Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Sample Exchange Evaluation (SEE) Report - Phase II  

SciTech Connect

This report describes the results from Phase II of the Sample Exchange Evaluation (SEE) Program, a joint effort to compare analytical laboratory performance on samples from the Hanford Site`s high-level waste tanks. In Phase II, the program has been expanded to include inorganic constituents in addition to radionuclides. Results from Phase II that exceeded 20% relative percent difference criteria are identified.

Winters, W.I.

1994-09-28T23:59:59.000Z

2

Upper-Tropospheric Aerosol Sampled during Project FIRE IFO II  

Science Conference Proceedings (OSTI)

During the FIRE IFO II project, aircraft were available for airborne sampling in and around cirrus cloud. Aerosols can play a role in the cloud formation process through the heterogeneous nucleation mechanism, and in turn, once formed, cirrus ...

Donald E. Hagen; Josef Podzimek; Max B. Trueblood

1995-12-01T23:59:59.000Z

3

DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS  

Science Conference Proceedings (OSTI)

Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected VOC soil gas concentrations during ASVE. Five (5) SVE wells that were located closest to the air injection wells were used as monitoring points during the air sparging tests. The air sparging tests lasted 48 hours. Soil gas sample results indicate that sparging did not affect VOC concentrations in four of the five sparging wells, while results from one test did show an increase in soil gas concentrations.

Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

2012-09-20T23:59:59.000Z

4

TRU Waste Sampling Program: Volume II. Gas generation studies  

DOE Green Energy (OSTI)

Volume II of the TRU Waste Sampling Program report contains the data generated from evaluating the adequacy of venting/filtering devices for maintaining safe hydrogen levels in plutonium contaminated waste drums. Additional studies reported in this volume include gas generation rates, selected waste form monitoring, and evaluation of hydrogen migration from sealed 90-mil rigid polyethylene drum liners containing /sup 238/Pu-contaminated wastes. All wastes used in the studies were newly-generated, and the waste drums were under controlled, experimental conditions. Studies using /sup 239/Pu-contaminated wastes were conducted at the Rocky Flats Plant. Studies using /sup 238/Pu-contaminated wastes were conducted at the Los Alamos National Laboratory.

Clements, T.L. Jr.; Kudera, D.E.

1985-09-01T23:59:59.000Z

5

Operable Unit 3-13, Group 3, Other Surface Soils (Phase II) Field Sampling Plan  

SciTech Connect

This Field Sampling Plan describes the Operable Unit 3-13, Group 3, Other Surface Soils, Phase II remediation field sampling activities to be performed at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory Site. Sampling activities described in this plan support characterization sampling of new sites, real-time soil spectroscopy during excavation, and confirmation sampling that verifies that the remedial action objectives and remediation goals presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13 have been met.

G. L. Schwendiman

2006-07-27T23:59:59.000Z

6

Evaluation of low flow characteristics of the Vermont Yankee plant  

Science Conference Proceedings (OSTI)

Boiling water reactor (BWR) core flow instrumentation inaccuracies under low-flow conditions have been the subject of both reactor vendor and regulatory communications in response to incidents of the reported core flow being less than the flow corresponding to the natural-circulation line on the power flow map. During single recirculation loop operation, low-flow conditions exist in the idle recirculation loop, and these flow inaccuracies can affect the usefulness of the reported core flow. Accurate core flow indications are needed above 25% power to administer fuel thermal limits and comply with restrictions associated with the potential for thermal-hydraulic instability. While the natural-circulation line on the power flow map is recognized to be a nominal estimate of the flow expected at and near natural-circulation conditions, the boundaries of the stability regions are associated with conditions assumed in safety analyses performed to demonstrate compliance with general design criteria 10 and 12.

Ganther, S.; LeFrancoi, M.; Bergeron, P. [Yankee Atomic Electric Co., Bolton, MA (United States)

1997-12-01T23:59:59.000Z

7

Risk-embedded Bayesian acceptance sampling plans via conditional value-at-risk with Type II censoring  

Science Conference Proceedings (OSTI)

An acceptance sampling plan is usually determined by minimizing the expectation of the sum of the relevant costs involved. This expected cost minimization approach, however, could result in a great cost at a probability that is unacceptable to a decision ... Keywords: Bayesian acceptance sampling, Conditional value-at-risk, Life distribution, Reliability, Risk aversion, Type II censoring

Chung-Chi Hsieh, Yu-Ting Lu

2013-08-01T23:59:59.000Z

8

Point and interval estimation for the two-parameter Birnbaum-Saunders distribution based on Type-II censored samples  

Science Conference Proceedings (OSTI)

The maximum likelihood estimators, based on Type-II censored samples, of a two-parameter Birnbaum-Saunders distribution are discussed. We propose a simple bias-reduction method to reduce the bias of the maximum likelihood estimators. We also discuss ... Keywords: Asymptotic distribution, Bias-corrected estimator, Confidence interval, Monte Carlo EM-algorithm, Monte Carlo simulation, Probability coverage

H. K. T. Ng; D. Kundu; N. Balakrishnan

2006-07-01T23:59:59.000Z

9

Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility  

Science Conference Proceedings (OSTI)

Final Technical Report for the Recovery Act Project for the Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility. The Abiquiu hydroelectric facility existed with two each 6.9 MW vertical flow Francis turbine-generators. This project installed a new 3.1 MW horizontal flow low flow turbine-generator. The total plant flow range to capture energy and generate power increased from between 250 and 1,300 cfs to between 75 and 1,550 cfs. Fifty full time equivalent (FTE) construction jobs were created for this project - 50% (or 25 FTE) were credited to ARRA funding due to the ARRA 50% project cost match. The Abiquiu facility has increased capacity, increased efficiency and provides for an improved aquatic environment owing to installed dissolved oxygen capabilities during traditional low flow periods in the Rio Chama. A new powerhouse addition was constructed to house the new turbine-generator equipment.

Jack Q. Richardson

2012-06-28T23:59:59.000Z

10

THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH. II. STATISTICAL LENS SAMPLE FROM THETHIRD DATA RELEASE  

Science Conference Proceedings (OSTI)

We report the first results of our systematic search for strongly lensed quasars using the spectroscopically confirmed quasars in the Sloan Digital Sky Survey (SDSS). Among 46,420 quasars from the SDSS Data Release 3 ({approx}4188 deg{sup 2}), we select a subsample of 22,683 quasars that are located at redshifts between 0.6 and 2.2 and are brighter than the Galactic extinction corrected i-band magnitude of 19.1. We identify 220 lens candidates from the quasar subsample, for which we conduct extensive and systematic follow-up observations in optical and near-infrared wavebands, in order to construct a complete lensed quasar sample at image separations between 1-inch and 20-inch and flux ratios of faint to bright lensed images larger than 10{sup -0.5}. We construct a statistical sample of 11 lensed quasars. Ten of these are galaxy-scale lenses with small image separations ({approx} 1-inch - 2-inch) and one is a large separation (15-inch) system which is produced by a massive cluster of galaxies, representing the first statistical sample of lensed quasars including both galaxy- and cluster-scale lenses. The Data Release 3 spectroscopic quasars contain an additional 11 lensed quasars outside the statistical sample.

Inada, N; Oguri, M; Becker, R H; Shin, M; Richards, G T; Hennawi, J F; White, R L; Pindor, B; Strauss, M A; Kochanek, C S; Johnston, D E; Gregg, M D; Kayo, I; Eisenstein, D; Hall, P B; Castander, F J; Clocchiatti, A; Chiu, K; Kawano, Y; Scranton, R; Frieman, J; Keeton, C R; Morokuma, T; Rix, H; Turner, E L; Burless, S; Brunner, R J; Sheldon, E S; Bahcall, N A; Fukugita, M

2007-09-13T23:59:59.000Z

11

The Crystalline Structure of Ice Formed by Droplet Accretion. II: Annealed Samples and Application  

Science Conference Proceedings (OSTI)

The crystal structure of annealed samples of dry growth accreted ice grown on cylinders rotating in an icing tunnel has been determined using the techniques of McCappin and Macklin (Part I). The rate of change of the crystal structure is strongly ...

C. J. McCappin; W. C. Macklin

1984-08-01T23:59:59.000Z

12

High performance in low-flow solar domestic hot water systems  

DOE Green Energy (OSTI)

Low-flow solar hot water heating systems employ flow rates on the order of 1/5 to 1/10 of the conventional flow. Low-flow systems are of interest because the reduced flow rate allows smaller diameter tubing, which is less costly to install. Further, low-flow systems result in increased tank stratification. Lower collector inlet temperatures are achieved through stratification and the useful energy produced by the collector is increased. The disadvantage of low-flow systems is the collector heat removal factor decreases with decreasing flow rate. Many solar domestic hot water systems require an auxiliary electric source to operate a pump in order to circulate fluid through the solar collector. A photovoltaic driven pump can be used to replace the standard electrical pump. PV driven pumps provide an ideal means of controlling the flow rate, as pumps will only circulate fluid when there is sufficient radiation. Peak performance was always found to occur when the heat exchanger tank-side flow rate was approximately equal to the average load flow rate. For low collector-side flow rates, a small deviation from the optimum flow rate will dramatically effect system performance.

Dayan, M.

1997-12-31T23:59:59.000Z

13

CHARACTERIZATION OF TANK 16H ANNULUS SAMPLES PART II: LEACHING RESULTS  

Science Conference Proceedings (OSTI)

The closure of Tank 16H will require removal of material from the annulus of the tank. Samples from Tank 16H annulus were characterized and tested to provide information to evaluate various alternatives for removing the annulus waste. The analysis found all four annulus samples to be composed mainly of Si, Na, and Al and lesser amounts of other elements. The XRD data indicate quartz (SiO{sub 2}) and sodium aluminum nitrate silicate hydrate (Na{sub 8}(Al{sub 6}Si{sub 6}O{sub 24})(NO{sub 3}){sub 2}.4H{sub 2}O) as the predominant crystalline mineral phases in the samples. The XRD data also indicate the presence of crystalline sodium nitrate (NaNO{sub 3}), sodium nitrite (NaNO{sub 2}), gibbsite (Al(OH){sub 3}), hydrated sodium bicarbonate (Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O), and muscovite (KAl{sub 2}(AlSi{sub 3}O{sub 10})(OH){sub 2}). Based on the weight of solids remaining at the end of the test, the water leaching test results indicate 20-35% of the solids dissolved after three contacts with an approximately 3:1 volume of water at 45 C. The chemical analysis of the leachates and the XRD results of the remaining solids indicate sodium salts of nitrate, nitrite, sulfate, and possibly carbonate/bicarbonate make up the majority of the dissolved material. The majority of these salts were dissolved in the first water contact and simply diluted with each subsequent water contact. The water leaching removed large amounts of the uranium in two of the samples and approximately 1/3 of the {sup 99}Tc from all four samples. Most of the other radionuclides analyzed showed low solubility in the water leaching test. The oxalic acid leaching test result indicate approximately 34-47% of the solids in the four annulus samples will dissolve after three contacts with an approximately 3:1 volume of acid to solids at 45 C. The same sodium salts found in the water leaching test comprise the majority of dissolved material in the oxalic acid leaching test. However, the oxalic acid was somewhat more effective in dissolving radionuclides than the water leach. In contrast to the water leaching results, most constituents continued to dissolve during subsequent cycles of oxalic acid leaching. The somewhat higher dissolution found in the oxalic acid leaching test versus the water leaching test might be offset by the tendency of the oxalic acid solutions to take on a gel-like consistency. The filtered solids left behind after three oxalic acid contacts were sticky and formed large clumps after drying. These two observations could indicate potential processing difficulties with solutions and solids from oxalic acid leaching. The gel formation might be avoided by using larger volumes of the acid. Further testing would be recommended before using oxalic acid to dissolve the Tank 16H annulus waste to ensure no processing difficulties are encountered in the full scale process.

Hay, M.; Reboul, S.

2012-06-19T23:59:59.000Z

14

The Sorcerer II Global Ocean Sampling Expedition: Expanding theUniverse of Protein Families  

SciTech Connect

Metagenomics projects based on shotgun sequencing of populations of micro-organisms yield insight into protein families. We used sequence similarity clustering to explore proteins with a comprehensive dataset consisting of sequences from available databases together with 6.12 million proteins predicted from an assembly of 7.7 million Global Ocean Sampling (GOS) sequences. The GOS dataset covers nearly all known prokaryotic protein families. A total of 3,995 medium- and large-sized clusters consisting of only GOS sequences are identified, out of which 1,700 have no detectable homology to known families. The GOS-only clusters contain a higher than expected proportion of sequences of viral origin, thus reflecting a poor sampling of viral diversity until now. Protein domain distributions in the GOS dataset and current protein databases show distinct biases. Several protein domains that were previously categorized as kingdom specific are shown to have GOS examples in other kingdoms. About 6,000 sequences (ORFans) from the literature that heretofore lacked similarity to known proteins have matches in the GOS data. The GOS dataset is also used to improve remote homology detection. Overall, besides nearly doubling the number of current proteins, the predicted GOS proteins also add a great deal of diversity to known protein families and shed light on their evolution. These observations are illustrated using several protein families, including phosphatases, proteases, ultraviolet-irradiation DNA damage repair enzymes, glutamine synthetase, and RuBisCO. The diversity added by GOS data has implications for choosing targets for experimental structure characterization as part of structural genomics efforts. Our analysis indicates that new families are being discovered at a rate that is linear or almost linear with the addition of new sequences, implying that we are still far from discovering all protein families in nature.

Yooseph, Shibu; Sutton, Granger; Rusch, Douglas B.; Halpern,Aaron L.; Williamson, Shannon J.; Remington, Karin; Eisen, Jonathan A.; Heidelberg, Karla B.; Manning, Gerard; Li, Weizhong; Jaroszewski, Lukasz; Cieplak, Piotr; Miller, Christopher S.; Li, Huiying; Mashiyama, Susan T.; Joachimiak, Marcin P.; van Belle, Christopher; Chandonia, John-Marc; Soergel, David A.; Zhai, Yufeng; Natarajan, Kannan; Lee, Shaun; Raphael,Benjamin J.; Bafna, Vineet; Friedman, Robert; Brenner, Steven E.; Godzik,Adam; Eisenberg, David; Dixon, Jack E.; Taylor, Susan S.; Strausberg,Robert L.; Frazier, Marvin; Venter, J.Craig

2006-03-23T23:59:59.000Z

15

II  

Office of Legacy Management (LM)

II II c )3 c F r c L LI L rr c - r I P- c OAK RlDGE NATIONAL LABORATORY h U W -l\ &?ir;; ITi' m . 8 ORNL/RASA-92/l Results of the Radiological Survey at the Former Chapman Valve Manufacturing Company, Indian Orchard, Massachusetts (cIooo1) R. D. Foley M . S. Uziel MANAGED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY ORNLJRASA-92/l /- HEALTH AND SAFETY RESEARCH DIVISION Environmental Restoration and Waste Management Non-Defense Programs (Activity No. EX 20 20 01 0; ADS317OOOO) Results of the Radiological Survey at the Former Chapman Valve Manufacturing Company, Indian Orchard, Massachusetts (cIooo1) R. D. Foley and M. S. Uziel Date Issued - July 1992 Investigation learn R. E. Swaja - Measurement Applications and Development Manager

16

II  

Office of Legacy Management (LM)

: " + ; . .Z + II . ? 8 . " ~. . . . a a' .; ,. ?> , . ' . : . ., ! , Environmental i r .,' : % , ~ ~ 9 . / ; i.3. -\ ,- I - 'I ' , 2 " .r: 1; . . , ~ . ,&- c . . a , ,, .,I;< . .' , , ? $ ; 1- !'I' . '...~ - .. :, , .I Closure Report for CAU No. 416 1: ' . Project Shoal Area I:' c!';,: .. 7. .. , . ~ 1 I' ,. Controlled Copy No. UNCONTROLLED { -* .. 4'. . 1 " . .. *. *" '.. . . , , ,I +' , ,.f.' I , I" I ', ', ctk;' . , I , '. :C, , I: : , . p . ? .,; . s . " . , k - ,

17

II  

Office of Legacy Management (LM)

l7aa l7aa AMY y ~UJs,bp 7 DOE/OR/20722-20 *1 F F c Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-810R20722 RADIOLOGICAL SURVEY REPORT FOR THE FORMER MIDDLESEX SAMPLING PLANT Middlesex, New Jersey Bechtel Job 14501 Bechtel National, Inc. Advanced Technology Division March 1985 Technical Information Center Office of Scientific and Technical Information U.S. Department of Energy ---___- __-_ __~__ .-_. ..__ - ~-___ LEGAL NOTICE This report was prepared as an nccount of work sponsored by the United Static Government. Neither the United States nor the United States Department of Energy, nor any of their cmployaes, nor any of their contracton, subcontractors, or their employees, makes any warranty, crprem or implied, or aemmes any legal liability or responsibility for the accuracy, completeness

18

Critical heat-flux experiments under low-flow conditions in a vertical annulus. [PWR; BWR; LMFBR  

Science Conference Proceedings (OSTI)

An experimental study was performed on critical heat flux (CHF) at low flow conditions for low pressure steam-water upward flow in an annulus. The test section was transparent, therefore, visual observations of dryout as well as various instrumentations were made. The data indicated that a premature CHF occurred due to flow regime transition from churn-turbulent to annular flow. It is shown that the critical heat flux observed in the experiment is essentially similar to a flooding-limited burnout and the critical heat flux can be well reproduced by a nondimensional correlation derived from the previously obtained criterion for flow regime transition. The observed CHF values are much smaller than the standard high quality CHF criteria at low flow, corresponding to the annular flow film dryout. This result is very significant, because the coolability of a heater surface at low flow rates can be drastically reduced by the occurrence of this mode of CHF.

Mishima, K.; Ishii, M.

1982-03-01T23:59:59.000Z

19

An infrared study of galactic OH/IR stars. II. The `GLMP sample' of red oxygen-rich AGB stars  

E-Print Network (OSTI)

We present optical and near-infrared finding charts taken from the DSS and 2MASS surveys of 94 IRAS sources selected from the GLMP catalogue (Garc\\'{\\i}a-Lario 1992), and accurate astrometry (~0.2") for most of them. Selection criteria were very red IRAS colours representative for OH/IR stars with optically thick circumstellar shells and the presence of variability according to the IRAS variability index (VAR>50). The main photometric properties of the stars in this `GLMP sample' are presented, discussed and compared with the correspondent properties of the `Arecibo sample' of OH/IR stars studied in Jim\\'enez-Esteban et al. (2005a). We find that 37% of the sample (N=34) have no counterpart in the 2MASS, implying extremely high optical depths of their shells. Most of the sources identified in the 2MASS are faint (K>~8) and of very red colour in the near-infrared, as expected. The brightest 2MASS counterpart (K=5.3mag) was found for IRAS 18299--1705. Its blue colour H--K=1.3 suggests that IRAS 8299--1705 is a p...

Jimnez-Esteban, F M; Engels, D; Caldern, J V P

2005-01-01T23:59:59.000Z

20

THE CHEMICAL ABUNDANCES OF STARS IN THE HALO (CASH) PROJECT. II. A SAMPLE OF 14 EXTREMELY METAL-POOR STARS ,  

Science Conference Proceedings (OSTI)

We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R {approx}15, 000) and corresponding high-resolution (R {approx}35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H] pipeline. This code will be used for the entire {approx}500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum.

Hollek, Julie K.; Sneden, Christopher; Shetrone, Matthew [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Frebel, Anna [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Roederer, Ian U. [Carnegie Observatories, Pasadena, CA 91101 (United States); Beers, Timothy C. [Department of Physics and Astronomy, and JINA: Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Kang, Sung-ju [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Thom, Christopher, E-mail: julie@astro.as.utexas.edu, E-mail: chris@astro.as.utexas.edu, E-mail: shetrone@astro.as.utexas.edu, E-mail: afrebel@cfa.harvard.edu, E-mail: iur@obs.carnegiescience.edu, E-mail: beers@pa.msu.edu, E-mail: sjkang@iastate.edu, E-mail: cthom@stsci.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

2011-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DISK AND ENVELOPE STRUCTURE IN CLASS 0 PROTOSTARS. II. HIGH-RESOLUTION MILLIMETER MAPPING OF THE SERPENS SAMPLE  

SciTech Connect

We present high-resolution CARMA 230 GHz continuum imaging of nine deeply embedded protostars in the Serpens Molecular Cloud, including six of the nine known Class 0 protostars in Serpens. This work is part of a program to characterize disk and envelope properties for a complete sample of Class 0 protostars in nearby low-mass star-forming regions. Here, we present CARMA maps and visibility amplitudes as a function of uv-distance for the Serpens sample. Observations are made in the B, C, D, and E antenna configurations, with B configuration observations utilizing the CARMA Paired Antenna Calibration System. Combining data from multiple configurations provides excellent uv-coverage (4-500 k{lambda}), allowing us to trace spatial scales from 10{sup 2} to 10{sup 4} AU. We find evidence for compact disk components in all of the observed Class 0 protostars, suggesting that disks form at very early times (t < 0.2 Myr) in Serpens. We make a first estimate of disk masses using the flux at 50 k{lambda}, where the contribution from the envelope should be negligible, assuming an unresolved disk. The resulting disk masses range from 0.04 M{sub sun} to 1.7 M{sub sun}, with a mean of approximately 0.2 M{sub sun}. Our high-resolution maps are also sensitive to binary or multiple sources with separations {approx}> 250 AU, but significant evidence of multiplicity on scales <2000 AU is seen in only one source.

Enoch, Melissa L.; Duchene, Gaspard; Wright, Melvyn C. H. [Department of Astronomy, University of California at Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Corder, Stuartt [NRAO/ALMA-JAO, Av. Apoquindo 3650, Piso 18, Las Condes, Santiago (Chile); Bock, Douglas C. [Combined Array for Research in Millimeter-wave Astronomy, Big Pine, CA 93513 (United States); Bolatto, Alberto D.; Teuben, Peter J.; Zauderer, B. Ashley [Department of Astronomy and Laboratory for Millimeter-wave Astronomy, University of Maryland, College Park, MD 20742 (United States); Culverhouse, Thomas L.; Lamb, James W.; Leitch, Erik M.; Muchovej, Stephen J.; Scott, Stephen L. [Owens Valley Radio Observatory, California Institute of Technology, Big Pine, CA 93513 (United States); Kwon, Woojin [Department of Astronomy, University of Illinois, Urbana, IL 61801 (United States); Marrone, Daniel P. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave. Chicago, IL 60637 (United States); Perez, Laura M. [Department of Astronomy, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125 (United States)

2011-08-01T23:59:59.000Z

22

Estimation of the Impact of Sampling Errors in the VOS Observations on AirSea Fluxes. Part II: Impact on Trends and Interannual Variability  

Science Conference Proceedings (OSTI)

Using the same approach as in Part I, here it is shown how sampling problems in voluntary observing ship (VOS) data affect conclusions about interannual variations and secular changes of surface heat fluxes. The largest uncertainties in linear ...

Sergey Gulev; Thomas Jung; Eberhard Ruprecht

2007-01-01T23:59:59.000Z

23

Data Overview for Sensor Fish Samples Acquired at Ice Harbor, John Day, and Bonneville II Dams in 2005, 2006, and 2007  

DOE Green Energy (OSTI)

The purpose of this work was to acquire Sensor Fish data on turbine passage at Bonneville II, John Day, and Ice Harbor dams for later analysis and use. The original data sets have been entered into a database and are being maintained by Pacific Northwest National Laboratory pending delivery to the U.S. Army Corps of Engineers when requested. This report provides documentation for the data sets acquired and details about the operations of the Sensor Fish and interpretation of Sensor Fish data that will be necessary for later use of the acquired data. A limited review of the acquired data was conducted to assess its quality and to extract information that might prove useful to its later use.

Carlson, Thomas J.; Duncan, Joanne P.; Deng, Zhiqun

2008-03-12T23:59:59.000Z

24

The origin of the infrared emission in radio galaxies II: analysis of mid- to far-infrared Spitzer observations of the 2Jy sample  

E-Print Network (OSTI)

We present an analysis of deep mid- to far-infrared (MFIR) Spitzer photometric observations of the southern 2Jy sample of powerful radio sources (0.05 links between radio jet, AGN, starburst activity and MFIR properties. This is part of an ongoing extensive study of powerful radio galaxies that benefits from both complete optical emission line information and a uniquely high detection rate in the far-infrared (far-IR). We find tight correlations between the MFIR and [OIII] emission luminosities, which are significantly better than those between MFIR and extended radio luminosities, or between radio and [OIII] luminosities. Since [OIII] is a known indicator of intrinsic AGN power, these correlations confirm AGN illumination of the circum-nuclear dust as the primary heating mechanism for the dust producing thermal MFIR emission at both 24 and 70 microns. We demonstrate that AGN heating is energetically feasible, and identify the narrow line region ...

Dicken, D; Axon, D; Morganti, R; Inskip, K J; Holt, J; Delgado, R Gonzalez; Groves, B

2008-01-01T23:59:59.000Z

25

The origin of the infrared emission in radio galaxies II: analysis of mid- to far-infrared Spitzer observations of the 2Jy sample  

E-Print Network (OSTI)

We present an analysis of deep mid- to far-infrared (MFIR) Spitzer photometric observations of the southern 2Jy sample of powerful radio sources (0.05 links between radio jet, AGN, starburst activity and MFIR properties. This is part of an ongoing extensive study of powerful radio galaxies that benefits from both complete optical emission line information and a uniquely high detection rate in the far-infrared (far-IR). We find tight correlations between the MFIR and [OIII] emission luminosities, which are significantly better than those between MFIR and extended radio luminosities, or between radio and [OIII] luminosities. Since [OIII] is a known indicator of intrinsic AGN power, these correlations confirm AGN illumination of the circum-nuclear dust as the primary heating mechanism for the dust producing thermal MFIR emission at both 24 and 70 microns. We demonstrate that AGN heating is energetically feasible, and identify the narrow line region clouds as the most likely location of the cool, far-IR emitting dust. Starbursts make a major contribution to the heating of the cool dust in only 15-28% of our targets. We also investigate the orientation dependence of the continuum properties, finding that the broad- and narrow-line objects in our sample with strong emission lines have similar distributions of MFIR luminosities and colours. Therefore our results are entirely consistent with the orientation-based unified schemes for powerful radio galaxies. However, the weak line radio galaxies (WLRG) form a separate class of objects with intrinsically low luminosity AGN in which both the optical emission lines and the MFIR continuum are weak.

D. Dicken; C. Tadhunter; D. Axon; R. Morganti; K. J. Inskip; J. Holt; R. Gonzalez Delgado; B. Groves

2008-10-31T23:59:59.000Z

26

Laminated metal composite formed from low flow stress layers and high flow stress layers using flow constraining elements and method of making same  

DOE Patents (OSTI)

This invention relates to a laminated metal composite, comprising alternating layers of low flow stress material and high flow stress material, and formed using flow constraining elements around each low flow stress layer; and a method of making same. A composite is a combination of at least two chemically distinct materials with a distinct interface separating the two materials. A metal matrix composite (MMC) is a composite material composed of a metal and a nonmetallic reinforcing agent such as silicon carbide (SiC) or graphite in continuous or discontinuous fiber, whisker, or discrete particulate form. A laminate is a material composed of several bonded layers. It is possible to have a laminate composed of multi-layers of a single type of material bonded to each other. However, such a laminate would not be considered to be a composite. The term {open_quotes}laminated metal composite{close_quotes} (LMC), as used herein, is intended to include a structural material composed of: (1) layers of metal or metal alloys interleaved with (2) a different metal, a metal alloy, or a metal matrix composite (MMC) containing strengthening agents.

Syn, C.K.; Lesuer, D.R.

1994-12-31T23:59:59.000Z

27

A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration  

SciTech Connect

A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio [Center for Integrated Research, Unit of Measurements and Biomedical Instrumentation, Universita Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome (Italy)

2013-02-15T23:59:59.000Z

28

JOINT ANALYSIS OF CLUSTER OBSERVATIONS. II. CHANDRA/XMM-NEWTON X-RAY AND WEAK LENSING SCALING RELATIONS FOR A SAMPLE OF 50 RICH CLUSTERS OF GALAXIES  

SciTech Connect

We present a study of multiwavelength X-ray and weak lensing scaling relations for a sample of 50 clusters of galaxies. Our analysis combines Chandra and XMM-Newton data using an energy-dependent cross-calibration. After considering a number of scaling relations, we find that gas mass is the most robust estimator of weak lensing mass, yielding 15% {+-} 6% intrinsic scatter at r{sub 500}{sup WL} (the pseudo-pressure Y{sub X} yields a consistent scatter of 22% {+-} 5%). The scatter does not change when measured within a fixed physical radius of 1 Mpc. Clusters with small brightest cluster galaxy (BCG) to X-ray peak offsets constitute a very regular population whose members have the same gas mass fractions and whose even smaller (<10%) deviations from regularity can be ascribed to line of sight geometrical effects alone. Cool-core clusters, while a somewhat different population, also show the same (<10%) scatter in the gas mass-lensing mass relation. There is a good correlation and a hint of bimodality in the plane defined by BCG offset and central entropy (or central cooling time). The pseudo-pressure Y{sub X} does not discriminate between the more relaxed and less relaxed populations, making it perhaps the more even-handed mass proxy for surveys. Overall, hydrostatic masses underestimate weak lensing masses by 10% on the average at r{sub 500}{sup WL}; but cool-core clusters are consistent with no bias, while non-cool-core clusters have a large and constant 15%-20% bias between r{sub 2500}{sup WL} and r{sub 500}{sup WL}, in agreement with N-body simulations incorporating unthermalized gas. For non-cool-core clusters, the bias correlates well with BCG ellipticity. We also examine centroid shift variance and power ratios to quantify substructure; these quantities do not correlate with residuals in the scaling relations. Individual clusters have for the most part forgotten the source of their departures from self-similarity.

Mahdavi, Andisheh [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94131 (United States); Hoekstra, Henk [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands); Babul, Arif; Bildfell, Chris [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P6 (Canada); Jeltema, Tesla [Santa Cruz Institute for Particle Physics, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Henry, J. Patrick [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

2013-04-20T23:59:59.000Z

29

Estimating the Annual Water and Energy Savings in Texas A & M University Cafeterias using Low Flow Pre-Rinse Spray Valves  

E-Print Network (OSTI)

Improving the efficiency of a Pre- Rinse Spray Valve (PRSV) is one of the most cost effective water conservation methods in the Food Services Industry. A significant contributor to this cost efficiency is the reduction in the energy costs required to provide the mandatory hot water. This research paper estimates the potential quantity and dollar value of the water and energy that can be saved annually in Texas A&M University's dining services with the installation of low flow pre-rinse spray valves. The data collection was obtained from four of Texas A&M University's Dining Services facilities. The annual savings were estimated by contrasting the water consumption of the existing T & S Brass B 0107-M PRSVs with the latest and most advanced available low flow T and S Brass B 0107-C PRSV. The annual water consumption of the existing and new PRSVs were predicted by measuring an individual average flow rate for each and observing the number of hours per day the PRSV would be used. The observed and measured values were extrapolated to amount rates to determine cost savings. The dollar value was ascertained using the utility cost data recorded over a semester by the Facilities Coordinator of the Department of Dining Services. The findings of this study show that the water savings from a single PRSV could lead to an estimated annual saving ranging between 46% and 78% of the current operation cost. The T & S Brass B 0107-C PRSV is currently priced between $52- $60 per valve resulting in a payback period ranging between 1.5-6 months per valve. If every valve on campus was replaced, the University could reap a savings in the range of $ 5,400- $22,590 over the 5 year useful life of the valve, having initially invested less than $550.

Rebello, Harsh Varun

2010-05-01T23:59:59.000Z

30

Sampling Soil  

INL has developed a method for sampling soil to determine the presence of extremely fine particles such as absorbents.

31

CFD Analysis for Flow Behavior Characteristics in the Upper Plenum during low flow/low pressure transients for the Gas Cooled Fast Reactor (GCFR)  

Science Conference Proceedings (OSTI)

Gas coolant at low pressure exhibits poor heat transfer characteristics. This is an area of concern for the passive response targeted by the Generation IV GCFR design. For the first 24 hour period, the decay heat removal for the GCFR design is dependent on an actively powered blower, which also would reduce the temperature in the fuel during transients, before depending on the passive operation. Natural circulation cooling initiates when the blower is stopped for the final phase of the decay heat removal, as under forced convection the core decay heat is adequately cooled by the running blower. The ability of the coolant to flow in the reverse direction or having recirculation, when the blowers are off, necessitates more understanding of the flow behavior characteristics in the upper plenum. The work done here focuses primarily on the period after the blower has been turned off, as the core is adequately cooled when the blowers are running, thus there was no need to carry out the analysis for the first 24 hours. In order to understand the plume behavior for the GCFR upper plenum several cases were run, with air, helium and helium-air mixture. For each case, the FLUENT was used to characterize the steady state velocity vectors and corresponding temperature in the upper plenum under passive decay heat removal conditions. This study will provide better insight into the plume interaction in the upper plenum at low flow and low pressure conditions.

Piyush Sabharwall; Theron Marshall; Kevan Weaver; Hans Gougar

2007-05-01T23:59:59.000Z

32

Anthrax Sampling  

NLE Websites -- All DOE Office Websites (Extended Search)

Anthrax Anthrax Sampling and Decontamination: Technology Trade-Offs Phillip N. Price, Kristina Hamachi, Jennifer McWilliams, and Michael D. Sohn Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley CA 94720 September 12, 2008 This work was supported by the Office of Science, Office of High Energy Physics, Homeland Security under the U.S. Department of Energy under Contract No. DE-AC02-05CH1123. Contents 1 Executive Summary 3 1.1 How much sampling is needed to decide if a building is safe? . . . . . . . 3 1.1.1 Sampling Nomogram . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 How many characterization samples should be taken? . . . . . . . . . . . 7 1.3 What decontamination method should be used? . . . . . . . . . . . . . . . 7 1.4 Post-decontamination sampling . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 What are rules of thumb for cost and effort? . . . . . . . . . . . .

33

Sampling box  

DOE Patents (OSTI)

An air sampling box that uses a slidable filter tray and a removable filter cartridge to allow for the easy replacement of a filter which catches radioactive particles is disclosed.

Phillips, Terrance D. (617 Chestnut Ct., Aiken, SC 29803); Johnson, Craig (100 Midland Rd., Oak Ridge, TN 37831-0895)

2000-01-01T23:59:59.000Z

34

PARS II  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

too rapidly to see): a. Loading -PARS II is loading the report definition and data query. b. Downloading (generating report) c. Opening Excel d. Formatting report Report...

35

IIS5  

Science Conference Proceedings (OSTI)

... 1) enabled/disabled, (1) Internet Information Services (IIS) Manager GUI: Right Click on Server > Properties > Home Directory tab > Read, Chapter 2 ...

2013-02-22T23:59:59.000Z

36

ISLSCP II Project Page  

NLE Websites -- All DOE Office Websites (Extended Search)

ISLSCP II The International Satellite Land Surface Climatology Project, Initiative II (ISLSCP II) Overview ISLSCP II Logo The International Satellite Land Surface Climatology...

37

PARS II  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peck 1.1 5102010 Exercise 6 -Monthly Status screen updated to PARS II 4152010 Version 30-31 Replaced screens and changed text. J. Peck 1.1 5102010 Ex 8 and 9 36-38...

38

JUMR II  

Science Conference Proceedings (OSTI)

Oct 27, 2009 ... Samples with 97% density sintered with a conventional oven yielded ... Initial investigations of heating of Mn-oxide rich cathodic material from a...

39

TEMPEST II--A NEUTRON THERMALIZATION CODE  

SciTech Connect

The TEMPEST II neutron thermalization code in Fortran for IBM 709 or 7090 calculates thermal neutron flux spectra based upon the Wigner-Wilkins equation, the Wilkins equation, or the Maxwellian distribution. When a neutron spectrum is obtained, TEMPEST II provides microscopic and macroscopic cross section averages over that spectrum. Equations used by the code and sample input and output data are given. (auth)

Shudde, R.H.; Dyer, J.

1962-06-01T23:59:59.000Z

40

Session II  

Science Conference Proceedings (OSTI)

Oct 20, 2011 ... Thermal interface materials (TIMs) play a critical role in thermal management ... Titanium compacts were cold isostatically pressed to 100 ksi, and then .... The green samples, enclosed in Y2O3-powder thermal insulation, were...

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Ii1  

Office of Legacy Management (LM)

-r -r Ii1 5uitc 79% 955 L%fan~Plu,S.W.. Worhingm. D.C.200242134, 7117-03.87.cdy.43 23 September 1987 Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVtRSITIES The attached elimination recommendation was prepared in accordance.)l- flL.o* with your suggestion during our meeting on 22 September, The recommendat:on y0.0-02 includes 26 colleges and universities identified.in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated i 27 May 1987; three institutions (Tufts College, University of Virginia, ! and the University of Washington) currently identified on the FUSRAP

42

Acceptance sampling methods for sample results verification  

SciTech Connect

This report proposes a statistical sampling method for use during the sample results verification portion of the validation of data packages. In particular, this method was derived specifically for the validation of data packages for metals target analyte analysis performed under United States Environmental Protection Agency Contract Laboratory Program protocols, where sample results verification can be quite time consuming. The purpose of such a statistical method is to provide options in addition to the ``all or nothing`` options that currently exist for sample results verification. The proposed method allows the amount of data validated during the sample results verification process to be based on a balance between risks and the cost of inspection.

Jesse, C.A.

1993-06-01T23:59:59.000Z

43

On sampling fractions and electron shower shapes  

SciTech Connect

We study the usage of various definitions of sampling fractions in understanding electron shower shapes in a sampling multilayer electromagnetic calorimeter. We show that the sampling fractions obtained by the conventional definition (I) of (average observed energy in layer)/(average deposited energy in layer) will not give the best energy resolution for the calorimeter. The reason for this is shown to be the presence of layer by layer correlations in an electromagnetic shower. The best resolution is obtained by minimizing the deviation from the total input energy using a least squares algorithm. The 'sampling fractions' obtained by this method (II) are shown to give the best resolution for overall energy. We further show that the method (II) sampling fractions are obtained by summing the columns of a non-local {lambda} tensor that incorporates the correlations. We establish that the sampling fractions (II) cannot be used to predict the layer by layer energies and that one needs to employ the full {lambda} tensor for this purpose. This effect is again a result of the correlations.

