Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Site Inspection and Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites November 2012 LMS/S09415 ENERGY Legacy Management U.S. DEPARTMENT OF Sherwood, Washington, Disposal Site, 2012 Sherwood, Washington, Disposal Site, 2012 L-Bar, New Mexico, Disposal Site, 2012 L-Bar, New Mexico, Disposal Site, 2012 Bluewater, New Mexico, Disposal Site, 2012 Bluewater, New Mexico, Disposal Site, 2012 Maybell West, Colorado, Disposal Site, 2012 Maybell West, Colorado, Disposal Site, 2012 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,

2

News Release: 2010 UMTRCA Title I and Title II Disposal Sites Reports  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 UMTRCA Title I and Title II Disposal Sites 2010 UMTRCA Title I and Title II Disposal Sites Reports Available News Release: 2010 UMTRCA Title I and Title II Disposal Sites Reports Available February 23, 2011 - 9:51am Addthis News Contact: DOE, Rich Bush, UMTRCA Program Lead (970) 248-6073 Contractor, Bob Darr, S.M. Stoller Corporation Public Affairs (720) 377-9672 Grand Junction, Colo. - The U.S. Department of Energy announces the availability of the 2010 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites and the 2010 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites reports. In 2010, DOE's Office of Legacy Management was responsible for providing long-term surveillance and maintenance services at 25 uranium mill tailings

3

Changes in Vegetation at the Monticello, Utah, Disposal Site...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Changes in Vegetation at the Monticello, Utah, Disposal Site Changes in Vegetation at the Monticello, Utah, Disposal Site Changes in Vegetation at the Monticello, Utah, Disposal...

4

Disposal Practices at the Nevada Test Site 2008 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Practices at the Nevada Test Site 2008 Disposal Practices at the Nevada Test Site 2008 Full Document and Summary Versions are available for download Disposal Practices at...

5

Erosion Control and Revegetation at DOE's Lowman Disposal Site...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Erosion Control and Revegetation at DOE's Lowman Disposal Site, Lowman, Idaho Erosion Control and Revegetation at DOE's Lowman Disposal Site, Lowman, Idaho Erosion Control and...

6

EA-1097: Solid waste Disposal - Nevada Test Site, Nye County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Solid waste Disposal - Nevada Test Site, Nye County, Nevada EA-1097: Solid waste Disposal - Nevada Test Site, Nye County, Nevada SUMMARY This EA evaluates the environmental...

7

Disposal Practices at the Nevada Test Site 2008 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Test Site 2008 Disposal Practices at the Nevada Test Site 2008 Full Document and Summary Versions are available for download Disposal Practices at the Nevada Test Site 2008...

8

DOE - Office of Legacy Management -- Maryland Disposal Site - MD 05  

Office of Legacy Management (LM)

Maryland Disposal Site - MD 05 Maryland Disposal Site - MD 05 FUSRAP Considered Sites Site: MARYLAND DISPOSAL SITE (MD.05 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Baltimore - Vicinity , Maryland MD.05-1 Evaluation Year: 1989 MD.05-1 Site Operations: Proposed disposal site - never developed. MD.05-1 Site Disposition: Eliminated Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to MARYLAND DISPOSAL SITE MD.05-1 - Report (DOE/OR/20722-131 Revision 0); Site Plan for the Maryland Disposal Site; April 1989 Historical documents may contain links which are no longer valid or to

9

Innovative Technique Accelerates Waste Disposal at Idaho Site | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site May 15, 2013 - 12:00pm Addthis A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. Macro-packs from the Idaho site are shown here safely and compliantly disposed. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. IDAHO FALLS, Idaho - An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for

10

Innovative Technique Accelerates Waste Disposal at Idaho Site | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site May 15, 2013 - 12:00pm Addthis A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. Macro-packs from the Idaho site are shown here safely and compliantly disposed. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. IDAHO FALLS, Idaho - An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for

11

Los Alamos Lab Completes Excavation of Waste Disposal Site Used...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Excavation of Waste Disposal Site Used in the 1940s More Documents & Publications Manhattan Project Truck Unearthed in Recovery Act Cleanup Protecting Recovery Act Cleanup...

12

Summary - Disposal Practices at the Nevada Test Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Test Site, NV Nevada Test Site, NV EM Project: Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5. Disposal operations at Area 3 have been discontinued, but the facility is available for future disposal. The anticipated closure date for Area 3 is 2027. Area 5 is operating and will be expanded to accept future wastes. LLRW and mixed low-level radioactive waste (MLLW) are disposed of in Area 5 in shallow

13

LANL completes excavation of 1940s waste disposal site  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL completes excavation LANL completes excavation LANL completes excavation of 1940s waste disposal site The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. September 22, 2011 Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation. Contact Colleen Curran Communicatons Office (505) 664-0344 Email LOS ALAMOS, New Mexico, September 22, 2011-Los Alamos National Laboratory has completed excavation of its oldest waste disposal site, Material Disposal Area B (MDA-B). The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. MDA-B was used from 1944-48 as a waste disposal site for Manhattan Project and Cold War-era research and

14

On-Site Disposal Facility Inspection Report  

Office of Legacy Management (LM)

8947.1 8947.1 09/13 On-Site Disposal Facility Inspection Report September 2013 6319-D6242 8947.2 09/13 East Face Cell 1 West Face Cell 1 6319D-6208 6319D-6231 8947.3 09/13 North Face Cell 1 North Drainage (looking west) 6319D-6206 6319D-6205 8947.4 09/13 East Face Cell 2 West Face Cell 2 6319D-6230 6319D-6209 8947.5 09/13 East Face Cell 3 West Face Cell 3 6319D-6229 6319D-6210 8947.6 09/13 East Face Cell 4 West Face Cell 4 6319D-6227 6319D-62111 8947.7 09/13 East Face Cell 5 West Face Cell 5 6319D-6226 6319D-6213 8947.8 09/13 East Face Cell 6 6319D-6214 6319D-6225 West Face Cell 6 8947.9 09/13 East Face Cell 7 6319D-6215 6319D-6223 West Face Cell 7 8947.10 09/13 East Face Cell 8 6319D-6217 6319D-6220 West Face Cell 8 8947.11 09/13 South Face Cell 8 6319D-6219 6319D-6218 South Drainage (looking west) 8947.12 09/13

15

Disposal Practices at the Nevada Test Site 2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Area 5 LLRW & MLLW Disposal Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5. Disposal operations at Area 3 have been discontinued, but the facility is available for future disposal. The anticipated closure date for Area 3 is 2027. Area 5 is operating and will be expanded to accept future wastes. LLRW and mixed low-level radioactive

16

Deep Borehole Disposal Research: Demonstration Site Selection Guidelines,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deep Borehole Disposal Research: Demonstration Site Selection Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal of spent nuclear fuel and other radioactive waste forms, along with research and development for mined repositories in salt, granite, and clay, as part of the used fuel disposition (UFD) campaign. The deep borehole disposal concept consists of drilling a borehole on the order of 5,000 m deep, emplacing waste canisters in the lower part of the borehole, and sealing the upper part of the borehole with bentonite and concrete seals. A reference design of the

17

Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE`s Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS.

Price, L. [Science Applications International Corp., Albuquerque, NM (United States)

1994-09-01T23:59:59.000Z

18

Summary - Disposal Practices at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ETR-19 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Disposal Practices at the Savannah River Site Why DOE-EM Did This Review Disposal operations have been ongoing at the Savannah River Site (SRS) for over 50 years. Active disposal in E-Area, is near the center of the site. Although a wide range of wastes are being managed at the SRS, only low level radioactive wastes (LLRW) are disposed of on site. Wastes are disposed of in unlined slit and engineered trenches, and in low activity waste and intermediate level vaults. Some wastes are isolated in place with grout and all wastes will be covered with a cap that includes a hydraulic barrier to limit precipitation infiltration. The objective of this review was to

19

Waste Disposal Site and Radioactive Waste Management (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

20

Summary - Disposal Practices at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ETR-19 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Disposal Practices at the Savannah River Site Why DOE-EM Did...

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

On-Site Disposal Facility Inspection Report  

Office of Legacy Management (LM)

3122013 March 2013 Site Inspection 40 1638 A6B No Large areas of teasel 3122013 March 2013 Site Inspection 52 Herbicide applied August-13 1639 Cell 8, south toe No Rock 312...

22

Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portsmouth Site Delivers First Radioactive Waste Shipment to Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas August 27, 2013 - 12:00pm Addthis Waste management and transportation personnel worked late to complete the first shipment to WCS. Through a contract with DOE, WCS will treat and accept potentially hazardous waste that has been at the Portsmouth site for decades. Pictured (from left) are Scott Fraser, Joe Hawes, Craig Herrmann, Jim Book, John Lee, John Perry, Josh Knipp, Melissa Dunsieth, Randy Barr, Rick Williams, Janet Harris, Maureen Fischels, Cecil McCoy, Trent Eckert, Anthony Howard and Chris Ashley. Waste management and transportation personnel worked late to complete the

23

Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.

NSTec Environmental Restoration

2009-07-31T23:59:59.000Z

24

Voluntary cleanup of the Ames chemical disposal site.  

SciTech Connect

The U.S. Department of Energy completed a voluntary removal action at the Ames chemical disposal site, a site associated with the early days of the Manhattan Project. It contained chemical and low-level radioactive wastes from development of the technology to extract uranium from uranium oxide. The process included the preparation of a Remedial Investigation, Feasibility Study, Baseline Risk Assessment, and, ultimately, issuance of a Record of Decision. Various stakeholder groups were involved, including members of the regulatory community, the general public, and the landowner, Iowa State University. The site was restored and returned to the landowner for unrestricted use.

Taboas, A. L.; Freeman, R.; Peterson, J.; Environmental Assessment; USDOE

2003-01-01T23:59:59.000Z

25

Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delivers First Radioactive Waste Shipment to Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas August 27, 2013 - 12:00pm Addthis Waste management and transportation personnel worked late to complete the first shipment to WCS. Through a contract with DOE, WCS will treat and accept potentially hazardous waste that has been at the Portsmouth site for decades. Pictured (from left) are Scott Fraser, Joe Hawes, Craig Herrmann, Jim Book, John Lee, John Perry, Josh Knipp, Melissa Dunsieth, Randy Barr, Rick Williams, Janet Harris, Maureen Fischels, Cecil McCoy, Trent Eckert, Anthony Howard and Chris Ashley. Waste management and transportation personnel worked late to complete the first shipment to WCS. Through a contract with DOE, WCS will treat and

26

Automated Monitoring System for Waste Disposal Sites and Groundwater  

Science Conference Proceedings (OSTI)

A proposal submitted to the U.S. Department of Energy (DOE), Office of Science and Technology, Accelerated Site Technology Deployment (ASTD) program to deploy an automated monitoring system for waste disposal sites and groundwater, herein referred to as the ''Automated Monitoring System,'' was funded in fiscal year (FY) 2002. This two-year project included three parts: (1) deployment of cellular telephone modems on existing dataloggers, (2) development of a data management system, and (3) development of Internet accessibility. The proposed concept was initially (in FY 2002) to deploy cellular telephone modems on existing dataloggers and partially develop the data management system at the Nevada Test Site (NTS). This initial effort included both Bechtel Nevada (BN) and the Desert Research Institute (DRI). The following year (FY 2003), cellular modems were to be similarly deployed at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL), and the early data management system developed at the NTS was to be brought to those locations for site-specific development and use. Also in FY 2003, additional site-specific development of the complete system was to be conducted at the NTS. To complete the project, certain data, depending on site-specific conditions or restrictions involving distribution of data, were to made available through the Internet via the DRI/Western Region Climate Center (WRCC) WEABASE platform. If the complete project had been implemented, the system schematic would have looked like the figure on the following page.

S. E. Rawlinson

2003-03-01T23:59:59.000Z

27

Evaluating off-site disposal of low-level waste at LANL-9498  

SciTech Connect

Los Alamos National Laboratory generates a wide range of waste types, including solid low-level radioactive waste (LL W), in conducting its national security mission and other science and technology activities. Although most ofLANL's LLW has been disposed on-site, limitations on expansion, stakeholder concerns, and the potential for significant volumes from environmental remediation and decontamination and demolition (D&D) have led LANL to evaluate the feasibility of increasing off-site disposal. It appears that most of the LL W generated at LANL would meet the Waste Acceptance Criteria at the Nevada Test Site or the available commercial LL W disposal site. Some waste is considered to be problematic to transport to off-site disposal even though it could meet the off-site Waste Acceptance Criteria. Cost estimates for off-site disposal are being evaluated for comparison to estimated costs under the current plans for continued on-site disposal.

Hargis, Kenneth M [Los Alamos National Laboratory; French, Sean B [Los Alamos National Laboratory; Boyance, Julien A [NORTH WIND, INC.

2009-01-01T23:59:59.000Z

28

Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site  

SciTech Connect

The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325

NSTec Environmental Programs

2010-09-14T23:59:59.000Z

29

Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

NSTec Environmental Restoration

2007-07-01T23:59:59.000Z

30

Risk assessment of landfill disposal sites - State of the art  

SciTech Connect

A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

Butt, Talib E. [Sustainability Centre in Glasgow (SCG), George Moore Building, 70 Cowcaddens Road, Glasgow Caledonian University, Glasgow G4 0BA, Scotland (United Kingdom)], E-mail: t_e_butt@hotmail.com; Lockley, Elaine [Be Environmental Ltd. Suite 213, Lomeshaye Business Village, Turner Road, Nelson, Lancashire, BB9 7DR, England (United Kingdom); Oduyemi, Kehinde O.K. [Built and Natural Environment, Baxter Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, Scotland (United Kingdom)], E-mail: k.oduyemi@abertay.ac.uk

2008-07-01T23:59:59.000Z

31

Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2008 ETR-12 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF)...

32

Evaluation of potential risks from ash disposal site leachate  

SciTech Connect

A risk-based approach is used to evaluate potential human health risks associated with a discharge from an ash disposal site into a small stream. The RIVRISK model was used to estimate downstream concentrations and corresponding risks. The modeling and risk analyses focus on boron, the constituent of greatest potential concern to public health at the site investigated, in Riddle Run, Pennsylvania. Prior to performing the risk assessment, the model is validated by comparing observed and predicted results. The comparison is good and an uncertainty analysis is provided to explain the comparison. The hazard quotient (HQ) for boron is predicted to be greater than 1 at presently regulated compliance points over a range of flow rates. The reference dose (RfD) currently recommended by the United States Environmental Protection Agency (US EPA) was used for the analyses. However, the toxicity of boron as expressed by the RfD is now under review by both the U.S. EPA and the World Health Organization. Alternative reference doses being examined would produce predicted boron hazard quotients of less than 1 at nearly all flow conditions.

Mills, W.B.; Loh, J.Y.; Bate, M.C.; Johnson, K.M. [Tetra Tech, Lafayette, CA (United States)] [Tetra Tech, Lafayette, CA (United States)

1999-04-01T23:59:59.000Z

33

Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)  

SciTech Connect

This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; large volume bulk waste streams.

Arnold, P.

2012-10-31T23:59:59.000Z

34

Nevada test site experience with greater confinement disposal  

Science Conference Proceedings (OSTI)

At the NTS, we consider Greater Confinement Disposal (GCD) to be a good waste management practice rather than a disposal technology. This is an important distinction because it redefines the nature of GCD. All disposal facilities operate under the principal of ''as low as reasonably achievable'' (ALARA) in reducing personnel and public exposures. ALARA is not a technology or method but a principal put into practice. We view GCD in the same manner.

Dickman, P.T.; Boland, J.R.

1986-01-01T23:59:59.000Z

35

Siting process for disposal site of low level radiactive waste in Thailand  

SciTech Connect

The radioactive waste in Thailand is composed of low level waste from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. In addition, the high activity of sealed radiation sources i.e. Cs-137 Co-60 and Ra-226 are also accumulated. Since the volume of treated waste has been gradually increased, the general needs for a repository become apparent. The near surface disposal method has been chosen for this aspect. The feasibility study on the underground disposal site has been done since 1982. The site selection criteria have been established, consisting of the rejection criteria, the technical performance criteria and the economic criteria. About 50 locations have been picked for consideration and 5 candidate sites have been selected and subsequent investigated. After thoroughly investigation, a definite location in Ratchburi Province, about 180 kilometers southwest of Bangkok, has been selected as the most suitable place for the near surface disposal of radioactive waste in Thailand.

Yamkate, P.; Sriyotha, P.; Thiengtrongjit, S.; Sriyotha, K. (Atomic Energy for Peace, Bangkok (Thailand))

1992-01-01T23:59:59.000Z

36

Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0  

Science Conference Proceedings (OSTI)

This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action alternatives.

Wickline, Alfred

2005-12-01T23:59:59.000Z

37

Hanford Site waste treatment/storage/disposal integration  

SciTech Connect

In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps.

MCDONALD, K.M.

1999-02-24T23:59:59.000Z

38

Revegetation of a Comanaged Utility Waste Disposal Area: A Southwestern Site  

Science Conference Proceedings (OSTI)

Comanagement of low-volume coal combustion by-products with high-volume wastes produces a saline material, which presents unique challenges to revegetation after disposal area closure. This report describes studies evaluating plants, amendments, and techniques for revegetating one of these sites in the southwestern United States. These studies have produced guidelines for successful revegetation of comanaged disposal sites.

1999-11-29T23:59:59.000Z

39

Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado  

SciTech Connect

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney disposal site. The site is in Mesa County near Grand Junction, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects public health and safety and the environment. Before each disposal site may be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Cheney disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete and the NRC formally accepts this plan. This document describes the long-term surveillance program the DOE will implement to ensure that the Cheney disposal site performs as designed. The program is based on site inspections to identify potential threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-04-01T23:59:59.000Z

40

Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado  

Science Conference Proceedings (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney Disposal Site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

NONE

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Interim long-term surveillance plan for the Cheney disposal site near, Grand Junction, Colorado  

SciTech Connect

This interim long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site in Mesa County near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

NONE

1997-08-01T23:59:59.000Z

42

Framework for DOE mixed low-level waste disposal: Site fact sheets  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

1994-11-01T23:59:59.000Z

43

Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site  

Energy.gov (U.S. Department of Energy (DOE))

Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

44

Mitigation action plan for remedial action at the Uranium Mill Tailing Sites and Disposal Site, Rifle, Colorado  

SciTech Connect

The Estes Gulch disposal site is approximately 10 kilometers (6 miles) north of the town of Rifle, off State Highway 13 on Federal land administered by the Bureau of Land Management. The Department of Energy (DOE) will transport the residual radioactive materials (RRM) by truck to the Estes Gulch disposal site via State Highway 13 and place it in a partially below-grade disposal cell. The RRM will be covered by an earthen radon barrier, frost protection layers, and a rock erosion protection layer. A toe ditch and other features will also be constructed to control erosion at the disposal site. After removal of the RRM and disposal at the Estes Gulch site, the disturbed areas at all three sites will be backfilled with clean soils, contoured to facilitate surface drainage, and revegetated. Wetlands areas destroyed at the former Rifle processing sites will be compensated for by the incorporation of now wetlands into the revegetation plan at the New Rifle site. The UMTRA Project Office, supported by the Remedial Action Contractor (RAC) and the Technical Assistance Contractor (TAC), oversees the implementation of the MAP. The RAC executes mitigation measures in the field. The TAC provides monitoring of the mitigation actions in cases where mitigation measures are associated with design features. Site closeout and inspection compliance will be documented in the site completion report.

Not Available

1992-07-01T23:59:59.000Z

45

Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations  

SciTech Connect

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams.

J.T. Carilli; S.K. Krenzien; R.G. Geisinger; S.J. Gordon; B. Quinn

2009-03-01T23:59:59.000Z

46

Savannah River Site Basis for Section 3116 Determination for Salt Waste Disposal  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy (DOE) published in the Federal Register (January 24, 2006), a Notice of Availability of Section 3116 Determination for Salt Waste Disposal at the Savannah River Site.

47

DOE - Office of Legacy Management -- Pennsylvania Disposal Site...  

Office of Legacy Management (LM)

documentation of the period do not provide sufficient information to warrant further search of historical records for information on these sites. These site files remain "open"...

48

Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site  

SciTech Connect

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the U.S. Department of Energy`s (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials.

NONE

1996-07-01T23:59:59.000Z

49

Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site  

SciTech Connect

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the US Department of Energy`s (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials.

NONE

1995-11-01T23:59:59.000Z

50

Siting Study for the Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

2010-10-01T23:59:59.000Z

51

Summary - Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paducah, KY Paducah, KY EM Project: On-Site Disposal Facility ETR Report Date: August 2008 ETR-16 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Disposal Facility(OSDF) at the Paducah Gaseous Diffusion Plant Why DOE-EM Did This Review The Paducah Gaseous Diffusion Plant (PGDP) is an active uranium enrichment facility that was placed on the National Priorities List. DOE is required to remediate the PGDP in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). DOE is evaluating alternatives to dispose of waste generated from the remedial activities at the PGDP. One option is to construct an on-site disposal facility (OSDF) meeting the CERCLA requirements.

