Sample records for iii non-thermal plasma

  1. Non-thermal plasma based technologies for the aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 4 MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 3...

  2. Performance Evaluation of the Delphi Non-Thermal Plasma System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution from a Non-Thermal Plasma Reactor Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Development of Optimal Catalyst...

  3. Non-thermal Plasma Chemistry Non-thermal Thermal

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    -thermal Plasma Chemical Flow Reactor #12;Werner von Siemens ,, ... construction of an apparatus generation (1857) pollution control volatile organic components, NOx reforming, ... radiation sources excimer;Leuchtstoffröhre Plasma-Bildschirm Energiesparlampe #12;electrical engineering light sources textile industry

  4. Fuel injector utilizing non-thermal plasma activation

    DOE Patents [OSTI]

    Coates, Don M. (Santa Fe, NM); Rosocha, Louis A. (Los Alamos, NM)

    2009-12-01T23:59:59.000Z

    A non-thermal plasma assisted combustion fuel injector that uses an inner and outer electrode to create an electric field from a high voltage power supply. A dielectric material is operatively disposed between the two electrodes to prevent arcing and to promote the formation of a non-thermal plasma. A fuel injector, which converts a liquid fuel into a dispersed mist, vapor, or aerosolized fuel, injects into the non-thermal plasma generating energetic electrons and other highly reactive chemical species.

  5. Performance Evaluation of the Delphi Non-Thermal Plasma System...

    Broader source: Energy.gov (indexed) [DOE]

    Dynamics & Propulsion Innovation Center Performance Evaluation of the Delphi Non-Thermal Plasma System Under Transient and Steady State Conditions 8 th Diesel Engine Emission...

  6. Application of a non-thermal plasma to combustion enhancement.

    SciTech Connect (OSTI)

    Rosocha, L. A. (Louis A.); Kim, Y. (Yongho); Stange, Sabine

    2004-01-01T23:59:59.000Z

    As a primary objective, researchers in Los Alamos National Laboratory's P-24 Plasma Physics group are aiming to minimize U.S. energy dependency on foreign resources through experiments incorporating a plasma assisted combustion unit. Under this broad category, researchers seek to increase efficiency and reduce NO{sub x}/SO{sub x} and unburned hydrocarbon emissions in IC-engines, gas-turbine engines, and burner units. To date, the existing lean burn operations, consisting of higher air to fuel ratio, have successfully operated in a regime where reduced NO{sub x}/SO{sub x} emissions are expected and have also shown increased combustion efficiency (less unburned hydrocarbon) for propane. By incorporating a lean burn operation assisted by a non-thermal plasma (NTP) reactor, the fracturing of hydrocarbons can occur with increased power (combustion, efficiency, and stability). Non-thermal plasma units produce energetic electrons, but avoid the high gas and ion temperatures involved in thermal plasmas. One non-thermal plasma method, known as silent discharge, allows free radicals to act in propagating combustion reactions, as well as intermediaries in hydrocarbon fracturing. Using non-thermal plasma units, researchers have developed a fuel activation/conversion system capable of decreasing pollutants while increasing fuel efficiency, providing a path toward future U.S. energy independence.

  7. MERCURY OXIDIZATION IN NON-THERMAL PLASMA BARRIER DISCHARGE SYSTEM

    SciTech Connect (OSTI)

    V.K. Mathur

    2003-02-01T23:59:59.000Z

    In the past decade, the emission of toxic elements from human activities has become a matter of great public concern. Hg, As, Se and Cd typically volatilize during a combustion process and are not easily caught with conventional air pollution control techniques. In addition, there is no pollution prevention technique available now or likely be available in the foreseeable future that can prevent the emission of these trace elements. These trace elements pose additional scientific challenge as they are present at only ppb levels in large gas streams. Mercury, in particular, has attracted significant attention due to its high volatility, toxicity and potential threat to human health. In the present research work, a non-thermal plasma dielectric barrier discharge technique has been used to oxidize Hg{sup 0}(g) to HgO. The basic premise of this approach is that Hg{sup 0} in vapor form cannot be easily removed in an absorption tower whereas HgO as a particulate is amiable to water scrubbing. The work presented in this report consists of three steps: (1) setting-up of an experimental apparatus to generate mercury vapors at a constant rate and modifying the existing non-thermal plasma reactor system, (2) solving the analytical challenge for measuring mercury vapor concentration at ppb level, and (3) conducting experiments on mercury oxidation under plasma conditions to establish proof of concept.

  8. Syngas Production from Propane Using Atmospheric Non-thermal Plasma

    E-Print Network [OSTI]

    Ouni, Fakhreddine; Cormier, Jean Marie; 10.1007/s11090-009-9166-2

    2009-01-01T23:59:59.000Z

    Propane steam reforming using a sliding discharge reactor was investigated under atmospheric pressure and low temperature (420 K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen was formed as a main product (H2 concentration up to 50%). By-products (C2-hydrocarbons, methane, carbon dioxide) were measured with concentrations lower than 6%. The mean electrical power injected in the discharge is less than 2 kW. The process efficiency is described in terms of propane conversion rate, steam reforming and cracking selectivity, as well as by-products production. Chemical processes modelling based on classical thermodynamic equilibrium reactor is also proposed. Calculated data fit quiet well experimental results and indicate that the improvement of C3H8 conversion and then H2 production can be achieved by increasing the gas fraction through the discharge. By improving the reactor design, the non-thermal plasma has a potential for being an effective way for supplying hydrogen or synthesis gas.

  9. MPS213 - A Non-Thermal Plasma Application for the Royal Navy...

    Broader source: Energy.gov (indexed) [DOE]

    in the combustion chamber Catalytic Subsequent Exhaust gas treatment SCR Non-Thermal Plasma AEA Technology Exhaust gas treatment outside the combustion chamber MEASURES Engine...

  10. atmospheric non-thermal plasma: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy distribution. Here, I review the arguments for thermal versus non-thermal plasmas in accreting black hole systems and discuss the physics and emission...

  11. Non-Thermal Plasma System Development for CIDI Exhaust Aftertreatment

    SciTech Connect (OSTI)

    Balmer, M. Lou (Pacific Northwest National Laboratory (PNNL)); Tonkyn, Russell (Battelle Pacific Northwest Laboratories (BPNL)); Maupin, Gary; Yoon, Steven; Kolwaite, Ana (PNNL); Barlow, Stephen (BPNL); Domingo, Norberto; Storey, John M. (Oak Ridge National Laboratory); Hoard, John Wm. (Ford Research Laboratory); Howden, Ken (U.S. Dept. of Energy)

    2000-04-01T23:59:59.000Z

    There is a need for an efficient, durable technology to reduce NOx emissions from oxidative exhaust streams such as those produced by compression-ignition, direct injection (CIDI) diesel or lean-burn gasoline engines. A partnership formed between the DOE Office of Advanced Automotive Technology, Pacific Northwest National Laboratory, Oak Ridge National Laboratory and the USCAR Low Emission Technologies Research and Development Partnership is evaluating the effectiveness of a non-thermal plasma in conjunction with catalytic materials to mediate NOx and particulate emissions from diesel fueled light duty (CIDI) engines. Preliminary studies showed that plasma-catalyst systems could reduce up to 70% of NOx emissions at an equivalent cost of 3.5% of the input fuel in simulated diesel exhaust. These studies also showed that the type and concentration of hydrocarbon play a key role in both the plasma gas phase chemistry and the catalyst surface chemistry. More recently, plasma/catalyst systems have been evaluated for NOx reduction and particulate removal on a CIDI engine. Performance results for select plasma-catalyst systems for both simulated and actual CIDI exhaust will be presented. The effect of NOx and hydrocarbon concentration on plasma-catalyst performance will also be shown. SAE Paper SAE-2000-01-1601 {copyright} 2000 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

  12. MPS213 - A Non-Thermal Plasma Application for the Royal Navy...

    Broader source: Energy.gov (indexed) [DOE]

    ME2132 - DDO MPS213 MPS213 A Non A Non - - Thermal Plasma Application for the Thermal Plasma Application for the Royal Navy Royal Navy 29 August 2002 29 August 2002 DEER DEER Lt...

  13. MPS213 - A Non-Thermal Plasma Application for the Royal Navy...

    Broader source: Energy.gov (indexed) [DOE]

    3 MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 3 2002 DEER Conference Presentation: Marine Propulsion Systems - Integrated Project Team 2002deerhughes3.pdf...

  14. Non-thermal plasma-assisted NOx reduction over Na-Y zeolites...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    investigated in the non-thermal plasma assisted NOx reduction reaction using a simulated diesel engine exhaust gas mixture. The acid sites were formed by NH4+ ion exchange and...

  15. Removal of Toluene in Air by Non Thermal Plasma-Catalysis Hybrid , H. T. Pham

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Removal of Toluene in Air by Non Thermal Plasma-Catalysis Hybrid System A. Khacef , H. T. Pham , A Orléans Cedex 02, France * Institute of Applied Material Science, VAST, 1 Mac Dinh Chi, HCMC, Vietnam with heterogeneous catalysts. This combination can be either single-stage (in-plasma catalysis, IPC) or two

  16. Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef* and J. M applications (1, 2) . Synthesis gas or syngas (mixture of hydrogen and carbon monoxide) are used as a major. The conventional reformers allowing syngas production are based on steam reforming of hydrocarbons (3) following

  17. Application of Non-Thermal Plasma Assisted Catalyst Technology for Diesel Engine Emission Reduction

    SciTech Connect (OSTI)

    Herling, Darrell R.; Smith, Monty R.; Baskaran, Suresh; Kupe, J.

    2000-12-31T23:59:59.000Z

    This paper presents an overview of a non-thermal plasma assisted catalyst system as applied to a small displacement diesel powered vehicle. In addition to effectively reducing NOx emissions, it has been found that a non-thermal plasma can also destroy a portion of the particulate matter (PM) that is emitted from diesel engines. Delphi Automotive Systems in conjunction with Pacific Northwest National Laboratories has been developing such an exhaust aftertreatment system to reduce emissions form diesel vehicles. The results of testing and system evaluation will be discussed in general, and the effectiveness on reducing oxides of nitrogen and particulate matter emissions from diesel vehicles. Published in Future Engines-SP1559, SAW, Warrendale, PA

  18. Dust-acoustic solitary waves in dusty plasmas with non-thermal ions

    SciTech Connect (OSTI)

    Asgari, H.; Muniandy, S. V.; Wong, C. S. [Plasma Technology Research Center, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2013-02-15T23:59:59.000Z

    Most studies on dusty plasmas have assumed that electrons and ions follow Maxwellian distributions. However, in the presence of energetic ions, the distribution of ions tends to be non-Maxwellian. It is shown here that the existence of non-thermal ions would increase the phase velocity of a dust-acoustic wave. It is also found that the change in the phase velocity profoundly affects the characteristics of a dust-acoustic solitary wave.

  19. Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device

    SciTech Connect (OSTI)

    Charles Mones

    2006-12-01T23:59:59.000Z

    Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the application of this technology for removing elemental mercury from flue gas streams generated by utility boilers. On an absolute basis, the quantity of reagent required to accomplish the oxidation was small. For example, complete oxidation of mercury was accomplished using a 1% volume fraction of oxygen in a nitrogen stream. Overall, the tests with mercury validated the most useful aspect of the CR&E technology: Providing a method for elemental mercury removal from a gas phase by employing a specific plasma reagent to either increase reaction kinetics or promote reactions that would not have occurred under normal circumstances.

  20. Field-enhanced electrodes for additive-injection non-thermal plasma (NTP) processor

    DOE Patents [OSTI]

    Rosocha, Louis A. (Los Alamos, NM); Ferreri, Vincent (Westminster, CO); Kim, Yongho (Los Alamos, NM)

    2009-04-21T23:59:59.000Z

    The present invention comprises a field enhanced electrode package for use in a non-thermal plasma processor. The field enhanced electrode package includes a high voltage electrode and a field-enhancing electrode with a dielectric material layer disposed in-between the high voltage electrode and the field-enhancing electrode. The field-enhancing electrode features at least one raised section that includes at least one injection hole that allows plasma discharge streamers to occur primarily within an injected additive gas.

  1. Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx

    SciTech Connect (OSTI)

    McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

    2003-08-24T23:59:59.000Z

    The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

  2. Production of stable, non-thermal atmospheric pressure rf capacitive plasmas using gases other than helium or neon

    DOE Patents [OSTI]

    Park, Jaeyoung; Henins, Ivars

    2005-06-21T23:59:59.000Z

    The present invention enables the production of stable, steady state, non-thermal atmospheric pressure rf capacitive .alpha.-mode plasmas using gases other than helium and neon. In particular, the current invention generates and maintains stable, steady-state, non-thermal atmospheric pressure rf .alpha.-mode plasmas using pure argon or argon with reactive gas mixtures, pure oxygen or air. By replacing rare and expensive helium with more readily available gases, this invention makes it more economical to use atmospheric pressure rf .alpha.-mode plasmas for various materials processing applications.

  3. Non-Thermal Plasmas for NOx Treatment Y.N. Jaffre, T. Aka-Ngnui and A. Beroual

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    electric fields in a plasma reactor. NTP alone does not reduce NO generated by a thermal engine to N2 and O to the determination of corona ig- nition threshold for non-thermal plasma generation and to the optimization, for example in Riace, Italy, for ENEL's coal fired electrical generation plant (Civi- tano et al., 1986

  4. Large amplitude dust-acoustic double layers in non-thermal plasmas with positive and negative dust

    SciTech Connect (OSTI)

    Maharaj, S. K. [South African National Space Agency Space Science, P O Box 32, Hermanus 7200 (South Africa); Bharuthram, R. [University of the Western Cape, Modderdam Road, Bellville 7530 (South Africa); Singh, S. V.; Lakhina, G. S. [Indian Institute of Geomagnetism, New Panvel, Navi Mumbai 410218 (India); Pillay, S. R. [University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa)

    2011-11-29T23:59:59.000Z

    The existence of large amplitude double layers in a plasma composed of cold negative dust, adiabatic positive dust, non-thermal ions and Boltzmann electrons is investigated using the Sagdeev pseudopotential technique. Both positive potential and negative potential double layers are found to be supported by the model. The variation of the maximum amplitudes of the double layers and corresponding Mach numbers are examined as a function of various plasma parameters. In particular, we investigate to what extent ion non-thermal effects are required for positive potential double layers to occur.

  5. Experimental Investigation of Non-Thermal Electric Fields and Plasma Waves in Pulsed-Power Plasmas

    E-Print Network [OSTI]

    -field-plasma interaction, particle accelera- tion, growth of instabilities and plasma waves. As yet, to the hest of our and the properties of plasmas under high-power pulses at the nanosecond time scale. The method is based on resonant in a coaxial-pulsed-plasma configura- tion. The plasma is doped with a laser-produced lithium heam, fol- lowed

  6. Diesel Oxidation Catalyst Combined to Non-Thermal Plasma: Effect on Activation Catalyst Temperature and by-products formation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Diesel Oxidation Catalyst Combined to Non-Thermal Plasma: Effect on Activation Catalyst Temperature efficiency together with the catalyst activation temperature when a Diesel Oxidation Catalyst (DOC) is placed downstream to a multi-plans Dielectric Barrier Discharge (DBD) reactor. In order to simulate Diesel engine

  7. Non-thermal plasma exhaust aftertreatment: Are all plasmas the same?

    SciTech Connect (OSTI)

    Whealton, J.H.; Hanson, G.R.; Storey, J.M.; Raridon, R.J.; Armfield, J.S.; Bigelow, T.S.; Graves, R.L. [Oak Ridge National Lab., TN (United States)

    1997-12-31T23:59:59.000Z

    The authors describe initial experiments employing 5.5 GHz pulsed microwave power, which should result in enhanced chemistry compared to present state-of-the-art plasma aftertreatments by; reducing plasma electric field shielding, increasing availability of atomic nitrogen, exploiting surface charging of dielectrics, avoiding (low field) threshold initiated discharges, and achieving a higher high energy tail on the electron distribution function. As an example, the authors decided to test for NO reduction in N{sub 2}. While this reaction is not a complete description of the exhaust issues by any means, they thought it would demonstrate the technology proposed.

  8. MPS213 - A Non-Thermal Plasma Application for the Royal Navy...

    Broader source: Energy.gov (indexed) [DOE]

    21 ME2132 - DDO NTP - The Way Ahead NTP Treatment of Particulates Inlet Outlet no plasma Outlet plasma 0 1 2 3 4 5 6 7 Before After (no plasma) After (plasma) After (plasma) After...

  9. Existence domains of large amplitude dust-acoustic solitons in non-thermal plasmas with positive and negative dust

    SciTech Connect (OSTI)

    Maharaj, S. K. [South African National Space Agency Space Science, P O Box 32, Hermanus 7200 (South Africa); Bharuthram, R. [University of the Western Cape, Modderdam Road, Bellville 7530 (South Africa); Singh, S. V.; Lakhina, G. S. [Indian Institute of Geomagnetism, New Panvel, Navi Mumbai 410218 (India); Pillay, S. R. [University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa)

    2011-11-29T23:59:59.000Z

    Using the traditional Sagdeev pseudopotential approach, the existence of large amplitude solitons is investigated for a plasma composed of cold negative dust, adiabatic positive dust, non-thermal ions and Boltzmann electrons. The lower and upper soliton Mach number limitations are determined as a function of various parameters and physical reasons are provided as to why these Mach number limits occur. Some regions in parameter space have been identified where only negative or positive solitons occur, whereas, other regions support the coexistence of both positive and negative potential solitons.

  10. MPS213 - A Non-Thermal Plasma Application for the Royal Navy...

    Broader source: Energy.gov (indexed) [DOE]

    catalyst being analysed l Retest catalyst sample from trials l Engine noise reduced by plasma system l Electrical load is independent of frequency and engine mode Slide serial no...

  11. Non-thermal Plasma - Nanometer TiO2 Photocatalysis for Formaldehyde Decomposition

    E-Print Network [OSTI]

    Yuan, Q.; Feng, G.; Guang, X.

    2006-01-01T23:59:59.000Z

    2004, 25 (2): 311-313(In Chinese) [6] Bin Wang, and so onNew plasma air strainer researchHebei construction science and technology institute journal 2004, 21 (4): 17-20(In Chinese) [7] Xiaoming Wang, Wenxiang Shi Air-cleaning facility research...

  12. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    SciTech Connect (OSTI)

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibing Zhao; Sanil John

    2006-09-30T23:59:59.000Z

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. Several pulsed corona discharge (PCD) reactors have been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. Visual observation shows that the corona is not uniform throughout the reactor. The corona is stronger near the top of the reactor in argon, while nitrogen and mixtures of argon or nitrogen with H{sub 2}S produce stronger coronas near the bottom of the reactor. Both of these effects appear to be explainable base on the different electron collision interactions with monatomic versus polyatomic gases. A series of experiments varying reactor operating parameters, including discharge capacitance, pulse frequency, and discharge voltage were performed while maintaining constant power input to the reactor. At constant reactor power input, low capacitance, high pulse frequency, and high voltage operation appear to provide the highest conversion and the highest energy efficiency for H{sub 2}S decomposition. Reaction rates and energy efficiency per H{sub 2}S molecule increase with increasing flow rate, although overall H{sub 2}S conversion decreases at constant power input. Voltage and current waveform analysis is ongoing to determine the fundamental operating characteristics of the reactors. A metal infiltrated porous ceramic membrane was prepared using vanadium as the metal and an alumina tube. Experiments with this type of membrane are continuing, but the results thus far have been consistent with those obtained in previous project years: plasma driven permeation or superpermeability has not been observed. A new test cell specially designed to test the membranes has been constructed to provide basic science data on superpermeability.

  13. Optical emission spectroscopic diagnostics of a non-thermal atmospheric pressure helium-oxygen plasma jet for biomedical applications

    SciTech Connect (OSTI)

    Thiyagarajan, Magesh; Sarani, Abdollah; Nicula, Cosmina [Plasma Engineering Research Laboratory (PERL), College of Science and Engineering, Texas A and M University-Corpus Christi, Texas 78412 (United States)] [Plasma Engineering Research Laboratory (PERL), College of Science and Engineering, Texas A and M University-Corpus Christi, Texas 78412 (United States)

    2013-06-21T23:59:59.000Z

    In this work, we have applied optical emission spectroscopy diagnostics to investigate the characteristics of a non-thermal atmospheric pressure helium plasma jet. The discharge characteristics in the active and afterglow region of the plasma jet, that are critical for biomedical applications, have been investigated. The voltage-current characteristics of the plasma discharge were analyzed and the average plasma power was measured to be around 18 W. The effect of addition of small fractions of oxygen at 0.1%-0.5% on the plasma jet characteristics was studied. The addition of oxygen resulted in a decrease in plasma plume length due to the electronegativity property of oxygen. Atomic and molecular lines of selected reactive plasma species that are considered to be useful to induce biochemical reactions such as OH transitions A{sup 2}{Sigma}{sup +}({nu}=0,1){yields}X{sup 2}{Pi}({Delta}{nu}=0) at 308 nm and A{sup 2}{Sigma}{sup +}({nu}=0,1){yields}X{sup 2}{Pi}({Delta}{nu}=1) at 287 nm, O I transitions 3p{sup 5}P{yields}3s{sup 5}S{sup 0} at 777.41 nm, and 3p{sup 3}P{yields}3s{sup 3}S{sup 0} at 844.6 nm, N{sub 2}(C-B) second positive system with electronic transition C{sup 3}{Pi}{sub u}{sup {yields}}B{sup 3}{Pi}{sub g}'' in the range of 300-450 nm and N{sub 2}{sup +}(B-X) first negative system with electronic transition B{sup 2}{Sigma}{sub u}{sup +}{yields}X{sup 2}{Sigma}{sub g}{sup +}({Delta}{nu}=0) at 391.4 nm have been studied. The atomic emission lines of helium were identified, including the He I transitions 3p{sup 3}P{sup 0}{yields}2s{sup 3}S at 388.8 nm, 3p{sup 1}P{sup 0}{yields} 2s{sup 1}S at 501.6 nm, 3d{sup 3}D{yields}2p{sup 3}P{sup 0} at 587.6 nm, 3d{sup 1}D{yields}2p{sup 1}P{sup 0} at 667.8 nm, 3s{sup 3}S{sup 1}{yields}2p{sup 3}P{sup 0} at 706.5 nm, 3s{sup 1}S{sup 0}{yields}2p{sup 1}P{sup 0} at 728.1 nm, and H{sub {alpha}} transition 2p-3d at 656.3 nm. Using a spectral fitting method, the OH radicals at 306-312 nm, the rotational and vibrational temperatures equivalent to gas temperatures of the discharge was measured and the effective non-equilibrium nature of the plasma jet was demonstrated. Our results show that, in the entire active plasma region, the gas temperature remains at 310 {+-} 25 K and 340 {+-} 25 K and it increases to 320 {+-} 25 K and 360 {+-} 25 K in the afterglow region of the plasma jet for pure helium and helium/oxygen (0.1%) mixture, respectively. Additionally, the vibrational temperatures range from 2200 {+-} 100 K and 2500 {+-} 100 K for pure helium and helium/oxygen (0.1%) mixture, respectively. The plasma jet was tested on heat sensitive polymer films used in biomedical applications such as polyethylene terephthalate and poly-L-lactide samples continuously for several minutes without causing any physical or thermal damage to the films. The plasma jet produces significant reactive species of interest while the gas temperatures remain very low demonstrating its potential for a range of biomedical applications.

  14. Electron density measurements of atmospheric-pressure non-thermal N{sub 2} plasma jet by Stark broadening and irradiance intensity methods

    SciTech Connect (OSTI)

    Xiao, Dezhi; Shen, Jie; Lan, Yan; Xie, Hongbing; Shu, Xingsheng; Meng, Yuedong; Li, Jiangang [Institute of Plasma Physics, Chinese Academy of Sciences, P. O. Box 1126, Hefei 230031 (China); Cheng, Cheng, E-mail: chengcheng@ipp.ac.cn, E-mail: paul.chu@cityu.edu.hk [Institute of Plasma Physics, Chinese Academy of Sciences, P. O. Box 1126, Hefei 230031 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Chu, Paul K., E-mail: chengcheng@ipp.ac.cn, E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2014-05-15T23:59:59.000Z

    An atmospheric-pressure non-thermal plasma jet excited by high frequency alternating current using nitrogen is developed and the electron density in the active region of this plasma jet is investigated by two different methods using optical emission spectroscopy, Stark broadening, and irradiance intensity method. The irradiance intensity method shows that the average electron density is about 10{sup 20}/m{sup 3} which is slightly smaller than that by the Stark broadening method. However, the trend of the change in the electron density with input power obtained by these two methods is consistent.

  15. Method and system for the combination of non-thermal plasma and metal/metal oxide doped .gamma.-alumina catalysts for diesel engine exhaust aftertreatment system

    DOE Patents [OSTI]

    Aardahl, Christopher L. (Richland, WA); Balmer-Miller, Mari Lou (West Richland, WA); Chanda, Ashok (Peoria, IL); Habeger, Craig F. (West Richland, WA); Koshkarian, Kent A. (Peoria, IL); Park, Paul W. (Peoria, IL)

    2006-07-25T23:59:59.000Z

    The present disclosure pertains to a system and method for treatment of oxygen rich exhaust and more specifically to a method and system that combines non-thermal plasma with a metal doped .gamma.-alumina catalyst. Current catalyst systems for the treatment of oxygen rich exhaust are capable of achieving only approximately 7 to 12% NO.sub.x reduction as a passive system and only 25 40% reduction when a supplemental hydrocarbon reductant is injected into the exhaust stream. It has been found that treatment of an oxygen rich exhaust initially with a non-thermal plasma and followed by subsequent treatment with a metal doped .gamma.-alumina prepared by the sol gel method is capable of increasing the NO.sub.x reduction to a level of approximately 90% in the absence of SO.sub.2 and 80% in the presence of 20 ppm of SO.sub.2. Especially useful metals have been found to be indium, gallium, and tin.

  16. Glow Discharge Characteristics of Non-thermal Microplasmas at above Atmospheric Pressures and their Applications in Microscale Plasma Transistors

    E-Print Network [OSTI]

    Wakim, Dani Ghassan

    2013-07-25T23:59:59.000Z

    A microscale plasma transistor capable of high speed switching was manufactured using microfabrication techniques and operated using microplasma discharges. Such a device has feature sizes on the order of 25 ?m, is robust against spikes in power...

  17. Thermal and non-thermal energies in solar flares

    E-Print Network [OSTI]

    Pascal Saint-Hilaire; Arnold O. Benz

    2005-03-03T23:59:59.000Z

    The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

  18. Theoretical study of Diesel fuel reforming by a non-thermal arc discharge A. Lebouvier1,2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Theoretical study of Diesel fuel reforming by a non-thermal arc discharge A. Lebouvier1,2 , G anti-pollution norm namely for Diesel powered vehicles. NOx (NO, NO2,...) are very irritant pollutants- nologies purge is the use of non-thermal plasma. Plasma reforming of diesel fuel and exhaust gas mix- ture

  19. Non-thermal Aftertreatment of Particulates

    SciTech Connect (OSTI)

    Thomas, S.E.

    2000-08-20T23:59:59.000Z

    Modern diesel passenger vehicles employing common rail, high speed direct injection engines are capable of matching the drivability of gasoline powered vehicles with the additional benefit of providing high torque at low engine speed [1]. The diesel engine also offers considerable fuel economy and CO2 emissions advantages. However, future emissions standards [2,3] present a significant challenge for the diesel engine, as its lean exhaust precludes the use of aftertreatment strategies employing 3- way catalytic converters, which operate under stoichiometric conditions. In recent years significant developments by diesel engine manufacturers have greatly reduced emissions of both particulates (PM) and oxides of nitrogen (NOx) [4,5]. However to achieve compliance with future legislative limits it has been suggested that an integrated approach involving a combination of engine modifications and aftertreatment technology [1] will be required. A relatively new approach to exhaust aftertreatment is the application of non-thermal plasma (NTP) or plasma catalyst hybrid systems. These have the potential for treatment of both NOx and PM emissions [6- 8]. The primary focus of recent plasma aftertreatment studies [9-12] has concentrated on the removal of NOx. It has been shown that by combining plasmas with catalysts it is possible to chemically reduce NOx. The most common approach is to use a 2- stage system relying upon the plasma oxidation of hydrocarbons to promote NO to NO2 conversion as a precursor to NO2 reduction over a catalyst. However, relatively little work has yet been published on the oxidation of PM by plasma [ 8,13]. Previous investigations [8] have reported that a suitably designed NTP reactor containing a packing material designed to filter and retain PM can effect the oxidation of PM in diesel exhausts at low temperatures. It has been suggested that the retained PM competes with hydrocarbons for O, and possibly OH, radicals. This is an important consideration in plasma - catalyst hybrid schemes for the removal of NOx employing an NO2 selective catalyst, as the oxidation of PM may deplete the key radicals necessary for NO to NO2 conversion. It was also suggested that where simultaneous NOx and PM removal are required, alternative catalyst formulations may be needed which may be selective to NO rather than NO2.

  20. Exhaust gas fuel reforming of Diesel fuel by non-thermal arc discharge for NOx trap regeneration

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Exhaust gas fuel reforming of Diesel fuel by non- thermal arc discharge for NOx trap regeneration to the reforming of Diesel fuel with Diesel engine exhaust gas using a non-thermal plasma torch for NOx trap Diesel fuel reforming with hal-00617141,version1-17May2013 Author manuscript, published in "Energy

  1. Non-thermal phenomena in galaxies clusters

    E-Print Network [OSTI]

    Gianfranco Brunetti

    2004-04-26T23:59:59.000Z

    The discovery of diffuse synchrotron radio emission and, more recently, of the hard X-ray (HXR) tails have triggered a growing interest about non-thermal phenomena in galaxy clusters. After a brief review of the most important evidences for non-thermal emission, I will focus on the origin of the emitting particles and of the hadronic component. In particular I will describe the particle-injection and -acceleration mechanisms at work in the intra-cluster medium (ICM) and, at the same time, discuss the possibility to test current modellings of these phenomena with future radio, HXR, and gamma rays observatories.

  2. Oscillating plasma bubbles. III. Internal electron sources and sinks

    SciTech Connect (OSTI)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2012-08-15T23:59:59.000Z

    An internal electron source has been used to neutralize ions injected from an ambient plasma into a spherical grid. The resultant plasma is termed a plasma 'bubble.' When the electron supply from the filament is reduced, the sheath inside the bubble becomes unstable. The plasma potential of the bubble oscillates near but below the ion plasma frequency. Different modes of oscillations have been observed as well as a subharmonic and multiple harmonics. The frequency increases with ion density and decreases with electron density. The peak amplitude occurs for an optimum current and the instability is quenched at large electron densities. The frequency also increases if Langmuir probes inside the bubble draw electrons. Allowing electrons from the ambient plasma to enter, the bubble changes the frequency dependence on grid voltage. It is concluded that the net space charge density in the sheath determines the oscillation frequency. It is suggested that the sheath instability is caused by ion inertia in an oscillating sheath electric field which is created by ion bunching.

  3. Fabrication of novel III-N and III-V modulator structures by ECR plasma etching

    SciTech Connect (OSTI)

    Pearton, S.J.; Abernathy, C.R.; MacKenzie, J.D. [Univ. of Florida, Gainesville, FL (United States)] [and others

    1995-12-01T23:59:59.000Z

    Quantum well microdisk laser structures have been fabricated in the GaN/InGaN, GaAs/AlGaAs and GaAs/InGaP systems using a combination of ECR dry etching (Cl{sub 2}/CH{sub 4}/H{sub 2}/Ar, BCl{sub 3}/Ar or CH{sub 4}/H{sub 2}/Ar plasma chemistries respectively) and subsequent wet chemical etching of a buffer layer underlying the quantum wells. While wet etchants such as HF/H{sub 2}O and HCl/HNO{sub 3}/H{sub 2} O are employed for AlGaAs and InGaP, respectively, a new KOH based solution has been developed for AlN which is completely selective over both GaN and InGaN. Typical mask materials include PR or SiN{sub x}, while the high surface recombination velocity of exposed AlGaAs ({approximately} 10{sup 5} cm{center_dot}sec {sup {minus}1}) requires encapsulation with ECR-CVD SiN{sup x} to stabilize the optical properties of the modulators.

  4. Non-thermal plasma based technologies for the aftertreatment...

    Broader source: Energy.gov (indexed) [DOE]

    DPF Dielectric barrier discharge Copyright Accentus 2003 Improved Filtration Pellets 50-60% filtration Cordierite Monoliths Ceramic Fibres and Foams Meshes & Sintered...

  5. DETERMINATION OF NON-THERMAL VELOCITY DISTRIBUTIONS FROM SERTS LINEWIDTH OBSERVATIONS

    SciTech Connect (OSTI)

    Coyner, Aaron J. [Department of Physics, Catholic University of America, 620 Michigan Avenue, Washington, DC 20064 (United States); Davila, Joseph M., E-mail: aaron.j.coyner@nasa.gov [Code 671, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2011-12-01T23:59:59.000Z

    Non-thermal velocities obtained from the measurement of coronal Extreme Ultraviolet (EUV) linewidths have been consistently observed in solar EUV spectral observations and have been theorized to result from many plausible scenarios including wave motions, turbulence, or magnetic reconnection. Constraining these velocities can provide a physical limit for the available energy resulting from unresolved motions in the corona. We statistically determine a series of non-thermal velocity distributions from linewidth measurements of 390 emission lines from a wide array of elements and ionization states observed during the Solar Extreme Ultraviolet Research Telescope and Spectrograph 1991-1997 flights covering the spectral range 174-418 A and a temperature range from 80,000 K to 12.6 MK. This sample includes 248 lines from active regions, 101 lines from quiet-Sun regions, and 41 lines were observed from plasma off the solar limb. We find a strongly peaked distribution corresponding to a non-thermal velocity of 19-22 km s{sup -1} in all three of the quiet-Sun, active region, and off-limb distributions. For the possibility of Alfven wave resonance heating, we find that velocities in the core of these distributions do not provide sufficient energy, given typical densities and magnetic field strengths for the coronal plasma, to overcome the estimated coronal energy losses required to maintain the corona at the typical temperatures working as the sole mechanism. We find that at perfect efficiency 50%-60% of the needed energy flux can be produced from the non-thermal velocities measured.

  6. Silicon drift detector based X-ray spectroscopy diagnostic system for the study of non-thermal electrons at Aditya tokamak

    SciTech Connect (OSTI)

    Purohit, S., E-mail: pshishir@ipr.res.in; Joisa, Y. S.; Raval, J. V.; Ghosh, J.; Tanna, R.; Shukla, B. K.; Bhatt, S. B. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2014-11-15T23:59:59.000Z

    Silicon drift detector based X-ray spectrometer diagnostic was developed to study the non-thermal electron for Aditya tokamak plasma. The diagnostic was mounted on a radial mid plane port at the Aditya. The objective of diagnostic includes the estimation of the non-thermal electron temperature for the ohmically heated plasma. Bi-Maxwellian plasma model was adopted for the temperature estimation. Along with that the study of high Z impurity line radiation from the ECR pre-ionization experiments was also aimed. The performance and first experimental results from the new X-ray spectrometer system are presented.

  7. Kinetic Modeling of Non-thermal Escape: Planets and Exoplanets

    E-Print Network [OSTI]

    Johnson, Robert E.

    Kinetic Modeling of Non-thermal Escape: Planets and Exoplanets Valery I. Shematovich Institute of Astronomy, Russian Academy of Sciences Modeling Atmospheric Escape Workshop - Spring 2012 University are populated by the atoms and molecules with both thermal and suprathermal kinetic energies (Johnson et al

  8. Plasma-assisted catalytic reduction system

    DOE Patents [OSTI]

    Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

    1998-01-27T23:59:59.000Z

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

  9. AURORA: A FORTRAN program for modeling well stirred plasma and thermal reactors with gas and surface reactions

    SciTech Connect (OSTI)

    Meeks, E.; Grcar, J.F.; Kee, R.J. [Sandia National Labs., Livermore, CA (United States). Thermal and Plasma Processes Dept.] [Sandia National Labs., Livermore, CA (United States). Thermal and Plasma Processes Dept.; Moffat, H.K. [Sandia National Labs., Albuquerque, NM (United States). Surface Processing Sciences Dept.] [Sandia National Labs., Albuquerque, NM (United States). Surface Processing Sciences Dept.

    1996-02-01T23:59:59.000Z

    The AURORA Software is a FORTRAN computer program that predicts the steady-state or time-averaged properties of a well mixed or perfectly stirred reactor for plasma or thermal chemistry systems. The software was based on the previously released software, SURFACE PSR which was written for application to thermal CVD reactor systems. AURORA allows modeling of non-thermal, plasma reactors with the determination of ion and electron concentrations and the electron temperature, in addition to the neutral radical species concentrations. Well stirred reactors are characterized by a reactor volume, residence time or mass flow rate, heat loss or gas temperature, surface area, surface temperature, the incoming temperature and mixture composition, as well as the power deposited into the plasma for non-thermal systems. The model described here accounts for finite-rate elementary chemical reactions both in the gas phase and on the surface. The governing equations are a system of nonlinear algebraic relations. The program solves these equations using a hybrid Newton/time-integration method embodied by the software package TWOPNT. The program runs in conjunction with the new CHEMKIN-III and SURFACE CHEMKIN-III packages, which handle the chemical reaction mechanisms for thermal and non-thermal systems. CHEMKIN-III allows for specification of electron-impact reactions, excitation losses, and elastic-collision losses for electrons.