Peryshkin, Alexander; Raja, Rajendran; /Fermilab

2011-12-01T23:59:59.000Z

44

Artificial Photosynthesis II -  

NLE Websites -- All DOE Office Websites (Extended Search)

II - Artificial Photosynthesis II - Joint Center for Artificial Photosynthesis (JCAP) Simulations NathanLewis.png Schematic of a photoelectrochemical cell being designed to harness...

45

Sample Preparation Laboratory Training - Course 204 | Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample Preparation Laboratory Training - Course 204 Who Should Attend This course is mandatory for: SLAC employees and non-employees who need unescorted access to SSRL or LCLS...

46

The Sorcerer II Global Ocean Sampling Expedition: Expanding the Universe  

E-Print Network (OSTI)

Office 0 0 0 0 0 0 0 0 0 0 0 0 0 NERSC Center 0 0 0 0 0 0 0 0 0 0 0 0 0 Scientific Networking 0 0 0 0 0 0 0 Computational Research 0 0 0 0 0 0 0 0 0 0 0 0 0 Division Office 0 0 0 0 0 0 0 0 0 0 0 0 0 NERSC

Brenner, Steven E.

47

geometry of sample sets in derivative free optimization. part ii  

E-Print Network (OSTI)

Bas ic fa ct s a nd not a tion. ere we introduce some notation and also state some facts from linear algebra that will be used in the paper. y " "k , with 7>1 , we...

48

September 2004 Water Sampling  

Office of Legacy Management (LM)

Sampling at the Sampling at the Shirley Basin South, Wyoming, Disposal Site September 2013 LMS/SBS/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Shirley Basin South, Wyoming September 2013 RIN 13065426 Page i Contents Sampling Event Summary ...............................................................................................................1 Shirley Basin South, Wyoming, Disposal Site Sample Location Map ............................................3 Data Assessment Summary ..............................................................................................................5 Water Sampling Field Activities Verification Checklist .............................................................7

49

Rain sampling device  

DOE Patents (OSTI)

The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of the precipitation from the chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device. 11 figures.

Nelson, D.A.; Tomich, S.D.; Glover, D.W.; Allen, E.V.; Hales, J.M.; Dana, M.T.

1991-05-14T23:59:59.000Z

50

PARS II TRAINING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 (V1.1) PARS II 102 Monthly Updating and Reporting i 10 (V1.1) PARS II 102 Monthly Updating and Reporting i Project Assessment and Reporting System PARS II 102 Monthly Updating and Reporting Training Workbook (PARS II Release 1.1) Department of Energy September 13, 2010 September 13,, 2010 (V1.1) PARS II 102 Monthly Updating and Reporting ii Table of Contents OVERSIGHT and ASSESSMENT ........................................................................................................ 1 Exercise 1: Find and View a Project ............................................................................................ 1 Sort the Project List ................................................................................................................. 3

51

Selection of Sampling Pumps Used for Groundwater Monitoring at the Hanford Site  

Science Conference Proceedings (OSTI)

The variable frequency drive centrifugal submersible pump, Redi-Flo2a made by Grundfosa, was selected for universal application for Hanford Site groundwater monitoring. Specifications for the selected pump and five other pumps were evaluated against current and future Hanford groundwater monitoring performance requirements, and the Redi-Flo2 was selected as the most versatile and applicable for the range of monitoring conditions. The Redi-Flo2 pump distinguished itself from the other pumps considered because of its wide range in output flow rate and its comparatively moderate maintenance and low capital costs. The Redi-Flo2 pump is able to purge a well at a high flow rate and then supply water for sampling at a low flow rate. Groundwater sampling using a low-volume-purging technique (e.g., low flow, minimal purge, no purge, or micropurgea) is planned in the future, eliminating the need for the pump to supply a high-output flow rate. Under those conditions, the Well Wizard bladder pump, manufactured by QED Environmental Systems, Inc., may be the preferred pump because of the lower capital cost.

Schalla, Ronald; Webber, William D.; Smith, Ronald M.

2001-11-05T23:59:59.000Z

52

Quality Reference Samples  

Science Conference Proceedings (OSTI)

Peer-reviewed fats and oils related performance-based control samples for lab quality assurance and quality control. Quality Reference Samples Certified Reference Materials (CRM) aocs certified Certified Reference Materials chemists CRM fat fats lab labo

53

September 2004 Water Sampling  

Office of Legacy Management (LM)

information documented on the field data sheets? Yes 18. Was the presence or absence of ice in the cooler documented at every sample location? NA Sample chilling was not required....

54

September 2004 Water Sampling  

Office of Legacy Management (LM)

3 3 Groundwater and Surface Water Sampling at the Slick Rock East and West, Colorado, Processing Sites November 2013 LMS/SRE/SRW/S0913 This page intentionally left blank U.S. Department of Energy DVP-September 2013, Slick Rock, Colorado November 2013 RIN 13095593 Page i Contents Sampling Event Summary ...............................................................................................................1 Slick Rock East and West, Colorado, Processing Sites, Sample Location Map .............................5 Data Assessment Summary ..............................................................................................................7 Water Sampling Field Activities Verification Checklist .............................................................9

55

September 2004 Water Sampling  

Office of Legacy Management (LM)

Old and New Rifle, Old and New Rifle, Colorado, Processing Sites August 2013 LMS/RFN/RFO/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Rifle, Colorado August 2013 RIN 13065380 Page i Contents Sampling Event Summary ...............................................................................................................1 Sample Location Map, New Rifle, Colorado, Processing Site ........................................................5 Sample Location Map, Old Rifle, Colorado, Processing Site ..........................................................6 Data Assessment Summary ..............................................................................................................7 Water Sampling Field Activities Verification Checklist .............................................................9

56

September 2004 Water Sampling  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2013 LMS/TUB/S00813 This page intentionally left blank U.S. Department of Energy DVP-August 2013, Tuba City, Arizona November 2013 RIN 13085553 Page i Contents Sampling Event Summary ...............................................................................................................1 Tuba City, Arizona, Disposal Site, Sample Location Map ..............................................................7 Data Assessment Summary ..............................................................................................................9 Water Sampling Field Activities Verification Checklist ...........................................................11

57

September 2004 Water Sampling  

NLE Websites -- All DOE Office Websites (Extended Search)

and October 2013 and October 2013 Groundwater Sampling at the Bluewater, New Mexico, Disposal Site December 2013 LMS/BLU/S00813 This page intentionally left blank U.S. Department of Energy DVP-August and October 2013, Bluewater, New Mexico December 2013 RIN 13085537 and 13095651 Page i Contents Sampling Event Summary ...............................................................................................................1 Private Wells Sampled August 2013 and October 2013, Bluewater, NM, Disposal Site ................3 Data Assessment Summary ..............................................................................................................5 Water Sampling Field Activities Verification Checklist .............................................................7

58

September 2004 Water Sampling  

Office of Legacy Management (LM)

Riverton, Wyoming, Riverton, Wyoming, Processing Site September 2013 LMS/RVT/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Riverton, Wyoming September 2013 RIN 13065379 Page i Contents Sampling Event Summary ...............................................................................................................1 Riverton, Wyoming, Processing Site, Sample Location Map .........................................................5 Data Assessment Summary ..............................................................................................................7 Water Sampling Field Activities Verification Checklist .............................................................9 Laboratory Performance Assessment ........................................................................................11

59

Sampling community structure  

Science Conference Proceedings (OSTI)

We propose a novel method, based on concepts from expander graphs, to sample communities in networks. We show that our sampling method, unlike previous techniques, produces subgraphs representative of community structure in the original network. These ... Keywords: clustering, community detection, complex networks, graphs, sampling, social networks

Arun S. Maiya; Tanya Y. Berger-Wolf

2010-04-01T23:59:59.000Z

60

Solvent Refined Coal-II (SRC-II) detailed environmental plan  

Science Conference Proceedings (OSTI)

This document describes environmental research which will: aid in the development of an environmentally acceptable SRC-II process; and provide data for environmental assessment of the process. The SRC-II process is described, criteria for selection of samples to undergo environmental analyses are given, and approximate timelines are presented for obtaining pertinent samples. At this time, the SRC-II process is at the pilot-plant stage of development and a demonstration facility is scheduled to begin operation in 1984. Since design criteria may change, the environmental research described in this document is organized in four phases which correlate with and will provide information early in process development. Phase I research (screening) evaluates samples from existing SRC-II facilities (pilot, process demonstration unit (PDU), bench) which may bracket potential demonstration/commercial practice in terms of physical and chemical criteria. The samples are being subjected to a battery of short-term biomedical and ecological assays. Chemical fractionation and analysis are being performed to determine compounds and compound classes of potential concern. Phase II (baseline) research will evaluate SRC-II materials which are considered most representative of potential demonstration/commercial practice. These materials will be subjected to longer-term, more-extensive biological and ecological analyses relative to effects and environmental fate. Phase III research will examine effects of process modification, control technologies and changing operational conditions on potential environmental properties of SRC-II materials. Phase IV research (onsite monitoring) will develop methods and initiate environmental monitoring for effects at the SRC-II demonstration facility and potential commercial sites. This document also describes industrial hygiene programs which must occur throughout SRC-II process development.

Not Available

1980-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sampling diffusive transition paths  

SciTech Connect

We address the problem of sampling double-ended diffusive paths. The ensemble of paths is expressed using a symmetric version of the Onsager-Machlup formula, which only requires evaluation of the force field and which, upon direct time discretization, gives rise to a symmetric integrator that is accurate to second order. Efficiently sampling this ensemble requires avoiding the well-known stiffness problem associated with sampling infinitesimal Brownian increments of the path, as well as a different type of stiffness associated with sampling the coarse features of long paths. The fine-features sampling stiffness is eliminated with the use of the fast sampling algorithm (FSA), and the coarse-feature sampling stiffness is avoided by introducing the sliding and sampling (S&S) algorithm. A key feature of the S&S algorithm is that it enables massively parallel computers to sample diffusive trajectories that are long in time. We use the algorithm to sample the transition path ensemble for the structural interconversion of the 38-atom Lennard-Jones cluster at low temperature.

F. Miller III, Thomas; Predescu, Cristian

2006-10-12T23:59:59.000Z

62

September 2004 Water Sampling  

Office of Legacy Management (LM)

Green River, Utah, Disposal Site Green River, Utah, Disposal Site August 2013 LMS/GRN/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Green River, Utah August 2013 RIN 13065402 Page i Contents Sampling Event Summary ...............................................................................................................1 Data Assessment Summary ..............................................................................................................7 Water Sampling Field Activities Verification Checklist .............................................................9 Laboratory Performance Assessment ........................................................................................11 Sampling Quality Control Assessment ......................................................................................18

63

Beacon Project - Unpredictable Sampling  

Science Conference Proceedings (OSTI)

... or undetected tampering), with the random number generator used for sampling can lead to erroneous estimates of the percentage of faulty parts. ...

2013-07-25T23:59:59.000Z

64

FANS - Sample Change  

Science Conference Proceedings (OSTI)

... result of neutrons with incident energies higher than ... between the sample position and the detector bank. ... 60 to 300 seconds per energy point and ...

65

September 2004 Water Sampling  

Office of Legacy Management (LM)

field procedures? Yes List any Program Directives or other documents, SOPs, instructions. Work Order Letter dated May 1, 2013. Program Directive SHL 2013 01. 2. Were the sampling...

66

FANS - Sample Change  

Science Conference Proceedings (OSTI)

... This is achieved by placing a cadmium shield between the sample position and the detector bank. In order to place the ...

67

I IIII1IiI II1Ii  

Office of Legacy Management (LM)

* * 'I I IIII1IiI II1Ii 1111 1111 I - I' p. r. * *: * * * .** I I ,e L 'I r - I OFFICIAL PHOTOGRAPH ADEC ?Date ______ Time - Location /oie_ / I C 4'.'-?- 1D& Reason for Photo ' 1 By _________ Ro1 # 7'93 Frame' # ,'9 I *.' ' .- - . *c *\ I '' . *. , * " . ... *l; .; . '' N 1 * ' ' * ' '" ), q . L *" ' r 'I . I ' , * I ", * _; . ':. -* - - ! .) f' '' . . * 'i; . ,- , . F) .* :-- .' *, 'I 1 - . '.. ' t; , çv ' . ,* I i * #' *. '3 "' i * '- *1 '4 *' ,:- - a 4 t ' - * ', % & ; 1 ¶ * :' *.' ,. : -A r ;v ' :" - .r " 'a - -" -; & ' * - * - - ) : S , ,,, --- S *J %I *' * S .. c .* - Z '- .- '- .., ' . -" ' I * . * ' * S- * , * - 4 .- a * , . V . ,. * i .-- 4. * -Y * / -, *. .' *' ,t r A. _-. *, , *' ** l. . * '' .4 "1 j. ' 1. - ' ' * 4 I - . * - - , _% * I-. , 4 .r- ( J -: '- , *, ' v - I 9 , ' , 1 ** , . * -"J * -" I * - c-- . ;- . '--- - A ... * ' ' - * 'A r? -: * '; ' ' - ' .: 1', - '. *, , .. I ,, *,, . * .t 1- ) ' , ** J' * *I :* : - - I j-- - - * I- , -j -. -** :- * * . *' ' _, 9 ;* 3 . . -. . 5 4 - 9. - .** -.* . - *- .c .- * -. :. .- - - - 4, N 9 - * 9 t * - - 4 2

68

Sampling system and method  

DOE Patents (OSTI)

The present disclosure provides an apparatus and method for coupling conduit segments together. A first pump obtains a sample and transmits it through a first conduit to a reservoir accessible by a second pump. The second pump further conducts the sample from the reservoir through a second conduit.

Decker, David L.; Lyles, Brad F.; Purcell, Richard G.; Hershey, Ronald Lee

2013-04-16T23:59:59.000Z

69

2003 CBECS Sample Design  

U.S. Energy Information Administration (EIA) Indexed Site

Technical Information > Sample Design Technical Information > Sample Design How the Survey Was Conducted 2003 Commercial Buildings Energy Consumption Survey: Sample Design Introduction The Commercial Buildings Energy Consumption Survey (CBECS) is conducted quadrennially by the Energy Information Administration (EIA) to provide basic statistical information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings. The survey is based upon a sample of commercial buildings selected according to the sample design requirements described below. A “building,” as opposed to an “establishment,” is the basic unit of analysis for the CBECS because the building is the energy-consuming unit. The 2003 CBECS was the eighth survey conducted since 1979

70

Biological sample collector  

DOE Patents (OSTI)

A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

Murphy, Gloria A. (French Camp, CA)

2010-09-07T23:59:59.000Z

71

Sample push out fixture  

DOE Patents (OSTI)

This invention generally relates to the remote removal of pelletized samples from cylindrical containment capsules. V-blocks are used to receive the samples and provide guidance to push out rods. Stainless steel liners fit into the v-channels on the v-blocks which permits them to be remotely removed and replaced or cleaned to prevent cross contamination between capsules and samples. A capsule holder securely holds the capsule while allowing manual up/down and in/out movement to align each sample hole with the v-blocks. Both end sections contain identical v-blocks; one that guides the drive out screw and rods or manual push out rods and the other to receive the samples as they are driven out of the capsule.

Biernat, John L.

2000-02-22T23:59:59.000Z

72

Sample Changes and Issues  

U.S. Energy Information Administration (EIA) Indexed Site

Sample and Model Issues Sample and Model Issues Summary Our comprehensive review of the EIA 914 has confirmed that discrepancies can arise between estimates for December of one year and January of the next. These are most evident for Texas estimates between December 2008 and January 2009. Reports now available from HPDI show that production for all the companies we sampled in both 2008 and 2009 rose by about 60 million cubic feet per day (MMcf/d) in January and that total production in Texas rose by a similar amount. Our estimate was a decrease of 360 MMcf/d. Why the difference? Computationally, EIA-914 estimates depend on two factors: * Reports from the companies in the survey sample * An expansion factor to estimate total production from the sample's reported

73

PARS II TRAINING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Viewing and Reporting 1 Viewing and Reporting Training Workbook V1.0 Department of Energy May 10, 2010 May 10, 2010 PARS II 101 Viewing and Reporting V1.0 ii May 10, 2010 PARS II 101 Viewing and Reporting V1.0 iii Table of Contents OVERSIGHT and ASSESSMENT ........................................................................................................ 1 Exercise 1 Find and View a Project ............................................................................................. 1 Sort the Project List ................................................................................................................. 3 Select a Project ....................................................................................................................... 3

74

September 2004 Water Sampling  

Office of Legacy Management (LM)

was not identified at many groundwater locations. 18. Was the presence or absence of ice in the cooler documented at every sample location? Yes 19. Were water levels measured...

75

Computer Science Sample Occupations  

E-Print Network (OSTI)

Computer Science Sample Occupations COMPUTER OPERATIONS Computer Hardware/ Software Engineer Computer Operator Database Manager/ Administrator Data Entry Operator Operations Manager DESIGN & MANUFACTURING, ENGINEERING Coder CAD Computer Applications Engineers Computer Research Scientist Computer

Ronquist, Fredrik

76

SAMPLING AND ANALYSIS PROTOCOLS  

SciTech Connect

Radiological sampling and analyses are performed to collect data for a variety of specific reasons covering a wide range of projects. These activities include: Effluent monitoring; Environmental surveillance; Emergency response; Routine ambient monitoring; Background assessments; Nuclear license termination; Remediation; Deactivation and decommissioning (D&D); and Waste management. In this chapter, effluent monitoring and environmental surveillance programs at nuclear operating facilities and radiological sampling and analysis plans for remediation and D&D activities will be discussed.

Jannik, T; P Fledderman, P

2007-02-09T23:59:59.000Z

77

Liquid sampling system  

DOE Patents (OSTI)

A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

Larson, Loren L. (Idaho Falls, ID)

1987-01-01T23:59:59.000Z

78

Liquid sampling system  

DOE Patents (OSTI)

A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

Larson, L.L.

1984-09-17T23:59:59.000Z

79

NIST STARR II  

Science Conference Proceedings (OSTI)

... on board, a calibrated reference reflector, called a solar diffuser, is ... efficiently coupled to a monochromator, the tunable source power in STARR II ...

2012-11-14T23:59:59.000Z

80

Fluid sampling system  

DOE Patents (OSTI)

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

Houck, Edward D. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fluid sampling system  

DOE Patents (OSTI)

This invention comprises a fluid sampling system which allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped up into a sampling jet of venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decrease, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodicially leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

Houck, E.D.

1993-12-31T23:59:59.000Z

82

Fluid sampling system  

DOE Patents (OSTI)

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

Houck, E.D.

1994-10-11T23:59:59.000Z

83

Viscous sludge sample collector  

DOE Patents (OSTI)

A vertical core sample collection system for viscous sludge. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

Beitel, George A. (Richland, WA)

1983-01-01T23:59:59.000Z

84

PARS II FAQ  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

V1.4.1 (June 25, 2011) 1 V1.4.1 (June 25, 2011) 1 PARS II Project Assessment and Reporting System Frequently Asked Questions (Click on a Question to go to Its Answer) General PARS II Project Information Q: What is the motivation, purpose and expected benefit from the PARS II system? Q: Where can I go to find out information on PARS II? Accessing and Using PARS II Q: Where can I go to access PARS II? Q: How do I obtain a PARS II User ID and Password? Q: PARS II will not allow me to log-in, it just keeps displaying the login window for User ID and Password. What should I do? Q: Upon log-in, I do not see a list of my projects. What should I do? Q: I am a FPD tracking a project and it does not appear on my project list. What should I do? Q: Upon log-in, I receive a white screen. What should I do?

85

Portable Automated Mesonet II  

Science Conference Proceedings (OSTI)

The Portable Automated Mesonet II (PAM II) system was developed by NCAR to provide surface mesoscale data for the research needs of the atmospheric science community. The PAM system has 60 remote stations with planned growth to 300. In such a ...

Fred V. Brock; George H. Saum; Steven R. Semmer

1986-12-01T23:59:59.000Z

86

PARS II Extraction Utility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extraction Utility PARS II Extraction Utility PARS II Extraction Utility v8020130510.zip More Documents & Publications PARS II Extraction Utility Release Notes PARS II CPP...

87

ANNULAR IMPACTOR SAMPLING DEVICE  

DOE Patents (OSTI)

A high-rate air sampler capable of sampling alphaemitting particles as small as 0.5 microns is described. The device is a cylindrical shaped cup that fits in front of a suction tube and which has sticky grease coating along its base. Suction forces contaminated air against the periodically monitored particle absorbing grease.

Tait, G.W.C.

1959-03-31T23:59:59.000Z

88

SUPPORTING INFORMATION Sample list names  

E-Print Network (OSTI)

Blanca (Brazil); Bacardi Carta de Oro (Brazil); Bacardi Premium Black (Brazil); Bacardi 1873 Solera Old Reserve (France); Selecto (Venezuela); Soccaron (France); XK Solera (Mexico). #12;ii Table 1

Ferreira, Márcia M. C.

89

NSLS-II Project Pages  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Project Pages Project Management Team Project Schedule Integrated Project Team (IPT) Monthly Status Meetings Advisory Committees Project Reviews Documents NSLS-II...

90

ITOUGH2 sample problems  

DOE Green Energy (OSTI)

This report contains a collection of ITOUGH2 sample problems. It complements the ITOUGH2 User`s Guide [Finsterle, 1997a], and the ITOUGH2 Command Reference [Finsterle, 1997b]. ITOUGH2 is a program for parameter estimation, sensitivity analysis, and uncertainty propagation analysis. It is based on the TOUGH2 simulator for non-isothermal multiphase flow in fractured and porous media [Preuss, 1987, 1991a]. The report ITOUGH2 User`s Guide [Finsterle, 1997a] describes the inverse modeling framework and provides the theoretical background. The report ITOUGH2 Command Reference [Finsterle, 1997b] contains the syntax of all ITOUGH2 commands. This report describes a variety of sample problems solved by ITOUGH2. Table 1.1 contains a short description of the seven sample problems discussed in this report. The TOUGH2 equation-of-state (EOS) module that needs to be linked to ITOUGH2 is also indicated. Each sample problem focuses on a few selected issues shown in Table 1.2. ITOUGH2 input features and the usage of program options are described. Furthermore, interpretations of selected inverse modeling results are given. Problem 1 is a multipart tutorial, describing basic ITOUGH2 input files for the main ITOUGH2 application modes; no interpretation of results is given. Problem 2 focuses on non-uniqueness, residual analysis, and correlation structure. Problem 3 illustrates a variety of parameter and observation types, and describes parameter selection strategies. Problem 4 compares the performance of minimization algorithms and discusses model identification. Problem 5 explains how to set up a combined inversion of steady-state and transient data. Problem 6 provides a detailed residual and error analysis. Finally, Problem 7 illustrates how the estimation of model-related parameters may help compensate for errors in that model.

Finsterle, S.

1997-11-01T23:59:59.000Z

91

Multi-AUV control and adaptive sampling  

E-Print Network (OSTI)

Abstract Multi-AUV operations have much to offer a variety of underwater applications. With sensors to measure the environment and coordination that is appropriate to critical spatial and temporal scales, the group can perform important tasks such as adaptive ocean sampling. We describe a methodology for cooperative control of multiple vehicles based on virtual bodies and artificial potentials (VBAP). This methodology allows for adaptable formation control and can be used for missions such as gradient climbing and feature tracking in an uncertain environment. We discuss our implementation on a fleet of autonomous underwater gliders and present results from sea trials in Monterey Bay in August 2003. These at-sea demonstrations were performed as part of the Autonomous Ocean Sampling Network (AOSN) II project.

Monterey Bay; Edward Fiorelli; Naomi Ehrich Leonard; Pradeep Bhatta; Derek Paley; Ralf Bachmayer

2004-01-01T23:59:59.000Z

92

PARS II User Guide  

Energy.gov (U.S. Department of Energy (DOE))

This document serves as a reference manual to assist DOE end-users in performing their respective functions within the PARS II web application. The document provides a description and How To for...

93

NSLS II: Authentication Required  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Pages Login Access to this area of the NSLS-II website requires a valid username and password. Username: Password: Next > Last Modified: April 2, 2013 Please forward all...

94

NID Copper Sample Analysis  

SciTech Connect

The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). This experiment requires the use of germanium isotopically enriched in 76Ge. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology, possibly one under development at Nonlinear Ion Dynamics (NID), will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL in January 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are reported here. A second sample of isotopically separated copper was provided by NID to PNNL in August 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are also reported here.

Kouzes, Richard T.; Zhu, Zihua

2011-09-12T23:59:59.000Z

95

NID Copper Sample Analysis  

Science Conference Proceedings (OSTI)

The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). This experiment requires the use of germanium isotopically enriched in 76Ge. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

Kouzes, Richard T.; Zhu, Zihua

2011-02-01T23:59:59.000Z

96

Fluid sampling apparatus and method  

DOE Patents (OSTI)

Incorporation of a bellows in a sampling syringe eliminates ingress of contaminants, permits replication of amounts and compression of multiple sample injections, and enables remote sampling for off-site analysis.

Yeamans, David R. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

97

Decoupled Sampling for Graphics Pipelines  

E-Print Network (OSTI)

We propose a generalized approach to decoupling shading from visibility sampling in graphics pipelines, which we call decoupled sampling. Decoupled sampling enables stochastic supersampling of motion and defocus blur at ...

Ragan-Kelley, Jonathan Millar

98

Groundwater Sampling | Open Energy Information  

Open Energy Info (EERE)

Groundwater Sampling Groundwater Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Groundwater Sampling Details Activities (3) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Water Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids. Determination of mixing ratios between different fluid end-members. Determination of fluid recharge rates and residence times. Thermal: Water temperature. Dictionary.png Groundwater Sampling: Groundwater sampling is done to characterize the chemical, thermal, or hydrological properties of subsurface aqueous systems. Groundwater sampling

99

Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Water Sampling Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Water Sampling Details Activities (51) Areas (45) Regions (5) NEPA(2) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids Thermal: Water temperature Dictionary.png Water Sampling: Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Other definitions:Wikipedia Reegle Introduction Water sampling is done to characterize the geothermal system under investigation. A geothermal water typically has a unique chemical signature

100

TRU Waste Sampling Program: Volume I. Waste characterization  

DOE Green Energy (OSTI)

Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies.

Clements, T.L. Jr.; Kudera, D.E.

1985-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sample holder with optical features  

DOE Patents (OSTI)

A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

Milas, Mirko; Zhu, Yimei; Rameau, Jonathan David

2013-07-30T23:59:59.000Z

102

Guidelines Volume II  

Gasoline and Diesel Fuel Update (EIA)

II II Sector-Specific Issues and Reporting Methodologies Supporting the General Guidelines for the Voluntary Reporting of Greenhouse Gases under Section 1605(b) of the Energy Policy Act of 1992 Part 4: Transportation Sector Part 5: Forestry Sector Part 6: Agricultural Sector Transportation Sector-Page 4.iii Contents of Volume II This volume, the second of two such volumes, contains sector-specific guidance in support of the General Guidelines for the voluntary reporting of greenhouse gas emissions and carbon sequestration. This voluntary reporting program was authorized by Congress in Section 1605(b) of the Energy Policy Act of 1992. The General Guidelines, bound separately from this volume, provide the overall rationale for the program, discuss in general how to analyze emissions and emission reduction/carbon sequestration projects, and

103

PARS II | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operational Management » Information Systems » PARS II Operational Management » Information Systems » PARS II PARS II Welcome to PARS II PARS II is the Department's official "System of Record" for capital asset project performance information. Because PARS II uses the same data as maintained in our contractors' project management systems, everyone from the Federal Project Director's staff to the Secretary of Energy will have easy access to the same data. The PARS II software application is managed by the MA Office of Engineering and Construction Management and is used by federal and contractor personnel across the nation to record and track the progress of major construction and environmental cleanup projects. Questions or comments about PARS II should be directed to the PARS II Help Desk via email at i-Manage.eas@hq.doe.gov or by calling 301-903-2500

104

Sampling streaming data with replacement  

Science Conference Proceedings (OSTI)

Simple random sampling is a widely accepted basis for estimation from a population. When data come as a stream, the total population size continuously grows and only one pass through the data is possible. Reservoir sampling is a method of maintaining ... Keywords: Data stream mining, Random sampling with replacement, Reservoir sampling

Byung-Hoon Park; George Ostrouchov; Nagiza F. Samatova

2007-10-01T23:59:59.000Z

105

Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Sampling Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Sampling Details Activities (7) Areas (7) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Gas composition and source of fluids. Thermal: Anomalous flux is associated with active hydrothermal activity. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Gas Sampling: Gas sampling is done to characterize the chemical, thermal, and hydrological properties of a surface or subsurface hydrothermal system.

106

Synchrophasor Technologies Page ii  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 2013 August 2013 Synchrophasor Technologies Page ii Table of Contents 1. Introduction ................................................................................................................... 1 2. Synchrophasor Technologies .......................................................................................... 1 3. Advanced Applications Software and their Benefits ........................................................ 4 3.1 Online (Near Real-Time Applications) ........................................................................... 5 3.2 Offline (Not real-time) Applications ............................................................................. 8 4. Recovery Act Synchrophasor Projects ............................................................................. 8

107

PARS II Training Schedule  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 4 5 6 7 8 WEEK 3 11 12 13 14 15 WEEK 4 18 19 20 21 22 WEEK 5 25 26 27 28 PARS II Training Schedule FEBRUARY 2013 Webinar PARS 102: Session A) 10:00 - 12:00 1 Hour Break...

108

Asotin Creek ISCO Water Sample Data Summary: Water Year 2002, Annual Report 2001-2002.  

DOE Green Energy (OSTI)

The Pomeroy Ranger District operates 3 automated water samplers (ISCOs) in the Asotin Creek drainage in cooperation with the Asotin Model Watershed. The samplers are located on Asotin Creek: Asotin Creek at the mouth, Asotin Creek at Koch site, and South Fork Asotin Creek above the forks. At the end of Water Year (WY) 2001 we decided to sample from Oct. 1 through June 30 of each water year. This decision was based on the difficulty of obtaining good low flow samples, since the shallow depth of water often meant that instrument intakes were on the bed of the river and samples were contaminated with bed sediments. The greatest portion of suspended sediment is transported during the higher flows of fall and especially during the spring snow runoff period, and sampling the shorter season should allow characterization of the sediment load of the river. The ISCO water samplers collected a daily composite sample of 4 samples per day into one bottle at 6-hour intervals until late March when they were reprogrammed to collect 3 samples per day at 8-hour intervals. This was done to reduce battery use since battery failure had become an ongoing problem. The water is picked up on 24-day cycles and brought to the Forest Service Water Lab in Pendleton, OR. The samples are analyzed for total suspended solids (TSS), conductivity, and turbidity. A total dissolved solids value is estimated based on conductivity. The USGS gage, Asotin Creek at the mouth, No.13335050 has been discontinued and there are no discharge records available for this period.

Peterson, Stacia

2003-08-01T23:59:59.000Z

109

Sampling Distribution of the Time between Effectively Independent Samples  

Science Conference Proceedings (OSTI)

The sampling distribution of the estimate of the time between effectively independent samples, T0, is investigated using Monte-Carlo techniques. It is found to be asymptotically unbiased and normally distributed. Agreement between empirical ...

Daniel Wilks

1987-03-01T23:59:59.000Z

110

Giant Protease TPP II's Structure, Mechanism Uncovered  

NLE Websites -- All DOE Office Websites (Extended Search)

Giant Protease TPP II's Structure, Mechanism Uncovered Print Tripeptidyl peptidase II (TPP II), the largest known eukaryotic enzyme that breaks down proteins (a protease), is...

111

Giant Protease TPP II's Structure, Mechanism Uncovered  

NLE Websites -- All DOE Office Websites (Extended Search)

Giant Protease TPP II's Structure, Mechanism Uncovered Giant Protease TPP II's Structure, Mechanism Uncovered Print Wednesday, 23 February 2011 00:00 Tripeptidyl peptidase II (TPP...

112

PARS II Software Release Notes  

Energy.gov (U.S. Department of Energy (DOE))

New and improved functionality was released in Version 8.0.20120308 of PARS II. This release offers PARS II Users a significant number of enhancements across all facets of the application. These...

113

Cloud Computing Forum & Workshop II  

Science Conference Proceedings (OSTI)

Cloud Computing Forum & Workshop II. Purpose: On May 20, 2010, NIST hosted the first Cloud Computing Forum & Workshop. ...

2013-08-07T23:59:59.000Z

114

Part II Energy Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

II. Energy Storage Technology Overview * Instructor - Haresh Kamath, EPRI PEAC * Short term - Flywheels, Cranking Batteries, Electrochemical Capacitors, SMES * Long term -...

115

Sampling Characteristics of Satellite Orbits  

Science Conference Proceedings (OSTI)

The irregular space-time sampling of any finite region by an orbiting satellite raises difficult questions as to which frequencies and wavenumbers can be determined and which will alias into others. Conventional sampling theorems must be extended ...

Carl Wunsch

1989-12-01T23:59:59.000Z

116

Flux Measurement with Conditional Sampling  

Science Conference Proceedings (OSTI)

A method is proposed to measure scalar fluxes using conditional sampling. Only the mean concentrations of updraft and downdraft samples, the standard deviation of the vertical velocity, and a coefficient of proportionality, b, need to be known. ...

Joost A. Businger; Steven P. Oncley

1990-04-01T23:59:59.000Z

117

Sampling Errors in Seasonal Forecasting  

Science Conference Proceedings (OSTI)

The limited numbers of start dates and ensemble sizes in seasonal forecasts lead to sampling errors in predictions. Defining the magnitude of these sampling errors would be useful for end users as well as informing decisions on resource ...

Stephen Cusack; Alberto Arribas

2009-03-01T23:59:59.000Z

118

Sampling Soil - Energy Innovation Portal  

INL has developed a method for sampling soil to determine the presence of extremely fine particles such as asbestos.

119

TRUPACT-II 157 Examination Report  

Science Conference Proceedings (OSTI)

This report presents the results of examination and recovery activities performed on the TRUPACT-II 157 shipping container. The container was part of a contact-handled transuranic waste shipment being transported on a truck to the Waste Isolation Pilot Plant in New Mexico when an accident occurred. Although the transport vehicle sustained only minor damage, airborne transuranic contamination was detected in air samples extracted from inside TRUPACT-II 157 at the Waste Isolation Pilot Plant. Consequently, the shipping container was rejected, resealed, and returned to the Idaho National Engineering and Environmental Laboratory where the payload was disassembled, examined, and recovered for subsequent reshipment to the Waste Isolation Pilot Plant. This report documents the results of those activities.

Barry H. O'Brien; Jeffrey M. Lacy; Kip E. Archibald

2003-12-01T23:59:59.000Z

120

RHIC II Science Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Working Groups and Convenors Working Groups and Convenors The purpose of these Working Groups is to provide an organized way for the community to refine the science agenda for the RHIC II upgrades, and make a compelling case for these upgrades to the broad nuclear physics community. A document summarizing the Working Group results, with a sharp focus on the science case for RHIC II, will be produced early in 2006. Electromagnetic Probes Convenors: Ralf Rapp, Zhangbu Xu, Gabor David Email list info Website Heavy Flavor Convenors: Ramona Vogt, Thomas Ullrich, Tony Frawley Email list info Website High pT Convenors: Denes Molnar, Saskia Mioduszewski, Kirill Filimonov Internal working group web page Email list info Equation of State Convenors: Steffen Bass, Julia Velkovska, Helen Caines Email list info

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NSLS II: Life Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological and Medical Imaging Biological and Medical Imaging Overview The high brightness of NSLS-II will make it possible to tightly focus the beam to create very intense nanoprobes for high-resolution cellular imaging and sensitive trace element mapping in biological specimens. The brightness will also provide highly collimated beams of high intensity and large transverse dimensions for novel forms of medical imaging and tomography. NSLS-II will also provide the broadest range of wavelengths to users in a single facility, extending from hard X-rays to the far-infrared and enabling a wide array of analytical techniques, including: X-ray microscopy (hard and soft; scanning and full-field), diffraction imaging, X-ray tomography, X-ray microprobe, diffraction-enhanced imaging (DEI), and infrared imaging. These diverse imaging tools will span the resolution scale from nanometers to millimeters, allowing non-destructive analysis of biological subjects ranging from sub-cellular structures to humans.

122

Soil Sampling | Open Energy Information  

Open Energy Info (EERE)

Soil Sampling Soil Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Soil Sampling Details Activities (10) Areas (9) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Can reveal relatively high permeability zones Hydrological: Thermal: Used to locate active hydrothermal systems Dictionary.png Soil Sampling: Soil sampling is a method that can be used for exploration of geothermal resources that lack obvious surface manifestations. Soils that are above or adjacent to a "hidden" hydrothermal system will have a unique chemistry that can be indicative of a hydrothermal system at depth and a zone of

123

Sample Environment | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home › Instruments › SNS › Sample Environment Home › Instruments › SNS › Sample Environment Sample Environment The Sample Environment Group provides equipment and support for studying materials under controlled conditions (temperature, pressure, magnetic field, chemical environment, etc.). When you come to SNS to conduct an experiment, our front-line teams are there to support you. Although we currently offer a wide range of capabilities, we realize that these capabilities must continually grow. Therefore, we also have a busy research and development team, and we encourage you to partner with them to develop new equipment and techniques. The Sample Environment Equipment Database allows you to search for information about the sample environment equipment available for HFIR and SNS instruments. It will be available in the near future for SNS sample

124

Rock Sampling | Open Energy Information  

Open Energy Info (EERE)

Rock Sampling Rock Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Sampling Details Activities (13) Areas (13) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Stratigraphic/Structural: Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting. Hydrological: Isotope geochemistry can reveal fluid circulation of a geothermal system.