52

Salt Waste Disposal at the Savannah River Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Disposal at the Savannah River Site Salt Waste Disposal at the Savannah River Site Salt Waste Disposal at the Savannah River Site Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 authorizes the Secretary of Energy, in consultation with the Nuclear Regulatory Commission, to reclassify certain waste from reprocessing spent nuclear fuel from high-level waste to low-level waste if it meets the criteria set forth in Section 3116. Currently, DOE SRS has prepared one final (salt waste) and is working on two additional waste determinations: F Tank Farm and H Tank Farm. The Salt Waste Determination has been finalized and the Secretary of Energy issued that determination on January 17, 2006. In 2007, it was decided that due to a new Saltstone disposal vault design,

53

MEETING NOTES Shallow Land Disposal Area (SLDA) FUSRAP Site  

E-Print Network (OSTI)

1900s, the Upper Freeport Coal seam was deep mined beneath the majority of the site. Coal was later feet. The Upper Freeport coal was strip mined from the majority of the lower trench area strip mined from the western end of the site. Nuclear Materials and Equipment Corporation (NUMEC) owned

US Army Corps of Engineers

54

Grand Junction, Colorado, Disposal Site Long-Term Surveillance and Maintenance Program Fact Sheet, July 2001  

Office of Legacy Management (LM)

Grand Junction Disposal Site Grand Junction Disposal Site Uranium ore was processed at the Climax millsite at Grand Junction, Colorado, between 1951 and 1970. The milling operations created process-related waste and tailings, a sandlike material containing radioactive materials and other contaminants. The tailings were an ideal and inexpensive construction material suitable for concrete, mortar, and fill. Accordingly, the tailings were widely used in the Grand Junction area for these purposes. The U.S. Department of Energy (DOE) encapsulated the tailings and other contaminated materials from the millsite and more than 4,000 vicinity properties in the Grand Junction area in an engineered disposal cell. Part of the disposal cell was completed in 1994; the remainder of the cell remains open until it is

55

Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OH OH EM Project: On-Site Disposal Facility ETR Report Date: February 2008 ETR-12 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Why DOE-EM Did This Review The On-Site Waste Disposal Facility (OSWDF) is proposed for long-term containment of contaminated materials from the planned Decontamination and Decommissioning (D&D) activities at the Portsmouth Gaseous Diffusion Plant. Acceptable performance of the proposed OSWDF will depend on interactions between engineered landfill features and operations methods that recognize the unique characteristics of the waste stream and site-

56

Los Alamos Lab Completes Excavation of Waste Disposal Site Used in the 1940s  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 29, 2011 September 29, 2011 LOS ALAMOS, N.M. - Los Alamos National Laboratory recently completed excava- tion of its oldest waste disposal site, Material Disposal Area B (MDA-B), thanks to American Recovery and Reinvestment Act funding. The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. MDA-B was used from 1944 to 1948 as a waste disposal site for Manhat- tan Project and Cold War-era research and production. "The completion of the excavation of MDA-B is a landmark for our Recov- ery Act projects and environmental cleanup efforts," said George Rael, assistant manager for Environmental Operations at the National Nuclear Security Administration's Los Alamos Site Office. Completion of the excavation ends EM

57

Disposal Site Economic Model for Coal Combustion Residuals Under Proposed Federal Non-Hazardous Waste Regulations  

Science Conference Proceedings (OSTI)

Proposed federal coal combustion residual (CCR) disposal rules, along with anticipated regulations governing steam electric effluent guidelines, are expected to result in closure of many existing wet disposal facilities and construction of new landfills. Although each CCR project and each project site is unique, many of the major cost items associated with these projects should be reasonably consistent. This report provides baseline costs for four major CCR projects: existing impoundment closure, existin...

2012-08-06T23:59:59.000Z

58

A data base for low-level radioactive waste disposal sites  

SciTech Connect

A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs.

Daum, M.L.; Moskowitz, P.D.

1989-07-01T23:59:59.000Z

59

Environmental Assessment Photovoltaic Solar Project at the Durango, Colorado, Disposal Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Solar Project Photovoltaic Solar Project at the Durango, Colorado, Disposal Site Final June 2011 LMS/DUD/S06350 DOE/EA-1770 This page intentionally left blank LMS/DUD/S06350 DOE/EA 1770 Environmental Assessment Photovoltaic Solar Project at the Durango, Colorado, Disposal Site Final June 2011 This page intentionally left blank -1- U.S. Department of Energy Office of Legacy Management DOE/EA 1770 FINDING OF NO SIGNIFICANT IMPACT Photovoltaic Solar Project at the Durango, Colorado, Disposal Site, La Plata County AGENCY: U.S. Department of Energy (DOE), Office of Legacy Management (LM) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: LM prepared an Environmental Assessment (EA) (DOE/EA-1770) that evaluated two action alternatives related to the installation, operation, and removal of a photovoltaic (PV) solar energy

60

Guidance for implementing the long-term surveillance program for UMTRA Project Title I Disposal Sites  

SciTech Connect

This guidance document has two purposes: it provides guidance for writing site-specific long-term surveillance plans (LTSP) and it describes site surveillance, monitoring, and long-term care techniques for Title I disposal sites of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.). Long-term care includes monitoring, maintenance, and emergency measures needed to protect public health and safety and the environment after remedial action is completed. This document applies to the UMTRCA-designated Title I disposal sites. The requirements for long-term care of the Title I sites and the contents of the LTSPs are provided in U.S. Nuclear Regulatory Commission (NRC) regulations (10 CFR Section 40.27) provided in Attachment 1.

NONE

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Environmental Assessment Photovoltaic Solar Project at the Durango, Colorado, Disposal Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Office of Legacy Management U.S. Department of Energy Office of Legacy Management DOE/EA 1770 FINDING OF NO SIGNIFICANT IMPACT Photovoltaic Solar Project at the Durango, Colorado, Disposal Site, La Plata County AGENCY: U.S. Department of Energy (DOE), Office of Legacy Management (LM) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: LM prepared an Environmental Assessment (EA) (DOE/EA-1770) that evaluated two action alternatives related to the installation, operation, and removal of a photovoltaic (PV) solar energy system on the Durango, Colorado, Disposal Site and the No Action Alternative. Alternative 1 evaluated the use of the 18-acre (ac) vegetated surface of the disposal cell for the installation of a PV system. The second action alternative (Alternative 2, the Preferred Action) considered the use of the surface of the

62

SCR Catalyst Disposal, Recycle, and On-site Washing Options and Experience  

Science Conference Proceedings (OSTI)

As Selective Catalytic Reduction (SCR) technology becomes more widespread and the catalyst fleet ages, cost-effective and environmentally friendly approaches are need to handle the increasing volumes of spent catalyst or extend its life through simple on-site processing. This report addresses various issues related to catalyst rejuvenation, cleaning, recycling, and disposal.

2008-12-03T23:59:59.000Z

63

1996 Hanford site report on land disposal restrictions for mixed waste  

Science Conference Proceedings (OSTI)

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

Black, D.G.

1996-04-01T23:59:59.000Z

64

Should high-level nuclear waste be disposed of at geographically dispersed sites?  

SciTech Connect

Consideration of the technical feasibility of Yucca Mountain in Nevada as the site for a high-level nuclear waste repository has led to an intense debate regarding the economic, social, and political impacts of the repository. Impediments to the siting process mean that the nuclear waste problem is being resolved by adhering to the status quo, in which nuclear waste is stored at scattered sites near major population centers. To assess the merits of alternative siting strategies--including both the permanent repository and the status quo- we consider the variables that would be included in a model designed to select (1) the optimal number of disposal facilities, (2) the types of facilities (e.g., permanent repository or monitored retrievable facility), and (3) the geographic location of storage sites. The objective function in the model is an all-inclusive measure of social cost. The intent of the exercise is not to demonstrate the superiority of any single disposal strategy; uncertainties preclude a conclusive proof of optimality for any of the disposal options. Instead, we want to assess the sensitivity of a variety of proposed solutions to variations in the physical, economic, political, and social variables that influence a siting strategy.

Bassett, G.W. Jr. [Chicago Univ., IL (United States). Dept. of Economics; Hemphill, R.; Kohout, E. [Argonne National Lab., IL (United States)

1992-07-01T23:59:59.000Z

65

INADVERTENT INTRUDER ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY  

SciTech Connect

An On-Site Alternative is being evaluated as part of the Remedial Investigation and Feasibility Study (RI/FS) process for evaluation of alternatives for the disposal of waste generated from decontamination and decommissioning (D&D) at Portsmouth. The On-Site Alternative involves construction of an On-Site Waste Disposal Facility (OSWDF). An inadvertent intruder analysis must be conducted for the OSWDF. The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Therefore, after active institutional control ceases, certain exposure scenarios are assumed to be precluded only by the physical state of the disposal facility, i.e., the integrity of the engineered barriers used in facility construction or the thickness of clean material above the waste. Passive institutional controls, such as permanent marker systems at the disposal site and public records of prior land use, also could prevent inadvertent intrusion after active institutional control ceases, but the efficacy of passive institutional controls is not assumed in this analysis. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr.

Smith, F.; Phifer, M.

2013-09-30T23:59:59.000Z

66

Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

Grant Evenson

2006-04-01T23:59:59.000Z

67

Recommended Procedures for Measuring Radon Fluxes from Disposal Sites of Residual Radioactive Materials  

Science Conference Proceedings (OSTI)

This report recornmenrls instrumentation and methods suitable for measuring radon fluxes emanating from covered disposal sites of residual radioactive materials such as uranium mill tailings. Problems of spatial and temporal variations in radon flux are discussed and the advantages and disadvantages of several instruments are examined. A year-long measurement program and a two rnonth measurement rnethodology are then presented based on the inherent difficulties of measuring average radon flux over a cover using the recommended instrumentation.

Young,, J. A.; Thomas, V. W.; Jackson, P. 0.

1983-03-01T23:59:59.000Z

68

Evaluation of an Ecolotree TM CAP for Closure of Coal Ash Disposal Sites  

Science Conference Proceedings (OSTI)

Once they are filled or become inactive, coal ash disposal ponds at power plant sites must meet state and federal regulations for permanent closure. In-place closure of ash ponds typically requires an impermeable cover to protect groundwater from leachate generated by stormwater infiltration through the ash. This report documents the construction, maintenance, and performance of the EcolotreeTM Cap (Tree Cap) -- an ash pond closure alternative consisting of poplar trees, grasses, and surface soil amendme...

1999-06-16T23:59:59.000Z

69

Subseabed disposal program annual report, January-December 1978. Volume II. Principal investigator progress reports  

SciTech Connect

The topics covered in this report include: geologic siting considerations for the disposal of radioactive wastes into submarine geologic formations; geologic assessment of the MPG-1 regions Central North Pacific; site mapping; geotechnical aspects of subsurface seabed disposal; heat transfer, thermal and fluid physics in the deep ocean sediments; mechanical response predictive capability; sediment-seawater interaction at 300/sup 0/C, 500 bars; stability of actinides in chloride media; cannister corrosion studies; nuclide sorption and migration; development of apparatus and measurement of thermal conductivity of seabed illite and smectite at temperatures to 500/sup 0/C at simulated depths to 15,000 ft (9000 psi); in-situ heat transfer experiments; preliminary seabed disposal transport modeling studies; radionuclide migration studies; radionuclide distributions in deep ocean cores; benthic biological studies; deep sea microbial studies; activity rates of abyssal communities; Deep-towed RUM III (Sandia Seabed working platform): a third-generation remote underwater manipulator; long coring facility program; transportation; legal, political, and institutional implications of the Seabed Program for radioactive waste disposal.

1979-10-01T23:59:59.000Z

70

Assessment of microbial processes on gas production at radioactive low-level waste disposal sites  

SciTech Connect

Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

Weiss, A.J.; Tate, R.L. III; Colombo, P.

1982-05-01T23:59:59.000Z

71

Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site  

Science Conference Proceedings (OSTI)

The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.

NSTec Environmental Programs

2010-10-04T23:59:59.000Z

72

Quantifying Deep Vadose Zone Soil Water Potential Changes At A Waste Disposal Site  

Science Conference Proceedings (OSTI)

Recent advances in moisture monitoring using tensiometers has allowed long-duration, high quality data sets from within the deep vadose zone. A network of about 30 advanced tensiometers in 18 wells provided field-scale data to monitor moisture conditions and movement in the subsurface in and around a mixed waste disposal site at depths ranging from 6 to over 67 m below land surface (bls). Sensors are located in both sediments and fractured rock within the geologic profile and some have been in operation for over 10 years. The moisture monitoring was able to detect long term declines in moisture content presumably in response to lower than normal precipitation and resultant infiltration over the time period from 2000 to 2004. This trend was reversed in 2005 and 2006 in more than half of the monitoring sites over the 6 to 33 m depth interval and in several monitoring sites from 33 to 67 m, in response to normal to above normal precipitation. This tensiometer data can be used to evaluate the appropriateness of the current conceptual model of flow at this site. It also shows that a moisture monitoring system should be effective to rapidly validate that a proposed remedial action (such as placement of an ET cover) would be effective in reducing the moisture movement to levels similar to those in undisturbed sites outside of the disposal area. This paper will describe the instrument design, how the instruments were installed, and the resultant data from this monitoring system.

Joel M. Hubbell; Deborah L. McElroy

2007-10-01T23:59:59.000Z

73

Fuzzy multicriteria disposal method and site selection for municipal solid waste  

Science Conference Proceedings (OSTI)

The use of fuzzy multiple criteria analysis (MCA) in solid waste management has the advantage of rendering subjective and implicit decision making more objective and analytical, with its ability to accommodate both quantitative and qualitative data. In this paper a modified fuzzy TOPSIS methodology is proposed for the selection of appropriate disposal method and site for municipal solid waste (MSW). Our method is superior to existing methods since it has capability of representing vague qualitative data and presenting all possible results with different degrees of membership. In the first stage of the proposed methodology, a set of criteria of cost, reliability, feasibility, pollution and emission levels, waste and energy recovery is optimized to determine the best MSW disposal method. Landfilling, composting, conventional incineration, and refuse-derived fuel (RDF) combustion are the alternatives considered. The weights of the selection criteria are determined by fuzzy pairwise comparison matrices of Analytic Hierarchy Process (AHP). It is found that RDF combustion is the best disposal method alternative for Istanbul. In the second stage, the same methodology is used to determine the optimum RDF combustion plant location using adjacent land use, climate, road access and cost as the criteria. The results of this study illustrate the importance of the weights on the various factors in deciding the optimized location, with the best site located in Catalca. A sensitivity analysis is also conducted to monitor how sensitive our model is to changes in the various criteria weights.

Ekmekcioglu, Mehmet, E-mail: meceng3584@yahoo.co [Istanbul Technical University, Department of Management Engineering, 34367 Macka, Istanbul (Turkey); Kaya, Tolga [Istanbul Technical University, Department of Management Engineering, 34367 Macka, Istanbul (Turkey); Kahraman, Cengiz [Istanbul Technical University, Department of Industrial Engineering, 34367 Macka, Istanbul (Turkey)

2010-08-15T23:59:59.000Z

74

Use of engineered soils and other site modifications for low-level radioactive waste disposal  

SciTech Connect

The U.S. Nuclear Regulatory Commission requires that low-level radioactive waste (LLW) disposal facilities be designed to minimize contact between waste and infiltrating water through the use of site design features. The purpose of this investigation is to identify engineered barriers and evaluate their ability to enhance the long-term performance of an LLW disposal facility. Previously used barriers such as concrete overpacks, vaults, backfill, and engineered soil covers, are evaluated as well as state-of-the-art barriers, including an engineered sorptive soil layer underlying a facility and an advanced design soil cover incorporating a double-capillary layer. The purpose of this investigation is also to provide information in incorporating or excluding specific engineered barriers as part of new disposal facility designs. Evaluations are performed using performance assessment modeling techniques. A generic reference disposal facility design is used as a baseline for comparing the improvements in long-term performance offered by designs incorporating engineered barriers in generic and humid environments. These evaluations simulate water infiltration through the facility, waste leaching, radionuclide transport through the facility, and decay and ingrowth. They also calculate a maximum (peak annual) dose for each disposal system design. A relative dose reduction factor is calculated for each design evaluated. The results of this investigation are presented for concrete overpacks, concrete vaults, sorptive backfill, sorptive engineered soil underlying the facility, and sloped engineered soil covers using a single-capillary barrier and a double-capillary barrier. Designs using combinations of barriers are also evaluated. These designs include a vault plus overpacks, sorptive backfill plus overpacks, and overpack with vault plus sorptive backfill, underlying sorptive soil, and engineered soil cover.

Not Available

1994-08-01T23:59:59.000Z

75

Site Environmental Report for 2012, Volume II  

NLE Websites -- All DOE Office Websites (Extended Search)

7170E-2012 7170E-2012 Volume II Site Environmental Report for 2012 Environment/Health/Safety Division September 2013 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily

76

Radiological audit of remedial action activities at the processing site, transfer site, and Cheney disposal site Grand Junction, Colorado: Audit date, August 9--11, 1993. Final report  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailing Remedial Action (UMTRA) Project`s Technical Assistance Contractor (TAC) performed a radiological audit of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site, transfer site, and Cheney disposal site in Grand Junction, Colorado. Jim Hylko and Bill James of the TAC conducted this audit August 9 through 11, 1993. Bob Cornish and Frank Bosiljevec represented the US Department of Energy (DOE). This report presents one programmatic finding, eleven site-specific observations, one good practice, and four programmatic observations.

Not Available

1993-08-01T23:59:59.000Z

77

Comment and response document for the long-term surveillance plan for the Shiprock, New Mexico, disposal site  

Science Conference Proceedings (OSTI)

This document contains comments and responses regarding the long-term surveillance plan for the Shiprock, New Mexico uranium mine tailings disposal site. Discrepencies and errors within the plan document are noted and corrections are recorded.

Not Available

1994-09-01T23:59:59.000Z

78

Site A/Plot M Disposal Site, Chicago, Illinois, Fact Sheet  

Office of Legacy Management (LM)

Art Kleinrath (970) 248-6037 Audrey Berry, Public Affairs (970) 248-7727 or visit the Internet site at StabilizationIsolation Approach LTSM Program Activities Contacts , LTSM...

79

Closure Report for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada  

SciTech Connect

This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 543, Liquid Disposal Units, according to the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Corrective Action Plan (CAP) for CAU 543 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2007). CAU 543 is located at the Nevada Test Site (NTS), Nevada (Figure 1), and consists of the following seven Corrective Action Sites (CASs): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; CAS 15-23-03, Contaminated Sump, Piping; and CAS 06-07-01 is located at the Decontamination Facility in Area 6, adjacent to Yucca Lake. The remaining CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm in Area 15. The purpose of this CR is to provide a summary of the completed closure activities, to document waste disposal, and to present analytical data confirming that the remediation goals were met. The closure alternatives consisted of closure in place for two of the CASs, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

NSTec Environmental Restoration

2008-01-01T23:59:59.000Z

80

LONG-TERM SURVEILLANCE PLAN FOR THE GREEN RIVER, UTAH DISPOSAL SITE Ttable of Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

LONG-TERM SURVEILLANCE PLAN FOR THE LONG-TERM SURVEILLANCE PLAN FOR THE GREEN RIVER, UTAH DISPOSAL SITE Ttable of Contents DOE/AL/62350-89 May 20, 1998 REV. 1 VER.4 08914TOC.DOC (GRN) i TABLE OF CONTENTS Section Page 1.0 INTRODUCTION ................................................................................................. 1-1 1.1 Background .................................................................................................... 1- 2 1.2 Licensing process ........................................................................................ 1-2 1.3. Acquisition .............................................................................................. 1-2 1.4 Long-term surveillance plan .................................................................... 1-3

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Siting industrial waste land disposal facilities in Thailand: A risk based approach  

SciTech Connect

The Thailand Industrial Works Department (IWD) has established a toxic industrial waste Central Treatment and Stabilization Center (CTSC) for textile dyeing and electroplating industries located in the Thonburi region of the Bangkok metropolitan area. Industrial waste is treated, stabilized, and stored at the CTSC. Although the IWD plans to ship the stabilized sludge to the Ratchaburi Province in western Thailand for burial, the location for the land disposal site has not been selected. Assessing the relative health risks from exposure to toxic chemicals released from an industrial waste land disposal site is a complicated, data-intensive process that requires a multidisciplinary approach. This process is further complicated by the unique physical and cultural characteristics exhibited by the rapidly industrializing Thai economy. The purpose of this paper is to describe the research approach taken and to detail the constraints to health risk assessments in Thailand. issues discussed include data availability and quality, effectiveness of control or mitigation methods, cultural differences, and the basic assumptions inherent in many of the risk assessment components.

Fingleton, D.J.; Habegger, L.; Peters, R.; Tomasko, D.; Liengcharernsit, W.; Hastings, P.; Boonraksa, C.; Phantumvanit, D.; Smith, K.; Carpenter, R. (Argonne National Lab., IL (USA); Thailand Development Research Inst., Bangkok (Thailand). Natural Resources and Environment Program; Environment and Policy Inst., Honolulu, HI (USA))

1989-01-01T23:59:59.000Z

82

Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 543: Liquid Disposal Units is listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO) which was agreed to by the state of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). CAU 543 sites are located in Areas 6 and 15 of the Nevada Test Site (NTS), which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven Corrective Action Sites (CASs) (Figure 1): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; and CAS 15-23-03, Contaminated Sump, Piping. All Area 15 CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm, which operated from 1963 to 1981 and was used to support animal experiments involving the uptake of radionuclides. Each of the Area 15 CASs, except CAS 15-23-01, is associated with the disposal of waste effluent from Building 15-06, which was the primary location of the various tests and experiments conducted onsite. Waste effluent disposal from Building 15-06 involved piping, sumps, outfalls, a septic tank with leachfield, underground storage tanks, and an aboveground storage tank (AST). CAS 15-23-01 was associated with decontamination activities of farm equipment potentially contaminated with radiological constituents, pesticides, and herbicides. While the building structures were removed before the investigation took place, all the original tanks, sumps, piping, and concrete building pads remain in place. The Area 6 CAS is located at the Decontamination Facility in Area 6, a facility which operated from 1971 to 2001 and was used to decontaminate vehicles, equipment, clothing, and other materials that had become contaminated during nuclear testing activities. The CAS includes the effluent collection and distribution systems for Buildings 6-605, 6-606, and 6-607, which consists of septic tanks, sumps, piping, floor drains, drain trenches, cleanouts, and a concrete foundation. Additional details of the site history are provided in the CAU 543 Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2004a), and the CAU 543 Corrective Action Decision Document (CADD) (NNSA/NSO, 2005).

NSTec Environmental Restoration

2007-04-01T23:59:59.000Z

83

Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site  

SciTech Connect

The U.S. Department of Energy, National Security Administration Nevada Site Office (NNSA/NSO) is planning to close the 92-Acre Area of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada. Closure planning for this facility must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. This paper provides a brief background of the Area 5 RWMS, identifies key closure issues, and presents the closure strategy. Disposals have been made in 25 shallow excavated pits and trenches and 13 Greater Confinement Disposal (GCD) boreholes at the 92-Acre Area since 1961. The pits and trenches have been used to dispose unclassified low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform waste, and to store classified low-level and low-level mixed materials. The GCD boreholes are intermediate-depth disposal units about 10 feet (ft) in diameter and 120 ft deep. Classified and unclassified high-specific activity LLW, transuranic (TRU), and mixed TRU are disposed in the GCD boreholes. TRU waste was also disposed inadvertently in trench T-04C. Except for three disposal units that are active, all pits and trenches are operationally covered with 8-ft thick alluvium. The 92-Acre Area also includes a Mixed Waste Disposal Unit (MWDU) operating under Resource Conservation and Recovery Act (RCRA) Interim Status, and an asbestiform waste unit operating under a state of Nevada Solid Waste Disposal Site Permit. A single final closure cover is envisioned over the 92-Acre Area. The cover is the evapotranspirative-type cover that has been successfully employed at the NTS. Closure, post-closure care, and monitoring must meet the requirements of the following regulations: U.S. Department of Energy Order 435.1, Title 40 Code of Federal Regulations (CFR) Part 191, Title 40 CFR Part 265, Nevada Administrative Code (NAC) 444.743, RCRA requirements as incorporated into NAC 444.8632, and the Federal Facility Agreement and Consent Order (FFACO). A grouping of waste disposal units according to waste type, location, and similarity in regulatory requirements identified six closure units: LLW Unit, Corrective Action Unit (CAU) 111 under FFACO, Asbestiform LLW Unit, Pit 3 MWDU, TRU GCD Borehole Unit, and TRU Trench Unit. The closure schedule of all units is tied to the closure schedule of the Pit 3 MWDU under RCRA.