  10. Emission of non-thermal microwave radiation by a Martian dust storm Christopher Ruf,1

    E-Print Network [OSTI]

    Ruf, Christopher

    and forced by large-scale electric discharge. Thus, the non-thermal radiation was probably caused by electric#12;Emission of non-thermal microwave radiation by a Martian dust storm Christopher Ruf,1 Nilton O report evidence for the emission of non-thermal microwave radiation by a deep Martian dust storm

  11. Non-thermal quantum channels as a thermodynamical resource

    E-Print Network [OSTI]

    Miguel Navascués; Luis Pedro García-Pintos

    2015-06-15T23:59:59.000Z

    Quantum thermodynamics can be understood as a resource theory, whereby thermal states are free and the only allowed operations are unitary transformations commuting with the total Hamiltonian of the system. Previous literature on the subject has just focused on transformations between different state resources, overlooking the fact that quantum operations which do not commute with the total energy also constitute a potentially valuable resource. In this Letter, given a number of non-thermal quantum channels, we study the problem of how to integrate them in a thermal engine so as to distill a maximum amount of work. We find that, in the limit of asymptotically many uses of each channel, the distillable work is an additive function of the considered channels, computable for both finite dimensional quantum operations and bosonic channels. We apply our results to bound the amount of distillable work due to the natural non-thermal processes postulated in the Ghirardi-Rimini-Weber (GRW) collapse model. We find that, although GRW theory predicts the possibility to extract work from the vacuum at no cost, the power which a \\emph{collapse engine} could in principle generate is extremely low.

  12. Non-thermal quantum channels as a thermodynamical resource

    E-Print Network [OSTI]

    Miguel Navascués; Luis Pedro García-Pintos

    2015-03-31T23:59:59.000Z

    Quantum thermodynamics can be understood as a resource theory, whereby thermal states are free and the only allowed operations are unitary transformations commuting with the total Hamiltonian of the system. Previous literature on the subject has just focused on transformations between different state resources, overlooking the fact that quantum operations which do not commute with the total energy also constitute a potentially valuable resource. In this Letter, given a number of non-thermal quantum channels, we study the problem of how to integrate them in a thermal engine so as to distill a maximum amount of work. We find that, in the limit of asymptotically many uses of each channel, the distillable work is an additive function of the considered channels, computable for both finite dimensional quantum operations and bosonic channels. We apply our results to bound the amount of distillable work due to the natural non-thermal processes postulated in the Ghirardi-Rimini-Weber (GRW) collapse model. We find that, although GRW theory predicts the possibility to extract work from the vacuum at no cost, the power which a \\emph{collapse engine} could in principle generate is extremely low.

  13. Michigan Institute for Plasma Sci-

    E-Print Network [OSTI]

    Shyy, Wei

    This talk will focus on the achievements of the Drexel Plasma Institute in direct application of plasmasMichigan Institute for Plasma Sci- ence and Engi- neering Seminar Plasma Medicine: Mechanisms of Direct Non-Thermal Plasma Interaction with Living Tissue Prof. Alexander Fridman Drexel University

  14. Non-thermal radiation from a runaway massive star

    E-Print Network [OSTI]

    Romero, Gustavo E; Peri, Cintia S; Marti, Josep; Araudo, Anabella T

    2010-01-01T23:59:59.000Z

    We present a study of the radio emission from a massive runaway star. The star forms a bow shock that is clearly observed in the infrared. We have performed VLA observations under the assumption that the reverse shock in the stellar wind might accelerate charged particles up to relativistic energies. Non-thermal radio emission of synchrotron origin has been detected, confirming the hypothesis. We have then modeled the system and we predict a spectral energy distribution that extends up to gamma-rays. Under some simplifying assumptions, we find that the intensity at high energies is too low to be detected by current instruments, but the future Cherenkov Telescope Array might detect the source.

  15. Simbol-X capability of detecting the non-thermal emission of stellar flares

    E-Print Network [OSTI]

    C. Argiroffi; G. Micela; A. Maggio

    2008-01-16T23:59:59.000Z

    We investigate the capability of detecting, with Simbol-X, non-thermal emission during stellar flares, and distinguishing it from hot thermal emission. We find that flare non-thermal emission is detectable when at least ~20 cts are detected with the CZT detector in the 20-80 keV band. Therefore Simbol-X will detect the non-thermal emission from some of the X-ray brightest nearby stars, whether the thermal vs. non-thermal relation, derived for solar flares, holds.

  16. The physics of non-thermal radiation in microquasars

    E-Print Network [OSTI]

    V. Bosch-Ramon

    2008-10-27T23:59:59.000Z

    Microquasars are binary systems that harbor a normal star and a compact object (black-hole or neutron star), and show relativistic outflows (or jets). The matter that forms these jets is of likely stellar origin, previously expelled from the star and trapped in the potential well of the compact object. This matter is accreted by the compact object, forming a disk due to its angular momentum, and is eventually ejected in the form of a bipolar outflow (the jets), which generates radio emission and could also be a very high-energy emitter. To study and understand the radiation from microquasars, there is a set of elements that can play a major role and are to be taken into account: the photons and the expelled matter from the star in the case of high-mass systems; the accreted matter radiation; the jet; the magnetic field carried by the jet or filling the binary system; and the medium surrounding the microquasar at large scales (~pc). In this lecture, we consider these elements of the microquasar scenario and briefly describe the physical conditions and processes involved in the production of non-thermal radiation from radio to gamma-rays. The required energetics, particle acceleration and transport, several radiative mechanisms, and the impact of different photon absorption processes, are discussed.

  17. Non-Thermal Continuum toward SGRB2(N-LMH)

    E-Print Network [OSTI]

    J. M. Hollis; P. R. Jewell; Anthony J. Remijan; F. J. Lovas

    2007-03-15T23:59:59.000Z

    An analysis of continuum antenna temperatures observed in the Green Bank Telescope (GBT) spectrometer bandpasses is presented for observations toward SgrB2(N-LMH). Since 2004, we have identified four new prebiotic molecules toward this source by means of rotational transitions between low energy levels; concurrently, we have observed significant continuum in the GBT spectrometer bandpasses centered at 85 different frequencies in the range of 1 to 48 GHz. The continuum heavily influences the molecular spectral features since we have observed far more absorption lines than emission lines for each of these new molecular species. Hence, it is important to understand the nature, distribution, and intensity of the underlying continuum in the GBT bandpasses for the purposes of radiative transfer, i.e. the means by which reliable molecular abundances are estimated. We find that the GBT spectrometer bandpass continuum is consistent with optically-thin, non thermal (synchrotron) emission with a flux density spectral index of -0.7 and a Gaussian source size of ~143" at 1 GHz that decreases with increasing frequency as nu^(-0.52). Some support for this model is provided by high frequency Very Large Array (VLA) observations of SgrB2.

  18. CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics

    SciTech Connect (OSTI)

    Kee, R.J.; Rupley, F.M.; Meeks, E.; Miller, J.A.

    1996-05-01T23:59:59.000Z

    This document is the user`s manual for the third-generation CHEMKIN package. CHEMKIN is a software package whose purpose is to facilitate the formation, solution, and interpretation of problems involving elementary gas-phase chemical kinetics. It provides a flexible and powerful tool for incorporating complex chemical kinetics into simulations of fluid dynamics. The package consists of two major software components: an Interpreter and a Gas-Phase Subroutine Library. The Interpreter is a program that reads a symbolic description of an elementary, user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Gas-Phase Subroutine Library. This library is a collection of about 100 highly modular FORTRAN subroutines that may be called to return information on equations of state, thermodynamic properties, and chemical production rates. CHEMKIN-III includes capabilities for treating multi-fluid plasma systems, that are not in thermal equilibrium. These new capabilities allow researchers to describe chemistry systems that are characterized by more than one temperature, in which reactions may depend on temperatures associated with different species; i.e. reactions may be driven by collisions with electrons, ions, or charge-neutral species. These new features have been implemented in such a way as to require little or no changes to CHEMKIN implementation for systems in thermal equilibrium, where all species share the same gas temperature. CHEMKIN-III now has the capability to handle weakly ionized plasma chemistry, especially for application related to advanced semiconductor processing.

  19. Destruction of 1,1,1-trichloroethane (TCA) using Non-Thermal Plasma (NTP)

    E-Print Network [OSTI]

    Cal, Mark P.

    . In 1998, 167 facilities released 3.4 x 105 kg of TCA in the United States alone, of which nearly 96 effect on TCA destruction and on overall carbon balance of the system. DRE as high as 99.9% could:3 at 88% RH. Numerical analysis of experimental data was conducted to determine cost and energy

  20. Removal of Pollutants by Atmospheric Non Thermal Plasmas Ahmed Khacef 1*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    difficult to handle with conventional removal technologies like thermal and catalytic oxidation examples are hydrocarbons, chlorocarbons and chlorofluorocarbons (CFCs). Contamination of exhaust air streams with gaseous hydrocarbons or organic solvent vapours occurs in many industrial processes, e. g

  1. Non-thermal plasma based technologies for the aftertreatment of diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEnginesVacantmagnetic materials Non-Rareexhaust

  2. Performance Evaluation of the Delphi Non-Thermal Plasma System Under

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 TermoelectricaPaving the pathPeople'sTransient and Steady State

  3. MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 1 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr. ErnestMID-CAREERof Energy

  4. MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 2 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr. ErnestMID-CAREERof EnergyDepartment of

  5. MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 4 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr. ErnestMID-CAREERof EnergyDepartment

  6. Non-thermal calcination by ultraviolet irradiation in the synthesis of microporous materials

    E-Print Network [OSTI]

    Parikh, Atul N.

    Non-thermal calcination by ultraviolet irradiation in the synthesis of microporous materials Atul N-directing agents in the synthesis of microporous materials. The method relies on the exposure of the sample. This method is applicable in making new materials from organic­inorganic pre- cursors and holds promise

  7. Thermal and non-thermal leptogenesis in different neutrino mass models with tribimaximal mixings

    E-Print Network [OSTI]

    N. Nimai Singh; H. Zeen Devi; Amal Kr Sarma

    2008-07-15T23:59:59.000Z

    In the present work we study both thermal and non-thermal leptogenesis in all neutrino mass models describing the presently available neutrino mass patterns. We consider the Majorana CP violating phases coming from right-handed Majorana mass matrices to estimate the baryon asymmetry of the universe, for different neutrino mass models namely degenerate, inverted hierarchical and normal hierarchical models, with tribimaximal mixings. Considering two possible diagonal forms of Dirac neutrino mass matrix as either charged lepton or up-quark mass matrix, the right-handed Majorana mass matrices are constructed from the light neutrino mass matrix through the inverse seesaw formula. Only the normal hierarchical model leads to the best predictions for baryon asymmetry of the universe, consistent with observations in both thermal and non-thermal leptogenesis scenario. The analysis though phenomenological may serve as an additional information in the discrimination among the presently available neutrino mass models.

  8. Numerical Study of a Propagating Non-Thermal Microwave Feature in a Solar Flare Loop

    E-Print Network [OSTI]

    T. Minoshima; T. Yokoyama

    2008-06-24T23:59:59.000Z

    We analytically and numerically study the motion of electrons along a magnetic loop, to compare with the observation of the propagating feature of the non-thermal microwave source in the 1999 August 28 solar flare reported by Yokoyama et al. (2002). We model the electron motion with the Fokker-Planck equation and calculate the spatial distribution of the gyrosynchrotron radiation. We find that the microwave propagating feature does not correspond to the motion of electrons with a specific initial pitch angle. This apparent propagating feature is a consequence of the motion of an ensemble of electrons with different initial pitch angles, which have different time and position to produce strong radiation in the loop. We conclude that the non-thermal electrons in the 1999 August 28 flare were isotropically accelerated and then are injected into the loop.

  9. Electrostatic solitary structures in presence of non-thermal electrons and a warm electron beam on the auroral field lines

    SciTech Connect (OSTI)

    Singh, S. V. [Indian Institute of Geomagnetism, Navi Mumbai (India); School of Physics, University of Kwazulu-Natal, Durban (South Africa); Lakhina, G. S. [Indian Institute of Geomagnetism, Navi Mumbai (India); Bharuthram, R. [University of the Western Cape, Bellville (South Africa); Pillay, S. R. [School of Physics, University of Kwazulu-Natal, Durban (South Africa)

    2011-12-15T23:59:59.000Z

    Electrostatic solitary waves (ESWs) have been observed by satellites in the auroral region of the Earth's magnetosphere. These ESWs are found to be having both positive and negative electrostatic potentials. Using the Sagdeeev psuedo-potential technique, arbitrary amplitude electron-acoustic solitary waves/double layers are studied in an unmagnetized plasma consisting of non-thermally distributed hot electrons, fluid cold electrons, a warm electron beam, and ions. The inertia of the warm electrons, and not the beam speed, is essential for the existence of positive potential solitary structures. Existence domains for positive as well as negative potential electrostatic solitons/double layers are obtained. For the typical auroral region parameters, the electric field amplitude of the negative potential solitons is found to be in the range {approx}(3-30) mV/m and {approx}(5-80) mV/m for the positive potential solitons. For the negative potential solitons/double layers, the amplitudes are higher when their widths are smaller. On the other hand, the amplitude of the positive potential structures increase with their widths.

  10. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

  11. SOLCOST - Version 3. 0. Solar energy design program for non-thermal specialists

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    The SOLCOST solar energy design program is a public domain computerized design tool intended for use by non-thermal specialists to size solar systems with a methodology based on life cycle cost. An overview of SOLCOST capabilities and options is presented. A detailed guide to the SOLCOST input parameters is included. Sample problems showing typical imput decks and resulting SOLCOST output sheets are given. Details of different parts of the analysis are appended. (MHR)

  12. Recent VOC Control Test Data for a Reactive VOC Converter- Scrubber System for Non-Thermal Control of VOCs 

    E-Print Network [OSTI]

    McGinness, M.

    2003-01-01T23:59:59.000Z

    of real estate. Non-thermal VOHAP (Volatile Organic Hazardous Air Pollutant) emission control devices require additional maintenance. They also require the replacement of costly consumables such as activated carbon or they use large amounts of energy...

  13. Non-thermal Electrons at the Earth's Bow Shock: A `Gradual' Event

    E-Print Network [OSTI]

    M. Oka; T. Terasawa; M. Fujimoto; H. Matsui; Y. Kasaba; Y. Saito; H. Kojima; H. Matsumoto; T. Mukai

    2008-10-24T23:59:59.000Z

    Earth's bow shock is known to produce non-thermal electrons which are generally observed as a `spike' in their flux profile. Here, in this paper, we present an analysis of electron and whistler wave properties for a quasi-perpendicular shock crossing that is supercritical, but subcritical to the so-called whistler critical Mach number, M$^w_{\\rm crit}$, above which whistler waves cannot propagate upstream. We have found that the amplitudes of whistler waves increased exponentially as a function of time prior to the shock encounter, while the suprathermal ($>$ 2 keV) electron flux similarly increased with time, although with differing $e$-folding time scales. Comparison of the electron energy spectrum measured within the ramp with predictions from diffusive shock acceleration theory was poor, but the variation of pitch angle distribution showed scattering of non-thermal electrons in the upstream region. While not finding a specific mechanism to account for the electron diffusion, we suggest that the whistlers seen probably account for the differences observed between this `gradual' event and the `spike' events seen at shocks with no upstream whistlers.

  14. Non-thermal Electrons at the Earth's Bow Shock: A `Gradual' Event

    E-Print Network [OSTI]

    Oka, M; Fujimoto, M; Matsui, H; Kasaba, Y; Saitô, Y; Kojima, H; Matsumoto, H; Mukai, T

    2008-01-01T23:59:59.000Z

    Earth's bow shock is known to produce non-thermal electrons which are generally observed as a `spike' in their flux profile. Here, in this paper, we present an analysis of electron and whistler wave properties for a quasi-perpendicular shock crossing that is supercritical, but subcritical to the so-called whistler critical Mach number, M$^w_{\\rm crit}$, above which whistler waves cannot propagate upstream. We have found that the amplitudes of whistler waves increased exponentially as a function of time prior to the shock encounter, while the suprathermal ($>$ 2 keV) electron flux similarly increased with time, although with differing $e$-folding time scales. Comparison of the electron energy spectrum measured within the ramp with predictions from diffusive shock acceleration theory was poor, but the variation of pitch angle distribution showed scattering of non-thermal electrons in the upstream region. While not finding a specific mechanism to account for the electron diffusion, we suggest that the whistlers ...

  15. Preradiation studies for non-thermal Z-pinch wire load experiments on Saturn

    SciTech Connect (OSTI)

    Sanford, T.W.L.; Humphreys, D.R.; Poukey, J.W.; Marder, B.M.; Halbleib, J.A.; Crow, J.T.; Spielman, R.B. [Sandia National Labs., Albuquerque, NM (United States); Mock, R.C. [Ktech Corp., Albuquerque, NM (United States)

    1994-06-01T23:59:59.000Z

    The implosion dynamics of compact wire arrays on Saturn are explored as a function of wire mass m, wire length {ell}, wire radii R, and radial power-flow feed geometry using the ZORK code. Electron losses and the likelihood of arcing in the radial feed adjacent the wire load are analyzed using the TWOQUICK and CYLTRAN codes. The physical characteristics of the implosion and subsequent thermal radiation production are estimated using the LASNEX code in one dimension. These analyses show that compact tungsten wire arrays with parameters suggested by D. Mosher and with a 21-nH vacuum feed geometry satisfy the empirical scaling criterion I/(M/{ell}) {approximately} 2 MA/(mg/cm) of Mosher for optimizing non-thermal radiation from z pinches, generate low electron losses in the radial feeds, and generate electric fields at the insulator stack below the Charlie Martin flashover limit thereby permitting full power to be delivered to the load. Under such conditions, peak currents of {approximately}5 MA can be delivered to wire loads {approximately}20 ns before the driving voltage reverses at the insulator stack, potentially allowing the m = 0 instability to develop with the subsequent emission of non-thermal radiation as predicted by the Mosher model.

  16. Gas-confined barrier discharges: a simplified model for plasma dynamics in flame environments

    E-Print Network [OSTI]

    Guerra-Garcia, Carmen

    In this paper we evaluate the dynamics of non-thermal plasmas developing in extremely non-homogeneous environments. We present the gas-confined barrier discharge (GBD) concept and justify its importance as a first step to ...

  17. MEASUREMENTS OF ANISOTROPIC ION TEMPERATURES, NON-THERMAL VELOCITIES, AND DOPPLER SHIFTS IN A CORONAL HOLE

    SciTech Connect (OSTI)

    Hahn, M.; Savin, D. W. [Columbia Astrophysics Laboratory, Columbia University, MC 5247, 550 West 120th Street, New York, NY 10027 (United States)] [Columbia Astrophysics Laboratory, Columbia University, MC 5247, 550 West 120th Street, New York, NY 10027 (United States)

    2013-02-15T23:59:59.000Z

    We present a new diagnostic allowing one to measure the anisotropy of ion temperatures and non-thermal velocities, as well as Doppler shifts with respect to the ambient magnetic field. This method provides new results, as well as an independent test for previous measurements obtained with other techniques. Our spectral data come from observations of a low-latitude, on-disk coronal hole. A potential field source surface model was used to calculate the angle between the magnetic field lines and the line of sight for each spatial bin of the observation. A fit was performed to determine the line widths and Doppler shifts parallel and perpendicular to the magnetic field. For each line width component we derived ion temperatures T {sub i,} and T {sub i, Parallel-To} and non-thermal velocities v {sub nt,} and v {sub nt, Parallel-To }. T {sub i,} was cooler than off-limb polar coronal hole measurements, suggesting increasing collisional cooling with decreasing height. T {sub i, Parallel-To} is consistent with a uniform temperature of (1.8 {+-} 0.2) Multiplication-Sign 10{sup 6} K for each ion. Since parallel ion heating is expected to be weak, this ion temperature should reflect the proton temperature. A comparison between our results and others implies a large proton temperature gradient around 1.02 R {sub Sun }. The non-thermal velocities are thought to be proportional to the amplitudes of various waves. Our results for v {sub nt,} agree with Alfven wave amplitudes inferred from off-limb polar coronal hole line width measurements. Our v {sub nt, Parallel-To} results are consistent with slow magnetosonic wave amplitudes inferred from Fourier analysis of time-varying intensity fluctuations. Doppler shift measurements yield outflows of Almost-Equal-To 5 km s{sup -1} for ions formed over a broad temperature range. This differs from other studies that found a strong Doppler shift dependence on formation temperature.

  18. Non-Thermal Production of Dangerous Relics in the Early Universe

    E-Print Network [OSTI]

    G. F. Giudice; A. Riotto; I. Tkachev

    1999-07-27T23:59:59.000Z

    Many models of supersymmetry breaking, in the context of either supergravity or superstring theories, predict the presence of particles with weak scale masses and Planck-suppressed couplings. Typical examples are the scalar moduli and the gravitino. Excessive production of such particles in the early Universe destroys the successful predictions of nucleosynthesis. In particular, the thermal production of these relics after inflation leads to a bound on the reheating temperature, T_{RH} dangerous relics may be much more efficient than the thermal production after inflation. Scalar moduli fields may be copiously created by the classical gravitational effects on the vacuum state. Consequently, the new upper bound on the reheating temperature is shown to be, in some cases, as low as 100 GeV. We also study the non-thermal production of gravitinos in the early Universe, which can be extremely efficient and overcome the thermal production by several orders of magnitude, in realistic supersymmetric inflationary models.

  19. Estimations of local thermal impact on living organisms irradiated by non-thermal microwaves

    E-Print Network [OSTI]

    Shatalov, Vladimir

    2013-01-01T23:59:59.000Z

    Pennes' differential equation for bioheat transfer and the heat transfer equation are solved for the temperature distribution in a living tissue with spherical inclusions, irradiated by microwave power. It is shown that relative temperature excess in a small inclusion in the tissue in some cases is inversely proportional to its radius and does not depend on the applied power. In pulsing RF fields the effect is amplified proportionally to the ratio of the pulse period to the pulse duration. The local temperature rise significantly outpaces the averaged one and therefore the Watt to Weight SAR limits may be insufficient to estimate the safety of RF radiation and the conventional division of the biological effects of electromagnetic fields on the thermal and non-thermal needs to be revised.

  20. Non-thermal emission from standing relativistic shocks: an application to red giant winds interacting with AGN jets

    E-Print Network [OSTI]

    Bosch-Ramon, V

    2015-01-01T23:59:59.000Z

    Galactic and extragalactic relativistic jets have rich environments that are full of moving objects, such as stars and dense clumps. These objects can enter into the jets and generate shocks and non-thermal emission. We characterize the emitting properties of the downstream region of a standing shock formed due to the interaction of a relativistic jet with an obstacle. We focus on the case of red giants interacting with an extragalactic jet. We perform relativistic axisymmetric hydrodynamical simulations of a relativistic jet meeting an obstacle of very large inertia. The results are interpreted in the framework of a red giant whose dense and slow wind interacts with the jet of an active galactic nucleus. Assuming that particles are accelerated in the standing shock generated in the jet as it impacts the red giant wind, we compute the non-thermal particle distribution, the Doppler boosting enhancement, and the non-thermal luminosity in gamma rays. The available non-thermal energy from jet-obstacle interaction...

  1. On the equipartition of thermal and non-thermal energy in clusters of galaxies

    E-Print Network [OSTI]

    Pasquale Blasi

    1999-05-19T23:59:59.000Z

    Clusters of galaxies are revealing themselves as powerful sources of non thermal radiation in a wide range of wavelengths. In order to account for these multifrequency observations equipartition of cosmic rays (CRs) with the thermal gas in clusters of galaxies is often invoked. This condition might suggest a dynamical role played by cosmic rays in the virialization of these large scale structures and is now testable through gamma ray observations. We show here, in the specific case of the Coma and Virgo clusters, for which upper limits on the gamma ray emission exist, that equipartition implies gamma ray fluxes that are close or even in excess of the EGRET limit, depending on the adopted model of CR injection. We use this bound to limit the validity of the equipartition condition. We also show that, contrary to what claimed in previous calculations, the equipartition assumption implies gamma ray fluxes in the TeV range which can be detectable even by currently operating gamma ray observatories if the injection cosmic ray spectrum is flatter than $E^{-2.4}$.

  2. Comparative Analysis of Non-thermal Emissions and Study of Electron Transport in a Solar Flare

    E-Print Network [OSTI]

    T. Minoshima; T. Yokoyama; N. Mitani

    2007-10-02T23:59:59.000Z

    We study the non-thermal emissions in a solar flare occurring on 2003 May 29 by using RHESSI hard X-ray (HXR) and Nobeyama microwave observations. This flare shows several typical behaviors of the HXR and microwave emissions: time delay of microwave peaks relative to HXR peaks, loop-top microwave and footpoint HXR sources, and a harder electron energy distribution inferred from the microwave spectrum than from the HXR spectrum. In addition, we found that the time profile of the spectral index of the higher-energy ($\\gsim 100$ keV) HXRs is similar to that of the microwaves, and is delayed from that of the lower-energy ($\\lsim 100$ keV) HXRs. We interpret these observations in terms of an electron transport model called {\\TPP}. We numerically solved the spatially-homogeneous {\\FP} equation to determine electron evolution in energy and pitch-angle space. By comparing the behaviors of the HXR and microwave emissions predicted by the model with the observations, we discuss the pitch-angle distribution of the electrons injected into the flare site. We found that the observed spectral variations can qualitatively be explained if the injected electrons have a pitch-angle distribution concentrated perpendicular to the magnetic field lines rather than isotropic distribution.

  3. Non-thermal high-energy emission from colliding winds of massive stars

    E-Print Network [OSTI]

    A. Reimer; M. Pohl; O. Reimer

    2005-10-25T23:59:59.000Z

    Colliding winds of massive star binary systems are considered as potential sites of non-thermal high-energy photon production. This is motivated merely by the detection of synchrotron radio emission from the expected colliding wind location. Here we investigate the properties of high-energy photon production in colliding winds of long-period WR+OB-systems. We found that in the dominating leptonic radiation process anisotropy and Klein-Nishina effects may yield spectral and variability signatures in the gamma-ray domain at or above the sensitivity of current or upcoming gamma-ray telescopes. Analytical formulae for the steady-state particle spectra are derived assuming diffusive particle acceleration out of a pool of thermal wind particles, and taking into account adiabatic and all relevant radiative losses. For the first time we include their advection/convection in the wind collision zone, and distinguish two regions within this extended region: the acceleration region where spatial diffusion is superior to convective/advective motion, and the convection region defined by the convection time shorter than the diffusion time scale. The calculation of the Inverse Compton radiation uses the full Klein-Nishina cross section, and takes into account the anisotropic nature of the scattering process. This leads to orbital flux variations by up to several orders of magnitude which may, however, be blurred by the geometry of the system. The calculations are applied to the typical WR+OB-systems WR 140 and WR 147 to yield predictions of their expected spectral and temporal characteristica and to evaluate chances to detect high-energy emission with the current and upcoming gamma-ray experiments. (abridged)

  4. Non-thermal emission from Galaxy Clusters and future observations with the FERMI gamma-ray telescope and LOFAR

    E-Print Network [OSTI]

    G. Brunetti

    2008-10-03T23:59:59.000Z

    FERMI (formely GLAST) and LOFAR will shortly provide crucial information on the non-thermal components (relativistic particles and magnetic field) in galaxy clusters. After discussing observational facts that already put constraints on the properties and origin of non-thermal components, I will report on the emission spectrum from galaxy clusters as expected in the context of general calculations in which relativistic particles (protons and secondary electrons due to proton-proton collisions) interact with MHD turbulence generated in the cluster volume during cluster-cluster mergers. In this scenario (known as re-acceleration scenario) diffuse cluster-scale radio emission is produced in massive clusters during merging events, while gamma ray emission, at some level, is expected to be common in clusters. Expectations of interest for LOFAR and FERMI are also briefly discussed.

  5. Thermal and non-thermal emission from reconnecting twisted coronal loops

    E-Print Network [OSTI]

    Pinto, R; Browning, P K; Vilmer, N

    2015-01-01T23:59:59.000Z

    Twisted magnetic fields should be ubiquitous in the solar corona. The magnetic energy contained in such twisted fields can be released during solar flares and other explosive phenomena. Reconnection in helical magnetic coronal loops results in plasma heating and particle acceleration distributed within a large volume, including the lower coronal and chromospheric sections of the loops, and can be a viable alternative to the standard flare model, where particles are accelerated only in a small volume located in the upper corona. The goal of this study is to investigate the observational signatures of plasma heating and particle acceleration in kink-unstable twisted coronal loops using combination of MHD simulations and test-particle methods. The simulations describe the development of kink instability and magnetic reconnection in twisted coronal loops using resistive compressible MHD, and incorporate atmospheric stratification and large-scale loop curvature. The resulting distributions of hot plasma let us est...

  6. Discovery of Non-Thermal X-Rays from the Shell of RCW86

    E-Print Network [OSTI]

    Aya Bamba; Katsuji Koyama; Hiroshi Tomida

    2000-08-16T23:59:59.000Z

    We report the ASCA (Advanced Satellite for Cosmology and Astrophysics) results of RCW 86, a shell-like supernova remnant (SNR). The bright region in the X-ray band traces the radio clumpy shell, although details of the structure are different. The X-ray spectrum from each part of the shell can not be fitted to a thin thermal plasma model, but requires, at least three components: a low temperature plasma of 0.3 keV, high temperature plasma of > several keV, and a power-law component with a photon index = 3. The abundances of O, Ne, Mg and Si are significantly higher than that of Fe, indicating that RCW 86 is a type II SNR. The absorption column of 3e21 H cm^-2 indicates the distance to the SNR to be several kpc. The power-law component can be interpreted to be synchrotron radiation of high energy electrons. Assuming energy density equipartition between the magnetic field and the electrons, and using the radio and X-ray spectra, we argue that high energy electrons are accelerated up to 20 TeV. The acceleration efficiency is, however, different from shell to shell.

  7. NON-THERMAL RESPONSE OF THE CORONA TO THE MAGNETIC FLUX DISPERSAL IN THE PHOTOSPHERE OF A DECAYING ACTIVE REGION

    SciTech Connect (OSTI)

    Harra, L. K. [UCL-Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Abramenko, V. I. [Big Bear Solar Observatory, 40386 N. Shore Lane, Big Bear City, CA 92314 (United States)

    2012-11-10T23:59:59.000Z

    We analyzed Solar Dynamics Observatory line-of-sight magnetograms for a decaying NOAA active region (AR) 11451 along with co-temporal Extreme-Ultraviolet Imaging Spectrometer (EIS) data from the Hinode spacecraft. The photosphere was studied via time variations of the turbulent magnetic diffusivity coefficient, {eta}(t), and the magnetic power spectrum index, {alpha}, through analysis of magnetogram data from the Helioseismic and Magnetic Imager (HMI). These measure the intensity of the random motions of magnetic elements and the state of turbulence of the magnetic field, respectively. The time changes of the non-thermal energy release in the corona was explored via histogram analysis of the non-thermal velocity, v {sub nt}, in order to highlight the largest values at each time, which may indicate an increase in energy release in the corona. We used the 10% upper range of the histogram of v {sub nt} (which we called V {sup upp} {sub nt}) of the coronal spectral line of Fe XII 195 A. A 2 day time interval was analyzed from HMI data, along with the EIS data for the same field of view. Our main findings are the following. (1) The magnetic turbulent diffusion coefficient, {eta}(t), precedes the upper range of the v {sub nt} with the time lag of approximately 2 hr and the cross-correlation coefficient of 0.76. (2) The power-law index, {alpha}, of the magnetic power spectrum precedes V {sup upp} {sub nt} with a time lag of approximately 3 hr and the cross-correlation coefficient of 0.5. The data show that the magnetic flux dispersal in the photosphere is relevant to non-thermal energy release dynamics in the above corona. The results are consistent with the nanoflare mechanism of the coronal heating, due to the time lags being consistent with the process of heating and cooling the loops heated by nanoflares.

  8. Recent VOC Control Test Data for a Reactive VOC Converter- Scrubber System for Non-Thermal Control of VOCs

    E-Print Network [OSTI]

    McGinness, M.

    by their very nature represent a reduced fire hazard compared to dry filter booth systems. NFPA (National Fire Protection Agency) fire safety codes require the use of fire suppression automatic sprinklers on dry filter booths but not on water wash booths...Recent VOC Control Test Data for a Reactive VOC Converter Scrubber System for Non-Thermal Control of VOCs Mike McGinness VP-R&D EcoShield Environmental Systems, Inc. Houston, Texas ABSTRACT HAP (Hazardous Air Pollutant) and VOC (Volatile...

  9. Fusion Power Demonstration III

    SciTech Connect (OSTI)

    Lee, J.D. (ed.)

    1985-07-01T23:59:59.000Z

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report.

  10. Anisotropies in Non-Thermal Distortions of Cosmic Light from Photon-Axion Conversion

    E-Print Network [OSTI]

    Guido D'Amico; Nemanja Kaloper

    2015-01-07T23:59:59.000Z

    Ultralight axions which couple sufficiently strongly to photons can leave imprints on the sky at diverse frequencies by mixing with cosmic light in the presence of background magnetic fields. We explore such direction dependent grey-body distortions of the CMB spectrum, enhanced by resonant conditions in the IGM plasma. We also find that if such axions are produced in the early universe and represent a subdominant dark radiation component today, they could convert into X-rays in supervoids, and brighten them at X-ray frequencies.

  11. Anisotropies in Non-Thermal Distortions of Cosmic Light from Photon-Axion Conversion

    E-Print Network [OSTI]

    D'Amico, Guido

    2015-01-01T23:59:59.000Z

    Ultralight axions which couple sufficiently strongly to photons can leave imprints on the sky at diverse frequencies by mixing with cosmic light in the presence of background magnetic fields. We explore such direction dependent grey-body distortions of the CMB spectrum, enhanced by resonant conditions in the IGM plasma. We also find that if such axions are produced in the early universe and represent a subdominant dark radiation component today, they could convert into X-rays in supervoids, and brighten them at X-ray frequencies.

  12. The detection of non-thermal radio continuum spokes and the study of star formation in the Cartwheel

    E-Print Network [OSTI]

    Y. D. Mayya; D. Bizyaev; R. Romano; J. A. Garcia-Barreto; E. I. Vorobyov

    2005-01-14T23:59:59.000Z

    New sensitive Very Large Array 20 cm continuum observations of the Cartwheel, the prototypical collisional ring galaxy, were carried out with the principal aim of tracing supernova remnants that are expected to lie in the wake of the expanding ring and in the ring itself. We detect predominantly non-thermal radio continuum emission from regions associated with 13 ring HII complexes. The emission interior to the ring is confined to structures that resemble spokes of the wheel. The spokes start near bright HII complexes, and extend to around 6 arcsec (4 kpc) inward in the direction of the geometrical center of the ring. There is no apparent positional coincidence between the radio continuum and optical spokes. Radial distribution of intensity along the spokes suggests that the past star formation rate (SFR) in the Cartwheel was much lower than the current SFR. New Halpha observations were used to revise the current SFR in the Cartwheel. The revised value is 18 Msun/yr, which is a factor of 4 lower than the value reported previously, but is in good agreement with the SFR estimated from far infrared luminosity. About 30% of the observed 20 cm continuum non-thermal emission seems to originate in processes that are not related to star formation. Revised SFR in the Cartwheel is comparable to that in the rest of the ring galaxies.

  13. Studying the non-thermal lobes of IRAS 16547-4247 through a multi-wavelength approach

    E-Print Network [OSTI]

    Munar-Adrover, P; Paredes, J M; Iwasawa, K

    2013-01-01T23:59:59.000Z

    In the recent years massive protostars have been suggested to be high-energy emitters. Among the best candidates is IRAS 16547-4247, a protostar that presents a powerful outflow with clear signatures of interaction with its environment. This source has been revealed to be a potential high-energy source because it displays non-thermal radio emission of synchrotron origin, which is evidence of relativistic particles. To improve our understanding of IRAS 16547-4247 as a high-energy source, we analyzed XMM-Newton archival data and found that IRAS 16547-4247 is a hard X-ray source. We discuss these results in the context of a refined one-zone model and previous radio observations. From our study we find that it may be difficult to explain the X-ray emission as non-thermal radiation coming from the interaction region, but it might be produced by thermal Bremsstrahlung (plus photo-electric absorption) by a fast shock at the jet end. In the high-energy range, the source might be detectable by the present generation o...

  14. Exhaust system with emissions storage device and plasma reactor

    DOE Patents [OSTI]

    Hoard, John W. (Livonia, MI)

    1998-01-01T23:59:59.000Z

    An exhaust system for a combustion system, comprising a storage device for collecting NO.sub.x, hydrocarbon, or particulate emissions, or mixture of these emissions, and a plasma reactor for destroying the collected emissions is described. After the emission is collected in by the storage device for a period of time, the emission is then destroyed in a non-thermal plasma generated by the plasma reactor. With respect to the direction of flow of the exhaust stream, the storage device must be located before the terminus of the plasma reactor, and it may be located wholly before, overlap with, or be contained within the plasma reactor.

  15. Enhancement of the helium resonance lines in the solar atmosphere by suprathermal electron excitation I: non-thermal transport of helium ions

    E-Print Network [OSTI]

    G. R. Smith; C. Jordan

    2002-08-16T23:59:59.000Z

    Models of the solar transition region made from lines other than those of helium cannot account for the strength of the helium lines. However, the collisional excitation rates of the helium resonance lines are unusually sensitive to the energy of the exciting electrons. Non-thermal motions in the transition region could drive slowly-ionizing helium ions rapidly through the steep temperature gradient, exposing them to excitation by electrons characteristic of higher temperatures than those describing their ionization state. We present the results of calculations which use a more physical representation of the lifetimes of the ground states of He I and He II than was adopted in earlier work on this process. New emission measure distributions are used to calculate the temperature variation with height. The results show that non-thermal motions can lead to enhancements of the He I and He II resonance line intensities by factors that are comparable with those required. Excitation by non-Maxwellian electron distributions would reduce the effects of non-thermal transport. The effects of non-thermal motions are more consistent with the observed spatial distribution of helium emission than are those of excitation by non-Maxwellian electron distributions alone. In particular, they account better for the observed line intensity ratio I(537.0 A)/I(584.3 A), and its variation with location.

  16. Atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  17. Plasma-assisted catalytic storage reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA); Brusasco, Raymond M. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A two-stage method for NO.sub.x reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. The second stage employs a lean NO.sub.x trap to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage with a plasma, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, such as propene. A flow of such hydrocarbons (C.sub.x H.sub.y) is input from usually a second pipe into at least a portion of the first chamber. The NO.sub.2 from the plasma treatment proceeds to a storage reduction catalyst (lean NO.sub.x trap) that converts NO.sub.2 to N.sub.2, CO.sub.2, and H.sub.2 O, and includes a nitrate-forming catalytic site. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the lean-NO.sub.x trap catalyst. The method allows for enhanced NO.sub.x reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.