125

Sample page | Open Energy Information  

Open Energy Info (EERE)

Sample page Sample page Jump to: navigation, search This page has been rated 13[1][2] on the scale of awesomness. This page is awesome! The above text is generated by the SampleTemplate. Try editing it and changing the level of awesomeness to see the template react. Hint: It says something different depending on whether or not the page is at least 5 awesome. This page is related to the following topics[3][4]: References Sample pages Help pages Additional Info Name Sample page Awesomeness 13 Topics (raw) References; Sample pages; Help pages; References ↑ Francis C. Monastero. 2002. An overview of industry-military cooperation in the development of power operations at the Coso geothermal field in southern California. GRC Bulletin. . ↑ EPRI. 12/12/2012. Assessment and Mapping of the Riverine

126

Acceptance sampling using judgmental and randomly selected samples  

SciTech Connect

We present a Bayesian model for acceptance sampling where the population consists of two groups, each with different levels of risk of containing unacceptable items. Expert opinion, or judgment, may be required to distinguish between the high and low-risk groups. Hence, high-risk items are likely to be identifed (and sampled) using expert judgment, while the remaining low-risk items are sampled randomly. We focus on the situation where all observed samples must be acceptable. Consequently, the objective of the statistical inference is to quantify the probability that a large percentage of the unsampled items in the population are also acceptable. We demonstrate that traditional (frequentist) acceptance sampling and simpler Bayesian formulations of the problem are essentially special cases of the proposed model. We explore the properties of the model in detail, and discuss the conditions necessary to ensure that required samples sizes are non-decreasing function of the population size. The method is applicable to a variety of acceptance sampling problems, and, in particular, to environmental sampling where the objective is to demonstrate the safety of reoccupying a remediated facility that has been contaminated with a lethal agent.

Sego, Landon H.; Shulman, Stanley A.; Anderson, Kevin K.; Wilson, John E.; Pulsipher, Brent A.; Sieber, W. Karl

2010-09-01T23:59:59.000Z

127

WHAM Observations of H?, [S II], and [N II] toward the Orion and Perseus Arms: Probing the Physical Conditions of the Warm Ionized Medium  

E-Print Network (OSTI)

A large portion of the Galaxy (? = 123 ? to 164 ? , b = ?6 ? to ?35 ?), which samples regions of the Local (Orion) spiral arm and the more distant Perseus arm, has been mapped with the Wisconsin H-Alpha Mapper (WHAM) in the [S II] ?6716 and [N II] ?6583 lines. By comparing these data with the maps from the WHAM H? Sky Survey, we begin an investigation of the global physical properties of the Warm Ionized Medium (WIM) in the Galaxy. Several trends noticed in emission-line investigations of diffuse gas in other galaxies are confirmed in the Milky Way and extended to much fainter emission. We find that the [S II]/H? and [N II]/H? ratios increase as absolute H? intensities decrease. For the more distant Perseus arm emission, the increase in these ratios is a strong function of Galactic latitude, b, and thus, of height, z, above the Galactic plane, while the [S II]/[N II] ratio is relatively independent of H? intensity. Scatter in this ratio appears to be physically significant, and maps of [S II]/[N II] suggest regions with similar ratios are spatially correlated. The Perseus arm [S II]/[N II] ratio is systematically lower than Local emission by 10%20%. With [S II]/[N II] fairly constant over a large range of H? intensities, the increase of [S II]/H? and [N II]/H? with |z | seems to reflect an increase in temperature. Such an interpretation allows us to estimate the temperature and ionization conditions in our large sample of observations. We find that WIM temperatures range from 6,000 K to 9,000 K with temperature increasing from bright to faint H? emission (low to high [S II]/H? and [N II]/H?) respectively. Changes in [S II]/[N II] appear to reflect changes in the local ionization conditions (e.g. the S + /S ++ ratio). We also measure the electron scale height in the Perseus arm to be 1.0 0.1 kpc, confirming earlier, less accurate determinations.

L. M. Haffner; R. J. Reynolds; S. L. Tufte

1999-01-01T23:59:59.000Z

128

Sample  

Science Conference Proceedings (OSTI)

... deficits by gouging California energy consumers, must ... to state of the art information technology. ... Industry and organization specific knowledge is ...

2010-03-22T23:59:59.000Z

129

An Autonomously Recording Inverted Echo Sounder: ARIES II  

Science Conference Proceedings (OSTI)

A self-contained instrument, the Autonomously Recording Inverted Echo Sounder (ARIES II), carrying two 250-kHz beam side-scan sonars and with the capacity to record sonar data sampled at 3.2 kHz for 168 h with the sonars operating with a pulse ...

S. A. Thorpe; M. J. Ulloa; D. Baldwin; A. J. Hall

1998-12-01T23:59:59.000Z

130

Sample State and Local Ballots  

Science Conference Proceedings (OSTI)

Sample State and Local Ballots. ... We thank the election officials who have contributed to this effort. State, County/Municipality, Ballot, Election, Date, ...

2010-10-05T23:59:59.000Z

131

IWTU Process Sample Analysis Report  

SciTech Connect

CH2M-WG Idaho (CWI) requested that Battelle Energy Alliance (BEA) analyze various samples collected during June August 2012 at the Integrated Waste Treatment Facility (IWTU). Samples of IWTU process materials were collected from various locations in the process. None of these samples were radioactive. These samples were collected and analyzed to provide more understanding of the compositions of various materials in the process during the time of the process shutdown that occurred on June 16, 2012, while the IWTU was in the process of nonradioactive startup.

Nick Soelberg

2013-04-01T23:59:59.000Z

132

Homeowner Soil Sample Information Form  

E-Print Network (OSTI)

Homeowners should submit this form with their soil samples when requesting a soil test from the Texas A&M Soil Testing Laboratory.

Provin, Tony

2007-04-11T23:59:59.000Z

133

HAP sampling at Tidd PFBC  

SciTech Connect

The objective of this project was to sample process streams of the Tidd PFBC plant and to characterize the HAPs associated with those various process streams. The data are comparable to HAP data collected by DOE and EPRI studies at conventional coal-fired utility plants. Twelve sampling locations throughout Tidd PFBC plant were selected to characterize the HAPs in the plant cycle. Sampling was conducted at the input and output of the combustor, before and after the hot gas clean-up (HGCU) and before and after the electrostatic precipitator (ESP). Seven solid process streams were sampled including coal and sorbent to the PFBC unit and ash from the PFBC bed and ash collection devices. Service water which is mixed with the coal to make coal paste was the only liquid process stream sampled. The four gas stream samples collected were the inlets and outlets of the HGCU and ESP. Lists are presented for field sampling requirements for gas streams; coal sorbent, and service water; and ash samples. Lists of elements and compounds (inorganic, organic, and radioactive) are also included. The samples have been collected and are being analyzed.

Mudd, M.J.; Dal Porto, P.A.

1994-10-01T23:59:59.000Z

134

_Part II - Contract Clauses  

National Nuclear Security Administration (NNSA)

M515 dated 9/9/13 M515 dated 9/9/13 Contract DE-AC04-94AL85000 Modification No. M202 Part II - Contract Clauses Section I TABLE OF CONTENTS 1. FAR 52.202-1 DEFINITIONS (JAN 2012) (REPLACED M473) ............................................................... 8 2. FAR 52.203-3 GRATUITIES (APR 1984)..................................................................................................... 8 3. FAR 52.203-5 COVENANT AGAINST CONTINGENT FEES (APR 1984) ............................................. 9 4. FAR 52.203-6 RESTRICTIONS ON SUBCONTRACTOR SALES TO THE GOVERNMENT (SEP 2006) (REPLACED M264) ............................................................................................................................ 10 5. FAR 52.203-7 ANTI-KICKBACK PROCEDURES (OCT 2010) (REPLACED M443) ......................... 10

135

PADD IV PADD II lakes PADD V - PADD II - inland  

U.S. Energy Information Administration (EIA)

228 U.S. Energy Information Administration Annual Energy Outlook 2013 Regional maps Source Maritime Canada Caribbean PADD V - other PADD II lakes PADD V -

136

Walla Walla River Basin Fish Screen Evaluations, 2003: Nursery Bridge Fishway and Garden City-Lowden II  

DOE Green Energy (OSTI)

The Pacific Northwest National Laboratory (PNNL) evaluated the fish screens at the Nursery Bridge Fishway and at the newly constructed Garden City-Lowden II site west of Walla Walla, Washington in the Walla Walla River Basin during the spring and summer of 2003. Both fish screen facilities were examined to determine if they were being effectively operated and maintained to provide for safe fish passage. At the Nursery Bridge Fishway, the screens were evaluated specifically to determine whether the louvers that aid in controlling water flow from behind the screens could be adjusted so that the screens would meet fish protection criteria. Data were collected to determine whether velocities in front of the screens and in the bypasses met current National Oceanic and Atmospheric Administration Fisheries ((NOAA Fisheries), formerly National Marine Fisheries Service (NMFS)) criteria to promote safe and timely fish passage before and after changing the louver settings. Rock weirs downstream of the dam were also evaluated to determine whether they might impede upstream migration of juvenile salmonids during low flow conditions. At the Garden City-Lowden II site, data were collected to establish a baseline for operating conditions and to determine whether any changes in the baffle settings were needed. Based on the results of our studies in 2003, we concluded: Nursery Bridge Site: (1) 68% of the initial velocity measurements on the west screen exceeded the NOAA Fisheries criteria of 0.4 ft/s for approach velocity; (2) A simple adjustment of the existing louvers was not sufficient to fix the problem; (3) The sediment and debris load in the river upstream of the screens exceeded the design criteria for the site, which had frequent breakdowns in the screen cleaning systems; and (4) The rock weirs downstream of the dam would not be expected to impede upstream movement of juvenile fish during low flow conditions. Garden City-Lowden II: (1) The flat inclined-plate screen design appeared to be efficiently protecting juvenile fish from entrainment, impingement and migration delay; (2) Approach velocities met the NMFS criteria of less than 0.4 ft/s in June, and no change in baffle settings was needed; (3) Sweep velocities were generally lower than approach velocities and did not increase toward the downstream end of the site; and (4) The automated cleaning system at the Garden City-Lowden II site works adequately when sediment loads are low, though its effectiveness at cleaning the screens decreases as sediment and debris loads and algal growth increase.

Vucelick, Jessica A.; McMichael, Geoffrey A.

2003-11-01T23:59:59.000Z

137

WHAM Observations of $H-\\alpha$, [S II], and [N II] toward the Orion and Perseus Arms Probing the Physical Conditions of the Warm Ionized Medium  

E-Print Network (OSTI)

A large portion of the Galaxy (l = 123 deg to 164 deg, b = -6 deg to -35 deg), which samples regions of the Local (Orion) spiral arm and the more distant Perseus arm, has been mapped with the Wisconsin H-Alpha Mapper (WHAM) in the H-Alpha, [S II] 6716, and [N II] 6583 lines. Several trends noticed in emission-line investigations of diffuse gas in other galaxies are confirmed in the Milky Way and extended to much fainter emission. We find that the [S II]/H-Alpha and [N II]/H-Alpha ratios increase as absolute H-Alpha intensities decrease. For the more distant Perseus arm emission, the increase in these ratios is a strong function of Galactic latitude and thus, of height above the Galactic plane. The [S II]/[N II] ratio is relatively independent of H-Alpha intensity. Scatter in this ratio appears to be physically significant, and maps of it suggest regions with similar ratios are spatially correlated. The Perseus arm [S II]/[N II] ratio is systematically lower than Local emission by 10%--20%. With [S II]/[N II] ...

Haffner, L M; Tufte, S L

1999-01-01T23:59:59.000Z

138

PNE WIND USA II  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PNE WIND USA II PNE WIND USA II 1 PNE Wind USA Tribal Energy Partnerships Cherokee & Chilocco Wind Parks Buchholz wind farm, Germany André De Rosa Managing Director Andre.DeRosa@PNEWind.com p. (312) 919-8042 Hot Springs NP M is s i s s i ppi M iss is s i pp i Mis si ss ip p i M ississippi M iss iss ippi M i ss i ss i pp i M is s issippi Missis sip pi M i s s is s ip p i Bonny State Park Bonny State Park Buffalo River State Park Buffalo River State Park Caprock Caprock Canyons Canyons State Park State Park Robbers Cave State Park Robbers Cave State Park Clinton State Park Clinton State Park Hillsdale State Park Hillsdale State Park Indian Cave State Park Indian Cave State Park Lake Murray State Park Lake Murray State Park Lake of Lake of the Ozarks the Ozarks St Park St Park Little River State Park Little River State Park Palo Duro

139

Field Sampling | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Field Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Field Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Techniques Information Provided by Technique Lithology: Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Stratigraphic/Structural: Can reveal relatively high permeability zones. Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting.

140

Structural Materials - Irradiation Studies II  

Science Conference Proceedings (OSTI)

Mar 15, 2012 ... Materials and Fuels for the Current and Advanced Nuclear Reactors: Structural Materials - Irradiation Studies II Sponsored by: The Minerals,...

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electron Beam Melting (EBM) II  

Science Conference Proceedings (OSTI)

Oct 19, 2011 ... Additive Manufacturing of Metals: Electron Beam Melting (EBM) II Sponsored by: MS&T Organization Program Organizers: Ian D. Harris, EWI;...

142

Wilton Wind Energy Center II II | Open Energy Information  

Open Energy Info (EERE)

Wilton Wind Energy Center II II Wilton Wind Energy Center II II Facility Wilton Wind Energy Center II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Basin Electric Location Burleigh County ND Coordinates 47.142638°, -100.730567° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.142638,"lon":-100.730567,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

II.1 Itic  

Office of Legacy Management (LM)

i! il i! il II.1 Itic ihl j' ieil - Department of Emrgy \ Washington, DC20585 1 ' . The Honorable Bill. Johnson 30 Church Street Rochester, New York, 14614, Dear Mayor Johnion: I. ,Se$retary of EnergL Hazel.O'Leary has annouqced a .new appro the Department of Energy (DOE) and its communications with' .,support of this initiative, we are pleased to forward ttie e related to the, former Eastman Kodak Research Laboratoryisit jurisdiction that performed work for DOE or its predecesior information is provided for yourinformation, use', and tete \ I DOE's.Formerly Utilized Sites Remedial Action,Prdgram is re identification. of sites used by DOE's predecessor age~ncies, currelt radiological cqndition and, where it has authority, reaiedral action to @et current radiological'protectionlreq

144

MS, II-J  

Office of Legacy Management (LM)

I' ; ,' I' ; ,' Departm&th of Energy 1 MS, II-J Washington. DC 20585 ' . I I The Honorable John Gallagher ,)fl', /',' ' 103 E. Michigan Avenue .i., ,.' Battle Creek, Michigan 49016 _. Dear Mayor Gallagheri d,---, " '/ approachto openness i.n: with the: public. In (FUSRAP)i.is responsible agencies, determining ~author~ity, performing remedial action to cleanup sites to meet current radiological protection requirements.. A conservative set of technical evaluation guidelines is used in these investigations to assure protection of public health,,~safety and then environment. Where.DQE does not,have .authority for proceeding; the available site information is forwarded to the appropriate Federal or State Agency. DOE studied the historical records of the former Oliver Corp. site, and it

145

L I II C  

Office of Legacy Management (LM)

-- -- - L I II C rr u c c c 7 i' :- ' r' ' 7 i ' -- A' t i ()lL.H~ ORAU 89/i-29 Prepared by Oak Ridge Associated Universities Prepared for Division of Facility and Site Decommissioning Projects U.S. Department of Energy VERIFICATION OF REMEDIAL ACTIONS ALBANYRESEARCHCENTER ALBANY, OREGON P. R. C O lTEN Environmental Survey and Site Assessment Program Energy/Environment Systems Division FINAL REPORT OCTOBER 1989 NOTICES Tha opiniona l xprSaaJd harJln do not n acoaa~rlly ranKI thy oplnioru of thJ l ponaorfng lnrtitutiona ot Oak RidgJ AaaociJ:d IJnivaraltiJa. This raport WJJ prsp~rad as an account ot work sponsorad by thJ Unttad Stslaa Govarnmant. Naithar the UnltSd Strtas Govammanl northa U.S. Daplrtmant of Enargy, norJny ofthairamployaa& makac anywarmnty, l xpraaa or impliad, oraaaumas my Iogrl liabillly

146

Gas sampling in the DST  

SciTech Connect

Characterization of the rock-fluid interactions in the DST will play an important role in understanding the performance of waste package materials and radionuclide transport through the altered zone of a repository. Consequently, the chemistry of fluids and gases originating in the pore space of the rock and the changing compositions observed with time and temperature will be targeted for study in the chemistry boreholes of the DST. The chemical holes have been lined with SEAMIST (Science Engineering Associate Membrane In situ Sampling Technology) liners that allow gas and fluid from the pore spaces of the rock walls to be sampled on-site periodically. The concentrations of certain chemical species in the gases and fluids sampled at those locations will then be analyzed back in the laboratory. The baseline sampling of the rock-pore gases (prior to heater turn- on) is described.

DeLoach, L.; Chairappa, M.; Martinelli, R.; Glassley, B.

1998-01-12T23:59:59.000Z

147

Microfluidic Sample Preparation for Immunoassays  

SciTech Connect

Researchers at Lawrence Livermore National Laboratory are developing means to collect and identify fluid-based biological pathogens in the forms of proteins, viruses, and bacteria. to support detection instruments, they are developing a flexible fluidic sample preparation unit. The overall goal of this Microfluidic Module is to input a fluid sample, containing background particulates and potentially target compounds, and deliver a processed sample for detection. They are developing techniques for sample purification, mixing, and filtration that would be useful to many applications including immunologic and nucleic acid assays. Many of these fluidic functions are accomplished with acoustic radiation pressure or dielectrophoresis. They are integrating these technologies into packaged systems with pumps and valves to control fluid flow through the fluidic circuit.

Visuri, S; Benett, W; Bettencourt, K; Chang, J; Fisher, K; Hamilton, J; Krulevitch, P; Park, C; Stockton, C; Tarte, L; Wang, A; Wilson, T

2001-08-09T23:59:59.000Z

148

BWR Fuel Deposit Sample Evaluation  

Science Conference Proceedings (OSTI)

River Bend Nuclear Power Station, a boiling water reactor (BWR) plant, experienced fuel defects during Cycle 11. The failed fuel pins were identified during the subsequent refueling outage. To assist analysis of the fuel failure root cause, crud flake deposit samples were collected for analyses. Results on the morphology and distribution of chemical elements in four tenacious crud flakes that are associated with the fuel failures are reported in EPRI report 1009733, BWR Fuel Deposit Sample EvaluationRiv...

2005-11-29T23:59:59.000Z

149

B-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothness  

E-Print Network (OSTI)

Let $\\xi = \\{x^j\\}_{j=1}^n$ be a grid of $n$ points in the $d$-cube ${\\II}^d:=[0,1]^d$, and $\\Phi = \\{\\phi_j\\}_{j =1}^n$ a family of $n$ functions on ${\\II}^d$. We define the linear sampling algorithm $L_n(\\Phi,\\xi,\\cdot)$ for an approximate recovery of a continuous function $f$ on ${\\II}^d$ from the sampled values $f(x^1), ..., f(x^n)$, by st case error $ \\sup_{f \\in B^\\alpha_{p,\\theta}} \\, \\|f - L_n(\\Phi,\\xi,f)\\|_q$ which coincide with the asymptotic order of $r_n(B^\\alpha_{p,\\theta})_q$ in some cases. A key role in constructing these linear sampling algorithms, plays a quasi-interpolant representation of functions $f \\in B^\\alpha_{p,\\theta}$ by mixed B-spline series.

D?ng, Dinh

2010-01-01T23:59:59.000Z

150

Duplex sampling apparatus and method  

DOE Patents (OSTI)

An improved apparatus is provided for sampling a gaseous mixture and for measuring mixture components. The apparatus includes two sampling containers connected in series serving as a independently determine the amounts of condensable and noncondensable gases in admixture from a single sample. More specifically, a first container includes a first port capable of selectively connecting to and disconnecting from a sample source and a second port capable of selectively connecting to and disconnecting from a second container. A second container also includes a first port capable of selectively connecting to and disconnecting from the second port of the first container and a second port capable of either selectively connecting to and disconnecting from a differential pressure source. By cooling a mixture sample in the first container, the condensable vapors form a liquid, leaving noncondensable gases either as free gases or dissolved In the liquid. The condensed liquid is heated to drive out dissolved noncondensable gases, and all the noncondensable gases are transferred to the second container. Then the first and second containers are separated from one another in order to separately determine the amount of noncondensable gases and the amount of condensable gases in the sample.

Brown, P.E.; Lloyd, R.

1991-01-30T23:59:59.000Z

151

Multi-AUV control and adaptive sampling in Monterey Bay  

E-Print Network (OSTI)

AbstractOperations with multiple autonomous underwater vehicles (AUVs) have a variety of underwater applications. For example, a coordinated group of vehicles with environmental sensors can perform adaptive ocean sampling at the appropriate spatial and temporal scales. We describe a methodology for cooperative control of multiple vehicles based on virtual bodies and artificial potentials (VBAP). This methodology allows for adaptable formation control and can be used for missions such as gradient climbing and feature tracking in an uncertain environment. We discuss our implementation on a fleet of autonomous underwater gliders and present results from sea trials in Monterey Bay in August, 2003. These at-sea demonstrations were performed as part of the Autonomous Ocean Sampling Network (AOSN) II project. Index TermsAdaptive sampling, autonomous underwater vehicles (AUVs), cooperative control, formations, gradient climbing, underwater gliders. I.

Edward Fiorelli; Naomi Ehrich Leonard; Senior Member; Pradeep Bhatta; Derek A. Paley; Student Member; Ralf Bachmayer; David M. Fratantoni

2004-01-01T23:59:59.000Z

152

WHAM Observations of H-Alpha, [S II], and [N II] toward the Orion and Perseus Arms: Probing the Physical Conditions of the Warm Ionized Medium  

E-Print Network (OSTI)

A large portion of the Galaxy (l = 123 deg to 164 deg, b = -6 deg to -35 deg), which samples regions of the Local (Orion) spiral arm and the more distant Perseus arm, has been mapped with the Wisconsin H-Alpha Mapper (WHAM) in the H-Alpha, [S II] 6716, and [N II] 6583 lines. Several trends noticed in emission-line investigations of diffuse gas in other galaxies are confirmed in the Milky Way and extended to much fainter emission. We find that the [S II]/H-Alpha and [N II]/H-Alpha ratios increase as absolute H-Alpha intensities decrease. For the more distant Perseus arm emission, the increase in these ratios is a strong function of Galactic latitude and thus, of height above the Galactic plane. The [S II]/[N II] ratio is relatively independent of H-Alpha intensity. Scatter in this ratio appears to be physically significant, and maps of it suggest regions with similar ratios are spatially correlated. The Perseus arm [S II]/[N II] ratio is systematically lower than Local emission by 10%-20%. With [S II]/[N II] fairly constant over a large range of H-Alpha intensities, the increase of [S II]/H-Alpha and [N II]/H-Alpha with |z| seems to reflect an increase in temperature. Such an interpretation allows us to estimate the temperature and ionization conditions in our large sample of observations. We find that WIM temperatures range from 6,000 K to 9,000 K with temperature increasing from bright to faint H-Alpha emission (low to high [S II]/H-Alpha and [N II]/H-Alpha) respectively. Changes in [S II]/[N II] appear to reflect changes in the local ionization conditions (e.g. the S+/S++ ratio). We also measure the electron scale height in the Perseus arm to be 1.0+/-0.1 kpc, confirming earlier, less accurate determinations.

L. M. Haffner; R. J. Reynolds; S. L. Tufte

1999-04-12T23:59:59.000Z

153

Improved sample size determination for attributes and variables sampling  

Science Conference Proceedings (OSTI)

Earlier INMM papers have addressed the attributes/variables problem and, under conservative/limiting approximations, have reported analytical solutions for the attributes and variables sample sizes. Through computer simulation of this problem, we have calculated attributes and variables sample sizes as a function of falsification, measurement uncertainties, and required detection probability without using approximations. Using realistic assumptions for uncertainty parameters of measurement, the simulation results support the conclusions: (1) previously used conservative approximations can be expensive because they lead to larger sample sizes than needed; and (2) the optimal verification strategy, as well as the falsification strategy, are highly dependent on the underlying uncertainty parameters of the measurement instruments. 1 ref., 3 figs.

Stirpe, D.; Picard, R.R.

1985-01-01T23:59:59.000Z

154

PARS II Course Presentation (Course 103) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentation (Course 103) PARS II Course Presentation (Course 103) PARS103Presentation.zip More Documents & Publications PARS II Training Workbook (Course 103) PARS II PARS II...

155

Outer Sphere Adsorption of Pb(II)EDTA on Goethite  

DOE Green Energy (OSTI)

FTIR and EXAFS spectroscopic measurements were performed on Pb(II)EDTA adsorbed on goethite as functions of pH (4-6), Pb(II)EDTA concentration (0.11 {micro}M - 72 {micro}M), and ionic strength (16 {micro}M - 0.5M). FTIR measurements show no evidence for carboxylate-Fe(III) bonding or protonation of EDTA at Pb:EDTA = 1:1. Both FTIR and EXAFS measurements suggest that EDTA acts as a hexadentate ligand, with all four of its carboxylate and both amine groups bonded to Pb(II). No evidence was observed for inner-sphere Pb(II)-goethite bonding at Pb:EDTA = 1:1. Hence, the adsorbed complexes should have composition Pb(II)EDTA{sup 2{minus}}. Since substantial uptake of PbEDTA(II){sup 2{minus}} occurred in the samples, we infer that Pb(II)EDTA{sup 2{minus}} adsorbed as outer-sphere complexes and/or as complexes that lose part of their solvation shells and hydrogen bond directly to goethite surface sites. We propose the term ''hydration-sphere'' for the latter type of complexes because they should occupy space in the primary hydration spheres of goethite surface functional groups, and to distinguish this mode of sorption from common structural definitions of inner- and outer-sphere complexes. The similarity of Pb(II) uptake isotherms to those of other divalent metal ions complexed by EDTA suggests that they too adsorb by these mechanisms. The lack of evidence for inner-sphere EDTA-Fe(III) bonding suggests that previously proposed metal-ligand - promoted dissolution mechanisms should be modified, specifically to account for the presence of outer-sphere precursor species.

Bargar, John R

1999-07-16T23:59:59.000Z

156

PARS II Training | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

II Training PARS II Training PARS II training is delivered as traditional, instructor-led, hands-on classroom training, and also, as instructor-led Webinars with limited...

157

Laboratory Access | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Access Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety requirements. Refer to the SSRL or LCLS Safety Offices for further guidance. Upon Arrival Upon Arrival Once you arrive you must complete training and access forms before accessing the Sample Preparation Laboratories (SPL). All Sample Prep Lab doors are locked with access key codes. Once your SPL

158

Definition: Surface Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Water Sampling Jump to: navigation, search Dictionary.png Surface Water Sampling Water sampling is done to characterize the chemical, thermal, or hydrological properties of a...

159

Definition: Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Sampling Jump to: navigation, search Dictionary.png Water Sampling Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or...

160

THE LIFETIME AND POWERS OF FR IIs IN GALAXY CLUSTERS  

Science Conference Proceedings (OSTI)

We have identified and studied a sample of 151 FR IIs found in brightest cluster galaxies (BCGs) in the MaxBCG cluster catalog with data from FIRST and NVSS. We have compared the radio luminosities and projected lengths of these FR IIs to the projected length distribution of a range of mock catalogs generated by an FR II model and estimate the FR II lifetime to be 1.9 Multiplication-Sign 10{sup 8} yr. The uncertainty in the lifetime calculation is a factor of two, primarily due to uncertainties in the intracluster medium (ICM) density and the FR II axial ratio. We furthermore measure the jet power distribution of FR IIs in BCGs and find that it is well described by a log-normal distribution with a median power of 1.1 Multiplication-Sign 10{sup 37} W and a coefficient of variation of 2.2. These jet powers are nearly linearly related to the observed luminosities, and this relation is steeper than many other estimates, although it is dependent on the jet model. We investigate correlations between FR II and cluster properties and find that galaxy luminosity is correlated with jet power. This implies that jet power is also correlated with black hole mass, as the stellar luminosity of a BCG should be a good proxy for its spheroid mass and therefore the black hole mass. Jet power, however, is not correlated with cluster richness, nor is FR II lifetime strongly correlated with any cluster properties. We calculate the enthalpy of the lobes to examine the impact of the FR IIs on the ICM and find that heating due to adiabatic expansion is too small to offset radiative cooling by a factor of at least six. In contrast, the jet power is approximately an order of magnitude larger than required to counteract cooling. We conclude that if feedback from FR IIs offsets cooling of the ICM, then heating must be primarily due to another mechanism associated with FR II expansion.

Antognini, Joe; Bird, Jonathan; Martini, Paul, E-mail: antognini@astronomy.ohio-state.edu, E-mail: bird@astronomy.ohio-state.edu, E-mail: martini@astronomy.ohio-state.edu [Department of Astronomy, Ohio State University, 140 W 18th Avenue, Columbus, OH 43210 (United States)

2012-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NSLS-II Design and Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Design & Performance NSLS-II CD-0 Proposal Preliminary Design Report (PDR) Conceptual Design Report (CDR) Source Properties (.pdf) Cell section Last Modified: April 2,...

162

PARS II FAQ | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications PARS 3.0 Data Model Project Assessment and Reporting System (PARS II) Earned Value (EV) Analysis and Project Assessment & Reporting System (PARS II)...

163

TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II  

NLE Websites -- All DOE Office Websites (Extended Search)

i i ii TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II EXECUTIVE SUMMARY ........................................................................................................................................... 3 INTRODUCTION......................................................................................................................................................... 4 COMPLIANCE SUMMARY ....................................................................................................................................... 6 COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY ACT (CERCLA) .................... 6

164

WIPP Volume II - EM - Final.PDF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Secretary of Energy August 2002 Volume II INDEPENDENT OVERSIGHT INSPECTION OF EMERGENCY MANAGEMENT AT THE WASTE ISOLATION PILOT PLANT Volume II August 2002 i INDEPENDENT...

165

II"ve  

Office of Legacy Management (LM)

J)£- J)£- II"ve /"/L 6 Ie- Cp~:A July 26, 2006 (J established 1959 Task Order ST06-120 Control Number: IOOO-T06-1573 Mr. Arthur W. Kleinrath Mound Site Manager U.S. Department of Energy Office of Legacy Management 955 Mound Road Miamisburg, OH 4534 2 SUBJECT: Contract No. DE-ACOI-0 2GJ79 491 Deliverable - Draft Long-Term Surveillance and Maintenance Plan for the Ashtabula Closure Project Dear Mr. Kleinrath: In response to the CPAF Deliverable, submittal of the Draft Long-Term Surveillance and Maintenance Plan for the Ashtabula Closure Project is enclosed. If you have any question s, please call Karen Williams of my staff at (937) 847-8350, Extension 307. Donna Gallaher Stoller Mound Site Manager DGljp Enclosure cc: S. Marutzky, Stoller K. Williams, Stoller cc wlo enclosures Correspondence Control File (Thru B. Bonnett) The S.M. Stoller Corpora tion 955 Mound Road Miamisburg.

166

An Iterative Rejection Sampling Method.  

E-Print Network (OSTI)

ar X iv :0 80 7. 28 23 v1 [ he p- ph ] 17 Ju l 2 00 8 Preprint typeset in JHEP style - HYPER VERSION Cavendish-HEP-08/10 An Iterative Rejection Sampling Method A. Sherstnev Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue... , Cambridge, CB3 0HE, UK and Scobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University, Moscow, Russia, 119992 (on leave) Abstract: In the note we consider an iterative generalisation of the rejection sampling method. In high energy physics...

Sherstnev, A

167

Prompt gamma activation analysis facility at MITR-II  

SciTech Connect

A relatively simple and inexpensive prompt gamma neutron activation analysis facility has been constructed at the 5-MW MITR-II research reactor. The analytical beam is obtained by diffraction using a multilayer graphite monochromator placed in the white beam of one of the MITR-II beam tubes. Use of a diffracted beam, with its concomitant reduction in sample flux compared to the direct beam from the reactor moderator, was initially dictated by the need to construct rapidly and inexpensively an analytical facility that could analyze {sup 10}B at the level of a few micrograms per gram in biological samples. By relatively simple modifications to an existing two-axis neutron spectrometer, we were able to produce a useful intensity on the sample. Furthermore, the inherent advantage of reduced background when using a Bragg diffracted beam permitted the use of short sample-to-detector distances, which compensated for the loss in slow neutron intensity in the diffraction process. The resultant facility has exceeded our initial minimum requirements for {sup 10}B analysis. In fact, the current facility provides significantly higher full-energy peak count rates than those reported for direct thermal beam facilities at reactors with twice the power of MITR-II.

Harling, O.K. [Massachusetts Institute of Technology, Cambridge, MA (United States)

1994-12-31T23:59:59.000Z

168

Walla Walla River Basin Fish Screen Evaluations; Nursery Bridge Fishway and Garden City/Lowden II Sites, 2003 Technical Report.  

DOE Green Energy (OSTI)

Pacific Northwest National Laboratory evaluated the fish screens at the Nursery Bridge Fishway and the newly constructed Garden City/Lowden II site west of Walla Walla, Washington, in the Walla Walla River Basin during spring and summer 2003. Both fish screen facilities were examined to determine if they were being effectively operated and maintained to provide for safe fish passage. At the Nursery Bridge Fishway, the screens were evaluated specifically to determine whether the louvers that aid in controlling water flow from behind the screens could be adjusted so that the screens would meet fish protection criteria. Data were collected to determine whether velocities in front of the screens and in the bypasses met current National Oceanic and Atmospheric Administration Fisheries (NOAA Fisheries) (formerly National Marine Fisheries Service (NMFS)) criteria to promote safe and timely fish passage before and after changing the louver settings. Rock weirs downstream of the dam were also evaluated to determine whether they might impede upstream migration of juvenile salmonids during low flow conditions. At the Garden City/Lowden II site, data were collected to establish a baseline for operating conditions and to determine whether any changes in the baffle settings were needed.

Vucelick, J.; McMichael, G. (Pacific Northwest National Laboratory)

2003-11-01T23:59:59.000Z

169

Frio II Brine Pilot: Report on GEOSEQ Activities  

Science Conference Proceedings (OSTI)

LBNL's GEOSEQ project is a key participant in the Frio IIbrine pilot studying geologic sequestration of CO2. During During theinjection phase of the Frio-II brine pilot, LBNL collected multiple datasets including seismic monitoring, hydrologic monitoring and geochemicalsampling. These data sets are summarized in this report including allCASSM (continuous active source seismic monitoring) travel time data,injection pressure and flow rate data and gaseous sampling and tracerdata. Additional results from aqueous chemistry analysis performed by theU. S. Geological Survey (USGS) are summarized. Post injectionmodification of the flow model for Frio II is shown. Thesemodificationsare intended to facilitate integration with the monitoring data andincorporation of model heterogeneity. Current activities of LBNL's GEOSEQproject related to the Frio II test are shown, including development of anew petrophysical model for improved interpretation of seismic monitoringdata and integration of this data with flow modeling.

Daley, T.M.; Freifeld, B.M.; Ajo-Franklin, J.B.; Doughty, C.; Benson, S.M.

2007-11-17T23:59:59.000Z

170

AUTOMATING GROUNDWATER SAMPLING AT HANFORD  

Science Conference Proceedings (OSTI)

Until this past October, Fluor Hanford managed Hanford's integrated groundwater program for the U.S. Department of Energy (DOE). With the new contract awards at the Site, however, the CH2M HILL Plateau Remediation Company (CHPRC) has assumed responsibility for the groundwater-monitoring programs at the 586-square-mile reservation in southeastern Washington State. These programs are regulated by the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. More than 1,200 wells are sampled each year. Historically, field personnel or 'samplers' have been issued pre-printed forms that have information about the well(s) for a particular sampling evolution. This information is taken from the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS)--official electronic databases. The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and the collected information was posted onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. This is a pilot project for automating this tedious process by providing an electronic tool for automating water-level measurements and groundwater field-sampling activities. The automation will eliminate the manual forms and associated data entry, improve the accuracy of the information recorded, and enhance the efficiency and sampling capacity of field personnel. The goal of the effort is to eliminate 100 percent of the manual input to the database(s) and replace the management of paperwork by the field and clerical personnel with an almost entirely electronic process. These activities will include the following: scheduling the activities of the field teams, electronically recording water-level measurements, electronically logging and filing Groundwater Sampling Reports (GSR), and transferring field forms into the site-wide Integrated Document Management System (IDMS).

CONNELL CW; HILDEBRAND RD; CONLEY SF; CUNNINGHAM DE

2009-01-16T23:59:59.000Z

171

DEUTERIUM, TRITIUM, AND HELIUM DESORPTION FROM AGED TITANIUM TRITIDES. PART II.  

DOE Green Energy (OSTI)

Six new samples of tritium-aged bulk titanium have been examined by thermal desorption and isotope exchange chemistry. The discovery of a lower temperature hydrogen desorption state in these materials, previously reported, has been confirmed in one of the new samples. The helium release of the samples shows the more severe effects obtained from longer aging periods, i.e. higher initial He/M ratios. Several of the more aged samples were spontaneously releasing helium. Part I discussed the new results on the new lower temperature hydrogen desorption state found in one more extensively studied sample. Part II will discuss the hydrogen/helium release behavior of the remaining samples.

Shanahan, K; Jeffrey Holder, J

2006-08-17T23:59:59.000Z

172

Model-Based Sampling, Inference and Imputation  

Reports and Publications (EIA)

Picking a sample through some randomization mechanism, such as random sampling withingroups (stratified random sampling), or, say, sampling every fifth item (systematic randomsampling), may be familiar to a lot of people.