L. Desotell; D. Wieland; V. Yucel; G. Shott; J. Wrapp

2008-03-01T23:59:59.000Z

84

Savannah River Site Approved Site Treatment Plan, 2001 Annual Update (Volumes I and II)  

SciTech Connect

The Compliance Plan Volume (Volume I) identifies project activity scheduled milestones for achieving compliance with Land Disposal Restrictions. Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume II) and is provided for information.

Lawrence, B.

2001-04-30T23:59:59.000Z

85

1995 Report on Hanford site land disposal restrictions for mixed waste  

Science Conference Proceedings (OSTI)

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.

Black, D.G.

1995-04-01T23:59:59.000Z

86

Impact of Construction Waste Disposal Charging Scheme on work practices at construction sites in Hong Kong  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer A significant reduction of construction waste was achieved at the first 3 years of CWDCS implementation. Black-Right-Pointing-Pointer However, the reduction cannot be sustained. Black-Right-Pointing-Pointer Implementation of the CWDCS has generated positive effects in waste reduction by all main trades. - Abstract: Waste management in the building industry in Hong Kong has become an important environmental issue. Particularly, an increasing amount of construction and demolition (C and D) waste is being disposed at landfill sites. In order to reduce waste generation and encourage reuse and recycling, the Hong Kong Government has implemented the Construction Waste Disposal Charging Scheme (CWDCS) to levy charges on C and D waste disposal to landfills. In order to provide information on the changes in reducing waste generation practice among construction participants in various work trades, a study was conducted after 3 years of implementation of the CWDCS via a structured questionnaire survey in the building industry in Hong Kong. The study result has revealed changes with work flows of the major trades as well as differentiating the levels of waste reduced. Three building projects in the public and private sectors were selected as case studies to demonstrate the changes in work flows and the reduction of waste achieved. The research findings reveal that a significant reduction of construction waste was achieved at the first 3 years (2006-2008) of CWDCS implementation. However, the reduction cannot be sustained. The major trades have been influenced to a certain extent by the implementation of the CWDCS. Slight improvement in waste management practices was observed, but reduction of construction waste in the wet-finishing and dry-finishing trades has undergone little improvement. Implementation of the CWDCS has not yet motivated subcontractors to change their methods of construction so as to reduce C and D waste.

Yu, Ann T.W., E-mail: bsannyu@polyu.edu.hk [Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Poon, C.S.; Wong, Agnes; Yip, Robin; Jaillon, Lara [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

2013-01-15T23:59:59.000Z

87

Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 543, Liquid Disposal Units, is listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996. CAU 543 consists of seven Corrective Action Sites (CASs) located in Areas 6 and 15 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven CASs: {sm_bullet} CAS 06-07-01, Decon Pad {sm_bullet} CAS 15-01-03, Aboveground Storage Tank {sm_bullet} CAS 15-04-01, Septic Tank {sm_bullet} CAS 15-05-01, Leachfield {sm_bullet} CAS 15-08-01, Liquid Manure Tank {sm_bullet} CAS 15-23-01, Underground Radioactive Material Area {sm_bullet} CAS 15-23-03, Contaminated Sump, Piping From January 24, 2005 through April 14, 2005, CAU 543 site characterization activities were conducted, and are reported in Appendix A of the CAU 543 Corrective Action Decision Document (CADD) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2005). The recommended corrective action as stated in the approved CADD is No Further Action for five of the CAU 543 CASs, and Closure In Place for the remaining two CASs.

NSTec Environmental Restoration

2006-09-01T23:59:59.000Z

88

1997 Hanford site report on land disposal restrictions for mixed waste  

Science Conference Proceedings (OSTI)

The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tn-Party Agreement) Milestone M-26-00 (Ecology et al, 1989). The text of this milestone is below. ''LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the U.S. Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration of other action plan milestones and will not become effective until approved by the U.S. Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: Waste characterization plan; Storage report; Treatment report; Treatment plan; Waste minimization plan; A schedule depicting the events necessary to achieve full compliance with LDR requirements; and A process for establishing interim milestones.

Black, D.G.

1997-04-07T23:59:59.000Z

89

Subseabed disposal program annual report, January-December 1980. Volume II. Appendices (principal investigator progress reports). Part 1  

Science Conference Proceedings (OSTI)

Volume II of the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program contains the appendices referred to in Volume I, Summary and Status. Because of the length of Volume II, it has been split into two parts for publication purposes. Part 1 contains Appendices A-Q; Part 2 contains Appendices R-MM. Separate abstracts have been prepared for each appendix for inclusion in the Energy Data Base.

Hinga, K.R. (ed.) ed.

1981-07-01T23:59:59.000Z

90

Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada  

SciTech Connect

Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

Carr, M.D.; Yount, J.C. (eds.)

1988-12-31T23:59:59.000Z

91

Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site  

SciTech Connect

A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

2004-07-09T23:59:59.000Z

92

DEVELOPMENT QUALIFICATION AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE  

SciTech Connect

Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

SAMS TL; EDGE JA; SWANBERG DJ; ROBBINS RA

2011-01-13T23:59:59.000Z

93

Corrective Action Decision Document/Closure Report for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada (Revision 0) with ROTC 1 and 2  

SciTech Connect

The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 137 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from February 28 through August 17, 2006, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective process: Determine whether contaminants of concern (COCs) are present. If COCs are present, determine their nature and extent. Provide sufficient information and data to complete appropriate corrective actions. ROTC-1: Downgrade FFACO UR at CAU 137, CAS 07-23-02, Radioactive Waste Disposal Site to an Administrative UR. ROTC-2: Downgrade FFACO UR at CAU 137, CAS 01-08-01, Waste Disposal Site to an Administrative UR.

Krauss, Mark J

2007-03-01T23:59:59.000Z

94

Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0  

Science Conference Proceedings (OSTI)

Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

Alfred Wickline

2007-06-01T23:59:59.000Z

95

1993 report on Hanford Site land disposal restrictions for mixed wastes  

SciTech Connect

Since the early 1940s, the contractors at the Hanford Site have been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste (RMW). This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976{sup 2}(RCRA) and Atomic Energy Act{sup 3}. This report covers mixed waste only. Hazardous waste that is not contaminated with radionuclides is not addressed in this report. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order{sup 1} (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for RMW. This report is the third update of the plan first issued in 1990. The Tri-Party Agreement requires, and the baseline plan and annual update reports provide, the information that follows: Waste characterization information; storage data; treatment information; waste reduction information; schedule; and progress.

Black, D.

1993-04-01T23:59:59.000Z

96

Long-Term Performance of Transuranic Waste Inadvertently Disposed in a Shallow Land Burial Trench at the Nevada Test Site  

Science Conference Proceedings (OSTI)

In 1986, 21 m3 of transuranic (TRU) waste was inadvertently disposed in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site. U.S. Department of Energy (DOE) TRU waste must be disposed in accordance with Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes. The Waste Isolation Pilot Plant is the only facility meeting these requirements. The National Research Council, however, has found that exhumation of buried TRU waste for disposal in a deep geologic repository may not be warranted when the effort, exposures, and expense of retrieval are not commensurate with the risk reduction achieved. The long-term risks of leaving the TRU waste in-place are evaluated in two probabilistic performance assessments. A composite analysis, assessing the dose from all disposed waste and interacting sources of residual contamination, estimates an annual total effective dose equivalent (TEDE) of 0.01 mSv, or 3 percent of the dose constraint. A 40 CFR 191 performance assessment also indicates there is reasonable assurance of meeting all requirements. The 40 CFR 191.15 annual mean TEDE for a member of the public is estimated to reach a maximum of 0.055 mSv at 10,000 years, or approximately 37 percent of the 0.15 mSv individual protection requirement. In both assessments greater than 99 percent of the dose is from co-disposed low-level waste. The simulated probability of the 40 CFR 191.13 cumulative release exceeding 1 and 10 times the release limit is estimated to be 0.0093 and less than 0.0001, respectively. Site characterization data and hydrologic process modeling support a conclusion of no groundwater pathway within 10,000 years. Monte Carlo uncertainty analysis indicates that there is reasonable assurance of meeting all regulatory requirements. Sensitivity analysis indicates that the results are insensitive to TRU waste-related parameters. Limited quantities of TRU waste in a shallow land burial trench can meet DOE performance objectives for disposal of TRU waste and contribute negligibly to disposal site risk. Leaving limited quantities of buried TRU waste in-place may be preferred over retrieval for disposal in a deep geologic repository.

Gregory J. Shott; Vefa Yucel

2009-07-16T23:59:59.000Z

97

Comment and response document for the long-term surveillance plan for the Collins Ranch Disposal Site, Lakeview, Oregon  

Science Conference Proceedings (OSTI)

This document contains comments made by the U.S. Nuclear Regulatory Commission addressing their concerns over the long-term monitoring program for the Collins Ranch Disposal Site, UMTRA project. Responses are included as well as plans for implementation of changes, if any are deemed necessary.

Not Available

1994-08-01T23:59:59.000Z

98

Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations  

Science Conference Proceedings (OSTI)

A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site.

Waters, R.D.; Gruebel, M.M. [eds.] [eds.

1996-03-01T23:59:59.000Z

99

Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory  

SciTech Connect

Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

Dorries, Alison M [Los Alamos National Laboratory

2010-11-09T23:59:59.000Z

100

DESIGNATION SURVEY ADDENDUM REPORT II COMBUSTION ENGINEERING SITE  

Office of Legacy Management (LM)

,111 ,111 DESIGNATION SURVEY ADDENDUM REPORT II COMBUSTION ENGINEERING SITE *I W INDSOR, CONNECTICUT 111 E. W . ABELQUIST Prepared for the Office of Environmental Restoration U.S. Department of Energy I- II I- .:jj;jiE// .:::=::::: .ipij!li' ,:::i::.:. ..::I::::/. ,:ii~iiiiai, ..' iiiiiiiiii!!liiii~~~~,~:~:. ~i!i.~iii~' :' -' +g?' gg;; ,- ZY :i/ .:;i" .:!! .:::a .(/i?j i:/i;jl? I!kr ' -:~i~jg~;...,.;, ..,::&Si! :(j)//ji//(!: 3.. :jijiiiiiiqi:wi l~,. ,,v..::;:~/j~B/; g#;$ .;::::::::::! :::::::::: ::j/j j/i; :(/;;I . . :/:jij; ,:j:,i/; ::::::: ,i/j//:j ;igg;ij iii:::: ,;(iii$ :::::i:ii. ,,,,,, :i.;ifi;iuij;; ,,:,: ii ,,:::::::::::: .:zy,:l::... Lb. .::i:::. .,:.:::;:. ](i:iii:;!! :.:::::::p "'.'j?'~ fix&$ .ii .:::i .::i;;!jg#ggi& i///jjji_

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY  

Science Conference Proceedings (OSTI)

It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

Phifer, M.

2012-01-31T23:59:59.000Z

102

Corrective Action Decision Document/Closure Report for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0  

SciTech Connect

This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, in Areas 2, 3, 9, and 20 of the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended February 2008). Corrective Action Unit 545 is comprised of the following eight Corrective Action Sites (CASs): 02-09-01, Mud Disposal Area 03-08-03, Mud Disposal Site 03-17-01, Waste Consolidation Site 3B 03-23-02, Waste Disposal Site 03-23-05, Europium Disposal Site 03-99-14, Radioactive Material Disposal Area 09-23-02, U-9y Drilling Mud Disposal Crater 20-19-01, Waste Disposal Site While all eight CASs are addressed in this CADD/CR, sufficient information was available for the following three CASs; therefore, a field investigation was not conducted at these sites: For CAS 03-08-03, though the potential for subsidence of the craters was judged to be extremely unlikely, the data quality objective (DQO) meeting participants agreed that sufficient information existed about disposal and releases at the site and that a corrective action of close in place with a use restriction is recommended. Sampling in the craters was not considered necessary. For CAS 03-23-02, there were no potential releases of hazardous or radioactive contaminants identified. Therefore, the Corrective Action Investigation Plan for CAU 545 concluded that: Sufficient information exists to conclude that this CAS does not exist as originally identified. Therefore, there is no environmental concern associated with CAS 03-23-02. This CAS is closed with no further action. For CAS 03-23-05, existing information about the two buried sources and lead pig was considered to be sufficient, and safety concerns existed about the stability of the crater component. Therefore, a corrective action of close in place with a use restriction is recommended, and sampling at the site was not considered necessary. The purpose of this CADD/CR is to provide justification and documentation to support the recommendation for closure of CAU 545 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from August 20 through November 02, 2007, as set forth in the CAU 545 Corrective Action Investigation Plan. The purpose of the CAI was to fulfill the following data needs as defined during the DQO process: Determine whether contaminants of concern (COCs) are present. If COCs are present, determine their nature and extent. Provide sufficient information and data to complete appropriate corrective actions. The CAU 545 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels established in this CADD/CR. The results of the CAI identified no COCs at the five CASs investigated in CAU 545. As a best management practice, repair of the fence enclosing CAS 03-08-03 has been completed. Therefore, the DOE, National Nuclear Security Administration Nevada Site Office provides the following recommendations: Close in place COCs at CASs 03-08-03 and 03-23-05 with use restrictions. No further corrective action for CAU 545. No Corrective Action Plan. Corrective Action Unit 545 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order. A Notice of Completion to the DOE, National Nuclear Security Administration Nevada Site Office is requested from the Nevada Division of Environmental Protection for closure of CAU 545.

Alfred Wickline

2008-04-01T23:59:59.000Z

103

Use of Clearance Indexes to Assess Waste Disposal Issues for the HYLIFE-II Inertial Fusion Energy Power Plant Design  

SciTech Connect

Traditionally, waste management studies for fusion energy have used the Waste Disposal Rating (WDR) to evaluate if radioactive material from irradiated structures could qualify for shallow land burial. However, given the space limitations and the negative public perception of large volumes of waste, there is a growing international motivation to develop a fusion waste management system that maximizes the amount of material that can be cleared or recycled. In this work, we present an updated assessment of the waste management options for the HYLIFE-II inertial fusion energy (IFE) power plant, using the concept of Clearance Index (CI) for radioactive waste disposal. With that purpose, we have performed a detailed neutronics analysis of the HYLIFE-II design, using the TART and ACAB computer codes for neutron transport and activation, respectively. Whereas the traditional version of ACAB only provided the user with the WDR as an index for waste considerations, here we have modified the code to calculate Clearance Indexes using the current International Atomic Energy Agency (IAEA) clearance limits for radiological waste disposal. The results from the analysis are used to perform an assessment of the waste management options for the HYLIFE-II IFE design.

Reyes, S; Latkowski, J F; Sanz, J

2002-01-17T23:59:59.000Z

104

Angiotensin II receptor binding sites in brain microvessels  

SciTech Connect

The authors assessed the specific binding of /sup 125/I-labeled angiotensin II (/sup 125/I-Ang II) to particulate fractions of the cerebral cortex and cerebellum and to microvessels obtained by bulk isolation from these two brain regions in the dog. /sup 125/I-Ang II binds to cerebral and cerebellar microvessels in a specific, saturable, and reversible manner and with high affinity (dissociation constant about 1 nM). Maximal binding of /sup 125/I-Ang II to brain microvessels was about 2-fold higher than the maximal binding to particulate fractions of the cerebellum and more than 15-fold higher than that of the cerebral cortex. Furthermore, finding that analogues of Ang II displace specific /sup 125/I-Ang II binding to brain microvessels in a rank order that correlates with their pharmacological activities confers biological relevance on the ligand-binding studies. These results strongly suggest that specific Ang II receptor binding sites are present in brain microvessels. Such Ang II receptors may have an important role in regulating the microcirculation of the brain.

Speth, R.C.; Harik, S.I.

1985-09-01T23:59:59.000Z

105

Addendum to Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site  

SciTech Connect

This report summarizes efforts to complete an addendum analysis to the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis). This document describes the background and performance objectives of the Composite Analysis and this addendum analysis. The methods used, results, and conclusions for this Addendum analysis are summarized, and recommendations are made for work to be undertaken in anticipation of a second analysis.

Bergeron, Marcel P.; Freeman, Eugene J.; Wurstner, Signe K.; Kincaid, Charles T.; Coony, Mike M.; Strenge, Dennis L.; Aaberg, Rosanne L.; Eslinger, Paul W.

2001-09-28T23:59:59.000Z

106

slc_disposal.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposal Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site at Salt Lake City, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Salt Lake City, Utah, Disposal Site ENERGY Office of Legacy Management U.S. DEPARTMENT OF Site Description and History Regulatory Setting The Salt Lake Disposal Site is located approximately 81 miles west of Salt Lake City and 2.5 miles south of Interstate 80 on the eastern edge of the Great Salt Lake Desert. The disposal cell is adjacent to Energy Solutions, Inc., a commercial low-level radioactive materials disposal site. The surrounding area is sparsely populated, and the nearest residences are at least 15 miles from the site. Vegetation in the area is sparse and typical of semiarid low shrubland. The disposal cell encapsulates about

107

Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site  

Science Conference Proceedings (OSTI)

This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

Kincaid, C.T.; Bergeron, M.P.; Cole, C.R. [and others

1998-03-01T23:59:59.000Z

108

Replacement Capability for Disposal of Remote-Handled Low-Level Waste Generated at the Department of Energys Idaho Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site August 2011 DOE/EA-1793 Draft Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site August 2011 v EXECUTIVE SUMMARY The U.S. Department of Energy (DOE) proposes to provide replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017. Historically, INL has disposed of this LLW onsite. However, the existing disposal area located within the INL Radioactive Waste Management Complex will undergo

109

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada (Revision No. 0, August 2001)  

Science Conference Proceedings (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions necessary for the characterization and closure of Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, as identified in the Federal Facility Agreement and Consent Order (FFACO). The CAU, located on the Nevada Test Site in Nevada, consists of seven Corrective Action Sites (CASs): CAS 03-04-01, Area 3 Change House Septic System; CAS 03-09-01, Mud Pit Spill Over; CAS 03-09-03, Mud Pit; CAS 03-09-04, Mud Pit; CAS 03-09-05, Mud Pit; CAS 20-16-01, Landfill; CAS 20-22-21, Drums. Sufficient information and process knowledge from historical documentation and investigations are the basis for the development of the phased approach chosen to address the data collection activities prior to implementing the preferred closure alternative for each CAS. The Phase I investigation will determine through collection of environmental samples from targeted populations (i.e., mud/soil cuttings above textural discontinuity) if contaminants of potential concern (COPCs) are present in concentrations exceeding preliminary action levels (PALs) at each of the CASs. If COPCs are present above PALs, a Phase II investigation will be implemented to determine the extent of contamination to support the appropriate corrective action alternative to complete closure of the site. Groundwater impacts from potentially migrating contaminants are not expected due to the depths to groundwater and limiting hydrologic drivers of low precipitation and high evaporation rates. Future land-use scenarios limit future uses to industrial activities; therefore, future residential uses are not considered. Potential exposure routes to site workers from contaminants of concern in septage and soils include oral ingestion, inhalation, or dermal contact (absorption) through in-advertent disturbance of contaminated structures and/or soils. Diesel within drilling muds is expected to be the primary COPC based on process knowledge. Recirculation processes within the mud pits enhance volatilization of volatile organic compounds (VOCs), thereby reducing the potential concentrations of any VOCs that may be present. A secondary source of contaminants from random truck dumping activities and leaking vehicle discharge may have released fuels, grease, motor oil, and hydraulic fluids into the mud pit effluent stream. Radionuclide contamination is not expected at these CASs based on historical information. The primary radioisotopes that could be expected, if present, are cesium-137, tritium, and strontium-90. The SAFER process ends with closure of the site based on the laboratory analytical results of the environmental samples. There is sufficient information and process knowledge from historical documentation regarding the expected nature and extent of potential contaminants to recommend closure of CAU 356 using the SAFER process. On completion of the field activities, a Closure Report will be prepared and submitted to the Nevada Division of Environmental Protection for review and approval.

U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV)

2001-08-21T23:59:59.000Z

110

1999 Report on Hanford Site land disposal restriction for mixed waste  

SciTech Connect

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility.

BLACK, D.G.

1999-03-25T23:59:59.000Z

111

Draft Site Treatment Plan (DSTP), Volumes I and II  

Science Conference Proceedings (OSTI)

Site Treatment Plans (STP) are required for facilities at which the DOE generates or stores mixed waste. This Draft Site Treatment Plan (DSTP) the second step in a three-phase process, identifies the currently preferred options for treating mixed waste at the Savannah River Site (SRS) or for developing treatment technologies where technologies do not exist or need modification. The DSTP reflects site-specific preferred options, developed with the state`s input and based on existing available information. To the extent possible, the DSTP identifies specific treatment facilities for treating the mixed waste and proposes schedules. Where the selection of specific treatment facilities is not possible, schedules for alternative activities such as waste characterization and technology assessment are provided. All schedule and cost information presented is preliminary and is subject to change. The DSTP is comprised of two volumes: this Compliance Plan Volume and the Background Volume. This Compliance Plan Volume proposes overall schedules with target dates for achieving compliance with the land disposal restrictions (LDR) of RCRA and procedures for converting the target dates into milestones to be enforced under the Order. The more detailed discussion of the options contained in the Background Volume is provided for informational purposes only.

D`Amelio, J.

1994-08-30T23:59:59.000Z

112

Subseabed Disposal Program Plan. Volume II. FY80 budget and subtask work plans  

Science Conference Proceedings (OSTI)

This volume of the Subseabed Disposal Program Plan presents a breakdown of the master program structure by major activity. Each activity is described and accompanied by a specific cost plan schedule and a milestone plan. The costs have been compiled in the Cost Plan Schedules attached to each Subtask Work Plan. The FY 1980 budget for the Subseabed Disposal Program is summarized at the second level of the Work Breakdown Structure. The milestone plans for FY 80 are presented. The milestones can be changed only with the concurrence of the Sandia Subseabed Program Manager.