  18. Plasma-assisted catalytic storage reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA); Brusasco, Raymond M. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    A two-stage method for NO.sub.x reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. The second stage employs a lean NO.sub.x trap to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage with a plasma, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, such as propene. A flow of such hydrocarbons (C.sub.x H.sub.y) is input from usually a second pipe into at least a portion of the first chamber. The NO.sub.2 from the plasma treatment proceeds to a storage reduction catalyst (lean NO.sub.x trap) that converts NO.sub.2 to N.sub.2, CO.sub.2, and H.sub.2 O, and includes a nitrate-forming catalytic site. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the lean-NO.sub.x trap catalyst. The method allows for enhanced NO.sub.x reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.

  19. Large area atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM); Henins, Ivars (Los Alamos, NM); Babayan, Steve E. (Huntington Beach, CA); Hicks, Robert F. (Los Angeles, CA)

    2001-01-01T23:59:59.000Z

    Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

  20. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOE Patents [OSTI]

    Kong, Peter C.; Detering, Brent A.

    2003-08-19T23:59:59.000Z

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  1. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Detering, Brent A. (Idaho Falls, ID)

    2004-10-19T23:59:59.000Z

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  2. AE Aurigae: first detection of non-thermal X-ray emission from a bow shock produced by a runaway star

    E-Print Network [OSTI]

    Lopez-Santiago, J; del Valle, M V; Romero, G E; Bonito, R; Albacete-Colombo, J F; Pereira, V; de Castro, E; Damiani, F

    2012-01-01T23:59:59.000Z

    Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the production of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace by the encounter of two massive binary systems and now is passing through the dense nebula IC 405. The X-ray emission from the bow shock is detected at 30" to the northeast of the star, coinciding with an enhancement in the density of the nebula. From the analysis of the observed X-ray spectrum of the source and our theoretical emission model, we confirm that the X-ray emission is produced mainly by inverse Compton upscatt...

  3. LABORATORY III POTENTIAL ENERGY

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY III POTENTIAL ENERGY Lab III - 1 In previous problems, you have been introduced to the concepts of kinetic energy, which is associated with the motion of an object, and internal energy, which is associated with the internal structure of a system. In this section, you work with another form of energy

  4. Plasma Kinetics in the Ethanol/Water/Air Mixture in "Tornado" Type Electrical Discharge

    E-Print Network [OSTI]

    Levko, D; Chernyak, V; Olszewski, S; Nedybaliuk, O

    2011-01-01T23:59:59.000Z

    This paper presents the results of a theoretical and experimental study of plasma-assisted reforming of ethanol into molecular hydrogen in a new modification of the "tornado" type electrical discharge. Numerical modeling clarifies the nature of the non-thermal conversion and explains the kinetic mechanism of nonequilibrium plasma-chemical transformations in the gas-liquid system and the evolution of hydrogen during the reforming as a function of discharge parameters and ethanol-to-water ratio in the mixture. We also propose a scheme of chemical reactions for plasma kinetics description. It is shown that some characteristics of the investigated reactor are at least not inferior to characteristics of other plasma chemical reactors.

  5. Experimental and theoretical study of exhaust gas fuel reforming of Diesel fuel by a non-thermal arc discharge for syngas production

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -thermal arc discharge for syngas production A. Lebouvier1,2 , F. Fresnet2 , F. Fabry1 , V. Boch2 , V. Rohani1% and a conversion rate of 95% have been reached which correspond to a syngas dry molar fraction of 25%. For the most and promote H2O and CO2 production. Keywords: Plasma reformer, syngas, diesel fuel reforming, NOx trap. 1

  6. Radial heat transfer from a moving plasma

    E-Print Network [OSTI]

    Johnson, James Randall

    1966-01-01T23:59:59.000Z

    stabilized. The plasma generator employed in this investigation was a gas vortex stabilized dc-plasma jet as shown in Figure III-2, A dc-plasma jet may be described as a welding arc which has been placed in a con- tainer and the resulting high.... The cathode is adjustable so that the arc length or the distance between the electrodes can be varied. The 2% thoriated- tungsten tip is cooled by conduction through the brass support bar which also serves as a power lead. Separated from the cathode...

  7. Plasma accelerator

    DOE Patents [OSTI]

    Wang, Zhehui (Los Alamos, NM); Barnes, Cris W. (Santa Fe, NM)

    2002-01-01T23:59:59.000Z

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  8. Method of fabricating vertically aligned group III-V nanowires

    DOE Patents [OSTI]

    Wang, George T; Li, Qiming

    2014-11-25T23:59:59.000Z

    A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.

  9. III. Vacuum PumpsIII. Vacuum Pumps Gas transfer

    E-Print Network [OSTI]

    Liu, Kai

    (Gas Capture)(Gas Capture)( p )( p ) 10-3 - 10-4 torr10 10 torr Oil free, no moving parts Drawback: Oil Diffusion PumpB. High Vacuum: Oil Diffusion Pump (Wet, Gas Transfer)(Wet, Gas TransferIII. Vacuum PumpsIII. Vacuum Pumps Mechanism Gas transfer Gas capture FunctionFunction Roughing

  10. Staff Accountant III-Term Position | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 Special Report:Spotlight: Bryantis here April

  11. Procurement Specialist III/IV - REVISED | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 BrProcurement by Website Administrator Back

  12. Effect of nonthermality of electrons on the speed and shape of ion-acoustic solitary waves in a warm plasma

    SciTech Connect (OSTI)

    Abdelwahed, H. G. [Department of Physics, College of Sciences and Humanitarian Studies, Salman Bin Abdulaziz University, Al-Kharj (Saudi Arabia); Theoretical Physics Group, Faculty of Science, Mansoura University, Mansoura (Egypt); El-Shewy, E. K. [Theoretical Physics Group, Faculty of Science, Mansoura University, Mansoura (Egypt)

    2012-07-15T23:59:59.000Z

    Nonlinear ion-acoustic solitary waves in a warm collisionless plasma with nonthermal electrons are investigated by a direct analysis of the field equations. The Sagdeev's potential is obtained in terms of ion acoustic speed by simply solving an algebraic equation. It is found that the amplitude and width of the ion-acoustic solitons as well as the parametric regime where the solitons can exist are sensitive to the population of energetic non-thermal electrons. The soliton and double layer solutions are obtained as a small amplitude approximation.

  13. Exhaust aftertreatment using plasma-assisted catalysis

    SciTech Connect (OSTI)

    Penetrante, B

    2000-01-20T23:59:59.000Z

    In the field of catalysis, one application that has been classified as a breakthrough technology is the catalytic reduction of NO{sub x} in oxygen-rich environments using hydrocarbons. This breakthrough will require dramatic improvements in both catalyst and engine technology, but the benefits will be substantial for energy efficiency and a cleaner environment. Engine and automobile companies are placing greater emphasis on the diesel engine because of its potential for saving fuel resources and reducing CO{sub 2} emissions. The modern direct-injection diesel engine offers demonstrated fuel economy advantages unmatched by any other commercially-viable engine. The main drawback of diesel engines is exhaust emissions. A modification of existing oxidation catalyst/engine technology is being used to address the CO, hydrocarbon and particulates. However, no satisfactory solution currently exists for NO{sub x}. Diesel engines operate under net oxidizing conditions, thus rendering conventional three-way catalytic converters ineffective for the controlling the NO{sub x} emission. NO{sub x} reduction catalysts, using ammonia as a reductant, do exist for oxygen-rich exhausts; however, for transportation applications, the use of on-board hydrocarbon fuels is a more feasible, cost-effective, and environmentally-sound approach. Selective catalytic reduction (SCR) by hydrocarbons is one of the leading catalytic aftertreatment technologies for the reduction of NO{sub x} in lean-burn engine exhaust (often referred to as lean-NO{sub x}). The objective is to chemically reduce the pollutant molecules of NO{sub x} to benign molecules such as N{sub 2}. Aftertreatment schemes have focused a great deal on the reduction of NO because the NO{sub x} in engine exhaust is composed primarily of NO. Recent studies, however, have shown that the oxidation of NO to NO{sub 2} serves an important role in enhancing the efficiency for reduction of NO{sub x} to N{sub 2}. It has become apparent that preconverting NO to NO{sub 2} could improve both the efficiency and durability of lean-NO{sub x} catalysts. A non-thermal plasma is an efficient means for selective partial oxidation of NO to NO{sub 2}. The use of a non-thermal plasma in combination with a lean-NO{sub x} catalyst opens the opportunity for catalysts that are more efficient and more durable compared to conventional catalysts. In the absence of hydrocarbons, the O radicals will oxidize NO to NO{sub 2}, and the OH radicals will further oxidize NO{sub 2} to nitric acid. In plasma-assisted catalysis it is important that the plasma oxidize NO to NO{sub 2} without further producing acids.

  14. Princeton Plasma Physics Laboratory NSTX Experimental Proposal

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    × 2.0 ii) Reproduce 0.8MA (112546), 0.9 (112570), 1.0 (112581) and 1.2 MA (112596) iii) Document q will then be adjusted to try to reduce tearing and ELM activity in the discharge. Scans of TF and/or plasma current suffer from increased tearing activity in the flat-top and larger ELMs than obtained previously in lower

  15. Performance of large electron energy filter in large volume plasma device

    SciTech Connect (OSTI)

    Singh, S. K.; Srivastava, P. K.; Awasthi, L. M.; Mattoo, S. K.; Sanyasi, A. K.; Kaw, P. K. [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India)] [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India); Singh, R. [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India) [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India); WCI Center for Fusion Theory, National Fusion Research Institute Gwahangno 113, Yu-seong-gu, Daejeon, 305-333 (Korea, Republic of)

    2014-03-15T23:59:59.000Z

    This paper describes an in-house designed large Electron Energy Filter (EEF) utilized in the Large Volume Plasma Device (LVPD) [S. K. Mattoo, V. P. Anita, L. M. Awasthi, and G. Ravi, Rev. Sci. Instrum. 72, 3864 (2001)] to secure objectives of (a) removing the presence of remnant primary ionizing energetic electrons and the non-thermal electrons, (b) introducing a radial gradient in plasma electron temperature without greatly affecting the radial profile of plasma density, and (c) providing a control on the scale length of gradient in electron temperature. A set of 19 independent coils of EEF make a variable aspect ratio, rectangular solenoid producing a magnetic field (B{sub x}) of 100?G along its axis and transverse to the ambient axial field (B{sub z} ? 6.2?G) of LVPD, when all its coils are used. Outside the EEF, magnetic field reduces rapidly to 1?G at a distance of 20 cm from the center of the solenoid on either side of target and source plasma. The EEF divides LVPD plasma into three distinct regions of source, EEF and target plasma. We report that the target plasma (n{sub e} ? 2 × 10{sup 11}?cm{sup ?3} and T{sub e} ? 2?eV) has no detectable energetic electrons and the radial gradients in its electron temperature can be established with scale length between 50?and?600 cm by controlling EEF magnetic field. Our observations reveal that the role of the EEF magnetic field is manifested by the energy dependence of transverse electron transport and enhanced transport caused by the plasma turbulence in the EEF plasma.

  16. Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum38 (1996) A213-A225. Printed in the UK4 Plasma

  17. Transition Region Emission and Energy Input to Thermal Plasma During the Impulsive Phase of Solar Flares

    E-Print Network [OSTI]

    J. C. Raymond; G. Holman; A. Ciaravella; A. Panasyuk; Y. -K. Ko; J. Kohl

    2007-01-12T23:59:59.000Z

    The energy released in a solar flare is partitioned between thermal and non-thermal particle energy and lost to thermal conduction and radiation over a broad range of wavelengths. It is difficult to determine the conductive losses and the energy radiated at transition region temperatures during the impulsive phases of flares. We use UVCS measurements of O VI photons produced by 5 flares and subsequently scattered by O VI ions in the corona to determine the 5.0 thermal energy and the conductive losses deduced from RHESSI and GOES X-ray data using areas from RHESSI images to estimate the loop volumes, cross-sectional areas and scale lengths. The transition region luminosities during the impulsive phase exceed the X-ray luminosities for the first few minutes, but they are smaller than the rates of increase of thermal energy unless the filling factor of the X-ray emitting gas is ~ 0.01. The estimated conductive losses from the hot gas are too large to be balanced by radiative losses or heating of evaporated plasma, and we conclude that the area of the flare magnetic flux tubes is much smaller than the effective area measured by RHESSI during this phase of the flares. For the 2002 July 23 flare, the energy deposited by non-thermal particles exceeds the X-ray and UV energy losses and the rate of increase of the thermal energy.

  18. Blood mixer -Optimix Plus Plasma storage freezer -Forma 8097

    E-Print Network [OSTI]

    Strynadka, Natalie

    Equipment: Blood mixer - Optimix Plus Plasma storage freezer - Forma 8097 Blood storage cabinet - Forma 3632 Platelet storage shaker- Forma 4720 Tubing heat sealer - Hematron III Centrifuge for blood allows for the safe collection of blood, the separation and storage of blood components, and for analysis

  19. ALGEBRA 1 PB-Z III. 23 III 2012

    E-Print Network [OSTI]

    Piazza, Paolo

    di X. I. Si mostri che entrambi (A, ) e (A, ) sono dei monoidi commutativi. Sia CX : A A l'applicazione che a B A associa il suo complementare in X: A B CX(B) = X \\ B A II. Tenendo presenti le leggi di de Morgan, si mostri che CX : (A, ) (A, ) e CX : (A, ) (A, ) sono isomorfismi di monoidi (1 ). III

  20. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    SciTech Connect (OSTI)

    Li, Lee, E-mail: leeli@mail.hust.edu.cn; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electric and Electronic Engineering, HuaZhong University of Science and Technology (HUST), Wuhan 430074 (China)

    2014-01-14T23:59:59.000Z

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  1. Title III hazardous air pollutants

    SciTech Connect (OSTI)

    Todd, R.

    1995-12-31T23:59:59.000Z

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  2. Tripodal aminophenolate ligand complexes of aluminum(III), gallium(III), and indium(III) in water

    SciTech Connect (OSTI)

    Caravan, P.; Orvig, C. [Univ. of British Columbia, Vancouver (Canada)] [Univ. of British Columbia, Vancouver (Canada)

    1997-01-15T23:59:59.000Z

    This article focuses on the development of radiopharmaceuticals using new chelators of gallium and indium. The radionuclide kinetics and demetalation kinetics are of great consideration. This work explored the effects of ligand backbone variations on the selectivity of multidentate aminophenolate ligands among the trivalent metal ions Al(III), Ga(III) and In(III) in water. 54 refs., 16 figs., 3 tabs.

  3. A DECADE OF SOLAR TYPE III RADIO BURSTS OBSERVED BY THE NANCAY RADIOHELIOGRAPH 1998-2008

    SciTech Connect (OSTI)

    Saint-Hilaire, P. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)] [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Vilmer, N.; Kerdraon, A., E-mail: shilaire@ssl.berkeley.edu [LESIA, Observatoire de Paris, CNRS, UPMC, Universite Paris-Diderot 5 place Jules Janssen, F-92195 Meudon (France)

    2013-01-01T23:59:59.000Z

    We present a statistical survey of almost 10,000 radio type III bursts observed by the Nancay Radioheliograph from 1998 to 2008, covering nearly a full solar cycle. In particular, sources sizes, positions, and fluxes were examined. We find an east-west asymmetry in source positions that could be attributed to a 6 Degree-Sign {+-} 1 Degree-Sign eastward tilt of the magnetic field, that source FWHM sizes s roughly follow a solar-cycle-averaged distribution (dN/ds) Almost-Equal-To 14 {nu}{sup -3.3} s {sup -4} arcmin{sup -1} day{sup -1}, and that source fluxes closely follow a solar-cycle-averaged (dN/ds {sub {nu}}) Almost-Equal-To 0.34 {nu}{sup -2.9} S {sup -1.7} {sub {nu}} sfu{sup -1} day{sup -1} distribution (when {nu} is in GHz, s in arcminutes, and S {sub {nu}} in sfu). Fitting a barometric density profile yields a temperature of 0.6 MK, while a solar wind-like ({proportional_to}h {sup -2}) density profile yields a density of 1.2 Multiplication-Sign 10{sup 6} cm{sup -3} at an altitude of 1 R{sub S} , assuming harmonic emission. Finally, we found that the solar-cycle-averaged radiated type III energy could be similar in magnitude to that radiated by nanoflares via non-thermal bremsstrahlung processes, and we hint at the possibility that escaping electron beams might carry as much energy away from the corona as is introduced into it by accelerated nanoflare electrons.

  4. Redes III Tema 0 1 Introduccin

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    instalación y mantenimiento. #12;Redes III Tema 0 13 Calidad de una red ­ Transparencia semántica: La calidad transparencia en el tiempo. #12;Redes III Tema 0 14 Diseño de la red · Debe satisfacer la calidad de servicio

  5. WINDExchange Webinar: Overcoming Wind Siting Challenges III:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    III: Public Acceptance and Land Use WINDExchange Webinar: Overcoming Wind Siting Challenges III: Public Acceptance and Land Use June 17, 2015 3:00PM to 4:00PM EDT As a follow-up to...

  6. Anomalous radial transport in tokamak edge plasma

    E-Print Network [OSTI]

    Bodi, Vasudeva Raghavendra Kowsik

    2010-01-01T23:59:59.000Z

    Transport in tokamak plasma . . . . . . . . . . . . . . .Numerical simulations of tokamak plasma . . . . . . . . .of blobs in tokamak edge plasmas . . . . . . . . . . . . . .

  7. Plasma PhysicsPlasma Physics Atoms Beams and PlasmasAtoms Beams and Plasmas

    E-Print Network [OSTI]

    Strathclyde, University of

    of plasma research and understanding their dynamics is cutting edge topic in physics Small instabilities

  8. Plasma sweeper. [Patents

    DOE Patents [OSTI]

    Motley, R.W.; Glanz, J.

    1982-10-25T23:59:59.000Z

    A device is described for coupling RF power (a plasma sweeper) from RF power introducing means to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the RF power introducing means. Means are described for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.

  9. Automated Purge Valve Joseph Edward Farrell, III.

    E-Print Network [OSTI]

    Wood, Stephen L.

    Automated Purge Valve by Joseph Edward Farrell, III. Bachelor of Science Marine Engineering the undersigned committee hereby approve the attached thesis Automated Purge Valve by Joseph Edward Farrell, III.D. Department Head Department of Marine and Environmental Systems #12;iii Abstract Title: Automated Purge Valve

  10. NIF Title III engineering plan

    SciTech Connect (OSTI)

    Deis, G

    1998-06-01T23:59:59.000Z

    The purpose of this document is to define the work that must be accomplished by the NIF Project during Title III Engineering. This definition is intended to be sufficiently detailed to provide a framework for yearly planning, to clearly identify the specific deliverables so that the Project teams can focus on them, and to provide a common set of objectives and processes across the Project. This plan has been preceded by similar documents for Title I and Title II design and complements the Site Management Plan, the Project Control Manual, the Quality Assurance Program Plan, the RM Parsons NIF Title III Configuration Control Plan, the Integrated Project Schedule, the Preliminary Safety Analysis Report, the Configuration Management Plan, and the Transition Plan.

  11. The Absence of Plasma in "Spark Plasma Sintering"

    E-Print Network [OSTI]

    Hulbert, Dustin M.

    2008-01-01T23:59:59.000Z

    investigations on the spark plasma sintering/synthesisinvestigations on the spark plasma sintering/synthesisenhancement in spark-plasma sintering: Impact of high

  12. III. CONFINEMENT R. J. GOLDSTON (PPPL), R. E. WALTZ (GA) G. BATEMAN (PPPL), D. P. STOTLER (PPPL),

    E-Print Network [OSTI]

    are not in a position to perform "first- principles" calculations of the projected perfor- mance of BPX. On the other Force and the Doublet III-D (DIII-D) and Toka- mak Fusion Test Reactor (TFTR) experimental teams, has, in order to develop techniques to optimize such plasmas for an Engineering Test Reactor, and in order

  13. Plasma Cavity Ringdown Spectrometer for Elemental and Isotopic Measurements: Past, Present, and Future

    SciTech Connect (OSTI)

    Wang, Chuji; Winstead, Christopher B.; Duan, Yixiang; Scherrer, Susan T.; Koirala, Sudip P.; Jang, Ping-Rey; Miller, George P.; Mazzotti, Fabio J.

    2004-03-31T23:59:59.000Z

    Recent studies using Plasma Cavity Ringdown Spectroscopy (plasma-CRDS) show much promise of this newly developed technique for ultra-sensitive elemental/isotopic measurements. Plasma-CRDS, since its introduction in 1997, has experienced three major stages: (i) the early stage demonstration of the technical feasibility, (ii) the recent advancement on its technical improvements and extensive applications for elemental/isotopic measurements as well as plasma diagnostics and (iii) the most recent progress on the improvement of the instrument configurations based on a diode laser-compact microwave plasma-CRDS. Research and development in many aspects of this technique is vigorously under processing in our laboratories. This paper reports a brief review on the plasma-CRDS technique, its applications and the most recent advancement. Discussions on future developments toward a new generation of plasma- CRDS-based spectrometers for ultra-sensitive elemental/isotopic measurements are also presented.

  14. III

    E-Print Network [OSTI]

    2014-03-18T23:59:59.000Z

    Mar 18, 2014 ... 7801, Springer, 2013, pp. 62–. 73, ISBN 978-3-642-36693-2. The authors gratefully acknowledge partial support from the National Science ...

  15. III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen andHypernuclei in Hall link toall2, Issue,

  16. oxygen-plasma | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxygen-plasma oxygen-plasma Leads No leads are available at this time. Conversion of 1,2-Propylene Glycol on Rutile TiO2(110). Abstract: We have studied the reactions of...

  17. Alta III | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to:Almo, Idaho: Energy ResourcesAlta I JumpIII

  18. PART III - LIST OF DOCUMENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize832 2.860 2.864 2.867039 J - 1 PART III -

  19. WCI-III Workshop Recap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilize AvailableMedia1.1 TheVolkerEvents)WCI-III Recap

  20. Shiloh III | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAirPower Partners WindSherbino 2ShikunIII Jump

  1. Ashtabula III | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformation Arizona'sinCalifornia:II Wind FarmIII

  2. DOE/NNSA perspective safeguard by design: GEN III/III+ light water reactors and beyond

    SciTech Connect (OSTI)

    Pan, Paul Y [Los Alamos National Laboratory

    2010-12-10T23:59:59.000Z

    An overview of key issues relevant to safeguards by design (SBD) for GEN III/IV nuclear reactors is provided. Lessons learned from construction of typical GEN III+ water reactors with respect to SBD are highlighted. Details of SBD for safeguards guidance development for GEN III/III+ light water reactors are developed and reported. This paper also identifies technical challenges to extend SBD including proliferation resistance methodologies to other GEN III/III+ reactors (except HWRs) and GEN IV reactors because of their immaturity in designs.

  3. Thermionic energy conversion plasmas

    SciTech Connect (OSTI)

    Rasor, N.S. (Rasor Associates, Inc., Sunnyvale, CA (United States))

    1991-12-01T23:59:59.000Z

    In this paper the history, application options, and ideal basic performance of the thermionic energy converter are outlined. The basic plasma types associated with various modes of converter operation are described, with emphasis on identification and semi-quantitative characterization of the dominant physical processes and utility of each plasma type. The frontier plasma science issues in thermionic converter applications are briefly summarized.

  4. Plasma regenerated particulate trap and NO.sub.x reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA); Brusasco, Raymond M. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    A non-catalytic two-stage process for removal of NO.sub.x and particulates from engine exhaust comprises a first stage that plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, and a second stage, which preferably occurs simultaneously with the first stage, that converts NO.sub.2 and carbon soot particles to respective environmentally benign gases that include N.sub.2 and CO.sub.2. By preconverting NO to NO.sub.2 in the first stage, the efficiency of the second stage for NO.sub.x reduction is enhanced while carbon soot from trapped particulates is simultaneously converted to CO.sub.2 when reacting with the NO.sub.2 (that converts to N.sub.2). For example, an internal combustion engine exhaust is connected by a pipe to a chamber where carbon-containing particulates are electrostatically trapped or filtered and a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. Volatile hydrocarbons (C.sub.x H.sub.y) from the trapped particulates are oxidized in the plasma and the remaining soot from the particulates reacts with the NO.sub.2 to convert NO.sub.2 to N.sub.2, and the soot to CO.sub.2. The nitrogen exhaust components remain in the gas phase throughout the process, with no accompanying adsorption.

  5. Curvature invariants in type-III spacetimes

    E-Print Network [OSTI]

    V. Pravda

    1999-08-17T23:59:59.000Z

    The results of paper [1] are generalized for vacuum type-III solutions with, in general, a non-vanishing cosmological constant Lambda. It is shown that all curvature invariants containing derivatives of the Weyl tensor vanish if a type-III spacetime admits a non-expanding and non-twisting null geodesic congruence. A non-vanishing curvature invariant containing first derivatives of the Weyl tensor is found in the case of type-III spacetime with expansion or twist.

  6. Sandia National Laboratories: III-nitride materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    III-nitride materials SSLS Scientist Andy Armstrong Receives 2013 Employee Recognition Award On September 9, 2013, in EC, Energy, Energy Efficiency, Events, News, News & Events,...

  7. Role of defects in III-nitride based electronics

    SciTech Connect (OSTI)

    HAN,JUNG; MYERS JR.,SAMUEL M.; FOLLSTAEDT,DAVID M.; WRIGHT,ALAN F.; CRAWFORD,MARY H.; LEE,STEPHEN R.; SEAGER,CARLETON H.; SHUL,RANDY J.; BACA,ALBERT G.

    2000-01-01T23:59:59.000Z

    The LDRD entitled ``Role of Defects in III-Nitride Based Devices'' is aimed to place Sandia National Laboratory at the forefront of the field of GaN materials and devices by establishing a scientific foundation in areas such as material growth, defect characterization/modeling, and processing (metalization and etching) chemistry. In this SAND report the authors summarize their studies such as (1) the MOCVD growth and doping of GaN and AlGaN, (2) the characterization and modeling of hydrogen in GaN, including its bonding, diffusion, and activation behaviors, (3) the calculation of energetic of various defects including planar stacking faults, threading dislocations, and point defects in GaN, and (4) dry etching (plasma etching) of GaN (n- and p-types) and AlGaN. The result of the first AlGaN/GaN heterojunction bipolar transistor is also presented.

  8. Wave-wave interactions in solar type III radio bursts

    SciTech Connect (OSTI)

    Thejappa, G. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); MacDowall, R. J. [NASA/Goddard Space Flight Center, Greenbelt MD 20771 (United States)

    2014-02-11T23:59:59.000Z

    The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.

  9. Large ELMs Triggered by MHD in JET Advanced Tokamak Plasmas: Impact on Plasmas Profiles, Plasmas Facing Components and Heating Systems

    E-Print Network [OSTI]

    Large ELMs Triggered by MHD in JET Advanced Tokamak Plasmas: Impact on Plasmas Profiles, Plasmas Facing Components and Heating Systems

  10. Volume III, Chapter 3 Pacific Lamprey

    E-Print Network [OSTI]

    Volume III, Chapter 3 Pacific Lamprey #12;TABLE OF CONTENTS 3.0 Pacific Lamprey (Lampetra ........................................................................................... 3-13 3.4.8 Ocean & Estuary Conditions................................................................................................................. 3-14 #12;PACIFIC LAMPREY III, 3-1 May 2004 3.0 Pacific Lamprey (Lampetra tridentata) The anadromous

  11. Preparation of III-V semiconductor nanocrystals

    DOE Patents [OSTI]

    Alivisatos, A.P.; Olshavsky, M.A.

    1996-04-09T23:59:59.000Z

    Nanometer-scale crystals of III-V semiconductors are disclosed. They are prepared by reacting a group III metal source with a group V anion source in a liquid phase at elevated temperature in the presence of a crystallite growth terminator such as pyridine or quinoline. 4 figs.

  12. Volume III, Chapter 11 Dusky Canada Goose

    E-Print Network [OSTI]

    Volume III, Chapter 11 Dusky Canada Goose #12;TABLE OF CONTENTS 11.0 DUSKY CANADA GOOSE (BRANTA............................................................................................................... 11-20 #12;DUSKY CANADA GOOSE III, 11-1 May 2004 11.0 Dusky Canada Goose (Branta canadensis occidentalis, Baird) 11.1 Introduction The dusky Canada goose (Branta canadensis occidentalis) is a distinctive

  13. Preparation of III-V semiconductor nanocrystals

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Berkeley, CA); Olshavsky, Michael A. (Brunswick, OH)

    1996-01-01T23:59:59.000Z

    Nanometer-scale crystals of III-V semiconductors are disclosed, They are prepared by reacting a group III metal source with a group V anion source in a liquid phase at elevated temperature in the presence of a crystallite growth terminator such as pyridine or quinoline.

  14. Edward W. Wild III Computer Sciences Department

    E-Print Network [OSTI]

    Liblit, Ben

    Edward W. Wild III Computer Sciences Department University of Wisconsin-Madison 1210 West Dayton languages. #12;Edward W. Wild III 2 Honors Dean's Honored Graduate 2002 · College of Natural Sciences Articles (1) O. L. Mangasarian, J. W. Shavlik and E. W. Wild. Knowledge-Based Kernel Approximation. Journal

  15. Magnetic dipole discharges. III. Instabilities

    SciTech Connect (OSTI)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California Los Angeles, California 90095-1547 (United States)] [Department of Physics and Astronomy, University of California Los Angeles, California 90095-1547 (United States); Ionita, C.; Schrittwieser, R. [Institute for Ion Physics and Applied Physics, University of Innsbruck A-6020 Innsbruck (Austria)] [Institute for Ion Physics and Applied Physics, University of Innsbruck A-6020 Innsbruck (Austria)

    2013-08-15T23:59:59.000Z

    Instabilities in a cross-field discharge around a permanent magnet have been investigated. The permanent magnet serves as a cold cathode and the chamber wall as an anode. The magnet is biased strongly negative and emits secondary electrons due to impact of energetic ions. The electrons outside the sheath are confined by the strong dipolar magnetic field and by the ion-rich sheath surrounding the magnet. The electron energy peaks in the equatorial plane where most ionization occurs and the ions are trapped in a negative potential well. The discharge mechanism is the same as that of cylindrical and planar magnetrons, but here extended to a 3-D cathode geometry using a single dipole magnet. While the basic properties of the discharge are presented in a companion paper, the present focus is on various observed instabilities. The first is an ion sheath instability which oscillates the plasma potential outside the sheath below the ion plasma frequency. It arises in ion-rich sheaths with low electron supply, which is the case for low secondary emission yields. Sheath oscillations modulate the discharge current creating oscillating magnetic fields. The second instability is current-driven ion sound turbulence due to counter-streaming electrons and ions. The fluctuations have a broad spectrum and short correlation lengths in all directions. The third type of fluctuations is spiky potential and current oscillations in high density discharges. These appear to be due to unstable emission properties of the magnetron cathode.

  16. Plasma-Therm Workshop: Fundamentals of Plasma Processing (Etching & Deposition)

    E-Print Network [OSTI]

    Martin, Jan M.L.

    The workshop will focus on the fundamentals of plasma etching and deposition. Lectures will includePlasma-Therm Workshop: Fundamentals of Plasma Processing (Etching & Deposition) Nanofabrication an introduction to vacuum technology, the basics of plasma and plasma reactors and an overview of mechanisms

  17. PLASMA PHYSICS PPPL UC Davis

    E-Print Network [OSTI]

    PRINCETON PLASMA PHYSICS LABORATORY PPPL UC Davis PRINCETON PLASMA PHYSICS LABORATORY PPPL UC Davis. Domier and N.C. Luhmann, Jr. UC at Davis at Workshop on Long Time Simulations of Kinetic Plasmas April 21, 2006 Hyatt Regency, Dallas, TX #12;PRINCETON PLASMA PHYSICS LABORATORY PPPL UC Davis PRINCETON PLASMA

  18. Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  19. BNL | ATF Plasma Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diagnostic enables measurement of plasma wakefields on the picosecond timescale using ultrafast optical probe pulses. Although in this frequency domain interferometry has yet...

  20. aspectos atuais iii: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    form of energy Minnesota, University of 9 Speicherring DORIS III DORIS III Betrieb 1999 Physics Websites Summary: -basierte Kontrollsystem inte- griert. Wegen der...

  1. anticarcinogenesis mechanisms iii: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    III Engineering Websites Summary: Needle-Membrane Puncture Mechanics Ray Lathrop, Randy Smith, and Robert J. Webster III Medical for quasistatic cutting Damped, second order...

  2. Measuring the plasma density of a ferroelectric plasma source in an expanding plasma

    E-Print Network [OSTI]

    Measuring the plasma density of a ferroelectric plasma source in an expanding plasma A. Dunaevsky and N. J. Fisch Princeton Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New temperature at the surface of a ferroelectric plasma source were deduced from floating probe measurements

  3. PLASMA ENERGETIC PARTICLES SIMULATION CENTER (PEPSC)

    SciTech Connect (OSTI)

    Berk, Herbert L.

    2014-05-23T23:59:59.000Z

    The main effort of the Texas group was to develop theoretical and simplified numerical models to understand chirping phenomena often seen for Alfven and geodesic acoustic waves in experimental plasmas such as D-III-D, NSTX and JET. Its main numerical effort was to modify the AEGIS code, which was originally developed as an eigenvalue solver. To apply to the chirping problem this code has to be able to treat the linear response to the continuum and the response of the plasma to external drive or to an internal drive that comes from the formation of phase space chirping structures. The theoretical underpinning of this investigation still needed to be more fully developed to understand how to best formulate the theoretical problem. Considerable progress was made on this front by B.N. Breizman and his collaborators and a new reduced model was developed by H. L. Berk and his PhD student, G. Wang which can be uses as simplified model to describe chirping in a large aspect ratio tokamak. This final report will concentrate on these two directions that were developed as well as results that were found in the work with the AEGIS code and in the progress in developing a novel quasi-linear formulation for a description of Alfvenic modes destabilized by energetic particles, such as alpha particles in a burning plasma.

  4. Understanding plume splitting of laser ablated plasma: A view from ion distribution dynamics

    SciTech Connect (OSTI)

    Wu, Jian; Li, Xingwen; Wei, Wenfu; Jia, Shenli; Qiu, Aici [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Shaanxi 710049 (China)] [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Shaanxi 710049 (China)

    2013-11-15T23:59:59.000Z

    Plume splitting in low-pressure ambient air was understood in view of ion distribution dynamics from the laser ablated Al plasma (1064 nm 0.57 J/mm{sup 2}) by combining fast photography and spatially resolved spectroscopy. In the beginning, the spectral lines were mainly from the Al III ion. Then, the Bragg peak in stopping power of the ambient gas to Al III could be the dominant reason for the enhanced emission from the fast moving part, and the recombination of Al III to Al I-II ions near the target surface was response to the radiations from the slow moving/stationary part. As the ambient gas pressure increased, stopping distances of the Al III decreased, and radiation from the air ions became pronounced. The laser shadowgraph image at 1100 Pa indicated that the shock wave front located between the fast moving and slow moving parts. Electron densities of the fast moving plasma, which peaked at the plasma front, were on the order of 10{sup 16} cm{sup ?3}, and the electron temperatures were 2–3 eV.

  5. Spectroscopic measurements of temperature and plasma impurity concentration during magnetic reconnection

    E-Print Network [OSTI]

    Cohen, David

    reconnection at the Swarthmore Spheromak Experiment V. H. Chaplin,1,2 M. R. Brown,1 D. H. Cohen,1 T. Gray,1 counterhelicity spheromak merging studies at the Swarthmore Spheromak Experiment SSX M. R. Brown, Phys. Plasmas 6 spheromak merging. Average C III ion temperature, measured with a new ion Doppler spectrometer IDS C. D

  6. CO-IMPLANTATION AND DRY-ETCH DAMAGE RECOVERY BY PLASMA NITRIDATION IN GaN

    E-Print Network [OSTI]

    Pearton, Stephen J.

    CO-IMPLANTATION AND DRY-ETCH DAMAGE RECOVERY BY PLASMA NITRIDATION IN GaN BY DONALD G. KENT III ............................................................................ x CHAPTERS 1 INTRODUCTION ................................................................. 1 1.1 GaN Applications ........................................................ 1 1.2 GaN Material Issues

  7. High-Energy Plasma Fusion

    E-Print Network [OSTI]

    Guruangan, Karthik

    2014-01-01T23:59:59.000Z

    Simulations of Dense Plasma Focus Z-Pinch Devices.pdfSimulations of Dense-Plasma Focus Z-Pinch Device. Physicalplasmas and dense-plasma focus (DPF) Z-Pinch devices. DPF

  8. 23 6 12 8:00 III-V/Ge CMOS

    E-Print Network [OSTI]

    Katsumoto, Shingo

    23 6 12 8:00 - 1 - 1. : III-V/Ge CMOS ~ 200%~ 2. : III-V (Ge) III-V/Ge CMOS (Si) 200% III-V/Ge CMOS 200% III-V/Ge CMOS () () () () III-V III-V/Ge CMOS (1) III-V Ge III-V/Ge CMOS (2) III-V-OI MOSFET (3) III-V/Ge CMOS "2011 Symposia on VLSI

  9. Fundamentals of Plasma Physics

    E-Print Network [OSTI]

    Callen, James D.

    of students (from physics, engineering physics, elec- trical engineering, nuclear engineering and other un;PREFACE Plasma physics is a relatively new branch of physics that became a mature science over the last). Thus, plasma physics has developed in large part as a branch of applied or engineering physics

  10. Plasma technology directory

    SciTech Connect (OSTI)

    Ward, P.P.; Dybwad, G.L.

    1995-03-01T23:59:59.000Z

    The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

  11. Diamagnetism of rotating plasma

    SciTech Connect (OSTI)

    Young, W. C.; Hassam, A. B.; Romero-Talamas, C. A.; Ellis, R. F.; Teodorescu, C. [IREAP, University of Maryland, College Park, Maryland 20742 (United States)

    2011-11-15T23:59:59.000Z

    Diamagnetism and magnetic measurements of a supersonically rotating plasma in a shaped magnetic field demonstrate confinement of plasma pressure along the magnetic field resulting from centrifugal force. The Grad-Shafranov equation of ideal magnetohydrodynamic force balance, including supersonic rotation, is solved to confirm that the predicted angular velocity is in agreement with spectroscopic measurements of the Doppler shifts.

