected to the poison center for your area according

  14. Peoples Gas – Single Family Direct Install (Illinois)

    Broader source: Energy.gov [DOE]

    Owners of single-family homes, condos, townhomes and two-flats may be eligible for a free installation of new programmable thermostats, pipe insulation, showerheads, and faucet aerators through...

  15. EIS-0430: Taylorville Energy Center, Taylorville, Illinois

    Broader source: Energy.gov [DOE]

    In this Environmental Impact Statement (EIS) DOE planned to assess the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to Christian County Generation, L.L.C. (CCG). CCG submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 to support construction and start-up of the Taylorville Energy Center in Taylorville, lllinois. The Christian County Generation, LLC application for the Taylorville Energy Center loan guarantee has been withdrawn. This EIS has been cancelled.

  16. Illinois Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    is to promote research, education, and information transfer towards that objective. Introduction 1 #12;Research to price incentives for second-generation bioenergy crop cultivation, and carbon and nitrogen fertilizer and second-generation bioenergy crops, Submitted for review. 2. An Agent-Based Model of Nitrogen and Carbon

  17. ,"Illinois Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  18. Illinois and Indiana Veterinary Aquatic Medicine Workshop

    E-Print Network [OSTI]

    CARTILAGE) ˇ Archaic ray-finned fish (5 to 8 finlets dorsally ˇ Modified gas bladder functions as lung fins on stalks supported by bones (like legs) ˇ tail divided into three lobes ˇ Found in very deep bladder) ˇ Salamanderfish ˇ Cartilaginous notochord ˇ Lobed fins ˇ Can breath air ˇ Freshwater fish

  19. WELCOME to ILLINOIS Michael E. Stead

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    Participation Program Federally-Certified State Inspectors in 4 Disciplines: HAZARDOUS MATERIALS (1) OPERATING and program funds at locations that benefit the most from grade separation. 3. Corridor Improvements: Goal

  20. ILLINOIS RAILROAD ENGINEERING A Quantitative Decision Support

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    between capital investment and delay cost Link (sub) properties Alternatives generator Capacity expansion alternatives (cost & additional capacity) Estimated future traffic (trains/day/OD) Budget Investment Selection: ­ Infrastructure ­ Equipment ­ Train dispatching, traffic mix ­ Human resources Network Capacity must be increased

  1. Carbon Dioxide Transportation and Sequestration Act (Illinois)

    Broader source: Energy.gov [DOE]

    This Act applies to the application process for the issuance of a certificate of authority by an owner or operator of a pipeline designed, constructed, and operated to transport and to sequester...

  2. Illinois Nuclear Profile - Dresden Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  3. Illinois Nuclear Profile - Clinton Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  4. Illinois Nuclear Profile - Byron Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  5. Illinois Nuclear Profile - Braidwood Generation Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  6. Jrme Laporte & Jesse Trushenski FisheriesandIllinois

    E-Print Network [OSTI]

    environmental/safety concerns 0 20 40 60 80 100 120 140 Arg His Iso Leu Lys Met Phe Thr Trp Val % DM Protein ­ January 24-26, 2010 #12;EXPERIMENTAL CONDITIONS/DESIGN 6 replicate tanks per dietary treatments 36 tanks tank 100%/h (1.6L/min); 14L/10D Cool Water Fish Culture Workshop ­ Rend Lake Resort ­ January 24

  7. Local Solid Waste Disposal Act (Illinois)

    Broader source: Energy.gov [DOE]

    It is the purpose of this Act and the policy of this State to protect the public health and welfare and the quality of the environment by providing local governments with the ability to properly...

  8. Prof. David N. Ruzic University of Illinois

    E-Print Network [OSTI]

    ­ all due to their use of lithium CPS structures should be encouraged. While ITER is the most expensive walls allow a low-recycling solution which could revolutionize tokamak-based power-plant design since is one of the key enabling technologies which deserves closer international involvement. Lithium work

  9. Peoples Gas- Residential Rebate Program (Illinois)

    Broader source: Energy.gov [DOE]

    '''''Contact Peoples Gas for information on limited-time bonus incentive offerings. Bonus incentives of $250 - $450 are available for eligible purchases made before May 31, 2013.'''''