Not Available

1980-01-01T23:59:59.000Z

113

DOE/EA-1308; Environmental Assessment for the Offsite Transportation of Certain Low-Level and Mixed Radioactive Waste from the Savannah River Site for Treatment and Disposal at Commercial and Government Facilities (February 2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 08 ENVIRONMENTAL ASSESSMENT FOR THE OFFSITE TRANSPORTATION OF CERTAIN LOW-LEVEL AND MIXED RADIOACTIVE WASTE FROM THE SAVANNAH RIVER SITE FOR TREATMENT AND DISPOSAL AT COMMERCIAL AND GOVERNMENT FACILITIES FEBRUARY 2001 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE i ii This page is intentionally left blank iii TABLE OF CONTENTS Page 1.0 INTRODUCTION 1 1.1 Background 1 1.2 Purpose and Need for Action 6 2.0 PROPOSED ACTION AND ALTERNATIVES 6 2.1 Proposed Action 6 2.2 Alternatives to the Proposed Action 11 2.2.1 No Action, Continue to Store These Waste Forms at SRS 11 2.2.2 Construct and Operate Onsite Treatment and Disposal Facilities 11 3.0 ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED ACTION AND ALTERNATIVES 12 3.1 Onsite Loading Operations 12 3.2 Transportation Impacts

114

Material Disposal Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

wastewater absorption beds that received effluent from the DP Site radioactive laundry facility from 1945 to 1963, two surface debris disposal sites, and a former septic...

115

SCR Catalyst Disposal, Recycle, and On-Site Washing/Rejuvenation Options  

Science Conference Proceedings (OSTI)

Selective catalytic reduction SCR technology has enjoyed widespread implementation within the fossil fuel utility industry. The rate of spent SCR catalyst being generated is increasing proportional to the implementation of the technology, as well as the aging of the SCR fleet as a whole. Current projections estimate that nearly 30,000 tons per year of spent catalyst will be generated by 2020. This report addresses several topics associated with spent SCR catalyst, including catalyst disposal, recycle, an...

2008-03-31T23:59:59.000Z

116

Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste  

SciTech Connect

A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

1997-05-01T23:59:59.000Z

117

Corrective Action Investigation Plan for Corrective Action Unit 542: Disposal Holes, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

Corrective Action Unit (CAU) 542 is located in Areas 3, 8, 9, and 20 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 542 is comprised of eight corrective action sites (CASs): (1) 03-20-07, ''UD-3a Disposal Hole''; (2) 03-20-09, ''UD-3b Disposal Hole''; (3) 03-20-10, ''UD-3c Disposal Hole''; (4) 03-20-11, ''UD-3d Disposal Hole''; (5) 06-20-03, ''UD-6 and UD-6s Disposal Holes''; (6) 08-20-01, ''U-8d PS No.1A Injection Well Surface Release''; (7) 09-20-03, ''U-9itsy30 PS No.1A Injection Well Surface Release''; and (8) 20-20-02, ''U-20av PS No.1A Injection Well Surface Release''. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 30, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 542. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 542 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Conduct geophysical surveys to locate previously unidentified features at CASs 03-20-07, 03-20-09, 03-20-10, 03-20-11, and 06-20-03. (4) Perform field screening. (5) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present. (6) Collect quality control samples for laboratory analyses to evaluate the performance of measurement systems and controls based on the requirements of the data quality indicators. (7) If COCs are present at the surface/near surface (< 15 feet below ground surface), collect additional step-out samples to define the extent of the contamination. (8) If COCs are present in the subsurface (i.e., base of disposal hole), collect additional samples to define the vertical extent of contamination. A conservative use restriction will be used to encompass the lateral extent of subsurface contamination. (9) Stake or flag sample locations in the field, and record coordinates through global positioning systems surveying. (10) Collect samples of investigation-derived waste, as needed, for waste management and minimization purposes. This Corrective Action Investigation Plan has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the ''Federal Facility Agreement and Consent Order'', this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan.

Laura Pastor

2006-05-01T23:59:59.000Z

118

Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada  

Science Conference Proceedings (OSTI)

The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, Radioactive Waste Management, for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of compliance with all performance objectives. Tier II results indicate that the long-term performance of the OR CEUSP 233U waste stream is protective of human health and the environment. The Area 5 RWMS is located in one of the least populated and most arid regions of the U.S. Site characterization data indicate that infiltration of precipitation below the plant root zone at 2.5 meters (8.2 feet) ceased 10,000 to 15,000 y ago. The site is not expected to have a groundwater pathway as long as the current arid climate persists. The national security mission of the NNSS and the location of the Area 5 RWMS within the Frenchman Flat Corrective Action Unit require that access controls and land use restrictions be maintained indefinitely. PA modeling results for 10,000 to 60,000 y also indicate that the OR CEUSP 233U waste stream is acceptable for near-surface disposal. The mean resident air pathway annual total effective dose (TED), the resident all-pathways annual TED, and the acute drilling TED are less than their performance objectives for 10,000 y after closure. The mean radon-222 (222Rn) flux density exceeds the performance objective at 4,200 y, but this is due to waste already disposed at the Area 5 RWMS and is only slightly affected by disposal of the CEUSP 233U. The peak resident all-pathways annual TED from CEUSP key radionuclides occurs at 48,000 y and is less than the 0.25 millisievert performance objective. Disposal of the OR CEUSP 233U waste stream in a typical SLB trench slightly increases PA results. Increasing the depth was found to eliminate any impacts of the OR CEUSP 233U waste stream. Containers could not be shown to have any significant impact on performance due to the long half-life of the waste stream and a lack of data for pitting corrosion rates of stainless steel in soil. The results of the SA indicate that all performance objectives can be met with disposal of the OR CEUSP 233U waste stream in the SLB units at the Area 5 RWMS. The long-term performance of the OR CEUSP 233U waste stream disposed in the near surface is protective of human health

NSTec Environmental Management

2013-01-31T23:59:59.000Z

119

Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada  

SciTech Connect

The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, Radioactive Waste Management, for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of compliance with all performance objectives. Tier II results indicate that the long-term performance of the OR CEUSP 233U waste stream is protective of human health and the environment. The Area 5 RWMS is located in one of the least populated and most arid regions of the U.S. Site characterization data indicate that infiltration of precipitation below the plant root zone at 2.5 meters (8.2 feet) ceased 10,000 to 15,000 y ago. The site is not expected to have a groundwater pathway as long as the current arid climate persists. The national security mission of the NNSS and the location of the Area 5 RWMS within the Frenchman Flat Corrective Action Unit require that access controls and land use restrictions be maintained indefinitely. PA modeling results for 10,000 to 60,000 y also indicate that the OR CEUSP 233U waste stream is acceptable for near-surface disposal. The mean resident air pathway annual total effective dose (TED), the resident all-pathways annual TED, and the acute drilling TED are less than their performance objectives for 10,000 y after closure. The mean radon-222 (222Rn) flux density exceeds the performance objective at 4,200 y, but this is due to waste already disposed at the Area 5 RWMS and is only slightly affected by disposal of the CEUSP 233U. The peak resident all-pathways annual TED from CEUSP key radionuclides occurs at 48,000 y and is less than the 0.25 millisievert performance objective. Disposal of the OR CEUSP 233U waste stream in a typical SLB trench slightly increases PA results. Increasing the depth was found to eliminate any impacts of the OR CEUSP 233U waste stream. Containers could not be shown to have any significant impact on performance due to the long half-life of the waste stream and a lack of data for pitting corrosion rates of stainless steel in soil. The results of the SA indicate that all performance objectives can be met with disposal of the OR CEUSP 233U waste stream in the SLB units at the Area 5 RWMS. The long-term performance of the OR CEUSP 233U waste stream disposed in the near surface is protective of human health

NSTec Environmental Management

2013-01-31T23:59:59.000Z

120

Assessment of Potential Flood Events and Impacts at INL's Proposed Remote-Handled Low-Level Waste Disposal Facility Sites  

Science Conference Proceedings (OSTI)

Rates, depths, erosion potential, increased subsurface transport rates, and annual exceedance probability for potential flooding scenarios have been evaluated for the on-site alternatives of Idaho National Laboratorys proposed remote handled low-level waste disposal facility. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of flood impacts are required to meet the Department of Energys Low-Level Waste requirements (DOE-O 435.1), its natural phenomena hazards assessment criteria (DOE-STD-1023-95), and the Radioactive Waste Management Manual (DOE M 435.1-1) guidance in addition to being required by the National Environmental Policy Act (NEPA) environmental assessment (EA). Potential sources of water evaluated include those arising from (1) local precipitation events, (2) precipitation events occurring off of the INL (off-site precipitation), and (3) increased flows in the Big Lost River in the event of a Mackay Dam failure. On-site precipitation events include potential snow-melt and rainfall. Extreme rainfall events were evaluated for the potential to create local erosion, particularly of the barrier placed over the disposal facility. Off-site precipitation carried onto the INL by the Big Lost River channel was evaluated for overland migration of water away from the river channel. Off-site precipitation sources evaluated were those occurring in the drainage basin above Mackay Reservoir. In the worst-case scenarios, precipitation occurring above Mackay Dam could exceed the dams capacity, leading to overtopping, and eventually complete dam failure. Mackay Dam could also fail during a seismic event or as a result of mechanical piping. Some of the water released during dam failure, and contributing precipitation, has the potential of being carried onto the INL in the Big Lost River channel. Resulting overland flows from these flood sources were evaluated for their erosion potential, ability to overflow the proposed disposal facility, and for their ability to increase migration of contaminants from the facility. The assessment of available literature suggests that the likelihood of detrimental flood water impacting the proposed RH-LLW facility is extremely low. The annual exceedance probability associated with uncontrolled flows in the Big Lost River impacting either of the proposed sites is 1x10-5, with return interval (RI) of 10,000yrs. The most probable dam failure scenario has an annual exceedance probability of 6.3x10-6 (1.6x105 yr RI). In any of the scenarios generating possible on-site water, the duration is expected to be quite short, water depths are not expected to exceed 0.5 m, and the erosion potential can easily be mitigated by emplacement of a berm (operational period), and an engineered cover (post closure period). Subsurface mobilization of radionuclides was evaluated for a very conservative flooding scenario resulting in 50 cm deep, 30.5 day on-site water. The annual exceedance probability for which is much smaller than 3.6x10-7 (2.8x106 yr RI). For the purposes of illustration, the facility was assumed to flood every 500 years. The periodically recurring flood waters were predicted to marginally increase peak radionuclide fluxes into the aquifer by at most by a factor of three for non-sorbing radionuclides, and to have limited impact on peak radionuclide fluxes into the aquifer for contaminants that do sorb.

A. Jeff Sondrup; Annette L. Schafter

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

COMPOSITE ANALYSIS OF LLW DISPOSAL FACILITIES AT THE U.S. DEPARTMENT OF ENERGY'S SAVANNAH RIVER SITE  

Science Conference Proceedings (OSTI)

Composite Analyses (CA's) are required per DOE Order 435.1 [1], in order to provide a reasonable expectation that DOE low-level waste (LLW) disposal, high-level waste tank closure, and transuranic (TRU) waste disposal in combination with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Resource Conservation and Recovery Act (RCRA), and deactivation and decommissioning (D&D) actions, will not result in the need for future remedial actions in order to ensure radiological protection of the public and environment. This Order requires that an accounting of all sources of DOE man-made radionuclides and DOE enhanced natural radionuclides that are projected to remain on the site after all DOE site operations have ceased. This CA updates the previous CA that was developed in 1997. As part of this CA, an inventory of expected radionuclide residuals was conducted, exposure pathways were screened and a model was developed such that a dose to the MOP at the selected points of exposure might be evaluated.

Hiergesell, R; Mark Phifer, M; Frank02 Smith, F

2009-01-08T23:59:59.000Z

122

Summary of treatment, storage, and disposal facility usage data collected from U.S. Department of Energy sites  

SciTech Connect

This report presents an analysis for the US Department of Energy (DOE) to determine the level and extent of treatment, storage, and disposal facility (TSDF) assessment duplication. Commercial TSDFs are used as an integral part of the hazardous waste management process for those DOE sites that generate hazardous waste. Data regarding the DOE sites` usage have been extracted from three sets of data and analyzed in this report. The data are presented both qualitatively and quantitatively, as appropriate. This information provides the basis for further analysis of assessment duplication to be documented in issue papers as appropriate. Once the issues have been identified and adequately defined, corrective measures will be proposed and subsequently implemented.

Jacobs, A.; Oswald, K. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Trump, C. [EG and G Rocky Flats, Golden, CO (United States)

1995-04-01T23:59:59.000Z

123

Material Consolidation, Rendering, and Disposal Studies of Gas Holders at Former Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

This report presents results of full-scale field implementation studies conducted in conjunction with an evaluation of EPRI-sponsored bench-scale mixing tests. The study was designed to complement bench-scale mixing studies that correlated those results to full-scale remedial actions at former manufactured gas plant (MGP) sites. The field implementation study included a review of potentially applicable remedial approaches, site characterization, bench-scale treatability tests, and results of site remedia...

2001-12-13T23:59:59.000Z

124

1998 report on Hanford Site land disposal restrictions for mixed waste  

SciTech Connect

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of both the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities stored, generation rates, location and method of storage, an assessment of storage-unit compliance status, storage capacity, and the bases and assumptions used in making the estimates.

Black, D.G.

1998-04-10T23:59:59.000Z

125

EXECUTIVE SUMMARY OF STATE DATA RELATED TO ABANDONED CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS  

SciTech Connect

This 2003 Spring Semi-Annual Report contains a summary of the Final Technical Report being prepared for the Soil Remediation Requirements at Commercial and Centralized Drilling-Fluid Disposal (CCDD) Sites project funded by the United States Department of Energy under DOE Award No. DE-AC26-99BC15225. The summary describes (1) the objectives of the investigation, (2) a rationale and methodology of the investigation, (3) sources of data, assessment of data quality, and data availability, (4) examples of well documented centralized and commercial drilling-fluid disposal (CCDD) sites and other sites where drilling fluid was disposed of, and (5) examples of abandoned sites and measures undertaken for their assessment and remediation. The report also includes most of the figures, tables, and appendices that will be included in the final report.

H. Seay Nance

2003-03-01T23:59:59.000Z

126

HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION & PLANNING FOR REVRIEVAL TREATMENT & EVENTUAL DISPOSAL AT WIPP  

SciTech Connect

The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP).

KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

2006-01-18T23:59:59.000Z

127

Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada: Revision 0  

SciTech Connect

The general purpose of this Corrective Action Investigation Plan is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective action alternatives (CAAs) for Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. Located in Areas 6 and 15 on the NTS, CAU 543 is comprised of a total of seven corrective action sites (CASs), one in Area 6 and six in Area 15. The CAS in Area 6 consists of a Decontamination Facility and its components which are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency Farm and are related to waste disposal activities at the farm. Sources of possible contamination at Area 6 include potentially contaminated process waste effluent discharged through a process waste system, a sanitary waste stream generated within buildings of the Decon Facility, and radiologically contaminated materials stored within a portion of the facility yard. At Area 15, sources of potential contamination are associated with the dairy operations and the animal tests and experiments involving radionuclide uptake. Identified contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, petroleum hydrocarbons, pesticides, herbicides, polychlorinated biphenyls, metals, and radionuclides. Three corrective action closure alternatives - No Further Action, Close in Place, or Clean Closure - will be recommended for CAU 543 based on an evaluation of all the data quality objective-related data. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2004-05-03T23:59:59.000Z

128

Research Summary RECOAL: Reintegration of coal ash disposal sites and mitigation  

E-Print Network (OSTI)

and Herzegovina; UBAL University of Banja Luka, Bosnia and Herzegovina; FAZ University of Zagreb, Croatia; BTUC risks of farmed and barren alkaline coal ash landfills in Tuzla, Bosnia and Herzegovina. Environmental its research on the thermo-electric plant (TEP) and associated coal ash sites at Tuzla, Bosnia

129

Hydrologic factors and /sup 90/Sr transport at a low-level waste disposal site  

SciTech Connect

A case study of a solid waste storage area at Oak Ridge National Laboratory is presented. The purpose of the study is to devise effective remedial actions based upon understanding of the underlying processes governing radionuclide migration. Discussion is presented under the following headings: site history; radionuclide transport studies; analysis of field results; and recommended remedial action.

Huff, D.D.

1982-01-01T23:59:59.000Z

130

Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site  

SciTech Connect

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low-level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators.

D. Wieland, V. Yucel, L. Desotell, G. Shott, J. Wrapp

2008-04-01T23:59:59.000Z

131

An investigation of the presence of methane and other gases at the Uzundere-Izmir solid waste disposal site, Izmir, Turkey  

SciTech Connect

Izmir is a large metropolitan city with a population of 3,114,860. The city consists of 27 townships, each township has a population of not less than 10,000 inhabitants. The two major solid waste disposal sites are in the townships of Uzundere and Harmandali. The amount of solid waste that is disposed at each of these sites is about 800 and 1800 t/day, respectively. In Uzundere, compost is produced from the organic fraction of urban solid wastes while the residual material is deposited at a disposal site with a remaining capacity of 700,000 m{sup 3} as of 2001. Gas monitoring and measurements were carried out at the disposal site in Uzundere. For this purpose, nine sampling wells were drilled on selected locations. Each well was furnished with perforated metal pipes suitable for gas monitoring and measurements. The following gases were monitored: O{sub 2}, CH{sub 4}, CO, CO{sub 2}, and H{sub 2}S. The most important finding was that the concentrations of CH{sub 4} in the wells ranged from 7 to 57%. Dilution of the CH{sub 4} by O{sub 2} down to the LEL levels (5-15%) is always possible and poses a continuing risk at the site. Furthermore, the levels of O{sub 2} require that access to the site be limited to only authorized personnel.

Onargan, T.; Kucuk, K.; Polat, M

2003-07-01T23:59:59.000Z

132

DOE - Office of Legacy Management -- Estes Gulch Disposal Cell...  

Office of Legacy Management (LM)

Estes Gulch Disposal Cell - 010 FUSRAP Considered Sites Site: Estes Gulch Disposal Cell (010) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

133

DOE - Office of Legacy Management -- Burro Canyon Disposal Cell...  

Office of Legacy Management (LM)

Burro Canyon Disposal Cell - 007 FUSRAP Considered Sites Site: Burro Canyon Disposal Cell (007) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

134

Long-Term Surveillance Plan for the Collins Ranch Disposal Site, Lakeview, Oregon, DOE/AL/62350-19F, Revision 3, August 1994  

NLE Websites -- All DOE Office Websites (Extended Search)

blank blank This page intentionally left blank LONG-TERM SURMtUANQ M N FOA T ) ( E C O W S RANW D S W S A L S m . IAKEVEW . OREOON T A W UF C O N l W f S TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 INTRODUCTION 1-1 ........................................... 1.1 Background 1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Licensing process 1-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Long-term surveillance plan 1-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.0 FINAL SITE CONDITIONS 2-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Site history 2-1 ..................................... 2.2 Final site conditions 2-2 2.2.1 Description and location of the disposal site area . . . . . . . . . . . 2-2 . . . . . . . . . . . . . . . . . . . . . . 2.2.2 Disposal site access and security 2-4 .

135

DOE - Office of Legacy Management -- Edgemont Mill Site - SD 01  

Office of Legacy Management (LM)

Edgemont Mill Site - SD 01 Edgemont Mill Site - SD 01 FUSRAP Considered Sites Site: Edgemont Mill Site (SD.01) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Edgemont, South Dakota, Disposal Site Documents Related to Edgemont Mill Site 2012 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites-Edgemont, South Dakota, Disposal Site. LMS/S09415. November 2012 U.S. Department of Energy 2008 UMTRCA Title II Sites Annual Report November 2008 Edgemont, South Dakota FACT SHEET Office of Legacy Management Edgemont, South Dakota, Disposal Site This fact sheet provides information about the Uranium Mill

136

Site Environmental Report for 2005 Volume I and Volume II  

SciTech Connect

Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, ''Environment, Safety, and Health Reporting''. The ''Site Environmental Report for 2005'' summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2005. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab'', ''the Laboratory'', ''Lawrence Berkeley National Laboratory'', and ''LBNL''.) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. This year's Volume I text body is organized into an executive summary followed by six chapters. The report's structure has been reorganized this year, and it now includes a chapter devoted to environmental management system topics. Volume II contains individual data results from surveillance and monitoring activities. The ''Site Environmental Report'' is distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are also reported using the more conventional (non-SI) system of measurements, because the non-SI system is referenced by several current regulatory standards and is more familiar to some readers. Two tables are provided at the end of the Glossary to help readers: the first defines the prefixes used with SI units of measurement, and the second provides conversions to non-SI units.

Ruggieri, Michael

2006-07-07T23:59:59.000Z

137

Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

i i TABLE OF CONTENTS 1. INTRODUCTION 1 2. LINE OF INQUIRY NO. 1 - Future Uses of the Subtitle D Landfill 2 3. LINE OF INQUIRY NO. 2 - OSDF Siting in a Brownfield Area 3 4. LINE OF INQUIRY NO. 3 - Seismic Issues 4 5. LINE OF INQUIRY NO. 4 - Post-Closure Public Use of the OSDF 5 6. LINE OF INQUIRY NO. 5 - Public Communication Plan 7 7. LINE OF INQUIRY NO. 6 - Baseline Schedule 8 8. RECOMMENDATIONS 8 9. ACKNOWLEDGEMENT 10 10. REFERENCES 10 APPENDIX 11 1 1. INTRODUCTION The Paducah Gaseous Diffusion Plant (PGDP) is an active uranium enrichment facility that is owned by the US Department of Energy (DOE). Uranium enrichment facilities at PGDP are leased to and operated by the United States Enrichment Corporation. In 1994, PGDP was placed

138

Addendum to the Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites Nevada Test Site, Nevada, Revision 0  

SciTech Connect

This document constitutes an addendum to the November 2002, Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: This cover page that refers the reader to the UR Modification document for additional information The cover and signature pages of the UR Modification document The NDEP approval letter The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: CAS 03-04-01, Area 3 Change House Septic System CAS 03-09-04, Mud Pit These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004f). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

Lynn Kidman

2008-10-01T23:59:59.000Z

139

Modeling of the sub-surface reducing environment of the Z-Area Saltstone disposal facility at the Savannah River Site  

Science Conference Proceedings (OSTI)

Low-level radioactive liquid wastes at the U.S. Department of Energy Savannah River Site are treated by mixing the wastes with Saltstone grout to generate the Saltstone waste form that is poured into the concrete vaults for long-term disposal. The formula ... Keywords: contaminant transport, environmental science, radioactive waste, radionuclides

Thong Hang; Daniel I. Kaplan

2007-03-01T23:59:59.000Z

140

STATUS REPORT ON EVALUATION OF SOLID WASTE DISPOSAL AT ORNL. PART II  

SciTech Connect

Burial Ground 4 was poened in February 1951 and closed to routine burial operations in July 1959. The average rate of burial during this period was about 2j~ acres per year. The site was underlain by the Conasauga shale of Cambrian age. At the burial ground the formation consisted mostiy of maroon and gray shales interbedded with a few thin limestone lenses. Water-level measurements indicated that the buried waste was in contact with ground water during most periods of the year. Activity was detected in water samples from a number of wells located in areas of low topography where ground water contact with the waste was greatest. Radionuclides were also found in seeps and streams within the area. No significant activity from the burial ground was contributed to nearby White Oak Creek. (auth)

Lomenick, T.F.; Cowser, K.E.