  12. Evaluation of Corona Reactors of Several Geometries for a Plasma Assisted Nitrogen Oxide Emission Reduction Device

    SciTech Connect (OSTI)

    Herling, Darrell R.; Smith, Monty R.; Hemingway, Mark D.; Goulette, David; Silvis, Thomas W.

    2000-08-09T23:59:59.000Z

    Proposed vehicle emissions regulations for the near future have prompted automotive manufactures and component suppliers to focus heavily on developing more efficient exhaust aftertreatment devices to lower emissions from spark and compression ignition engines. One of the primary pollutants from lean-burn engines, especially from diesels, are oxides of nitrogen (NOx). Current three-way catalytic converters will not have adequate performance to meet future emission reduction requirements. Therefore, there is a need for researchers and engineers to develop efficient exhaust aftertreatment devices that will reduce NOx emissions from lean-burn engines. These devices must have very high conversion of NOx gases, be unaffected by exhaust-gas impurity such as sulfur, and have minimal impact on vehicle operations and fuel economy. An effective technology for NOx control that is currently receiving a lot of attention is a non-thermal plasma system. This system is comprised of a two-stage corona generation device (plasma reactor) and reduction catalyst that reduces nitric oxide and nitrogen dioxide emissions to nitrogen.

  13. Plasma opening switch

    DOE Patents [OSTI]

    Savage, Mark E. (Albuquerque, NM); Mendel, Jr., Clifford W. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A command triggered plasma opening switch assembly using an amplification stage. The assembly surrounds a coaxial transmission line and has a main plasma opening switch (POS) close to the load and a trigger POS upstream from the main POS. The trigger POS establishes two different current pathways through the assembly depended on whether it has received a trigger current pulse. The initial pathway has both POS's with plasma between their anodes and cathodes to form a short across the transmission line and isolating the load. The final current pathway is formed when the trigger POS receives a trigger current pulse which energizes its fast coil to push the conductive plasma out from between its anode and cathode, allowing the main transmission line current to pass to the fast coil of the main POS, thus pushing its plasma out the way so as to establish a direct current pathway to the load.

  14. Waveguide Filter Tutorial Julius O. Smith III

    E-Print Network [OSTI]

    Smith III, Julius Orion

    Waveguide Filter Tutorial Julius O. Smith III Center for Computer Research in Music and Acoustics was adapted from the conference paper "Waveguide Filter Tutorial," by J.O. Smith, Proceedings

  15. WRITTEN TESTIMONY OF RUSSELL F. SMITH III

    E-Print Network [OSTI]

    1 WRITTEN TESTIMONY OF RUSSELL F. SMITH III DEPUTY ASSISTANT SECRETARY FOR INTERNATIONAL FISHERIES APRIL 3, 2014 Introduction Good morning Mr. Chairman and Members of the Committee. I am Russell Smith

  16. WRITTEN TESTIMONY OF RUSSELL F. SMITH III

    E-Print Network [OSTI]

    WRITTEN TESTIMONY OF RUSSELL F. SMITH III DEPUTY ASSISTANT SECRETARY FOR INTERNATIONAL FISHERIES Introduction Good morning Mr. Chairman and Members of the Committee. I am Russell Smith, Deputy Assistant

  17. Plasma Diagnostics and Plasma-Surface Interactions in Inductively Coupled Plasmas

    E-Print Network [OSTI]

    Titus, Monica Joy

    2010-01-01T23:59:59.000Z

    intensities for pure Ar plasmas focus on the dominant 104.8emitted from pure A r plasmas focus on the intensities ofdissertation work focuses on plasma and wafer diagnostics as

  18. Chapter Six TITANIUM(III) CHLORIDE*

    E-Print Network [OSTI]

    Girolami, Gregory S.

    , and purged with dry nitrogen gas. The flask is charged with 1.6 mL (2.8 g, 15 mmol) of titanium tetrachlorideChapter Six TITANIUM(III) CHLORIDE* 50. AN ACTIVE FORM OF TITANIUM(III) CHLORIDE Me3SiSiMe3 + 2Ti. ANDERSEN The reduction of TiCl4 with hexamethyldisilane does not afford titanium(II) chloride as reported

  19. On the structure of blue phase III

    E-Print Network [OSTI]

    O. Henrich; K. Stratford; M. E. Cates; D. Marenduzzo

    2011-10-31T23:59:59.000Z

    We report large scale simulations of the blue phases of cholesteric liquid crystals. Our results suggest a structure for blue phase III, the blue fog, which has been the subject of a long debate in liquid crystal physics. We propose that blue phase III is an amorphous network of disclination lines, which is thermodynamically and kinetically stabilised over crystalline blue phases at intermediate chiralities}. This amorphous network becomes ordered under an applied electric field, as seen in experiments.

  20. Proposal for PLASMA LENS EXPERIMENT AT

    E-Print Network [OSTI]

    Proposal for PLASMA LENS EXPERIMENT AT THE FINAL FOCUS TEST BEAM April 1, 1997 THE PLASMA LENS.....................................................................................3 1.1 Plasma Focusing ......................................................................3 1.2 Previous Plasma Lens Experiments.................................................4 1.3 Plasma Lens

  1. FLARE-ASSOCIATED TYPE III RADIO BURSTS AND DYNAMICS OF THE EUV JET FROM SDO/AIA AND RHESSI OBSERVATIONS

    SciTech Connect (OSTI)

    Chen Naihwa; Ip, Wing-Huen [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China); Innes, Davina, E-mail: d949001@astro.ncu.edu.tw, E-mail: wingip@astro.ncu.edu.tw, E-mail: innes@mps.mpg.de [Max-Planck-Institut fuer Sonnensystemforschung, D-37191 Katlenburg-Lindau (Germany)

    2013-06-01T23:59:59.000Z

    We present a detailed description of the interrelation between the Type III radio bursts and energetic phenomena associated with the flare activities in active region AR11158 at 07:58 UT on 2011 February 15. The timing of the Type III radio burst measured by the radio wave experiment on Wind/WAVE and an array of ground-based radio telescopes coincided with an extreme-ultraviolet (EUV) jet and hard X-ray (HXR) emission observed by SDO/AIA and RHESSI, respectively. There is clear evidence that the EUV jet shares the same source region as the HXR emission. The temperature of the jet, as determined by multiwavelength measurements by Atmospheric Imaging Assembly, suggests that Type III emission is associated with hot, 7 MK, plasma at the jet's footpoint.

  2. CHAPTER 1. COLLECTIVE PLASMA PHENOMENA 1 Collective Plasma

    E-Print Network [OSTI]

    Callen, James D.

    CHAPTER 1. COLLECTIVE PLASMA PHENOMENA 1 Chapter 1 Collective Plasma Phenomena The properties of a medium are determined by the microscopic processes in it. In a plasma the microscopic processes is actually limited to a distance of order the Debye length in a plasma. On length scales longer than

  3. Molten-Salt-Based Growth of Group III Nitrides

    DOE Patents [OSTI]

    Waldrip, Karen E. (Albuquerque, NM); Tsao, Jeffrey Y. (Albuquerque, NM); Kerley, Thomas M. (Albuquerque, NM)

    2008-10-14T23:59:59.000Z

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  4. Measuring the Plasma Density of a Ferroelectric Plasma Source in an Expanding Plasma

    SciTech Connect (OSTI)

    A. Dunaevsky; N.J. Fisch

    2003-10-02T23:59:59.000Z

    The initial density and electron temperature at the surface of a ferroelectric plasma source were deduced from floating probe measurements in an expanding plasma. The method exploits negative charging of the floating probe capacitance by fast flows before the expanding plasma reaches the probe. The temporal profiles of the plasma density can be obtained from the voltage traces of the discharge of the charged probe capacitance by the ion current from the expanding plasma. The temporal profiles of the plasma density, at two different distances from the surface of the ferroelectric plasma source, could be further fitted by using the density profiles for the expanding plasma. This gives the initial values of the plasma density and electron temperature at the surface. The method could be useful for any pulsed discharge, which is accompanied by considerable electromagnetic noise, if the initial plasma parameters might be deduced from measurements in expanding plasma.

  5. Plasma-based accelerator structures

    SciTech Connect (OSTI)

    Schroeder, Carl B.

    1999-12-01T23:59:59.000Z

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  6. Inductively coupled helium plasma torch

    DOE Patents [OSTI]

    Montaser, Akbar (Potomac, MD); Chan, Shi-Kit (Washington, DC); Van Hoven, Raymond L. (Alexandria, VA)

    1989-01-01T23:59:59.000Z

    An inductively coupled plasma torch including a base member, a plasma tube and a threaded insert member within the plasma tube for directing the plasma gas in a tangential flow pattern. The design of the torch eliminates the need for a separate coolant gas tube. The torch can be readily assembled and disassembled with a high degree of alignment accuracy.

  7. III-V Nanowire Growth Mechanism: V/III Ratio and Temperature Effects

    E-Print Network [OSTI]

    Wang, Deli

    ,17,18 The growth experiments reported in this paper were performed in a horizontal OMVPE growth tube using to be determined by the local V/III ratio, which is dependent on the input precursor flow rates, growth temperature to favor vapor-solid (VS) surface growth over VLS NW growth. By tuning both the group III flow rate

  8. EMSL - oxygen-plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxygen-plasma en Conversion of 1,2-Propylene Glycol on Rutile TiO2(110). http:www.emsl.pnl.govemslwebpublicationsconversion-12-propylene-glycol-rutile-tio2110

  9. Induction plasma tube

    DOE Patents [OSTI]

    Hull, D.E.

    1982-07-02T23:59:59.000Z

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  10. Induction plasma tube

    DOE Patents [OSTI]

    Hull, Donald E. (Los Alamos, NM)

    1984-01-01T23:59:59.000Z

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  11. Simulation of Fusion Plasmas

    ScienceCinema (OSTI)

    Chris Holland

    2010-01-08T23:59:59.000Z

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the ?burning plasma? regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  12. Laser Plasma Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    processes. A typical configuration uses a low intensity laser beam (2nd, 3rd, or 4th harmonic of 1054-nm) to probe a plasma volume. The Thomson scattered light is collected by a...

  13. Accelerating Particles with Plasma

    SciTech Connect (OSTI)

    Litos, Michael; Hogan, Mark

    2014-11-05T23:59:59.000Z

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  14. Electrostatics of moving plasma

    SciTech Connect (OSTI)

    Ignatov, A. M. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)] [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2013-07-15T23:59:59.000Z

    The stability of charge distribution over the surface of a conducting body in moving plasma is analyzed. Using a finite-width plate streamlined by a cold neutralized electron flow as an example, it is shown that an electrically neutral body can be unstable against the development of spontaneous polarization. The plasma parameters at which such instability takes place, as well as the frequency and growth rate of the fundamental mode of instability, are determined.

  15. Plasma Screen Floating Mount

    DOE Patents [OSTI]

    Eakle, Robert F. (New Ellenton, SC); Pak, Donald J. (Martine, GA)

    2004-10-26T23:59:59.000Z

    A mounting system for a flat display screen, particularly a plasma display screen, suspends the screen separately in each of the x-, y- and z-directions. A series of frames located by linear bearings and isolated by springs and dampers allows separate controlled movement in each axis. The system enables the use of relatively larger display screens in vehicles in which plasma screen are subject to damage from vibration.

  16. Energy flux of Alfven waves in weakly ionized plasma

    E-Print Network [OSTI]

    J. Vranjes; S. Poedts; B. P. Pandey; B. De Pontieu

    2008-05-29T23:59:59.000Z

    The overshooting convective motions in the solar photosphere are frequently proposed as the source for the excitation of Alfv\\'en waves. However, the photosphere is a) very weakly ionized, and, b) the dynamics of the plasma particles in this region is heavily influenced by the plasma-neutral collisions. The purpose of this work is to check the consequences of these two facts on the above scenario and their effects on the electromagnetic waves. It is shown that the ions and electrons in the photosphere are both un-magnetized; their collision frequency with neutrals is much larger than the gyro-frequency. This implies that eventual Alfv\\'en-type electromagnetic perturbations must involve the neutrals as well. This has the following serious consequences: i) in the presence of perturbations, the whole fluid (plasma + neutrals) moves; ii) the Alfv\\'en velocity includes the total (plasma + neutrals) density and is thus considerably smaller compared to the collision-less case; iii) the perturbed velocity of a unit volume, which now includes both plasma and neutrals, becomes much smaller compared to the ideal (collision-less) case; and iv) the corresponding wave energy flux for the given parameters becomes much smaller compared to the ideal case.

  17. Inductively Coupled Plasma and Electron Cyclotron Resonance Plasma Etching of InGaAlP Compound Semiconductor System

    SciTech Connect (OSTI)

    Abernathy, C.R.; Hobson, W.S.; Hong, J.; Lambers, E.S.; Pearton, S.J.; Shul, R.J.

    1998-11-04T23:59:59.000Z

    Current and future generations of sophisticated compound semiconductor devices require the ability for submicron scale patterning. The situation is being complicated since some of the new devices are based on a wider diversity of materials to be etched. Conventional IUE (Reactive Ion Etching) has been prevalent across the industry so far, but has limitations for materials with high bond strengths or multiple elements. IrI this paper, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma), for the etching of ternary compound semiconductors (InGaP, AIInP, AlGaP) which are employed for electronic devices like heterojunction bipolar transistors (HBTs) or high electron mobility transistors (HEMTs), and photonic devices such as light-emitting diodes (LEDs) and lasers. High density plasma sources, opeiating at lower pressure, are expected to meet target goals determined in terms of etch rate, surface morphology, surface stoichiometry, selectivity, etc. The etching mechanisms, which are described in this paper, can also be applied to other III-V (GaAs-based, InP-based) as well as III-Nitride since the InGaAIP system shares many of the same properties.

  18. Multi-dipolar microwave plasmas and their application to negative ion production

    SciTech Connect (OSTI)

    Béchu, S.; Bès, A.; Lacoste, A. [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Grenoble INP, 53, Avenue des Martyrs, 38026 Grenoble (France)] [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Grenoble INP, 53, Avenue des Martyrs, 38026 Grenoble (France); Soum-Glaude, A. [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Grenoble INP, 53, Avenue des Martyrs, 38026 Grenoble (France) [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Grenoble INP, 53, Avenue des Martyrs, 38026 Grenoble (France); PROMES/CNRS, Tecnosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Svarnas, P. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, 26504 Rion (Greece)] [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, 26504 Rion (Greece); Aleiferis, S. [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Grenoble INP, 53, Avenue des Martyrs, 38026 Grenoble (France) [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Grenoble INP, 53, Avenue des Martyrs, 38026 Grenoble (France); High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, 26504 Rion (Greece); Ivanov, A. A. Jr.; Bacal, M. [UPMC, LPP, Ecole Polytechnique, Palaiseau, Université PARIS-SUD 11, UMR CNRS 7648 (France)] [UPMC, LPP, Ecole Polytechnique, Palaiseau, Université PARIS-SUD 11, UMR CNRS 7648 (France)

    2013-10-15T23:59:59.000Z

    During the past decade multi-dipolar plasmas have been employed for various purposes such as surface treatments in biomedicine, physical and chemical vapour deposition for hydrogen storage, and applications in mechanical engineering. On the other hand, due to the design and operational mode of these plasma sources (i.e., strong permanent magnets for the electron cyclotron resonance coupling, low working pressure, and high electron density achieved) they are suitable for studying fundamental mechanisms involved in negative ion sources used in magnetically confined fusion and particle accelerators. Thus, this study presents an overview of fundamental results obtained with: (i) a single dipolar source, (ii) a network of seven dipolar plasma sources inserted into a magnetic multipolar chamber (Camembert III), and (iii) four dipolar sources housed in a smaller metallic cylinder (ROSAE III). Investigations with Langmuir probes of electron energy probability functions revealed the variation of the plasma properties versus the radial distance from the axis of a dipolar source in its mid plane and allowed the determination of the proportion between hot and cold electron populations in both chambers. These results are compared with the density of hydrogen negative ions, measured using the photodetachment technique. Electron energy probability functions obtained in these different configurations show the possibility of both hot and cold electron production. The former is a prerequisite for increasing the vibrational level of molecules and the dissociation degree and the latter for producing negative ions via dissociative attachment of the cold electrons or via surface production induced by H atoms.

  19. Plasma jet ignition device

    DOE Patents [OSTI]

    McIlwain, Michael E. (Franklin, MA); Grant, Jonathan F. (Wayland, MA); Golenko, Zsolt (North Reading, MA); Wittstein, Alan D. (Fairfield, CT)

    1985-01-15T23:59:59.000Z

    An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

  20. Plasma Astrophysics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear AstrophysicsPayroll,Physics Physics An errorPlantPlasma

  1. Photodetectors using III-V nitrides

    DOE Patents [OSTI]

    Moustakas, T.D.

    1998-12-08T23:59:59.000Z

    A bandpass photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The bandpass photodetector detects electromagnetic radiation between a lower transition wavelength and an upper transition wavelength. That detector comprises two low pass photodetectors. The response of the two low pass photodetectors is subtracted to yield a response signal. 24 figs.

  2. UNIVERSIDAD CARLOS III de MADRID Madrid, Spain

    E-Print Network [OSTI]

    Young, Paul Thomas

    UNIVERSIDAD CARLOS III de MADRID Madrid, Spain College of Charleston Bilateral Exchange Program Spain and around the world. It programs in Business Ad- ministration, Economics and Law are ranked among the best in Spain. While studying at UC3M, students are able to partake of the vibrant culture of Madrid

  3. Photodetectors using III-V nitrides

    DOE Patents [OSTI]

    Moustakas, Theodore D. (Dover, MA)

    1998-01-01T23:59:59.000Z

    A bandpass photodetector using a III-V nitride and having predetermined electrical properties. The bandpass photodetector detects electromagnetic radiation between a lower transition wavelength and an upper transition wavelength. That detector comprises two low pass photodetectors. The response of the two low pass photodetectors is subtracted to yield a response signal.

  4. Perturbations in a plasma

    E-Print Network [OSTI]

    Evangelos Chaliasos

    2005-10-20T23:59:59.000Z

    The perturbations of a homogeneous non-relativistic two-component plasma are studied in the Coulomb gauge. Starting from the solution found [2] of the equations of electromagnetic self consistency in a plasma [1], we add small perturbations to all quantities involved, and we enter the perturbed quantities in the equations, keeping only the first order terms in the perturbations. Because the unperturbed quantities are solutions of the equations, they cancel each other, and we are left with a set of 12 linear equations for the 12 perturbations (unknown quantities). Then we solve this set of linearized equations, in the approximation of small ratio of the masses of electrons over those of ions, and under the assumption that the plasma remains homogeneous.

  5. Nonequilibrium lighting plasmas

    SciTech Connect (OSTI)

    Dakin, J.T. (GE Lighting, Nela Park, Cleveland, OH (US))

    1991-12-01T23:59:59.000Z

    In this paper the science of a variety of devices employing nonequilibrium lighting plasmas is reviewed. The devices include the fluorescent lamp, the low-pressure sodium lamp, the neon sign, ultraviolet lamps, glow indicators, and a variety of devices used by spectroscopists, such as the hollow cathode light source. The plasma conditions in representative commercial devices are described. Recent research on the electron gas, the role of heavy particles, spatial and temporal inhomogeneities, and new electrodeless excitation schemes is reviewed. Areas of future activity are expected to be in new applications of high-frequency electronics to commercial devices, new laser-based diagnostics of plasma conditions, and more sophisticated models requiring more reliable and extensive rate coefficient data.

  6. Plasma Simulation Program

    SciTech Connect (OSTI)

    Greenwald, Martin

    2011-10-04T23:59:59.000Z

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP.

  7. QED Plasma and Magnetars

    E-Print Network [OSTI]

    Freytsis, Marat

    2015-01-01T23:59:59.000Z

    Magnetars are surrounded by diffuse plasma in magnetic field strengths well above the quantum electrodynamic critical value. We derive equations of "quantum force-free electrodynamics" for this plasma using an effective field theory arguments. We argue that quantum effects do not modify the large scale structure of the magnetosphere, and in particular that the spin-down rate does not deviate significantly from the classical result. We provide definite evolution equations that can be used to explore potentially important small-scale corrections, such as shock formation, which has been proposed as a mechanism for both burst and quiescent emission from magnetars.

  8. Plasma diagnostic reflectometry

    SciTech Connect (OSTI)

    Cohen, B.I.; Afeyan, B.B.; Garrison, J.C.; Kaiser, T.B. [Lawrence Livermore National Lab., CA (United States); Luhmann, N.C. Jr.; Domier, C.W.; Chou, A.E.; Baang, S. [California Univ., Davis, CA (United States). Dept. of Applied Science

    1996-02-26T23:59:59.000Z

    Theoretical and experimental studies of plasma diagnostic reflectometry have been undertaken as a collaborative research project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Plasma Diagnostics Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. Theoretical analyses have explored the basic principles of reflectometry to understand its limitations, to address specific gaps in the understanding of reflectometry measurements in laboratory experiments, and to explore extensions of reflectometry such as ultra-short-pulse reflectometry. The theory has supported basic laboratory reflectometry experiments where reflectometry measurements can be corroborated by independent diagnostic measurements.

  9. Dust in the Ionized Medium of the Galaxy: GHRS Measurements of Al III and S III

    E-Print Network [OSTI]

    J. Christopher Howk; Blair D. Savage

    1998-10-27T23:59:59.000Z

    We present interstellar absorption line measurements of the ions S III and Al III towards six stars using archival Goddard High Resolution Spectrograph data. The ions Al III and S III trace heavily depleted and non-depleted elements, respectively, in ionized gas. We use the photoionization code CLOUDY to derive the ionization correction relating N(Al III)/N(S III) to the gas-phase abundance [Al/S]_i in the ionized gas. For spectral types considered here, the corrections are small and independent of the assumed ionization parameter. Using the results of these photoionization models, we find [Al/S]_i = -1.0 in the ionized gas towards three disk stars. These values of [Al/S]_i (=[Al/H]_i) imply that Al-bearing grains are present in the ionized nebulae around these stars. If the WIM of the Galaxy is photoionized by OB stars, our data for two halo stars imply [Al/S]_i = -0.4 to -0.5 in the WIM and thus the presence of dust grains containing Al in this important phase of the ISM. While photoionization appears to be the most likely origin of the ionization for Al III and S III, we cannot rule out confusion from the presence of hot, collisionally ionized gas along two sightlines. We find that [Al/S]_i in the ionized gas along the six sightlines is anti-correlated with the electron density and average sightline neutral density. The degree of grain destruction in the ionized medium of the Galaxy is not much higher than in the warm neutral medium. The existence of grains in the ionized regions studied here has important implications for the thermal balance of these regions. (Abstract Abridged)

  10. Red-luminescent europium (III) doped silica nanoshells: synthesis,

    E-Print Network [OSTI]

    Kummel, Andrew C.

    Red-luminescent europium (III) doped silica nanoshells: synthesis, characterization(6), 066012 (June 2011) Red-luminescent europium (III) doped silica nanoshells: synthesis, characterization (SPIE). [DOI: 10.1117/1.3593003] Keywords: europium; silica; luminescent; nanoshells; endocytosis. Paper

  11. Magnetoacoustic solitons in quantum plasma

    SciTech Connect (OSTI)

    Hussain, S.; Mahmood, S. [Theoretical Plasma Physics Division (TPPD), PINSTECH, P.O. Nilore, Islamabad (Pakistan); Department of Physics and Applied Mathematics (DPAM), PIEAS, P.O. Nilore, Islamabad (Pakistan)

    2011-08-15T23:59:59.000Z

    Nonlinear magnetoacoustic waves in collisionless homogenous, magnetized quantum plasma is studied. Two fluid quantum magneto-hydrodynamic model (QMHD) is employed and reductive perturbation method is used to derive Korteweg de Vries (KdV) equation for magnetoacoustic waves. The effects of plasma density and magnetic field intensity are investigated on magnetoacoustic solitary structures in quantum plasma. The numerical results are also presented, which are applicable to explain some aspects of the propagation of nonlinear magnetoacosutic wave in dense astrophysical plasma situations.

  12. Instabilities and pattern formation in lowtemperature plasmas

    E-Print Network [OSTI]

    of the plasma region is approximately 20cm. (Produced by the Plasma Research Laboratory, Dublin City University

  13. Aurora Organic Dairy Phase III: Corporate Sustainability Report

    E-Print Network [OSTI]

    Edwards, Paul N.

    Aurora Organic Dairy Phase III: Corporate Sustainability Report Rosemary Lapka, Neesha Modi, Lauren Start and David Weinglass Report No. CSS11-07 April 19, 2011 #12;Aurora Organic Dairy Phase III Keoleian, Professor #12;Document Description AURORA ORGANIC DAIRY PHASE III: CORPORATE SUSTAINABILITY

  14. III. PRATIQUES D'HYGIENE ET DE HYGIENE DES MAINS

    E-Print Network [OSTI]

    Canet, Léonie

    III. PRATIQUES D'HYGIENE ET DE PREVENTION HYGIENE DES MAINS HYGIENE ALIMENTAIRE HYGIENE - IRD - MNHN - Cemagref 24/88 III.1. HYGIENE DES MAINS Elle est fondamentale et à renouveler plusieurs, on peut utiliser un gel ou une solution hydro alcoolique. III.2. HYGIENE ALIMENTAIRE Un certain nombre de

  15. Controlled zone microwave plasma system

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Morrell, Jonathan S. (Knoxville, TN)

    2009-10-20T23:59:59.000Z

    An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.

  16. Dissipation in intercluster plasma

    E-Print Network [OSTI]

    Maxim Lyutikov

    2007-09-11T23:59:59.000Z

    We discuss dissipative processes in strongly gyrotropic, nearly collisionless plasma in clusters of galaxies (ICM). First, we point out that Braginsky theory, which assumes that collisions are more frequent that the system's dynamical time scale, is inapplicable to fast, sub-viscous ICM motion. Most importantly, the electron contribution to collisional magneto-viscosity dominates over that of ions for short-scale Alfvenic motions. Thus, if a turbulent cascade develops in the ICM and propagates down to scales $\\leq 1$ kpc, it is damped collisionally not on ions, but on electrons. Second, in high beta plasma of ICM, small variations of the magnetic field strength, of relative value $\\sim 1/\\beta$, lead to development of anisotropic pressure instabilities (firehose, mirror and cyclotron). Unstable wave modes may provide additional resonant scattering of particles, effectively keeping the plasma in a state of marginal stability. We show that in this case the dissipation rate of a laminar, subsonic, incompressible flows scales as inverse of plasma beta parameter. We discuss application to the problem of ICM heating.

  17. Removal of hazardous anions from aqueous solutions by La(III)- and Y(III)-impregnated alumina

    SciTech Connect (OSTI)

    Wasay, Syed Abdul; Tokunaga, Shuzo [National Inst. of Materials and Chemical Research, Ibaraka (Japan); Park, S.W. [Keimyung Univ., Daegu City (Korea, Democratic People`s Republic of)

    1996-06-01T23:59:59.000Z

    New adsorbents, La(III)- and Y(III)-impregnated alumina, were prepared for the removal of hazardous anions from aqueous solutions. A commercially available alumina was impregnated with La(III) or Y(III) ions by the adsorption process. The change in the surface charge due to the impregnation was measured by acid/base titration. The adsorption rate and the capacity of the alumina for La(III) and Y(III) ions were determined. The adsorption characteristics of the La(III)- and Y(III)-impregnated alumina and the original alumina for fluoride, phosphate, arsenate and selenite ions were analyzed under various conditions. The pH effect, dose effect, and kinetics were studied. The removal selectivity by the impregnated alumina was in the order fluoride > phosphate > arsenate > selenite. The impregnated alumina has been successfully applied for the removal of hazardous anions from synthetic and high-tech industrial wastewaters.

  18. Solar Neutrino Measurement at SK-III

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration; :; B. S. Yang

    2009-10-17T23:59:59.000Z

    The full Super-Kamiokande-III data-taking period, which ran from August of 2006 through August of 2008, yielded 298 live days worth of solar neutrino data with a lower total energy threshold of 4.5 MeV. During this period we made many improvements to the experiment's hardware and software, with particular emphasis on its water purification system and Monte Carlo simulations. As a result of these efforts, we have significantly reduced the low energy backgrounds as compared to earlier periods of detector operation, cut the systematic errors by nearly a factor of two, and achieved a 4.5 MeV energy threshold for the solar neutrino analysis. In this presentation, I will present the preliminary SK-III solar neutrino measurement results.

  19. MAVIS III -- A Windows 95/NT Upgrade

    SciTech Connect (OSTI)

    Hardwick, M.F. [Sandia National Labs., Livermore, CA (United States). GTS Engineering Dept.

    1997-12-01T23:59:59.000Z

    MAVIS (Modeling and Analysis of Explosive Valve Interactions) is a computer program that simulates operation of explosively actuated valve. MAVIS was originally written in Fortran in the mid 1970`s and was primarily run on the Sandia Vax computers in use through the early 1990`s. During the mid to late 1980`s MAVIS was upgraded to include the effects of plastic deformation and it became MAVIS II. When the Vax computers were retired, the Gas Transfer System (GTS) Development Department ported the code to the Macintosh and PC platforms, where it ran as a simple console application. All graphical output was lost during these ports. GTS code developers recently completed an upgrade that provides a Windows 95/NT MAVIS application and restores all of the original graphical output. This upgrade is called MAVIS III version 1.0. This report serves both as a user`s manual for MAVIS III v 1.0 and as a general software development reference.

  20. Analisis Numerico III Curso Codigo 525442

    E-Print Network [OSTI]

    Bürger, Raimund

    An´alisis Num´erico III Apuntes Curso C´odigo 525442 Segundo Semestre 2011 Dr. Raimund B.3.1. M´etodos de disparo para problemas lineales 52 3.3.2. M´etodo de disparo num´erico para problemas´isticas num´ericos 74 5.2.1. M´etodo de caracter´isticas aproximado 74 5.2.2. M´etodo predictor-corrector 75 5

  1. On description of quantum plasma

    E-Print Network [OSTI]

    S. V. Vladimirov; Yu. O. Tyshetskiy

    2011-01-21T23:59:59.000Z

    A plasma becomes quantum when the quantum nature of its particles significantly affects its macroscopic properties. To answer the question of when the collective quantum plasma effects are important, a proper description of such effects is necessary. We consider here the most common methods of description of quantum plasma, along with the related assumptions and applicability limits. In particular, we analyze in detail the hydrodynamic description of quantum plasma, as well as discuss some kinetic features of analytic properties of linear dielectric response function in quantum plasma. We point out the most important, in our view, fundamental problems occurring already in the linear approximation and requiring further investigation. (submitted to Physics-Uspekhi)

  2. The Formation of Population III Binaries

    E-Print Network [OSTI]

    Kazuya Saigo; Tomoaki Matsumoto; Masayuki Umemura

    2004-10-29T23:59:59.000Z

    We explore the possibility for the formation of Population III binaries. The collapse of a rotating cylinder is simulated with a three-dimensional, high-resolution nested grid, assuming the thermal history of primordial gas. The simulations are done with dimensionless units, and the results are applicable to low-mass as well as massive systems by scaling with the initial density. We find that if the initial angular momentum is as small as $\\beta \\approx 0.1$, where $\\beta$ is the ratio of centrifugal force to pressure force, then the runaway collapse of the cloud stops to form a rotationally-supported disk. After the accretion of the envelope, the disk undergoes a ring instability, eventually fragmenting into a binary. If the initial angular momentum is relatively large, a bar-type instability arises, resulting in the collapse into a single star through rapid angular momentum transfer. The present results show that a significant fraction of Pop III stars are expected to form in binary systems, even if they are quite massive or less massive. The cosmological implications of Population III binaries are briefly discussed.

  3. A study of the reaction between bismuth (III) iodide and organic amine hydriodides

    E-Print Network [OSTI]

    Scott, Jack Clinton

    1960-01-01T23:59:59.000Z

    -ethylammoniumnonaiododibismuthate (ill) 5. tr is- di- ethylammoniumnonaiododibismuthate (III) 6. tris-tri-ethylammoniumnonaiododibismuthate (III) 7. tr is-n-propylammoniumhexaiodobismuthate (III) 8. tris-di-n-propylammoniumnonaiododibismuthate (III) 9. di-iso...-propylammoniumtetraiodobismuthate (III) IO. tris-di-iso-propylammoniumhexaiodobismuthate (111) 11. tri-n-pr opylammoniumt~etr iodobismuthate (III) 12. tris-n-butylammoniumnonaiododibismuthate (III) 13. tris-iso-butylammoniumnonaiododibismuthate (III) 14. tris...

  4. Electron-impact excitation collision strengths and theoretical line intensities for transitions in S III

    SciTech Connect (OSTI)

    Grieve, M. F. R.; Ramsbottom, C. A.; Hudson, C. E. [Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN (United Kingdom); Keenan, F. P., E-mail: c.ramsbottom@qub.ac.uk [Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN (United Kingdom)

    2014-01-01T23:59:59.000Z

    We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log T{sub e} (K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels arising from the six configurations—3s {sup 2}3p {sup 2}, 3s3p {sup 3}, 3s {sup 2}3p3d, 3s {sup 2}3p4s, 3s {sup 2}3p4p, and 3s {sup 2}3p4d—giving rise to 1378 individual lines and is undertaken using the recently developed RMATRX II plus FINE95 suite of codes. A detailed comparison is made with a previous R-matrix calculation and significant differences are found for some transitions. The atomic data are subsequently incorporated into the modeling code CLOUDY to generate line intensities for a range of plasma parameters, with emphasis on allowed ultraviolet extreme-ultraviolet emission lines detected from the Io plasma torus. Electron density-sensitive line ratios are calculated with the present atomic data and compared with those from CHIANTI v7.1, as well as with Io plasma torus spectra obtained by Far-Ultraviolet Spectroscopic Explorer and Extreme-Ultraviolet Explorer. The present line intensities are found to agree well with the observational results and provide a noticeable improvement on the values predicted by CHIANTI.

  5. Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor.

    SciTech Connect (OSTI)

    Ding, Y-H R.; Hixson, Kim K.; Aklujkar, Ma; Lipton, Mary S.; Smith, Richard D.; Lovley, Derek R.; Mester, Tunde

    2008-12-01T23:59:59.000Z

    e(III) oxides are the most abundant source of reducible Fe(III) by microorganisms in most soils and sediments, yet few studies on the physiology of Fe(III)-reducing microorganisms during growth on Fe(III) oxide have been conducted because of the technical difficulties in working with cell growth and harvest in the presence of Fe(III) oxides. Geobacter sulfurreducens is a representative of the Geobacter species that predominate in a variety of subsurface environments in which Fe(III) oxide is important. In order to better understand the physiology of Geobacter species during growth on Fe(III) oxide, the proteome of G. sulfurreducens grown on Fe(III) oxide was compared with the proteome of cells grown with soluble Fe(III) citrate. Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) revealed 19 proteins that were more abundant during growth on Fe(III) oxide than on soluble Fe(III). These included proteins related to protein synthesis, electron transfer and energy production, oxidative stress, protein folding, outer membrane proteins, nitrogen metabolism and hypothetical proteins. Further analysis of the proteome with the accurate mass and time (AMT) tag method revealed additional proteins associated with growth on Fe(III) oxide. These included the outer-membrane c-type cytochrome, OmcS and OmcG, which genetic studies have suggested are required for Fe(III) oxide reduction. Furthermore, several other cytochromes, as yet unstudied, were detected to be significantly up regulated during growth on Fe(III) oxide and other proteins of unknown function were more abundant during growth on Fe(III) oxide than on soluble Fe(III). PilA, the structural protein for pili, which is required for Fe(III) oxide reduction, and other pilin-associated proteins were also more abundant during growth on Fe(III) oxide. Confirmation of the differential expression of proteins known to be important in Fe(III) oxide reduction was observed, and an additional number of previously unidentified proteins were found with significant abundance in the cells grown under conditions of Fe(III) oxide reduction.

  6. Princeton Plasma Physics Laboratory:

    SciTech Connect (OSTI)

    Phillips, C.A. (ed.)

    1986-01-01T23:59:59.000Z

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  7. Non-thermal X-ray Emission from Supernova Remnants

    E-Print Network [OSTI]

    Jacco Vink

    2004-09-21T23:59:59.000Z

    Recent studies of narrow, X-ray synchrotron radiating filaments surrounding young supernova remnants indicate that magnetic fields strengths are relatively high, B ~ 0.1 mG, or even higher, and that diffusion is close to the Bohm limit. I illustrate this using Cas A as an example. Also older remnants such as RCW 86 appear to emit X-ray synchrotron radiation, but the emission is more diffuse, and not always confined to a region close to the shock front. I argue that for RCW 86 the magnetic field is likely to be low (B ~ 17 microGauss), and at the location where the shell emits X-ray synchrotron radiation the shock velocity is much higher than the average shock velocity of ~600 km/s.

  8. Non Thermal Features in the Cosmic Neutrino Background

    E-Print Network [OSTI]

    G. Mangano

    2006-03-22T23:59:59.000Z

    I review some of the basic information on the Cosmic Neutrino Background momentum distribution. In particular, I discuss how present data from several cosmological observables such as Big Bang Nucleosynthesis, Cosmic Microwave Background and Large Scale Structure power spectrum constrain possible deviations from a standard Fermi-Dirac thermal distribution.

  9. Thermal and Non-thermal Physiochemical Processes in Nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nanoscale films of ASW at low temperatures. To study the transport properties (viscosity, diffusivity), the amorphous films can be heated above their glass transition...

  10. Plasma generating apparatus for large area plasma processing

    DOE Patents [OSTI]

    Tsai, C.C.; Gorbatkin, S.M.; Berry, L.A.

    1991-07-16T23:59:59.000Z

    A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm[sup 2]. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity. 3 figures.