Information Center

2012-03-13T23:59:59.000Z

173

Model-Based Sampling, Inference and Imputation  

Reports and Publications (EIA)

Picking a sample through some randomization mechanism, such as random sampling withingroups (stratified random sampling), or, say, sampling every fifth item (systematic randomsampling), may be familiar to a lot of people.

Neal Davis

2013-09-18T23:59:59.000Z

174

Options Study - Phase II  

SciTech Connect

The Options Study has been conducted for the purpose of evaluating the potential of alternative integrated nuclear fuel cycle options to favorably address the issues associated with a continuing or expanding use of nuclear power in the United States. The study produced information that can be used to inform decisions identifying potential directions for research and development on such fuel cycle options. An integrated nuclear fuel cycle option is defined in this study as including all aspects of the entire nuclear fuel cycle, from obtaining natural resources for fuel to the ultimate disposal of used nuclear fuel (UNF) or radioactive wastes. Issues such as nuclear waste management, especially the increasing inventory of used nuclear fuel, the current uncertainty about used fuel disposal, and the risk of nuclear weapons proliferation have contributed to the reluctance to expand the use of nuclear power, even though it is recognized that nuclear power is a safe and reliable method of producing electricity. In this Options Study, current, evolutionary, and revolutionary nuclear energy options were all considered, including the use of uranium and thorium, and both once-through and recycle approaches. Available information has been collected and reviewed in order to evaluate the ability of an option to clearly address the challenges associated with the current implementation and potential expansion of commercial nuclear power in the United States. This Options Study is a comprehensive consideration and review of fuel cycle and technology options, including those for disposal, and is not constrained by any limitations that may be imposed by economics, technical maturity, past policy, or speculated future conditions. This Phase II report is intended to be used in conjunction with the Phase I report, and much information in that report is not repeated here, although some information has been updated to reflect recent developments. The focus in this Options Study was to identify any nuclear fuel cycle technology or option that may result in a significant beneficial impact to the issues as compared to the current U.S. approach of once-through use of nuclear fuel in LWRs or similar reactors followed by direct disposal of UNF. This approach was taken because incremental differences may be difficult to clearly identify and justify due to the large uncertainties that can be associated with the specific causes of the issues. Phase II of this Options Study continued the review of nuclear fuel cycle options that was initiated and documented during Phase I, concentrating on reviewing and summarizing the potential of integrated nuclear fuel cycles. However, based on the reviews of previous studies and available data, it was not always possible to clearly determine sufficiently large differences between the various fuel cycle and technology options for some of the issues or evaluation measures, for example, in cases where only incremental differences with respect to the issues might be achieved regardless of the fuel cycle option or technologies being considered, or where differences were insufficient to clearly rise above the uncertainties.

R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

2010-09-01T23:59:59.000Z

175

Cimarron II | Open Energy Information  

Open Energy Info (EERE)

II II Jump to: navigation, search Name Cimarron II Facility Cimarron II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Duke Energy Developer CPV Renewable Energy Energy Purchaser Kansas City Power & Light Location Cimarron KS Coordinates 37.90154236°, -100.3934097° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.90154236,"lon":-100.3934097,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

Limon II | Open Energy Information  

Open Energy Info (EERE)

Limon II Limon II Jump to: navigation, search Name Limon II Facility Limon II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Xcel Energy Location Limon CO Coordinates 39.33323523°, -103.5521507° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.33323523,"lon":-103.5521507,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Penascal II | Open Energy Information  

Open Energy Info (EERE)

Penascal II Penascal II Jump to: navigation, search Name Penascal II Facility Penascal II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Iberdrola Renewables Location Kenedy County TX Coordinates 27.003108°, -97.584014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.003108,"lon":-97.584014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

Photovoltaics II - Programmaster.org  

Science Conference Proceedings (OSTI)

Mar 13, 2012 ... Energy Nanomaterials: Photovoltaics II ... and Their Application in Dye-Sensitized Solar Cells: Ziqi Sun1; Jung Ho Kim1; Yue Zhao1; ... the electron lifetime (?n) are examined by electrochemical impedance spectroscopy (EIS).

179

Aegir II | Open Energy Information  

Open Energy Info (EERE)

II II Jump to: navigation, search Name Aegir II Facility Aegir II Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Location Lake Michigan MI Coordinates 43.098°, -86.597° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.098,"lon":-86.597,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

180

PARS II 102 Training Workbook  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Monthly Updating and Reporting 2 Monthly Updating and Reporting Training Workbook V8.0.20101108 Department of Energy March 30, 2011 March 30, 2011 PARS II 102 Monthly Updating and Reporting V8.0.20101108 ii Table of Contents OVERSIGHT and ASSESSMENT ........................................................................................................ 1 Exercise 1 - Find and View a Project............................................................................................ 1 Sort the Project List ................................................................................................................. 3 Select a Project ........................................................................................................................ 4 View a Project ......................................................................................................................... 4

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

An Iterative Rejection Sampling Method  

E-Print Network (OSTI)

In the note we consider an iterative generalisation of the rejection sampling method. In high energy physics, this sampling is frequently used for event generation, i.e. preparation of phase space points distributed according to a matrix element squared $|M|^2$ for a scattering process. In many realistic cases $|M|^2$ is a complicated multi-dimensional function, so, the standard von Neumann procedure has quite low efficiency, even if an error reducing technique, like VEGAS, is applied. As a result of that, many of the $|M|^2$ calculations go to ``waste''. The considered iterative modification of the procedure can extract more ``unweighted'' events, i.e. distributed according to $|M|^2$. In several simple examples we show practical benefits of the technique and obtain more events than the standard von Neumann method, without any extra calculations of $|M|^2$.

A. Sherstnev

2008-07-17T23:59:59.000Z

182

Chemical Resources | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Resources Chemical Resources Chemical Inventory All Sample Preparation Labs are stocked with an assortment of common solvents, acids, bases, buffers, and other reagents. See our Chemical Inventories for a list of available reagents. If you need large quantities of any chemicals, please order or bring your own supply (see below). Chemical Inventories Standard Operating Procedures (SOPs) If you will be working with any samples or reagents that are significantly toxic, reactive, corrosive, flammable, or otherwise especially hazardous, we may require an approved SOP before you can begin work. Examples: Reagents with an NFPA Rating of 3 or 4 in any category, nanomaterials, heavy metals, pyrophoric materials, water reactive materials. BLANK SOP SSRL BLANK SOP LCLS Ordering Chemicals

183

Some Effects of Finite Sample Size and Persistence on Meteorological Statistics.Part II: Potential Predictability  

Science Conference Proceedings (OSTI)

Potential predictability of a meteorological time series can be estimated from the ratio of the actual interannual variability to the natural variability associated with climatic noise. The extent to which this ratio is larger than one is taken ...

Kevin E. Trenberth

1984-12-01T23:59:59.000Z

184

Adaptive Sampling with the Ensemble Transform Kalman Filter. Part II: Field Program Implementation  

Science Conference Proceedings (OSTI)

The practical application of the ensemble transform Kalman filter (ET KF), used in recent Winter Storm Reconnaissance (WSR) programs by the National Centers for Environmental Prediction (NCEP), is described. The ET KF assesses the value of ...

S. J. Majumdar; C. H. Bishop; B. J. Etherton; Z. Toth

2002-05-01T23:59:59.000Z

185

Solid-sample geochemistry study of western Dixie Valley, Churchill County, Nevada. Part II. Soil geochemistry  

Science Conference Proceedings (OSTI)

Numerous thermal springs present in northern Dixie Valley, Nevada, are the surface expression of a deep-seated geothermal system. The structural setting, a complex asymmetric graben controls the location of surface springs and migration of thermal fluids to the surface. The distribution of arsenic and mercury in the soils of the valley correlates well with the occurrence of structures which may be in communication with the underlying geothermal system. Generally anomalous arsenic values occur along structures near the playa where fine-grained sediments and a high water table occur. Mercury values are uniformly low near the playa but are typically anomalous along structures in the coarser fan deposits. The complementary geochemical signatures of arsenic and mercury which arise from basic differences in elemental chemical behavior have been useful in delineating the structural trends of the valley. The structural model indicated by the geochemistry and results of drilling suggest future targets should be selected east of the Dixie Meadows fault, within the inner graben.

Juncal, R.W. (Geothermal Development Associates, Reno, NV); Bell, E.J.

1981-10-01T23:59:59.000Z

186

The Radio and Optical Luminosity Evolution of Quasars II - The SDSS Sample  

Science Conference Proceedings (OSTI)

We determine the radio and optical luminosity evolutions and the true distribution of the radio loudness parameter R, defined as the ratio of the radio to optical luminosity, for a set of more than 5000 quasars combining SDSS optical and FIRST radio data. We apply the method of Efron and Petrosian to access the intrinsic distribution parameters, taking into account the truncations and correlations inherent in the data. We find that the population exhibits strong positive evolution with redshift in both wavebands, with somewhat greater radio evolution than optical. With the luminosity evolutions accounted for, we determine the density evolutions and local radio and optical luminosity functions. The intrinsic distribution of the radio loudness parameter R is found to be quite different than the observed one, and is smooth with no evidence of a bi-modality in radio loudness. The results we find are in general agreement with the previous analysis of Singal et al., 2011 which used POSS-I optical and FIRST radio data.

Singal, J.; Petrosian, V.; Stawarz, L.; Lawrence, A.

2012-12-28T23:59:59.000Z

187

Techniques for multivariate sample design  

SciTech Connect

In this report we consider sampling methods applicable to the multi-product Annual Fuel Oil and Kerosene Sales Report (Form EIA-821) Survey. For years prior to 1989, the purpose of the survey was to produce state-level estimates of total sales volumes for each of five target variables: residential No. 2 distillate, other retail No. 2 distillate, wholesale No. 2 distillate, retail residual, and wholesale residual. For the year 1989, the other retail No. 2 distillate and wholesale No. 2 distillate variables were replaced by a new variable defined to be the maximum of the two. The strata for this variable were crossed with the strata for the residential No. 2 distillate variable, resulting in a single stratified No. 2 distillate variable. Estimation for 1989 focused on the single No. 2 distillate variable and the two residual variables. Sampling accuracy requirements for each product were specified in terms of the coefficients of variation (CVs) for the various estimates based on data taken from recent surveys. The target population for the Form EIA-821 survey includes companies that deliver or sell fuel oil or kerosene to end-users. The Petroleum Product Sales Identification Survey (Form EIA-863) data base and numerous state and commercial lists provide the basis of the sampling frame, which is updated as new data become available. In addition, company/state-level volumes for distillates fuel oil, residual fuel oil, and motor gasoline are added to aid the design and selection process. 30 refs., 50 figs., 10 tabs.

Williamson, M.A.

1990-04-01T23:59:59.000Z

188

Carbon Nanomaterials II & Computational Studies on Nanomaterials  

Science Conference Proceedings (OSTI)

2014 Functional Nanomaterials: Synthesis, Properties and Applications: Carbon Nanomaterials II & Computational Studies on Nanomaterials Sponsored by:...

189

Run II Student Index  

NLE Websites -- All DOE Office Websites (Extended Search)

Analyze the Data Activities Analyze the Data Activities Here's a Puzzle Wanted by FNAL Looking for Suspects Candidate Events Assignments Evidence for B A. B Data B. Explaining Data Forms 1. Becoming Familiar with Events a. Event Pictures - PDF file b. Making a Histogram B. Identifying B Mesons C. B Threshold Decay Length 1. Data 2. Data Analysis Help 3. Sample Histogram Special Project Calculating B Lifetime 1. More on Lifetime 2. Derivation of Equation 3. Data 4. Data Analysis Help A. Graphing the Data 1. Data Analysis Help 2. Making a Histogram Evidence for W A. W Data B. Explaining Forms of the Data 1. Becoming Familiar with Events a. Event Pictures - PDF file b. Making a Histogram B. W Decay C. Threshold Momenta D. W Transverse Mass Histogram 1. Data 2. Data Analysis Help E. Some Data Analysis 1. Help with Data Anaysis

190

EMDEX II system documentation  

Science Conference Proceedings (OSTI)

The EPRI EMDEX 2 system consists of hardware and software for characterizing electric and magnetic field exposures. The EMDEX 2 meter is a computer-base portable unit that samples, at a user-programmable rate, the three vector components of magnetic flux density, and a measure of the average electric field action on the torso of the wearer (if an optional sensor is worn). Modules of the EMCALC software package are used to program the EMDEX 2, retrieve data at the end of a measurement session, analyze EMDEX 2 data, and prepare tabular and graphical data summaries. The User Manual is designed to provide instruction on the use of the exposure system hardware and software. The Technical Reference Manual provides additional, detailed descriptions of the hardware, software and methodologies used in the EMDEX 2 system. 11 refs., 31 figs., 25 tabs.

Silva, J.M. (Enertech Consultants, Campbell, CA (United States))

1991-09-01T23:59:59.000Z

191

Relative Humidity and Temperature Influences on Cirrus Formation and Evolution: Observations from Wave Clouds and FIRE II  

Science Conference Proceedings (OSTI)

Measurements in orographic wave clouds. and in cirrus sampled during FIRE II, are used to investigate ice nucleation in the upper troposphere. The dynamically and microphysically simpler quasi-steady-state wave clouds provide relatively ideal ...

Andrew J. Heymsfield; Larry M. Miloshevich

1995-12-01T23:59:59.000Z

192

Superspace Type II 4D Supergravity from Type II Superstring  

E-Print Network (OSTI)

We derive the equations of motion of type II 4D supergravity in superspace. This is achieved by coupling the Type II Berkovits' hybrid superstring to an N=2 curved background and requiring that the sigma-model has N=(2,2) superconformal invariance at one loop. We show that there are no anomalies in the fermionic OPE's and the complete set of compensator's equations is derived from the energy-momentum tensor. The equations of motion describe a hypertensorial and vectorial multiplet coupled to a U(1)\\times U(1) N=2 Poincar\\`e Supergravity.

Daniel L. Nedel

2004-12-14T23:59:59.000Z

193

BEATRIX-II, phase II: Data summary report  

SciTech Connect

The BEATRIX-II experimental program was an International Energy Agency sponsored collaborative effort between Japan, Canada, and the United States to evaluate the performance of ceramic solid breeder materials in a fast-neutron environment at high burnup levels. This report addresses the Phase II activities, which included two in situ tritium-recovery canisters: temperature-change and temperature-gradient. The temperature-change canister contained a Li{sub 2}O ring specimen that had a nearly uniform temperature profile and was capable of temperature changes between 530 and 640{degrees}C. The temperature-gradient canister contained a Li{sub 2}ZrO{sub 3} pebble bed operating under a thermal gradient of 440 to 1100{degrees}C. Postirradiation examination was carried out to characterize the Phase II in situ specimens and a series of nonvented capsules designed to address the compatibility of beryllium with lithium-ceramic solid-breeder materials. The results of the BEATRIX-II, Phase II, irradiation experiment provided an extensive data base on the in situ tritium-release characteristics of Li{sub 2}O and Li{sub 2}ZrO{sub 3} for lithium burnups near 5%. The composition of the sweep gas was found to be a critical parameter in the recovery of tritium from both Li{sub 2}O and Li{sub 2}ZrO{sub 3}. Tritium inventories measured confirmed that Li{sub 2}O and Li{sub 2}ZrO{sub 3} exhibited very low tritium retention during the Phase II irradiation. Tritium inventories in Li{sub 2}ZrO{sub 3} after Phase II tended to be larger than those found for Li{sub 2}ZrO{sub 3} in other in situ experiments, but the larger values may reflect the larger generation rates in BEATRIX-II. A series of 20 capsules was irradiated to determine the compatibility of lithium ceramics and beryllium under conditions similar to a fusion blanket. It is concluded that Li{sub 2}O and Li{sub 2}ZrO{sub 3} should remain leading candidates for use in a solid-breeder fusion-blanket application.

Slagle, O.D.; Hollenberg, G.W.

1996-05-01T23:59:59.000Z

194

Results of groundwater monitoring and vegetation sampling at Everest, Kansas, in 2009 .  

SciTech Connect

In April 2008, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) conducted groundwater sampling for the analysis of volatile organic compounds (VOCs) in the existing network of monitoring points at Everest, Kansas (Argonne 2008). The objective of the 2008 investigation was to monitor the distribution of carbon tetrachloride contamination in groundwater previously identified in CCC/USDA site characterization and groundwater sampling studies at Everest in 2000-2006 (Argonne 2001, 2003, 2006a,b). The work at Everest is being undertaken on behalf of the CCC/USDA by Argonne National Laboratory, under the oversight of the Kansas Department of Health and Environment (KDHE). The findings of the 2008 investigation were as follows: (1) Measurements of groundwater levels obtained manually and through the use of automatic recorders demonstrated a consistent pattern of groundwater flow - and inferred contaminant migration - to the north-northwest from the former CCC/USDA facility toward the Nigh property, and then west-southwest from the Nigh property toward the intermittent creek that lies west of the former CCC/USDA facility and the Nigh property. (2) The range of concentrations and the areal distribution of carbon tetrachloride identified in the groundwater at Everest in April 2008 were generally consistent with previous results. The results of the 2008 sampling (reflecting the period from 2006 to 2008) and the earlier investigations at Everest (representing the period from 2000 to 2006) show that no significant downgradient extension of the carbon tetrachloride plume occurred from 2000 to 2008. (3) The slow contaminant migration indicated by the monitoring data is qualitatively consistent with the low groundwater flow rates in the Everest aquifer unit estimated previously on the basis of site-specific hydraulic testing (Argonne 2006a,b). (4) The April 2008 and earlier sampling results demonstrate that the limits of the plume have been effectively, identified by the existing network of monitoring points and have not changed significantly during the CCC/USDA investigation program. The carbon tetrachloride distribution within the plume has continued to evolve, however, with relatively constant or apparently decreasing contaminant levels at most sampling locations. In response to these findings, the KDHE requested that the CCC/USDA develop a plan for annual monitoring of the groundwater and surface water at Everest, to facilitate continued tracking of the carbon tetrachloride plume at this site (KDHE 2009a). A recommendation for annual sampling (for analyses of VOCs) of 16 existing groundwater monitoring points within and near the identified contaminant migration pathway and surface water sampling at 5 locations along the intermittent creek west (downgradient) of the identified plume was presented by the CCC/USDA (Appendix A) and approved by the KDHE (2009b) for implementation. The monitoring wells will be sampled according to the low-flow procedure, and sample preservation, shipping, and analysis activities will be consistent with previous work at Everest. The annual sampling will continue until identified conditions at the site indicate a technical justification for a change. This report summarizes the results of sampling and monitoring activities conducted at the Everest site since completion of the April 2008 groundwater sampling event (Argonne 2008). The investigations performed during the current review period (May 2008 to October 2009) were as follows: (1) With one exception, the KDHE-approved groundwater and surface water monitoring points were sampled on April 24-27, 2009. In this event, well PT1 was inadvertently sampled instead of the adjacent well MW04. This investigation represents the first groundwater and surface water sampling event performed under the current plan for annual monitoring approved by the KDHE. (2) Ongoing monitoring of the groundwater levels at Everest is performed with KDHE approval. The levels in selected monitoring wells are recorded continuously, by using downhole pre

LaFreniere, L. M.; Environmental Science Division

2010-05-13T23:59:59.000Z

195

Magnetometry with entangled atomic samples  

E-Print Network (OSTI)

We present a theory for the estimation of a scalar or a vector magnetic field by its influence on an ensemble of trapped spin polarized atoms. The atoms interact off-resonantly with a continuous laser field, and the measurement of the polarization rotation of the probe light, induced by the dispersive atom-light coupling, leads to spin-squeezing of the atomic sample which enables an estimate of the magnetic field which is more precise than that expected from standard counting statistics. For polarized light and polarized atoms, a description of the non-classical components of the collective spin angular momentum for the atoms and the collective Stokes vectors of the light-field in terms of effective gaussian position and momentum variables is practically exact. The gaussian formalism describes the dynamics of the system very effectively and accounts explicitly for the back-action on the atoms due to measurement and for the estimate of the magnetic field. Multi-component magnetic fields are estimated by the measurement of suitably chosen atomic observables and precision and efficiency is gained by dividing the atomic gas in two or more samples which are entangled by the dispersive atom-light interaction.

Vivi Petersen; Lars Bojer Madsen; Klaus Molmer

2004-09-28T23:59:59.000Z

196

Majestic II | Open Energy Information  

Open Energy Info (EERE)

II II Facility Majestic II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser SWEPCO Location Amarillo TX Coordinates 35.3672156°, -101.5474892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.3672156,"lon":-101.5474892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

197

Harvest II | Open Energy Information  

Open Energy Info (EERE)

Harvest II Harvest II Facility Harvest II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind Developer Exelon Wind Energy Purchaser Consumers Energy Location Pigeon MI Coordinates 43.83861292°, -83.2171011° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.83861292,"lon":-83.2171011,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Musselshell II | Open Energy Information  

Open Energy Info (EERE)

Musselshell II Musselshell II Facility Musselshell II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Goldwind Developer Volkswind USA Energy Purchaser NorthWestern Energy Location Ryegate MT Coordinates 46.26733°, -109.499175° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.26733,"lon":-109.499175,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Glacier II | Open Energy Information  

Open Energy Info (EERE)

II II Facility Glacier II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NaturEner Developer NaturEner Energy Purchaser San Diego Gas & Electric Location Near Ethridge MT Coordinates 48.555639°, -112.120992° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.555639,"lon":-112.120992,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

Tech Area II: A History  

E-Print Network (OSTI)

This report documents the history of the major buildings in Sandia National Laboratories' Technical Area II. It was prepared in support of the Department of Energy's compliance with Section 106 of the National Historic Preservation Act. Technical Area II was designed and constructed in 1948 specifically for the final assembly of the non-nuclear components of nuclear weapons, and was the primary site conducting such assembly until 1952. Both the architecture and location of the oldest buildings in the area reflect their original purpose. Assembly activities continued in Area II from 1952 to 1957, but the major responsibility for this work shifted to other sites in the Atomic Energy Commission's integrated contractor complex. Gradually, additional buildings were constructed and the original buildings were modified. After 1960, the Area's primary purpose was the research and testing of high-explosive components for nuclear weapons. In 1994, Sandia constructed new facilities for work on hi...

Rebecca Ullrich; Rebecca Ullrich

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Luz II | Open Energy Information  

Open Energy Info (EERE)

Luz II Luz II Jump to: navigation, search Name Luz II Place Jerusalem, Israel Zip 91450 Sector Solar Product Jerusalem-based utility-scale solar power plant developer. Coordinates 31.7736°, 35.224998° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.7736,"lon":35.224998,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

Part II Energy Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

II. II. Energy Storage Technology Overview * Instructor - Haresh Kamath, EPRI PEAC * Short term - Flywheels, Cranking Batteries, Electrochemical Capacitors, SMES * Long term - Compressed Air, Pumped Hydro storage, Stationary, Flow Batteries 2 Overview * Technology Types - Batteries, flywheels, electrochemical capacitors, SMES, compressed air, and pumped hydro * Theory of Operation - Brief description of the technologies and the differences between them * State-of-the-art - Past demonstrations, existing hurdles and performance targets for commercialization * Cost and cost projections: - Prototype cost vs. fully commercialized targets Technology Choice for Discharge Time and Power Rating (From ESA) 4 Maturity Levels for Energy Storage Technologies * Mature Technologies - Conventional pumped hydro

203

Model-Based Sampling and Inference  

U.S. Energy Information Administration (EIA) Indexed Site

Model-Based Sampling, Inference and Imputation Model-Based Sampling, Inference and Imputation James R. Knaub, Jr., Energy Information Administration, EI-53.1 James.Knaub@eia.doe.gov Key Words: Survey statistics, Randomization, Conditionality, Random sampling, Cutoff sampling Abstract: Picking a sample through some randomization mechanism, such as random sampling within groups (stratified random sampling), or, say, sampling every fifth item (systematic random sampling), may be familiar to a lot of people. These are design-based samples. Estimates of means and totals for an entire population may be inferred from such a sample, along with estimation of the amount of error that might be expected. However, inference based on a sample and its (modeled) relationship to other data may be less familiar. If there is enough

204

Definition: Gas Flux Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling Jump to: navigation, search Dictionary.png Gas Flux Sampling Gas flux sampling measures the flow of volatile gas emissions from a specific location and compares...

205

Linac Coherent Light Source II (LCLS-II) Conceptual Design Report  

Science Conference Proceedings (OSTI)

The LCLS-II Project is designed to support the DOE Office of Science mission, as described in the 22 April 2010 Mission Need Statement. The scope of the Project was chosen to provide an increase in capabilities and capacity for the facility both at project completion in 2017 and in the subsequent decade. The Project is designed to address all points of the Mission Need Statement (MNS): (1) Expanded spectral reach; (2) Capability to provide x-ray beams with controllable polarization; (3) Capability to provide 'pump' pulses over a vastly extended range of photon energies to a sample, synchronized to LCLS-II x-ray probe pulses with controllable inter-pulse time delay; and (4) Increase of user access through parallel rather than serial x-ray beam use within the constraint of a $300M-$400M Total Project Cost (TPC) range. The LCLS-II Project will construct: (1) A hard x-ray undulator source (2-13 keV); (2) A soft x-ray undulator source (250-2,000 eV); (3) A dedicated, independent electron source for these new undulators, using sectors 10-20 of the SLAC linac; (4) Modifications to existing SLAC facilities for the injector and new shielded enclosures for the undulator sources, beam dumps and x-ray front ends; (5) A new experiment hall capable of accommodating four experiment stations; and (6) Relocation of the two soft x-ray instruments in the existing Near Experiment Hall (NEH) to the new experiment hall (Experiment Hall-II). A key objective of LCLS-II is to maintain near-term international leadership in the study of matter on the fundamental atomic length scale and the associated ultrafast time scales of atomic motion and electronic transformation. Clearly, such studies promise scientific breakthroughs in key areas of societal needs like energy, environment, health and technology, and they are uniquely enabled by forefront X-ray Free Electron Laser (X-FEL) facilities. While the implementation of LCLS-II extends to about 2017, it is important to realize that LCLS-II only constitutes a stepping stone to what we believe is needed over a longer time scale. At present, a practical time horizon for planning is about 15 years into the future, matching that of worldwide planning activities for competitive X-FEL facilities in Europe and Asia. We therefore envision LCLS-II as an important stage in development to what is required by about 2025, tentatively called LCLS-2025, for continued US leadership even as new facilities around the world are being completed. We envision LCLS primarily as a hard x-ray FEL facility with some soft x-ray capabilities. A survey of planned X-FEL facilities around the world suggests that US planning to 2025 needs to include an internationally competitive soft x-ray FEL facility which complements the LCLS plans outlined in this document.

Stohr, J

2011-11-16T23:59:59.000Z

206

Licensing Guide and Sample License  

NLE Websites -- All DOE Office Websites (Extended Search)

TEI:HNOL06Y TRANSFER WORKIN6 6ROUP TEI:HNOL06Y TRANSFER WORKIN6 6ROUP Lic:en!iing Guide and Sample Lic:en!ie ·~ ICan.u City Plan I OFermilab ~OAK ~RIDGE Nuioul~.

207

Surface Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Water Sampling Surface Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Surface Water Sampling Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Water Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids Thermal: Water temperature Dictionary.png Surface Water Sampling: Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Other definitions:Wikipedia Reegle Introduction Surface water sampling of hot and cold spring discharges has traditionally

208

Definition: Groundwater Sampling | Open Energy Information  

Open Energy Info (EERE)

Dictionary.png Groundwater Sampling Groundwater sampling is done to characterize the chemical, thermal, or hydrological properties of subsurface aqueous systems. Groundwater...

209

Definition: Surface Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

search Dictionary.png Surface Gas Sampling Gas sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface hydrothermal system....

210

Water Sampling (Healy, 1970) | Open Energy Information  

Open Energy Info (EERE)

Water Sampling (Healy, 1970) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling (Healy, 1970) Exploration Activity Details Location...

211

Water-Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Water-Gas Sampling (Redirected from Water-Gas Samples) Redirect page Jump to: navigation,...

212

Grid Points (GridSampleSet)  

Science Conference Proceedings (OSTI)

... OOF2: The Manual. Grid Points (GridSampleSet). ... Name. Grid Points (GridSampleSet) Evaluate data on a rectangular grid of points. Synopsis. ...

2013-08-23T23:59:59.000Z

213

Grid Points (StatGridSampleSet)  

Science Conference Proceedings (OSTI)

... OOF2: The Manual. Grid Points (StatGridSampleSet). ... Name. Grid Points (StatGridSampleSet) Evaluate data on a rectangular grid of points. ...

2013-08-23T23:59:59.000Z

214

Water-Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Water-Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Water-Gas Sampling edit Details Activities (21) Areas (18) Regions (1)...

215

Category:SamplePages | Open Energy Information  

Open Energy Info (EERE)

Category Edit History Facebook icon Twitter icon Category:SamplePages Jump to: navigation, search This category uses the form SampleForm. Note the pluralization. Category names...

216

Category:Field Sampling | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon » Category:Field Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Field Sampling page? For detailed information on Field Sampling as exploration techniques, click here. Category:Field Sampling Add.png Add a new Field Sampling Technique Subcategories This category has the following 2 subcategories, out of 2 total. G [×] Gas Sampling‎ 3 pages W [×] Water Sampling‎ 2 pages Pages in category "Field Sampling" The following 4 pages are in this category, out of 4 total. G Gas Sampling R Rock Sampling S Soil Sampling W Water Sampling Retrieved from "http://en.openei.org/w/index.php?title=Category:Field_Sampling&oldid=689818" Category: Field Techniques

217

NSLS-II RF SYSTEMS  

Science Conference Proceedings (OSTI)

The NSLS-II is a new third generation light source being constructed at Brookhaven Lab. The storage ring is optimized for low emittance by use of damping wigglers to reduce the emittance to below 1 nm-rad. The RF systems are designed to provide stable beam through tight RF phase and amplitude stability requirements.

Rose, J.; Gash, W.; Holub, B.; Kawashima, Y.; Ma, H.; Towne, N.; Yeddulla, M.

2011-03-28T23:59:59.000Z

218

Proposed Data Elements for PARS II Web Application | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposed Data Elements for PARS II Web Application Proposed Data Elements for PARS II Web Application Proposed Data Elements for PARS II Web Application More Documents &...

219

Monoiodinated angiotensin II is a potent, full agonist analog of angiotensin II  

SciTech Connect

Mono /sup 125/I-angiotensin II (Ang II) has been used extensively as a radioligand to identify Ang II receptors whereas its receptor binding properties are well characterized, its biological activity has been less well studied. To examine this issue, nonradioisotopic monoiodo-Ang II was prepared and compared to Ang II. Monoiodo-Ang II was found to be a potent, full agonist in in vivo bioassays and a more potent (2.5-fold) pressor agent than the native hormone Ang II in the pithed rat. In eliciting dipsogenic responses monoiodo-Ang II was equipotent to Ang II, but was less potent (2.7-fold) than Ang II in contracting rat aortic strips. These results suggest that the well characterized binding affinity of monoiodo-Ang II is representative of its biological activity (40-250% of the activity of Ang II). The variation in relative peptide potency is consistent with the hypothesis of a heterogeneity of Ang II receptors. Most importantly, the similar efficacies between Ang II and monoiodo-Ang II indicate that the monoiodinated Ang II is a suitable ligand for the study of Ang II receptors.

Husain, A.; Pajka, S.F.; Taylor, S.M.; Speth, R.C.

1986-10-01T23:59:59.000Z

220

Electrphoretic Sample Excitation Light Assembly.  

DOE Patents (OSTI)

An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

Li, Qingbo (State College, PA); Liu, Changsheng (State College, PA)

2002-04-02T23:59:59.000Z

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sample storage/disposal study  

SciTech Connect

Radioactive waste from defense operations has accumulated at the Hanford Site`s underground waste tanks since the late 1940`s. Each tank must be analyzed to determine whether it presents any harm to the workers at the Hanford Site, the public or the environment. Analyses of the waste aids in the decision making process in preparation of future tank waste stabilization procedures. Characterization of the 177 waste tanks on the Hanford Site will produce a large amount of archived material. This also brings up concerns as to how the excess waste tank sample material from 325 and 222-S Analytical Laboratories will be handled. Methods to archive and/or dispose of the waste have been implemented into the 222-S and 325 Laboratory procedures. As the amount of waste characterized from laboratory analysis grows, an examination of whether the waste disposal system will be able to compensate for this increase in the amount of waste needs to be examined. Therefore, the need to find the safest, most economically sound method of waste storage/disposal is important.

Valenzuela, B.D.

1994-09-29T23:59:59.000Z

222

Multi-class blue noise sampling  

Science Conference Proceedings (OSTI)

Sampling is a core process for a variety of graphics applications. Among existing sampling methods, blue noise sampling remains popular thanks to its spatial uniformity and absence of aliasing artifacts. However, research so far has been mainly focused ... Keywords: blue noise, dart throwing, multi-class, poisson hard/soft disk, relaxation, sampling

Li-Yi Wei

2010-07-01T23:59:59.000Z

223

Edison Phase II Compute Cabinets Arrive  

NLE Websites -- All DOE Office Websites (Extended Search)

Edison Phase II Compute Cabinets Arrive at NERSC Edison Phase II Compute Cabinets Arrive at NERSC June 27, 2013 by Zhengji Zhao (1 Comments) The compute cabinets were shiped to...

224

COMPUTER PROGRAM CCC USER'S MANUAL VERSION II.  

E-Print Network (OSTI)

1PUTER PROGRAM CCC USER'S MANUAL VERSION II D.C. Mangold,COMPUTER PROGRAM CCC USER'S MANUAL Version II (January,Ll COMPUTER PROGRAM CCC--USER'S MANUAL D. C. Mangold, M, J,

Mangold, D.C.

2013-01-01T23:59:59.000Z

225

Soil Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Soil Gas Sampling Soil Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Soil Gas Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Identify concealed faults that act as conduits for hydrothermal fluids. Hydrological: Identify hydrothermal gases of magmatic origin. Thermal: Differentiate between amagmatic or magmatic sources heat. Dictionary.png Soil Gas Sampling: Soil gas sampling is sometimes used in exploration for blind geothermal resources to detect anomalously high concentrations of hydrothermal gases

226

Gas Flux Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling Gas Flux Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Flux Sampling Details Activities (26) Areas (20) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Thermal: Anomalous flux is associated with active hydrothermal activity. Dictionary.png Gas Flux Sampling: Gas flux sampling measures the flow of volatile gas emissions from a specific location and compares it to average background emissions. Anomalously high gas flux can be an indication of hydrothermal activity.

227

Surface Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Gas Sampling Surface Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Surface Gas Sampling Details Activities (12) Areas (10) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Gas composition and source of fluids. Thermal: Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Surface Gas Sampling: Gas sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface hydrothermal system. Other definitions:Wikipedia Reegle Introduction

228

NIST_1A 1024 sample_count -i 57202424 sample_n_bytes -i ...  

Science Conference Proceedings (OSTI)

NIST_1A 1024 sample_count -i 57202424 sample_n_bytes -i 2 channel_count -i 1 sample_byte_format -s2 01 sample_rate -i 16000 ...

2004-03-08T23:59:59.000Z

229

Sample introduction apparatus for a flow cytometer  

DOE Patents (OSTI)

A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning HPLC tubing and fittings may be used in a manner which facilitates removable of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it.

Van den Engh, Ger (Seattle, WA)

1998-01-01T23:59:59.000Z

230

Sample introduction system for a flow cytometer  

SciTech Connect

A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning, HPLC tubing and fittings may be used in a manner which facilitates removing of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it.

Van den Engh, Ger (Seattle, WA)

1997-01-01T23:59:59.000Z

231

Sample introduction system for a flow cytometer  

DOE Patents (OSTI)

A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning, HPLC tubing and fittings may be used in a manner which facilitates removing of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it. 3 figs.

Engh, G. van den

1997-02-11T23:59:59.000Z

232

Sample introduction apparatus for a flow cytometer  

DOE Patents (OSTI)

A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning HPLC tubing and fittings may be used in a manner which facilitates removable of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it. 3 figs.

Van den Engh, G.

1998-03-10T23:59:59.000Z

233

MATERIALS FOR SPALLATION NEUTRON SOURCES: II: Radiation ...  

Science Conference Proceedings (OSTI)

MATERIALS FOR SPALLATION NEUTRON SOURCES: Session II: Radiation Effects, B. Sponsored by: Jt. SMD/MSD Nuclear Materials Committee Program...

234

Laser Applications in Materials Technology (II)  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2011. Symposium, Laser Applications in Materials Technology (II). Sponsorship, MS&T ...

235

Spent Fuel Background Report Volume II  

Science Conference Proceedings (OSTI)

This Volume II contains tables that describe DOE fuel storage facilities and the fuel contained in those facilities.

Abbott, D.

1994-03-01T23:59:59.000Z

236

ALCC Allocation Final Report: HPC Colony II  

SciTech Connect

The report describes those activities of the HPC Colony II Project as they relate to their FY2013 ALCC Award.

Jones, Terry R [ORNL] [ORNL

2013-11-01T23:59:59.000Z

237

II.AdvancedTcl Advanced Tcl  

E-Print Network (OSTI)

119 P A R T II.AdvancedTcl II Advanced Tcl Part II describes advanced programming techniques that support sophisticated applications. The Tcl interfaces remain simple, so you can quickly construct pow- erful applications. Chapter 10 describes eval, which lets you create Tcl programs on the fly

Chen, Yuanzhu Peter

238

Structures and Other Properties II  

Science Conference Proceedings (OSTI)

Mar 15, 2012 ... Remarkably, even an atomic chain was formed after sample necking, .... of Science and Technology Beijing; 2City University of Hong Kong

239

Definition: Rock Sampling | Open Energy Information  

Open Energy Info (EERE)

Sampling Sampling Jump to: navigation, search Dictionary.png Rock Sampling Systematic rock sampling can be used to characterize a geothermal reservoir. The physical and chemical properties of rock samples provide important information for determining whether a power generation or heat utilization facility can be developed. Some general rock properties can be measured by visual inspection, but detailed properties require laboratory techniques. View on Wikipedia Wikipedia Definition A core sample is a cylindrical section of (usually) a naturally occurring substance. Most core samples are obtained by drilling with special drills into the substance, for example sediment or rock, with a hollow steel tube called a core drill. The hole made for the core sample is called the "core hole". A variety of core samplers exist to sample

240

Method and apparatus for data sampling  

DOE Patents (OSTI)

A method and apparatus for sampling radiation detector outputs and determining event data from the collected samples is described. The method uses high speed sampling of the detector output, the conversion of the samples to digital values, and the discrimination of the digital values so that digital values representing detected events are determined. The high speed sampling and digital conversion is performed by an A/D sampler that samples the detector output at a rate high enough to produce numerous digital samples for each detected event. The digital discrimination identifies those digital samples that are not representative of detected events. The sampling and discrimination also provides for temporary or permanent storage, either serially or in parallel, to a digital storage medium. 6 figures.