1962-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 2: Technical basis and discussion of results  

Science Conference Proceedings (OSTI)

A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 first describes the screening process used to determine the sites to be considered in the PEs. This volume then provides the technical details of the methodology for conducting the performance evaluations. It also provides a comparison and analysis of the overall results for all sites that were evaluated. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site.

Waters, R.D.; Gruebel, M.M.; Hospelhorn, M.B. [and others

1996-03-01T23:59:59.000Z

142

Assessment of Preferred Depleted Uranium Disposal Forms  

NLE Websites -- All DOE Office Websites (Extended Search)

. . 7 3.2 PRELIMINARY ASSESSMENT OF DU DISPOSAL AT OTHER SITES . . . . . . . . . . 8 3.3 COSTS OF PRODUCTION, TRANSPORTATION, AND DISPOSAL OF DU WASTE FORMS . . . . . . . . . . ....

143

Autoradiographic localization of (/sup 125/I)-angiotensin II binding sites in the rat adrenal gland  

SciTech Connect

To gain greater insight into sites of action of circulating angiotensin II (Ang II) within the adrenal, we have localized the (/sup 125/I)-Ang II binding site using in vitro autoradiography. Autoradiograms were generated either by apposition of isotope-sensitive film or with emulsion-coated coverslips to slide-mounted adrenal sections labeled in vitro with 1.0 nM (/sup 125/I)-Ang II. Analysis of the autoradiograms showed that Ang II binding sites were concentrated in a thin band in the outer cortex (over the cells of the zona glomerulosa) and in the adrenal medulla, which at higher power was seen as dense patches. Few sites were evident in the inner cortex. The existence of Ang II binding sites in the adrenal medulla was confirmed by conventional homogenate binding techniques which revealed a single class of high affinity Ang II binding site (K/sub d/ . 0.7nM, B/sub max/ . 168.7 fmol/mg). These results suggest that the adrenal medulla may be a target for direct receptor-mediated actions of Ang II.

Healy, D.P.; Maciejewski, A.R.; Printz, M.P.

1985-03-01T23:59:59.000Z

144

Replacement Capability for Disposal of Remote-Handled Low-Level Waste Generated at the Department of Energys Idaho Site  

NLE Websites -- All DOE Office Websites (Extended Search)

93 93 Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site Final December 2011 Department of Energy Idaho Operations Office 1955 Fremont Avenue Idaho Falls, ID 83415 December 21, 2011 Dear Citizen: The U.S. Department of Energy (DOE) has completed the Final Environmental Assessment (EA) for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site and determined that a Finding of No Significant Impact (FONSI) is appropriate. The draft EA was made available for an 81-day public review and comment period on September 1,2011. DOE considered all comments made

145

Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 1: Executive summary  

SciTech Connect

A team of analysts designed and conducted a performance evaluation (PE) to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 1 is an executive summary both of the PE methodology and of the results obtained from the PEs. While this volume briefly reviews the scope and method of analyses, its main objective is to emphasize the important insights and conclusions derived from the conduct of the PEs. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site.

NONE

1996-03-01T23:59:59.000Z

146

Use of an ions thruster to dispose of type II long-lived fission products into outer space  

DOE Green Energy (OSTI)

To dispose of long-lived fission products (LLFPs) into outer space, an ions thruster can be used instead of a static accelerator. The specifications of the ions thrusters which are presently studies for space propulsion are presented, and their usability discussed. Using of a rocket with an ions thruster for disposing of the LLFPs directly into the sun required a larger amount of energy than does the use of an accelerator.

Takahashi, H.; Yu, A.

1997-04-01T23:59:59.000Z

147

Autoradiographic localization and characterization of angiotensin II binding sites in the spleen of rats and mice  

SciTech Connect

Specific binding sites for angiotensin II (Ang II) were localized in the red pulp of the spleen of rats and mice by quantitative autoradiography using /sup 125/I-Sar1-Ang II as a ligand. In the rat, the binding was saturable and specific, and the rank order for Ang II derivatives as competitors of /sup 125/I-Sar1-Ang II binding correlates well with their affinity for Ang II receptors in other tissues. Kinetic analysis in the rat spleen revealed a single class of binding sites with a KD of 1.11 nM and a Bmax value of 81.6 fmol/mg protein. Ang II binding sites were also localized on isolated rat spleen cells with similar affinity but with much lower Bmax, 9.75 fmol/mg protein. Ang II receptors were not detected in thymus sections from rats or mice, or on isolated rat thymocytes. The binding sites described here might represent a functional Ang II receptor with a role in the regulation of splenic volume and blood flow and in the modulation of the lymphocyte function.

Castren, E.; Kurihara, M.; Saavedra, J.M.

1987-07-01T23:59:59.000Z

148

EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume II--U.S. Regulations for Geologic Disposal  

Science Conference Proceedings (OSTI)

U.S. efforts to site and construct a deep geologic repository for used fuel and high level radioactive waste (HLW) proceeded sporadically over a three-decade period from the late 1950s until 1982, when the U.S. Congress enacted the Nuclear Waste Policy Act (NWPA) codifying a national approach for developing a deep geologic repository. Amendment of the NWPA in 1987 resulted in a number of dramatic changes in direction for the U.S. program, most notably the selection of Yucca Mountain as the only site of t...

2010-06-29T23:59:59.000Z

149

Closure Report for Corrective Action Unit 110: Areas 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada  

SciTech Connect

This Closure Report (CR) has been prepared for the Area 3 Radioactive Waste Management Site (RWMS) U-3ax/bl Disposal Unit Corrective Action Unit (CAU) 110 in accordance with the reissued (November 2000) Resource Conservation and Recovery Act (RCRA) Part B operational permit NEV HW009 (Nevada Division of Environmental Protection [NDEP], 2000) and the Federal Facility and Consent Order (FFACO) (NDEP et al., 1996). CAU 110 consists of one Corrective Action Site 03-23-04, described as the U-3ax/bl Subsidence Crater. Certifications of closure are located in Appendix A. The U-3ax/bl is a historic disposal unit within the Area 3 RWMS located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit was closed under the RCRA, as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (m{sup 3}) (8.12 x 10{sup 6} cubic feet [ft{sup 3}]) of waste. NTS atmospheric nuclear device testing generated approximately 95% of the total waste volume disposed of in U-3ax/bl; 80% of the total volume was generated from the Waste Consolidation Project. Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is normally in a state of moisture deficit.

J. L. Smith

2001-08-01T23:59:59.000Z

150

Demonstration of In-Situ Stabilization of Buried Waste at Pit G-11 at the Brookhaven National laboratory Glass Pits Disposal Site  

Science Conference Proceedings (OSTI)

In 1989 BNL was added to the EPAs National Priorities List. The site is divided into seven operable units (OU). OU-I includes the former landfill area. The field task site is noted as the AOC 2C Glass Holes location. Beginning in the 1960s and continuing into the 1980s, BNL disposed of laboratory waste (glassware, chemicals and animal carcasses) in numerous shallow pits. The drivers for remediating the pits are; historical records that indicate hazardous materials may have been disposed of in the pits; ground water contamination down gradient of the pits; a test excavation of one of the glass holes that unearthed laboratory glass bottles with unidentified liquids still contained; and the fact that BNL rests atop an EPA designated sole-source aquifer. The specific site chosen for this demonstration was pit G-11. The requirements that lead to choosing this pit were; a well characterized pit and a relatively isolated pit where our construction operations would not impact on adjacent pits. The glass holes area, including pit G-11, was comprehensively surveyed using a suite of geophysical techniques (e.g., EM-31, EM-61, GPR). Prior to stabilizing the waste form a subsurface barrier was constructed to contain the entire waste pit. The pit contents were then stabilized using a cement grout applied via jet grouting. The stabilization was performed to make removal of the waste from the pit easier and safer in terms of worker exposure. The grouting process would mix and masticate the waste and grout and form a single monolithic waste form. This large monolith would then be subdivided into smaller 4 foot by 4 foot by 10-12 foot block using a demolition grout. The smaller blocks would then be easily removed from the site and disposed of in a CERCLA waste site.

Dwyer, B.P.; Gilbert, J.; Heiser, J.

1999-01-01T23:59:59.000Z

151

Material Disposal Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

152

Integrating Volume Reduction and Packaging Alternatives to Achieve Cost Savings for Low Level Waste Disposal at the Rocky Flats Environmental Technology Site  

Science Conference Proceedings (OSTI)

In order to reduce costs and achieve schedules for Closure of the Rocky Flats Environmental Technology Site (RFETS), the Waste Requirements Group has implemented a number of cost saving initiatives aimed at integrating waste volume reduction with the selection of compliant waste packaging methods for the disposal of RFETS low level radioactive waste (LLW). Waste Guidance Inventory and Shipping Forecasts indicate that over 200,000 m3 of low level waste will be shipped offsite between FY2002 and FY2006. Current projections indicate that the majority of this waste will be shipped offsite in an estimated 40,000 55-gallon drums, 10,000 metal and plywood boxes, and 5000 cargo containers. Currently, the projected cost for packaging, shipment, and disposal adds up to $80 million. With these waste volume and cost projections, the need for more efficient and cost effective packaging and transportation options were apparent in order to reduce costs and achieve future Site packaging a nd transportation needs. This paper presents some of the cost saving initiatives being implemented for waste packaging at the Rocky Flats Environmental Technology Site (the Site). There are many options for either volume reduction or alternative packaging. Each building and/or project may indicate different preferences and/or combinations of options.

Church, A.; Gordon, J.; Montrose, J. K.

2002-02-26T23:59:59.000Z

153

Postconstruction report of the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program  

Science Conference Proceedings (OSTI)

Remedial actions conducted under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) were completed at the Y-12 United Nuclear Corporation (UNC) Disposal Site in August 1992. The purpose of this Postconstruction Report is to summarize numerous technical reports and provide CERCLA documentation for completion of the remedial actions. Other CERCLA reports, such as the Feasibility Study for the UNC Disposal Site, provide documentation leading up to the remedial action decision. The remedial action chosen, placement of a modified RCRA cap, was completed successfully, and performance standards were either met or exceeded. This remedial action provided solutions to two environmentally contaminated areas and achieved the goal of minimizing the potential for contamination of the shallow groundwater downgradient of the site, thereby providing protection of human health and the environment. Surveillance and maintenance of the cap will be accomplished to ensure cap integrity, and groundwater monitoring downgradient of the site will continue to confirm the acceptability of the remedial action chosen.

Oakley, L.B.; Siberell, J.K.; Voskuil, T.L.

1993-06-01T23:59:59.000Z

154

Biological Weed Control at the Sherwood, Washington, Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Ecosystem Management Team Biological Weed Control at the Sherwood, Washington, Disposal Site Biological Weed Control at the Sherwood, Washington, Disposal Site...

155

Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site  

SciTech Connect

In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site.

Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

1995-03-01T23:59:59.000Z

156

Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada  

SciTech Connect

This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (8.12 x 10{sup 6} cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and repair requirements will be remedied within 60 working days of discovery and documented in writing at the time of repair. Results of all inspections/repairs for a given year will be addressed in a single report submitted annually to the NDEP. Soil moisture will be monitored within the cover for a period of at least two years prior to establishing performance criteria for NDEP regulatory purposes.

T. M. Fitzmaurice

2000-08-01T23:59:59.000Z

157

WEB RESOURCE: Nuclear Waste Disposal  

Science Conference Proceedings (OSTI)

May 10, 2007 ... The complete "Yucca Mountain Resource Book" is also available for download at this site. Citation: Nuclear Waste Disposal. 2007. Nuclear...

158

Analysis of the Technical Capabilities of DOE Sites for Disposal of Residuals from the Treatment of Mixed Low-Level Waste  

E-Print Network (OSTI)

The U.S. Department of Energy (DOE) has stored or expects to generate over the next five years more than 130,000 m 3 of mixed low-level waste (MLLW). Before disposal, MLLW is usually treated to comply with the land disposal restrictions of the Resource Conservation and Recovery Act. Depending on the type of treatment, the original volume of MLLW and the radionuclide concentrations in the waste streams may change. These changes must be taken into account in determining the necessary disposal capacity at a site. Treatment may remove the characteristic in some waste that caused it to be classified as mixed. Treatment of some waste may, by reduction of the mass, increase the concentrations of some transuranic radionuclides sufficiently so that it becomes transuranic waste. In this report, the DOE MLLW streams were analyzed to determine after-treatment volumes and radionuclide concentrations. The waste streams were reclassified as residual MLLW or low-level or transuranic waste resulting ...

Prepared For The; Robert D. Waters; Marilyn M. Gruebel; Brenda S. Langkopf; Paul B. Kuehne; Martin Letourneau Doe/em; Lance Mezga L

1997-01-01T23:59:59.000Z

159

Seismic Characterization of Basalt Topography at Two Candidate Sites for the INL Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

This report presents the seismic refraction results from the depth to bed rock surveys for two areas being considered for the Remote-Handled Low-Level Waste (RH-LLW) disposal facility at the Idaho National Laboratory. The first area (Site 5) surveyed is located southwest of the Advanced Test Reactor Complex and the second (Site 34) is located west of Lincoln Boulevard near the southwest corner of the Idaho Nuclear Technology and Engineering Center (INTEC). At Site 5, large area and smaller-scale detailed surveys were performed. At Site 34, a large area survey was performed. The purpose of the surveys was to define the topography of the interface between the surficial alluvium and underlying basalt. Seismic data were first collected and processed using seismic refraction tomographic inversion. Three-dimensional images for both sites were rendered from the data to image the depth and velocities of the subsurface layers. Based on the interpreted top of basalt data at Site 5, a more detailed survey was conducted to refine depth to basalt. This report briefly covers relevant issues in the collection, processing and inversion of the seismic refraction data and in the imaging process. Included are the parameters for inversion and result rendering and visualization such as the inclusion of physical features. Results from the processing effort presented in this report include fence diagrams of the earth model, for the large area surveys and iso-velocity surfaces and cross sections from the detailed survey.

Jeff Sondrup; Gail Heath; Trent Armstrong; Annette Shafer; Jesse Bennett; Clark Scott

2011-04-01T23:59:59.000Z

160

Evaluation of Heavy Metals in Solid Waste Disposal Sites in Campinas City, Brazil Using Synchrotron Radiation Total Reflection X-Ray Fluorescence  

SciTech Connect

The problem of solid waste in most countries is on the rise as a result of rapid population growth, urbanization, industrial development and changes in consumption habits. Amongst the various forms of waste disposals, landfills are today the most viable for the Brazilian reality, both technically and economically. Proper landfill construction practices allow minimizing the effects of the two main sources of pollution from solid waste: landfill gas and slurry. However, minimizing is not synonymous with eliminating; consequently, the landfill alone cannot resolve all the problems with solid waste disposal. The main goal of this work is to evaluate the content of trace elements in samples of groundwater, surface water and slurry arising from local solid waste disposals in the city of Campinas, SP, Brazil. Samples were collected at the Delta, Santa Barbara and Pirelli landfills. At the Delta and Santa Barbara sites, values above the maximum permitted level established by CETESB for Cr, Mn, Fe, Ni and Pb were observed in samples of groundwater, while at the Pirelli site, elements with concentrations above the permitted levels were Mn, Fe, Ba and Pb. At Delta, values above levels permitted by the CONAMA 357 legislation were still observed in surface water samples for Cr, Mn, Fe and Cu, whereas in slurry samples, values above the permitted levels were observed for Cr, Mn, Fe, Ni, Cu, Zn and Pb. Slurry samples were prepared in accordance with two extraction methodologies, EPA 3050B and EPA 200.8. Concentrations of Cr, Ni, Cu and Pb were higher than the limit established by CONAMA 357 for most samples collected at different periods (dry and rainy) and also for the two extraction methodologies employed.

Faria, Bruna Fernanda de; Moreira, Silvana [University of Campinas, Civil Engineering College, P.O. BOX 6021 Zip Code 13083-952, Campinas, Sao Paulo State (Brazil)

2011-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

PISCES Water Characterization Field Study: Volume I: Site D Report; Volume II: Site D Appendix  

Science Conference Proceedings (OSTI)

In 1988, EPRI initiated the Power Plant Integrated System-Chemical Emissions Study (PISCES) project to characterize the distribution of trace substances in air, liquid, and solid waste streams from fossil-fuel-fired electric utility power plants. Studies have been completed at PISCES Sites A, B, and C. The results for PISCES Site D are presented in this report, which provides a comprehensive characterization of wastewater at a coal-fired power plant.

1998-11-18T23:59:59.000Z

162

PISCES Water Characterization Field Study: Volume I: Site D Report; Volume II: Site D Appendix  

Science Conference Proceedings (OSTI)

In 1988, EPRI initiated the Power Plant Integrated System-Chemical Emissions Study (PISCES) project to characterize the distribution of trace substances in air, liquid, and solid waste streams from fossil-fuel-fired electric utility power plants. Studies have been completed at PISCES Sites A, B, and C. The results for PISCES Site D are presented in this report, which provides a comprehensive characterization of wastewater at a coal-fired power plant.

1998-11-12T23:59:59.000Z

163

DOE - Office of Legacy Management -- Mexican Hat Mill Site -...  

Office of Legacy Management (LM)

Act Title I Disposal Sites-Mexican Hat, Utah, Disposal Site. LMSS09461. February 2013 Historic Fact Sheet: Mexican Hat Disposal Site Uranium ore was processed near Mexican...

164

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

PIONEERING NUCLEAR WASTE DISPOSAL U.S. Department of Energy Carlsbad Area Office February 2000 DOECAO-00-3124 T h e W a s t e I s o l a t i o n P i l o t P l a n t ii Table of...

165

Corrective Action Investigation Plan for Corrective Action Unit 561: Waste Disposal Areas, Nevada Test Site, Nevada with ROTC 1, Revision 0  

SciTech Connect

Corrective Action Unit (CAU) 561 is located in Areas 1, 2, 3, 5, 12, 22, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 561 is comprised of the 10 corrective action sites (CASs) listed below: 01-19-01, Waste Dump 02-08-02, Waste Dump and Burn Area 03-19-02, Debris Pile 05-62-01, Radioactive Gravel Pile 12-23-09, Radioactive Waste Dump 22-19-06, Buried Waste Disposal Site 23-21-04, Waste Disposal Trenches 25-08-02, Waste Dump 25-23-21, Radioactive Waste Dump 25-25-19, Hydrocarbon Stains and Trench These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 561. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the Corrective Action Investigation for CAU 561 includes the following activities: Move surface debris and/or materials, as needed, to facilitate sampling. Conduct radiological surveys. Perform exploratory excavations. Perform field screening. Collect and submit environmental samples for laboratory analysis to determine the nature and extent of any contamination released by each CAS. Collect samples of source material to determine the potential for a release. Collect samples of potential remediation wastes. Collect quality control samples.

Grant Evenson

2008-07-01T23:59:59.000Z

166

Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units Nevada Test Site, Nevada, Rev. No.: 0 with ROTC 1 and 2  

DOE Green Energy (OSTI)

This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S Department of Defense (DoD). Corrective Action Unit 543 is located in Area 6 and Area 15 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Seven corrective action sites (CASs) comprise CAU 543 and are listed below: (1) 06-07-01, Decon Pad; (2) 15-01-03, Aboveground Storage Tank; (3) 15-04-01, Septic Tank; (4) 15-05-01, Leachfield; (5) 15-08-01, Liquid Manure Tank; (6) 15-23-01, Underground Radioactive Material Area; and (7) 15-23-03, Contaminated Sump, Piping. Corrective Action Site 06-07-01, Decon Pad, is located in Area 6 and consists of the Area 6 Decontamination Facility and its components that are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency (EPA) Farm and are related to waste disposal activities at the EPA Farm. The EPA Farm was a fully-functional dairy associated with animal experiments conducted at the on-site laboratory. The corrective action investigation (CAI) will include field inspections, video-mole surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions. The CASs within CAU 543 are being investigated because hazardous and/or radioactive constituents may be present at concentrations that could potentially pose a threat to human health and the environment. The seven CASs in CAU 543 primarily consist of sanitary and process waste collection, storage, and distribution systems (e.g., storage tanks, sumps, and piping). Existing information on the nature and extent of potential contamination at these sites is insufficient to evaluate and recommend corrective action alternatives for the CASs. Therefore, additional information will be obtained by conducting a CAI prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS.

David A. Strand

2004-05-01T23:59:59.000Z

167

Continuing disposal of coal ash  

Science Conference Proceedings (OSTI)

The large volume of power-plant coal ash produced and stricter Federal water pollution controls are making ash disposal increasingly difficult for utilities. The protection of surface and ground water quality required in the Resource conservation and Recovery Act of 1976 (RCRA) and the Federal Water Pollution Control Act's Clean Water Act (CWA) amendments of 1977 have raised the cost of disposal to a level where an acceptable method must be found. The Electric Power Research Institute's Coal Ash Disposal Manual (EPRI-FM--1257) describes-ash chemistry, disposal site selection, site monitoring and reclamation, and other information of interest to utilities that are making cost estimates and procedure evaluations. (DCK)

Lihach, N.; Golden, D.

1980-03-01T23:59:59.000Z

168

Savannah River Site high-level waste safety issues: The need for final disposal of the wastes  

DOE Green Energy (OSTI)

Using new criteria developed by the High-Level Waste Tank Safety Task Force, the Savannah River Site (SRS) identified six safety issues in the SRS tank farms. None of the safety issues were priority 1, the most significant issues handled by the Task Force. This paper discusses the safety issues and the programs for resolving each of them.

d`Entremont, P.D.; Hobbs, D.T.

1991-12-31T23:59:59.000Z

169

Savannah River Site high-level waste safety issues: The need for final disposal of the wastes  

DOE Green Energy (OSTI)

Using new criteria developed by the High-Level Waste Tank Safety Task Force, the Savannah River Site (SRS) identified six safety issues in the SRS tank farms. None of the safety issues were priority 1, the most significant issues handled by the Task Force. This paper discusses the safety issues and the programs for resolving each of them.

d'Entremont, P.D.; Hobbs, D.T.