  11. Plasma generating apparatus for large area plasma processing

    DOE Patents [OSTI]

    Tsai, Chin-Chi (Oak Ridge, TN); Gorbatkin, Steven M. (Oak Ridge, TN); Berry, Lee A. (Oak Ridge, TN)

    1991-01-01T23:59:59.000Z

    A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm.sup.2. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity.

  12. Lithium plasma emitter for collisionless magnetized plasma experiment

    SciTech Connect (OSTI)

    Kawamori, Eiichirou; Huang, Yi-Jue; Song, Sung-Xuang; Hsieh, Tung-Yuan [Institute of Space, Astrophysical and Plasma Sciences, National Cheng Kung University, Tainan, Taiwan (China); Lee, Jyun-Yi; Syugu, Wun-Jheng [Department of Physics, National Cheng Kung University, Tainan, Taiwan (China); Cheng, C. Z. [Plasma and Space Science Center, National Cheng Kung University, Tainan, Taiwan (China)

    2011-09-15T23:59:59.000Z

    This paper presents a newly developed lithium plasma emitter, which can provide quiescent and low-temperature collisionless conditions for magnetized plasma experiments. This plasma emitter generates thermal emissions of lithium ions and electrons to produce a lithium plasma. Lithium type beta-eucryptite and lanthanum-hexaboride (LaB{sub 6}) powders were mixed and directly heated with a tungsten heater to synthesize ion and electron emissions. As a result, a plasma with a diameter of {approx}15 cm was obtained in a magnetic mirror configuration. The typical range of electron density was 10{sup 12}-10{sup 13} m{sup -3} and that of electron temperature was 0.1-0.8 eV with the emitter operation temperature of about 1500 K. The amplitude fluctuations for the plasma density were lower than 1%.

  13. Towards Plasma Surgery: Plasma Treatment of Living Cells

    SciTech Connect (OSTI)

    Stoffels, E.; Kieft, I.E.; Sladek, R.E.J.; Slaaf, D.W.; Laan, E.P. van der; Jimenez-Moreno, P.; Steinbuch, M. [Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven (Netherlands); Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven (Netherlands)

    2004-12-01T23:59:59.000Z

    The physical, biological and technical background for high-precision plasma surgery is prepared in a multi-disciplinary team. The aim of the research is to achieve controlled removal of diseased cells and bacteria without harming the healthy rest of the tissue. For this purpose, a small, cold, flexible and non-toxic plasma is developed (the plasma needle) and tested on cultured cells and bacterial samples. The needle is an atmospheric discharge induced by a radio-frequency voltage applied to a metal pin. This plasma operates at room temperature, in the milliwatt power regime; it poses no risk of thermal or electrical damage to living tissues. Several beneficial responses of living cells to plasma treatment have been already identified. Plasma does not cause accidental cell death (necrosis), which leads to inflammation and tissue damage. Instead, it allows to detach cells from each other and from the scaffold, and thus to remove them in a non-destructive way. Moreover, plasma is capable of bacterial inactivation. I parallel, we have determined the electrical and optical properties of the plasma and found a method of precise positioning of the plasma needle with respect to the treated tissue.

  14. Ion firehose instability in plasmas with plasma particles described by product bi-kappa distributions

    SciTech Connect (OSTI)

    Santos, M. S. dos; Ziebell, L. F., E-mail: luiz.ziebell@ufrgs.br; Gaelzer, R., E-mail: rudi.gaelzer@ufrgs.br [Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, RS, CEP: 91501-970 Porto Alegre (Brazil)

    2014-11-15T23:59:59.000Z

    We investigate the dispersion relation for low frequency electromagnetic waves propagating parallel to the ambient magnetic field, considering that the velocity distributions of ions and electrons can be either bi-Maxwellian of product bi-kappa distributions. The effect of the anisotropy and non-thermal features associated to the product-bi-kappa distributions on the firehose instability are numerically investigated. The general conclusion to be drawn from the results obtained is that the increase in non-thermal features which is consequence of the decrease of the ? indexes in the ion distribution contributes to increase the instability in magnitude and wave number range, in comparison with bi-Maxwellian distributions with similar temperature anisotropy, and that the increase of non-thermal features in the electron distribution contributes to the quenching of the instability, which is nevertheless driven by the anisotropy in the ion distribution. Significant differences between results obtained either considering product-bi-kappa distributions or bi-kappa distributions are also reported.

  15. III Festival del Siglo de Oro (Chamizal)

    E-Print Network [OSTI]

    Jaraba-Pardo, E.

    1978-04-01T23:59:59.000Z

    SPRING 1978 111 III Festival del Siglo de Oro (Chamizal) E. JARABA-PARDO El Siglo de Oro fue, por la fecundidad de los autores y por las influencias trascendentales de sus obras en el posterior desarrollo de la dramaturgia universal, uno de los... todos los actos de los hombres son guiados por Dios, quien se muestra como supremo hacedor de todo cuanto acontece a las criaturas. Se encuentran, pues, en síntesis en el teatro del Siglo de Oro unos valores particularmente antagónicos de la sociedad...

  16. Glenrock III Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd toWell2008) |GigaCrete IncIGlenrock III Wind

  17. Altech III (a) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to:Almo, Idaho: Energy ResourcesAltaAltechIII

  18. Pomeroy III Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation, searchPocatelloIII Wind Farm Jump to:

  19. Meadow Lake III | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <StevensMcClellan,II Jump to: navigation,MeadIII Jump to:

  20. Altech III (b) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to:Almo, Idaho: Energy ResourcesAltaAltechIII(b)

  1. Stoney Corners III | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation GlassOpen(Redirected(NorthernIII

  2. RSF Workshop Session III: Cost Considerations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITYResponses:December562 RevisionI: Energy GoalsIII:

  3. 2110 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 37, NO. 11, NOVEMBER 2009 Low-Pressure Helicon-Plasma Discharge Initiation

    E-Print Network [OSTI]

    Scharer, John E.

    -temperature plasma research. Low- pressure (as low as 1 millitorr) inductively coupled plasmas are used for plasma

  4. Coulomb scattering in plasma revised

    E-Print Network [OSTI]

    S. Gordienko; D. V. Fisher; J. Meyer-ter-Vehn

    2003-05-13T23:59:59.000Z

    A closed expression for the momentum evolution of a test particle in weakly-coupled plasma is derived, starting from quantum many particle theory. The particle scatters from charge fluctuations in the plasma rather than in a sequence of independent binary collisions. Contrary to general belief, Bohr's (rather than Bethe's) Coulomb logarithm is the relevant one in most plasma applications. A power-law tail in the distribution function is confirmed by molecular dynamics simulation.

  5. Progress on laser plasma accelerators

    SciTech Connect (OSTI)

    Chen, P.

    1986-04-01T23:59:59.000Z

    Several laser plasma accelerator schemes are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA). Theory indicates that a very high acceleration gradient, of order 1 GeV/m, can exist in the plasma wave driven by the beating lasers. Experimental results obtained on the PBWA experiment at UCLA confirms this. Parameters related to the PBWA as an accelerator system are derived, among them issues concerning the efficiency and the laser power and energy requirements are discussed.

  6. Purification of tantalum by plasma arc melting

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Korzekwa, Deniece R. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  7. Sloan Digital Sky Survey III (SDSS-III), Data Release 8

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Building on the legacy of the Sloan Digital Sky Survey (SDSS) and SDSS-II, the SDSS-III Collaboration is working to map the Milky Way, search for extrasolar planets, and solve the mystery of dark energy. SDSS-III's first release, Data Release 8 (DR8), became available in the first half of 2012. DR8 contains all the images ever taken by the SDSS telescope. Together, these images make up the largest color image of the sky ever made. A version of the DR8 image is shown to the right. DR8 also includes measurements for nearly 500 million stars, galaxies, and quasars, and spectra for nearly two million. All of DR8's images, spectra, and measurements are available to anyone online. You can browse through sky images, look up data for individual objects, or search for objects anywhere using any criteria. SDSS-III will collect data from 2008 to 2014, using the 2.5-meter telescope at Apache Point Observatory. SDSS-III consists of four surveys, each focused on a different scientific theme. These four surveys are: 1) Baryon Oscillation Spectroscopic Survey (BOSS); 2) SEGUE-2 (Sloan Extension for Galactic Understanding and Exploration); 3) The APO Galactic Evolution Experiment (APOGEE); and 4) The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). [Copied with edits from http://www.sdss3.org/index.php

  8. Plasma-based accelerator structures

    E-Print Network [OSTI]

    Schroeder, C.B.

    2011-01-01T23:59:59.000Z

    by a self- modulated intense short laser pulse”. Phys. Rev.High Intensity Short Pulse Laser Plasma Experiments”. [39]Instabilities of Short-Pulse Laser Propagation through

  9. Hollow Plasma in a Solenoid

    E-Print Network [OSTI]

    Anders, Andre

    2011-01-01T23:59:59.000Z

    Kauffeldt, E. M. Oks, and P. K. Roy, "Dense metal plasma inREFERENCES [1] P. K. Roy, S. S. Yu, E. Henestroza, A.

  10. Plasma-based accelerator structures

    E-Print Network [OSTI]

    Schroeder, C.B.

    2011-01-01T23:59:59.000Z

    significant in such ultra-short laser-plasma interactions.of ultra-short electron bunches by using colliding laser

  11. The Formation of Population III Binaries

    E-Print Network [OSTI]

    Saigo, K; Umemura, M; Saigo, Kazuya; Matsumoto, Tomoaki; Umemura, Masayuki

    2004-01-01T23:59:59.000Z

    We explore the possibility for the formation of Population III binaries. The collapse of a rotating cylinder is simulated with a three-dimensional, high-resolution nested grid, assuming the thermal history of primordial gas. The simulations are done with dimensionless units, and the results are applicable to low-mass as well as massive systems by scaling with the initial density. We find that if the initial angular momentum is as small as $\\beta \\approx 0.1$, where $\\beta$ is the ratio of centrifugal force to pressure force, then the runaway collapse of the cloud stops to form a rotationally-supported disk. After the accretion of the envelope, the disk undergoes a ring instability, eventually fragmenting into a binary. If the initial angular momentum is relatively large, a bar-type instability arises, resulting in the collapse into a single star through rapid angular momentum transfer. The present results show that a significant fraction of Pop III stars are expected to form in binary systems, even if they ar...

  12. Tritium Plasma Experiment and

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation Work Package|DepartmenttheJuly 11,Plasma

  13. Analysis of plasma waves observed within local plasma injections seen in Saturn's magnetosphere

    E-Print Network [OSTI]

    Gurnett, Donald A.

    Analysis of plasma waves observed within local plasma injections seen in Saturn's magnetosphere J; published 17 May 2008. [1] Plasma injections or density depletion regions have been reported plasma in a cooler, locally produced plasma background. The injected plasma undergoes dispersion

  14. A dusty plasma device for producing extended, steady state, magnetized, dusty plasma columns

    E-Print Network [OSTI]

    Merlino, Robert L.

    A dusty plasma device for producing extended, steady state, magnetized, dusty plasma columns Wenjun with an existing Q machine, to produce extended, steady state, magnetized plasma columns. The dusty plasma device (DPD) is to be used for the investigation of waves in dusty plasmas and of other plasma/dust aspects

  15. SELECTIVE REDUCTION OF NOX IN OXYGEN RICH ENVIRONMENTS WITH PLASMA-ASSISTED CATALYSIS: CATALYST DEVELOPMENT AND MECHANISTIC STUDIES

    SciTech Connect (OSTI)

    Peden, C; Barlow, S; Hoard, J; Kwak, J; *Balmer-Millar, M; *Panov, A; Schmieg, S; Szanyi, J; Tonkyn, R

    2003-08-24T23:59:59.000Z

    The control of NOx (NO and NO2) emissions from so-called ''lean-burn'' vehicle engines remains a challenge. In recent years, there have been a number of reports that show that a plasma device combined with a catalyst can reduce as high as 90% or more of NOx in simulated diesel and other ''lean-burn'' exhaust. In the case of propylene containing simulated diesel exhaust, the beneficial role of a plasma treatment is now thought to be due to oxidation of NO to NO2, and the formation of partially oxidized hydrocarbons that are more active for the catalytic reduction of NO2 than propylene. Thus, the overall system can be most usefully described as hydrocarbon selective catalytic reduction (SCR) enhanced by 'reforming' the exhaust with a non-thermal plasma (NTP) device. For plasma-enhanced catalysis, both zeolite- and alumina-based materials have shown high activity, albeit in somewhat different temperature ranges, when preceded by an NTP reactor. This paper will briefly describe our research efforts aimed at optimizing the catalyst materials for NTP-catalysis devices based, in part, on our continuing studies of the NTP- and catalytic-reaction mechanisms. Various alkali- and alkaline earth-cation-exchanged Y zeolites have been prepared, their material properties characterized, and they have been tested as catalytic materials for NOx reduction in laboratory NTP-catalysis reactors. Interestingly, NO2 formed in the plasma and not subsequently removed over these catalysts, will back-convert to NO, albeit to varying extents depending upon the nature of the cation. Besides this comparative reactivity, we will also discuss selected synthesis strategies for enhancing the performance of these zeolite-based catalyst materials. A particularly important result from our mechanistic studies is the observation that aldehydes, formed during the plasma treatment of simulated diesel exhaust, are the important species for the reduction of NOx to N2. Indeed, acetaldehyde has been found to be especially effective in the thermal reduction of both NO and NO2 over Ba- and Na-Y zeolite catalysts.

  16. Isolation and microbial reduction of Fe(III) phyllosilicates...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to conditions similar to that in the pristine sediment. The extent of microbial (Geobacter sulfurreducens) reduction of Fe(III) phyllosilicates isolated by CDB extraction (ca....

  17. John Hale III Awarded Minority Federal Government Public Servant...

    Office of Environmental Management (EM)

    awarded John Hale III, Director of the U.S. Department of Energy's Office of Small Business and disadvantage Utilization, the National Minority Federal Government Public Servant...

  18. Total synthesis of Class II and Class III Galbulimima Alkaloids

    E-Print Network [OSTI]

    Tjandra, Meiliana

    2010-01-01T23:59:59.000Z

    I. Total Synthesis of All Class III Galbulimima Alkaloids We describe the total synthesis of (+)- and (-)-galbulimima alkaloid 13, (-)-himgaline anad (-)-himbadine. The absolute stereochemistry of natural (-)-galbulimima ...

  19. AVTA: Toyota Prius Gen III HEV 2010 Testing Results | Department...

    Broader source: Energy.gov (indexed) [DOE]

    The following reports describe results of testing done on a 2010 Toyota Prius III hybrid-electric vehicle. The baseline performance testing provides a point of comparison...

  20. Toyota Gen III Prius Hybrid Electric Vehicle Accelerated Testing...

    Broader source: Energy.gov (indexed) [DOE]

    HEV Accelerated Testing - September 2011 Two model year 2010 Toyota Generation III Prius hybrid electric vehicles (HEVs) entered Accelerated testing during July 2009 in a fleet in...

  1. Chena Hot Springs GRED III Project: Final Report Geology, Petrology...

    Open Energy Info (EERE)

    Alteration, and Fluid Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Chena Hot Springs GRED III Project: Final Report Geology, Petrology,...

  2. RNA Type III Secretion Signals that require Hfq. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that require Hfq. RNA Type III Secretion Signals that require Hfq. Abstract: effector proteins from the bacterium to a host cell; however, the secretion signal is poorly...

  3. III-Nitride Nanowires: Emerging Materials for Lighting and Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    building blocks in LEDs, lasers, sensors, photovoltaics, and high power and high speed electronics. Compared to planar films, III-nitride nanowires have several potential...

  4. Ion plasma wave and its instability in interpenetrating plasmas

    SciTech Connect (OSTI)

    Vranjes, J., E-mail: jvranjes@yahoo.com [Institute of Physics Belgrade, Pregrevica 118, 11080 Zemun (Serbia); Kono, M., E-mail: kono@fps.chuo-u.ac.jp [Faculty of Policy Studies, Chuo University, Tokyo (Japan)

    2014-04-15T23:59:59.000Z

    Some essential features of the ion plasma wave in both kinetic and fluid descriptions are presented. The wave develops at wavelengths shorter than the electron Debye radius. Thermal motion of electrons at this scale is such that they overshoot the electrostatic potential perturbation caused by ion bunching, which consequently propagates as an unshielded wave, completely unaffected by electron dynamics. So in the simplest fluid description, the electrons can be taken as a fixed background. However, in the presence of magnetic field and for the electron gyro-radius shorter than the Debye radius, electrons can participate in the wave and can increase its damping rate. This is determined by the ratio of the electron gyro-radius and the Debye radius. In interpenetrating plasmas (when one plasma drifts through another), the ion plasma wave can easily become growing and this growth rate is quantitatively presented for the case of an argon plasma.

  5. INSTITUTE OF PHYSICS PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY Plasma Sources Sci. Technol. 11 (2002) 273278 PII: S0963-0252(02)35617-2

    E-Print Network [OSTI]

    Chen, Francis F.

    2002-01-01T23:59:59.000Z

    of semiconductors, ionospheric plasma research, ion lasers, general plasma physics experiments, and plasma thruster

  6. Spontaneous generation of rotation in tokamak plasmas

    SciTech Connect (OSTI)

    Parra Diaz, Felix [Oxford University] [Oxford University

    2013-12-24T23:59:59.000Z

    Three different aspects of intrinsic rotation have been treated. i) A new, first principles model for intrinsic rotation [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has been implemented in the gyrokinetic code GS2. The results obtained with the code are consistent with several experimental observations, namely the rotation peaking observed after an L-H transition, the rotation reversal observed in Ohmic plasmas, and the change in rotation that follows Lower Hybrid wave injection. ii) The model in [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has several simplifying assumptions that seem to be satisfied in most tokamaks. To check the importance of these hypotheses, first principles equations that do not rely on these simplifying assumptions have been derived, and a version of these new equations has been implemented in GS2 as well. iii) A tokamak cross-section that drives large intrinsic rotation has been proposed for future large tokamaks. In large tokamaks, intrinsic rotation is expected to be very small unless some up-down asymmetry is introduced. The research conducted under this contract indicates that tilted ellipticity is the most efficient way to drive intrinsic rotation.

  7. Laser Plasma Material Interactions

    SciTech Connect (OSTI)

    Schaaf, Peter; Carpene, Ettore [Universitaet Goettingen, II. Physikalisches Institut, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2004-12-01T23:59:59.000Z

    Surface treatment by means of pulsed laser beams in reactive atmospheres is an attractive technique to enhance the surface features, such as corrosion and wear resistance or the hardness. Many carbides and nitrides play an important role for technological applications, requiring the mentioned property improvements. Here we present a new promising fast, flexible and clean technique for a direct laser synthesis of carbide and nitride surface films by short pulsed laser irradiation in reactive atmospheres (e.g. methane, nitrogen). The corresponding material is treated by short intense laser pulses involving plasma formation just above the irradiated surface. Gas-Plasma-Surface reactions lead to a fast incorporation of the gas species into the material and subsequently the desired coating formation if the treatment parameters are chosen properly. A number of laser types have been used for that (Excimer Laser, Nd:YAG, Ti:sapphire, Free Electron Laser) and a number of different nitride and carbide films have been successfully produced. The mechanisms and some examples will be presented for Fe treated in nitrogen and Si irradiated in methane.

  8. Lattice Parameter Variation in ScGaN Alloy Thin Films on MgO(001) Grown by RF Plasma Molecular Beam Epitaxy

    E-Print Network [OSTI]

    Lattice Parameter Variation in ScGaN Alloy Thin Films on MgO(001) Grown by RF Plasma Molecular Beam ABSTRACT We present the structural and surface characterization of the alloy formation of scandium gallium GaN (w-GaN) spurred much interest in related III-nitrides such as aluminium nitride (Al

  9. Steady state compact toroidal plasma production

    DOE Patents [OSTI]

    Turner, W.C.

    1983-05-17T23:59:59.000Z

    This invention relates to the confinement of field reversed plasma rings and, more particularly, to the steady state maintainance of field reversed plasma rings produced by coaxial plasma guns.

  10. Control of impurities in toroidal plasma devices

    DOE Patents [OSTI]

    Ohkawa, Tihiro (La Jolla, CA)

    1980-01-01T23:59:59.000Z

    A method and apparatus for plasma impurity control in closed flux plasma systems such as Tokamak reactors is disclosed. Local axisymmetrical injection of hydrogen gas is employed to reverse the normally inward flow of impurities into the plasma.

  11. Hollow Plasma in a Solenoid

    SciTech Connect (OSTI)

    Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

    2010-11-30T23:59:59.000Z

    A ring cathode for a pulsed, high-current, multi-spot cathodic arc discharge was placed inside a pulsed magnetic solenoid. Photography is used to evaluate the plasma distribution. The plasma appears hollow for cathode positions close the center of the solenoid, and it is guided closer to the axis when the cathode is away from the center.

  12. Resonant-cavity antenna for plasma heating

    DOE Patents [OSTI]

    Perkins, F.W. Jr.; Chiu, S.C.; Parks, P.; Rawls, J.M.

    1984-01-10T23:59:59.000Z

    This invention relates generally to a method and apparatus for transferring energy to a plasma immersed in a magnetic field, and relates particularly to an apparatus for heating a plasma of low atomic number ions to high temperatures by transfer of energy to plasma resonances, particularly the fundamental and harmonics of the ion cyclotron frequency of the plasma ions. This invention transfers energy from an oscillating radio-frequency field to a plasma resonance of a plasma immersed in a magnetic field.

  13. Filters for cathodic arc plasmas

    DOE Patents [OSTI]

    Anders, Andre (Albany, CA); MacGill, Robert A. (Richmond, CA); Bilek, Marcela M. M. (Engadine, AU); Brown, Ian G. (Berkeley, CA)

    2002-01-01T23:59:59.000Z

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  14. Quantitative proteomics analysis of adsorbed plasma proteins...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size Quantitative proteomics analysis of adsorbed plasma proteins...

  15. Method & apparatus for monitoring plasma processing operations

    DOE Patents [OSTI]

    Smith, Jr., Michael Lane; Ward, Pamela Denise; Stevenson, Joel O'Don

    2004-10-19T23:59:59.000Z

    The invention generally relates to various aspects of a plasma process and, more specifically, to the monitoring of such plasma processes. One aspect relates to a plasma monitoring module that may be adjusted in at least some manner so as to re-evaluate a previously monitored plasma process. For instance, optical emissions data on a plasma process that was previously monitored by the plasma monitoring module may be replayed through the plasma monitoring module after making at least one adjustment in relation to the plasma monitoring module.

  16. Neptunium Binding Kinetics with Arsenazo(III)

    SciTech Connect (OSTI)

    Leigh R. Martin; Aaron T. Johnson; Stephen P. Mezyk

    2014-08-01T23:59:59.000Z

    This document has been prepared to meet FCR&D level 2 milestone M2FT-14IN0304021, “Report on the results of actinide binding kinetics with aqueous phase complexants” This work was carried out under the auspices of the Thermodynamics and Kinetics of Advanced Separations Systems FCR&D work package. The report details kinetics experiments that were performed to measure rates of aqueous phase complexation for pentavalent neptunium with the chromotropic dye Arsenazo III (AAIII). The studies performed were designed to determine how pH, ionic strength and AAIII concentration may affect the rate of the reaction. A brief comparison with hexavalent neptunium is also made. It was identified that as pH was increased the rate of reaction also increased, however increasing the ionic strength and concentration of AAIII had the opposite effect. Interestingly, the rate of reaction of Np(VI) with AAIII was found to be slower than that of the Np(V) reaction.

  17. Meter scale plasma source for plasma wakefield experiments

    SciTech Connect (OSTI)

    Vafaei-Najafabadi, N.; Shaw, J. L.; Marsh, K. A.; Joshi, C.; Hogan, M. J. [Department of Electrical Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2012-12-21T23:59:59.000Z

    High accelerating gradients generated by a high density electron beam moving through plasma has been used to double the energy of the SLAC electron beam [1]. During that experiment, the electron current density was high enough to generate its own plasma without significant head erosion. In the newly commissioned FACET facility at SLAC, the peak current will be lower and without pre-ionization, head erosion will be a significant challenge for the planned experiments. In this work we report on our design of a meter scale plasma source for these experiments to effectively avoid the problem of head erosion. The plasma source is based on a homogeneous metal vapor gas column that is generated in a heat pipe oven [2]. A lithium oven over 30 cm long at densities over 10{sup 17} cm{sup -3} has been constructed and tested at UCLA. The plasma is then generated by coupling a 10 TW short pulse Ti:Sapphire laser into the gas column using an axicon lens setup. The Bessel profile of the axicon setup creates a region of high intensity that can stretch over the full length of the gas column with approximately constant diameter. In this region of high intensity, the alkali metal vapor is ionized through multi-photon ionization process. In this manner, a fully ionized meter scale plasma of uniform density can be formed. Methods for controlling the plasma diameter and length will also be discussed.

  18. Liquid injection plasma deposition method and apparatus

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Watkins, Arthur D. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube.

  19. Liquid injection plasma deposition method and apparatus

    DOE Patents [OSTI]

    Kong, P.C.; Watkins, A.D.

    1999-05-25T23:59:59.000Z

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube. 8 figs.

  20. Aerospace & Energetics Research Program -University of Washington Plasma Dynamics Group

    E-Print Network [OSTI]

    Shumlak, Uri

    - University of Washington Plasma Dynamics Group q The Boltzmann equation is seven dimensional. qAerospace & Energetics Research Program - University of Washington Plasma Dynamics Group Plasma Research Program - University of Washington Plasma Dynamics Group Abstract Many current plasma simulation

  1. Fast pulse nonthermal plasma reactor

    DOE Patents [OSTI]

    Rosocha, Louis A.

    2005-06-14T23:59:59.000Z

    A fast pulsed nonthermal plasma reactor includes a discharge cell and a charging assembly electrically connected thereto. The charging assembly provides plural high voltage pulses to the discharge cell. Each pulse has a rise time between one and ten nanoseconds and a duration of three to twenty nanoseconds. The pulses create nonthermal plasma discharge within the discharge cell. Accordingly, the nonthermal plasma discharge can be used to remove pollutants from gases or break the gases into smaller molecules so that they can be more efficiently combusted.

  2. CONTROL OF FE(III) SITE OCCUPANCY ON THE RATE AND EXTENT OF MICROBIAL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTROL OF FE(III) SITE OCCUPANCY ON THE RATE AND EXTENT OF MICROBIAL REDUCTION OF FE(III) IN NONTRONITE. CONTROL OF FE(III) SITE OCCUPANCY ON THE RATE AND EXTENT OF MICROBIAL...

  3. Plasma Chemistry and Plasma Processing, Vol. 23, No. 1, March 2003 ( 2003) Model of the Negative DC Corona Plasma

    E-Print Network [OSTI]

    Chen, Junhong

    Plasma Chemistry and Plasma Processing, Vol. 23, No. 1, March 2003 ( 2003) Model of the Negative DC Corona Plasma: Comparison to the Positive DC Corona Plasma Junhong Chen1 and Jane H. Davidson1,2 Receiûed March 26, 2002, reûised June 14, 2002 A numerical model of the negatiûe DC corona plasma along a thin

  4. Thermal plasma chemical synthesis of powders

    SciTech Connect (OSTI)

    Vogt, G.J.; Newkirk, L.R.

    1985-01-01T23:59:59.000Z

    Thermal plasma processing has been increasingly used to synthesize submicron powders of high-purity ceramics and metals. The high temperatures generated with the plasma provide a vapor phase reaction zone for elements with high boiling points and refractory materials. An overview is presented on the general plasma technology used in synthesis and on the properties of plasma powders.

  5. ASSOCIATED LABORATORY PLASMA PHYSICS AND ENGINEERING

    E-Print Network [OSTI]

    Lisboa, Universidade Técnica de

    ASSOCIATED LABORATORY ON PLASMA PHYSICS AND ENGINEERING Centro de Fusão Nuclear Centro de Física dos PlasmasCentro de Fusão Nuclear INSTITUTO SUPERIOR TÉCNICO Centro de Física dos Plasmas WORK Units of excellence in Europe, in the fields of Nuclear Fusion, Plasma Physics and Technologies

  6. Penetration of plasma into the wafer-focus ring gap in capacitively coupled plasmas

    E-Print Network [OSTI]

    Kushner, Mark

    Penetration of plasma into the wafer-focus ring gap in capacitively coupled plasmas Natalia Y of capacitively coupled plasma reactors with a wafer-focus ring gap. The penetration of plasma generated species i.e., ions and radicals into the wafer-focus ring gap is discussed. We found that the penetration of plasma

  7. Nonlinear plasma waves excitation by intense ion beams in background plasma

    E-Print Network [OSTI]

    Kaganovich, Igor

    describe the plasma perturbations well.5 Here, we focus on the general case where the plasma density hasNonlinear plasma waves excitation by intense ion beams in background plasma Igor D. Kaganovich, Edward A. Startsev, and Ronald C. Davidson Plasma Physics Laboratory, Princeton University, Princeton

  8. CHAPTER 5. PLASMA DESCRIPTIONS I: KINETIC, TWO-FLUID 1 Plasma Descriptions I

    E-Print Network [OSTI]

    Callen, James D.

    CHAPTER 5. PLASMA DESCRIPTIONS I: KINETIC, TWO-FLUID 1 Chapter 5 Plasma Descriptions I: Kinetic, Two-Fluid Descriptions of plasmas are obtained from extensions of the kinetic theory of gases of charged particles in the plasma, and because the electric and magnetic fields in the plasma must

  9. Phys780: Basic Plasma Physics 1 PHYS 780. Basic Plasma Physics

    E-Print Network [OSTI]

    Phys780: Basic Plasma Physics 1 PHYS 780. Basic Plasma Physics Course objective The course objective is to introduce students to basic concepts of plasma physics and magneto-hydrodynamics with applications to solar-terrestrial physics. The course topics include: plasma classification, basic plasma prop

  10. Atomic phenomena in dense plasmas

    SciTech Connect (OSTI)

    Weisheit, J.C.

    1981-03-01T23:59:59.000Z

    The following chapters are included: (1) the plasma environment, (2) perturbations of atomic structure, (3) perturbations of atomic collisions, (4) formation of spectral lines, and (5) dielectronic recombination. (MOW)

  11. Coherent control of plasma dynamics

    E-Print Network [OSTI]

    He, Z -H; Lebailly, V; Nees, J A; Krushelnick, K; Thomas, A G R

    2015-01-01T23:59:59.000Z

    Coherent control of a system involves steering an interaction to a final coherent state by controlling the phase of an applied field. Plasmas support coherent wave structures that can be generated by intense laser fields. Here, we demonstrate the coherent control of plasma dynamics in a laser wakefield electron acceleration experiment. A genetic algorithm is implemented using a deformable mirror with the electron beam signal as feedback, which allows a heuristic search for the optimal wavefront under laser-plasma conditions that is not known a priori. We are able to improve both the electron beam charge and angular distribution by an order of magnitude. These improvements do not simply correlate with having the `best' focal spot, since the highest quality vacuum focal spot produces a greatly inferior electron beam, but instead correspond to the particular laser phase that steers the plasma wave to a final state with optimal accelerating fields.

  12. Quark-gluon plasma paradox

    E-Print Network [OSTI]

    Dariusz Miskowiec

    2007-07-06T23:59:59.000Z

    Based on simple physics arguments it is shown that the concept of quark-gluon plasma, a state of matter consisting of uncorrelated quarks, antiquarks, and gluons, has a fundamental problem.

  13. Mobile inductively coupled plasma system

    DOE Patents [OSTI]

    D'Silva, Arthur P. (Ames, IA); Jaselskis, Edward J. (Ames, IA)

    1999-03-30T23:59:59.000Z

    A system for sampling and analyzing a material located at a hazardous site. A laser located remote from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer.

  14. Mobile inductively coupled plasma system

    DOE Patents [OSTI]

    D`Silva, A.P.; Jaselskis, E.J.

    1999-03-30T23:59:59.000Z

    A system is described for sampling and analyzing a material located at a hazardous site. A laser located remotely from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer. 10 figs.

  15. The Plasma Magnet John Slough

    E-Print Network [OSTI]

    Shepherd, Simon

    windmill) Two polyphase magnetic coils (stator) are used to drive steady ring currents in the local plasma representation in the ring currents formed when the magnetosphere is compressed by the solar wind. The process

  16. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    after tests at PPPL. (Photo by Elle StarkmanPPPL Office of Communications) The titanium coupon being treated in the oxygen plasma. (Photo by Elle StarkmanPPPL Office of...

  17. Laser Assisted Plasma Arc Welding

    SciTech Connect (OSTI)

    FUERSCHBACH,PHILLIP W.

    1999-10-05T23:59:59.000Z

    Experiments have been performed using a coaxial end-effecter to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (< 1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  18. Layered plasma polymer composite membranes

    DOE Patents [OSTI]

    Babcock, W.C.

    1994-10-11T23:59:59.000Z

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  19. Magnetic Fields in Population III Star Formation

    SciTech Connect (OSTI)

    Turk, Matthew J.; Oishi, Jeffrey S.; Abel, Tom; Bryan, Greg

    2012-02-22T23:59:59.000Z

    We study the buildup of magnetic fields during the formation of Population III star-forming regions, by conducting cosmological simulations from realistic initial conditions and varying the Jeans resolution. To investigate this in detail, we start simulations from identical initial conditions, mandating 16, 32 and 64 zones per Jeans length, and studied the variation in their magnetic field amplification. We find that, while compression results in some amplification, turbulent velocity fluctuations driven by the collapse can further amplify an initially weak seed field via dynamo action, provided there is sufficient numerical resolution to capture vortical motions (we find this requirement to be 64 zones per Jeans length, slightly larger than, but consistent with previous work run with more idealized collapse scenarios). We explore saturation of amplification of the magnetic field, which could potentially become dynamically important in subsequent, fully-resolved calculations. We have also identified a relatively surprising phenomena that is purely hydrodynamic: the higher-resolved simulations possess substantially different characteristics, including higher infall-velocity, increased temperatures inside 1000 AU, and decreased molecular hydrogen content in the innermost region. Furthermore, we find that disk formation is suppressed in higher-resolution calculations, at least at the times that we can follow the calculation. We discuss the effect this may have on the buildup of disks over the accretion history of the first clump to form as well as the potential for gravitational instabilities to develop and induce fragmentation.

  20. What controls the [O III] 5007 line strength in AGN?

    E-Print Network [OSTI]

    Alexei Baskin; Ari Laor

    2005-02-22T23:59:59.000Z

    AGN display an extreme range in the narrow emission line equivalent widths. Specifically, in the PG quasar sample the equivalent width of the narrow [O III] 5007 line has a range of >300, while the broad Hb line, for example, has a range of 10 only. The strength of [O III] 5007 is modulated by the covering factor, CF, of the narrow line region (NLR) gas, its density n_e, and ionization parameter U. To explore which of these factors produces the observed large range in [O III] 5007 strength, we measure the strength of the matching narrow Hb and [O III] 4363 lines, detected in 40 out of the 87 z<0.5 PG quasars in the Boroson & Green sample. The photoionization code CLOUDY is then used to infer CF, n_e, and U in each object, assuming a single uniform emitting zone. We find that the range of CF (~0.02-0.2) contributes about twice as much as the range in both n_e and U towards modulating the strength of the [O III] 5007 line. The CF is inversely correlated with luminosity, but it is not correlated with L_Edd as previously speculated. The single zone [O III] 5007 emitting region is rather compact, having R=40L_44^0.45 pc. These emission lines can also be fit with an extreme two zone model, where [O III] 4363 is mostly emitted by a dense (n_e=10^7) inner zone at R=L_44^0.5 pc, and [O III] 5007 by a low density (n_e=10^3) extended outer zone at R=750L_44^0.34 pc. Such an extended [O III] 5007 emission should be well resolved by HST imaging of luminous AGN. Further constraints on the radial gas distribution in the NLR can be obtained from the spectral shape of the IR continuum emitted by the associated dust.

  1. Neutrino dispersion in magnetized plasma

    E-Print Network [OSTI]

    N. V. Mikheev; E. N. Narynskaya

    2008-12-02T23:59:59.000Z

    The neutrino dispersion in the charge symmetric magnetized plasma is investigated. We have studied the plasma contribution into the additional energy of neutrino and obtained the simple expression for it. We consider in detail the neutrino self-energy under physical conditions of weak field, moderate field and strong field limits. It is shown that our result for neutrino dispersion in moderate magnetic field differ substantially from the previous one in the literature.

  2. Flavors in an expanding plasma

    E-Print Network [OSTI]

    Johannes Große; Romuald A. Janik; Piotr Surówka

    2008-02-05T23:59:59.000Z

    We consider the effect of an expanding plasma on probe matter by determining time-dependent D7 embeddings in the holographic dual of an expanding viscous plasma. We calculate the chiral condensate and meson spectra including contributions of viscosity. The chiral condensate essentially confirms the expectation from the static black hole. For the meson spectra we propose a scheme that is in agreement with the adiabatic approximation. New contributions arise for the vector mesons at the order of the viscosity terms.

  3. Chaos in a complex plasma

    SciTech Connect (OSTI)

    Sheridan, T.E. [Department of Physics and Astronomy, Ohio Northern University, Ada, Ohio 45810 (United States)

    2005-08-15T23:59:59.000Z

    Chaotic dynamics is observed experimentally in a complex (dusty) plasma of three particles. A low-frequency sinusoidal modulation of the plasma density excites both the center-of-mass and breathing modes. Low-dimensional chaos is seen for a 1:2 resonance between these modes. A strange attractor with a dimension of 2.48{+-}0.05 is observed. The largest Lyapunov exponent is positive.

  4. Magnetic reconnection in nontoroidal plasmas

    SciTech Connect (OSTI)

    Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2005-07-15T23:59:59.000Z

    Magnetic reconnection is a major issue in solar and astrophysical plasmas. The mathematical result that the evolution of a magnetic field with only point nulls is always locally ideal limits the nature of reconnection in nontoroidal plasmas. Here it is shown that the exponentially increasing separation of neighboring magnetic field lines, which is generic, tends to produce rapid magnetic reconnection if the length of the field lines is greater than about 20 times the exponentiation, or Lyapunov, length.

  5. Microbial Reduction of Fe(III) in the Fithian and Muloorina Illites...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fe(III) in the Fithian and Muloorina Illites : Contrasting Extents and Rates of Bioreduction. Microbial Reduction of Fe(III) in the Fithian and Muloorina Illites : Contrasting...