Odell, D.M.C.

1994-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fluid sampling system for a nuclear reactor  

DOE Patents (OSTI)

A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

Lau, L.K.; Alper, N.I.

1994-11-22T23:59:59.000Z

242

NSLS-II Project Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Project Schedule NSLS-II Project Schedule Major Milestone Event Major Milestone Event Preliminary Schedule CD-0 (approve Mission Need) 4th quarter, FY2005 CD-1 (approve Alternative Selection and Cost Range) 4th quarter, FY2007 CD-2 (approve Performance Baseline) 1st quarter, FY2008 CD-3 (approve Start of Construction) 2nd quarter, FY2009 CD-4 (approve Start of Operations) FY2015 Critical Decisions The five Critical Decisions are major milestones approved by the Secretarial Acquisition Executive or Acquisition Executive that establish the mission need, recommended alternative, Acquisition Strategy, the Performance Baseline, and other essential elements required to ensure that the project meets applicable mission, design, security, and safety requirements. Each Critical Decision marks an increase in commitment of

243

Oak Ridge Associated Universities II  

Office of Legacy Management (LM)

Prepared by Prepared by Oak Ridge Associated Universities II Prepared for Division of Fuel - Cycle and Material Safety II U.S. Nuclear Regulatory Commission L RADIOLOGICAL SURVEY OF THE W. R. GRACE PROPERTY WAYNE, NEW JERSEY P. W. FRAME Radiological Site Assessment Program Manpower Education, Research, and Training Division FINAL REPORT January 1983 RADIOLOGICAL SURVEY OF THE W.R. GRACE PROPERTY WAYNE, NEW JERSEY Prepared for Division of Fuel Cycle and Material Safety U.S. Nuclear Regulatory Commission P. W. Frame Project Staff J. D. Berger A. J. Liu R. D. Condra A. M. Pitt G. R. Foltz T. J. Sowell J. R. Frazier C. F. Weaver R. C. Gentry T. S. Yoo Prepared by Radiological Site Assessment Program Manpower Education, Research, and Training Division Oak Ridge Associated Universities

244

RHIC II Science Working Groups  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshops Workshops The series of RHIC II Science Workshops began in November 2004, at which time seven Working Groups were initiated. These groups met in workshops through 2005, with the purpose of providing an organized forum for the community to address and describe quantitatively the most important science issues for the proposed RHIC II luminosity upgrade, and corresponding detector upgrades. Each Working Group was led by three convenors representing theory and experiment, and each has produced a detailed report (except for the "New Directions" group, which provided a sounding board and input to the other groups). The Working Group reports are linked below. The summary "white paper" document, "Future Science at the Relativistic Heavy Ion Collider" (PDF), is based on these reports, and was prepared by a Writing Committee that included at least one convenor from each of the Working Groups.

245

Tevatron Run II Physics Projections  

NLE Websites -- All DOE Office Websites (Extended Search)

Run II Physics Projections (Spring 2006) Run II Physics Projections (Spring 2006) Document for the P5 Committee (version 8, September 30, 2005) Electroweak Precision Measurements and Standard Model Higgs Searches W Mass Measurement: 20 - 30 MeV Projections versus Integrated Luminosity (made by CDF): eps, gif, gif (log) Extrapolated from Run Ib measurement Uncertainties assumed to scale with luminosity: Statiscal uncertainties Systematic uncertainties such as Energy and momentum scale, Hadron Recoil against W Uncertainties assumed not to scale with luminosity: W production and decay: PDFs, d(sigma_W)/d(Pt), higher order QCD/QED effects Assumed to be beween 20 MeV (dashed lines) and 30 MeV (solid lines) Top Mass Measurement: ~1.5 GeV Assumptions Channel: only lepton+jets channle considered. Uncertainties that scale with luminosity - 1 / sqrt(lum)

246

STELLAR KINEMATICS OF THE ANDROMEDA II DWARF SPHEROIDAL GALAXY  

Science Conference Proceedings (OSTI)

We present kinematical profiles and metallicity for the M31 dwarf spheroidal (dSph) satellite galaxy Andromeda II (And II) based on Keck DEIMOS spectroscopy of 531 red giant branch stars. Our kinematical sample is among the largest for any M31 satellite and extends out to two effective radii (r {sub eff} = 5.'3 = 1.1 kpc). We find a mean systemic velocity of -192.4 {+-} 0.5 km s{sup -1} and an average velocity dispersion of {sigma} {sub v} = 7.8 {+-} 1.1 km s{sup -1}. While the rotation velocity along the major axis of And II is nearly zero (<1 km s{sup -1}), the rotation along the minor axis is significant with a maximum rotational velocity of v {sub max} = 8.6 {+-} 1.8 km s{sup -1}. We find a kinematical major axis, with a maximum rotational velocity of v {sub max} = 10.9 {+-} 2.4 km s{sup -1}, misaligned by 67 Degree-Sign to the isophotal major axis. And II is thus the first dwarf galaxy with evidence for nearly prolate rotation with a v {sub max}/{sigma} {sub v} = 1.1, although given its ellipticity of {epsilon} = 0.10, this object may be triaxial. We measured metallicities for a subsample of our data, finding a mean metallicity of [Fe/H] = -1.39 {+-} 0.03 dex and an internal metallicity dispersion of 0.72 {+-} 0.03 dex. We find a radial metallicity gradient with metal-rich stars more centrally concentrated, but do not observe a significant difference in the dynamics of the two metallicity populations. And II is the only known dwarf galaxy to show minor axis rotation, making it a unique system whose existence offers important clues on the processes responsible for the formation of dSphs.

Ho, Nhung; Geha, M.; Tollerud, E. [Astronomy Department, Yale University, New Haven, CT 06520 (United States); Munoz, R. R. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Guhathakurta, P. [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Kalirai, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gilbert, K. M. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Bullock, J. [Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Beaton, R. L.; Majewski, S. R., E-mail: ngocnhung.ho@yale.edu, E-mail: marla.geha@yale.edu [Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903 (United States)

2012-10-20T23:59:59.000Z

247

PARS II Training Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PARS II Training Materials PARS II Training Materials PARS II Training Materials PARS II presentation hand-outs and step-by-step "how to" exercises for each course are available for download. Users who are attending Web classes should download these documents prior to attending the class. PARS 102 - Monthly Updating and Reporting Introduction to PARS II, finding and selecting projects in your domain, viewing Oversight and Assessment (OA) data, viewing Contractor Project Performance (CPP) dashboards, updating your monthly status assessment, adding attachments, and running standard, pre-built reports. PARS 102 Presentation PARS 102 Workbook PARS 103 - Updating Projects and Reporting Introduction to PARS II, finding and selecting projects in your domain, entering new projects into PARS II, entering and editing Oversight and

248

PARS II 104 Contractor Monthly Upload  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 7, 2011 (V1.3) July 7, 2011 (V1.3) PARS II 104 Contractor Monthly Upload 2 July 7, 2011 (V1.3) PARS II 104 Contractor Monthly Upload Course Objectives * Upon completion of this course, users will be able to: - Navigate in the PARS II application - Select a Project to update - Update Project data by performing * An Upload of the latest monthly project performance data extracted from the contractor's local Earned Value Management System (EVMS) * Replace the current or a prior monthly upload in response to feedback or to correct data - Verify the success of the upload - View and interpret the import log generated by the upload process 3 July 7, 2011 (V1.3) PARS II 104 Contractor Monthly Upload Overview PARS II 4 July 7, 2011 (V1.3) PARS II 104 Contractor Monthly Upload PARS II Overview * Commercial-off-the-shelf (COTS) product

249

ALARA ASSESSMENT OF SETTLER SLUDGE SAMPLING METHODS  

SciTech Connect

The purpose of this assessment is to compare underwater and above water settler sludge sampling methods to determine if the added cost for underwater sampling for the sole purpose of worker dose reductions is justified. Initial planning for sludge sampling included container, settler and knock-out-pot (KOP) sampling. Due to the significantly higher dose consequence of KOP sludge, a decision was made to sample KOP underwater to achieve worker dose reductions. Additionally, initial plans were to utilize the underwater sampling apparatus for settler sludge. Since there are no longer plans to sample KOP sludge, the decision for underwater sampling for settler sludge needs to be revisited. The present sampling plan calls for spending an estimated $2,500,000 to design and construct a new underwater sampling system (per A21 C-PL-001 RevOE). This evaluation will compare and contrast the present method of above water sampling to the underwater method that is planned by the Sludge Treatment Project (STP) and determine if settler samples can be taken using the existing sampling cart (with potentially minor modifications) while maintaining doses to workers As Low As Reasonably Achievable (ALARA) and eliminate the need for costly redesigns, testing and personnel retraining.

NELSEN LA

2009-01-30T23:59:59.000Z

250

Definition: Field Sampling | Open Energy Information  

Open Energy Info (EERE)

Field Sampling Field Sampling Jump to: navigation, search Dictionary.png Field Sampling Systematic field sampling is critical for reliable characterize a geothermal resource. Some of the physical and chemical properties of rock samples can be estimated by visual inspection, but accurate determination of these properties requires detailed laboratory analysis. Surface or subsurface fluid sampling is also routinely performed to characterize the chemical, thermal, or hydrological properties of a hydrothermal system. Combinations of these sampling techniques have traditionally been used to obtain important information used to determine whether or not a viable power generation or heat utilization facility can be developed at a prospect. Soil sampling is a less commonly used method for exploration of

251

Climate Monitoring from Space: Asynoptic Sampling Considerations  

Science Conference Proceedings (OSTI)

Monitoring climate variability from space is considered from the standpoint of satellite sampling. Asynoptic sampling leads to well-defined limits in spatial and temporal resolution which are violated by behavior involving sufficiently small ...

Murry L. Salby

1989-09-01T23:59:59.000Z

252

Metropolis photon sampling with optional user guidance  

Science Conference Proceedings (OSTI)

We present Metropolis Photon Sampling (MPS), a visual importance-driven algorithm for populating photon maps. Photon Mapping and other particle tracing algorithms fail if the photons are poorly distributed. Our approach samples light transport paths ...

Shaohua Fan; Stephen Chenney; Yu-chi Lai

2005-06-01T23:59:59.000Z

253

Principles for Sampling Airborne Radioactivity from Stacks  

SciTech Connect

This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

Glissmeyer, John A.

2010-10-18T23:59:59.000Z

254

Sample Returns Missions in the Coming Decade  

Science Conference Proceedings (OSTI)

In the coming decade, several missions will attempt to return samples to Earth from varying parts of the solar system. These samples will provide invaluable insight into the conditions present during the early formation of the solar system, and possibly ...

Desai Prasun N.; Mitcheltree Robert A.; Cheatwood F. McNeil

2000-10-01T23:59:59.000Z

255

Tenant data request: Sample letter | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

government resources Tenant data request: Sample letter Use this sample letter to request energy data from your tenants. This is helpful for instances where you want whole-building...

256

Chlorine and Sulfur in Nearby Planetary Nebulae and H II Regions  

E-Print Network (OSTI)

We derive the chlorine abundances in a sample of nearby planetary nebulae (PNe) and H II regions that have some of the best available spectra. We use a nearly homogeneous procedure to derive the abundance in each object and find that the Cl/H abundance ratio shows similar values in H II regions and PNe. This supports our previous interpretation that the underabundance we found for oxygen in the H II regions is due to the depletion of their oxygen atoms into organic refractory dust components. For other elements, the bias introduced by ionization correction factors in their derived abundances can be very important, as we illustrate here for sulfur using photoionization models. Even for low-ionization PNe, the derived sulfur abundances can be lower than the real ones by up to 0.3 dex, and the differences found with the abundances derived for H II regions that have similar S/H can reach 0.4 dex.

Rodrguez, Mnica

2011-01-01T23:59:59.000Z

257

Sample holder for x-ray diffractometry  

DOE Patents (OSTI)

A sample holder for use with x-ray diffractometers with the capability to rotate the sample, as well as to adjust the position of the sample in the x, y, and z directions. Adjustment in the x direction is accomplished through loosening set screws, moving a platform, and retightening the set screws. Motion translators are used for adjustment in the y and z directions. An electric motor rotates the sample, and receives power from the diffractometer.

Hesch, V.L.

1991-12-31T23:59:59.000Z

258

Aerosol Sampling from a Unmanned Aerial Vehicle  

Disclosure Number 201202873 Technology Summary ... The present invention enhances the ability to collect such samples, and enables collection of ...

259

II  

Office of Legacy Management (LM)

LIST OF FIGURES LIST OF FIGURES 1 General location of Granite City, Illinois . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 General location of the South Plant facility, Granite City Steel Division, Granite City, Illinois . . . . . . . . . . . . . . . ' . . . . . . . . . . 7 3 Diagram of the New Betatron Building, Granite City Steel facility, Granite City, Illinois. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 View looking north northwest at the New Betatron Building, Granite City Steel facility, Granite City, Illinois . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 View looking east at entrance to the New Betatron Building, Granite City Steel facility, Granite City, Illinois . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

260

II  

Office of Legacy Management (LM)

LIST OF FIGURES 1 General location of Granite City, Illinois . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 General location of the South Plant facility, Granite City Steel Division, Granite City, Illinois . . . . . . . . . . . . . . . ' . . . . . . . . . . 7 3 Diagram of the New Betatron Building, Granite City Steel facility, Granite City, Illinois. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 View looking north northwest at the New Betatron Building, Granite City Steel facility, Granite City, Illinois . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 View looking east at entrance to the New Betatron Building, Granite City Steel facility, Granite City, Illinois . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Ii  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Office - Base Period Task Order No.: 003 Task Title: (C) Office of Project Management Required Support: See attached Task Plan and Statement of Work. . Period of...

262

II.  

Gasoline and Diesel Fuel Update (EIA)

or as proposed for for small, highly valued energy services-consumer the Solar Enterprise Zone at the Nevada Test Site. devices, yard, security, and accent lighting, sensing...

263

II  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Page 1 of2 Page 1 of2 (HIOlo U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:State of Oklahoma PROJECT TITLE: OKLAHOMA SEP ARRA - Native American Cultural & Educational Authority STATE: OK Funding Opportunity Announcemcnt Number Procurement Instrument Number NEPA Control Number CID Number DE-FOA-0000052 EEOOOQ133 GF0-09-332-OO7 0 Based on my review oftbc information concerning the proposed adion, as NEPA Compliance Officer (authorized under DOE Order 45I.1A).1 have made tbe following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

264

Boiling Water Reactor Sampling Summary: 2012 Update  

Science Conference Proceedings (OSTI)

This report documents boiling water reactor (BWR) sampling practices for key reactor water and feedwater parameters. It includes information on analysis methods, sampling frequencies, and compliance with the recommended sampling frequencies in BWRVIP-190: BWR Vessels and Internals Project, BWR Water Chemistry Guidelines 2008 Revision (EPRI report 1016579).

2013-03-28T23:59:59.000Z

265

On random sampling auctions for digital goods  

Science Conference Proceedings (OSTI)

In the context of auctions for digital goods, an interesting Random Sampling Optimal Price auction (RSOP) has been proposed by Goldberg, Hartline and Wright; this leads to a truthful mechanism. Since random sampling is a popular approach for auctions ... Keywords: auction, mechanism design, random sampling

Saeed Alaei; Azarakhsh Malekian; Aravind Srinivasan

2009-07-01T23:59:59.000Z

266

DPMJET version II.5, code manual  

E-Print Network (OSTI)

DPMJET samples hadron-hadron, hadron-nucleus, nucleus-nucleus and neutrino-nucleus interactions at high energies. The two-component Dual Parton Model is used with multiple soft chains and multiple minijets at each elementary interaction. Particle production is realized by the fragmentation of colorless parton-parton chains constructed from the quark content of the interacting hadrons. DPMJET-II.5 includes the cascading of secondaries within the target as well as projectile nuclei which is suppressed by the formation time concept. The excitation energy of the remaining target and projectile nuclei is calculated and using this nuclear evaporation is included into the model. It is possible to use the model up to primary energies of 10${}^{21}$ eV (per nucleon) in the lab. frame. DPMJET can also be applied to neutrino nucleus collisions. It extends the neutrino-nucleon models qel (quasi elastic neutrino interactions) and lepto (deep inelastic neutrino nucleon collisions) to neutrino collisions on nuclear targets.

J. Ranft

1999-11-04T23:59:59.000Z

267

UMTRA project water sampling and analysis plan, Grand Junction, Colorado  

Science Conference Proceedings (OSTI)

Surface remedial action will be completed at the Grand Junction processing site during the summer of 1994. Results of 1993 water sampling indicate that ground water flow conditions and ground water quality at the processing site have remained relatively constant with time. Uranium concentrations in ground water continue to exceed the maximum concentration limits, providing the best indication of the extent of contaminated ground water. Evaluation of surface water quality of the Colorado River indicate no impact from uranium processing activities. No compliance monitoring at the Cheney disposal site has been proposed because ground water in the Dakota Sandstone (uppermost aquifer) is classified as limited-use (Class 111) and because the disposal cell is hydrogeologically isolated from the uppermost aquifer. The following water sampling and water level monitoring activities are planned for calendar year 1994: (i) Semiannual (early summer and late fall) sampling of six existing monitor wells at the former Grand Junction processing site. Analytical results from this sampling will be used to continue characterizing hydrogeochemical trends in background ground water quality and in the contaminated ground water area resulting from source term (tailings) removal. (ii) Water level monitoring of approximately three proposed monitor wells projected to be installed in the alluvium at the processing site in September 1994. Data loggers will be installed in these wells, and water levels will be electronically monitored six times a day. These long-term, continuous ground water level data will be collected to better understand the relationship between surface and ground water at the site. Water level and water quality data eventually will be used in future ground water modeling to establish boundary conditions in the vicinity of the Grand Junction processing site. Modeling results will be used to help demonstrate and document the potential remedial alternative of natural flushing.

Not Available

1994-07-01T23:59:59.000Z

268

Sulfur, Chlorine, and Argon in Planetary Nebulae. IIA: Observations of a Southern Sample  

E-Print Network (OSTI)

In this paper we present fully reduced and dereddened emission line strengths for a sample of 45 southern Type II planetary nebulae (PNe). The spectrophotometry for these PNe covers an extended optical/near-IR range from 3600 - 9600 Angstroms. This PN study and subsequent analysis (presented in a companion paper), together with a similar treatment for a northern PN sample, is aimed at addressing the lack of homogeneous, consistently observed, reduced, and analyzed data sets that include the near-IR [S III] lines at 9069 and 9532 Angstroms. The use of Type II objects only is intended to select disk nebulae that are uncontaminated by nucleosynthetic products of the progenitor star. Extending spectra redward to include the strong [S III] lines enables us to look for consistency between S++ abundances inferred from these lines and from the more accessible, albeit weaker, [S III] line at 6312 Angstroms.

J. B. Milingo; K. B. Kwitter; R. B. C. Henry; R. E. Cohen

2001-08-21T23:59:59.000Z

269

SAMPLING-BASED DECOMPOSITION METHODS FOR ...  

E-Print Network (OSTI)

Higle and Sen [HS96] introduced a stochastic cutting plane method for ..... (ii) dual feasibility: {(u, v) : u ? Rn1,1 Rn2,1 ,v ? Rn2,2 ,ct + At ut + B2,2?tv = 0, t = 1,...

270

Downhole Fluid Sampling | Open Energy Information  

Open Energy Info (EERE)

Downhole Fluid Sampling Downhole Fluid Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Downhole Fluid Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids. Gas composition and source of fluids. Thermal: Water temperature. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Downhole Fluid Sampling: Downhole fluid sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Downhole

271

Rotary Mode Core Sample System availability improvement  

SciTech Connect

The Rotary Mode Core Sample System (RMCSS) is used to obtain stratified samples of the waste deposits in single-shell and double-shell waste tanks at the Hanford Site. The samples are used to characterize the waste in support of ongoing and future waste remediation efforts. Four sampling trucks have been developed to obtain these samples. Truck I was the first in operation and is currently being used to obtain samples where the push mode is appropriate (i.e., no rotation of drill). Truck 2 is similar to truck 1, except for added safety features, and is in operation to obtain samples using either a push mode or rotary drill mode. Trucks 3 and 4 are now being fabricated to be essentially identical to truck 2.

Jenkins, W.W.; Bennett, K.L.; Potter, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Cross, B.T.; Burkes, J.M.; Rogers, A.C. [Southwest Research Institute (United States)

1995-02-28T23:59:59.000Z

272

Ozone Conference II: Abstract Proceedings  

Science Conference Proceedings (OSTI)

Ozone Conference II: Pre- and Post-Harvest Applications Two Years After Gras, was held September 27-28, 1999 in Tulare, California. This conference, sponsored by EPRI's Agricultural Technology Alliance and Southern California Edison's AgTAC facility, was coordinated and organized by the on-site ATA-AgTAC Regional Center. Approximately 175 people attended the day-and-a-half conference at AgTAC. During the Conference twenty-two presentations were given on ozone food processing and agricultural applications...

1999-11-24T23:59:59.000Z

273

Giant Protease TPP II's Structure, Mechanism Uncovered  

NLE Websites -- All DOE Office Websites (Extended Search)

Giant Protease TPP II's Giant Protease TPP II's Structure, Mechanism Uncovered Giant Protease TPP II's Structure, Mechanism Uncovered Print Wednesday, 23 February 2011 00:00 Tripeptidyl peptidase II (TPP II), the largest known eukaryotic enzyme that breaks down proteins (a protease), is implicated in numerous cellular processes including the degradation of the endogenous satiety agent cholecystokinin-8, making TPP II a target in the treatment of obesity. To gain insight into this molecular machine's mechanisms of activation and proteolysis, researchers from Berkeley Lab, the University of California, Berkeley, and the Max Planck Institute of Biochemistry combined single-particle cryo-electron microscopy and x-ray crystallography at ALS Beamline 8.2.2. Treating Obesity with Satiety

274

Buildings characterization sampling plan, Weldon Spring Site  

SciTech Connect

The purpose of the Buildings Sampling Plan is to provide a systematic approach to characterizing radiological, asbestos and chemical contamination in and around the buildings and structures at the Weldon Spring Chemical Plant Site (WSCPS). This sampling plan reviews historical information; identifies data needs; and outlines sampling procedures, quality assurance, data documentation and reporting requirements for the buildings and equipment characterization at the Weldon Spring Site (WSS). The scope of this plan is limited to the buildings, structures, and equipment from the previous operation of the WSCPS. The Buildings Sampling Plan is divided into nine sections: introduction, background, data needs and sampling plan objectives, sampling rationale and procedure, sample analysis, quality assurance, data documentation, reporting requirements, and references. The data needs, sampling rationale and procedures and sample analysis sections of this work plan are subdivided into radiological, asbestos and chemical sections. Because different sampling techniques and analyses will be required for radiological, asbestos and chemical contamination, separate subsections are used. The investigations for each contaminant will be conducted independently. Similar historical and descriptive information is repeated in the subsections, but the perspective and information vary slightly. 24 refs., 5 figs., 14 tabs.

Not Available

1988-08-01T23:59:59.000Z

275

Air sampling in the workplace. Final report  

Science Conference Proceedings (OSTI)

This report provides technical information on air sampling that will be useful for facilities following the recommendations in the NRC`s Regulatory Guide 8.25, Revision 1, ``Air sampling in the Workplace.`` That guide addresses air sampling to meet the requirements in NRC`s regulations on radiation protection, 10 CFR Part 20. This report describes how to determine the need for air sampling based on the amount of material in process modified by the type of material, release potential, and confinement of the material. The purposes of air sampling and how the purposes affect the types of air sampling provided are discussed. The report discusses how to locate air samplers to accurately determine the concentrations of airborne radioactive materials that workers will be exposed to. The need for and the methods of performing airflow pattern studies to improve the accuracy of air sampling results are included. The report presents and gives examples of several techniques that can be used to evaluate whether the airborne concentrations of material are representative of the air inhaled by workers. Methods to adjust derived air concentrations for particle size are described. Methods to calibrate for volume of air sampled and estimate the uncertainty in the volume of air sampled are described. Statistical tests for determining minimum detectable concentrations are presented. How to perform an annual evaluation of the adequacy of the air sampling is also discussed.

Hickey, E.E.; Stoetzel, G.A.; Strom, D.J.; Cicotte, G.R. [Pacific Northwest Lab., Richland, WA (United States); Wiblin, C.M. [Advanced Systems Technology, Inc., Atlanta, GA (United States); McGuire, S.A. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications

1993-09-01T23:59:59.000Z

276

WIPP Volume II - EM - Final.PDF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Isolation Waste Isolation Pilot Plant Office of Independent Oversight and Performance Assurance Office of the Secretary of Energy August 2002 Volume II INDEPENDENT OVERSIGHT INSPECTION OF EMERGENCY MANAGEMENT AT THE WASTE ISOLATION PILOT PLANT Volume II August 2002 i INDEPENDENT OVERSIGHT INSPECTION OF EMERGENCY MANAGEMENT AT THE WASTE ISOLATION PILOT PLANT Volume II Table of Contents Acronyms .........................................................................................................................................iii 1.0 Introduction ................................................................................................................................1 2.0 Results .......................................................................................................................................3

277

Quick Links to A Sampling of OE's Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quick Links to A Sampling of Quick Links to A Sampling of OE's Work Quick Links to A Sampling of OE's Work Quick Links to A Sampling of OE’s Work OE's mission is to lead national efforts to modernize the electric grid; enhance security and reliability of the infrastructure; and facilitate recovery from disruptions to the energy supply. Reports, fact sheets, case studies, and other materials describing OE's activities are available via the links below and across OE's website and on smartgrid.gov. Smart Grid Investment Grant Program - Progress Report II (October 2013) Smart Grid Investment Grant Program - Economic Impact Report (April 2013) Smart Grid Investment Grant Program - Impact Reports (December 2012) Smart Grid Investment Grant Program - Case studies Energy storage fact sheets (October 2012)

278

Nanotube Reinforced Metal Matrix Composites II  

Science Conference Proceedings (OSTI)

Symposium, Nanotube Reinforced Metal Matrix Composites II. Sponsorship, MS&T Organization. Organizer(s), Indrajit Charit, University of Idaho Sudipta Seal ...

279

TRUPACT-II Container Maintenance Program Plan  

Science Conference Proceedings (OSTI)

This document details the maintenance, repair, and replacement of components, as well as the documentation required and the procedures to be followed to maintain the integrity of the TRUPACT-II container in accordance with OM-134, TRUPACT-II Container Operations and Maintenance Manual; and the TRUPACT-II Container Certificate of Compliance (Number 9218). The routine shipping and receiving inspections required by the Department of Transportation (DOT), Department of Energy (DOE), Nuclear Regulatory Commission (NRC) and other regulations are not addressed in this document. This document applies to all DOE shipping and receiving sites that use the TRUPACT-II containers.

Not Available

1991-05-01T23:59:59.000Z

280

INITIAL COMMISSIONING OF NDCX-II  

E-Print Network (OSTI)

INITIAL COMMISSIONING OF NDCX-II* S. Lidia # , D. Arbelaez,the results of early commissioning studies that characterizeschematic and commissioning phases. The commissioning phases

Lidia, S.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Carlink II: Research Approach and Early Findings  

E-Print Network (OSTI)

Focus Group Protocol Homebased Users Palo Alto, Californiaasking for input as Homebased Users Questions & Answers PartII FOCUS GROUP ONE: HOMEBASED USERS Cubberley Community

Shaheen, Susan

2004-01-01T23:59:59.000Z

282

PARS II Extraction Utility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PARS II Extraction Utility DEC1387487110111DekkerPMISExtractionUtilityv8020101217.zip More Documents & Publications Dekker PMIS Extraction Utility Release Notes for the PARS...

283

Hydrogen Storage II - Programmaster.org  

Science Conference Proceedings (OSTI)

Aug 3, 2010 ... Symposium L: Energy Generation, Harvesting and Storage Materials: Hydrogen Storage II Program Organizers: Jian-Feng Nie, Monash...

284

NSLS-II Conceptual Design Report (CDR)  

NLE Websites -- All DOE Office Websites (Extended Search)

Conceptual Design Report NSLS-II CDR cover Brookhaven National Laboratory has prepared a conceptual design for a world class user facility for scientific research using synchrotron...

285

Multics Security Evaluation (Volume II): Vulnerability Analysis  

Science Conference Proceedings (OSTI)

Page 1. ESD-TR-74-J93, Vor. II ' MULTICS SECURITY EVALUATION: VULNERABILITY ANALYSIS Pau r A. Karger, 2Lt ...

2013-04-15T23:59:59.000Z

286

THE SDSS-II SUPERNOVA SURVEY: PARAMETERIZING THE TYPE Ia SUPERNOVA RATE AS A FUNCTION OF HOST GALAXY PROPERTIES  

Science Conference Proceedings (OSTI)

Using data from the Sloan Digital Sky Supernova Survey-II (SDSS-II SN Survey), we measure the rate of Type Ia supernovae (SNe Ia) as a function of galaxy properties at intermediate redshift. A sample of 342 SNe Ia with 0.05 0.15) SNe Ia in highly star-forming galaxies. We consider that the high levels of dust in these systems may be obscuring the reddest and faintest SNe Ia.

Smith, Mathew [Department of Physics, University of Western Cape, Bellville 7530, Cape Town (South Africa); Nichol, Robert C. [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Dilday, Benjamin [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117 (United States); Marriner, John; Frieman, Joshua [Center for Particle Astrophysics, Fermilab, P.O. Box 500, Batavia, IL 60510 (United States); Kessler, Richard [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave, Chicago, IL 60637 (United States); Bassett, Bruce [African Institute for Mathematical Sciences, 6-8 Melrose Road, Muizenberg 7945 (South Africa); Cinabro, David [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 (United States); Garnavich, Peter [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers, State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Lampeitl, Hubert [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701 (South Africa); Sako, Masao [Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Sollerman, Jesper, E-mail: matsmith2@gmail.com [Oskar Klein Centre, Department of Astronomy, AlbaNova, Stockholm University, SE-106 91 Stockholm (Sweden)

2012-08-10T23:59:59.000Z

287

APS Radioactive Sample Safety Review Committee  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Sample Safety Review Committee Radioactive Sample Safety Review Committee March 6, 2012 1. Purpose The APS Safety Radioactive Sample Safety Review Committee (RSSRC) advises the AES Division Director on the radioactive samples to be used at the APS and the adequacy of controls in place for the duration of their use. The RSSRC reviews the radioactive material samples proposed to be run at the APS to ensure that they fall within established safety envelopes of the APS. 2. Membership The RSSRC members are appointed by the AES Division Director. The current members of the RSRC are: B. Glagola AES - Chair S. Davey AES G. Pile AES L. Soderholm CHM J. Vacca RSO W. VanWingeren AES M. Beno XSD E. Alp XSD M. Rivers PUC 3. Method The AES User Safety Coordinator will notify the RSSRC of any samples

288

SNS Sample Environment | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home › Instruments › SNS › Sample Environment Home › Instruments › SNS › Sample Environment SNS Sample Environment SNS Sample Environment Operations Group SNS Sample Environment Operations Group from left to right: (left to right): Bekki Mills, Mark Loguillo, Saad Elorfi, Randy Sexton, Leland Robbins, Matt Rucker, Cory Fletcher, Todd Sherline, Hans-Jochen Lauter, Ken Kroll The Sample Environment Group provides equipment and support for studying materials under controlled conditions (temperature, pressure, magnetic field, chemical environment, etc.). When you come to SNS to conduct an experiment, our front-line teams are there to support you. Although we currently offer a wide range of capabilities, we realize that these capabilities must continually grow. Therefore, we also have a busy research

289

Sample Environment Equipment Categories - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home › Instruments › Sample Environment Home › Instruments › Sample Environment Sample Environment: Categories of Equipment All Ancillary Equipment Auto Changer Closed Cycle Refrigerators Closed Cycle Refrigerators - Bottom Loading Closed Cycle Refrigerators - Top Loading Furnaces Gas Handling Gas Panel High Pressure Systems Liquid Helium Cryostats Magnet Systems Other Special Environments Sample Cell Sample Stick Ultra Low Temperature Devices Sample Environment: by Beam Line All BL-11A-POWGEN BL-11B-MANDI BL-12-TOPAZ BL-13-Fundamental Neutron Physics Beam Line BL-14A-BL-14A BL-14B-HYSPEC BL-15-Neutron Spin Echo (NSE) BL-16B-VISION BL-17-SEQUOIA BL-18-ARCS BL-1A-TOF-USANS BL-1B-NOMAD BL-2-BASIS BL-3-SNAP BL-4A-Magnetism Reflectometer BL-4B-Liquids Reflectometer BL-5-Cold Neutron Chopper Spectrometer (CNCS) BL-6-EQ-SANS

290

Sample Desorption/Ionization From Mesoporous Silica  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample Desorption/Ionization From Mesoporous Silica Sample Desorption/Ionization From Mesoporous Silica Sample Desorption/Ionization From Mesoporous Silica Mesoporous silica is shown to be a sample holder for laser desorption/ionization of mass spectrometry. Available for thumbnail of Feynman Center (505) 665-9090 Email Sample Desorption/Ionization From Mesoporous Silica Mesoporous silica is shown to be a sample holder for laser desorption/ionization of mass spectrometry. Supported mesoporous silica was prepared by coating an ethanolic silicate solution having a removable surfactant onto a substrate to produce a self-assembled, ordered, nanocomposite silica thin film. The surfactant was chosen to provide a desired pore size between about 1 nanometer diameter and 50 nanometers diameter. Removal of the surfactant resulted in a mesoporous silica thin

291

HFIR Sample Environment | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

HFIR Sample Environment HFIR Sample Environment The Sample Environment Group provides equipment and support for studying materials under controlled conditions (temperature, pressure, magnetic field, chemical environment, etc.). When you come to HFIR to conduct an experiment, our front-line teams are there to support you. Although we currently offer a wide range of capabilities, we realize that these capabilities must continually grow. Therefore, we also have a busy research and development team, and we encourage you to partner with them to develop new equipment and techniques. The online Sample Environment Equipment Database allows you to search for information about the sample environment equipment available for HFIR instruments. Contact HFIR Team Leader Chris Redmon Resources Sample Environment Equipment Database

292

100 Area Columbia River sediment sampling  

SciTech Connect

Forty-four sediment samples were collected from 28 locations in the Hanford Reach of the Columbia River to assess the presence of metals and man-made radionuclides in the near shore and shoreline settings of the Hanford Site. Three locations were sampled upriver of the Hanford Site plutonium production reactors. Twenty-two locations were sampled near the reactors. Three locations were sampled downstream of the reactors near the Hanford Townsite. Sediment was collected from depths of 0 to 6 in. and between 12 to 24 in. below the surface. Samples containing concentrations of metals exceeding the 95 % upper threshold limit values (DOE-RL 1993b) are considered contaminated. Contamination by arsenic, chromium, copper, lead, and zinc was found. Man-made radionuclides occur in all samples except four collected opposite the Hanford Townsite. Man-made radionuclide concentrations were generally less than 1 pCi/g.

Weiss, S.G. [Westinghouse Hanford Co., Richland, WA (United States)

1993-09-08T23:59:59.000Z

293

Systematic Sampling of Scanning Lidar Swaths  

E-Print Network (OSTI)

Proof of concept lidar research has, to date, examined wall-to-wall models of forest ecosystems. While these studies have been important for verifying lidars efficacy for forest surveys, complete coverage is likely not the most cost effective means of using lidar as auxiliary data for operational surveys; sampling of some sort being the better alternative. This study examines the effectiveness of sampling with high point-density scanning lidar data and shows that systematic sampling is a better alternative to simple random sampling. It examines the bias and mean squared error of various estimators, and concludes that a linear-trend-based and especially an autocorrelation-assisted variance estimator perform better than the commonly used simple random sampling based-estimator when sampling is systematic.

Marcell, Wesley Tyler

2009-12-01T23:59:59.000Z

294

Techniques for geothermal liquid sampling and analysis  

DOE Green Energy (OSTI)

A methodology has been developed that is particularly suited to liquid-dominated resources and adaptable to a variety of situations. It is intended to be a base methodology upon which variations can be made to meet specific needs or situations. The approach consists of recording flow conditions at the time of sampling, a specific insertable probe sampling system, a sample stabilization procedure, commercially available laboratory instruments, and data quality check procedures.

Kindle, C.H.; Woodruff, E.M.

1981-07-01T23:59:59.000Z

295

Sample ENERGY STAR performance documents | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Verify and document your savings Sample ENERGY STAR performance documents Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers...

296

Category:Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Category Edit History Facebook icon Twitter icon Category:Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

297

Samples of Soil from Arco, Idaho  

SciTech Connect

Samples from a single drilling made at Arco, Idaho were submitted to determine the adsorptive capacity of soil at Arco, Idaho for radioactive elements.

Stewart, G. D.

1949-11-22T23:59:59.000Z

298

Sample Forms | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Sample Forms Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management &...

299

Investigation of formaldehyde and acetaldehyde sampling rate...  