  10. Solid Waste Planning and Recycling Act (Illinois)

    Broader source: Energy.gov [DOE]

    It is the purpose of this Act to provide incentives for decreased generation of municipal waste, to require certain counties to develop comprehensive waste management plans that place substantial...

  11. AQUACULTURE EXTENSION Illinois -Indiana Sea Grant Program

    E-Print Network [OSTI]

    from excessive nutrients, chemicals. or heavy metals. A source meeting this criteria should be further runoff 5. Ground water 6. Municipal Each source listed has advantages and disadvantages which should increses with price. Determining the presence of pesticides or heavy metals can be very expensive

  12. Adam D. Miller University of Illinois

    E-Print Network [OSTI]

    DeLucia, Evan H.

    "How frequency and intensity shape diversity-disturbance relationships" A. Miller, S. Roxburgh and K.1018594108 Cited 17 times as of April 2013 "Diversity-Disturbance Relationships: Frequency and Intensity.1007/s12080-011-0133-1 "Interactions between frequency and size of disturbance affect competitive

  13. Fermilab | Illinois Accelerator Research Center | Construction Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A This photophoto Fermilab at

  14. Fermilab | Illinois Accelerator Research Center | Contact IARC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A This photophoto Fermilab atContact IARC

  15. Fermilab | Illinois Accelerator Research Center | Fermilab Core

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A This photophoto Fermilab atContact

  16. Fermilab | Illinois Accelerator Research Center | Fermilab Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A This photophoto Fermilab

  17. Fermilab | Illinois Accelerator Research Center | IARC Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A This photophoto FermilabFunding andIARC

  18. Fermilab | Illinois Accelerator Research Center | Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A This photophoto FermilabFunding

  19. Fermilab | Illinois Accelerator Research Center | More Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A This photophoto FermilabFundingMore

  20. IARC - Illinois Accelerator Research Center | Pilot Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventyTechnologies | BlandineFermi

  1. Lansing, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy Development Jump to:Wave Power AS

  2. Lee, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana: EnergyLandsSouth Carolina:

  3. Liberty, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:NewJumpLiberia: EnergyTexas:Hill,Liberty,

  4. Lima, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLighting Control Design Jump to:PhotonicsLihirLily

  5. Lincolnwood, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLighting ControlWyoming:Rhode Island:Lincolnia,Lincolnwood,

  6. Lisle, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLightingLinthicum, Maryland: EnergyLisbon,EnergyLisle,

  7. Loami, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLightingLinthicum,LittleLivonia, New York:Lloyd, NewLoami,

  8. Lockport, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLightingLinthicum,LittleLivonia,Lockeford,Lockland,

  9. Lombard, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole, Nebraska: Energy

  10. Lynwood, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: Energy Resources

  11. Macomb, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECO AugerMaan DevelopmentMackMacomb

  12. Illinois Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    include: evaluation of water treatment technology, source water protection planning, mitigation of nitrate; integrated water management for multiple users; wetland processes; and emerging issues, including other

  13. The University of Chicago Chicago, Illinois

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj: ;;IDEC. i' , i Thec -. .- . r

  14. Chicago South, Illinois, Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111A Lithologic andRECORD OF

  15. Addieville, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara,

  16. Addison, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara,Addington, Oklahoma: Energy

  17. Adeline, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara,Addington, Oklahoma:Addyston,

  18. Albany, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to: navigation, search Equivalent URIIllinois:

  19. Braidwood, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBoston Heights,BoyneTennessee: Energy ResourcesBrady

  20. Bridgeview, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBostonBrattleboro,Hampshire:Brice,