  6. Trends in Ln(III) Sorption to Quartz Assessed by Molecular Dynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ln(III) Sorption to Quartz Assessed by Molecular Dynamics Simulations and Laser Induced Flourescence Studies. Trends in Ln(III) Sorption to Quartz Assessed by Molecular Dynamics...

  7. United States Fuel Resiliency Volume III U.S. Fuels Supply Infrastruct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mr. Christopher Dean, Mr. Steven Shapiro, and Mr. Matthew Gilstrap. United States Fuel Resiliency: Volume III - Regional Vulnerability and Resilience iii Table of Contents I....

  8. RF laser plasma measurements

    SciTech Connect (OSTI)

    Bollen, W.M.

    1984-08-01T23:59:59.000Z

    One of the major difficulties with excimer lasers has been the presence of impurities, introduced, for example, by the electrodes present in the D.C. discharge approach. Use of microwave excitation makes possible an electrodeless discharge, thereby reducing the risk of introducing impurities into the laser mix. In this approach a tube containing the laser mix is inserted in a waveguide or microwave cavity; the microwaves then break down the laser mix to form a discharge and further interact to heat that discharge. In such microwave discharges, strong fluorescence seems limited to approximately 100 ns. In the same time frame, the fluorescence has also been observed to collapse to the wall. The wall collapse may be related to the reduced fluorescence (reduced radiation area), although burn-up of the lasing components seems more likely. The collapse to the wall reduces the ability to lase by decreasing the active volume. A better understanding of this effect needs to be obtained before a microwave-driven laser can be further developed. This research effort was directed towards obtaining a fundamental understanding of the collapse of the fluorescence to the tube walls. The ultimate goal is to understand the collapse sufficiently to prevent or reduce its effects; to this end, a number of basic plasma physics experiments have been carried out. A complete understanding has not yet been reached.

  9. Electric field divertor plasma pump

    DOE Patents [OSTI]

    Schaffer, M.J.

    1994-10-04T23:59:59.000Z

    An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.

  10. Electric field divertor plasma pump

    DOE Patents [OSTI]

    Schaffer, Michael J. (San Diego, CA)

    1994-01-01T23:59:59.000Z

    An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.

  11. III-V Growth on Silicon Toward a Multijunction Cell

    SciTech Connect (OSTI)

    Geisz, J.; Olson, J.; McMahon, W.; Friedman, D.; Kibbler, A.; Kramer, C.; Young, M.; Duda, A.; Ward, S.; Ptak, A.; Kurtz, S.; Wanlass, M.; Ahrenkiel, P.; Jiang, C. S.; Moutinho, H.; Norman, A.; Jones, K.; Romero, M.; Reedy, B.

    2005-11-01T23:59:59.000Z

    A III-V on Si multijunction solar cell promises high efficiency at relatively low cost. The challenges to epitaxial growth of high-quality III-Vs on Si, though, are extensive. Lattice-matched (LM) dilute-nitride GaNPAs solar cells have been grown on Si, but their performance is limited by defects related to the nitrogen. Advances in the growth of lattice-mismatched (LMM) materials make more traditional III-Vs, such as GaInP and GaAsP, very attractive for use in multijunction solar cells on silicon.

  12. Inductrack III configuration--a maglev system for high loads

    DOE Patents [OSTI]

    Post, Richard F

    2013-11-12T23:59:59.000Z

    Inductrack III configurations are suited for use in transporting heavy freight loads. Inductrack III addresses a problem associated with the cantilevered track of the Inductrack II configuration. The use of a cantilevered track could present mechanical design problems in attempting to achieve a strong enough track system such that it would be capable of supporting very heavy loads. In Inductrack III, the levitating portion of the track can be supported uniformly from below, as the levitating Halbach array used on the moving vehicle is a single-sided one, thus does not require the cantilevered track as employed in Inductrack II.

  13. Luminescent cyclometallated iridium(III) complexes having acetylide ligands

    DOE Patents [OSTI]

    Thompson, Mark E.; Bossi, Alberto; Djurovich, Peter Ivan

    2014-09-02T23:59:59.000Z

    The present invention relates to phosphorescent (triplet-emitting) organometallic materials. The phosphorescent materials of the present invention comprise Ir(III)cyclometallated alkynyl complexes for use as triplet light-emitting materials. The Ir(III)cyclometallated alkynyl complexes comprise at least one cyclometallating ligand and at least one alkynyl ligand bonded to the iridium. Also provided is an organic light emitting device comprising an anode, a cathode and an emissive layer between the anode and the cathode, wherein the emissive layer comprises a Ir(III)cyclometallated alkynyl complex as a triplet emitting material.

  14. High efficiency III-nitride light-emitting diodes

    DOE Patents [OSTI]

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28T23:59:59.000Z

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  15. TRUPACT-III Content Codes (TRUCON-III), Revision 2, July 2012

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartmentEnergyonWIPP 11-3458 Rev. 2 TRUPACT-III

  16. Structural Properties of the Cr(III)-Fe(III) (Oxy)Hydroxide Compositional Series: Insights for a Nanomaterial “Solid Solution”

    SciTech Connect (OSTI)

    Tang, Y.; Zhang, L.; Michel, F.M.; Harrington, R.; Parise, J.B.; Reeder, R.J.

    2010-05-28T23:59:59.000Z

    Chromium(III) (oxy)hydroxide and mixed Cr(III)-Fe(III) (oxy)hydroxides are environmentally important compounds for controlling chromium speciation and bioaccessibility in soils and aquatic systems and are also industrially important as precursors for materials and catalyst synthesis. However, direct characterization of the atomic arrangements of these materials is complicated because of their amorphous X-ray properties. This study involves synthesis of the complete Cr(III)-Fe(III) (oxy)hydroxide compositional series, and the use of complementary thermal, microscopic, spectroscopic, and scattering techniques for the evaluation of their structural properties. Thermal analysis results show that the Cr end member has a higher hydration state than the Fe end member, likely associated with the difference in water exchange rates in the first hydration spheres of Cr(III) and Fe(III). Three stages of weight loss are observed and are likely related to the loss of surface/structural water and hydroxyl groups. As compared to the Cr end member, the intermediate composition sample shows lower dehydration temperatures and a higher exothermic transition temperature. XANES analysis shows Cr(III) and Fe(III) to be the dominant oxidation states. XANES spectra also show progressive changes in the local structure around Cr and Fe atoms over the series. Pair distribution function (PDF) analysis of synchrotron X-ray total scattering data shows that the Fe end member is nanocrystalline ferrihydrite with an intermediate-range order and average coherent domain size of {approx}27 {angstrom}. The Cr end member, with a coherent domain size of {approx}10 {angstrom}, has only short-range order. The PDFs show progressive structural changes across the compositional series. High-resolution transmission electron microscopy (HRTEM) results also show the loss of structural order with increasing Cr content. These observations provide strong structural evidence of chemical substitution and progressive structural changes along the compositional series.

  17. Structural Properties of the Cr(III)-Fe(III) (Oxy)hydroxide Compositional Series: Insights for a Nanomaterial "Solid Solution"

    SciTech Connect (OSTI)

    Michel, Y.; Michel, F; Zhang, L; Harrington, R; Parise, J; Reeder, R

    2010-01-01T23:59:59.000Z

    Chromium(III) (oxy)hydroxide and mixed Cr(III)-Fe(III) (oxy)hydroxides are environmentally important compounds for controlling chromium speciation and bioaccessibility in soils and aquatic systems and are also industrially important as precursors for materials and catalyst synthesis. However, direct characterization of the atomic arrangements of these materials is complicated because of their amorphous X-ray properties. This study involves synthesis of the complete Cr(III)-Fe(III) (oxy)hydroxide compositional series, and the use of complementary thermal, microscopic, spectroscopic, and scattering techniques for the evaluation of their structural properties. Thermal analysis results show that the Cr end member has a higher hydration state than the Fe end member, likely associated with the difference in water exchange rates in the first hydration spheres of Cr(III) and Fe(III). Three stages of weight loss are observed and are likely related to the loss of surface/structural water and hydroxyl groups. As compared to the Cr end member, the intermediate composition sample shows lower dehydration temperatures and a higher exothermic transition temperature. XANES analysis shows Cr(III) and Fe(III) to be the dominant oxidation states. XANES spectra also show progressive changes in the local structure around Cr and Fe atoms over the series. Pair distribution function (PDF) analysis of synchrotron X-ray total scattering data shows that the Fe end member is nanocrystalline ferrihydrite with an intermediate-range order and average coherent domain size of 27 {angstrom}. The Cr end member, with a coherent domain size of 10 {angstrom}, has only short-range order. The PDFs show progressive structural changes across the compositional series. High-resolution transmission electron microscopy (HRTEM) results also show the loss of structural order with increasing Cr content. These observations provide strong structural evidence of chemical substitution and progressive structural changes along the compositional series.

  18. Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code

    SciTech Connect (OSTI)

    Hao, Liang; Zhao, Yiqing; Hu, Xiaoyan; Zou, Shiyang [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Yang, Dong; Wang, Feng; Peng, Xiaoshi; Li, Zhichao; Li, Sanwei; Xu, Tao; Wei, Huiyue [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Liu, Zhanjun; Zheng, Chunyang, E-mail: zheng-chunyang@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 (China)

    2014-07-15T23:59:59.000Z

    Experiments about the observations of stimulated Raman backscatter (SRS) and stimulated Brillouin backscatter (SBS) in Hohlraum were performed on Shenguang-III (SG-III) prototype facility for the first time in 2011. In this paper, relevant experimental results are analyzed for the first time with a one-dimension spectral analysis code, which is developed to study the coexistent process of SRS and SBS in Hohlraum plasma condition. Spectral features of the backscattered light are discussed with different plasma parameters. In the case of empty Hohlraum experiments, simulation results indicate that SBS, which grows fast at the energy deposition region near the Hohlraum wall, is the dominant instability process. The time resolved spectra of SRS and SBS are numerically obtained, which agree with the experimental observations. For the gas-filled Hohlraum experiments, simulation results show that SBS grows fastest in Au plasma and amplifies convectively in C{sub 5}H{sub 12} gas, whereas SRS mainly grows in the high density region of the C{sub 5}H{sub 12} gas. Gain spectra and the spectra of backscattered light are simulated along the ray path, which clearly show the location where the intensity of scattered light with a certain wavelength increases. This work is helpful to comprehend the observed spectral features of SRS and SBS. The experiments and relevant analysis provide references for the ignition target design in future.

  19. Antimony Based III-V Thermophotovoltaic Devices

    SciTech Connect (OSTI)

    CA Wang

    2004-06-09T23:59:59.000Z

    Antimony-based III-V thermophotovoltaic (TPV) cells are attractive converters for systems with low radiator temperature around 1100 to 1700 K, since these cells potentially can be spectrally matched to the thermal source. Cells under development include GaSb and the lattice-matched GaInAsSb/GaSb and InPAsSb/InAs quaternary systems. GaSb cell technology is the most mature, owing in part to the relative ease in preparation of the binary alloy compared to quaternary GaInAsSb and InPAsSb alloys. Device performance of 0.7-eV GaSb cells exceeds 90% of the practical limit. GaInAsSb TPV cells have been the primary focus of recent research, and cells with energy gap E{sub g} ranging from {approx}0.6 to 0.49 eV have been demonstrated. Quantum efficiency and fill factor approach theoretical limits. Open-circuit voltage factor is as high as 87% of the practical limit for the higher-E{sub g} cells, but degrades to below 80% with decreasing E{sub g} of the alloy, which might be due to Auger recombination. InPAsSb cells are the least studied, and a cell with E{sub g} = 0.45-eV has extended spectral response out to 4.3 {micro}m. This paper briefly reviews the main contributions that have been made for antimonide-based TPV cells, and suggests additional studies for further performance enhancements.

  20. COMPUTER SCIENCE (Div. III) Chair, Associate Professor BRENT HEERINGA

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    1 COMPUTER SCIENCE (Div. III) Chair, Associate Professor BRENT HEERINGA Professors: BAILEY, DANYLUK, LENHART, MURTAGH*. Associate Professors: ALBRECHT*, FREUND**, HEERINGA, MCGUIRE. Computers and computation, business, and the arts. Understanding the nature of computation and exploring the great potential

  1. Physical Modeling Synthesis Update Julius O. Smith III

    E-Print Network [OSTI]

    Smith III, Julius Orion

    Physical Modeling Synthesis Update Julius O. Smith III Center for Computer Research in Music. They model wave propagation in distributed media such as strings, bores, horns, plates, and acoustic spaces

  2. aging tests iii: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    94720 (Received 2 February 2006; accepted 2 March Ritchie, Robert 6 The CLEO-III RICH Detector and Beam Test Results HEP - Experiment (arXiv) Summary: We are constructing a Ring...

  3. Synthesis and characterization of Fe(III)-silicate precipitation tubes

    SciTech Connect (OSTI)

    Parmar, K.; Pramanik, A.K. [National Metallurgical Laboratory, Council of Scientific and Industrial Research, Burmamines, Jamshedpur 831007 (India)] [National Metallurgical Laboratory, Council of Scientific and Industrial Research, Burmamines, Jamshedpur 831007 (India); Bandyopadhya, N.R. [Bengal Engineering and Science University, Shibpur, Howrah 711103 (India)] [Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Bhattacharjee, S., E-mail: santanu@nmlindia.org [National Metallurgical Laboratory, Council of Scientific and Industrial Research, Burmamines, Jamshedpur 831007 (India)

    2010-09-15T23:59:59.000Z

    Fe(III)-silicate precipitation tubes synthesized through 'silica garden' route have been characterized using a number of analytical techniques including X-ray diffraction, infrared spectroscopy, atomic force microscopy, scanning and transmission electron microscopy. These tubes are brittle and amorphous and are hierarchically built from smaller tubes of 5-10 nm diameters. They remain amorphous at least up to 650 {sup o}C. Crystobalite and hematite are the major phases present in Fe(III)-silicate tubes heated at 850 {sup o}C. Morphology and chemical compositions at the external and internal walls of these tubes are remarkably different. These tubes are porous with high BET surface area of 291.2 m{sup 2}/g. Fe(III)-silicate tubes contain significant amount of physically and chemically bound moisture. They show promise as an adsorbent for Pb(II), Zn(II), and Cr(III) in aqueous medium.

  4. III-V High-Efficiency Multijunction Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for III-V High-Efficiency Multijunction Photovoltaics at the National Center for Photovoltaics.

  5. ap theory iii: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23 24 25 Next Page Last Page Topic Index 1 AP Theory III: Cone-like Graded SUSY, Dynamic Dark Energy and the YM Millenium Problem Math Preprints (arXiv) Summary: Artin...

  6. Guidance for Environmental Background Analysis Volume III: Groundwater

    E-Print Network [OSTI]

    Guidance for Environmental Background Analysis Volume III: Groundwater Prepared for: Naval This guidance document provides instructions for characterizing groundwater background conditions and comparing datasets representing groundwater impacted by an actual or potential chemical release to appropriate

  7. Deepwater Horizon Oil Spill; Draft Programmatic and Phase III Early

    E-Print Network [OSTI]

    Deepwater Horizon Oil Spill; Draft Programmatic and Phase III Early Restoration Plan of the Deepwater Horizon oil spill. The restoration alternatives are comprised of early restoration project types Addressing Injuries Resulting from the Deepwater Horizon Oil Spill (Framework Agreement). Criteria

  8. Incised marks on Late Helladic and Late Minoan III pottery

    E-Print Network [OSTI]

    Hirschfeld, Nicolle Elise

    1990-01-01T23:59:59.000Z

    INICISED MARKS ON LATE HELLADIC AND LATE MINOAN III POTTERY A Thesis by NICOLLE ELISE HIRSCHFELD Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the dey'ee of MASTER OF ARTS... December 1990 Major Subject: Anthropology INCISED MARKS ON LATE HELLADIC AND LATE MINOAN III POTTERY A Thesis by NICOLLE ELISE HIRSCHFELD Approved as to style and content by: George F, Bass (Chair of Committee) c~) Frederick H. van Doorninck, Jr...

  9. The Madison plasma dynamo experiment: A facility for studying laboratory plasma astrophysics

    E-Print Network [OSTI]

    Cooper, C. M.

    The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic instabilities and other high-? phenomena with astrophysically relevant ...

  10. atmospheric plasma sources: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in active plasma region and plasma parameters (electron density and electron distribution function) are determined. Concentrations of oxygen atoms and ozone in the plasma...

  11. atazanavir plasma concentrations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics and Fusion Websites Summary: The Workshop will concentrate on burning plasma research in the areas of Plasma Transport and Confinement, MHD plasma research; ...

  12. affects plasma concentrations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics and Fusion Websites Summary: The Workshop will concentrate on burning plasma research in the areas of Plasma Transport and Confinement, MHD plasma research; ...

  13. aiv plasma concentrations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics and Fusion Websites Summary: The Workshop will concentrate on burning plasma research in the areas of Plasma Transport and Confinement, MHD plasma research; ...

  14. LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS

    E-Print Network [OSTI]

    Schroeder, C. B.

    2010-01-01T23:59:59.000Z

    LASER-PLASMA-ACCELERATOR-BASED ?? COLLIDERS ? C. B.linear col- lider based on laser-plasma-accelerators arediscussed, and a laser-plasma-accelerator-based gamma-

  15. Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources

    E-Print Network [OSTI]

    Geddes, Cameron G.R.

    2010-01-01T23:59:59.000Z

    of high- gradient, laser plasma particle accelerators.accelerators that use laser-driven plasma waves. Theseleft) showing the laser (red), plasma wake density (purple-

  16. Tailored net-shape powder composites by spark plasma sintering

    E-Print Network [OSTI]

    Khaleghi, Evan Aryan

    2012-01-01T23:59:59.000Z

    produced by spark plasma sintering”, Powder Metall. , 51, 59nanoparticles in spark plasma sintering. Mater. Sci. Eng. ,Evolution During Spark Plasma Sintering,” Ceram. Int. , 35,

  17. Extreme hydrogen plasma densities achieved in a linear plasma generator

    SciTech Connect (OSTI)

    Rooij, G. J. van; Veremiyenko, V. P.; Goedheer, W. J.; de Groot, B.; Kleyn, A. W.; Smeets, P. H. M.; Versloot, T. W.; Whyte, D. G.; Engeln, R.; Schram, D. C.; Cardozo, N. J. Lopes [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein, Uthrecht 3430BE (Netherlands); Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein, Uthrecht 3430BE (NL) and Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)

    2007-03-19T23:59:59.000Z

    A magnetized hydrogen plasma beam was generated with a cascaded arc, expanding in a vacuum vessel at an axial magnetic field of up to 1.6 T. Its characteristics were measured at a distance of 4 cm from the nozzle: up to a 2 cm beam diameter, 7.5x10{sup 20} m{sup -3} electron density, {approx}2 eV electron and ion temperatures, and 3.5 km/s axial plasma velocity. This gives a 2.6x10{sup 24} H{sup +} m{sup -2} s{sup -1} peak ion flux density, which is unprecedented in linear plasma generators. The high efficiency of the source is obtained by the combined action of the magnetic field and an optimized nozzle geometry. This is interpreted as a cross-field return current that leads to power dissipation in the beam just outside the source.

  18. SURFACE CHEMKIN-III: A Fortran package for analyzing heterogeneous chemical kinetics at a solid-surface - gas-phase interface

    SciTech Connect (OSTI)

    Coltrin, M.E.; Kee, R.J.; Rupley, F.M.; Meeks, E.

    1996-05-01T23:59:59.000Z

    This document is the user`s manual for the SURFACE CHEMKIN-III package. Together with CHEMKIN-III, this software facilitates the formation, solution, and interpretation of problems involving elementary heterogeneous and gas-phase chemical kinetics in the presence of a solid surface. The package consists of two major software components: an Interpreter and a Surface Subroutine Library. The Interpreter is a program that reads a symbolic description of a user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Surface Subroutine Library, which is a collection of about seventy modular Fortran subroutines that may be called from a user`s application code to return information on chemical production rates and thermodynamic properties. This version of SURFACE CHEMKIN-III includes many modifications to allow treatment of multi-fluid plasma systems, for example modeling the reactions of highly energetic ionic species with a surface. Optional rate expressions allow reaction rates to depend upon ion energy rather than a single thermodynamic temperature. In addition, subroutines treat temperature as an array, allowing an application code to define a different temperature for each species. This version of SURFACE CHEMKIN-III allows use of real (non-integer) stoichiometric coefficients; the reaction order with respect to species concentrations can also be specified independent of the reaction`s stoichiometric coefficients. Several different reaction mechanisms can be specified in the Interpreter input file through the new construct of multiple materials.

  19. Recent Advances in Plasma Acceleration

    SciTech Connect (OSTI)

    Hogan, Mark

    2007-03-19T23:59:59.000Z

    The costs and the time scales of colliders intended to reach the energy frontier are such that it is important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators a drive beam, either laser or particle, produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultra-high accelerating fields over a substantial length to achieve a significant energy gain. More than 42 GeV energy gain was achieved in an 85 cm long plasma wakefield accelerator driven by a 42 GeV electron drive beam in the Final Focus Test Beam (FFTB) Facility at SLAC. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx}52 GV/m. This effectively doubles their energy, producing the energy gain of the 3 km long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. Prospects for a drive-witness bunch configuration and high-gradient positron acceleration experiments planned for the SABER facility will be discussed.

  20. Plasma instrumentation for fusion power reactor control

    SciTech Connect (OSTI)

    Sager, G.T.; Bauer, J.F.; Maya, I.; Miley, G.H.

    1985-07-01T23:59:59.000Z

    Feedback control will be implemented in fusion power reactors to guard against unpredicted behavior of the plant and to assure desirable operation. In this study, plasma state feedback requirements for plasma control by systems strongly coupled to the plasma (magnet sets, RF, and neutral beam heating systems, and refueling systems) are estimated. Generic considerations regarding the impact of the power reactor environment on plasma instrumentation are outlined. Solutions are proposed to minimize the impact of the power reactor environment on plasma instrumentation. Key plasma diagnostics are evaluated with respect to their potential for upgrade and implementation as power reactor instruments.

  1. QER- Comment of William Smith III

    Broader source: Energy.gov [DOE]

    Hello DOE, Thanks for accepting my comments on the Quadrennial Energy Review by e-mail. There will be those who wish to promote nuclear energy as a source of electricity for future use in the USA. I speak against this form of energy. Because it creates long-lived radioactive wastes, nuclear power is incompatible with the biological world in which we live and from which we evolved. The lasting nature of these wastes creates a moral quandry for us in this generation, as we leave behind such biological poisons for our descents to manage, in ways which we do not yet know. A further problem with nucler energy is that any fission reaction creates plutonium, the stuff of nuclear weapons. If nuclear power reactors were to be spread around the world, inevitably the proliferation of nuclear weapons would follow. So-called '4th generation' or 'thorium' reactors suffer from a similar problem, for although they may generate less plutonium, their fuel cycle involves creation of large amounts of U-233 which carries a similar proliferation risk to plutonium-239. I advocate crafting an energy future for our nation bsed on the natural flows of renewable energy, coupled with a diversified structure which generates electricity at many smaller sources. Implicit in any modern energy system is the increased efficiency of energy usage which will continue to lower the bulk amounts of energy, particularly electricity, which our society uses to satisfy our industrial, military, commercial, and personal needs. Clearly as a nation we must participate in the worldwide effort to control the buildup of carbon dioxide gases and other pollutants which threaten the stability of the earth's climate. I would like to bring to your attention these papers from the Rocky Mountain Institute which touch on the above issues: http://www.rmi.org/Knowledge-Center/Library/2009-09_FourNuclearMyths and http://www.rmi.org/Knowledge-Center/Library/2012-01_FarewellToFossilFuels and http://www.rmi.org/Knowledge-Center/Library/E05-14_NuclearPowerEconomics.... If you have not yet done so, I strongly urge you to contact the Rocky Mountain Institute and contract with them for their advice in consulting on the Quadrennial Energy Review. Sincerely, William Wharton Smith III

  2. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOE Patents [OSTI]

    Tsai, C.C.; Haselton, H.H.

    1994-03-08T23:59:59.000Z

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.

  3. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOE Patents [OSTI]

    Tsai, Chin-Chi (Oak Ridge, TN); Haselton, Halsey H. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm.sup.2 at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance.

  4. High sensitivity imaging Thomson scattering for low temperature plasma

    SciTech Connect (OSTI)

    Meiden, H. J. van der; Al, R. S.; Barth, C. J.; Donne, A. J. H.; Goedheer, W. J.; Groot, B. de; Koppers, W. R.; Pol, M. J. van de; Prins, P. R.; Shumack, A. E.; Smeets, P. H. M.; Vijvers, W. A. J.; Westerhout, J.; Wright, G. M.; Rooij, G. J. van [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Engeln, R. [Eindhoven University of Technology, 5612AZ Eindhoven (Netherlands); Kleyn, A. W. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Leiden Institute of Chemistry, Leiden University, Leiden (Netherlands); Lopes Cardozo, N. J.; Schram, D. C. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, 5612AZ Eindhoven (Netherlands)

    2008-01-15T23:59:59.000Z

    A highly sensitive imaging Thomson scattering system was developed for low temperature (0.1-10 eV) plasma applications at the Pilot-PSI linear plasma generator. The essential parts of the diagnostic are a neodymium doped yttrium aluminum garnet laser operating at the second harmonic (532 nm), a laser beam line with a unique stray light suppression system and a detection branch consisting of a Littrow spectrometer equipped with an efficient detector based on a ''Generation III'' image intensifier combined with an intensified charged coupled device camera. The system is capable of measuring electron density and temperature profiles of a plasma column of 30 mm in diameter with a spatial resolution of 0.6 mm and an observational error of 3% in the electron density (n{sub e}) and 6% in the electron temperature (T{sub e}) at n{sub e}=4x10{sup 19} m{sup -3}. This is achievable at an accumulated laser input energy of 11 J (from 30 laser pulses at 10 Hz repetition frequency). The stray light contribution is below 9x10{sup 17} m{sup -3} in electron density equivalents by the application of a unique stray light suppression system. The amount of laser energy that is required for a n{sub e} and T{sub e} measurement is 7x10{sup 20}/n{sub e} J, which means that single shot measurements are possible for n{sub e}>2x10{sup 21} m{sup -3}.

  5. Plasma-catalyzed fuel reformer

    DOE Patents [OSTI]

    Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele

    2013-06-11T23:59:59.000Z

    A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.

  6. Particle transport in plasma reactors

    SciTech Connect (OSTI)

    Rader, D.J.; Geller, A.S.; Choi, Seung J. [Sandia National Labs., Albuquerque, NM (United States); Kushner, M.J. [Illinois Univ., Urbana, IL (United States)

    1995-01-01T23:59:59.000Z

    SEMATECH and the Department of Energy have established a Contamination Free Manufacturing Research Center (CFMRC) located at Sandia National Laboratories. One of the programs underway at the CFMRC is directed towards defect reduction in semiconductor process reactors by the application of computational modeling. The goal is to use fluid, thermal, plasma, and particle transport models to identify process conditions and tool designs that reduce the deposition rate of particles on wafers. The program is directed toward defect reduction in specific manufacturing tools, although some model development is undertaken when needed. The need to produce quantifiable improvements in tool defect performance requires the close cooperation among Sandia, universities, SEMATECH, SEMATECH member companies, and equipment manufacturers. Currently, both plasma (e.g., etch, PECVD) and nonplasma tools (e.g., LPCVD, rinse tanks) are being worked on under this program. In this paper the authors summarize their recent efforts to reduce particle deposition on wafers during plasma-based semiconductor manufacturing.

  7. Constricted glow discharge plasma source

    DOE Patents [OSTI]

    Anders, Andre (Albany, CA); Anders, Simone (Albany, CA); Dickinson, Michael (San Leandro, CA); Rubin, Michael (Berkeley, CA); Newman, Nathan (Winnetka, IL)

    2000-01-01T23:59:59.000Z

    A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

  8. Plasma Panel Based Radiation Detectors

    SciTech Connect (OSTI)

    Friedman, Dr. Peter S. [Integrated Sensors, LLC; Varner Jr, Robert L [ORNL; Ball, Robert [University of Michigan; Beene, James R [ORNL; Ben Moshe, M. [Tel Aviv University; Benhammou, Yan [Tel Aviv University; Chapman, J. Wehrley [University of Michigan; Etzion, E [Tel Aviv University; Ferretti, Claudio [University of Michigan; Bentefour, E [Ion Beam Applications; Levin, Daniel S. [University of Michigan; Moshe, M. [Tel Aviv University; Silver, Yiftah [Tel Aviv University; Weaverdyck, Curtis [University of Michigan; Zhou, Bing [University of Michigan

    2013-01-01T23:59:59.000Z

    The plasma panel sensor (PPS) is a gaseous micropattern radiation detector under current development. It has many operational and fabrication principles common to plasma display panels (PDPs). It comprises a dense matrix of small, gas plasma discharge cells within a hermetically sealed panel. As in PDPs, it uses non-reactive, intrinsically radiation-hard materials such as glass substrates, refractory metal electrodes, and mostly inert gas mixtures. We are developing these devices primarily as thin, low-mass detectors with gas gaps from a few hundred microns to a few millimeters. The PPS is a high gain, inherently digital device with the potential for fast response times, fine position resolution (< 50 m RMS) and low cost. In this paper we report here on prototype PPS experimental results in detecting betas, protons and cosmic muons, and we extrapolate on the PPS potential for applications including detection of alphas, heavy-ions at low to medium energy, thermal neutrons and X-rays.

  9. Plasma Production via Field Ionization

    SciTech Connect (OSTI)

    O'Connell, C.L.; Barnes, C.D.; Decker, F.; Hogan, M.J.; Iverson, R.; Krejcik, P.; Siemann, R.; Walz, D.R.; /SLAC; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu,; Marsh, K.A.; Mori, W.; Zhou, M.; /UCLA; Deng, S.; Katsouleas, T.; Muggli, P.; Oz, E.; /Southern California U.

    2007-01-02T23:59:59.000Z

    Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam's bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.

  10. Plasma Wakefield Experiments at FACET

    SciTech Connect (OSTI)

    Hogan, M.J.; England, R.J.; Frederico, J.; Hast, C.; Li, S.Z.; Litos, M.; Walz, D.; /SLAC; An, W.; Clayton, C.E.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.; Tochitsky, S.; /UCLA; Muggli, P.; Pinkerton, S.; Shi, Y.; /Southern California U.

    2011-08-19T23:59:59.000Z

    FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration beginning in summer 2011. The nominal FACET parameters are 23GeV, 3nC electron bunches compressed to {approx}20{micro}m long and focused to {approx}10{micro}m wide. The intense fields of the FACET bunches will be used to field ionize neutral lithium or cesium vapor produced in a heat pipe oven. Previous experiments at the SLAC FFTB facility demonstrated 50GeV/m gradients in an 85cm field ionized lithium plasma where the interaction distance was limited by head erosion. Simulations indicate the lower ionization potential of cesium will decrease the rate of head erosion and increase single stage performance. The initial experimental program will compare the performance of lithium and cesium plasma sources with single and double bunches. Later experiments will investigate improved performance with a pre-ionized cesium plasma. The status of the experiments and expected performance are reviewed. The FACET Facility is being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration. The facility will begin commissioning in summer 2011 and conduct an experimental program over the coming five years to study electron and positron beam driven plasma acceleration with strong wake loading in the non-linear regime. The FACET experiments aim to demonstrate high-gradient acceleration of electron and positron beams with high efficiency and negligible emittance growth.

  11. Relativistic effects on plasma expansion

    SciTech Connect (OSTI)

    Benkhelifa, El-Amine; Djebli, Mourad, E-mail: mdjebli@usthb.dz [USTHB, Faculty of Physics, Theoretical Physics Laboratory, B.P. 32 Bab-Ezzouar, 16079 Algiers (Algeria)

    2014-07-15T23:59:59.000Z

    The expansion of electron-ion plasma is studied through a fully relativistic multi-fluids plasma model which includes thermal pressure, ambipolar electrostatic potential, and internal energy conversion. Numerical investigation, based on quasi-neutral assumption, is performed for three different regimes: nonrelativistic, weakly relativistic, and relativistic. Ions' front in weakly relativistic regime exhibits spiky structure associated with a break-down of quasi-neutrality at the expanding front. In the relativistic regime, ion velocity is found to reach a saturation limit which occurs at earlier stages of the expansion. This limit is enhanced by higher electron velocity.

  12. Plasma Facing Component Science and Technology for Burning Plasma Experiments

    E-Print Network [OSTI]

    HeatFlux(MW/m2 ) Disruptions Reentry Vehicles Fusion Divertor Fusion First Wall Fast Breeder Fission Reactor Radiant Flux at Sun Surface Rocket Nozzles Comparison Relative Heat Fluxes Fusion Plasma #12;MAU prediction of disruptions about 50 ms before they occur with a >90% accuracy ­ Massive gas puffing

  13. Plasma Chemistry and Plasma Processing, Vol. 12, No.4, 1992 Infrared Radiation from an Arc Plasma and Its

    E-Print Network [OSTI]

    Eagar, Thomas W.

    in the electric field of a charged particle, radiation is emitted. In terms of radiation intensity, electronB ) Plasma Chemistry and Plasma Processing, Vol. 12, No.4, 1992 Infrared Radiation from an Arc ifinfraredradiation from an arc plasma can fie used for diagnostic purposes. Tire properties of IR radiation

  14. A Study of the Reaction Between Antimony (III) Iodide and Organic Amine Hydriodides

    E-Print Network [OSTI]

    Blackstock, Joseph Beauford

    1960-01-01T23:59:59.000Z

    -isopropylammoniumnonaiododianti- montate(III) Tris-4 -picoliniumnonaiododiantimonate(III) Tris-$-picoliniumnonaiOdodiantimonate(III) Di-isobutylamine-antimony( III) iodide reaction product Triethanolam&ne-antimony(III) iodide reaction product Flelting Point, 'C Decomposed 193... to the starch end point . Antimony was determined on eacn compound in dupli- cate. The results of these analyses are tabulated in Table II. II. Determination of' Iodine in the Reaction Products: Iodine was determined potentiometrically using a silver...

  15. Rotation generation and transport in tokamak plasmas

    E-Print Network [OSTI]

    Podpaly, Yuri Anatoly

    2012-01-01T23:59:59.000Z

    Plasma toroidal rotation is a factor important for plasma stability and transport, but it is still a fairly poorly understood area of physics. This thesis focuses on three aspects of rotation: momentum transport, Ohmic ...

  16. Magnetron cathodes in plasma electrode pockels cells

    DOE Patents [OSTI]

    Rhodes, Mark A. (Pleasanton, CA)

    1995-01-01T23:59:59.000Z

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating. pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal.

  17. Methane Conversion by Plasma Assisted Methods

    E-Print Network [OSTI]

    and Helge Egsgaard2 1Optics and Plasma Research Department 2Biosystems Department Risø National Laboratory

  18. Plasma Wakefield Acceleration: How it Works

    SciTech Connect (OSTI)

    None

    2014-11-05T23:59:59.000Z

    This animation explains how electrons can be efficiently accelerated to high energy using wakes created in a plasma.

  19. Characterization of the conduction phase of a plasma opening switch using a hydrogen plasma

    E-Print Network [OSTI]

    Characterization of the conduction phase of a plasma opening switch using a hydrogen plasma J. J Pulsed Power Physics Branch, Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375 Y 2004; published online 7 January 2005) Plasma opening switch (POS) experiments were conducted

  20. Laser-plasma diamagnetism in the presence of an ambient magnetized plasma

    E-Print Network [OSTI]

    California at Los Angles, University of

    Laser-plasma diamagnetism in the presence of an ambient magnetized plasma M. VanZeelanda) and W cavity created by a dense laser-produced plasma initially, nlpp /n0 1) expanding into an ambient magnetized background plasma (n0 2 1012 cm 3 ) capable of supporting Alfve´n waves. The experiments

  1. Plasma transport in a converging magnetic field with applications to helicon plasma thrusters

    E-Print Network [OSTI]

    Choueiri, Edgar

    .1, which represents a new design criteria for helicon plasma thrusters. I. Introduction ElectrodelessPlasma transport in a converging magnetic field with applications to helicon plasma thrusters IEPC University, Princeton, New Jersey, 08540, USA Plasma transport in the convergent magnetic field region

  2. High-beta plasma blobs in the morningside plasma sheet G. Haerendel1

    E-Print Network [OSTI]

    Boyer, Edmond

    High-beta plasma blobs in the morningside plasma sheet G. Haerendel1 , W. Baumjohann1 , E about 9i during the late-night/early-morning hours. Very high-plasma beta values were found, varying is known about the origin of the high-beta plasma. It is speculated that the morningside boundary layer

  3. Plasma sweeper to control the coupling of RF power to a magnetically confined plasma

    DOE Patents [OSTI]

    Motley, Robert W. (Princeton, NJ); Glanz, James (Lawrenceville, NJ)

    1985-01-01T23:59:59.000Z

    A device for coupling RF power (a plasma sweeper) from a phased waveguide array for introducing RF power to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the phased waveguide array; and a potential source coupled to the electrode for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.

  4. THE SOLAR WIND PLASMA Dr. Joe Borovsky

    E-Print Network [OSTI]

    Shyy, Wei

    involved multidipole plasma devices. Current research interests focus on structure in the solar wind THE SOLAR WIND PLASMA Dr. Joe Borovsky Los Alamos National Laboratory and University, magnetized, collisionless plasma, important for the geomagnetic activity that it drives at Earth and for its

  5. Planar controlled zone microwave plasma system

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Morrell, Jonathan S. (Knoxvlle, TN)

    2011-10-04T23:59:59.000Z

    An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.

  6. Burning Plasma Experiment Requirements Presented to

    E-Print Network [OSTI]

    -heating(self-organization?) · Test techniques to control and optimize alpha-dominated plasmas. · Sustain alpha-dominated plasmas ? Test Control and Optimization Techniques >0.5 0.4 to 0.6 10 >3 1 Sustain Alpha Dominated Plasmas >0, possible guided slower speed pellets) First wall materials Be tiles, no carbon First wall cooling

  7. Plasmas are Hot and Fusion is Cool

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.