NLE Websites -- All DOE Office Websites (Extended Search)

formaldehyde and acetaldehyde sampling rate and ozone interference for passive deployment of Waters Sep-Pak XPoSure samplers Title Investigation of formaldehyde and acetaldehyde...

300

Current Projects: Rapid Sampling Tools - Vulnerability Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications include counter-terrorism, emergency response teams, drug and environmental raids, and waste management. For more information visit Rapid Sampling from Sealed...

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Category:Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Category Edit History Facebook icon Twitter icon Category:Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

302

Automated Surface Sampling Probe for Mass Spectrometry  

Dr. Gary Van Berkel and colleagues have developed a liquid microjunction surface sampling probe (LMJ?SSP). The LMJ?SSP provides mass spectrometry with ...

303

Method and apparatus for sampling atmospheric mercury  

DOE Patents (OSTI)

A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

Trujillo, Patricio E. (Santa Fe, NM); Campbell, Evan E. (Los Alamos, NM); Eutsler, Bernard C. (Los Alamos, NM)

1976-01-20T23:59:59.000Z

304

High order Parzen windows and randomized sampling.  

E-Print Network (OSTI)

???In the thesis, high order Parzen windows are studied for understanding some algorithms in learning theory and randomized sampling in multivariate approximation. Our ideas are (more)

Zhou, Xiangjun (???)

2009-01-01T23:59:59.000Z

305

Sample Forms | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Sample Forms | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

306

Guidance Concerning Applicable Sampling Plan for Certification...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sampling Plan for Certification of Consumer Product The Energy Policy and Conservation Act of 1975, as amended, authorizes the Department of Energy to enforce compliance...

307

Improved Gas Sampling Device - Available Technologies - PNNL  

Summary. This is an improved device for gas sampling and analysis in which the design of the device includes features for maximizing the surface area ...

308

Augmented Fish Health Monitoring; Volume II of II, Completion Report.  

DOE Green Energy (OSTI)

The Bonneville Power Administration (BPA) initiated the Augmented Fish Health Monitoring project in 1986. This project was a five year interagency project involving fish rearing agencies in the Columbia Basin. Participating agencies included: Washington Department of Fisheries (WDF), Oregon Department of Fish and Wildlife, Idaho Department of Fish and Game, and the US Fish and Wildlife Service (USFWS). This is the final data report for the Augmented Fish Health Monitoring project. Data collected and sampling results for 1990 and 1991 are presented within this report. An evaluation of this project can be found in Augmented Fish Health Monitoring, Volume 1, Completion Report.'' May, 1991. Pathogen detection methods remained the same from methods described in Augmented Fish Health Monitoring, Annual Report 1989,'' May, 1990. From January 1, 1990 to June 30, 1991 fish health monitoring sampling was conducted. In 1990 21 returning adult stocks were sampled. Juvenile pre-release exams were completed on 20 yearling releases, and 13 sub-yearling releases in 1990. In 1991 17 yearling releases and 11 sub-yearling releases were examined. Midterm sampling was completed on 19 stocks in 1990. Organosomatic analysis was performed at release on index station stocks; Cowlitz spring and fall chinook, Lewis river early coho and Lyons Ferry fall chinook.

Michak, Patty

1991-12-01T23:59:59.000Z

309

PHOTOMETRIC SUPERNOVA COSMOLOGY WITH BEAMS AND SDSS-II  

SciTech Connect

Supernova (SN) cosmology without spectroscopic confirmation is an exciting new frontier, which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of SNe with their probabilities derived from their multi-band light curves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 10{sup 4} SNe, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric SN cosmology. We compare the performance of BEAMS to that of both mock spectroscopic surveys and photometric samples that have been cut using typical selection criteria. The latter typically either are biased due to contamination or have significantly larger contours in the cosmological parameters due to small data sets. We then apply BEAMS to the 792 SDSS-II photometric SNe with host spectroscopic redshifts. In this case, BEAMS reduces the area of the {Omega}{sub m}, {Omega}{sub {Lambda}} contours by a factor of three relative to the case where only spectroscopically confirmed data are used (297 SNe). In the case of flatness, the constraints obtained on the matter density applying BEAMS to the photometric SDSS-II data are {Omega}{sup BEAMS}{sub m} = 0.194 {+-} 0.07. This illustrates the potential power of BEAMS for future large photometric SN surveys such as Large Synoptic Survey Telescope.

Hlozek, Renee [Oxford Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Kunz, Martin [Department de physique theorique, Universite de Geneve, 30, quai Ernest-Ansermet, CH-1211 Geneve 4 (Switzerland); Bassett, Bruce; Smith, Mat; Newling, James [African Institute for Mathematical Sciences, 68 Melrose Road, Muizenberg 7945 (South Africa); Varughese, Melvin [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, Cape Town, 7700 (South Africa); Kessler, Rick; Frieman, Joshua [The Kavli Institute for Cosmological Physics, The University of Chicago, 933 East 56th Street, Chicago, IL 60637 (United States); Bernstein, Joseph P.; Kuhlmann, Steve; Marriner, John [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Campbell, Heather; Lampeitl, Hubert; Nichol, Robert C. [Institute of Cosmology and Gravitation, Dennis Sciama Building Burnaby Road Portsmouth PO1 3FX (United Kingdom); Dilday, Ben [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Falck, Bridget; Riess, Adam G. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 203 South 33rd Street, Philadelphia, PA 19104 (United States); Schneider, Donald P., E-mail: rhlozek@astro.princeton.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

2012-06-20T23:59:59.000Z

310

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines  

E-Print Network (OSTI)

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines: · Oil samples can be collected during oil changes. Follow manufacturers recommendations on frequency (hours, mileage, etc) of oil changes. · Capture a sample from the draining oil while the oil is still hot

311

Experiments with radioactive samples at the Advanced Photon Source.  

SciTech Connect

The Advanced Photon Source (APS) at Argonne National Laboratory is a national synchrotron-radiation light source research facility. The 7 GeV electron Storage Ring is currently delivering intense high brilliance x-ray beams to a total of 34 beamlines with over 120 experiment stations to members of the international scientific community to carry out forefront basic and applied research in several scientific disciplines. Researchers come to the APS either as members of Collaborative Access Teams (CATs) or as Independent Investigators (IIs). Collaborative Access Teams comprise large number of investigators from universities, industry, and research laboratories with common research objectives. These teams are responsible for the design, construction, finding, and operation of beamlines. They are the owners of their experimental enclosures (''hutches'') designed and built to meet their specific research needs. Fig. 1 gives a plan view of the location of the Collaborative Access Teams by Sector and Discipline. In the past two years, over 2000 individual experiments were conducted at the APS facility. Of these, about 60 experiments involved the use of radioactive samples, which is less than 3% of the total. However, there is an increase in demand for experiment stations to accommodate the use of radioactive samples in different physical forms embedded in various matrices with activity levels ranging from trace amounts of naturally occurring radionuclides to MBq (mCi) quantities including transuranics. This paper discusses in some detail the steps in the safety review process for experiments involving radioactive samples and how ALARA philosophy is invoked at each step and implemented.

Veluri, V. R.; Justus, A.; Glagola, B.; Rauchas, A.; Vacca, J.

2000-11-01T23:59:59.000Z

312

How Sample Completeness Affects Gamma-Ray Burst Classification  

E-Print Network (OSTI)

Unsupervised pattern recognition algorithms support the existence of three gamma-ray burst classes; Class I (long, large fluence bursts of intermediate spectral hardness), Class II (short, small fluence, hard bursts), and Class III (soft bursts of intermediate durations and fluences). The algorithms surprisingly assign larger membership to Class III than to either of the other two classes. A known systematic bias has been previously used to explain the existence of Class III in terms of Class I; this bias allows the fluences and durations of some bursts to be underestimated (Hakkila et al., ApJ 538, 165, 2000). We show that this bias primarily affects only the longest bursts and cannot explain the bulk of the Class III properties. We resolve the question of Class III existence by demonstrating how samples obtained using standard trigger mechanisms fail to preserve the duration characteristics of small peak flux bursts. Sample incompleteness is thus primarily responsible for the existence of Class III. In order to avoid this incompleteness, we show how a new dual timescale peak flux can be defined in terms of peak flux and fluence. The dual timescale peak flux preserves the duration distribution of faint bursts and correlates better with spectral hardness 2 (and presumably redshift) than either peak flux or fluence. The techniques presented here are generic and have applicability to the studies of other transient events. The results also indicate that pattern recognition algorithms are sensitive to sample completeness; this can influence the study of large astronomical databases such as those found in a Virtual Observatory.

Jon Hakkila; Timothy W. Giblin; Richard J. Roiger; David J. Haglin; William S. Paciesas; Charles A. Meegan

2002-01-01T23:59:59.000Z

313

PhaseII1.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

Stakeholder Meeting Stakeholder Meeting DOE-NETL Proposed Phase II Large Scale Mercury Control Technology Field Testing Program September 12, 2002 Meeting Summary A meeting was held in Arlington, VA on September 12 on DOE-NETL's plans to go forward with a second phase of field testing of advanced mercury control technology. The meeting was held in conjunction with the Air Quality III Conference and was attended by approximately 53 representatives from the coal and electric-utility industries, technology developers, EPA, and other interested parties (see attached attendees list). Scott Renninger provided a brief overview of DOE-NETL's current mercury field testing program. A summary of the results from an earlier stakeholder meeting held in Washington on June 4 were also presented as a starting point for discussion to help

314

II.CONTRACT ID CODE  

National Nuclear Security Administration (NNSA)

1 1 II.CONTRACT ID CODE ~AGE 1 of AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT PAGES AC 5. PROJECT NO. (If applicable) 3. EFFECTNE DATE 2. AMENDMENTfMODIFICA TION NO. 4. REQUISITIONIPURCHASE REQ. NO. See Block 16c. NOPR 7. ADMINISTERED BY (If other than Item 6) CODE 05008 6. ISSUED BY CODE 05008 U.S. Department of Energy National Nuclear Security Administration U.S. Department of Energy National Nuclear Security Administration P.O. Box 2050 Oak Ridge, TN 37831 P.O. Box 2050 Oak Ridge, TN 37831 9A. AMENDMENT OF SOLICITATION NO. 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) Babcock & Wilcox Technical Services Y-12, LLC P.O. Box 2009 MS 8014 9B. DATED (SEE ITEM 11) Oak Ridge, TN 37831-8014 lOA. MODIFICATION OF CONTRACT/ORDER NO.

315

GenII Gap Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GENII-Gap Analysis GENII-Gap Analysis Defense Nuclear Facilities Safety Board Recommendation 2002-1 Software Quality Assurance Improvement Plan Commitment 4.2.1.3: Software Quality Assurance Improvement Plan: GENII Gap Analysis Final Report U.S. Department of Energy Office of Environment, Safety, and Health 1000 Independence Ave., S.W. Washington, DC 20585-2040 May 2004 GENII Gap Analysis May 2004 Final Report INTENTIONALLY BLANK ii GENII Gap Analysis May 2004 Final Report FOREWORD This document provides an evaluation of the Software Quality Assurance (SQA) attributes of GENII, a radiological dispersion computer code, relative to established requirements. This evaluation, a "gap analysis", is performed to meet commitment 4.2.1.3 of the Department of

316

THE GREEN BANK TELESCOPE H II REGION DISCOVERY SURVEY. III. KINEMATIC DISTANCES  

SciTech Connect

Using the H I emission/absorption method, we resolve the kinematic distance ambiguity and derive distances for 149 of 182 (82%) H II regions discovered by the Green Bank Telescope H II Region Discovery Survey (GBT HRDS). The HRDS is an X-band (9 GHz, 3 cm) GBT survey of 448 previously unknown H II regions in radio recombination line and radio continuum emission. Here, we focus on HRDS sources from 67 Degree-Sign {>=} l {>=} 18 Degree-Sign , where kinematic distances are more reliable. The 25 HRDS sources in this zone that have negative recombination line velocities are unambiguously beyond the orbit of the Sun, up to 20 kpc distant. They are the most distant H II regions yet discovered. We find that 61% of HRDS sources are located at the far distance, 31% at the tangent-point distance, and only 7% at the near distance. 'Bubble' H II regions are not preferentially located at the near distance (as was assumed previously) but average 10 kpc from the Sun. The HRDS nebulae, when combined with a large sample of H II regions with previously known distances, show evidence of spiral structure in two circular arc segments of mean Galactocentric radii of 4.25 and 6.0 kpc. We perform a thorough uncertainty analysis to analyze the effect of using different rotation curves, streaming motions, and a change to the solar circular rotation speed. The median distance uncertainty for our sample of H II regions is only 0.5 kpc, or 5%. This is significantly less than the median difference between the near and far kinematic distances, 6 kpc. The basic Galactic structure results are unchanged after considering these sources of uncertainty.

Anderson, L. D. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Bania, T. M. [Institute for Astrophysical Research, Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Balser, Dana S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Rood, Robert T., E-mail: Loren.Anderson@mail.wvu.edu [Astronomy Department, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903-0818 (United States)

2012-07-20T23:59:59.000Z

317

Diversity of supernovae Ia determined using equivalent widths of Si II 4000  

E-Print Network (OSTI)

Spectroscopic and photometric properties of low and high-z supernovae Ia (SNe Ia) have been analyzed in order to achieve a better understanding of their diversity and to identify possible SN Ia sub-types. We use wavelet transformed spectra in which one can easily measure spectral features. We investigate the \\ion{Si}{II} 4000 equivalent width ($EW_w\\lbrace\\ion{Si}{II}\\rbrace$). The ability and, especially, the ease in extending the method to SNe at high-$z$ is demonstrated. We applied the method to 110 SNe Ia and found correlations between $EW_w\\lbrace\\ion{Si}{II}\\rbrace$ and parameters related to the light-curve shape for 88 supernovae with available photometry. No evidence for evolution of $EW_w\\lbrace\\ion{Si}{II}\\rbrace$ with redshift is seen. Three sub-classes of SNe Ia were confirmed using an independent cluster analysis with only light-curve shape, colour, and $EW_w\\lbrace\\ion{Si}{II}\\rbrace$. SNe from high-$z$ samples seem to follow a similar grouping to nearby objects. The $EW_w\\lbrace\\ion{Si}{II}\\rbrace$ value measured on a single spectrum may point towards SN Ia sub-classification, avoiding the need for expansion velocity gradient calculations.

V. Arsenijevic; S. Fabbro; A. M. Mourao; A. J. Rica da Silva

2008-09-18T23:59:59.000Z

318

Disc valve for sampling erosive process streams  

DOE Patents (OSTI)

This is a patent for a disc-type, four-port sampling valve for service with erosive high temperature process streams. Inserts and liners of ..cap alpha..-silicon carbide respectively, in the faceplates and in the sampling cavities, limit erosion while providing lubricity for a smooth and precise operation. 1 fig.

Mrochek, J.E.; Dinsmore, S.R.; Chandler, E.W.

1984-08-16T23:59:59.000Z

319

Efficient maximal poisson-disk sampling  

Science Conference Proceedings (OSTI)

We solve the problem of generating a uniform Poisson-disk sampling that is both maximal and unbiased over bounded non-convex domains. To our knowledge this is the first provably correct algorithm with time and space dependent only on the ... Keywords: Poisson disk, blue noise, linear complexity, maximal, provable convergence, sampling

Mohamed S. Ebeida; Andrew A. Davidson; Anjul Patney; Patrick M. Knupp; Scott A. Mitchell; John D. Owens

2011-08-01T23:59:59.000Z

320

NMR Sample Policy Version: 20 Jul 2006  

E-Print Network (OSTI)

NMR Sample Policy Version: 20 Jul 2006 Task: NMR Sample Preparation Equipment Used: Centrifuge, pH meter, NMR spectrometers, fumehood, fridges, freezers, tube cleaner Location: Rooms G14, G16, G23 and G24 in the Henry Wellcome Building for Biomolecular NMR Spectroscopy, University of Birmingham Hazards

Birmingham, University of

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

TRUPACT-II procedures and maintenance instructions  

Science Conference Proceedings (OSTI)

The purpose of this document is to provide the technical requirements for operation, inspection and maintenance of a TRUPACT-II Shipping Package and directly related components. This document shall supply the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP) and Certificate of Compliance (C of C) 9218. In the event there is a conflict between this document and the TRUPACT-II SARP (NRC Certificate of Compliance No. 9218), the TRUPACT-II SARP shall govern. This document details the operations, maintenance, repair, replacement of components, as well as the documentation required and the procedures to be followed to maintain the integrity of the TRUPACT-II container. These procedures may be modified for site use, but as a minimum all parameters and format listed herein must be included in any site modified version. For convenience and where applicable steps may be performed out of sequence. Packaging and payload handling equipment and transport trailers have been specifically designed for use with the TRUPACT-II Packaging. This document discusses the minimum required procedures for use of the adjustable center of gravity lift fixture and the TRUPACT-II transport trailer in conjunction with the TRUPACT-II Packaging.

NONE

1994-01-14T23:59:59.000Z

322

Inspection/Sampling Schedule | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspection/Sampling Schedule Inspection/Sampling Schedule Inspection/Sampling Schedule Site Inspection and Water Sampling Schedules Note: The following schedules are subject to change without prior notice and will be updated periodically. Site Name Inspection Date Sampling Week Ambrosia Lake, NM, Disposal Site August 18, 2014 November 20, 2013 Bluewater, NM, Disposal Site August 18, 2014 November 20, 2013 January 28, 2014 May 12, 2014 Boiling Nuclear Superheater (BONUS), PR, Decommissioned Reactor Site Next event 2017 Burrell, PA, Disposal Site December 9, 2013 November 20, 2013 Canonsburg, PA, Disposal Site December 9, 2013 November 19, 2013 Durango, CO, Disposal Site May 19, 2014 June 2, 2014 Durango, CO, Processing Site N/A June 2, 2014 September 1, 2014 Edgemont, SD, Disposal Site June 23, 2014 N/A

323

Radioactive Samples / Materials at the APS  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Radioactive Samples / Materials at the APS Using Radioactive Samples / Materials at the APS The use of radioactive samples requires additional information for review and approval. All proposed experiments involving radioactive samples will be reviewed by the APS Radioactive Sample Safety Review Committee (RSSRC). The review will be on a graded basis. Hence, the experimenters are strongly advised to send in the experiment proposal in detail at least 2 months before the expected scheduled date of the experiment. Previously approved containment, isotopes and weights can be submitted as late as 2 weeks in advance. If your ESAF was submitted less than seven (7) days in advance of its scheduled start date you may be delayed to allow time for a safety review. The following guidelines are to be followed for all experiments with

324

New Sampling Methods for Airborne Microorganisms  

NLE Websites -- All DOE Office Websites (Extended Search)

New Sampling Methods for Airborne Microorganisms New Sampling Methods for Airborne Microorganisms Speaker(s): Klaus Willeke Date: February 27, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: David Faulkner Klaus Willeke and his international team of engineers, physicists, microbiologists, industrial hygienists and environmental scientists have worked for about 15 years on the development of new methods for sampling airborne microorganisms. The following topics will be highlighted: long-term bioaerosol sampling into liquid by swirling air motion ("Biosampler"); personal aerosol sampling with low wind sensitivity and highfilter deposit uniformity ("Button Aerosol Sampler"); collection of microorganisms by electrostatic means; source testing as a predictor for microorganism release from surfaces; particle concentrating from large air

325

Remedial investigation sampling and analysis plan for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Field Sampling Plan  

SciTech Connect

The Environmental Management Division (EMD) of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. J-Field is within the Edgewood Area of APG in Harford County, Maryland (Figure 1. 1). Since World War II activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). Considerable archival information about J-Field exists as a result of efforts by APG staff to characterize the hazards associated with the site. Contamination of J-Field was first detected during an environmental survey of the Edgewood Area conducted in 1977 and 1978 by the US Army Toxic and Hazardous Materials Agency (USATHAMA) (predecessor to the US Army Environmental Center [AEC]). As part of a subsequent USATHAMA -environmental survey, 11 wells were installed and sampled at J-Field. Contamination at J-Field was also detected during a munitions disposal survey conducted by Princeton Aqua Science in 1983. The Princeton Aqua Science investigation involved the installation and sampling of nine wells and the collection and analysis of surficial and deep composite soil samples. In 1986, a Resource Conservation and Recovery Act (RCRA) permit (MD3-21-002-1355) requiring a basewide RCRA Facility Assessment (RFA) and a hydrogeologic assessment of J-Field was issued by the US Environmental Protection Agency (EPA). In 1987, the US Geological Survey (USGS) began a two-phased hydrogeologic assessment in data were collected to model, groundwater flow at J-Field. Soil gas investigations were conducted, several well clusters were installed, a groundwater flow model was developed, and groundwater and surface water monitoring programs were established that continue today.

Benioff, P.; Biang, R.; Dolak, D.; Dunn, C.; Martino, L.; Patton, T.; Wang, Y.; Yuen, C.

1995-03-01T23:59:59.000Z

326

Photon Sciences | NSLS-II Beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Beamlines NSLS-II Beamlines beamlines Current NSLS-II Beamline Diagram The National Synchrotron Light Source II will accommodate more than 60 beamlines using 27 straight sections for insertion-device sources and 31 bending-magnet or three-pole-wiggler sources, with additional beamlines possible through canted insertion devices and multiple branches. Six beamlines were selected in 2008 and are now funded within the NSLS-II project. These project beamlines encompass research programs in inelastic x-ray scattering, hard x-ray nanoprobe, coherent hard x-ray scattering, coherent soft x-ray scattering and polarization, submicron resolution x-ray spectroscopy, and x-ray powder diffraction. For each beamline, a beamline advisory team, or BAT, has been established to represent the broader scientific community in a specific area of

327

ARM - Field Campaign - IPASRC II Campaign  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsIPASRC II Campaign govCampaignsIPASRC II Campaign Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : IPASRC II Campaign 2001.03.05 - 2001.03.16 Lead Scientist : Rune Storvold Data Availability All IPASRC II related data will be collected from the different principal investigators at the University of Alaska in Fairbanks, Geophysical Institute. For further information, contact Chris Marty, (907) 474-7360, or Rune Storvold, (907) 474-6639. For data sets, see below. Summary The second IPASRC II was successfully carried out at the NSA-CART site at Barrow from March 5 to March 15, 2001. During most of the time, great weather and clear skies provided measurements of longwave downward irradiances between 130 and 170 Wm-2 and air temperatures between -25 and -35 degrees Celsius. All pyrgeometers were

328

NMMSS II Training | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

II Training | National Nuclear Security Administration II Training | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog NMMSS II Training Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > Training > NMMSS II Training NMMSS II Training U.S. Department of Energy / U.S. Nuclear Regulatory Commission

329

NSLS-II Integrated Project Team (IPT)  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Integrated Project Team NSLS-II Integrated Project Team DOE uses an integrated project teaming approach for managing the NSLS-II Project. This Integrated Project Team (IPT), organized and led by the NSLS-II Federal Project Director, is an essential element in DOE's acquisition process and is being used during all phases of the project's life cycle. This team consists of professionals representing diverse disciplines with the specific knowledge, skills, and abilities to support the Federal Project Director in successfully executing the project. The IPT for the NSLS-II Project will consist of members from both DOE and the contractor, Brookhaven Science Associates (BSA). The team membership will change as the project progresses from initiation to closeout to ensure the necessary skills are always represented to meet the project's needs.

330

Breezy Bucks II | Open Energy Information  

Open Energy Info (EERE)

Breezy Bucks II Breezy Bucks II Facility Breezy Bucks II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Breezy Bucks II LLC / John Deere Wind Energy Developer Breezy Bucks II LLC / John Deere Wind Energy Energy Purchaser Xcel Energy Location Lake Benton MN Coordinates 44.3144°, -96.3317° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3144,"lon":-96.3317,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Heber II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

II Geothermal Facility II Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Heber II Geothermal Facility General Information Name Heber II Geothermal Facility Facility Heber II Sector Geothermal energy Location Information Location Imperial Valley, California Coordinates 33.03743°, -115.621591° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.03743,"lon":-115.621591,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

PARS II User Account Access Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Management Office of Management Office of Engineering and Construction Management User Account Access Guide for PARS II Version 1.5 June 25, 2011 Submitted by: Energy Enterprise Solutions 20440 Century Blvd. Suite 150 Germantown, MD 20874 Phone 301-916-0050 Fax 301-916-0066 www.eesllc.net June 25, 2011 (V1.5) PARS II User Account Access Guide ii This page intentionally left blank. June 25, 2011 (V1.5) PARS II User Account Access Guide iii Title Page Document Name: User Account Access Guide for PARS II Version Number: V1.5 Publication Date: June 25, 2011 Contract Number: DE-AT01-06IM00102 Project Number: 1ME07 CLIN 4 Prepared by: Scott Burns, Energy Enterprise Solutions, LLC Reviewed by: Judith Bernsen, Energy Enterprise Solutions, LLC

333

Navy II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

II Geothermal Facility II Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Navy II Geothermal Facility General Information Name Navy II Geothermal Facility Facility Navy II Sector Geothermal energy Location Information Location Coso Junction, California Coordinates 36.018975669535°, -117.79197692871° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.018975669535,"lon":-117.79197692871,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

TRUPACT-II container maintenance program plan  

SciTech Connect

This document details the maintenance/repair and replacement of components, as well as the documentation required and the procedures to be followed to maintain the integrity of the TRUPACT-II container, in accordance with requirements of the TRUPACT-II Container Operations and Maintenance Manual, OM-134, the TRUPACT-II Container Safety Analysis Report (SARP), and the TRUPACT-II Container Certificate of Compliance (Number 9218). The routine shipping and receiving inspections required by the Department of Transportation (DOT), Department of Energy (DOE), Nuclear Regulatory Commission (NRC) and other regulations are not addressed in this document. This document applies to all DOE shipping and receiving sites that use the TRUPACT-II containers.

Not Available

1990-11-01T23:59:59.000Z

335

TRUPACT-II Operating and Maintenance Instructions  

SciTech Connect

The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II) Shipping Package and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP) and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9218. In the event there is a conflict between this document and the TRUPACT-II SARP, the TRUPACT-II SARP shall govern. TRUPACT-II C of C number 9218 states, ''... each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.'' It further states, ''... each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the application.'' Chapter 9 of the TRUPACT-II SARP charges the Westinghouse Electric Corporation Waste Isolation Division (WID) with assuring that the TRUPACT-II is used in accordance with the requirements of the C of C. To meet this requirement and verify consistency of operations when loading and unloading the TRUPACT-II on the trailer, placing a payload in the packaging, unloading the payload from the packaging, or performing maintenance, the U.S. Department of Energy Carlsbad Area Office (U.S. DOE/CAO) finds it necessary to implement the changes that follow. This TRUPACT-II maintenance document represents a change to previous philosophy regarding site specific procedures for the use of the TRUPACT-II. This document details the instructions to be followed to consistently operate and maintain the TRUPACT-II. The intent of these instructions is to ensure that all users of the TRUPACT-II follow the same or equivalent instructions. Users may achieve this intent by any of the following methods: (1) Utilizing these instructions as is, or (2) Attaching a site-specific cover page/letter to this document stating that these are the instructions to be used at their location, or (3) Sites may prepare their own document using the steps in this document word-for-word, in-sequence, including Notes and Cautions. Site specific information may be included as deemed necessary. Submit the document to WID National TRU Programs for approval. Any revision made subsequent to WID TRU Program's approval shall be reviewed and approved by WID TRU Programs. A copy of the approval letter from WID National TRU Programs should be available for audit purposes. Users shall develop site-specific procedures addressing leak testing, preoperational activities, quality assurance, hoisting and rigging, and radiation health physics to be used in conjunction with the instructions contained in this document. Users desiring to recommend changes to this document may submit their recommendations to the WID National TRU Programs for evaluation. If approved, the change(s) will be incorporated into this document for use by all TRUPACT-II users. User sites will be audited to this document to ensure compliance within one year from the effective date of this revision. This document discusses operating instructions, required inspections and maintenance for the following: TRUPACT-II packaging, and Miscellaneous packaging, special tools, and equipment. Packaging and payload handling equipment and transport trailers have been specifically designed for use with the TRUPACT-II Packaging. This document discusses the required instructions for use of the following equipment in conjunction with the TRUPACT-II Packaging: TRUPACT-II Mobile Loading Unit (MLU), Adjustable Center-of-Gravity Lift Fixture (ACGLF), and TRUPACT-II Transport Trailer. Attachment E contains the various TRUPACT-II packaging interface control drawings, leak-test and vent-port tool drawings, ACGLF drawings, and tie-down drawings that identify the various system components.

Westinghouse Electric Corporation, Waste Isolation Division

1999-12-31T23:59:59.000Z

336

PARS II Change Request (CR) Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Title: Phone #: Office/Symbol: Email: CHANGE TYPE: Defect: New Requirement: PRIORITY: PARS II Change Request Form (APR 2011) PARS II Change Request (CR) Form 1 = Prevents the accomplishment of an essential PARS-II capability 3 = Adversely affects the accomplishment of an essential PARS-II capability, but a work-around solution is known 4 = Results in User / Operator inconvenience or annoyance, but does not affect an essential PARS-II capability 5 = Any other effect 1) Detailed description of problem/need. (If possible, provide project #(s) you are working with). PROBLEM/CHANGE DESCRIPTION: 2) Where in system defect is seen or where new functionality is required (i.e., which screen, which report). Screenshots (as separate attachments) are helpful.

337

Ormesa II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

II Geothermal Facility II Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ormesa II Geothermal Facility General Information Name Ormesa II Geothermal Facility Facility Ormesa II Sector Geothermal energy Location Information Address 3300 East Evan Hewes Highway Location Holtville, California Zip 92250 Coordinates 32.787238448581°, -115.24778366089° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.787238448581,"lon":-115.24778366089,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Steamboat II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

II Geothermal Facility II Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat II Geothermal Facility General Information Name Steamboat II Geothermal Facility Facility Steamboat II Sector Geothermal energy Location Information Location Washoe, Nevada Coordinates 40.5608387°, -119.6035495° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5608387,"lon":-119.6035495,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Sample Environment at SNAP | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample Environment at SNAP Sample Environment at SNAP Sample Mass Calculator Bulk Modulus (GPa) Density (g/cm3) Volume (mm3) Sample Mass Needed (mg) Custom Values NaCl 24.4 2.17 87.1 171.888 MnO 148.0 5.37 87.1 354.256 V 160.0 6.00 87.1 388.104 CoO 180.0 6.44 87.1 402.766 Bi 31.0 9.78 87.1 767.770 Sample Geometry Click below for illustration of sample shapes for use in the Paris-Edinburgh press Volume (mm3) Double-toroid, encapsulated 16.8 Double-toroid, non-encapsulated 31.1 Single-toroid, encapsulated 55.5 Single-toroid, non-encapsulated 87.1 Graphite furnace 68.1 If you see NaN in the "Sample Mass Needed (mg)" field, then one of your entries probably contains non-numeric data or is not a valid number, for example, entering 3.9.0 (double decimal points)

340

Automated collection and processing of environmental samples  

DOE Patents (OSTI)

For monitoring an environmental parameter such as the level of nuclear radiation, at distributed sites, bar coded sample collectors are deployed and their codes are read using a portable data entry unit that also records the time of deployment. The time and collector identity are cross referenced in memory in the portable unit. Similarly, when later recovering the collector for testing, the code is again read and the time of collection is stored as indexed to the sample collector, or to a further bar code, for example as provided on a container for the sample. The identity of the operator can also be encoded and stored. After deploying and/or recovering the sample collectors, the data is transmitted to a base processor. The samples are tested, preferably using a test unit coupled to the base processor, and again the time is recorded. The base processor computes the level of radiation at the site during exposure of the sample collector, using the detected radiation level of the sample, the delay between recovery and testing, the duration of exposure and the half life of the isotopes collected. In one embodiment, an identity code and a site code are optically read by an image grabber coupled to the portable data entry unit.

Troyer, Gary L. (Richland, WA); McNeece, Susan G. (Richland, WA); Brayton, Darryl D. (Richland, WA); Panesar, Amardip K. (Kennewick, WA)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NSLS-II | NEXT Integrated Project Team | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

NEXT Project NEXT stands for NSLS-II Experimental Tools, a set of five or six beamlines being developed for the National Synchrotron Light Source II (NSLS-II), with funding from...

342

Attachment 5 Volume II Pricing Matrix.xls | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 Volume II Pricing Matrix.xls&0; Attachment 5 Volume II Pricing Matrix.xls&0; Attachment 5 Volume II Pricing Matrix.xls&0; More Documents & Publications Attachment 6 Volume V...

343

NSLS II: The Future National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Beamlines NSLS-II Ring Schematic The National Synchrotron Light Source II will accommodate at least 58 beamlines using 27 straight sections for insertion-device sources and...

344

Vapor port and groundwater sampling well  

DOE Patents (OSTI)

A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

Hubbell, J.M.; Wylie, A.H.

1996-01-09T23:59:59.000Z

345

Vapor port and groundwater sampling well  

DOE Patents (OSTI)

A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

346

Gas sampling system for a mass spectrometer  

DOE Patents (OSTI)

The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

Taylor, Charles E; Ladner, Edward P

2003-12-30T23:59:59.000Z

347

Spectroscopic diagnostics for bacteria in biologic sample  

DOE Patents (OSTI)

A method to analyze and diagnose specific bacteria in a biologic sample using spectroscopy is disclosed. The method includes obtaining the spectra of a biologic sample of a non-infected patient for use as a reference, subtracting the reference from the spectra of an infected sample, and comparing the fingerprint regions of the resulting differential spectrum with reference spectra of bacteria in saline. Using this diagnostic technique, specific bacteria can be identified sooner and without culturing, bacteria-specific antibiotics can be prescribed sooner, resulting in decreased likelihood of antibiotic resistance and an overall reduction of medical costs.

El-Sayed, Mostafa A. (Atlanta, GA); El-Sayed, Ivan H. (Somerville, MA)

2002-01-01T23:59:59.000Z

348

Giant Protease TPP II's Structure, Mechanism Uncovered  

NLE Websites -- All DOE Office Websites (Extended Search)

Giant Protease TPP II's Structure, Mechanism Uncovered Print Giant Protease TPP II's Structure, Mechanism Uncovered Print Tripeptidyl peptidase II (TPP II), the largest known eukaryotic enzyme that breaks down proteins (a protease), is implicated in numerous cellular processes including the degradation of the endogenous satiety agent cholecystokinin-8, making TPP II a target in the treatment of obesity. To gain insight into this molecular machine's mechanisms of activation and proteolysis, researchers from Berkeley Lab, the University of California, Berkeley, and the Max Planck Institute of Biochemistry combined single-particle cryo-electron microscopy and x-ray crystallography at ALS Beamline 8.2.2. Treating Obesity with Satiety Cholecystokinin (CCK) is a hormone in the brain and gastrointestinal system that helps stimulate the digestion of fat and protein and acts as a satiety agent, suppressing hunger and inhibiting food intake. Tripeptidyl peptidase II (TPP II) is known to partly regulate CCK-8 (a CCK with 8 amino acid residues) by cleaving the hormone into 5- and 3-residue chains, inactivating it.

349

Giant Protease TPP II's Structure, Mechanism Uncovered  

NLE Websites -- All DOE Office Websites (Extended Search)

Giant Protease TPP II's Structure, Mechanism Uncovered Print Giant Protease TPP II's Structure, Mechanism Uncovered Print Tripeptidyl peptidase II (TPP II), the largest known eukaryotic enzyme that breaks down proteins (a protease), is implicated in numerous cellular processes including the degradation of the endogenous satiety agent cholecystokinin-8, making TPP II a target in the treatment of obesity. To gain insight into this molecular machine's mechanisms of activation and proteolysis, researchers from Berkeley Lab, the University of California, Berkeley, and the Max Planck Institute of Biochemistry combined single-particle cryo-electron microscopy and x-ray crystallography at ALS Beamline 8.2.2. Treating Obesity with Satiety Cholecystokinin (CCK) is a hormone in the brain and gastrointestinal system that helps stimulate the digestion of fat and protein and acts as a satiety agent, suppressing hunger and inhibiting food intake. Tripeptidyl peptidase II (TPP II) is known to partly regulate CCK-8 (a CCK with 8 amino acid residues) by cleaving the hormone into 5- and 3-residue chains, inactivating it.

350

Definition: Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Gas Sampling Jump to: navigation, search Dictionary.png Gas Sampling Gas sampling is done to characterize the chemical, thermal, and hydrological properties of a surface or subsurface hydrothermal system. Various methods are applied to obtain samples used for determination of the composition of gases present in soils or hydrothermal discharges. The flux of volatile gases emitted from a hydrothermal system can also be determined by measuring the flow of gases at specific locations and comparing it to average background emissions. Anomalously high gas flux can provide an indication of hydrothermal activity at depth that is otherwise not apparent. Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like.

351

LANSCE | Lujan Center | Chemical & Sample Prep  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical & Sample Preparation Chemical & Sample Preparation For general questions, please contact the Lujan Center Chemical and Sample Preparation Laboratory responsible: Monika Hartl | hartl@lanl.gov | 505.665.2375 Sample and Equipment Shipping Instructions For questions regarding shipping procedures, contact Lujan Center Experiment Coordinator: Leilani Conradson | leilani@lanl.gov | 505.665.9505 Chemistry Laboratories High-Pressure Laboratory X-ray Laboratory Spectroscopy Laboratory Clean Room Glove box - He atmosphere High-purity water Diamond anvils Rotating anode generators (reflectometry, residual stress, powder diffraction) Zeiss microscope (with fluorescence abilities) Tube and box furnaces Ultrasonic bath ZAP-cell (for in situ diffraction at high P) Infrared spectrometer Brewster angle microscope

352

Definition: Downhole Fluid Sampling | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Downhole Fluid Sampling Jump to: navigation, search Dictionary.png Downhole Fluid Sampling Downhole fluid sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Downhole fluid sampling is typically performed to monitor water quality, study recharge and flow in groundwater systems, and evaluate resource potential of geothermal reservoirs. Analysis of both the liquid and gas fractions of the reservoir fluid allows for detailed characterize the chemical, thermal, or hydrological properties of the subsurface hydrothermal system. View on Wikipedia Wikipedia Definition Ret Like Like You like this.Sign Up to see what your friends like.