1991-01-01T23:59:59.000Z

170

disposal_cell.cdr  

Office of Legacy Management (LM)

With the With the April 24, 1997, ceremonial ground-breaking for disposal facility construction, the Weldon Spring Site Remedial Action Project (WSSRAP) moved into the final stage of cleanup, treatment, and disposal of uranium- processing wastes. The cleanup of the former uranium- refining plant consisted of three primary operations: Demolition and removal of remaining concrete pads and foundations that supported the 44 structures and buildings on site Treatment of selected wastes Permanent encapsulation of treated and untreated waste in an onsite engineered disposal facility In September l993, a Record of Decision (ROD) was signed by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), with concurrence by the Missouri Department of Natural

171

Estimating the cold war mortgage: The 1995 baseline environmental management report. Volume II: Site summaries  

SciTech Connect

This volume, Volume II presents the site data that was used to generate the Department of Energy`s (DOE) initial Baseline Environmental Management Report (BEMR). The raw data was obtained by DOE field personnel from existing information sources and anticipated environmental management strategies for their sites and was tempered by general assumptions and guidance developed by DOE Headquarters personnel. This data was then integrated by DOE Headquarters personnel and modified to ensure that overall constraints such as funding and waste management capacity were addressed. The site summaries are presented by State and broken out by discrete activities and projects. The Volume I Glossary has been repeated to facilitate the reader`s review of Volume II. The information presented in the site summaries represents the best data and assumptions available as of February 1, 1995. Assumptions that have not been mandated by formal agreement with appropriate regulators and other stakeholders do not constitute decisions by the Department nor do they supersede existing agreements. In addition, actions requiring decisions from external sources regarding unknowns such as future land use and funding/scheduling alternatives, as well as internal actions such as the Department`s Strategic Realignment initiative, will alter the basis and general assumptions used to generate the results for this report. Consequently, the numbers presented in the site summaries do not represent outyear budget requests by the field installations.

NONE

1995-03-01T23:59:59.000Z

172

Septage Disposal, Licensure (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This statute describes licensing requirements for septage disposal, and addresses land disposal and processing facilities.

173

Study examining a DOE proposal to dispose of mixed low level waste at the Nevada test site using an alternative landfill design.  

E-Print Network (OSTI)

??The Department of Energy has set forth a proposal to use an Alternative Landfill Design (ALD) for the Mixed Low Level Waste disposal facility, in (more)

Hart, Deborah

2005-01-01T23:59:59.000Z

174

Field study for disposal of solid wastes from Advanced Coal Processes: Ohio LIMB Site Assessment. Final report, April 1986--November 1994  

Science Conference Proceedings (OSTI)

New air pollution regulations will require cleaner, more efficient processes for converting coal to electricity, producing solid byproducts or wastes that differ from conventional pulverized-coal combustion ash. Large scale landfill test cells containing byproducts were built at 3 sites and are to be monitored over at least 3 years. This report presents results of a 3-y field test at an ash disposal site in northern Ohio; the field test used ash from a combined lime injection-multistage burner (LIMB) retrofit at the Ohio Edison Edgewater plant. The landfill test cells used LIMB ash wetted only to control dusting in one cell, and LIMB ash wetted to optimize compaction density in the other cell. Both test cells had adequate load-bearing strength for landfill stability but had continuing dimensional instability. Heaving and expansion did not affect the landfill stability but probably contributed to greater permeability to infiltrating water. Leachate migration occurred from the base, but effects on downgradient groundwater were limited to increased chloride concentration in one well. Compressive strength of landfilled ash was adequate to support equipment, although permeability was higher and strength was lower than anticipated. Average moisture content has increased to about 90% (dry weight basis). Significant water infiltration has occurred; the model suggests that as much as 20% of the incident rainfall will pass through and exit as leachate. However, impacts on shallow ground water is minimal. Results of this field study suggest that LIMB ash from combustion of moderate to high sulfur coals will perform acceptably if engineering controls are used to condition and compact the materials, reduce water influx to the landfill, and minimize leachate production. Handling of the ash did not pose serious problems during cell construction; steaming and heat buildup were moderate.

Weinberg, A.; Coel, B.J.; Butler, R.D.

1994-10-01T23:59:59.000Z

175

Disposable rabbit  

DOE Patents (OSTI)

A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

Lewis, Leroy C. (Idaho Falls, ID); Trammell, David R. (Rigby, ID)

1986-01-01T23:59:59.000Z

176

Disposal rabbit  

DOE Patents (OSTI)

A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

Lewis, L.C.; Trammell, D.R.

1983-10-12T23:59:59.000Z

177

Waste disposal options report. Volume 1  

SciTech Connect

This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste.

Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

1998-02-01T23:59:59.000Z

178

DISPOSAL OF RADIOACTIVE WASTE ON LAND  

SciTech Connect

Two years' consideration of the disposal problem by the National Research Council Committee on Waste Disposal has led to certain conclusions which are presented. Waste may be safely disposed of at many sites in the United States but conversely there are many large areas in which it is unlikely that disposal sites can be found as, for example, the Atlantic seaboard. The research to ascertain feasibility of disposal hss for the most part not yet been done. The most practical immediate solution of the problem suggests disposal in cavities mined in salt beds or domes. Disposal could be greatly simplified if the waste could be gotten into solid form of relatively insoluble character. Disposal in porous beds underground has capabilities of taking large volumes but will require considerable research to mske the waste compatible with such an environment. The main difficulty with this method at present is to prevent clogging of pore space as waste is pumped in. (auth)

Hess, H.H.; Thurston, W.R.

1958-06-01T23:59:59.000Z

179

Corrective Action Decision Document/Closure Report for Corrective Action Unit 561: Waste Disposal Areas, Nevada National Security Site, Nevada, Revision 0  

SciTech Connect

CAU 561 comprises 10 CASs: (1) 01-19-01, Waste Dump; (2) 02-08-02, Waste Dump and Burn Area; (3) 03-19-02, Debris Pile; (4) 05-62-01, Radioactive Gravel Pile; (5) 12-23-09, Radioactive Waste Dump; (6) 22-19-06, Buried Waste Disposal Site; (7) 23-21-04, Waste Disposal Trenches ; (8) 25-08-02, Waste Dump; (9) 25-23-21, Radioactive Waste Dump; and (10) 25-25-19, Hydrocarbon Stains and Trench. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure of CAU 561 with no further corrective action. The purpose of the CAI was to fulfill the following data needs as defined during the DQO process: (1) Determine whether COCs are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to complete appropriate corrective actions. The following contaminants were determined to be present at concentrations exceeding their corresponding FALs: (1) No contamination exceeding FALs was identified at CASs 01-19-01, 03-19-02, 05-62-01, 12-23-09, and 22-19-06. (2) The surface and subsurface soil within the burn area at CAS 02-08-02 contains arsenic and lead above the FALs of 23 milligrams per kilogram (mg/kg) and 800 mg/kg, respectively. The surface and subsurface soil within the burn area also contains melted lead slag (potential source material [PSM]). The soil within the waste piles contains polyaromatic hydrocarbons (PAHs) above the FALs. The contamination within the burn area is spread throughout the area, as it was not feasible to remove all the PSM (melted lead), while at the waste piles, the contamination is confined to the piles. (3) The surface and subsurface soils within Trenches 3 and 5 at CAS 23-21-04 contain arsenic and polychlorinated biphenyls (PCBs) above the FALs of 23 mg/kg and 0.74 mg/kg, respectively. The soil was removed from both trenches, and the soil that remains at this CAS does not contain contamination exceeding the FALs. Lead bricks and counterweights were also removed, and the soil below these items does not contain contamination that exceeds the FAL for lead. (4) The concrete-like material at CAS 25-08-02 contains arsenic above the FAL of 23 mg/kg. This concrete-like material was removed, and the soil that remains at this CAS does not contain contamination exceeding the FALs. Lead-acid batteries were also removed, and the soil below the batteries does not contain contamination that exceeds the FAL for lead. (5) The surface soils within the main waste dump at the posted southern radioactive material area (RMA) at CAS 25-23-21 contain cesium (Cs)-137 and PCBs above the FALs of 72.9 picocuries per gram (pCi/g) and 0.74 mg/kg, respectively. The soil was removed from the RMA, and the soil that remains at this CAS does not contain contamination exceeding the FALs. (6) The surface and subsurface soils at CAS 25-25-19 do not contain contamination exceeding the FALs. In addition, lead bricks were removed, and the soil below these items does not contain contamination that exceeds the FAL for lead. The following best management practices were implemented: (1) Housekeeping debris at CASs 02-08-02, 23-21-04, 25-08-02, 25-23-21, and 25-25-19 was removed and disposed of; (2) The open trenches at CAS 23-21-04 were backfilled; (3) The waste piles at CAS 25-08-02 were removed and the area leveled to ground surface; and (4) The remaining waste piles at the main waste dump at CAS 25-23-21 were leveled to ground surface. Therefore, NNSA/NSO provides the following recommendations: (1) No further action for CASs 01-19-01, 03-19-02, 05-62-01, 12-23-09, and 22-19-06; (2) Closure in place with an FFACO use restriction (UR) at CAS 02-08-02 for the remaining PAH-, arsenic-, and lead-contaminated soil, and the melted lead PSM. The UR form and map have been filed in the NNSA/NSO Facility Information Management System, the FFACO database, and the NNSA/NSO CAU/CAS files; (3) No further corrective action at CAS 23-21-04, as the lead bricks and counterweights (PSM) have been removed, and the COCs of arsenic and PCBs in soil have be

Mark Krauss

2011-08-01T23:59:59.000Z

180

Microsoft Word - SRSSaltWasteDisposal.doc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site - Tank 48 SRS Review Report 2009 Performance Assessment for the Saltstone Disposal Facility DOE Order 435.1 Performance Assessment Savannah River Site...

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Microsoft Word - S05096_Title II Transition Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process for Transition of Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance March 2012 LMS/S05096 This page intentionally left blank LMS/S05096 Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance March 2012 This page intentionally left blank U.S. Department of Energy Process for Transition of UMTRCA Title II Disposal Sites to LM for LTSM March 2012 Doc. No. S05096 Page i Contents Abbreviations ................................................................................................................................. iii

182

Untitled Page -- Other Sites Summary  

Office of Legacy Management (LM)

Other Sites Summary Other Sites Summary Search Other Sites Considered Sites Other Sites All LM Quick Search All Other Sites 11 E (2) Disposal Cell - 037 ANC Gas Hills Site - 040 Argonne National Laboratory - West - 014 Bodo Canyon Cell - 006 Burro Canyon Disposal Cell - 007 Cheney Disposal Cell - 008 Chevron Panna Maria Site - 030 Clive Disposal Cell - 036 Commercial (Burial) Disposal Site Maxey Flats Disposal Site - KY 02 Conoco Conquista Site - 031 Cotter Canon City Site - 009 Dawn Ford Site - 038 EFB White Mesa Site - 033 Energy Technology Engineering Center - 044 Estes Gulch Disposal Cell - 010 Exxon Ray Point Site - 032 Fermi National Accelerator Laboratory - 016 Fernald Environmental Management Project - 027 Fort St Vrain - 011 Geothermal Test Facility - 001 Hecla Durita Site - 012

183

Development of Site Transition Plan, Use of the Site Transition Framework,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of Site Transition Plan, Use of the Site Transition Development of Site Transition Plan, Use of the Site Transition Framework, and Terms and Conditions for Site Transition Development of Site Transition Plan, Use of the Site Transition Framework, and Terms and Conditions for Site Transition This memorandum provides additional guidance on preparation of the Site Transition Plan (STP). Development of Site Transition Plan, Use of the Site Transition Framework, and Terms and Conditions for Site Transition More Documents & Publications Site Transition Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy On-going Mission Sites Process for Transition of Responsibilities Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy

184

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success...

185

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

18 18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a monumental step forward in the safe management of nuclear waste. Far from ending, however, the WIPP story has really just begun. For the next 35 years, the DOE will face many challenges as it manages a complex shipment schedule from transuranic waste sites across the United States and continues to ensure that the repository complies with all regulatory requirements. The DOE will work to maintain the highest level of safety in waste handling and trans- portation. Coordination with sites Disposal operations require coordination with sites that will ship transuranic waste to the WIPP and include periodic certification of waste characterization and handling practices at those facilities. During the WIPP's

186

DOE - Office of Legacy Management -- WNI Sherwood Site - 039  

NLE Websites -- All DOE Office Websites (Extended Search)

Sherwood Site - 039 Sherwood Site - 039 FUSRAP Considered Sites Site: WNI Sherwood Site (039) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in the State of Washington. UMTRA Title II sites are privately owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The majority milling conducted at this site was for private sale. After the owner completes NRC license termination the Department of Energy¿s Grand Junction Office will be responsible for providing stewardship for the groundwater and disposal

187

DOE - Office of Legacy Management -- Chevron Panna Maria Site - 030  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevron Panna Maria Site - 030 Chevron Panna Maria Site - 030 FUSRAP Considered Sites Site: Chevron Panna Maria Site (030) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in Texas. UMTRA Title II sites are privately owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The milling conducted at this site was for private sale. After the owner completes U. S. Nuclear Regulatory Commission license termination the Department of Energy¿s Grand Junction Office will be responsible for providing stewardship for the groundwater and disposal

188

Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II  

Science Conference Proceedings (OSTI)

This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2 storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.

George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg; Aiysha Sultana; Tyler Van Leeuwen

2009-06-01T23:59:59.000Z

189

Implementation of Revision 19 of the TRUPACT-II Safety Analysis Report at Rocky Flats Environmental Technology Site  

Science Conference Proceedings (OSTI)

The U.S. Nuclear Regulatory Commission on July 27, 2001 approved Revision 19 of the TRUPACT-II Safety Analysis Report (SAR) and the associated TRUPACT-II Authorized Methods for Payload Control (TRAMPAC). Key initiatives in Revision 19 included matrix depletion, unlimited mixing of shipping categories, a flammability assessment methodology, and an alternative methodology for the determination of flammable gas generation rates. All U.S. Department of Energy (DOE) sites shipping transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) were required to implement Revision 19 methodology into their characterization and waste transportation programs by May 20, 2002. An implementation process was demonstrated by the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado. The three-part process used by RFETS included revision of the site-specific TRAMPAC, an evaluation of the contact-handled TRU waste inventory against the regulations in Revision 19, and design and development of software to facilitate future inventory analyses.

D'Amico, E.; O'Leary, J.; Bell, S.; Djordjevic, S.; Givens, C,; Shokes, T.; Thompson, S.; Stahl, S.

2003-02-25T23:59:59.000Z

190

Laboratory to demolish excavation enclosures at Material Disposal...  

NLE Websites -- All DOE Office Websites (Extended Search)

waste disposal facility. MDA B was used from 1944 to 1948 as a waste disposal site for Manhattan Project and Cold War-era research and production. The Laboratory received 212...

191

Control of water infiltration into near surface LLW disposal units. Progress report on field experiments at a humid region site, Beltsville, Maryland: Volume 8  

SciTech Connect

This study`s objective is to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large-scale lysimeters 21.34 m x 13.72 m x 3.05 m (75 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration are being investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g., clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover, and remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier or, perhaps even better, by a resistive layer barrier/conductive layer barrier system. The latter system would then give long-term effective protection against water entry into waste without institutional care.

Schulz, R.K. [California Univ., Los Angeles, CA (United States); Ridky, R.W. [Maryland Univ., College Park, MD (United States). Dept. of Geology; O`Donnell, E. [Nuclear Regulatory Commission, Washington, DC (United States)

1995-04-01T23:59:59.000Z

192

Recommended Distribution Coefficients, Kd Values, for Special Analysis Risk Calculations Related to Waste Disposal and Tank Closure on the Savannah River Site  

Science Conference Proceedings (OSTI)

The purpose of this document is to provide a technically defensible list of distribution coefficients, or Kd values, for use in performance assessment (PA) and special analysis (SA) calculations on the SRS. Only Kd values for radionuclides that have new information related to them or that have recently been recognized as being important are discussed in this report. Some 150 Kd values are provided in this report for various waste-disposal or tank-closure environments: soil, corrosion in grout, oxidizing grout waste, gravel, clay, and reducing concrete environments. Documentation and justification for the selection of each Kd value is provided.

Kaplan, D

2005-08-31T23:59:59.000Z

193

Tank Waste Disposal Program redefinition  

SciTech Connect

The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

1991-10-01T23:59:59.000Z

194

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 3 T he journey to the WIPP began nearly 60 years before the first barrels of transuranic waste arrived at the repository. The United States produced the world's first sig- nificant quantities of transuranic material during the Manhattan Project of World War II in the early 1940s. The government idled its plutonium- producing reactors and warhead manu- facturing plants at the end of the Cold War and scheduled most of them for dismantlement. However, the DOE will generate more transuranic waste as it cleans up these former nuclear weapons facilities. The WIPP is a cor- nerstone of the effort to clean up these facilities by providing a safe repository to isolate transuranic waste in disposal rooms mined out of ancient salt beds, located 2,150 feet below ground. The need for the WIPP

195

Finding of No Significant Impact for the Offsite Transportation of Certain Low-Level and Mixed Radioactive Waste from Savannah River Site for Treatment and Disposal at Commercial and Government Facilities, DOE/EA-1308 (02/15/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact Finding of No Significant Impact for the Offsite Transportation of Certain Low-level and Mixed Radioactive Waste from the Savannah River Site for Treatment and Disposal at Commercial and Government Facilities Agency: U. S. Department of Energy Action: Finding of No Significant Impact Summary: The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1308) to analyze the potential environmental impacts associated with the proposed offsite transportation of certain low-level radioactive waste (LLW) and mixed (i.e., hazardous and radioactive) low-level radioactive waste (MLLW) from the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the action is not a major Federal action significantly affecting

196

SITE  

Office of Legacy Management (LM)

-@-Y? ALTERNATE -@-Y? ALTERNATE NfiME: --___---------------___________________N~ME:---------------------- CITY- - .---------------^---------- STATE: wz ------ OWNER(S) -------- Past: Current: ------------------------ _~~--___~~-----_~~----~~-- Owner contacted [3 yes 0 no; if yes, date contacted ------------- TYPE OF ' OPERATION ____-------~----- q Research & Development !zl Facility Type 0 Production scale testing 0 Manufactuiinq 0 Pilot Scale [7 University 0 Bench Scale Process 0 Research Organization 0 Theoretical Studies 0 Government Sponsored Faci 1 i ty 0 Sample & Analysis Cl Other ---_-~~----_~~---~-~ 0 Production 0 Disposal/Storage TYPE OF CONTRACT -_---------~~~~~ q Prime q Subcontract& 0 Purchase Order 0 Other information (i.e., c&t

197

HNPF LIQUID WASTE DISPOSAL COST STUDY  

SciTech Connect

The HNPF cost analysis for waste disposal was made on the basis of 10,000 gallons of laundry waste and 9,000 gallons of other plant waste per year. The costs are compared for storage at HNPF site for 10 yr, packaging and shipment to AEC barial ground, packaging and shipment for sea disposal, and disposal by licensed vendor. A graphical comparison is given for the yearly costs of disposal by licensed vendor and the evaporator system as a function of waste volume. Recommendations are included for the handling of the wastes expected from HNPF operations. (B.O.G.)

Piccot, A.R.

1959-11-01T23:59:59.000Z

198

Remotely Controlled, Continuous Observations of Infrared Radiance with the CSIRO/ARM Mark II Radiometer at the SGP CART Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Remotely Controlled, Continuous Observations of Remotely Controlled, Continuous Observations of Infrared Radiance with the CSIRO/ARM Mark II Radiometer at the SGP CART Site C. M. R. Platt and R. T. Austin Department of Atmospheric Science Colorado State University Fort Collins, Colorado C. M. R. Platt and J. A. Bennett Commonwealth Scientific and Industrial Research Organization Atmospheric Research Aspendale, Victoria, Australia Abstract The Commonwealth Scientific and Industrial Research Organization/Atmospheric Radiation Measurement (CSIRO/ARM) Program Mark II infrared (IR) filter radiometer operated continuously at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site for a period of five weeks. Data of high quality were obtained by remote operation and data transfer with no evidence of spurious

199

Comment and response document for the long-term surveillance plan and the completion report for the Lowman, Idaho, disposal site  

Science Conference Proceedings (OSTI)

This document contains comments, maps, ground water monitoring data, deeding information for remedial action on mill tailings at the Lowman, Idaho UMTRA site.

Not Available

1994-09-01T23:59:59.000Z

200

Strategic petroleum reserve (SPR) geological site characterization report, Bayou Choctaw Salt Dome. Sections I and II  

Science Conference Proceedings (OSTI)

This report comprises two sections: Bayou Choctaw cavern stability issues, and geological site characterization of Bayou Choctaw. (DLC)

Hogan, R.G. (ed.)

1981-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DOE - Office of Legacy Management -- Cheney Disposal Cell - 008  

NLE Websites -- All DOE Office Websites (Extended Search)

Cheney Disposal Cell - 008 Cheney Disposal Cell - 008 FUSRAP Considered Sites Site: Cheney Disposal Cell (008) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: All of the uranium mill tailings and other residual radioactive materials from the former Grand Junction uranium mill site were disposed of in this dedicated disposal cell. The cell is authorized to remain open until 2003 to accept any additional byproduct materials from Title I UMTRA sites and the Monticello, Utah site; e.g. materials from additional vicinity properties that may be identified. The Department of Energy¿s Grand Junction Office is responsible for Long Term Surveillance and Maintenance

202

Low-level radioactive waste disposal facility closure  

Science Conference Proceedings (OSTI)

Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-11-01T23:59:59.000Z

203

IDAHO OPERATIONS OFFICE MIXEDLOW-LEVEL WASTE DISPOSAL PLANS,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home IDAHO OPERATIONS OFFICE MIXEDLOW-LEVEL WASTE DISPOSAL PLANS, IG-0527 IDAHO OPERATIONS OFFICE...

204

Environmental Impacts of Options for Disposal of Depleted Uranium...  

NLE Websites -- All DOE Office Websites (Extended Search)

study by Oak Ridge National Laboratory evaluated the acceptability of several depleted uranium conversion products at potential LLW disposal sites to provide a basis for DOE...

205

Sample storage/disposal study  

SciTech Connect

Radioactive waste from defense operations has accumulated at the Hanford Site`s underground waste tanks since the late 1940`s. Each tank must be analyzed to determine whether it presents any harm to the workers at the Hanford Site, the public or the environment. Analyses of the waste aids in the decision making process in preparation of future tank waste stabilization procedures. Characterization of the 177 waste tanks on the Hanford Site will produce a large amount of archived material. This also brings up concerns as to how the excess waste tank sample material from 325 and 222-S Analytical Laboratories will be handled. Methods to archive and/or dispose of the waste have been implemented into the 222-S and 325 Laboratory procedures. As the amount of waste characterized from laboratory analysis grows, an examination of whether the waste disposal system will be able to compensate for this increase in the amount of waste needs to be examined. Therefore, the need to find the safest, most economically sound method of waste storage/disposal is important.