  8. Hydrodynamics of the cascading plasma

    E-Print Network [OSTI]

    Alex Buchel

    2009-06-03T23:59:59.000Z

    The cascading gauge theory of Klebanov et.al realizes a soluble example of gauge/string correspondence in a non-conformal setting. Such a gauge theory has a strong coupling scale Lambda, below which it confines with a chiral symmetry breaking. A holographic description of a strongly coupled cascading gauge theory plasma is represented by a black brane solution of type IIB supergravity on a conifold with fluxes. A characteristic parameter controlling the high temperature expansion of such plasma is 1/ln(T/Lambda). In this paper we study the speed of sound and the bulk viscosity of the cascading gauge theory plasma to order 1/ln(T/Lambda)^4. We find that the bulk viscosity satisfies the bound conjectured in arXiv:0708.3459. We comment on difficulties of computing the transport coefficients to all orders in T/Lambda. Previously, it was shown that a cascading gauge theory plasma undergoes a first-order deconfinement transition with unbroken chiral symmetry at T_c=0.6141111(3) Lambda. We show here that a deconfined chirally symmetric phase becomes perturbatively unstable at T_u=0.8749(0) T_c. Near the unstable point the specific heat diverges as c_V ~ |1-T_u/T|^(-1/2).

  9. How to model quantum plasmas

    E-Print Network [OSTI]

    G. Manfredi

    2005-05-01T23:59:59.000Z

    Traditional plasma physics has mainly focused on regimes characterized by high temperatures and low densities, for which quantum-mechanical effects have virtually no impact. However, recent technological advances (particularly on miniaturized semiconductor devices and nanoscale objects) have made it possible to envisage practical applications of plasma physics where the quantum nature of the particles plays a crucial role. Here, I shall review different approaches to the modeling of quantum effects in electrostatic collisionless plasmas. The full kinetic model is provided by the Wigner equation, which is the quantum analog of the Vlasov equation. The Wigner formalism is particularly attractive, as it recasts quantum mechanics in the familiar classical phase space, although this comes at the cost of dealing with negative distribution functions. Equivalently, the Wigner model can be expressed in terms of $N$ one-particle Schr{\\"o}dinger equations, coupled by Poisson's equation: this is the Hartree formalism, which is related to the `multi-stream' approach of classical plasma physics. In order to reduce the complexity of the above approaches, it is possible to develop a quantum fluid model by taking velocity-space moments of the Wigner equation. Finally, certain regimes at large excitation energies can be described by semiclassical kinetic models (Vlasov-Poisson), provided that the initial ground-state equilibrium is treated quantum-mechanically. The above models are validated and compared both in the linear and nonlinear regimes.

  10. Princeton University Plasma Physics Laboratory

    E-Print Network [OSTI]

    : Manickam, J., McGuire, K.M., Monticello, D., Nagayama, Y., Park, W., Taylor, G., Drake, J.F., Kleva, R Simulations of Beam­Fueled Supershot­like Plasmas Budny, R.V. 14 pgs. Near Ignition Preprint: March 1993, S.A., Scott, S.D., Stotler, D., Wieland, R., Zarnstorff, M., Zweben, S.J. #12; ­3­ PPPL­2880

  11. Princeton University Plasma Physics Laboratory

    E-Print Network [OSTI]

    : Manickam, J., McGuire, K.M., Monticello, D., Nagayama, Y., Park, W., Taylor, G., Drake, J.F., Kleva, R Simulations of Beam-Fueled Supershot-like Plasmas Budny, R.V. 14 pgs. Near Ignition Preprint: March 1993, S.A., Scott, S.D., Stotler, D., Wieland, R., Zarnstorff, M., Zweben, S.J. #12;-3- PPPL-2880

  12. VISUALIZATION OF MAGNETICALLY CONFINED PLASMAS

    E-Print Network [OSTI]

    of the fusion energy research community. There is presently a great imbalance in the world energy consumption. As an example, in 1990, the per capita consumption of energy in India and China were 1/6 and 1/3 of the world Plasma Physics Laboratory Princeton NJ 08543, USA December 3, 1999 Abstract With the rapid developments

  13. VISUALIZATION OF MAGNETICALLY CONFINED PLASMAS

    E-Print Network [OSTI]

    imbalance in the world energy consumption. As an example, in 1990, the per capita consumption of energy, Princeton Plasma Physics Laboratory Princeton NJ 08543, USA November 30, 1999 Abstract With the rapid developments in experimental and theoretical fu- sion energy research towards more geometric details

  14. Feasibility Study for a Plasma Dynamo Facility to Investigate Fundamental Processes in Plasma Astrophysics. Final report

    SciTech Connect (OSTI)

    Forest, Cary B.

    2013-09-19T23:59:59.000Z

    The scientific equipment purchased on this grant was used on the Plasma Dynamo Prototype Experiment as part of Professor Forest's feasibility study for determining if it would be worthwhile to propose building a larger plasma physics experiment to investigate various fundamental processes in plasma astrophysics. The initial research on the Plasma Dynamo Prototype Experiment was successful so Professor Forest and Professor Ellen Zweibel at UW-Madison submitted an NSF Major Research Instrumentation proposal titled "ARRA MRI: Development of a Plasma Dynamo Facility for Experimental Investigations of Fundamental Processes in Plasma Astrophysics." They received funding for this project and the Plasma Dynamo Facility also known as the "Madison Plasma Dynamo Experiment" was constructed. This experiment achieved its first plasma in the fall of 2012 and U.S. Dept. of Energy Grant No. DE-SC0008709 "Experimental Studies of Plasma Dynamos," now supports the research.

  15. Aerospace & Energetics Research Program -University of Washington Plasma Dynamics Group

    E-Print Network [OSTI]

    Shumlak, Uri

    of Washington Plasma Dynamics Group q The Boltzmann equation is seven dimensional. q As a consequence plasmaAerospace & Energetics Research Program - University of Washington Plasma Dynamics Group Plasma Plasma Dynamics Group Abstract Many current plasma simulation codes are based on the magnetohydrodynamic

  16. Miniaturized cathodic arc plasma source

    DOE Patents [OSTI]

    Anders, Andre (Albany, CA); MacGill, Robert A. (Richmond, CA)

    2003-04-15T23:59:59.000Z

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  17. Local and Global Radiative Feedback from Population III Star Formation

    E-Print Network [OSTI]

    O'Shea, Brian W

    2010-01-01T23:59:59.000Z

    We present an overview of recent work that focuses on understanding the radiative feedback processes that are potentially important during Population III star formation. Specifically, we examine the effect of the Lyman-Werner (photodissociating) background on the early stages of primordial star formation, which serves to delay the onset of star formation in a given halo but never suppresses it entirely. We also examine the effect that both photodissociating and ionizing radiation in I-fronts from nearby stellar systems have on the formation of primordial protostellar clouds. Depending on the strength of the incoming radiation field and the central density of the halos, Pop III star formation can be suppressed, unaffected, or even enhanced. Understanding these and other effects is crucial to modeling Population III star formation and to building the earliest generations of galaxies in the Universe.

  18. Plasma Basics Plasma is often called the "Fourth State of Matter". Although found in virtually every home and business,

    E-Print Network [OSTI]

    Plasma Basics Plasma is often called the "Fourth State of Matter". Although found in virtually every home and business, gas plasma is not well known. In fact, plasma is quite common - it is estimated that 99% of the visible universe consists of plasma. Earthbound plasmas include lightning, fluorescent

  19. Interpenetration and stagnation in colliding laser plasmas

    SciTech Connect (OSTI)

    Al-Shboul, K. F. [Center for Materials Under eXtreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States) [Center for Materials Under eXtreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Department of Nuclear Engineering, Jordan University of Science and Technology, Irbid 22110 (Jordan); Harilal, S. S., E-mail: hari@purdue.edu; Hassan, S. M.; Hassanein, A. [Center for Materials Under eXtreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)] [Center for Materials Under eXtreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Costello, J. T. [School of Physical Sciences and NCPST, Dublin City University, Dublin 9 (Ireland)] [School of Physical Sciences and NCPST, Dublin City University, Dublin 9 (Ireland); Yabuuchi, T.; Tanaka, K. A. [Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 5650871 (Japan)] [Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 5650871 (Japan); Hirooka, Y. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu (Japan)] [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu (Japan)

    2014-01-15T23:59:59.000Z

    We have investigated plasma stagnation and interaction effects in colliding laser-produced plasmas. For generating colliding plasmas, two split laser beams were line-focused onto a hemi-circular target and the seed plasmas so produced were allowed to expand in mutually orthogonal directions. This experimental setup forced the expanding seed plasmas to come to a focus at the center of the chamber. The interpenetration and stagnation of plasmas of candidate fusion wall materials, viz., carbon and tungsten, and other materials, viz., aluminum, and molybdenum were investigated in this study. Fast-gated imaging, Faraday cup ion analysis, and optical emission spectroscopy were used for diagnosing seed and colliding plasma plumes. Our results show that high-Z target (W, Mo) plasma ions interpenetrate each other, while low-Z (C, Al) plasmas stagnate at the collision plane. For carbon seed plasmas, an intense stagnation was observed resulting in longer plasma lifetime; in addition, the stagnation layer was found to be rich with C{sub 2} dimers.

  20. Oscillating plasma bubbles. II. Pulsed experiments

    SciTech Connect (OSTI)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2012-08-15T23:59:59.000Z

    Time-dependent phenomena have been investigated in plasma bubbles which are created by inserting spherical grids into an ambient plasma and letting electrons and ions form a plasma of different parameters than the ambient one. There are no plasma sources inside the bubble. The grid bias controls the particle flux. There are sheaths on both sides of the grid, each of which passes particle flows in both directions. The inner sheath or plasma potential develops self consistently to establish charge neutrality and divergence free charge and mass flows. When the electron supply is restricted, the inner sheath exhibits oscillations near the ion plasma frequency. When all electrons are excluded, a virtual anode forms on the inside sheath, reflects all ions such that the bubble is empty. By pulsing the ambient plasma, the lifetime of the bubble plasma has been measured. In an afterglow, plasma electrons are trapped inside the bubble and the bubble decays as slow as the ambient plasma. Pulsing the grid voltage yields the time scale for filling and emptying the bubble. Probes have been shown to modify the plasma potential. Using pulsed probes, transient ringing on the time scale of ion transit times through the bubble has been observed. The start of sheath oscillations has been investigated. The instability mechanism has been qualitatively explained. The dependence of the oscillation frequency on electrons in the sheath has been clarified.

  1. Plasma plume MHD power generator and method

    DOE Patents [OSTI]

    Hammer, James H. (Livermore, CA)

    1993-01-01T23:59:59.000Z

    Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

  2. Atmospheric Pressure Plasma Process And Applications

    SciTech Connect (OSTI)

    Peter C. Kong; Myrtle

    2006-09-01T23:59:59.000Z

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  3. Steady state compact toroidal plasma production

    DOE Patents [OSTI]

    Turner, William C. (Livermore, CA)

    1986-01-01T23:59:59.000Z

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  4. Neutral-plasma interactions are expected to have a significant influence on edge plasma conditions in the edge region of a tokamak plasma, and thus

    E-Print Network [OSTI]

    Hughes, Jerry

    Neutral-plasma interactions are expected to have a significant influence on edge plasma conditions in the edge region of a tokamak plasma, and thus on global plasma confinement. In particular, the particle source from ionization should be considered in the study of plasma transport within the H-mode pedestal

  5. Redshift of photons penetrating a hot plasma

    E-Print Network [OSTI]

    Ari Brynjolfsson

    2005-10-07T23:59:59.000Z

    A new interaction, plasma redshift, is derived, which is important only when photons penetrate a hot, sparse electron plasma. The derivation of plasma redshift is based entirely on conventional axioms of physics. When photons penetrate a cold and dense plasma, they lose energy through ionization and excitation, Compton scattering on the individual electrons, and Raman scattering on the plasma frequency. But in sparse hot plasma, such as in the solar corona, the photons lose energy also in plasma redshift. The energy loss per electron in the plasma redshift is about equal to the product of the photon's energy and one half of the Compton cross-section per electron. In quiescent solar corona, this heating starts in the transition zone to the corona and is a major fraction of the coronal heating. Plasma redshift contributes also to the heating of the interstellar plasma, the galactic corona, and the intergalactic plasma. Plasma redshift explains the solar redshifts, the redshifts of the galactic corona, the cosmological redshifts, the cosmic microwave background, and the X-ray background. The plasma redshift explains the observed magnitude-redshift relation for supernovae SNe Ia without the big bang, dark matter, or dark energy. There is no cosmic time dilation. The universe is not expanding. The plasma redshift, when compared with experiments, shows that the photons' classical gravitational redshifts are reversed as the photons move from the Sun to the Earth. This is a quantum mechanical effect. As seen from the Earth, a repulsion force acts on the photons. This means that there is no need for Einstein's Lambda term. The universe is quasi-static, infinite, and everlasting.

  6. Plasma conductivity at finite coupling

    E-Print Network [OSTI]

    Babiker Hassanain; Martin Schvellinger

    2011-08-31T23:59:59.000Z

    By taking into account the full order(\\alpha'^3) type IIB string theory corrections to the supergravity action, we compute the leading finite 't Hooft coupling order(\\lambda^{-3/2}) corrections to the conductivity of strongly-coupled SU(N) {\\cal {N}}=4 supersymmetric Yang-Mills plasma in the large N limit. We find that the conductivity is enhanced by the corrections, in agreement with the trend expected from previous perturbative weak-coupling computations.

  7. Thomas J. Feeley, III National Energy Technology Laboratory

    E-Print Network [OSTI]

    Keller, Arturo A.

    , 2005. Energy Information Agency, Annual Energy Outlook 2006, Regional Tables, 2007. WECC/CA WECC/RM 29Thomas J. Feeley, III National Energy Technology Laboratory First Western Forum on Energy & Water on Energy & Water, March 22, 2007 Outline · Background on issue · Thermoelectric withdrawal and consumption

  8. Physiological Insights Towards Improving Fish Culture L. CURRY WOODS III*

    E-Print Network [OSTI]

    Hamza, Iqbal

    Physiological Insights Towards Improving Fish Culture L. CURRY WOODS III* Department of Animal, and American Fisheries Society (AFS) Fish Culture Section, was held February 26 through March 2, 2007, in San Antonio, Texas. At this meeting, the AFS Fish Culture and Fish Physiol- ogy Sections co

  9. Methods for improved growth of group III nitride buffer layers

    DOE Patents [OSTI]

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15T23:59:59.000Z

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  10. The Family of "Circle Limit III" Escher Patterns Douglas Dunham

    E-Print Network [OSTI]

    Dunham, Doug

    consider the third one of this sequence, Circle Limit III -- a pattern of fish, to be the most beautiful. In this woodcut, four fish meet at right fin tips, three fish meet at left fin tips, and three fish meet at their noses. The backbones of the fish are aligned along white circular arcs. Fish on one arc are the same

  11. CHAPTER III MARINE METEOROLOGY OF THE GULF OF MEXICO

    E-Print Network [OSTI]

    CHAPTER III MARINE METEOROLOGY OF THE GULF OF MEXICO #12;Blank page retained for pagination #12;MARINE METEOROLOGY OF THE GULF OF MEXICO, A BRIEF REVIEW 1 By DALE F. LEIPPER, Department oj Oceonography, Agricultural and Mechanical College oj Tuas The best general summary of the weather over the Gulf of Mexico

  12. Officers and Editors for 2011 JOSEPH R. MENDELSON III

    E-Print Network [OSTI]

    Galán, Pedro

    Officers and Editors for 2011 President JOSEPH R. MENDELSON III Zoo Atlanta Atlanta, GA 30315, USA) Smithsonian Institution, USA TIFFANY DOAN (2014 R) Central Connecticut State Univ., USA PATRICK GREGORY (2012 PATERSON (2012 R) Williams Baptist College, USA JENNIFER PRAMUK (2014 Cons) Woodland Park Zoo, USA CAROL

  13. GRADUATE STUDENT HANDBOOK Vol. III. Doctor of Engineering Program

    E-Print Network [OSTI]

    Candidate 7 3.16 Doctoral Project Work 7 3.17 Application for Graduation 8 3.18 Doctoral Project Defense 8 3.19 Doctoral Project Report Submission 8 3.20 Graduate Assessment 8 APPENDIX 10 Department Forms (CEE) CollegeGRADUATE STUDENT HANDBOOK Vol. III. Doctor of Engineering Program Department of Civil

  14. Renewable Energies III Photovoltaics, Solar & Geo-Thermal

    E-Print Network [OSTI]

    Renewable Energies III Photovoltaics, Solar & Geo-Thermal 21st August - 2nd September 2011 2011 will provide students with a solid foundation in renewable energies (especially photovoltaics of renewable energies. Accommodation is arranged in fully-equipped cosy holiday flats with fellow students

  15. Evaluation of Non-intrusive Traffic Detection Technologies Phase III

    E-Print Network [OSTI]

    Minnesota, University of

    TPF-5(171) Evaluation of Non-intrusive Traffic Detection Technologies Ð Phase III #12 not intrude into pavement for installation. ·! Sensors above, below or to the side of the roadway qualify;Miovision #12;Miovision #12;Laser-based sensors #12;PEEK AxleLight #12;TIRTL #12;TIRTL #12;#12;#12;#12;

  16. Analise Matematica III semestre de 1999/2000

    E-Print Network [OSTI]

    Nunes, João Pimentel

    An´alise Matem´atica III 2o semestre de 1999/2000 Exerc´icio resolvido 11 O funcionamento de uma co resultados deste exerc´icio na constru¸c~ao (eventual) de co-inceneradoras reais. 1 #12;

  17. Analise Matematica III semestre de 2001/02

    E-Print Network [OSTI]

    Nunes, João Pimentel

    An´alise Matem´atica III 1o semestre de 2001/02 Exerc´icio teste 5 (Entregar na aula pr´atica da descrito por S = {(x, y, z) R3 : 1 x2 + y2 + 2z2 4, z 0}. Ap´os t^e-los resolvido com alegria, a menina

  18. Analise Matematica III semestre de 2001/02

    E-Print Network [OSTI]

    Ferreira dos Santos, Pedro

    An´alise Matem´atica III 1o semestre de 2001/02 Exerc´icio teste 5 (Entregar na aula pr´atica da descrito por S = {(x, y, z) R3 : 1 x2 + y2 + 2z2 4, z 0}. Ap´os t^e-los resolvido de cabe¸ca, com

  19. III. Commercial viability of second generation biofuel technology27

    E-Print Network [OSTI]

    29 III. Commercial viability of second generation biofuel technology27 The previous chapters focused on first generation biofuels. In this chapter we focus on second generation biofuels, specifically biofuels derived from cellulosic or lignocellulosic conversion. Advocates for the development of cellulosic

  20. 221B Lecture Notes Quantum Field Theory III (Radiation Field)

    E-Print Network [OSTI]

    Murayama, Hitoshi

    221B Lecture Notes Quantum Field Theory III (Radiation Field) 1 Quantization of Radiation Field was quantized: photons. Now that we have gone through quantization of a classical field (Schr¨odinger field so far), we can proceed to quantize the Maxwell field. The basic idea is pretty much the same, except

  1. TI 2013-055/III Tinbergen Institute Discussion Paper

    E-Print Network [OSTI]

    Chen, Yiling

    TI 2013-055/III Tinbergen Institute Discussion Paper Parallel Sequential Monte Carlo for Efficient Density Combination: The Deco Matlab Toolbox Roberto Casarin1 Stefano Grassi2 Francesco Ravazzolo3 Herman Mahlerplein 117 1082 MS Amsterdam The Netherlands Tel.: +31(0)20 525 8579 #12;PARALLEL SEQUENTIAL MONTE CARLO

  2. MOST POPULATION III SUPERNOVAE ARE DUDS Robert L. Kurucz

    E-Print Network [OSTI]

    Kurucz, Robert L.

    the ``dark matter'' halo. Subject headings: supernovae --- dark matter Introduction Most of the physics predictions about dud supernovae and about ``dark matter''. Population III stars, dud supernovae, supernovae and primordial gas into a globular cluster. Model atmosphere calculations for oxygen dwarfs show that water

  3. Electrical properties of dislocations in III-Nitrides

    SciTech Connect (OSTI)

    Cavalcoli, D.; Minj, A.; Pandey, S.; Cavallini, A. [Physics and Astronomy Dept. University of Bologna, Italy viale C Berti Pichat 6/II, Bologna (Italy)

    2014-02-21T23:59:59.000Z

    Research on GaN, AlN, InN (III-N) and their alloys is achieving new heights due their high potential applications in photonics and electronics. III-N semiconductors are mostly grown epitaxially on sapphire, and due to the large lattice mismatch and the differences in the thermal expansion coefficients, the structures usually contain many threading dislocations (TDs). While their structural properties have been widely investigated, their electrical characteristics and their role in the transport properties of the devices are still debated. In the present contribution we will show conductive AFM studies of TDs in GaN and Al/In GaN ternary alloys to evidence the role of strain, different surface polarity and composition on their electrical properties. Local I-V curves measured at TDs allowed us to clarify their role in the macroscopic electrical properties (leakage current, mobilities) of III-N based devices. Samples obtained by different growers (AIXTRON, III-V Lab) were studied. The comparison between the results obtained in the different alloys allowed us to understand the role of In and Al on the TDs electrical properties.

  4. Predicting Efficient Antenna Ligands for Tb(III) Emission

    SciTech Connect (OSTI)

    Samuel, Amanda P.S.; Xu, Jide; Raymond, Kenneth

    2008-10-06T23:59:59.000Z

    A series of highly luminescent Tb(III) complexes of para-substituted 2-hydroxyisophthalamide ligands (5LI-IAM-X) has been prepared (X = H, CH{sub 3}, (C=O)NHCH{sub 3}, SO{sub 3}{sup -}, NO{sub 2}, OCH{sub 3}, F, Cl, Br) to probe the effect of substituting the isophthalamide ring on ligand and Tb(III) emission in order to establish a method for predicting the effects of chromophore modification on Tb(III) luminescence. The energies of the ligand singlet and triplet excited states are found to increase linearly with the {pi}-withdrawing ability of the substituent. The experimental results are supported by time-dependent density functional theory (TD-DFT) calculations performed on model systems, which predict ligand singlet and triplet energies within {approx}5% of the experimental values. The quantum yield ({Phi}) values of the Tb(III) complex increases with the triplet energy of the ligand, which is in part due to the decreased non-radiative deactivation caused by thermal repopulation of the triplet. Together, the experimental and theoretical results serve as a predictive tool that can be used to guide the synthesis of ligands used to sensitize lanthanide luminescence.

  5. Fe(III) Oxide Reactivity Toward Biological versus Chemical

    E-Print Network [OSTI]

    Roden, Eric E.

    amorphous materials, such as ferrihydrite, to well-crystallized minerals such as goethite and hematite (5 assemblages. Experimental Section Oxide Synthesis and Characterization.A variety of synthetic Fe(III) oxides included a series of goethites with differing crystallinity and surface area, synthesized from Fe(NO3

  6. Reproducing kernel element method Part III: Generalized enrichment and applications

    E-Print Network [OSTI]

    Li, Shaofan

    Reproducing kernel element method Part III: Generalized enrichment and applications Hongsheng Lu enrichment is proposed to construct the global partition polynomials or to enrich global partition polynomial. This is accomplished by either multiplying enrichment functions with the original global partition poly- nomials

  7. Cyclotron resonance in plasma flow

    SciTech Connect (OSTI)

    Artemyev, A. V.; Agapitov, O. V.; Krasnoselskikh, V. V. [LPC2E/CNRS-University of Orleans, Orleans (France)] [LPC2E/CNRS-University of Orleans, Orleans (France)

    2013-12-15T23:59:59.000Z

    This paper is devoted to the mechanism of particle acceleration via resonant interaction with the electromagnetic circular wave propagating along the inhomogeneous background magnetic field in the presence of a plasma flow. We consider the system where the plasma flow velocity is large enough to change the direction of wave propagation in the rest frame. This system mimics a magnetic field configuration typical for inner structure of a quasi-parallel shock wave. We consider conditions of gyroresonant interaction when the force corresponding to an inhomogeneity of the background magnetic field is compensated by the Lorentz force of the wave-magnetic field. The wave-amplitude is assumed to be about 10% of the background magnetic field. We show that particles can gain energy if kv{sub sw}>?>kv{sub sw}??{sub c} where k is the wave number, v{sub sw} is a plasma flow velocity, and ? and ?{sub c} are the wave frequency and the particle gyrofrequency, respectively. This mechanism of acceleration resembles the gyrosurfing mechanism, but the effect of the electrostatic field is replaced by the effect of the magnetic field inhomogeneity.

  8. Characterization of jovian plasma embedded dust particles

    E-Print Network [OSTI]

    Amara L. Graps

    2006-09-12T23:59:59.000Z

    As the data from space missions and laboratories improve, a research domain combining plasmas and charged dust is gaining in prominence. Our solar system provides many natural laboratories such as planetary rings, comet comae and tails, ejecta clouds around moons and asteroids, and Earth's noctilucent clouds for which to closely study plasma-embedded cosmic dust. One natural laboratory to study electromagnetically-controlled cosmic dust has been provided by the Jovian dust streams and the data from the instruments which were on board the Galileo spacecraft. Given the prodigious quantity of dust poured into the Jovian magnetosphere by Io and its volcanoes resulting in the dust streams, the possibility of dusty plasma conditions exist. This paper characterizes the main parameters for those interested in studying dust embedded in a plasma with a focus on the Jupiter environment. I show how to distinguish between dust-in-plasma and dusty-plasma and how the Havnes parameter P can be used to support or negate the possibility of collective behavior of the dusty plasma. The result of applying these tools to the Jovian dust streams reveals mostly dust-in-plasma behavior. In the orbits displaying the highest dust stream fluxes, portions of orbits E4, G7, G8, C21 satisfy the minimum requirements for a dusty plasma. However, the P parameter demonstrates that these mild dusty plasma conditions do not lead to collective behavior of the dust stream particles.

  9. Comparing directed efficiency of III-nitride nanowire light-emitting diodes

    E-Print Network [OSTI]

    Gradecak, Silvija

    III-nitride-based nanowires are a promising platform for solid-state lighting. III-nitride nanowires that act as natural waveguides to enhance directed extraction have previously been shown to be free of extended defects ...

  10. Investigation of the Structure and Function of Type III Secretion Needle and Tip Proteins

    E-Print Network [OSTI]

    Zhang, Lingling

    2009-04-22T23:59:59.000Z

    Many Gram-negative pathogens possess type III secretion systems as part of their required virulence factor repertoire. The type III secretion apparatus (TTSA) spans the bacterial inner and outer membranes and resembles a ...

  11. Ti(III) Doped Titanium Dioxide: an Effective Strategy to Improve the Visible Light Photocatalytic Activity

    E-Print Network [OSTI]

    Zuo, Fan

    2012-01-01T23:59:59.000Z

    types of surface titanium and oxygen atoms present. PageRIVERSIDE Ti(III) Doped Titanium Dioxide: an EffectiveDISSERTATION Ti(III) Doped Titanium Dioxide: an Effective

  12. Atomic and electronic structures of oxides on III-V semiconductors :

    E-Print Network [OSTI]

    Shen, Jian

    2010-01-01T23:59:59.000Z

    and passivation of a compound semiconductor surface duringIn 2 O and SiO/III-V Semiconductor Interface, in press with2 O and SiO/III-V Semiconductor Interface, ECS Transaction (

  13. Tracking the Sun III; The Installed Cost of Photovoltaics in the United States from 1998-2009

    E-Print Network [OSTI]

    Barbose, Galen

    2011-01-01T23:59:59.000Z

    from 1998-2009 Tracking the Sun III: The Installed Cost ofSystems MW Total Tracking the Sun III: The Installed Cost ofthrough 2009. Tracking the Sun III: The Installed Cost of

  14. Tracking the Sun III; The Installed Cost of Photovoltaics in the United States from 1998-2009

    E-Print Network [OSTI]

    Barbose, Galen

    2011-01-01T23:59:59.000Z

    Systems MW Total Tracking the Sun III: The Installed Cost of PhotovoltaicsSystem Size Tracking the Sun III: The Installed Cost of PhotovoltaicsSystems >10 kW Tracking the Sun III: The Installed Cost of Photovoltaics

  15. Plasma arc torch with coaxial wire feed

    DOE Patents [OSTI]

    Hooper, Frederick M (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.

  16. Boundary Plasma Turbulence Simulations for Tokamaks

    SciTech Connect (OSTI)

    Xu, X; Umansky, M; Dudson, B; Snyder, P

    2008-05-15T23:59:59.000Z

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

  17. Nanowire-templated lateral epitaxial growth of non-polar group III nitrides

    DOE Patents [OSTI]

    Wang, George T. (Albuquerque, NM); Li, Qiming (Albuquerque, NM); Creighton, J. Randall (Albuquerque, NM)

    2010-03-02T23:59:59.000Z

    A method for growing high quality, nonpolar Group III nitrides using lateral growth from Group III nitride nanowires. The method of nanowire-templated lateral epitaxial growth (NTLEG) employs crystallographically aligned, substantially vertical Group III nitride nanowire arrays grown by metal-catalyzed metal-organic chemical vapor deposition (MOCVD) as templates for the lateral growth and coalescence of virtually crack-free Group III nitride films. This method requires no patterning or separate nitride growth step.

  18. Final Technical Report: Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    SciTech Connect (OSTI)

    Schuster, Eugenio

    2014-05-02T23:59:59.000Z

    The strong coupling between the different physical variables involved in the plasma transport phenomenon and the high complexity of its dynamics call for a model-based, multivariable approach to profile control where those predictive models could be exploited. The overall objective of this project has been to extend the existing body of work by investigating numerically and experimentally active control of unstable fluctuations, including fully developed turbulence and the associated cross-field particle transport, via manipulation of flow profiles in a magnetized laboratory plasma device. Fluctuations and particle transport can be monitored by an array of electrostatic probes, and Ex#2;B flow profiles can be controlled via a set of biased concentric ring electrodes that terminate the plasma column. The goals of the proposed research have been threefold: i- to develop a predictive code to simulate plasma transport in the linear HELCAT (HELicon-CAThode) plasma device at the University of New Mexico (UNM), where the experimental component of the proposed research has been carried out; ii- to establish the feasibility of using advanced model-based control algorithms to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles, iii- to investigate the fundamental nonlinear dynamics of turbulence and transport physics. Lehigh University (LU), including Prof. Eugenio Schuster and one full-time graduate student, has been primarily responsible for control-oriented modeling and model-based control design. Undergraduate students have also participated in this project through the National Science Foundation Research Experience for Undergraduate (REU) program. The main goal of the LU Plasma Control Group has been to study the feasibility of controlling turbulence-driven transport by shaping the radial poloidal flow profile (i.e., by controlling flow shear) via biased concentric ring electrodes.

  19. Magnetic field distribution in the plasma flow generated by a plasma focus discharge

    SciTech Connect (OSTI)

    Mitrofanov, K. N., E-mail: mitrofan@triniti.ru [Troitsk Institute for Innovaiton and Fusion Research (Russian Federation); Krauz, V. I., E-mail: krauz_vi@nrcki.ru; Myalton, V. V.; Velikhov, E. P.; Vinogradov, V. P.; Vinogradova, Yu. V. [National Research Centre Kurchatov Institute (Russian Federation)

    2014-11-15T23:59:59.000Z

    The magnetic field in the plasma jet propagating from the plasma pinch region along the axis of the chamber in a megajoule PF-3 plasma focus facility is studied. The dynamics of plasma with a trapped magnetic flow is analyzed. The spatial sizes of the plasma jet region in which the magnetic field concentrates are determined in the radial and axial directions. The magnetic field configuration in the plasma jet is investigated: the radial distribution of the azimuthal component of the magnetic field inside the jet is determined. It is shown that the magnetic induction vector at a given point in space can change its direction during the plasma flight. Conclusions regarding the symmetry of the plasma flow propagation relative to the chamber axis are drawn.

  20. Resonant-cavity antenna for plasma heating

    DOE Patents [OSTI]

    Perkins, Jr., Francis W. (Princeton, NJ); Chiu, Shiu-Chu (San Diego, CA); Parks, Paul (San Diego, CA); Rawls, John M. (Del Mar, CA)

    1987-01-01T23:59:59.000Z

    Disclosed is a resonant coil cavity wave launcher for energizing a plasma immersed in a magnetic field. Energization includes launching fast Alfven waves to excite ion cyclotron frequency resonances in the plasma. The cavity includes inductive and capacitive reactive members spaced no further than one-quarter wavelength from a first wall confinement chamber of the plasma. The cavity wave launcher is energized by connection to a waveguide or transmission line carrying forward power from a remote radio frequency energy source.

  1. Neutrino magnetic moment in a magnetized plasma

    E-Print Network [OSTI]

    N. V. Mikheev; E. N. Narynskaya

    2010-11-08T23:59:59.000Z

    The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.

  2. Nonabelian plasma instabilities in Bjorken expansion

    E-Print Network [OSTI]

    Anton Rebhan

    2008-10-17T23:59:59.000Z

    Plasma instabilities are parametrically the dominant nonequilibrium dynamics of a weakly coupled quark-gluon plasma. In recent years the time evolution of the corresponding collective colour fields has been studied in stationary anisotropic situations. Here I report on recent numerical results on the time evolution of the most unstable modes in a longitudinally expanding plasma as they grow from small rapidity fluctuations to amplitudes where non-Abelian self-interactions become important.

  3. Hydrophilization of Liquid Surfaces by Plasma Treatment

    E-Print Network [OSTI]

    Victor Multanen; Gilad Chaniel; Roman Grynyov; Ron Yosef Loew; Naor Siany; Edward Bormashenko

    2014-09-01T23:59:59.000Z

    The impact of the cold radiofrequency air plasma on the surface properties of silicone oils (polydimethylsiloxane) was studied. Silicone oils of various molecular masses were markedly hydrophilized by the cold air plasma treatment. A pronounced decrease of the apparent water contact angles was observed after plasma treatment. A general theoretical approach to the calculation of apparent contact angles is proposed. The treated liquid surfaces demonstrated hydrophobic recovery. The characteristic time of the hydrophobic recovery grew with the molecular mass of the silicone oil.

  4. Plasma enhancement of combustion of solid fuels

    SciTech Connect (OSTI)

    Askarova, A.S.; Karpenko, E.I.; Messerle, V.E.; Ustimenko, A.B. [Institute of Combustion Problems, Alma Ata (Kazakhstan)

    2006-03-15T23:59:59.000Z

    Plasma fuel systems that increase the coal burning efficiency are discussed. The systems were tested for fuel oil-free startup of boilers and stabilizating a pulverized-coal flame in power-generating boilers equipped with different types of burner and burning all types of power-generating coal. Plasma ignition, thermochemical treatment of an air-fuel mixture prior to combustion, and its burning in a power-generating boiler were numerically simulated. Environmental friendliness of the plasma technology was demonstrated.

  5. Quantum Electrodynamical Effects in Dusty Plasmas

    E-Print Network [OSTI]

    M. Marklund; L. Stenflo; P. K. Shukla; G. Brodin

    2005-05-31T23:59:59.000Z

    A new nonlinear electromagnetic wave mode in a magnetized dusty plasma is predicted. Its existence depends on the interaction of an intense circularly polarized electromagnetic wave with a dusty plasma, where quantum electrodynamical photon-photon scattering is taken into account. Specifically, we consider a dusty electron-positron-ion plasma, and show that the propagation of the new mode is admitted. It could be of significance for the physics of supernova remnants and in neutron star formation.

  6. Plasma sprayed ceria-containing interlayer

    DOE Patents [OSTI]

    Schmidt, Douglas S.; Folser, George R.

    2006-01-10T23:59:59.000Z

    A plasma sprayed ceria-containing interlayer is provided. The interlayer has particular application in connection with a solid oxide fuel cell used within a power generation system. The fuel cell advantageously comprises an air electrode, a plasma sprayed interlayer disposed on at least a portion of the air electrode, a plasma sprayed electrolyte disposed on at least a portion of the interlayer, and a fuel electrode applied on at least a portion of the electrolyte.

  7. Sensitivity of transient synchrotron radiation to tokamak plasma parameters

    SciTech Connect (OSTI)

    Fisch, N.J.; Kritz, A.H.

    1988-12-01T23:59:59.000Z

    Synchrotron radiation from a hot plasma can inform on certain plasma parameters. The dependence on plasma parameters is particularly sensitive for the transient radiation response to a brief, deliberate, perturbation of hot plasma electrons. We investigate how such a radiation response can be used to diagnose a variety of plasma parameters in a tokamak. 18 refs., 13 figs.

  8. James W. Van Dam US Burning Plasma Organization

    E-Print Network [OSTI]

    focus: magnetically confined plasmas #12;Page 5 USBPO What is a "burning" plasma? · "Burning" plasmaJames W. Van Dam US Burning Plasma Organization US ITER Project Office Institute for Fusion Studies Plasmas -- A Tutorial -- Supported by Office of Science #12;Page 2 USBPO The next frontier · Understanding

  9. Progress on a New RF Plasma Generator a

    E-Print Network [OSTI]

    source goal: produce high-recycling, strongly coupled PMI regime, guided by ITER divertor plasma Divertor Plasma Heat & Particle Fluxes ITER divertor channel What source plasma parameters are required? High-recycling plasmas led to new understanding · SOLPS (B2-Eirene) (Jülich; Garching; U. Paris) ­ Models for plasma

  10. Plasma Assisted Catalysis System for NOx Reduction

    Broader source: Energy.gov (indexed) [DOE]

    2 NOXTECH NOXTECH PLASMA ASSISTED CATALYSIS SYSTEM FOR NOx REDUCTION BY NOXTECH With the Support & Cooperation of DOE Noxtech, Inc. *Delaware Corporation registered to do business...