353

Sampling Errors in Rawinsonde-Array Budgets  

Science Conference Proceedings (OSTI)

Rawinsonde data used for sounding-array budget computations have random errors, both instrumental errors and errors of representativeness (here called sampling errors). The latter are associated with the fact that radiosondes do not measure large-...

Brian E. Mapes; Paul E. Ciesielski; Richard H. Johnson

2003-11-01T23:59:59.000Z

354

Doppler Radar Sampling Limitations in Convective Storms  

Science Conference Proceedings (OSTI)

Vertical air motion data from a T-28 aircraft were filtered and sampled to simulate Doppler radar measurements. The results suggest that multiple Doppler radar analyses are subject to potentially large spatial aliasing errors in deep convection ...

R. E. Carbone; M. J. Carpenter; C. D. Burghart

1985-09-01T23:59:59.000Z

355

Boson Sampling on a Photonic Chip  

E-Print Network (OSTI)

While universal quantum computers ideally solve problems such as factoring integers exponentially more efficiently than classical machines, the formidable challenges in building such devices motivate the demonstration of simpler, problem-specific algorithms that still promise a quantum speedup. We construct a quantum boson sampling machine (QBSM) to sample the output distribution resulting from the nonclassical interference of photons in an integrated photonic circuit, a problem thought to be exponentially hard to solve classically. Unlike universal quantum computation, boson sampling merely requires indistinguishable photons, linear state evolution, and detectors. We benchmark our QBSM with three and four photons and analyze sources of sampling inaccuracy. Our studies pave the way to larger devices that could offer the first definitive quantum-enhanced computation.

Justin B. Spring; Benjamin J. Metcalf; Peter C. Humphreys; W. Steven Kolthammer; Xian-Min Jin; Marco Barbieri; Animesh Datta; Nicholas Thomas-Peter; Nathan K. Langford; Dmytro Kundys; James C. Gates; Brian J. Smith; Peter G. R. Smith; Ian A. Walmsley

2012-12-11T23:59:59.000Z

356

LIGHT EMITTING DIODE CHARACTERISTICS (SAMPLE LAB WRITEUP)  

E-Print Network (OSTI)

1 LIGHT EMITTING DIODE CHARACTERISTICS (SAMPLE LAB WRITEUP) John A. McNeill ECE Box 000 January 19, 1997 ABSTRACT This lab investigates the V-I characteristic of a light-emitting diode (LED

McNeill, John A.

357

Surface sampling concentration and reaction probe  

DOE Patents (OSTI)

A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

Van Berkel, Gary J; Elnaggar, Mariam S

2013-07-16T23:59:59.000Z

358

Form:SampleForm | Open Energy Information  

Open Energy Info (EERE)

SampleForm Jump to: navigation, search Input the name of a Test Page below. If the resource already exists, you will be able to edit its information. AddEdit a Test Page The text...

359

Efficiently detecting webpage updates using samples  

Science Conference Proceedings (OSTI)

Due to resource constraints, Web archiving systems and search engines usually have difficulties keeping the local repository completely synchronized with the Web. To address this problem, sampling-based techniques periodically poll a subset of webpages ...

Qingzhao Tan; Ziming Zhuang; Prasenjit Mitra; C. Lee Giles

2007-07-01T23:59:59.000Z

360

Microsoft Word - JWS Sample.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 SAMPLE ONLY REV2_02/10/05 SAMPLE ONLY Joint Work Statement For CRADA No. Sample BETWEEN U. S. Department of Energy Naval Petroleum Reserve No. 3 Rocky Mountain Oilfield Testing Center AND Partner Name Project Name 1. Purpose 2. Scope A. TASKS: B. FINAL REPORT: At the end of the project, in accordance with Article XII of the CRADA, RMOTC and the Participant will jointly prepare a final report. 3. Personnel A. RMOTC will provide the following personnel: B. Partner will provide the following personnel: Page 2 of 7 SAMPLE ONLY REV2_02/10/05 4. Equipment A. RMOTC will provide the following equipment: B. Partner will provide the following equipment: 5. Materials A. RMOTC will provide the following materials: B. Partner will provide the following materials:

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Laboratory E131 - Chemical Physics Sample Preparation ...  

Science Conference Proceedings (OSTI)

A115 | A127 | B147 | E131 | E132 | E133 | E134 | E135 | E136 | E137 | E138. Laboratory E131 - Chemical Physics Sample Preparation Laboratory. ...

2013-09-05T23:59:59.000Z

362

Contractor-specific Documentation & Information in PARS II |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contractor-specific Documentation & Information in PARS II Contractor-specific Documentation & Information in PARS II DOE Office of Acquisition and Project Management established...

363

PARS II Process Document - Project Phasing (Multiple CD-2 from...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PARS II Process Document - On Hold Projects.pdf More Documents & Publications ESAAB SOP Requirements to coordinate agreements, milestones and decision documents (AMDD) PARS II...

364

Measuring solar reflectance-Part II: Review of practical methods  

NLE Websites -- All DOE Office Websites (Extended Search)

II: Review of practical methods Title Measuring solar reflectance-Part II: Review of practical methods Publication Type Journal Article Year of Publication 2010 Authors Levinson,...

365

PARS II Process Document- Submitting & Processing Email as Offical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PARS II Process Document- Submitting & Processing Email as Offical Project Action Approval Document PARS II Process Document- Submitting & Processing Email as Offical Project...

366

PARS II Process Document - Over Target Baseline (OTB) Reporting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PARS II Process Document - Over Target Baseline (OTB) Reporting PARS II Process Document - Over Target Baseline (OTB) Reporting This document details the process by which...

367

PARS II CPP Upload Template File | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

File PARS II CPP Upload Template File DPMIS091110OECMCompleteProjectTemplate.zip More Documents & Publications Microsoft Word - PARS II CPP Upload Requirements.docx...

368

Configuring Workstations for use with the PARS II System | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Configuring Workstations for use with the PARS II System Configuring Workstations for use with the PARS II System ConfiguringWorkstationsforusewiththePARSIISystem0.pdf...

369

Configuring Workstations for use with the PARS II System | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Configuring Workstations for use with the PARS II System Configuring Workstations for use with the PARS II System ConfiguringWorkstationsforusewiththePARSIISystem2013071...

370

NSLS-II | ABBIX Integrated Project Team | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

a set of three beamlines being developed for the National Synchrotron Light Source II (NSLS-II), with funding from the National Institutes of Health. Documents & Design Reports...

371

NSLS-II: Accelerator Systems Advisory Committee (ASAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

construction, and operations of major accelerator systems. This group will advise the NSLS-II Associate Laboratory Director (ALD) and the NSLS-II Associate Director for...

372

NSLS II: The Future National Synchrotron Light Source | 2010...  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 Beamline Development Proposals - Results NSLS-II Rendering The 2010 call for beamline development proposals for the National Synchrotron Light Source II yielded 54...

373

Project Assessment and Reporting System (PARS II) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

byDeputySecretaryPoneman17May2010.pdf More Documents & Publications Earned Value (EV) Analysis and Project Assessment & Reporting System (PARS II) PARS II Data Quality...

374

PARS II Earned Value Data Migration Template | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data Migration Template PARSITEMPLATE.xls More Documents & Publications Earned Value (EV) Analysis and Project Assessment & Reporting System (PARS II) PARS II CPP Upload...

375

Mineralogic and compositional studies of barite samples  

Science Conference Proceedings (OSTI)

Three barite samples of different provenance were studied using several characterization methods. The samples were initially examined as grain mounts by X-ray diffraction (XRD) to determine bulk mineralogy and grain sizes. Only barite (BaSO4) was observed in XRD patterns. Elemental abundance mapping by electron microprobe and x-ray microprobe were used to determine whether discrete phases contributed to the trace-metal composition of the bulk sediments. The samples included minute, broadly dispersed grains of lead sulfide, and an unidentified Pb phase that did not include sulfur or phosphorus. Hg was found within a subset of the Pb sulfide grains, along with Cu. A Sr sulfide was observed. Fe was present in all samples, as an oxide and a sulfide. The Fe sulfides were much less abundant in two of the samples. Cu was also observed as a sulfide without associated Pb. Finally, Cr was observed as sub-?m oxide particles and as a chromium oxide component of Fe-rich, >10 ?m lithic fragments. The detected trace metals in the barite samples were components of very minor discrete mineral phases within the more abundant barite grains. Abundant inclusions of Fe oxides, sulfides, and quartz were also observed.

McKinley, James P.

2006-10-01T23:59:59.000Z

376

Comparison of electronic structure of as grown and solar grade silicon samples  

Science Conference Proceedings (OSTI)

A comparison of the electronic structure of two different types of silicon materials viz., (i) as grown silicon and (ii) solar silicon has been carried out utilizing maximum entropy method and pair distribution function using powder X-ray data sets. The precise electron density maps have been elucidated for the two samples. The covalent nature of the bonding between atoms in both the samples is found to be well pronounced and clearly seen from the electron density maps. The electron densities at the middle of the Si-Si bond are found to be 0.47 and 0.45 e/A{sup 3} for as grown silicon and solar silicon respectively. In this work, the local structural information has also been obtained by analyzing the atomic pair distribution functions of these two samples.

Saravanan, R., E-mail: saragow@dataone.in; Sheeba, R. A. J. R. [Madura College, Research Centre and PG Department of Physics (India)

2012-04-15T23:59:59.000Z

377

Microsoft Word - Vol II-091009.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Volume II Volume II Institutional Controls Plan April 2010 U.S. Department of Energy Revision 4 Final This page intentionally left blank Emergency Contact Grand Junction 24-hour Monitored Security Telephone Number (877) 695-5322 This page intentionally left blank U.S. Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. No. S03496-4.0-Final Volume II-Institutional Controls Plan April 2010 Page i Contents Acronyms and Abbreviations ........................................................................................................ iii Executive Summary .........................................................................................................................v 1.0 Introduction......................................................................................................................1-1

378

Experimental and Sampling Design for the INL-2 Sample Collection Operational Test  

SciTech Connect

This report describes the experimental and sampling design developed to assess sampling approaches and methods for detecting contamination in a building and clearing the building for use after decontamination. An Idaho National Laboratory (INL) building will be contaminated with BG (Bacillus globigii, renamed Bacillus atrophaeus), a simulant for Bacillus anthracis (BA). The contamination, sampling, decontamination, and re-sampling will occur per the experimental and sampling design. This INL-2 Sample Collection Operational Test is being planned by the Validated Sampling Plan Working Group (VSPWG). The primary objectives are: 1) Evaluate judgmental and probabilistic sampling for characterization as well as probabilistic and combined (judgment and probabilistic) sampling approaches for clearance, 2) Conduct these evaluations for gradient contamination (from low or moderate down to absent or undetectable) for different initial concentrations of the contaminant, 3) Explore judgment composite sampling approaches to reduce sample numbers, 4) Collect baseline data to serve as an indication of the actual levels of contamination in the tests. A combined judgmental and random (CJR) approach uses Bayesian methodology to combine judgmental and probabilistic samples to make clearance statements of the form "X% confidence that at least Y% of an area does not contain detectable contamination (X%/Y% clearance statements). The INL-2 experimental design has five test events, which 1) vary the floor of the INL building on which the contaminant will be released, 2) provide for varying the amount of contaminant released to obtain desired concentration gradients, and 3) investigate overt as well as covert release of contaminants. Desirable contaminant gradients would have moderate to low concentrations of contaminant in rooms near the release point, with concentrations down to zero in other rooms. Such gradients would provide a range of contamination levels to challenge the sampling, sample extraction, and analytical methods to be used in the INL-2 study. For each of the five test events, the specified floor of the INL building will be contaminated with BG using a point-release device located in the room specified in the experimental design. Then quality control (QC), reference material coupon (RMC), judgmental, and probabilistic samples will be collected according to the sampling plan for each test event. Judgmental samples will be selected based on professional judgment and prior information. Probabilistic samples were selected with a random aspect and in sufficient numbers to provide desired confidence for detecting contamination or clearing uncontaminated (or decontaminated) areas. Following sample collection for a given test event, the INL building will be decontaminated. For possibly contaminated areas, the numbers of probabilistic samples were chosen to provide 95% confidence of detecting contaminated areas of specified sizes. For rooms that may be uncontaminated following a contamination event, or for whole floors after decontamination, the numbers of judgmental and probabilistic samples were chosen using the CJR approach. The numbers of samples were chosen to support making X%/Y% clearance statements with X = 95% or 99% and Y = 96% or 97%. The experimental and sampling design also provides for making X%/Y% clearance statements using only probabilistic samples. For each test event, the numbers of characterization and clearance samples were selected within limits based on operational considerations while still maintaining high confidence for detection and clearance aspects. The sampling design for all five test events contains 2085 samples, with 1142 after contamination and 943 after decontamination. These numbers include QC, RMC, judgmental, and probabilistic samples. The experimental and sampling design specified in this report provides a good statistical foundation for achieving the objectives of the INL-2 study.

Piepel, Gregory F.; Amidan, Brett G.; Matzke, Brett D.

2009-02-16T23:59:59.000Z

379

Warm molecular hydrogen in the Spitzer SINGS galaxy sample  

E-Print Network (OSTI)

(simplified) Results on the properties of warm H2 in 57 normal galaxies are derived from H2 rotational transitions, obtained as part of SINGS. This study extends previous extragalactic surveys of H2, the most abundant constituent of the molecular ISM, to more common systems (L_FIR = e7 to 6e10 L_sun) of all morphological and nuclear types. The S(1) transition is securely detected in the nuclear regions of 86% of SINGS galaxies with stellar masses above 10^9.5 M_sun. The derived column densities of warm H2 (T > ~100 K), even though averaged over kiloparsec-scale areas, are commensurate with those of resolved PDRs; the median of the sample is 3e20 cm-2. They amount to between 1% and >30% of the total H2. The power emitted in the sum of the S(0) to S(2) transitions is on average 30% of the [SiII] line power, and ~4e-4 of the total infrared power (TIR) within the same area for star-forming galaxies, which is consistent with excitation in PDRs. The fact that H2 emission scales tightly with PAH emission, even thoug...

Roussel, H; Hollenbach, D J; Draine, B T; Smith, J D; Armus, L; Schinnerer, E; Walter, F; Engelbracht, C W; Thornley, M D; Kennicutt, R C; Calzetti, D; Dale, D A; Murphy, E J; Bot, C

2007-01-01T23:59:59.000Z

380

Coordination of an underwater glider fleet for adaptive sampling  

E-Print Network (OSTI)

Prediction (ASAP) projects aim to develop a sustainable, portable, adaptive ocean observing and prediction system for use in coastal environments. These projects employ, among other observation platforms, autonomous underwater vehicles that carry sensors to measure physical and biological signals in the ocean. The measurements from all sensing platforms are assimilated in real-time into advanced ocean models. The objective is to coordinate the mobile assets in order to collect data of highest possible utility. Critical to this effort are reliable, efficient and adaptive control strategies to enable the mobile sensor platforms to collect data autonomously. In this paper, we summarize feedback control strategies that enable us to gather useful information over a wide spectrum of spatial and temporal scales. First, we design formation control strategies useful for sampling small spatial scale processes (less than 5 km). In this framework, the feedback control laws maintain a desired formation of vehicles and allow the group to locate interesting features in the ocean. Some of these control strategies were implemented on a group of underwater gliders in Monterey Bay in August 2003, as part of the AOSN-II project. Second, we direct mobile sensor networks to provide synoptic coverage to investigate

Pradeep Bhatta; Edward Fiorelli; Francois Lekien; Naomi E. Leonard; Derek A. Paley; Fumin Zhang; Ralf Bachmayer; Russ E. Davis; David M. Fratantoni; Rodolphe Sepulchre

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

TESTING GRAVITATIONAL LENSING AS THE SOURCE OF ENHANCED STRONG Mg II ABSORPTION TOWARD GAMMA-RAY BURSTS  

Science Conference Proceedings (OSTI)

Sixty percent of gamma-ray bursts (GRBs) reveal strong Mg II absorbing systems, which is a factor of {approx}2 times the rate seen along lines of sight to quasars. Previous studies argue that the discrepancy in the strong Mg II covering factor is most likely to be the result of either quasars being obscured due to dust or the consequence of many GRBs being strongly gravitationally lensed. We analyze observations of quasars that show strong foreground Mg II absorption. We find that GRB lines of sight pass closer to bright galaxies than would be expected for random lines of sight within the impact parameter expected for strong Mg II absorption. While this cannot be explained by obscuration in the GRB sample, it is a natural consequence of gravitational lensing. Upon examining the particular configurations of galaxies near a sample of GRBs with strong Mg II absorption, we find several intriguing lensing candidates. Our results suggest that lensing provides a viable contribution to the observed enhancement of strong Mg II absorption along lines of sight to GRBs, and we outline the future observations required to test this hypothesis conclusively.

Rapoport, Sharon; Onken, Christopher A.; Schmidt, Brian P.; Tucker, Brad E. [Research School of Astronomy and Astrophysics, Australian National University, Weston Creek, ACT 2611 (Australia); Wyithe, J. Stuart B. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Levan, Andrew J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

2012-08-01T23:59:59.000Z

382

ON THE SIGNIFICANCE OF THE EXCESS NUMBER OF STRONG Mg II ABSORBERS OBSERVED TOWARD GAMMA-RAY BURSTS  

SciTech Connect

The number of strong (equivalent width >1 A) Mg II absorbers observed toward gamma-ray bursts (GRBs) has been found to be statistically larger than the number of strong absorbers toward quasi-stellar objects (QSOs). We formalize this 'Mg II problem' and present a detailed explanation of the statistical tools required to assess the significance of the discrepancy. We find that the problem exists at the 4{sigma} level for GRBs with high-resolution spectra. It has been suggested that the discrepancy can be resolved by the combination of a dust obscuration bias toward QSOs, and a strong gravitational lensing bias toward GRBs. We investigate one of the two most probable lensed GRBs that we presented in our previous work (GRB020405) and find that it is not strongly gravitationally lensed, constraining the percentage of lensed GRBs to be <35% (2{sigma}). Dust obscuration of QSOs has been estimated to be a significant effect with dusty Mg II systems removing {approx}20% of absorbed objects from flux-limited QSO samples. We find that if {approx}30% of the strong Mg II systems toward QSOs are missing from the observed samples, then GRBs and QSOs would have comparable numbers of absorbers per unit redshift. Thus, strong gravitational lensing bias is likely to make only a modest contribution to solving the Mg II problem. However, if the dust obscuration bias has been slightly underestimated, the Mg II problem would no longer persist.

Rapoport, Sharon; Onken, Christopher A.; Schmidt, Brian P. [Research School of Astronomy and Astrophysics, The Australian National University, Canberra 2611 (Australia)] [Research School of Astronomy and Astrophysics, The Australian National University, Canberra 2611 (Australia); Wyithe, J. Stuart B. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia)] [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Thygesen, Anders O. [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, D-69117 Heidelberg (Germany)] [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, D-69117 Heidelberg (Germany)

2013-03-20T23:59:59.000Z

383

Atmospheric CO2 From Flask Air Samples at 10 Sites in the SIO Air Sampling  

NLE Websites -- All DOE Office Websites (Extended Search)

Flask Air Samples, SIO Network Flask Air Samples, SIO Network Atmospheric CO2 From Flask Air Samples at 10 Sites in the SIO Air Sampling Network Scripps Institution of Oceanography Monitoring Sites Scripps Institution of Oceanography Monitoring Sites Mauna Loa, Hawaii Mauna Loa weekly average CO2 concentrations derived from continuous air samples Barrow, Alaska American Samoa South Pole Daily average CO2 concentrations derived from continuous air samples Alert, NWT, Canada Cape Kumukahi Christmas Island Baring Head Kermadec Island La Jolla Pier La Jolla Pier weekly average CO2 concentrations derived from continuous air samples PDF Documentation available as Atmospheric Carbon Dioxide Concentrations at 10 Locations Spanning Latitudes 82°N to 90°S, (NDP-001a) For information on calibration and some additional literature, go to

384

Bishop Hill II | Open Energy Information  

Open Energy Info (EERE)

II II Jump to: navigation, search Name Bishop Hill II Facility Bishop Hill II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MidAmerican Energy Developer Ivenergy Energy Purchaser Ameren Illinois Location Cambridge IL Coordinates 41.24438513°, -90.09338379° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.24438513,"lon":-90.09338379,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Pinyon Pines II | Open Energy Information  

Open Energy Info (EERE)

Pinyon Pines II Pinyon Pines II Jump to: navigation, search Name Pinyon Pines II Facility Pinyon Pines II (Alta IX) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MidAmerican Energy Developer Terra-Gen Power Energy Purchaser Southern California Edison Co Location Tehachapi Pass CA Coordinates 35.01917213°, -118.3031845° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.01917213,"lon":-118.3031845,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

CWES II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Jump to: navigation, search Name CWES II Wind Farm Facility CWES II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Springview II Wind Project | Open Energy Information  

Open Energy Info (EERE)

Springview II Wind Project Springview II Wind Project Jump to: navigation, search Name Springview II Wind Project Facility Springview II Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Bluestem LLC Developer Bluestem LLC Energy Purchaser NPPD Location Springview NE Coordinates 42.82578163°, -99.77630854° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.82578163,"lon":-99.77630854,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

Los Vientos II | Open Energy Information  

Open Energy Info (EERE)

II II Jump to: navigation, search Name Los Vientos II Facility Los Vientos II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Duke Energy Developer Duke Enegy Energy Purchaser Austin Energy Location Lyford TX Coordinates 26.33903762°, -97.66176224° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.33903762,"lon":-97.66176224,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Edison Phase II Compute Cabinets Arrive  

NLE Websites -- All DOE Office Websites (Extended Search)

Edison Phase II Compute Cabinets Arrive at NERSC Edison Phase II Compute Cabinets Arrive at NERSC Edison Phase II Compute Cabinets Arrive at NERSC June 27, 2013 by Zhengji Zhao (1 Comments) The compute cabinets were shiped to NERSC between June 24 and 25, 2013.They have been installed on the machine room floor in Oakland. The 28 canbinets that comprise the Phase II system were powered up on June 27, 2013. Post your comment You cannot post comments until you have logged in. Login Here. Comments I re-compiled my program on Edison with Intel compiler. Once submitted the job, the waiting time in the regular queue was very short compared to Hopper. The run on Edison was smooth and with no problems. Comparing the CPU time for the run, I found that the job run almost twice as faster as in Hopper (using PGI compilers). (In Edison it took 111 seconds and in Hopper/PGI 203

390

PARS II Training Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training Materials Training Materials PARS II Training Materials PARS II presentation hand-outs and step-by-step "how to" exercises for each course are available for download. Users who are attending Web classes should download these documents prior to attending the class. Slides from the APM "Road Show" Earned Value (EV) Analysis and Project Assessment & Reporting System (PARS II) PARS 102 - Monthly Updating and Reporting Introduction to PARS II, finding and selecting projects in your domain, viewing Oversight and Assessment (OA) data, viewing Contractor Project Performance (CPP) dashboards, updating your monthly status assessment, adding attachments, and running standard, pre-built reports. PARS 102 Presentation PARS 102 Workbook PARS 103 - Updating Projects and Reporting

391

Pillar Mountain II | Open Energy Information  

Open Energy Info (EERE)

Pillar Mountain II Pillar Mountain II Jump to: navigation, search Name Pillar Mountain II Facility Pillar Mountain II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Kodiak Electric Assoc. Developer Kodiak Electric Assoc. Energy Purchaser Kodiak Electric Assoc. Location Kodiak AK Coordinates 57.78667872°, -152.4434781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.78667872,"lon":-152.4434781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

392

Shiloh II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Shiloh II Wind Farm Shiloh II Wind Farm Jump to: navigation, search Name Shiloh II Wind Farm Facility Shiloh II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Developer EnXco Energy Purchaser Pacific Gas & Electric Co Location Northern CA CA Coordinates 38.179998°, -121.822° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.179998,"lon":-121.822,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

Kibby Mountain II | Open Energy Information  

Open Energy Info (EERE)

Kibby Mountain II Kibby Mountain II Jump to: navigation, search Name Kibby Mountain II Facility Kibby Mountain II Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Owner TransCanada Power Mktg Ltd Developer TransCanada Power Mktg Ltd Location Kibby Mountain ME Coordinates 45.354154°, -70.65412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.354154,"lon":-70.65412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

Nobles Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

Wind Farm II Wind Farm II Jump to: navigation, search Name Nobles Wind Farm II Facility Nobles Wind Farm II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Xcel Energy Developer EnXco Energy Purchaser Xcel Energy Location Nobles County MN Coordinates 43.682956°, -95.728425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.682956,"lon":-95.728425,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

Timber Road II | Open Energy Information  

Open Energy Info (EERE)

II II Jump to: navigation, search Name Timber Road II Facility Timber Road II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer Horizon Wind Energy Energy Purchaser American Electric Power Location Near Payne OH Coordinates 41.023524°, -84.717185° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.023524,"lon":-84.717185,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

Little Pringle II | Open Energy Information  

Open Energy Info (EERE)

Pringle II Pringle II Jump to: navigation, search Name Little Pringle II Facility Little Pringle II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SWI Wind Farms Developer SWI Wind Farms Energy Purchaser Xcel Energy Location 50 miles north of Amarillo TX Coordinates 35.803356°, -101.43352° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.803356,"lon":-101.43352,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Salty Dog II | Open Energy Information  

Open Energy Info (EERE)

II II Facility Salty Dog II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Salty Dog II LLC Energy Purchaser Xcel Energy Location Lake Benton MN Coordinates 44.3144°, -96.3256° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3144,"lon":-96.3256,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

Vansycle Ridge II | Open Energy Information  

Open Energy Info (EERE)

Vansycle Ridge II Vansycle Ridge II Jump to: navigation, search Name Vansycle Ridge II Facility Vansycle Ridge II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location OR Coordinates 45.8515°, -118.458° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.8515,"lon":-118.458,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

NCPA II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

NCPA II Geothermal Facility NCPA II Geothermal Facility General Information Name NCPA II Geothermal Facility Facility NCPA II Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.74837690774°, -122.71119117737° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.74837690774,"lon":-122.71119117737,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

Elm Creek II | Open Energy Information  

Open Energy Info (EERE)

Elm Creek II Elm Creek II Jump to: navigation, search Name Elm Creek II Facility Elm Creek II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Location Jackson and Martin County MN Coordinates 43.756372°, -94.956014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.756372,"lon":-94.956014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

PARS II - Integrated Project Team Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

John Makepeace (OECM) Kai Mong (EES), Ken Henderson (EES), Norm Ayers (EES) October 29, 2009 2 2 Agenda * PARS II OA & CPP Software * PARS II Deployment Timeline * Deployment Overview * Organizational Roles & Responsibilities * Project List and Schedule * Next Steps 3 PARS II OA & CPP Software * Oversight & Assessment (OA) * Web interface collects summary-level project data: status assessments, forecasts, PB, KPPs * Used by FPD, Program and OECM each month * Contractor Project Performance (CPP) * Web interface for uploading contractor's project files: earned value, schedule, variance, MR, risk * Used by contractor each month 4 PARS II Deployment Timeline 4 11/1/2009 12/1/2009 1/1/2010 2/1/2010 3/1/2010 4/1/2010 5/1/2010 6/1/2010 7/1/2010 8/1/2010 9/1/2010 10/1/2010 11/1/2010

402

Instrument Series: Mass Spectrometry SPLAT II  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Spectrometry Mass Spectrometry SPLAT II SPLAT II is a one-of-a-kind single particle mass spectrometer that was designed, constructed, and deployed at EMSL to allow users to precisely characterize the physical and chemical properties of nanoparticles. SPLAT II yields quantitative information on particle physical and chemical properties in the laboratory or in the field-even aboard an aircraft. In the context of EMSL's integrated problem-solving environment, the unique capabilities of SPLAT II enable vital research across a range of scientific fields. Research Applications Fundamental science - characterizing the properties and behavior of matter on the nanoscale Atmospheric chemistry - understanding the processes that control atmospheric aerosol life cycle Climate change - uncovering and helping

403

Steel Winds II | Open Energy Information  

Open Energy Info (EERE)

Winds II Winds II Jump to: navigation, search Name Steel Winds II Facility Steel Winds II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser Merchant Location Lackawanna NY Coordinates 42.81756607°, -78.86672974° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.81756607,"lon":-78.86672974,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

Sunray II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Sunray II Wind Farm Sunray II Wind Farm Jump to: navigation, search Name Sunray II Wind Farm Facility Sunray II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Valero Developer Valero Energy Purchaser McKee Refinery for 34.5; Xcel Energy for remainder Location TX Coordinates 35.961137°, -101.804602° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.961137,"lon":-101.804602,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

405

Friction Stir Welding and Processing II  

Science Conference Proceedings (OSTI)

Jan 1, 2007 ... Friction Stir Welding and Processing II by K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, and T. Lienert, editors...

406

NSLS-II Transport Line Progress  

SciTech Connect

The National Synchrotron Light Source II (NSLS-II) is a state-of-the-art 3-GeV third generation light source currently under construction at Brookhaven National Laboratory. The NSLS-II injection system consists of a 200 MeV linac, a 3-GeV booster synchrotron and associated transfer lines. The first part of the Linac to Booster Transport (LBT) line has been installed for linac commissioning. This part includes all components necessary to commission the NSLS-II linac. The second part of this transport line is undergoing installation. Initial results of hardware commissioning will be discussed. The Booster to Storage Ring (BSR) transport line underwent a design review. The first part of the BSR transport line, consisting of all components necessary to commission the booster will be installed in 2012 for booster commissioning. We report on the final design of the BSR line along with the plan to commission the booster.

Fliller R. P.; Wahl, W.; Anderson, A.; Benish, B.; DeBoer, W.; Ganetis, G.; Heese, R.; Hseuh, H.-C.; Hu, J.-P.; Johanson, M.P.; Kosciuk, B.N.; Padrazo, D.; Roy, K.; Shaftan, T.; Singh, O.; Tuozzolo, J.; Wang, G.

2012-05-20T23:59:59.000Z

407

Smog Check II Evaluation California Inspection and  

E-Print Network (OSTI)

Smog Check II Evaluation Glossary . . . . . . . . . . . . California Inspection and Maintenance Review Committee #12;Contents Glossary of Acronyms ____________________________________________ 1 Glossary of Terms _______________________________________________ 3 #12;G-1 Glossary of Acronyms APCD Air

Denver, University of

408

Cloud Boundary Statistics during FIRE II  

Science Conference Proceedings (OSTI)

An 8-mm wavelength radar, 3-mm wavelength radar, and 10.6-m wavelength lidar operated side by side in vertically pointing mode during the First ISCCP Regional Experiment (FIRE II). This data collection mode yielded detailed information on ...

Taneil Uttal; Janet M. Intrieri; Wynn L. Eberhard; Eugene E. Clothiaux; Thomas P. Ackerman

1995-12-01T23:59:59.000Z

409

NSLS II: Soft Matter and Biomaterials  

NLE Websites -- All DOE Office Websites (Extended Search)

capabilities, the need for which is being felt even now. The ultra-high brightness of NSLS-II is required to address many of these challenges. The proposed small-angle x-ray...

410

PEP-II Status and Outlook  

Science Conference Proceedings (OSTI)

PEP-II/BABAR are presently in their second physics run. With machine and detector performance and reliability at an all-time high, almost 51 fb{sup -1} have been integrated by BABAR up to mid-October 2001. PEP-II luminosity has reached 4.4 x 10{sup 33} cm{sup -2} s{sup -1} and our highest monthly delivered luminosity has been above 6 pb{sup -1}, exceeding the performance parameters given in the PEP-II CDR by almost 50%. The increase compared to the first run in 2000 has been achieved by a combination of beam-current increase and beam-size decrease. In this paper we will summarize the PEP-II performance and the present limitations as well as our plans to further increase machine performance.

Wienands, H.U.; Biagini, M.E.; Decker, F.J.; Donald, M.H.; Ecklund, S.; Fisher, A.; Holtzapple, R.L.; Iverson, R.H.; Krejcik, P.; Kulikov, A.V.; Meyer, T.; Nelson, J.; Novokhatski, A.; Reichel, I.; Sullivan, M.; Seeman, J.T.; Turner, J.; /SLAC; Steier, C.; Zisman, M.S.; /LBL, Berkeley

2012-04-24T23:59:59.000Z

411

Montezuma Winds II | Open Energy Information  

Open Energy Info (EERE)

Winds II Winds II Jump to: navigation, search Name Montezuma Winds II Facility Montezuma Winds II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Co Location Rio Vista CA Coordinates 38.16867552°, -121.8061924° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.16867552,"lon":-121.8061924,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Difwind II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Jump to: navigation, search Name Difwind II Wind Farm Facility Difwind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

Nuclear Fuels II - Programmaster.org  

Science Conference Proceedings (OSTI)

Oct 19, 2011 ... Materials Science Challenges for Nuclear Applications: Nuclear Fuels II ... reactivity and/or to flatten the radial power profile in a research or test reactor. ... Laboratory; 2Y-12 National Security Complex; 3University of Idaho

414

Practical reporting times for environmental samples  

Science Conference Proceedings (OSTI)

Preanalytical holding times for environmental samples are specified because chemical and physical characteristics may change between sampling and chemical analysis. For example, the Federal Register prescribes a preanalytical holding time of 14 days for volatile organic compounds in soil stored at 4{degrees}C. The American Society for Testing Materials (ASTM) uses a more technical definition that the preanalytical holding time is the day when the analyte concentration for an environmental sample falls below the lower 99% confidence interval on the analyte concentration at day zero. This study reviews various holding time definitions and suggest a new preanalytical holding time approach using acceptable error rates for measuring an environmental analyte. This practical reporting time (PRT) approach has been applied to nineteen volatile organic compounds and four explosives in three environmental soil samples. A PRT nomograph of error rates has been developed to estimate the consequences of missing a preanalytical holding time. This nomograph can be applied to a large class of analytes with concentrations that decay linearly or exponentially with time regardless of sample matrices and storage conditions.

Bayne, C.K.; Schmoyer, D.D.; Jenkins, R.A.

1993-02-01T23:59:59.000Z

415

POWGEN Sample Environment | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample Environment Sample Environment PAC Helium fill station for cans. PAC PAC stands for Powgen Automatic Changer. This is the second generation sample changer that was developed for POWGEN. The changer has a carousal that holds a maximum of 24 sample-filled vanadium cans and collects data in a temperature range of 10 to 300 K. The cool down temperature from room temperature to 10 K is 45 minutes. However, samples can be changed at 10 K, which takes about 20 minutes. PAC cans The OD (outer diameter) for the V part is 6.3, 7.86 and 9.42 mm The ID (inner diameter) for these to be 5.9, 7.46 and 9.02mm ILL Furnace ILL can ILL can for high temp The traditional ILL furnace built with vanadium heating elements is available for high-temperature measurements from room temperature to 1100°C. Cooling to 200°C takes 3-4 hours from highest temperature, and

416

Amchitka Island, Alaska, special sampling project 1997  

Science Conference Proceedings (OSTI)

This 1997 special sampling project represents a special radiobiological sampling effort to augment the 1996 Long-Term Hydrological Monitoring Program (LTHMP) for Amchitka Island in Alaska. Lying in the western portion of the Aleutian Islands arc, near the International Date Line, Amchitka Island is one of the southernmost islands of the Rat Island Chain. Between 1965 and 1971, the U.S. Atomic Energy Commission conducted three underground nuclear tests on Amchitka Island. In 1996, Greenpeace collected biota samples and speculated that several long-lived, man-made radionuclides detected (i.e., americium-241, plutonium-239 and -240, beryllium-7, and cesium-137) leaked into the surface environment from underground cavities created during the testing. The nuclides of interest are detected at extremely low concentrations throughout the environment. The objectives of this special sampling project were to scientifically refute the Greenpeace conclusions that the underground cavities were leaking contaminants to the surface. This was achieved by first confirming the presence of these radionuclides in the Amchitka Island surface environment and, second, if the radionuclides were present, determining if the source is the underground cavity or worldwide fallout. This special sampling and analysis determined that the only nonfallout-related radionuclide detected was a low level of tritium from the Long Shot test, which had been previously documented. The tritium contamination is monitored and continues a decreasing trend due to radioactive decay and dilution.

U.S. Department of Energy, Nevada Operations Office

2000-06-28T23:59:59.000Z

417

NSLS-II Beam Diagnostics Overview  

SciTech Connect

A new 3rd generation light source (NSLS-II) is in the early stages of construction at Brookhaven National Laboratory. The NSLS-II facility will provide ultra high brightness and flux with exceptional beam stability. It presents several challenges for diagnostics and instrumentation, related to the extremely small emittance. In this paper, we present an overview of all planned instrumentation systems, results from research and development activities; and then focus on other challenging aspects.

Singh,O.; Alforque, R.; Bacha, B.; Blednykh, A.; Cameron, P.; Cheng, W.; Dalesio, L. B.; Della Penna, A. J.; doom, L.; Fliller, R. P.; Ganetis, G.; Heese, R.; Hseuh, H-C.; Johnson, E. D.; Kosciuk, b. N.; Kramer, S. L.; Krinsky, S.; Mead, J.; Ozaki, S.; Padrazo, D.; Pinayev, I.; Ravindranath, R. V.; Rose, J.; Shaftan, T.; Sharma, S.; Skaritka, J.; Tanabe, T.; Tian, Y.; Willeke, F. J.; Yu, L-H.