Valenzuela, B.D.

1994-09-29T23:59:59.000Z

206

Site characterization report for the basalt waste isolation project. Volume II  

SciTech Connect

The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment.

None

1982-11-01T23:59:59.000Z

207

Replacement Capability for Disposal of Remote-Handled Low-Level Waste Generated at the Department of Energys Idaho Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT FINDING OF NO SIGNIFICANT IMPACT FOR THE ENVIRONMENTAL ASSESSMENT FOR THE REPLACEMENT CAPABILITY FOR THE DISOPOSAL OF REMOTE-HANDLED LOW-LEVEL RADIOACTIVE WASTE GENERATED AT THE DEPARTMENT OF ENERGY'S IDAHO SITE Agency: U. S. Department of Energy (DOE) Action: Finding ofNo Significant Impact (FONSI) Summary: Operations conducted in support ofIdaho National Laboratory (INL) and Naval Reactors Facility (NRF) missions on the Idaho site generate low-level radioactive waste (LL W). DOE classifies some of the LL W generated at the INL as remote-handled LL W because its potential radiation dose is high enough to require additional protection of workers using distance and shielding. Remote-handled wastes are those with radiation levels exceeding 200 millirem

208

Spherical diffusion of tritium from a point of release in a uniform unsaturated soil. A deterministic model for tritium migration in an arid disposal site  

SciTech Connect

Tritium (Tr), when released as tritiated water at a point in a uniform and relatively dry soil, redistributes in both the liquid and vapor phases. The flux density of Tr in the liquid will exceed that in the vapor phase provided the water content is greater than approximately 15% of the total soil porosity. Thus Tr redistribution must be modeled recognizing transfer ``in parallel`` in both phases. The authors use the diffusion equation cast in spherical coordinates to analyze this problem in order to provide a basis for design of field experiments, and to offer observations on the long term behavior of such systems. The solution of the diffusion equation permits calculation of the evolution of profiles of Tr concentration, within and external to the sphere of released solution, assuming the initial concentration within this sphere to be uniform. The authors also predict the rate of advance of the maximum of Tr as it advances, and attenuates, in the soil. Calculations for the case of 1 million Curies of Tr diluted in 1 liter of water and released at a depth of 20 meters, and 200 meters above the water table, are demonstrated. If the soil has an initial water volume fraction of 0.06 and total porosity of 0.3 they show, for example, that at 5 meters from the point of discharge, the Tr concentration increases to a maximum in 24 years and then slowly declines. That maximum is 1 Curie/liter. The concentration in the gas phase will be 5 orders-of-magnitude less than this. At 60 meters the maximum ever reached in the liquid phase is ca 10{sup {minus}21} Ci/liter; that maximum will be achieved after 408 years. The authors discuss the effects of variation in the volume fractions of water and air originally present in the soil on the effective diffusion coefficient of Tr in soil, consider the effects of a net flux of water in the system, and identify questions to be answered to achieve safe systematic disposal of tritium in the deep unsaturated zone of desert soil.

Smiles, D.E.; Gardner, W.R.; Schulz, R.K. [Univ. of California, Berkeley, CA (United States). Dept. of Environmental Science, Policy and Management

1993-10-01T23:59:59.000Z

209

Environmental Assessment for the Construction, Operation, and Closure of the Burma Road II Borrow Pit at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction, Operation, and Closure of the Construction, Operation, and Closure of the Burma Road II Borrow Pit at the Savannah River Site Agency: U.S. Department of Energy Action: Finding of No Significant Impact Summary: The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1501) to analyze the potential environmental impacts of a new borrow pit, and its alternatives, at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that this action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not

210

II.  

Gasoline and Diesel Fuel Update (EIA)

or as proposed for for small, highly valued energy services-consumer the Solar Enterprise Zone at the Nevada Test Site. devices, yard, security, and accent lighting, sensing...

211

Solid Waste Disposal Facilities (Massachusetts) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Transportation Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the Massachusetts Department of Environmental Protection as well as the Department of Public

212

ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY  

SciTech Connect

The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

Romano, Stephen; Welling, Steven; Bell, Simon

2003-02-27T23:59:59.000Z

213

Assessment of Preferred Depleted Uranium Disposal Forms  

SciTech Connect

The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

2000-06-01T23:59:59.000Z

214

Walla Walla River Basin Fish Screen Evaluations; Nursery Bridge Fishway and Garden City/Lowden II Sites, 2003 Technical Report.  

DOE Green Energy (OSTI)

Pacific Northwest National Laboratory evaluated the fish screens at the Nursery Bridge Fishway and the newly constructed Garden City/Lowden II site west of Walla Walla, Washington, in the Walla Walla River Basin during spring and summer 2003. Both fish screen facilities were examined to determine if they were being effectively operated and maintained to provide for safe fish passage. At the Nursery Bridge Fishway, the screens were evaluated specifically to determine whether the louvers that aid in controlling water flow from behind the screens could be adjusted so that the screens would meet fish protection criteria. Data were collected to determine whether velocities in front of the screens and in the bypasses met current National Oceanic and Atmospheric Administration Fisheries (NOAA Fisheries) (formerly National Marine Fisheries Service (NMFS)) criteria to promote safe and timely fish passage before and after changing the louver settings. Rock weirs downstream of the dam were also evaluated to determine whether they might impede upstream migration of juvenile salmonids during low flow conditions. At the Garden City/Lowden II site, data were collected to establish a baseline for operating conditions and to determine whether any changes in the baffle settings were needed.

Vucelick, J.; McMichael, G. (Pacific Northwest National Laboratory)

2003-11-01T23:59:59.000Z

215

Savannah River Site Waste Isolation Pilot Plant Disposal Program - Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221-HET  

Science Conference Proceedings (OSTI)

This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. This heterogeneous debris transuranic waste stream was generated after January 25, 1990 and before March 20, 1997. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration, equipment, process operations and waste management practices. Information contained in this report was obtained from numerous sources including: facility safety basis documentation, historical document archives, generator and storage facility waste records and documents, and interviews with cognizant personnel.

Lunsford, G.F.

2001-01-24T23:59:59.000Z

216

DOE - Office of Legacy Management -- LM Sites Map  

NLE Websites -- All DOE Office Websites (Extended Search)

LM Sites Map LM Sites Map LM Sites LM Sites Puerto Rico Connecticut New Jersey Massachusetts Alaska Texas Florida Arizona Missouri Colorado Utah Idaho Washington South Dakota New Mexico California Oregon Tennessee Illinois Ohio Michigan New York Pennsylvania Wyoming Nebraska West Virginia Kentucky Mississippi Nevada Select a Site Acid/Pueblo Canyon Site Adrian Site Albany Site Aliquippa Site Ambrosia Lake Disposal Site Amchitka Site Ashtabula Site Bayo Canyon Site Berkeley Site Beverly Site Bluewater Disposal Site BONUS Decommissioned Reactor Buffalo Site Burrell Disposal Site CEER Sites Canonsburg Disposal Site Central Nevada Test Area Site Chariot Site Chicago North Site Chicago South Site Chupadera Mesa Site Colonie Site Columbus Sites Columbus East Site Durango Disposal Site Durango Processing Site

217

DOE - Office of Legacy Management -- LM Sites Map  

Office of Legacy Management (LM)

LM Sites Map LM Sites Map LM Sites LM Sites Puerto Rico Connecticut New Jersey Massachusetts Alaska Texas Florida Arizona Missouri Colorado Utah Idaho Washington South Dakota New Mexico California Oregon Tennessee Illinois Ohio Michigan New York Pennsylvania Wyoming Nebraska West Virginia Kentucky Mississippi Nevada Select a Site Acid/Pueblo Canyon Site Adrian Site Albany Site Aliquippa Site Ambrosia Lake Disposal Site Amchitka Site Ashtabula Site Bayo Canyon Site Berkeley Site Beverly Site Bluewater Disposal Site BONUS Decommissioned Reactor Buffalo Site Burrell Disposal Site CEER Sites Canonsburg Disposal Site Central Nevada Test Area Site Chariot Site Chicago North Site Chicago South Site Chupadera Mesa Site Colonie Site Columbus Sites Columbus East Site Durango Disposal Site Durango Processing Site

218

II  

Office of Legacy Management (LM)

II II c )3 c F r c L LI L rr c - r I P- c OAK RlDGE NATIONAL LABORATORY h U W -l\ &?ir;; ITi' m . 8 ORNL/RASA-92/l Results of the Radiological Survey at the Former Chapman Valve Manufacturing Company, Indian Orchard, Massachusetts (cIooo1) R. D. Foley M . S. Uziel MANAGED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY ORNLJRASA-92/l /- HEALTH AND SAFETY RESEARCH DIVISION Environmental Restoration and Waste Management Non-Defense Programs (Activity No. EX 20 20 01 0; ADS317OOOO) Results of the Radiological Survey at the Former Chapman Valve Manufacturing Company, Indian Orchard, Massachusetts (cIooo1) R. D. Foley and M. S. Uziel Date Issued - July 1992 Investigation learn R. E. Swaja - Measurement Applications and Development Manager

219

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Poultry Farm Daily Disposal Methods 0;Disposal: Science and Theory First Composter in Delaware · Delmarva was of the first daily composting · 120 in USA over next 10 years #12;Disposal: Science and Theory Composting Procedure · Mixture ­ 1 ½ to 2

Benson, Eric R.

220

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Table of Contents · Disposal options emergency mortality composting procedure · Use of composting during outbreaks #12;Disposal: Science and disinfection of farms and surveillance around affected flocks. " USDA APHIS VS EMD, 2007 #12;Disposal: Science

Benson, Eric R.

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

II  

Office of Legacy Management (LM)

: " + ; . .Z + II . ? 8 . " ~. . . . a a' .; ,. ?> , . ' . : . ., ! , Environmental i r .,' : % , ~ ~ 9 . / ; i.3. -\ ,- I - 'I ' , 2 " .r: 1; . . , ~ . ,&- c . . a , ,, .,I;< . .' , , ? $ ; 1- !'I' . '...~ - .. :, , .I Closure Report for CAU No. 416 1: ' . Project Shoal Area I:' c!';,: .. 7. .. , . ~ 1 I' ,. Controlled Copy No. UNCONTROLLED { -* .. 4'. . 1 " . .. *. *" '.. . . , , ,I +' , ,.f.' I , I" I ', ', ctk;' . , I , '. :C, , I: : , . p . ? .,; . s . " . , k - ,

222

Lessons Learned from Radioactive Waste Storage and Disposal Facilities  

Science Conference Proceedings (OSTI)

The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. This paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.

Esh, David W.; Bradford, Anna H. [U.S. Nuclear Regulatory Commission, Two White Flint North, MS T7J8, 11545 Rockville Pike, Rockville, MD 20852 (United States)

2008-01-15T23:59:59.000Z

223

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado: Final report  

SciTech Connect

This volume contains Appendix F, bid schedule and specifications for remedial action on three sites: Old Rifle processing site; New Rifle processing site and Estes Gulch disposal site.

Not Available

1992-02-01T23:59:59.000Z

224

Phase II Transport Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1  

Science Conference Proceedings (OSTI)

This document, the Phase II Frenchman Flat transport report, presents the results of radionuclide transport simulations that incorporate groundwater radionuclide transport model statistical and structural uncertainty, and lead to forecasts of the contaminant boundary (CB) for a set of representative models from an ensemble of possible models. This work, as described in the Federal Facility Agreement and Consent Order (FFACO) Underground Test Area (UGTA) strategy (FFACO, 1996; amended 2010), forms an essential part of the technical basis for subsequent negotiation of the compliance boundary of the Frenchman Flat corrective action unit (CAU) by Nevada Division of Environmental Protection (NDEP) and National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Underground nuclear testing via deep vertical shafts was conducted at the Nevada Test Site (NTS) from 1951 until 1992. The Frenchman Flat area, the subject of this report, was used for seven years, with 10 underground nuclear tests being conducted. The U.S. Department of Energy (DOE), NNSA/NSO initiated the UGTA Project to assess and evaluate the effects of underground nuclear tests on groundwater at the NTS and vicinity through the FFACO (1996, amended 2010). The processes that will be used to complete UGTA corrective actions are described in the Corrective Action Strategy in the FFACO Appendix VI, Revision No. 2 (February 20, 2008).

Gregg Ruskuaff

2010-01-01T23:59:59.000Z

225

Summary of Degas II performance at the US Strategic Petroleum Reserve Big Hill site.  

Science Conference Proceedings (OSTI)

Crude oil stored at the US Strategic Petroleum Reserve (SPR) requires mitigation procedures to maintain oil vapor pressure within program delivery standards. Crude oil degasification is one effective method for lowering crude oil vapor pressure, and was implemented at the Big Hill SPR site from 2004-2006. Performance monitoring during and after degasification revealed a range of outcomes for caverns that had similar inventory and geometry. This report analyzed data from SPR degasification and developed a simple degas mixing (SDM) model to assist in the analysis. Cavern-scale oil mixing during degassing and existing oil heterogeneity in the caverns were identified as likely causes for the range of behaviors seen. Apparent cavern mixing patterns ranged from near complete mixing to near plug flow, with more mixing leading to less efficient degassing due to degassed oil re-entering the plant before 100% of the cavern oil volume was processed. The report suggests that the new cavern bubble point and vapor pressure regain rate after degassing be based on direct in-cavern measurements after degassing as opposed to using the plant outlet stream properties as a starting point, which understates starting bubble point and overstates vapor pressure regain. Several means to estimate the cavern bubble point after degas in the absence of direct measurement are presented and discussed.

Rudeen, David K. (GRAM, Inc., Albuquerque, NM); Lord, David L.

2007-10-01T23:59:59.000Z

226

Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Regional Facility Act Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Fees This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental Resources funds to be utilized for disposal facilities. This act ensures that nuclear facilities and the Department comply with the Low-Level Radioactive Disposal Act. The regional facility siting fund is used for reimbursement of expenses

227

Delicate disposal of PCBs  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has published three handbooks to help utilities evaluate the alternatives for disposal of polychlorinated biphenyls (PCBs), which will continue to be a utility responsibility for some time. The identification of PCBs as a toxic substance in 1976 ended their use as a capacitor and transformer insulator, but 375 million pounds are distributed in equipment and their disposal must be carefully planned. The booklets outline Environmental Protection Agency (EPA) regulations, the disposal technology by incineration or landfill which is currently available, and guidelines for preventing spills and controlling risks. (DCK)

Lihach, N.; Golden, D.

1980-03-01T23:59:59.000Z

228

II  

Office of Legacy Management (LM)

l7aa l7aa AMY y ~UJs,bp 7 DOE/OR/20722-20 *1 F F c Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-810R20722 RADIOLOGICAL SURVEY REPORT FOR THE FORMER MIDDLESEX SAMPLING PLANT Middlesex, New Jersey Bechtel Job 14501 Bechtel National, Inc. Advanced Technology Division March 1985 Technical Information Center Office of Scientific and Technical Information U.S. Department of Energy ---___- __-_ __~__ .-_. ..__ - ~-___ LEGAL NOTICE This report was prepared as an nccount of work sponsored by the United Static Government. Neither the United States nor the United States Department of Energy, nor any of their cmployaes, nor any of their contracton, subcontractors, or their employees, makes any warranty, crprem or implied, or aemmes any legal liability or responsibility for the accuracy, completeness

229

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

request for further delays After the EPA certified that the WIPP met the standards for disposal of transuranic waste in May 1998, then-New Mexico Attorney General Tom Udall...

230

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy (DOE) is closing the circle on the generation, management, and disposal of transuranic waste. But the WIPP story is not just about radioactive waste. It is...

231

Low-Level Waste Disposal Alternatives Analysis Report  

SciTech Connect

This report identifies and compares on-site and off-site disposal options for the disposal of contract-handled and remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Potential disposal options are screened for viability by waste type resulting in a short list of options for further consideration. The most crediable option are selected after systematic consideration of cost, schedule constraints, and risk. In order to holistically address the approach for low-level waste disposal, options are compiled into comprehensive disposal schemes, that is, alternative scenarios. Each alternative scenario addresses the disposal path for all low-level waste types over the period of interest. The alternative scenarios are compared and ranked using cost, risk and complexity to arrive at the recommended approach. Schedule alignment with disposal needs is addressed to ensure that all waste types are managed appropriately. The recommended alternative scenario for the disposal of low-level waste based on this analysis is to build a disposal facility at the Idaho National Laboratory Site.

Timothy Carlson; Kay Adler-Flitton; Roy Grant; Joan Connolly; Peggy Hinman; Charles Marcinkiewicz

2006-09-01T23:59:59.000Z

232

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Use of Composting · Composting has ­ British Columbia 2009 #12;Disposal: Science and Theory · Initial farm linked to NY LBM · Two additional and pile procedure Delmarva 2004 #12;Disposal: Science and Theory Delmarva 2004 · Composting used

Benson, Eric R.

233

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Foam Used in Actual Outbreak · Water #12;Disposal: Science and Theory Water Based Foam Culling Demo · First large scale comparison · Two:46 (m:s) #12;Disposal: Science and Theory WV H5N2 AIV 2007 · AIV positive turkeys ­ 25,000 turkey farm

Benson, Eric R.

234

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory · El compostaje se ha usado como Virginia (2007) ­ British Columbia (2009) Uso del compostaje #12;Disposal: Science and Theory · Primera apilamiento Delmarva (2004) #12;Disposal: Science and Theory · El compostaje se usó para proteger una densa

Benson, Eric R.

235

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Brief History of Foam 2004 ­ Bud and foam 2009 ­ No advantage for gas #12;Disposal: Science and Theory What is foam? · What is fire fighting system. #12;Disposal: Science and Theory Foam Composition · Foam can include ­ Mixture of surfactants

Benson, Eric R.

236

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory · Compostaje de aves de corralRouchey et al., 2005) Investigación previa #12;Disposal: Science and Theory · Se ha evaluado y documentado el, bovino Investigación previa #12;Disposal: Science and Theory · Experimento nro. 1 Impacto de la espuma en

Benson, Eric R.

237

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory · Opciones para la eliminación · ¿Qué compostaje durante brotes de enfermedades Lista de contenido #12;Disposal: Science and Theory "Ante un brote brotes de IIAP #12;Disposal: Science and Theory · En 2004, se despoblaron 100 millones de aves en todo el

Benson, Eric R.

238

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory · Las recomendaciones de campo se la espuma #12;Disposal: Science and Theory · Múltiples especies de aves pueden despoblarse con espuma cesación #12;Disposal: Science and Theory · Dentro de una especie, pueden existir variaciones ­ Los ánades

Benson, Eric R.

239

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Opciones para la producción de espuma espuma · Sistemas de boquilla #12;Disposal: Science and Theory Requisitos estimados: · Tiempo: 2 a 3 compactas ­ Equipo de respuesta propio de la industria Espuma de aire comprimido #12;Disposal: Science

Benson, Eric R.

240

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Summary · Foam is currently a viable ­ Foam application directly to cage #12;Disposal: Science and Theory Legal Status of Foam · Procedure depopulation, culling, and euthanasia #12;Disposal: Science and Theory Acknowledgements · USDA AICAP2 · USDA

Benson, Eric R.

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Mass Emergency Composting · Basic ­ Create carcass and litter windrow #12;Disposal: Science and Theory Mass Emergency Composting · Basic cover ­ Clean and disinfect house ­ Sample for virus again #12;Disposal: Science and Theory Mass

Benson, Eric R.

242

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory · Gassing is a preferred #12;Disposal: Science and Theory Carbon Dioxide Gassing · Carbon dioxide (CO2) one of the standard sensitivity time #12;Disposal: Science and Theory · Argon-CO2 gas depopulation evaluated under laboratory

Benson, Eric R.

243

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Foam Generator Setup · Drop off foam generator cart at one end of house #12;Disposal: Science and Theory Foam Generator Setup · Trailer parked generator attached to hose #12;Disposal: Science and Theory Foam Generation Begins · Team of two to operate

Benson, Eric R.

244

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Foaming Options · Compressed Air Foam Systems (CAFS) · Foam Blower · Foam Generator · Nozzle Systems #12;Disposal: Science and Theory Compressed ­ Industry owned response team #12;Disposal: Science and Theory Commercial CAFS for Poultry · Poultry

Benson, Eric R.

245

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory 2004 ­ Participación de Bud Malone y la espuma 2009 ­ Ninguna ventaja para el gas Breve historia de la espuma #12;Disposal: Science sistema de boquilla ¿Qué es la espuma? #12;Disposal: Science and Theory · La espuma puede incluir: ­ Una

Benson, Eric R.

246

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory 0 20 40 60 80 100 Compostaje #12;Disposal: Science and Theory · Delmarva fue de las primeras granjas en realizar el compostaje de en EE.UU. en los próximos 10 años. Pionera en compostaje en Delaware #12;Disposal: Science and Theory

Benson, Eric R.

247

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory · Procedimiento básico ­ Desarrollar una pila de carcasas y lecho. Compostaje masivo de emergencia #12;Disposal: Science and Theory de emergencia #12;Disposal: Science and Theory · Desarrollar planes antes de que ocurra una

Benson, Eric R.

248

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Composting · Composting is defined drop #12;Disposal: Science and Theory Composting · Optimal composting ­ Carbon to nitrogen ratio (C;Disposal: Science and Theory Compost Composition · A variety of supplemental carbon materials have been

Benson, Eric R.

249

FGD By-Product Disposal Manual, Fourth Edition  

Science Conference Proceedings (OSTI)

This manual presents an objective, systematic methodology for evaluating potential flue gas desulfurization (FGD) sludge disposal sites and design approaches. A completely updated edition, the manual provides new information and references on existing industry disposal practices, regulatory constraints and trends, FGD sludge properties, and waste management system costs.

1995-08-11T23:59:59.000Z

250

Dredged and Fill Material Disposal (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dredged and Fill Material Disposal (North Dakota) Dredged and Fill Material Disposal (North Dakota) Dredged and Fill Material Disposal (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Siting and Permitting This chapter provides regulations for the disposal of dredged and fill

251

Depleted uranium storage and disposal trade study: Summary report  

SciTech Connect

The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

Hightower, J.R.; Trabalka, J.R.