  11. Plasma planar filament instability and Alfven waves

    E-Print Network [OSTI]

    Garcia de Andrade

    2007-03-05T23:59:59.000Z

    Inhomogeneous plasmas filaments instabilities are investigated by using the techniques of classical differential geometry of curves where Frenet torsion and curvature describe completely the motion of curves. In our case the Frenet frame changes in time and also depends upon the other coordinates taking into account the inhomogeneity of the plasma. The exponential perturbation method so commonly used to describe cosmological perturbatons is applied to magnetohydrodynamic (MHD) plasma equations to find longitudinal modes describing Alfven waves propagation modes describing plasma waves in the medium. Stability is investigated in the imaginary axis of the spectra of complex frequencies ${\\omega}$ or $Im(\\omega)\

  12. Electrostatic supersolitons in three-species plasmas

    SciTech Connect (OSTI)

    Verheest, Frank [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Hellberg, Manfred A. [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Kourakis, Ioannis [Department of Physics and Astronomy, Centre for Plasma Physics, Queen's University Belfast, BT7 1NN Northern Ireland (United Kingdom)

    2013-01-15T23:59:59.000Z

    Superficially, electrostatic potential profiles of supersolitons look like those of traditional solitons. However, their electric field profiles are markedly different, having additional extrema on the wings of the standard bipolar structure. This new concept was recently pointed out in the literature for a plasma model with five species. Here, it is shown that electrostatic supersolitons are not an artefact of exotic, complicated plasma models, but can exist even in three-species plasmas and are likely to occur in space plasmas. Further, a methodology is given to delineate their existence domains in a systematic fashion by determining the specific limiting factors.

  13. Metrics For Comparing Plasma Mass Filters

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2012-08-15T23:59:59.000Z

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter. __________________________________________________

  14. Metrics for comparing plasma mass filters

    SciTech Connect (OSTI)

    Fetterman, Abraham J.; Fisch, Nathaniel J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States)

    2011-10-15T23:59:59.000Z

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter.

  15. Plasma heating in a variable magnetic field

    SciTech Connect (OSTI)

    Kichigin, G. N., E-mail: king@iszf.irk.ru [Russian Academy of Sciences, Institute of Solar-Terrestrial Physics (Russian Federation)

    2013-05-15T23:59:59.000Z

    The problem of particle acceleration in a periodically variable magnetic field that either takes a zero value or passes through zero is considered. It is shown that, each time the field [0]passes through zero, the particle energy increases abruptly. This process can be regarded as heating in the course of which plasma particles acquire significant energy within one field period. This mechanism of plasma heating takes place in the absence of collisions between plasma particles and is analogous to the mechanism of magnetic pumping in collisional plasma considered by Alfven.

  16. A Relativistic-Plasma Compton Maser

    E-Print Network [OSTI]

    James C. Weatherall

    2001-08-15T23:59:59.000Z

    A relativistic pair-plasma which contains a high excitation of electrostatic turbulence could produce intense radiation at brightness temperature in excess of 10^22 K by stimulated scattering. Important relativistic effects would include the broadband frequency response of the plasma and Compton-boosting of the scattered radiation. In radio-frequency relativistic plasma, the optical depth can be as small as hundreds of meters. When the plasma wave excitation and particle distributions are one-dimensional, the frequency-dependent angular distribution of the emission exhibits characteristics of pulsar emission.

  17. Laboratory plasma physics experiments using merging supersonic plasma jets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; et al

    2015-04-01T23:59:59.000Z

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ? ni ~ 10¹? cm?³, Te ? Ti ? 1.4 eV, Vjet ? 30–100 km/s, mean charge $\\bar{Z}$ ? 1, sonic Mach number Ms ? Vjet/Cs > 10, jet diameter = 5 cm, and jet length ? 20 cm. Experiments to date have focused on themore »study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  18. Catalytic reduction system for oxygen-rich exhaust

    DOE Patents [OSTI]

    Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

    1999-04-13T23:59:59.000Z

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

  19. Surface kinetics and plasma equipment model for Si etching by fluorocarbon plasmas

    E-Print Network [OSTI]

    Kushner, Mark

    Surface kinetics and plasma equipment model for Si etching by fluorocarbon plasmas Da Zhanga of fluorocarbon radicals on the reactor walls, polymer erosion rates and F atom diffusion through the polymer during Si etching using fluorocarbon gases in an induc- tively coupled plasma ICP reactor.4 They observed

  20. PUBLISHED VERSION Structure of micro-instabilities in tokamak plasmas: Stiff transport or plasma eruptions?

    E-Print Network [OSTI]

    eruptions? D. Dickinson, C. M. Roach, J. M. Skipp, and H. R. Wilson © 2013 UNITED KINGDOM ATOMIC ENERGY plasmas: Stiff transport or plasma eruptions? D. Dickinson, C. M. Roach, J. M. Skipp, and H. R. Wilson transport or plasma eruptions? D. Dickinson,1,2,a) C. M. Roach,2 J. M. Skipp,1 and H. R. Wilson1 1 York

  1. SJTU Plasma Physics Seminar, April 10.th 2009 1 Physics of Burning Plasmas in Toroidal Magnetic

    E-Print Network [OSTI]

    Zonca, Fulvio

    plasma without appreciable degradation due to collective modes. The identification of burning plasma materials. Such analyses can be performed, at least in part, in present day experiments and provide nice examples of mutual positive feedbacks between theory, simulation and experiment. In a burning plasma

  2. Nonlinear Plasma Waves Excitation by Intense Ion Beams in Background Plasma

    SciTech Connect (OSTI)

    Igor D. Kaganovich; Edward A. Startsev; Ronald C. Davidson

    2004-04-15T23:59:59.000Z

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration {tau}{sub b} is much longer than the electron plasma period 2{pi}/{omega}{sub p}, where {omega}{sub p} = (4{pi}e{sup 2}n{sub p}/m){sup 1/2} is the electron plasma frequency and n{sub p} is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma.

  3. Equilibration in Quark Gluon Plasma

    E-Print Network [OSTI]

    Santosh K Das; Jan-e Alam; Payal Mohanty

    2009-12-21T23:59:59.000Z

    The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more realistic EoS keep the partons closer to the equilibrium.

  4. Plasma arc melting of zirconium

    SciTech Connect (OSTI)

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-12-31T23:59:59.000Z

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming.

  5. Feedback enhanced plasma spray tool

    DOE Patents [OSTI]

    Gevelber, Michael Alan; Wroblewski, Donald Edward; Fincke, James Russell; Swank, William David; Haggard, Delon C.; Bewley, Randy Lee

    2005-11-22T23:59:59.000Z

    An improved automatic feedback control scheme enhances plasma spraying of powdered material through reduction of process variability and providing better ability to engineer coating structure. The present inventors discovered that controlling centroid position of the spatial distribution along with other output parameters, such as particle temperature, particle velocity, and molten mass flux rate, vastly increases control over the sprayed coating structure, including vertical and horizontal cracks, voids, and porosity. It also allows improved control over graded layers or compositionally varying layers of material, reduces variations, including variation in coating thickness, and allows increasing deposition rate. Various measurement and system control schemes are provided.

  6. Plasma vitrification of waste materials

    DOE Patents [OSTI]

    McLaughlin, David F. (Oakmont, PA); Dighe, Shyam V. (North Huntingdon, PA); Gass, William R. (Plum Boro, PA)

    1997-01-01T23:59:59.000Z

    This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles.

  7. Princeton Plasma Physics Laboratory News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, information andNetarchive Princeton Plasma Physics

  8. Princeton Plasma Physics Laboratory News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, information andNetarchive Princeton Plasma Physics

  9. Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum ReservesThrustBonnevillePlans arePlants

  10. Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum ReservesThrustBonnevillePlans

  11. Can Population III Stars at High Redshifts produce GRB's?

    E-Print Network [OSTI]

    C. Sivaram; Kenath Arun

    2010-08-24T23:59:59.000Z

    Gamma ray bursts are the most luminous physical phenomena in the universe, consisting of flashes of gamma rays that last from seconds to hours. There have been attempts to observe gamma ray bursts, for example, from population III stars of about 500 solar mass at high redshifts. Here we argue that collapse of such high mass stars does not lead to gamma ray burst as their core collapse temperatures are not sufficient to produce gamma rays, leading to GRBs.

  12. Analise Matematica III semestre de 1999/2000

    E-Print Network [OSTI]

    Granja, Gustavo

    An´alise Matem´atica III 1o semestre de 1999/2000 Exerc´icio teste 7 Mostre que existe uma vizinhan resolvido para u e v como fun¸c~oes de x e y. Calcule a derivada u x (1, 1). Solu¸c~ao: Consideremos a fun teorema da fun¸c~ao impl´icita, em alguma vizinhan¸ca de (1, 1, 1, 1), o sistema pode ser resolvido em

  13. Regular Type III and Type N Approximate Solutions

    E-Print Network [OSTI]

    Philip Downes; Paul MacAllevey; Bogdan Nita; Ivor Robinson

    2001-05-18T23:59:59.000Z

    New type III and type N approximate solutions which are regular in the linear approximation are shown to exist. For that, we use complex transformations on self-dual Robinson-Trautman metrics rather then the classical approach. The regularity criterion is the boundedness and vanishing at infinity of a scalar obtained by saturating the Bel-Robinson tensor of the first approximation by a time-like vector which is constant with respect to the zeroth approximation.

  14. Early cavity growth during forward burn. [Hoe Creek III problems

    SciTech Connect (OSTI)

    Shannon, M.J.; Thorsness, C.B.; Hill, R.W.

    1980-07-03T23:59:59.000Z

    During the early portion of the forward burn phase of the Hoe Creek III field experiment, the cavity progagated rapidly down the deviated borehole and to the top of the coal seam. As a first step to understanding this phenomena we have conducted small scale coal block experiments. Drying as well as combustion tests were performed. This paper describes the test hardware and the experimental results.

  15. Thermodynamic and Structural Features of Aqueous Ce(III)

    SciTech Connect (OSTI)

    Adriana Dinescu; Aurora E. Clark

    2008-10-01T23:59:59.000Z

    With a single f-electron, Ce(III) is the simplest test case for benchmarking the thermodynamic and structural properties of hydrated Ln(III) against varying density functionals and reaction field models, in addition to determining the importance of multiconfigurational character in their wave functions. Here, the electronic structure of Ce(H2O)x(H2O)y3+ (x = 8, 9; y = 0, 12-14) has been examined using DFT and CASSCF calculations. The latter confirmed that the wave function of octa- and nona-aqua Ce(III) is well-described by a single configuration. Benchmarking was performed for density functionals, reaction field cavity types, and solvation reactions against the experimental free energy of hydration, ?Ghyd(Ce3+). The UA0, UAKS, Pauling, and UFF polarized continuum model cavities displayed different performance, depending on whether one or two hydration shells were examined, and as a function of the size of the metal basis set. These results were essentially independent of the density functional employed. Using these benchmarks, the free energy for water exchange between CN = 8 and CN = 9, for which no experimental data are available, was estimated to be approximately -4 kcal/mol.

  16. Thermodynamic and Structural Features of Aqueous Ce(III)

    SciTech Connect (OSTI)

    Dinescu, Adriana; Clark, Aurora E.

    2008-10-10T23:59:59.000Z

    With a single f-electron, Ce(III) is the simplest test case for benchmarking the thermodynamic and structural properties of hydrated Ln(III) against varying density functionals and reaction field models, in addition to determining the importance of multiconfigurational character in their wave functions. Here, the electronic structure of Ce(H?O)x(H?O)y 3+ (x =8, 9; y= 0, 12-14) has been examined using DFT and CASSCF calculations. The latter confirmed that the wave function of octa- and nona-aqua Ce(III) is well-described by a single configuration. Benchmarking was performed for density functionals, reaction field cavity types, and solvation reactions against the experimental free energy of hydration, ?Ghyd(Ce3+). The UA0, UAKS, Pauling, and UFF polarized continuum model cavities displayed different performance, depending on whether one or two hydration shells were examined, and as a function of the size of the metal basis set. These results were essentially independent of the density functional employed. Using these benchmarks, the free energy for water exchange between CN = 8 and CN = 9, for which no experimental data are available, was estimated to be approximately -4 kcal/mol.

  17. A study of the reaction between bismuth (III) iodide and organic amine hydriodides 

    E-Print Network [OSTI]

    Scott, Jack Clinton

    1960-01-01T23:59:59.000Z

    -iso-propylammonium- sp I. tetraiodobismuthate(III) 62. 00 62. 19 + 0. 10 10. tris-di-iso-propylammonium- hexaiodob is muthate ( III) 59. 63 60. 80 0. 19 1 1. tr i= n-pr opylammonium- tetraiodobismuthate(III) 58. 97 58. 87 + 0. 02 12. tris... 6. 8 tris - di-iso-pr opylammouium- hexa iodobi s mutba(III) 10 8 6 4 7. 74 7. 72 7. 85 7. 83 7. 8 tr i - n-pr opylammonium- tetraiodobis muthate(111) 10 8 6 4 7. 80 7. 78 7. 95 7. 88 7. 8 TABLE III (Contd) Compound...

  18. Hawking radiation in moving plasmas

    E-Print Network [OSTI]

    L. C. Garcia de Andrade

    2005-09-07T23:59:59.000Z

    Bi-metricity and Hawking radiation are exhibit in non-relativistic moving magnetohydrodynamics (MHD) plasma medium generating two Riemannian effective spacetimes. The first metric is a flat metric although the speed of "light" is given by a time dependent signal where no Hawking radiation or effective black holes are displayed. This metric comes from a wave equation which the scalar function comes from the scalar potential of the background velocity of the fluid and depends on the perturbation of the magnetic background field. The second metric is an effective spacetime metric which comes from the perturbation of the background MHD fluid. This Riemann metric exhibits a horizon and Hawking radiation which can be expressed in terms of the background constant magnetic field. The effective velocity is given Alfven wave velocity of plasma physics. The effective black hole found here is analogous to the optical black hole in moving dielectrics found by De Lorenci et al [Phys. Rev. D (2003)] where bi-metricity and Hawking radiation in terms of the electric field are found.

  19. Sawtooth oscillations in shaped plasmas

    SciTech Connect (OSTI)

    Lazarus, E. A. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Luce, T. C.; Burrell, K. H.; Chu, M. S.; Ferron, J. R.; Hyatt, A. W.; Lao, L. L.; Lohr, J.; Osborne, T. H.; Petty, C. C.; Politzer, P. A.; Prater, R.; Scoville, J. T.; Strait, E. J.; Turnbull, A. D. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Austin, M. E.; Waelbroeck, F. L. [University of Texas, Austin, Texas 78712 (United States); Brennan, D. P. [University of Tulsa, Tulsa, Oklahoma 74104 (United States); Jayakumar, R. J.; Makowski, M. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] (and others)

    2007-05-15T23:59:59.000Z

    The role of interchange and internal kink modes in the sawtooth oscillations is explored by comparing bean- and oval-shaped plasmas. The n=1 instability that results in the collapse of the sawtooth has been identified as a quasi-interchange in the oval cases and the internal kink in the bean shape. The ion and electron temperature profiles are followed in detail through the sawtooth ramp. It is found that electron energy transport rates are very high in the oval and quite low in the bean shape. Ion energy confinement in the oval is excellent and the sawtooth amplitude ({delta}T/T) in the ion temperature is much larger than that of the electrons. The sawtooth amplitudes for ions and electrons are comparable in the bean shape. The measured q profiles in the bean and oval shapes are found to be consistent with neoclassical current diffusion of the toroidal current, and the observed differences in q largely result from the severe differences in electron energy transport. For both shapes the collapse flattens the q profile and after the collapse return to q{sub 0} > or approx. 1. Recent results on intermediate shapes are reported. These shapes show that the electron energy transport improves gradually as the plasma triangularity is increased.

  20. Original article Differences between blood and plasma concentrations

    E-Print Network [OSTI]

    Boyer, Edmond

    porte / ruminant / sang / plasma 1. INTRODUCTION Many studies in ruminant nutrition focus- ies have already focused on differences between blood and plasma concentrations of various metabolitesOriginal article Differences between blood and plasma concentrations of acetate, &beta

  1. A Space-Charge-Neutralizing Plasma for Beam Drift Compression

    E-Print Network [OSTI]

    Roy, P.K.

    2008-01-01T23:59:59.000Z

    describes the final focus plasma channel. Sec. Ill describesin Sec. V . HIF08,PKROY 2. A final focus plasma channelThe final focus plasma channel consists of either a two-

  2. PLASMA Approximate Dynamic Programming finally cracks the locomotive optimization problem

    E-Print Network [OSTI]

    Powell, Warren B.

    PLASMA ­ Approximate Dynamic Programming finally cracks the locomotive optimization problem schedules and new operating policies. PLASMA is currently running at Norfolk Southern for strategic of PLASMA: Each locomotive is modeled individually, making it possible to capture both horsepower

  3. Plasma Citrulline Levels in Horses at Risk of Acute Laminitis

    E-Print Network [OSTI]

    Jackson, Amy Lynn

    2013-04-10T23:59:59.000Z

    plasma citrulline concentrations. Citrulline is an ?-amino acid circulated in the plasma that is produced mainly by intestinal epithelial cells. We hypothesized that horses in the developmental stage of laminitis would have reduced plasma citrulline...

  4. Experimental Characterization of Plasma Heating with Beating Electrostatic Waves

    E-Print Network [OSTI]

    Choueiri, Edgar

    Experimental Characterization of Plasma Heating with Beating Electrostatic Waves Benjamin Jorns and Edgar Y. Choueiri Electric Propulsion and Plasma Dynamics Laboratory, Princeton University, Princeton, NJ, 08540 The heating of ions in a magnetized plasma by two electrostatic waves whose frequencies

  5. Mechanical Behavior of Cryomilled Ni Superalloy by Spark Plasma Sintering

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    Ni Superalloy by Spark Plasma Sintering Z. ZHANG, B.Q. HAN,cryomilling and spark plasma sintering (SPS) was studied.prepared by the spark plasma sintering (SPS) technique. To

  6. Ion emission and expansion in laser-produced tin plasma

    E-Print Network [OSTI]

    Burdt, Russell Allen

    2011-01-01T23:59:59.000Z

    scale length laser-produced tin plasmas, PhD dissertation,and Expansion in Laser-Produced Tin Plasma A dissertationof a CO 2 laser pulse with tin-based plasma for an extreme

  7. arc plasma method: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for two types of plasma sources used cathodic-arc plasma source show the coupling efficiency of the plasma flow from the source to the drift Gilson, Erik 8 Computational study...

  8. Control of laser plasma instabilities in hohlraums

    SciTech Connect (OSTI)

    Kruer, W.L.

    1996-12-01T23:59:59.000Z

    Laser plasma instabilities are an important constraint on the operating regime for inertial fusion. Many techniques have been developed to control the various laser-driven instabilities. Experiments with long scale length plasmas are testing these instability levels, the nonlinear regimes, and the control mechanisms.

  9. Diagnostics for Burning Plasma Physics Studies

    E-Print Network [OSTI]

    quality of data as in best present-day devices. · High quality, reliable information on many plasma parameters will have to provide control signals. · New information about the alpha-particles. · The neutron RESOLUTION ACCURACY Plasma current 0.1 ­ 17.5 MA Not applicable 1 ms 1% (Ip>1 MA) Total neutron flux 1x1014

  10. ISRAELI PLASMA SCIENCE AND TECHNOLOGY ASSOCIATION

    E-Print Network [OSTI]

    AND APPLICATIONS H.I.T. ­ Holon Institute of Technology February 4th, 2013 BOOK OF ABSTRACTS http://plasma-gate.weizmann.ac.il/ipsta2013/ #12;15th Israeli Conference on Plasma Science and Applications, HIT, Holon, February 4th , 2013 2 Science and Applications, HIT, Holon, February 4th , 2013 3 PREFACE We are delighted to host the 15th

  11. Magnetic multipole redirector of moving plasmas

    DOE Patents [OSTI]

    Crow, James T. (Albuquerque, NM); Mowrer, Gary R. (Cedar Crest, NM)

    1999-01-01T23:59:59.000Z

    A method and apparatus for redirecting moving plasma streams using a multiple array of magnetic field generators (e.g., permanent magnets or current bearing wires). Alternate rows of the array have opposite magnetic field directions. A fine wire mesh may be employed to focus as well as redirect the plasma.

  12. Gravimagnetic shock waves in the anisotropic plasma

    E-Print Network [OSTI]

    Yu. G. Ignatyev; D. N. Gorokhov

    2011-01-01T23:59:59.000Z

    The relativistic magnetohydrodynamic equations for the anisotropic magnetoactive plasma are obtained and accurately integrated in the plane gravitational wave metrics. The dependence of the induction mechanism of the gravimagnetic shock waves on the degree of the magnetoactive plasma anisotropy is analyzed.

  13. Quarkonia in a deconfined gluonic plasma

    E-Print Network [OSTI]

    S. Datta; A. Jakovac; F. Karsch; P. Petreczky

    2006-03-01T23:59:59.000Z

    We discuss lattice results on the properties of finite momentum charmonium states in a gluonic plasma. We also present preliminary results for bottomonium correlators and spectral functions in the plasma. Significant modifications of chi_b states are seen at temperatures of 1.5 Tc.

  14. Plasma discharge self-cleaning filtration system

    DOE Patents [OSTI]

    Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

    2014-07-22T23:59:59.000Z

    The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

  15. Princeton Plasma Physics Laboratory NSTX Experimental Proposal

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    is to apply small oscillations in the plasma vertical position, in order to trigger ELMs. The vertical oscillations will be generated in one of two ways i) by requesting rapid variations in the plasma vertical position, or ii) explicitly adding a "kick" voltage to the PF-3 coil, and then allowing the vertical

  16. Atomic processes in high-density plasmas

    SciTech Connect (OSTI)

    More, R.M.

    1982-12-21T23:59:59.000Z

    This review covers dense atomic plasmas such as that produced in inertial confinement fusion. The target implosion physics along with the associated atomic physics, i.e., free electron collision phenomena, electron states I, electron states II, and nonequilibrium plasma states are described. (MOW)

  17. Air plasma effect on dental disinfection

    SciTech Connect (OSTI)

    Duarte, S.; Murata, R. M.; Saxena, D. [Department of Basic Sciences and Craniofacial Biology, College of Dentistry, New York University, New York, New York 10010 (United States); Kuo, S. P.; Chen, C. Y.; Huang, K. J. [Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Brooklyn, New York 11202 (United States); Popovic, S. [Department of Physics, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2011-07-15T23:59:59.000Z

    A nonthermal low temperature air plasma jet is characterized and applied to study the plasma effects on oral pathogens and biofilms. Experiments were performed on samples of six defined microorganisms' cultures, including those of gram-positive bacteria and fungi, and on a cultivating biofilm sample of Streptococcus mutans UA159. The results show that the plasma jet creates a zone of microbial growth inhibition in each treated sample; the zone increases with the plasma treatment time and expands beyond the entire region directly exposed to the plasma jet. With 30s plasma treatment twice daily during 5 days of biofilm cultivation, its formation was inhibited. The viability of S. mutans cells in the treated biofilms dropped to below the measurable level and the killed bacterial cells concentrated to local regions as manifested by the fluorescence microscopy via the environmental scanning electron microscope. The emission spectroscopy of the jet indicates that its plasma effluent carries an abundance of reactive atomic oxygen, providing catalyst for the observed plasma effect.

  18. Taylor-Couette flow of unmagnetized plasma

    SciTech Connect (OSTI)

    Collins, C.; Cooper, C. M.; Flanagan, K.; Khalzov, I. V.; Nornberg, M. D.; Forest, C. B. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States) [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Center for Magnetic Self Organization, University of Wisconsin, Madison, Wisconsin 53706 (United States); Clark, M.; Seidlitz, B.; Wallace, J. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)] [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2014-04-15T23:59:59.000Z

    Differentially rotating flows of unmagnetized, highly conducting plasmas have been created in the Plasma Couette Experiment. Previously, hot-cathodes have been used to control plasma rotation by a stirring technique [C. Collins et al., Phys. Rev. Lett. 108, 115001 (2012)] on the outer cylindrical boundary—these plasmas were nearly rigid rotors, modified only by the presence of a neutral particle drag. Experiments have now been extended to include stirring from an inner boundary, allowing for generalized circular Couette flow and opening a path for both hydrodynamic and magnetohydrodynamic experiments, as well as fundamental studies of plasma viscosity. Plasma is confined in a cylindrical, axisymmetric, multicusp magnetic field, with T{sub e}?plasmas, and the experiment has already achieved Rm???65 and Pm?0.2?12. We present measurements of a self-consistent, rotation-induced, species-dependent radial electric field, which acts together with pressure gradient to provide the centripetal acceleration for the ions. The maximum flow speeds scale with the Alfvén critical ionization velocity, which occurs in partially ionized plasma. A hydrodynamic stability analysis in the context of the experimental geometry and achievable parameters is also explored.

  19. Combined plasma/liquid cleaning of substrates

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM); Henins, Ivars (Los Alamos, NM)

    2003-04-15T23:59:59.000Z

    Apparatus and method for cleaning substrates. A substrate is held and rotated by a chuck and an atmospheric pressure plasma jet places a plasma onto predetermined areas of the substrate. Subsequently liquid rinse is sprayed onto the predetermined areas. In one embodiment, a nozzle sprays a gas onto the predetermined areas to assist in drying the predetermined areas when needed.

  20. Characterization of BCl3/N-2 plasmas

    E-Print Network [OSTI]

    Sia, S. F.

    2003-08-15T23:59:59.000Z

    measured with a DekTak surface a! Electronic mail: nordhed@ku.edu Characterization of BCl 3 N 2 plasmas Karen J. Nordheden a) and Joanne F. Sia Plasma Research Laboratory, Department of Chemical and Lawrence, Kansas 66045 ~Received 25 April 2003; accepted...

  1. Robotics Science & Technology for Burning Plasma Experiments

    E-Print Network [OSTI]

    Robotics Science & Technology for Burning Plasma Experiments J. N. Herndon, T. W. Burgess, M. M, General Atomics, San Diego, California. #12;Robotics Challenges in Burning Plasma Experiments · Control x x x x x x earthmoving equipment electric robots Conventional Machines DMHP Machines x x x x

  2. Chapter eae124 Magnetic Plasma Sails

    E-Print Network [OSTI]

    Winglee, Robert M.

    EAE124 Chapter eae124 Magnetic Plasma Sails Robert M. Winglee Department of Earth and Space c 2010 John Wiley & Sons, Ltd. ISBN: 978-0-470-75440-5 Plasma propulsion systems offer a tenfold for propulsion. It suffices to say that solar photons produce 9 N m-2 of pressure. The mechanics of solar sail

  3. Electron and photon beams interacting with plasma

    E-Print Network [OSTI]

    Strathclyde, University of

    -amplitude plasma waves are dense, ultra-short relativistic electron bunches (Chen et al. 1985) or intense laser A comparison is made between the interaction of electron bunches and intense laser pulses with plasma. The laser pulse is modelled with photon kinetic theory, i.e. a representation of the electromagnetic field

  4. Measurements of an expanding surface flashover plasma

    SciTech Connect (OSTI)

    Harris, J. R., E-mail: john.harris@colostate.edu [Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)

    2014-05-21T23:59:59.000Z

    A better understanding of vacuum surface flashover and the plasma produced by it is of importance for electron and ion sources, as well as advanced accelerators and other vacuum electronic devices. This article describes time-of-flight and biased-probe measurements made on the expanding plasma generated from a vacuum surface flashover discharge. The plasma expanded at velocities of 1.2–6.5?cm/?s, and had typical densities of 10{sup 10}–10{sup 12}?cm{sup ?3}. The expansion velocity of the plasma leading edge often exhibited a sharp increase at distances of about 50?mm from the discharge site. Comparison with biased-probe data suggests that, under most conditions, the plasma leading edge was dominated by negative ions, with the apparent increase in velocity being due to fast H{sup ?} overtaking slower, heavier ions. In some cases, biased-probe data also showed abrupt discontinuities in the plasma energy distribution co-located with large changes in the intercepted plasma current, suggesting the presence of a shock in the leading edge of the expanding plasma.

  5. PLASMA DYNAMICS AND PLASMA WALL INTERACTION 130 Problems of Atomic Science and Technology. 2006, 6. Series: Plasma Physics (12), p. 130-134

    E-Print Network [OSTI]

    Harilal, S. S.

    PLASMA DYNAMICS AND PLASMA WALL INTERACTION 130 Problems of Atomic Science and Technology. 2006, 6. Series: Plasma Physics (12), p. 130-134 SIMULATION OF HIGH POWER DEPOSITION ON TARGET MATERIALS: APPLICATIONS IN MAGNETIC, INERTIAL FUSION, AND HIGH POWER PLASMA LITHOGRAPHY DEVICES Ahmed Hassanein Argonne

  6. Fuel gas production by microwave plasma in liquid

    SciTech Connect (OSTI)

    Nomura, Shinfuku; Toyota, Hiromichi; Tawara, Michinaga; Yamashita, Hiroshi; Matsumoto, Kenya [Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577 (Japan); Shikoku Industry and Technology Promotion Center, 2-5 Marunouchi, Takamatsu, Kagawa 760-0033 (Japan)

    2006-06-05T23:59:59.000Z

    We propose to apply plasma in liquid to replace gas-phase plasma because we expect much higher reaction rates for the chemical deposition of plasma in liquid than for chemical vapor deposition. A reactor for producing microwave plasma in a liquid could produce plasma in hydrocarbon liquids and waste oils. Generated gases consist of up to 81% hydrogen by volume. We confirmed that fuel gases such as methane and ethylene can be produced by microwave plasma in liquid.

  7. Electron cyclotron maser emission mode coupling to the z-mode on a longitudinal density gradient in the context of solar type III bursts

    SciTech Connect (OSTI)

    Pechhacker, R.; Tsiklauri, D. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom)

    2012-11-15T23:59:59.000Z

    A beam of super-thermal, hot electrons was injected into maxwellian plasma with a density gradient along a magnetic field line. 1.5D particle-in-cell simulations were carried out which established that the EM emission is produced by the perpendicular component of the beam injection momentum. The beam has a positive slope in the distribution function in perpendicular momentum phase space, which is the characteristic feature of a cyclotron maser. The cyclotron maser in the overdense plasma generates emission at the electron cyclotron frequency. The frequencies of generated waves were too low to propagate away from the injection region, hence the wavelet transform shows a pulsating wave generation and decay process. The intensity pulsation frequency is twice the relativistic cyclotron frequency. Eventually, a stable wave packet formed and could mode couple on the density gradient to reach frequencies of the order of the plasma frequency that allowed for propagation. The emitted wave is likely to be a z-mode wave. The total electromagnetic energy generated is of the order of 0.1% of the initial beam kinetic energy. The proposed mechanism is of relevance to solar type III radio bursts, as well as other situations, when the injected electron beam has a non-zero perpendicular momentum, e.g., magnetron.

  8. Plasma flow measurements in a simulated low earth orbit plasma

    SciTech Connect (OSTI)

    Gabriel, S.B. (California Institute of Technology, Jet Propulsion Laboratory, Electrical Power and Propulsion Section, Pasadena, CA); Mccoy, J.E. (NASA, Johnson Space Center, Houston, TX); Carruth, M.R. Jr. (NASA, Marshall Space Flight Center, Huntsville, AL)

    1982-01-01T23:59:59.000Z

    The employment of large, higher power solar arrays for space operation has been considered, taking into account a utilization of high operating voltages. In connection with the consideration of such arrays, attention must be given to the fact that the ambient environment of space contains a tenuous low energy plasma which can interact with the high voltage array causing power 'leakage' and arcing. An investigation has been conducted with the aim to simulate the behavior of such an array in low-earth-orbit (LEO). During the experiments, local concentrations of the 'leakage' current were observed when the panel was at a high voltage. These concentrations could overload or damage a small area of cells in a large string. It was hypothesized that this effect was produced by electrostatic focusing of the particles by the sheath fields. To verify this experimentally, an end-effect Langmuir probe was employed. The obtained results are discussed.

  9. Plasma response to electron energy filter in large volume plasma device

    SciTech Connect (OSTI)

    Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.; Srivastava, P. K.; Singh, S. K.; Singh, R.; Kaw, P. K. [Institute for Plasma Research, Gandhinagar, 382 428 Gujarat (India)] [Institute for Plasma Research, Gandhinagar, 382 428 Gujarat (India)

    2013-12-15T23:59:59.000Z

    An electron energy filter (EEF) is embedded in the Large Volume Plasma Device plasma for carrying out studies on excitation of plasma turbulence by a gradient in electron temperature (ETG) described in the paper of Mattoo et al. [S. K. Mattoo et al., Phys. Rev. Lett. 108, 255007 (2012)]. In this paper, we report results on the response of the plasma to the EEF. It is shown that inhomogeneity in the magnetic field of the EEF switches on several physical phenomena resulting in plasma regions with different characteristics, including a plasma region free from energetic electrons, suitable for the study of ETG turbulence. Specifically, we report that localized structures of plasma density, potential, electron temperature, and plasma turbulence are excited in the EEF plasma. It is shown that structures of electron temperature and potential are created due to energy dependence of the electron transport in the filter region. On the other hand, although structure of plasma density has origin in the particle transport but two distinct steps of the density structure emerge from dominance of collisionality in the source-EEF region and of the Bohm diffusion in the EEF-target region. It is argued and experimental evidence is provided for existence of drift like flute Rayleigh-Taylor in the EEF plasma.

  10. Effect of argon addition on plasma parameters and dust charging in hydrogen plasma

    SciTech Connect (OSTI)

    Kakati, B., E-mail: bharatkakati15@gmail.com; Kausik, S. S.; Saikia, B. K. [Centre of Plasma Physics-Institute for Plasma Research, Nazirakhat, Sonapur, Kamrup 782402, Assam (India); Bandyopadhyay, M.; Saxena, Y. C. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2014-10-28T23:59:59.000Z

    Experimental results on effect of adding argon gas to hydrogen plasma in a multi-cusp dusty plasma device are reported. Addition of argon modifies plasma density, electron temperature, degree of hydrogen dissociation, dust current as well as dust charge. From the dust charging profile, it is observed that the dust current and dust charge decrease significantly up to 40% addition of argon flow rate in hydrogen plasma. But beyond 40% of argon flow rate, the changes in dust current and dust charge are insignificant. Results show that the addition of argon to hydrogen plasma in a dusty plasma device can be used as a tool to control the dust charging in a low pressure dusty plasma.

  11. Plasma Chemistry and Plasma Processing, Vol. 22, No. 4, December 2002 ( 2002) Ozone Production in the Positive DC Corona

    E-Print Network [OSTI]

    Chen, Junhong

    Plasma Chemistry and Plasma Processing, Vol. 22, No. 4, December 2002 ( 2002) Ozone Production the distribution of ozone, but does not affect the rate of production. KEY WORDS: Corona discharge; corona plasma

  12. Interaction of the magnetic field with plasmas is an in-triguing subject of modern plasma physics. Detailed and

    E-Print Network [OSTI]

    #12;Abstract Interaction of the magnetic field with plasmas is an in- triguing subject of modern plasma physics. Detailed and reliable measurements of the key plasma parameters, as well

  13. Tokamak plasma current disruption infrared control system

    DOE Patents [OSTI]

    Kugel, Henry W. (Somerset, NJ); Ulrickson, Michael (E. Windsor, NJ)

    1987-01-01T23:59:59.000Z

    In a magnetic plasma confinment device having an inner toroidal limiter mounted on an inner wall of a plasma containment vessel, an arrangement is provided for monitoring vertical temperature profiles of the limiter. The temperature profiles are taken at brief time intervals, in a time scan fashion. The time scans of the vertical temperature profile are continuously monitored to detect the presence of a peaked temperature excursion, which, according to the present invention, is a precursor of a subsequent major plasma disruption. A fast scan of the temperature profile is made so as to provide a time interval in real time prior to the major plasma disruption, such that corrective action can be taken to reduce the harmful effects of the plasma disruption.

  14. NSTX Plasma Response to Lithium Coated Divertor

    SciTech Connect (OSTI)

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21T23:59:59.000Z

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  15. Plasma Mass Filters For Nuclear Waste Reprocessing

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-05-26T23:59:59.000Z

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  16. Plasma Mass Filters For Nuclear Waste Reprocessing

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-05-25T23:59:59.000Z

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  17. Ionization Equilibrium Timescales in Collisional Plasmas

    E-Print Network [OSTI]

    Smith, Randall K

    2010-01-01T23:59:59.000Z

    Astrophysical shocks or bursts from a photoionizing source can disturb the typical collisional plasma found in galactic interstellar media or the intergalactic medium. The spectrum emitted by this plasma contains diagnostics that have been used to determine the time since the disturbing event, although this determination becomes uncertain as the elements in the plasma return to ionization equilibrium. A general solution for the equilibrium timescale for each element arises from the elegant eigenvector method of solution to the problem of a non-equilibrium plasma described by Masai (1984) and Hughes & Helfand (1985). In general the ionization evolution of an element Z in a constant electron temperature plasma is given by a coupled set of Z+1 first order differential equations. However, they can be recast as Z uncoupled first order differential equations using an eigenvector basis for the system. The solution is then Z separate exponential functions, with the time constants given by the eigenvalues of the r...

  18. Surface-Plasma Interaction on the Moon

    SciTech Connect (OSTI)

    Horanyi, M.; Wang, X.; Robertson, S.; Sternovsky, Z. [University of Colorado, Boulder, CO 80309-0392 (United States)

    2008-09-07T23:59:59.000Z

    The electrostatic levitation and transport of lunar dust remains a controversial science issue since the Apollo era. As a function of time and location, the lunar surface is exposed to solar wind plasma, UV radiation, and/or the plasma environment of our magnetosphere. Dust grains on the lunar surface emit and absorb plasma particles and are exposed to solar UV photons. There are several in situ and remote sensing observations that indicate that dusty plasma processes are responsible for the mobilization and transport of lunar soil. We briefly discuss the existing observations, and report on a series of experiments that address some of the most relevant processes acting on dusty surfaces exposed to plasmas and UV radiation.

  19. Plasma-based EUV light source

    DOE Patents [OSTI]

    Shumlak, Uri (Seattle, WA); Golingo, Raymond (Seattle, WA); Nelson, Brian A. (Mountlake Terrace, WA)

    2010-11-02T23:59:59.000Z

    Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

  20. atmospheric plasma enhanced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a large area plasma Rubloff, Gary W. 105 Generation and bistability of a waveguide nano-plasma observed by enhanced extreme ultraviolet fluorescence CERN Preprints Summary:...