2009-05-04T23:59:59.000Z

418

n-Linear Algebra of type II  

E-Print Network (OSTI)

This book is a continuation of the book n-linear algebra of type I and its applications. Most of the properties that could not be derived or defined for n-linear algebra of type I is made possible in this new structure: n-linear algebra of type II which is introduced in this book. In case of n-linear algebra of type II we are in a position to define linear functionals which is one of the marked difference between the n-vector spaces of type I and II. However all the applications mentioned in n-linear algebras of type I can be appropriately extended to n-linear algebras of type II. Another use of n-linear algebra (n-vector spaces) of type II is that when this structure is used in coding theory we can have different types of codes built over different finite fields whereas this is not possible in the case of n-vector spaces of type I. Finally in the case of n-vector spaces of type II, we can obtain n-eigen values from distinct fields; hence, the n-characteristic polynomials formed in them are in distinct different fields. An attractive feature of this book is that the authors have suggested 120 problems for the reader to pursue in order to understand this new notion. This book has three chapters. In the first chapter the notion of n-vector spaces of type II are introduced. This chapter gives over 50 theorems. Chapter two introduces the notion of n-inner product vector spaces of type II, n-bilinear forms and n-linear functionals. The final chapter suggests over a hundred problems. It is important that the reader is well-versed not only with linear algebra but also n-linear algebra of type I.

W. B. Vasantha Kandasamy; Florentin Smarandache

2009-02-01T23:59:59.000Z

419

Belle II Experiment Network and Computing  

E-Print Network (OSTI)

The Belle experiment, part of a broad-based search for new physics, is a collaboration of approximately 400 physicists from 55 institutions across four continents. The Belle detector is located at the KEKB accelerator in Tsukuba, Japan. The Belle detector was operated at the asymmetric electron-positron collider KEKB from 1999-2010. The detector accumulated more than 1/ab of integrated luminosity corresponding to more than 2 PB of data near 10 GeV center-of-mass energy. Recently, KEK has initiated a $400 million accelerator upgrade to be called SuperKEKB, designed to produce instantaneous and integrated luminosity two orders of magnitude greater than KEKB. The new international collaboration at SuperKEKB is called Belle II. The first data from Belle II/SuperKEKB is expected in 2015. In October 2012, senior members of the Belle II collaboration gathered at PNNL to discuss the computing and networking requirements of the Belle II experiment with ESnet staff and other computing and networking experts. The day-and-a-half-long workshop characterized the instruments and facilities used in the experiment, the process of science for Belle II, and the computing and networking equipment and configuration requirements to realize the full scientific potential of the collaboration's work. The requirements identified at the Belle II Experiment Requirements workshop are summarized in this report.

David M. Asner; Eli Dart; Takanori Hara

2013-08-03T23:59:59.000Z

420

Sample Project Execution Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sample Project Execution Plan Sample Project Execution Plan Sample Project Execution Plan The project execution plan (PEP) is the governing document that establishes the means to execute, monitor, and control projects. The plan serves as the main communication vehicle to ensure that everyone is aware and knowledgeable of project objectives and how they will be accomplished. The plan is the primary agreement between Headquarters and the federal project director and a preliminary plan should be developed and approved at Critical Decision-1. Project objectives are derived from the mission needs statement, and an integrated project team assists in development of the PEP. The plan is a living document and should be updated to describe current and future processes and procedures, such as integrating safety

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Definition: Soil Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Soil Gas Sampling Jump to: navigation, search Dictionary.png Soil Gas Sampling Soil gas sampling is sometimes used in exploration for blind geothermal resources to detect anomalously high concentrations of hydrothermal gases in the near-surface environment. Identification of high concentrations of hydrothermal gas species may indicates the presence of enhanced permeability (faults) and high temperature hydrothermal activity at depth. Soil gas data may also be used to study other important aspects of the geothermal system, such as distinguishing between magmatic and amagmatic sources of heat. The technique may also be used for ongoing monitoring of the geothermal system during resource development and production.

422

Standard guide for sampling radioactive tank waste  

E-Print Network (OSTI)

1.1 This guide addresses techniques used to obtain grab samples from tanks containing high-level radioactive waste created during the reprocessing of spent nuclear fuels. Guidance on selecting appropriate sampling devices for waste covered by the Resource Conservation and Recovery Act (RCRA) is also provided by the United States Environmental Protection Agency (EPA) (1). Vapor sampling of the head-space is not included in this guide because it does not significantly affect slurry retrieval, pipeline transport, plugging, or mixing. 1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2011-01-01T23:59:59.000Z

423

Template:SampleTemplate | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Template Edit History Facebook icon Twitter icon » Template:SampleTemplate Jump to: navigation, search This is the SampleTemplate template. It is designed for use by Sample Pages. To define a test page, please use this form. Parameters Awesomeness - The numeric level of awesomeness that your test page will achieve. Topics - Topics this page discusses. (semicolon delimited) Note: References for the above parameters are generated automatically by the ReferenceForValue template and can be seen using the ShowRefFieldsButton. Dependencies Template:Cite Template:ReferenceForValue Widget:ShowRefFieldsButton Usage It should be invoked using the corresponding form.

424

THE GREEN BANK TELESCOPE H II REGION DISCOVERY SURVEY. IV. HELIUM AND CARBON RECOMBINATION LINES  

SciTech Connect

The Green Bank Telescope H II Region Discovery Survey (GBT HRDS) found hundreds of previously unknown Galactic regions of massive star formation by detecting hydrogen radio recombination line (RRL) emission from candidate H II region targets. Since the HRDS nebulae lie at large distances from the Sun, they are located in previously unprobed zones of the Galactic disk. Here, we derive the properties of helium and carbon RRL emission from HRDS nebulae. Our target sample is the subset of the HRDS that has visible helium or carbon RRLs. This criterion gives a total of 84 velocity components (14% of the HRDS) with helium emission and 52 (9%) with carbon emission. For our highest quality sources, the average {sup 4}He{sup +}/H{sup +} abundance ratio by number, (y {sup +}), is 0.068 {+-} 0.023(1{sigma}). This is the same ratio as that measured for the sample of previously known Galactic H II regions. Nebulae without detected helium emission give robust y {sup +} upper limits. There are 5 RRL emission components with y {sup +} less than 0.04 and another 12 with upper limits below this value. These H II regions must have either a very low {sup 4}He abundance or contain a significant amount of neutral helium. The HRDS has 20 nebulae with carbon RRL emission but no helium emission at its sensitivity level. There is no correlation between the carbon RRL parameters and the 8 {mu}m mid-infrared morphology of these nebulae.

Wenger, Trey V.; Bania, T. M. [Astronomy Department, 725 Commonwealth Avenue, Boston University, Boston, MA 02215 (United States)] [Astronomy Department, 725 Commonwealth Avenue, Boston University, Boston, MA 02215 (United States); Balser, Dana S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA, 22903-2475 (United States)] [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA, 22903-2475 (United States); Anderson, L. D. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States)] [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States)

2013-02-10T23:59:59.000Z

425

Visual Sample Plan (VSP) 6.0 - Available Technologies - PNNL  

Summary. Visual Sample Planor VSPis a software tool that helps users determine where sampling should be conducted and how many samples are needed ...

426

Sampling artifacts from conductive silicone tubing  

NLE Websites -- All DOE Office Websites (Extended Search)

Sampling artifacts from conductive silicone tubing Sampling artifacts from conductive silicone tubing Title Sampling artifacts from conductive silicone tubing Publication Type Journal Article Year of Publication 2009 Authors Timko, Michael T., Zhenhong Yu, Jesse Kroll, John T. Jayne, Douglas R. Worsnop, Richard C. Miake-Lye, Timothy B. Onasch, David Liscinsky, Thomas W. Kirchstetter, Hugo Destaillats, Amara L. Holder, Jared D. Smith, and Kevin R. Wilson Journal Aerosol Science and Technology Volume 43 Issue 9 Pagination 855-865 Date Published 06/03/2009 Abstract We report evidence that carbon impregnated conductive silicone tubing used in aerosol sampling systems can introduce two types of experimental artifacts: (1) silicon tubing dynamically absorbs carbon dioxide gas, requiring greater than 5 minutes to reach equilibrium and (2) silicone tubing emits organic contaminants containing siloxane that are adsorbed onto particles traveling through it and onto downstream quartz fiber filters. The consequence can be substantial for engine exhaust measurements as both artifacts directly impact calculations of particulate mass-based emission indices. The emission of contaminants from the silicone tubing can result in overestimation of organic particle mass concentrations based on real-time aerosol mass spectrometry and the off-line thermal analysis of quartz filters. The adsorption of siloxane contaminants can affect the surface properties of aerosol particles; we observed a marked reduction in the water-affinity of soot particles passed through conductive silicone tubing. These combined observations suggest that the silicone tubing artifacts may have wide consequence for the aerosol community and the tubing should, therefore, be used with caution. Contamination associated with the use of silicone tubing was observed at ambient temperature and, in some cases, was enhanced by mild heating (<70°C) or pre-exposure to a solvent (methanol). Further evaluation is warranted to quantify systematically how the contamination responds to variations in system temperature, physicochemical particle properties, exposure to solvent, sample contact time, tubing age, and sample flow rates.

427

RAPID DETERMINATION OF RADIOSTRONTIUM IN SEAWATER SAMPLES  

Science Conference Proceedings (OSTI)

A new method for the determination of radiostrontium in seawater samples has been developed at the Savannah River National Laboratory (SRNL) that allows rapid preconcentration and separation of strontium and yttrium isotopes in seawater samples for measurement. The new SRNL method employs a novel and effective pre-concentration step that utilizes a blend of calcium phosphate with iron hydroxide to collect both strontium and yttrium rapidly from the seawater matrix with enhanced chemical yields. The pre-concentration steps, in combination with rapid Sr Resin and DGA Resin cartridge separation options using vacuum box technology, allow seawater samples up to 10 liters to be analyzed. The total {sup 89}Sr + {sup 90}Sr activity may be determined by gas flow proportional counting and recounted after ingrowth of {sup 90}Y to differentiate {sup 89}Sr from {sup 90}Sr. Gas flow proportional counting provides a lower method detection limit than liquid scintillation or Cerenkov counting and allows simultaneous counting of samples. Simultaneous counting allows for longer count times and lower method detection limits without handling very large aliquots of seawater. Seawater samples up to 6 liters may be analyzed using Sr Resin for {sup 89}Sr and {sup 90}Sr with a Minimum Detectable Activity (MDA) of 1-10 mBq/L, depending on count times. Seawater samples up to 10 liters may be analyzed for {sup 90}Sr using a DGA Resin method via collection and purification of {sup 90}Y only. If {sup 89}Sr and other fission products are present, then {sup 91}Y (beta energy 1.55 MeV, 58.5 day half-life) is also likely to be present. {sup 91}Y interferes with attempts to collect {sup 90}Y directly from the seawater sample without initial purification of Sr isotopes first and {sup 90}Y ingrowth. The DGA Resin option can be used to determine {sup 90}Sr, and if {sup 91}Y is also present, an ingrowth option with using DGA Resin again to collect {sup 90}Y can be performed. An MDA for {sup 90}Sr of <1 mBq/L for an 8 hour count may be obtained using 10 liter seawater sample aliquots.

Maxwell, S.

2013-01-16T23:59:59.000Z

428

Performance evaluation soil samples utilizing encapsulation technology  

DOE Patents (OSTI)

Performance evaluation soil samples and method of their preparation uses encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration. 1 fig.

Dahlgran, J.R.

1999-08-17T23:59:59.000Z

429

Performance evaluation soil samples utilizing encapsulation technology  

DOE Patents (OSTI)

Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

Dahlgran, James R. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

430

Mean estimation in highly skewed samples  

Science Conference Proceedings (OSTI)

The problem of inference for the mean of a highly asymmetric distribution is considered. Even with large sample sizes, usual asymptotics based on normal theory give poor answers, as the right-hand tail of the distribution is often under-sampled. This paper attempts to improve performance in two ways. First, modifications of the standard confidence interval procedure are examined. Second, diagnostics are proposed to indicate whether or not inferential procedures are likely to be valid. The problems are illustrated with data simulated from an absolute value Cauchy distribution. 4 refs., 2 figs., 1 tab.

Pederson, S.P.

1991-09-01T23:59:59.000Z

431

Performance evaluation soil samples utilizing encapsulation technology  

DOE Patents (OSTI)

Performance evaluation soil samples and method of their preparation are described using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

Dahlgran, James R.

1997-12-01T23:59:59.000Z

432

Observational Constraints of Modified Chaplygin Gas in RS II Brane  

E-Print Network (OSTI)

FRW universe in RS II braneworld model filled with a combination of dark matter and dark energy in the form of modified Chaplygin gas (MCG) is considered. It is known that the equation of state (EoS) for MCG is a three-variable equation determined by $A$, $\\alpha$ and $B$. The permitted values of these parameters are determined by the recent astrophysical and cosmological observational data. Here we present the Hubble parameter in terms of the observable parameters $\\Omega_{m0}$, $\\Omega_{x0}$, $H_{0}$, redshift $z$ and other parameters like $A$, $B$, $C$ and $\\alpha$. From Stern data set (12 points), we have obtained the bounds of the arbitrary parameters by minimizing the $\\chi^{2}$ test. The best-fit values of the parameters are obtained by 66%, 90% and 99% confidence levels. Next due to joint analysis with BAO and CMB observations, we have also obtained the bounds of the parameters ($B,C$) by fixing some other parameters $\\alpha$ and $A$. The best fit value of distance modulus $\\mu(z)$ is obtained for the MCG model in RS II brane, and it is concluded that our model is perfectly consistent with the union2 sample data.

Chayan Ranjit; Prabir Rudra; Sujata Kundu

2013-04-24T23:59:59.000Z

433

LOW TEMPERATURE X-RAY DIFFRACTION STUDIES OF NATURAL GAS HYDRATE SAMPLES FROM THE GULF OF MEXICO  

SciTech Connect

Clathrate hydrates of methane and other small alkanes occur widespread terrestrially in marine sediments of the continental margins and in permafrost sediments of the arctic. Quantitative study of natural clathrate hydrates is hampered by the difficulty in obtaining pristine samples, particularly from submarine environments. Bringing samples of clathrate hydrate from the seafloor at depths without compromising their integrity is not trivial. Most physical property measurements are based on studies of laboratory-synthesized samples. Here we report X-ray powder diffraction measurements of a natural gas hydrate sample from the Green Canyon, Gulf of Mexico. The first data were collected in 2002 and revealed ice and structure II gas hydrate. In the subsequent time the sample has been stored in liquid nitrogen. More recent X-ray powder diffraction data have been collected as functions of temperature and time. This new data indicates that the larger sample is heterogeneous in ice content and shows that the amount of sII hydrate decreases with increasing temperature and time as expected. However, the dissociation rate is higher at lower temperatures and earlier in the experiment.

Rawn, Claudia J [ORNL; Sassen, Roger [Texas A& M University; Ulrich, Shannon M [ORNL; Phelps, Tommy Joe [ORNL; Chakoumakos, Bryan C [ORNL; Payzant, E Andrew [ORNL

2008-01-01T23:59:59.000Z

434

Mr. Mark Finkelstein State Street,Associates'L..P. II  

Office of Legacy Management (LM)

Mr. Mark Finkelstein Mr. Mark Finkelstein State Street,Associates'L..P. II 210 Lake Street Ithaca, New York I4856 Dear Mr. Finkelstein: ', 'The Oak Ridge Institute forScience',and Education (ORISEj,has recently sent me the enclosed'radiological survey,conducted at the former Ithaca Gun Company forging building. : The radiationilevels measured during, the'survey were similar to the background'levels in the Ithaca 'area. A number of samples were taken for analysis, and all exhibited background ,concentrations of radioactive,elements: No radioactive,materials that are 'attributable to the former Ithaca Gun Company or to' the activities of the former Atomic.Energy Commission were identified. ;The Department of Energy will prepare.documentation to formally eliminate the site from the Department's Formerly Utilized Sites

435

Degradation of EBR-II driver fuel during wet storage  

DOE Green Energy (OSTI)

Characterization data are reported for sodium bonded EBR-II reactor fuel which had been stored underwater in containers since the 1981--1982 timeframe. Ten stainless steel storage containers, which had leaked water during storage due to improper sealing, were retrieved from the ICPP-603 storage basin at the Idaho National Engineering and Environmental Laboratory (INEEL) in Idaho. In the container chosen for detailed destructive analysis, the stainless steel cladding on the uranium alloy fuel had ruptured and fuel oxide sludge filled the bottom of the container. Headspace gas sampling determined that greater than 99% hydrogen was present. Cesium 137, which had leached out of the fuel during the aqueous corrosion process, dominated the radionuclide source term of the water. The metallic sodium from the fuel element bond had reacted with the water, forming a concentrated caustic solution of NaOH.

Pahl, R. G.

2000-03-09T23:59:59.000Z

436

Vapor and gas sampling of Single-Shell Tank 241-A-101 using the Vapor Sampling System  

Science Conference Proceedings (OSTI)

This document presents sampling data resulting from the June 8, 1995, sampling of SST 241-A-101 using the Vapor Sampling System.

Caprio, G.S.

1995-11-01T23:59:59.000Z

437

Vapor and gas sampling of single-shell tank 241-SX-106 using the vapor sampling system  

SciTech Connect

This document presents sampling data resulting from the March 24, 1995, sampling of SST 241-SX-106 using the vapor sampling system.

Caprio, G.S.

1995-09-20T23:59:59.000Z

438

Sampling Methodologies for the Commercial Sector  

Science Conference Proceedings (OSTI)

Designing a survey sample that accurately mirrors the target population is a key step toward a much-needed understanding of the factors affecting commercial electricity use. This thorough exploration of new and familiar methodologies is based on experience with five recent, large-scale utility surveys of commercial customers.

1984-09-01T23:59:59.000Z

439

Hanford Sampling Quality Management Plan (HSQMP)  

Science Conference Proceedings (OSTI)

This document provides a management tool for evaluating and designing the appropriate elements of a field sampling program. This document provides discussion of the elements of a program and is to be used as a guidance document during the preparation of project and/or function specific documentation. This document does not specify how a sampling program shall be organized. The HSQMP is to be used as a companion document to the Hanford Analytical Services Quality Assurance Plan (HASQAP) DOE/RL-94-55. The generation of this document was enhanced by conducting baseline evaluations of current sampling organizations. Valuable input was received from members of field and Quality Assurance organizations. The HSQMP is expected to be a living document. Revisions will be made as regulations and or Hanford Site conditions warrant changes in the best management practices. Appendices included are: summary of the sampling and analysis work flow process, a user`s guide to the Data Quality Objective process, and a self-assessment checklist.

Hyatt, J.E.

1995-04-28T23:59:59.000Z

440

Automatic blood sampling in dairy cows  

Science Conference Proceedings (OSTI)

Loose housing systems for dairy cows are becoming increasingly common, raising new questions in the area of animal health and welfare. Some of these questions can be addressed by studying the variation in blood parameters, such as glucocortistioids. ... Keywords: Blood, Dairy cows, IceSampler, Sampling, Stress

Anders Fnss; Lene Munksgaard

2008-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sample-related peripheral equipment at IPNS  

Science Conference Proceedings (OSTI)

This paper describes samples environment equipment provided by IPNS to visiting users and staff scientists. Of the twelve horizontal neutron beam stations, (ten now operational, two under construction) all use one or more form of such support equipment. An in-house support group devotes a significant fraction of its time to development, calibration, and maintenance of this equipment.

Bohringer, D.E.; Crawford, R.K.

1985-01-01T23:59:59.000Z

442

Monitoring Large Systems Via Statistical Sampling  

Science Conference Proceedings (OSTI)

As the trend in parallel systems scales toward petaflop performance tapped by advances in circuit density and by an increasingly available computational Grid, the development of efficient mechanisms for monitoring large systems becomes imperative. When ... Keywords: Large systems, performance monitoring, statistical sampling

Celso L. Mendes; Daniel A. Reed

2004-05-01T23:59:59.000Z

443

Proceedings of the wellbore sampling workshop  

DOE Green Energy (OSTI)

Representatives from academia, industry and research laboratories participated in an intensive two-day review to identify major technological limitations in obtaining solid and fluid samples from wellbores. Top priorities identified for further development include: coring of hard and unconsolidated materials; flow through fluid samplers with borehole measurements T, P and pH; and nonintrusive interrogation of pressure cores.

Traeger, R.K. (ed.); Harding, B.W.

1987-11-01T23:59:59.000Z

444

Adaptive sampling for Bayesian variable selection  

E-Print Network (OSTI)

Adaptive sampling for Bayesian variable selection DAVID J. NOTT Department of Statistics for variable selection and for dealing with model un- certainty have become increasingly popular in recent consider adaptive Markov chain Monte Carlo schemes for Bayesian variable selection in Gaussian linear

Blennerhassett, Peter

445

Efficient spatial sampling of large geographical tables  

Science Conference Proceedings (OSTI)

Large-scale map visualization systems play an increasingly important role in presenting geographic datasets to end users. Since these datasets can be extremely large, a map rendering system often needs to select a small fraction of the data to visualize ... Keywords: data visualization, geographical databases, indexing, maps, query processing, spatial sampling

Anish Das Sarma; Hongrae Lee; Hector Gonzalez; Jayant Madhavan; Alon Halevy

2012-05-01T23:59:59.000Z

446

Zigzag Survey Designs in Line Transect Sampling  

E-Print Network (OSTI)

survey lines are frequently used in shipboard and aerial line transect surveys of animal populations; Systematic designs; Zigzag designs. 1. INTRODUCTION Shipboard and aerial line transect surveys are widelyZigzag Survey Designs in Line Transect Sampling Samantha STRINDBERG and Stephen T. BUCKLAND Zigzag

Buckland, Steve

447

The Sampling Variations of Hailstone Size Distributions  

Science Conference Proceedings (OSTI)

The use of a shifted gamma size distribution for hailstone samples is proposed. This is shown to provide a better fit than the usual exponential form, using time-resolved Alberta data. It is also concluded that there is a dependence of the shape ...

Raymond K. W. Wong; Norman Chidambaram; Lawrence Cheng; Marianne English

1988-03-01T23:59:59.000Z

448

Efficient sampling of information in social networks  

Science Conference Proceedings (OSTI)

As online social networking emerges, there has been increased interest to utilize the underlying social structure as well as the available social information to improve search. In this paper, we focus on improving the performance of information collection ... Keywords: personalization, sampling social networks, social search

Gautam Das; Nick Koudas; Manos Papagelis; Sushruth Puttaswamy

2008-10-01T23:59:59.000Z

449

Cost-Based Sampling of Individual Instances  

Science Conference Proceedings (OSTI)

In many practical domains, misclassification costs can differ greatly and may be represented by class ratios, however, most learning algorithms struggle with skewed class distributions. The difficulty is attributed to designing classifiers to maximize ... Keywords: Class Imbalance, Cost-Based Learning, Sampling

William Klement; Peter Flach; Nathalie Japkowicz; Stan Matwin

2009-05-01T23:59:59.000Z

450

Sonochemical Digestion of Soil and Sediment Samples  

Science Conference Proceedings (OSTI)

This work was performed as part of a broader effort to automate analytical methods for determination of plutonium and other radioisotopes in environmental samples. The work described here represented a screening study to determine the potential for applying ultrasonic irradiation to sample digestion. Two standard reference materials (SRMs) were used in this study: Columbia River Sediment and Rocky Flats Soil. The key experiments performed are listed below along with a summary of the results. The action of nitric acid, regardless of its concentration and liquid-to-solid ratio, did not achieve dissolution efficiency better that 20%. The major fraction of natural organic matter (NOM) remained undissolved by this treatment. Sonication did not result in improved dissolution for the SRMs tested. The action of hydrofluoric acid at concentrations of 8 M and higher achieved much more pronounced dissolution (up to 97% dissolved for the Rocky Flats soil sample and up to 78% dissolved for the Columbia River Sediment sample). Dissolution efficiency remains constant for solid-to-liquid ratios of up to 0.05 to 1 and decreases for the higher loadings of the solid phase. Sonication produced no measurable effect in improving the dissolution of the samples compared with the control digestion experiments. Combined treatment of the SRM by mixtures of HNO3 and HF showed inferior performance compared with the HF alone. An adverse effect of sonication was found for the Rocky Flats soil material, which became more noticeable at higher HF concentrations. Sonication of the Columbia River sediment samples had no positive effect in the mixed acid treatment. The results indicate that applying ultrasound in an isolated cup horn configuration does not offer any advantage over conventional ''heat and mix'' treatment for dissolution of the soil and sediment based on the SRM examined here. This conclusion, however, is based on an approach that uses gravimetric analysis to determine gross dissolution efficiency. This approach does not allow any conclusion regarding the possible advantage of sonication in selective dissolution of plutonium traces incorporated into an inorganic or organic fraction of the samples.

Sinkov, Sergei I.; Lumetta, Gregg J.

2006-10-12T23:59:59.000Z

451

Wind Stress Curl and Coastal Upwelling in the Area of Monterey Bay Observed during AOSN-II  

Science Conference Proceedings (OSTI)

Aircraft measurements obtained during the 200304 Autonomous Ocean Sampling Network (AOSN-II) project were used to study the effect of small-scale variations of near-surface wind stress on coastal upwelling in the area of Monterey Bay. Using 5-km-...

Q. Wang; J. A. Kalogiros; S. R. Ramp; J. D. Paduan; G. Buzorius; H. Jonsson

2011-05-01T23:59:59.000Z

452

Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 1: Title II design report  

SciTech Connect

The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 1 provides a comprehensive narrative description of the proposed facility and systems, the basis for each of the systems design, and the engineering assessments that were performed to support the technical basis of the Title II design. The intent of the system description presented is to provide WHC an understanding of the facilities and equipment provided and the A/E`s perspective on how these systems will operate.

NONE

1995-09-01T23:59:59.000Z

453

Search for Third Generation Squarks in the Missing Transverse Energy plus Jet Sample at CDF Run II  

Science Conference Proceedings (OSTI)

The twentieth century leaves behind one of the most impressive legacies, in terms of human knowledge, ever achieved. In particular the StandardModel (SM) of particle physics has proven to be one of the most accurate descriptions of Nature. The level of accuracy of some theoretical predictions has never been attained before. It includes the electromagnetic interaction, and the weak and strong force, developing the Lagrangian from symmetry principles. There are two different types of fundamental constituents of Nature, in the framework of the Standard Model: bosons and fermions. Bosons are those particles responsible for carrying the interactions among the fermions, which constitute matter. Fermions are divide into six quarks and six leptons, forming a three-folded structure. All these fermions and bosons have an antimatter partner. However, several difficulties point along with the idea that the Standard Model is only an effective low energy theory. These limitations include the difficulty to incorporate gravity and the lack of justification to fine tuning of some perturbative corrections. Moreover, some regions of the theory are not understood, like the mass spectrum of the Standard Model or the mechanism for electroweak symmetry breaking. Supersymmetry is a newer theoretical framework, thought to adress the problems found in the Standard Model, while preserving all its predictive power. It introduces a new symmetry that relates a new boson to each SM fermion and a new fermion to each SM boson. In this way, for every existing boson in the SM it must exist a fermionic super-partner (named with a sufix ino), and likewise, for every fermion a bosonic super-partner (named with a prefix s) must also exist. Moreover, another symmetry called R-parity is introduced to prevent baryon and lepton number violating interactions. If R-parity is conserved, super-particles can only be pair-produced and they cannot decay completely in SM particles. This implies the existence of a lightest SUSY particle (LSP) which would provide a candidate for cold dark matter, that account for 23% of the universe content, as strongly suggested by recent astrophysical data [1]. The Tevatron is a hadron collider operating at Fermilab, USA. This accelerator provides proton-antiproton (p{bar p}) collisions with a center of mass energy of {radical}s = 1.96 TeV. CDF and D0 are the detectors built to analyse the products of the collisions provided by the Tevatron. Both experiments have produced a very significant scientific output in the last few years, like the discovery of the top quark or the measurement of the B{sub s} mixing. The Tevatron experiments are also reaching sensitivity to the SM Higgs boson. The scientific program of CDF includes a broad spectrum on searches for physics signatures beyond the Standard Model. Tevatron is still the energy frontier, what means an unique opportunity to produce a discovery in physic beyond the Standard Model. The analyses presented in this thesis focus on the search for third generation squarks in the missing transverse energy plus jets final state. The production of sbottom ({tilde b}) and stop ({tilde t}) quarks could be highly enhanced at the Tevatron, giving the possibility of discovering new physics or limiting the parameter space available in the theory. No signal is found over the predicted Standard Model background in both searches. Instead, 95% confidence level limits are set on the production cross section, and then translated into the mass plane of the hypothetical particles. This thesis sketches the basic theory concepts of the Standard Model and the Minimal Supersymmetric Extension in Chapter 2. Chapter 3, describes the Tevatron and CDF. Based on the CDF subsystems information, Chapter 4 and 5 describe the analysis objet reconstruction and the heavy flavor tagging tools. The development of the analyses is shown in Chapter 6 and Chapter 7. Finally, Chapter 8 is devoted to discuss the results and conclusions of this work, and future prospects.

Vidal Marono, Miguel; /Madrid, CIEMAT /Madrid U.

2010-03-01T23:59:59.000Z

454

Water Sampling (Lewicki & Oldenburg, 2004) | Open Energy Information  

Open Energy Info (EERE)

Water Sampling (Lewicki & Oldenburg, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling (Lewicki & Oldenburg, 2004) Exploration...

455

LABORATORY REPORT ON THE REDUCTION AND STABILIZATION (IMMOBILIZATION) OF PERTECHNETATE TO TECHNETIUM DIOXIDE USING TIN(II)APATITE  

SciTech Connect

This effort is part of the technetium management initiative and provides data for the handling and disposition of technetium. To that end, the objective of this effort was to challenge tin(II)apatite (Sn(II)apatite) against double-shell tank 241-AN-105 simulant spiked with pertechnetate (TcO{sub 4}{sup -}). The Sn(II)apatite used in this effort was synthesized on site using a recipe developed at and provided by Sandia National Laboratories; the synthesis provides a high quality product while requiring minimal laboratory effort. The Sn(II)apatite reduces pertechnetate from the mobile +7 oxidation state to the non-mobile +4 oxidation state. It also sequesters the technetium and does not allow for re-oxidization to the mo bile +7 state under acidic or oxygenated conditions within the tested period oftime (6 weeks). Previous work (RPP-RPT-39195, Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine) indicated that the Sn(II)apatite can achieve an ANSI leachability index in Cast Stone of 12.8. The technetium distribution coefficient for Sn(II)apatite exhibits a direct correlation with the pH of the contaminated media. Table A shows Sn(II)apatite distribution coefficients as a function of pH. The asterisked numbers indicate that the lower detection limit of the analytical instrument was used to calculate the distribution coefficient as the concentration of technetium left in solution was less than the detection limit. The loaded sample (200 mg of Sn(II)apatite loaded with O.311 mg of Tc-99) was subjected to different molarities of nitric acid to determine if the Sn(II)apatite would release the sequestered technetium. The acid was allowed to contact for 1 minute with gentle shaking ('1st wash'); the aqueous solution was then filtered, and the filtrate was analyzed for Tc-99. Table B shows the results ofthe nitric acid exposure. Another portion of acid was added, shaken for a minute, and filtered ('2nd wash'). The technetium-loaded Sn(II)apatite was also subjected to water leach tests. The loaded sample (0.2 g of Sn(II)apatite was loaded with 0.342 mg of Tc-99) was placed in a 200-mL distilled water column and sparged with air. Samples were taken weekly over a 6-week period, and the dissolved oxygen ranged from 8.4 to 8.7 mg/L (average 8.5 mg/L); all samples recorded less than the detection limit of 0.01 mg/L Tc-99. The mechanism by which TcO{sub 2} is sequestered and hence protected from re-oxidation appears to be an exchange with phosphate in the apatite lattice, as the phosphorus that appeared in solution after reaction with technetium was essentially the same moles of technetium that were taken up by the Sn(II)apatite (Table 6). Overall, the reduction of the mobile pertechnetate (+7) to the less mobile technetium dioxide (+4) by Sn(II)apatite and subsequent sequestration of the technetium in the material indicates that Sn(II)apatite is an excellent candidate for long-term immobilization of technetium. The indications are that the Sn(II)apatite will lend itself to sequestering and inhibiting the reoxidation to the mobile pertechnetate species, thus keeping the radionuclide out of the environment.

DUNCAN JB; HAGERTY K; MOORE WP; RHODES RN; JOHNSON JM; MOORE RC

2012-06-01T23:59:59.000Z

456

Nickel(II) and copper(II) complexes with humic acid anions and their derivatives  

SciTech Connect

Complexation of Ni(II) and Cu(II) in aqueous solutions with anions of humic acids, extracted from naturally oxidized coal, and with their hydroxymethyl derivatives is studied spectrophotometrically and potentiometrically. The complexation stoichiometry and the stability constants of the complexes are determined.

Ryabova, I.N. [Kazakh Academy of Science, Karaganda (Kazakhstan)

2008-01-15T23:59:59.000Z

457

DETERMINATION OF TETRAVALENT URANIUM IN THORIUM OXIDE-URANIUM OXIDE MIXTURES. PARTS I, II, AND III  

SciTech Connect

For the determination of milligram quantities of uranium(N) in thorium oxide-uranium oxide mixtures which may also contain uranium(VI), it was necessary to devise a means of dissolving the sample so as to prevent any air oxidation of the uranium(IV) to uranium(VI). For this determination, the conventional potassium dichromate volumetric method was used except that the sample was dissolved under reflux in 7 M H/sub 3/PO/sub 4/ which contained an excess of standard dichromate solution. Following the dissolution of the sample, this excess was determined by back titration with a standard solution of iron(II). Barium diphenylaminesulfonate was used as the indicator. Initial tests on the dissolution of samples of thorium oxide-uranium oxide in hot HC1O/sub 4/ and hot HCI are described. (auth)

Menis, O.

1959-04-01T23:59:59.000Z

458

PEP-II injection timing and controls  

SciTech Connect

Hardware has been built and software written and incorporated in the existing SLC accelerator control system to control injection of beam pulses from the accelerator into the PEP-II storage rings currently under construction. Hardware includes a CAMAC module to delay the machine timing fiducial in order that a beam pulse extracted from a damping ring will be injected into a selected group of four 476 MHz buckets in a PEP-II ring. Further timing control is accomplished by shifting the phase of the bunches stored in the damping rings before extraction while leaving the phase of the PEP-II stored beam unchanged. The software which drives timing devices on a pulse-to-pulse basis relies on a dedicated communication link on which one scheduling microprocessor broadcasts a 128-bit message to all distributed control microprocessors at 360 Hz. PEP-II injection will be driven by the scheduling microprocessor according to lists specifying bucket numbers in arbitrary order, and according to scheduling constraints maximizing the useful beam delivered to the SLC collider currently in operation. These lists will be generated by a microprocessor monitoring the current stored per bucket in each of the PEP-II rings.

Bharadwaj, V.; Browne, M.; Crane, M.; Gromme, T.; Himel, T.; Ross, M.; Stanek, M. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Ronan, M. [Lawrence Berkeley National Lab., CA (United States)

1997-07-01T23:59:59.000Z

459

A walk in facebook: Uniform sampling of users in online social networks. Arxiv preprint arXiv:0906.0060  

E-Print Network (OSTI)

The popularity of online social networks (OSNs) has given rise to a number of measurements studies that provide a first step towards their understanding. So far, such studies have been based either on complete data sets provided directly by the OSN itself or on Breadth-First-Search (BFS) crawling of the social graph, which does not guarantee good statistical properties of the collected sample. In this paper, we crawl the publicly available social graph and present the first unbiased sampling of Facebook (FB) users using a Metropolis-Hastings random walk with multiple chains. We study the convergence properties of the walk and demonstrate the uniformity of the collected sample with respect to multiple metrics of interest. We provide a comparison of our crawling technique to baseline algorithms, namely BFS and simple random walk, as well as to the ground truth obtained through truly uniform sampling of userIDs. Our contributions lie both in the measurement methodology and in the collected sample. With regards to the methodology, our measurement technique (i) applies and combines known results from random walk sampling specifically in the OSN context and (ii) addresses system implementation aspects that have made the measurement of Facebook challenging so far. With respect to the collected sample: (i) it is the first representative sample of FB users and we plan to make it publicly available; (ii) we perform a characterization of several key properties of the data set, and find that some of them are substantially different from what was previously believed based on non-representative OSN samples. 1.

Minas Gjoka; Maciej Kurant; Carter T. Butts; Athina Markopoulou

2009-01-01T23:59:59.000Z

460

Sample Results from the Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples  

SciTech Connect

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

Peters, T. B.; Fink, S. D.

2012-12-11T23:59:59.000Z

Note: This page contains sample records for the topic "ii low-flow sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Sample Results From The Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples  

Science Conference Proceedings (OSTI)

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

Peters, T. B.; Fink, S. D.

2012-12-20T23:59:59.000Z

462

Method and sample spinning apparatus for measuring the NMR spectrum of an orientationally disordered sample  

DOE Patents (OSTI)

An improved NMR apparatus and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus spins the sample about an axis. The angle of the axis is mechanically varied such that the time average of two or more Legendre polynomials are zero.

Pines, Alexander (Berkeley, CA); Samoson, Ago (Tallinn, SU)

1990-01-01T23:59:59.000Z

463

Well purge and sample apparatus and method  

DOE Patents (OSTI)

The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion.

Schalla, Ronald (Kennewick, WA); Smith, Ronald M. (Richland, WA); Hall, Stephen H. (Kennewick, WA); Smart, John E. (Richland, WA); Gustafson, Gregg S. (Redmond, WA)

1995-01-01T23:59:59.000Z

464

Well purge and sample apparatus and method  

DOE Patents (OSTI)

The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion. 8 figs.

Schalla, R.; Smith, R.M.; Hall, S.H.; Smart, J.E.; Gustafson, G.S.

1995-10-24T23:59:59.000Z

465

Demosaicing: image reconstruction from color ccd samples  

E-Print Network (OSTI)

A simplified color image formation model is used to construct an algorithm for image reconstruction from CCD sensors samples. The proposed method involves two successive steps. The first is motivated by Coks template matching technique, while the second step uses steerable inverse diffusion in color. Classical linear signal processing techniques tend to oversmooth the image and result in noticeable color artifacts along edges and sharp features. The question is how should the different color channels support each other to form the best possible reconstruction. Our answer is to let t