2000-02-01T23:59:59.000Z

252

NNSS Waste Disposal Proves Vital Resource for DOE Complex | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NNSS Waste Disposal Proves Vital Resource for DOE Complex NNSS Waste Disposal Proves Vital Resource for DOE Complex NNSS Waste Disposal Proves Vital Resource for DOE Complex March 20, 2013 - 12:00pm Addthis The Area 5 Radioactive Waste Management Site The Area 5 Radioactive Waste Management Site Like most LLW, RTGs disposed of at the NNSS were handled without any special equipment or clothing because of the relatively low dose rate levels. Like most LLW, RTGs disposed of at the NNSS were handled without any special equipment or clothing because of the relatively low dose rate levels. An irradiator from Sandia National Laboratory was disposed of at the RWMS in September 2012. An irradiator from Sandia National Laboratory was disposed of at the RWMS in September 2012. The Area 5 Radioactive Waste Management Site Like most LLW, RTGs disposed of at the NNSS were handled without any special equipment or clothing because of the relatively low dose rate levels.

253

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Reaches 15 Million Tons Disposed - Waste Disposal Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor July 9, 2013 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE, (509) 376-5365 Cameron.Hardy@rl.doe.gov Mark McKenna, WCH, (509) 372-9032 media@wch-rcc.com RICHLAND, Wash. - The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996. Removing contaminated material and providing for its safe disposal prevents contaminants from reaching the groundwater and the Columbia River. ERDF receives contaminated soil, demolition debris, and solid waste from

254

Low-Level Radioactive Waste Disposal Act (Pennsylvania) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Program Info State Pennsylvania Program Type Environmental Regulations Provider Pennsylvania Department of Environmental Protection This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and storage of low-level radioactive waste. Commercial incineration of radioactive wastes is prohibited. Licenses are required for low-level radioactive waste disposal facilities not licensed to accept low-level radioactive waste. Disposal at

255

Chernobyls waste site  

Science Conference Proceedings (OSTI)

An analysis of the prospects for using the Chernobyl exclusion zone for development of a spent fuel store, waste disposal site and other nuclear facilities.

Schmieman, Eric A.; Paskevych, Sergiy; Sizov, Andrey; Batiy, Valeriy

2007-02-15T23:59:59.000Z

256

DOE - Office of Legacy Management -- Clive Disposal Cell - 036  

Office of Legacy Management (LM)

Survey(s): Site Status: The Clive Disposal Cell is located in Tooele County, Utah. All of the mill tailings and other residual radioactive materials from the South Salt...

257

DOE - Office of Legacy Management -- 11 E (2) Disposal Cell ...  

Office of Legacy Management (LM)

Radiological Survey(s): Site Status: This designation refers to an Envirocare of Utah disposal cell for byproduct material as defined under Section 11 e. (2) of the Atomic...

258

Disposal Facility Reaches 15-Million-Ton Milestone  

Energy.gov (U.S. Department of Energy (DOE))

RICHLAND, Wash. EMs Environmental Restoration Disposal Facility (ERDF) a massive landfill for low-level radioactive and hazardous waste at the Hanford site has achieved a major cleanup milestone.

259

Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site  

SciTech Connect

The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

NSTec Environmental Management

2008-09-01T23:59:59.000Z

260

THE ECONOMICS AND HAZARD POTENTIAL OF WASTE DISPOSAL  

SciTech Connect

The two most important considerations in the disposal of radioactive wastes are safety and economy. All other steps in the waste disposal complex must be tuned to accomplish these two goals. In general, the hazardous waste in the nuclear power complex affect the cost of the nuclear power reactor fuel cycle, the general environment since disposal must exclude radioactivity from the environment for over 500 years, the costs and/or methods of waste treatment including fission product utilization, the methods of shipping, the location of chemical processing plants and waste disposal sites, the methods of disposal best suited for a particular type of waste or site location, and potential public damage and third-party liability.

Arnold, E.D.

1957-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Disposal of low-level and mixed low-level radioactive waste during 1990  

Science Conference Proceedings (OSTI)

Isotopic inventories and other data are presented for low-level radioactive waste (LLW) and mixed LLW disposed (and occasionally stored) during calendar year 1990 at commercial disposal facilities and Department of Energy (DOE) sites. Detailed isotopic information is presented for the three commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. Less information is presented for the Envirocare disposal facility located near Clive, UT, and for LLW stored during 1990 at the West Valley site. DOE disposal information is included for the Savannah River Site (including the saltstone facility), Nevada Test Site, Los Alamos National Laboratory, Idaho National Engineering Laboratory, Hanford Site, Y-12 Site, and Oak Ridge National Laboratory. Summary information is presented about stored DOE LLW. Suggestions are made about improving LLW disposal data.

Not Available

1993-08-01T23:59:59.000Z

262

DOE - Office of Legacy Management -- Lowman Mill Site - ID 01  

Office of Legacy Management (LM)

Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Lowman, Idaho, Disposal Site Documents Related to Lowman Mill Site Historical documents may contain...

263

DOE - Office of Legacy Management -- Falls City Mill Site - TX...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Handled: Radiological Survey(s): Site Status: Also see Falls City, Texas, Disposal Site Documents Related to Falls City Mill Site Data Validation Package for...

264

Low-Level Waste Disposal Facility Federal Review Group Manual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP MANUAL REVISION 3 JUNE 2008 (This page intentionally left blank) Low-Level JVllsfe Disposal Fllcili~l' Federal Review Group il1allUlli Revision 3, June 200S Concurrence The Low-Level Waste Disposal Facility Federal Review Group Manual, Revision 3, is approved for use as of the most recent date below. Date Chair, Low-Level Waste Disposal Federal Review Group Andrew WalJo, 1II Deputy Director, Otlice of Nuclear Safety, Quality Assurance, and Environment Department of Energy OHlce of Health, Safety, and Security e C. WilJiams Associate Administrator for Infrastructure and Environment National Nuclear Security Administration Low-Level 'Vaste Disposal Facility Federal Review Group J1aJll/ai

265

Radioactive waste disposal package  

DOE Patents (OSTI)

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

266

Waste disposal package  

DOE Patents (OSTI)

This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

Smith, M.J.

1985-06-19T23:59:59.000Z

267

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Previous Research · Composting, et.al. 2005; Bendfeldt et al., 2006; DeRouchey et al., 2005) #12;Disposal: Science and Theory: Science and Theory Scientific Validation of Composting · Experiment 1 Impact of foam on composting

Benson, Eric R.

268

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory · Field recommendations based of activity ­ Corticosterone ­ EEG, ECG and motion studies · Large scale testing ­ Field scale units Science of Foam #12;Disposal: Science and Theory Cessation Time · Multiple bird species can be depopulated

Benson, Eric R.

269

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory · Se ubica el carretón con el enfriamiento Ventiladores de túnel de viento #12;Disposal: Science and Theory · Se estaciona el remolque en uno: Science and Theory · Se usa un equipo de dos personas para hacer funcionar el sistema: ­ Operario del

Benson, Eric R.

270

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory · El compostaje se define como la: Science and Theory · Compostaje óptimo ­ Relación carbono/nitrógeno (C:N): 20:1 a 35:1 ­ Contenido de Compostaje #12;Disposal: Science and Theory · Se ha utilizado satisfactoriamente una variedad de materiales

Benson, Eric R.

271

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Table of Contents · Why Depopulate? · Depopulation Methods · Basics of Foam · Types of Foam Equipment · Science Behind Foam · Implementing Foam Depopulation · Use of Foam in the Field · Conclusions #12;Disposal: Science and Theory "When HPAI outbreaks

Benson, Eric R.

272

Treatment and Disposal of Unanticipated 'Scavenger' Wastewater  

Science Conference Proceedings (OSTI)

The Savannah River Site often generates wastewater for disposal that is not included as a source to one of the site's wastewater treatment facilities that are permitted by the South Carolina Department of Health and Environmental Control. The techniques used by the SRS contract operator (Westinghouse Savannah River Company) to evaluate and treat this unanticipated 'scavenger' wastewater may benefit industries and municipalities who experience similar needs. Regulations require that scavenger wastewater be treated and not just diluted. Each of the pollutants that are present must meet effluent permit limitations and/or receiving stream water quality standards. if a scavenger wastewater is classified as 'hazardous' under the Resource Conservation and Recovery Act (RCRA) its disposal must comply with RCRA regulations. Westinghouse Savannah River Company obtained approval from SCDHEC to dispose of scavenger wastewater under specific conditions that are included within the SRS National Pollutant Discharge Elimination System permit. Scavenger wastewater is analyzed in a laboratory to determine its constituency. Pollutant values are entered into spreadsheets that calculate treatment plant removal capabilities and instream concentrations. Disposal rates are computed, ensuring compliance with regulatory requirements and protection of treatment system operating units. Appropriate records are maintained in the event of an audit.

Payne, W.L.

2003-09-15T23:59:59.000Z

273

WIPP - Shipment & Disposal Information  

NLE Websites -- All DOE Office Websites (Extended Search)

18 24,804 Nevada Test Site 48 57,312 Oak Ridge National Laboratory 131 175,933 Rocky Flats Environmental Technology Site 2,045 1,446,444 Hanford Site 572 1,034,176 Sandia...

274

Hanford Site Transuranic (TRU) Waste Certification Plan  

SciTech Connect

As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

GREAGER, T.M.

2000-12-01T23:59:59.000Z

275

Hanford Site Transuranic (TRU) Waste Certification Plan  

SciTech Connect

As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

GREAGER, T.M.

2000-12-06T23:59:59.000Z

276

Basis for Section 3116 Determination for Salt Waste Disposal at the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basis for Section 3116 Determination for Salt Waste Disposal at the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site The Secretary of Energy is making this 3116 Determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) [1]. This 3116 Determination concerns the disposal of separated, solidified low-activity radioactive salt waste at the Savannah River Site (SRS) near Aiken, South Carolina. Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site More Documents & Publications EIS-0082-S2: Amended Record of Decision Notice of Availability of Section 3116 Determination for Salt Waste Disposal at the Savannah River Site

277

Basis for Section 3116 Determination for Salt Waste Disposal at the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basis for Section 3116 Determination for Salt Waste Disposal at the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site The Secretary of Energy is making this 3116 Determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) [1]. This 3116 Determination concerns the disposal of separated, solidified low-activity radioactive salt waste at the Savannah River Site (SRS) near Aiken, South Carolina. Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site More Documents & Publications EIS-0082-S2: Amended Record of Decision Notice of Availability of Section 3116 Determination for Salt Waste Disposal at the Savannah River Site

278

Health Consultation Des Moines (Ex) Ordnance Site Landfill and Lagoon Complex Prairie Trail Development Site  

E-Print Network (OSTI)

This letter has been prepared as a consultation to evaluate human health impacts that will remain in a commercial and residential area within Ankeny, Iowa known as the Prairie Trail Development Site. The Iowa Department of Public Healths priority is to ensure the Ankeny community has the best information possible to safeguard its health. That information is included in the following paragraphs. Background and Statement of Issues The Prairie Trail Development Area is located in the southern portion of Ankeny, Iowa. This development area is located in an area that was formally occupied by the Des Moines Ordnance Plant. The Des Moines Ordnance Plant was constructed for the production and testing of small arms munitions for use during World War II. The Landfill and Lagoon Complex was utilized for disposal of wastes from the ordnance plant and also from various entities that utilized the site property until 1991. The United States Environmental Protection Agency (EPA) is overseeing the cleanup of the Landfill and Lagoon Complex. A portion of the remainder of the site property had been used for burning of scrap explosives, the storage and disposal of chemicals, a disposal pond, testing of products, and various munitions manufacturing activities. The Iowa Department of Natural Resources (IDNR) is overseeing the cleanup of this remaining portion of the site property.

Terry E. Branstad; Kim Reynolds

2012-01-01T23:59:59.000Z

279

Annual Hanford Site Environmental Permitting status report  

Science Conference Proceedings (OSTI)

The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. Condition II.W further specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of this Permit Condition, ''best efforts'' mean submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies.

SONNICHSEN, J.C.

1999-10-18T23:59:59.000Z

280

Sites Pending Transfer to LM | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Pending Transfer to LM Sites Pending Transfer to LM Sites Pending Transfer to LM Sites Pending Transfer to Legacy Management Note: The following list is subject to change without prior notice and will be updated periodically. California Energy Technology Engineering Center Site Colorado Cañon City Site Durita Disposal Site Uravan Disposal Site Connecticut Combustion Engineering Site Indiana Joslyn Manufacturing & Supply Company Site Iowa Iowa Army Ammunition Plant Site Kentucky Paducah Site Massachusetts Attleboro Site Maryland W.R. Grace Co. Site Missouri Latty Avenue Properties Site St. Louis Airport Site St. Louis Airport Vicinity Properties Site St. Louis Downtown Site New Jersey E.I. Du Pont Site Maywood Site Middlesex Sampling Plant Site New Mexico Ambrosia Lake West Disposal Site Church Rock Disposal Site

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Options and cost for disposal of NORM waste.  

Science Conference Proceedings (OSTI)

Oil field waste containing naturally occurring radioactive material (NORM) is presently disposed of both on the lease site and at off-site commercial disposal facilities. The majority of NORM waste is disposed of through underground injection, most of which presently takes place at a commercial injection facility located in eastern Texas. Several companies offer the service of coming to an operator's site, grinding the NORM waste into a fine particle size, slurrying the waste, and injecting it into the operator's own disposal well. One company is developing a process whereby the radionuclides are dissolved out of the NORM wastes, leaving a nonhazardous oil field waste and a contaminated liquid stream that is injected into the operator's own injection well. Smaller quantities of NORM are disposed of through burial in landfills, encapsulation inside the casing of wells that are being plugged and abandoned, or land spreading. It is difficult to quantify the total cost for disposing of NORM waste. The cost components that must be considered, in addition to the cost of the operation, include analytical costs, transportation costs, container decontamination costs, permitting costs, and long-term liability costs. Current NORM waste disposal costs range from $15/bbl to $420/bbl.

Veil, J. A.

1998-10-22T23:59:59.000Z

282

DOE - Office of Legacy Management -- Maybell Mill Site - CO 0...  

Office of Legacy Management (LM)

Act Title I Disposal Sites-Maybell, Colorado, Disposal Site. LMSS09461. February 2013 U.S. Department of Energy 2008 UMTRCA Title I Annual Report January 2009 Maybell,...

283

Update on cavern disposal of NORM-contaminated oil field wastes.  

Science Conference Proceedings (OSTI)

Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

Veil, J. A.

1998-09-22T23:59:59.000Z

284

Drilling Waste Management Fact Sheet: Offsite Disposal at Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Disposal Facilities Commercial Disposal Facilities Fact Sheet - Commercial Disposal Facilities Although drilling wastes from many onshore wells are managed at the well site, some wastes cannot be managed onsite. Likewise, some types of offshore drilling wastes cannot be discharged, so they are either injected underground at the platform (not yet common in the United States) or are hauled back to shore for disposal. According to an American Petroleum Institute waste survey, the exploration and production segment of the U.S. oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes in 1985. The report estimates that 28% of drilling wastes are sent to offsite commercial facilities for disposal (Wakim 1987). A similar American Petroleum Institute study conducted ten years later found that the volume of drilling waste had declined substantially to about 150 million bbl.

285

Composite analysis E-area vaults and saltstone disposal facilities  

Science Conference Proceedings (OSTI)

This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

Cook, J.R.

1997-09-01T23:59:59.000Z

286

2009 Performance Assessment for the Saltstone Disposal Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance Assessment for the Saltstone Disposal Facility Performance Assessment for the Saltstone Disposal Facility 2009 Performance Assessment for the Saltstone Disposal Facility This Performance Assessment (PA) for the Savannah River Site (SRS) was prepared to support the operation and eventual closure of the Saltstone Disposal Facility (SDF). This PA was prepared to demonstrate compliance with the pertinent requirements of the United States Department of Energy (DOE) Order 435.1, Change 1, Radioactive Waste Management, Chapter IV, and Title 10, of the Code of Federal Regulations (CFR) Part 61, Licensing Requirements for Land Disposal of Radioactive Waste, Subpart C as required by the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, Section 3116. [DOE O 435.1-1, 10 CFR 61, NDAA_3116]

287

Research, Development, and Demonstration Roadmap for Deep Borehole Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research, Development, and Demonstration Roadmap for Deep Borehole Research, Development, and Demonstration Roadmap for Deep Borehole Disposal Research, Development, and Demonstration Roadmap for Deep Borehole Disposal This roadmap is intended to advance deep borehole disposal (DBD) from its current conceptual status to potential future deployment as a disposal system for spent nuclear fuel (SNF) and high-level waste (HLW). The objectives of the DBD RD&D roadmap include providing the technical basis for fielding a DBD demonstration project, defining the scientific research activities associated with site characterization and postclosure safety, as well as defining the engineering demonstration activities associated with deep borehole drilling, completion, and surrogate waste canister emplacement. Research, Development, and Demonstration Roadmap for Deep Borehole Disposal

288

COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS  

SciTech Connect

The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

THIELGES, J.R.; CHASTAIN, S.A.

2007-06-21T23:59:59.000Z

289

Chapter 37 Land Disposal Restrictions (Kentucky) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Land Disposal Restrictions (Kentucky) Chapter 37 Land Disposal Restrictions (Kentucky) Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor...

290

Transportation, Aging and Disposal Canister System Performance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 Transportation, Aging and Disposal Canister System Performance Specification: Revision 1...

291

Waste Disposal (Illinois) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Disposal (Illinois) Waste Disposal (Illinois) Eligibility Commercial Construction Industrial Utility Program Information Illinois Program Type Environmental Regulations This...

292

ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS...  

NLE Websites -- All DOE Office Websites (Extended Search)

DISPOSAL RECORDS (Revision 2) More Documents & Publications Records Management Handbook PROPERTY DISPOSAL RECORDS ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND...

293

Low level tank waste disposal study  

SciTech Connect

Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

Mullally, J.A.

1994-09-29T23:59:59.000Z

294

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

295

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

296

EM's Richland Operations Office Celebrates Disposal Achievement in 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM's Richland Operations Office Celebrates Disposal Achievement EM's Richland Operations Office Celebrates Disposal Achievement in 2013 EM's Richland Operations Office Celebrates Disposal Achievement in 2013 December 24, 2013 - 12:00pm Addthis Workers sample a well used to monitor groundwater at the Hanford site. Workers sample a well used to monitor groundwater at the Hanford site. Workers separate a glove box for removal from Hanford’s Plutonium Finishing Plant. Workers separate a glove box for removal from Hanford's Plutonium Finishing Plant. Workers sample a well used to monitor groundwater at the Hanford site. Workers separate a glove box for removal from Hanford's Plutonium Finishing Plant. RICHLAND, Wash. - EM's Richland Operations Office's 2013 accomplishments ranged from cleaning up buildings and waste sites to treating a record

297

Disposal of Greater-than-Class C Low-Level Radioactive Waste  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposal of Low-Level Radioactive Waste Disposal of Low-Level Radioactive Waste EVS prepared a draft environmental impact statement (EIS) for disposal of greater-than-Class C low-level radioactive waste (GTCC LLRW). The EVS Division prepared a draft environmental impact statement (EIS) for disposal of greater-than-Class C low-level radioactive waste (GTCC LLRW) for the DOE Office of Environmental Management. DOE is now finalizing this EIS and is including a preferred alternative. DOE intends that the final EIS will provide information to support the selection of disposal method(s) and site(s) for GTCC LLRW and GTCC-like waste. In general, GTCC LLRW is not acceptable for near-surface disposal. Typically, the waste form and disposal methods must be different from and more stringent than those specified for Class C LLRW. For GTCC LLRW, the

298

Liquid phase Fischer-Tropsch (II) demonstration in the Laporte Alternative Fuels Development Unit. Final topical report. Volume 7, Appendix. Task 1, Engineering modifications (Fischer-Tropsch II demonstration) and Task 2, AFDU shakedown, operations, deactivation and disposal (Fischer-Tropsch II demonstration)  

DOE Green Energy (OSTI)

This report presents results from a demonstration of Liquid Phase Fischer-Tropsch (LPFT) technology in DOE`s Alternative Fuels Development Unit (AFDU) at LaPorte, Texas. The run was conducted in a bubble column at the AFDU in May--June 1994. The 10-day run demonstrated a very high level of reactor productivity for LPFT, more than five times the previously demonstrated productivity (1). The productivity was constrained by mass transfer limitations, perhaps due to slurry thickening as a result of carbon formation on the catalyst. With a cobalt catalyst or an improved iron catalyst, if the carbon formation can be avoided, there is significant room for further improvements. This volume contains appendices for: reactor temperature stability; Mott Cross-flow filter test for F-T II; Fischer-Tropsch II run authorizations; Fischer-Tropsch II run chronology; liquid compositions; and F-T II / IIA Demonstration Mass Balances.

Bhatt, B.L.

1995-09-01T23:59:59.000Z

299

Regional Examples of Geological Settings for Nuclear Waste Disposal in Deep Boreholes  

E-Print Network (OSTI)

This report develops and exercises broad-area site selection criteria for deep boreholes suitable for disposal of spent nuclear fuel and/or its separated constituents. Three candidates are examined: a regional site in the ...

Sapiie, B.

300

The Determinants of Hazardous Waste Disposal Choice:  

E-Print Network (OSTI)

In this paper, we estimate conditional logit models of generators choice of waste management facilities (TSDFs) for shipments of halogenated solvent waste documented by the manifests filled out in California in 1995. We find that the probability that a facility is selected as the destination of an off-site shipment of halogenated solvent waste depends on the cost of shipping and disposal at that facility, on measures of existing contamination at the site, and on the track record of the receiving facility. Generators do seem to balance current disposal costs with the likelihood of future liability, should the TSDF become involved in either the state or federal Superfund program. In general, we find no evidence that generators prefer wealthier TSDFs or larger facilities, suggesting that there is a role for smaller, private companies in the management of halogenated solvent waste. When attention is limited to so-called restricted wastes containing halogenated compounds, which cannot be landfilled, the best match between the waste and the treatment offered by the facility may be more important than saving on the cost of disposal, and price may even be interpreted as a signal for quality of the facility. 3

Anna Alberini; John Bartholomew; Anna Alberini; John Bartholomew

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fluid injection for salt water disposal and enhanced oil recovery as a potential problem for the WIPP: Proceedings of a June 1995 workshop and analysis  

SciTech Connect

The Waste Isolation Pilot Plant (WIPP) is a facility of the U.S. Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The repository is sited in the New Mexico portion of the Delaware Basin, at a depth of 655 meters, in the salt beds of the Salado Formation. The WIPP is surrounded by reserves and production of potash, crude oil and natural gas. In selecting a repository site, concerns about extensive oil field development eliminated the Mescalero Plains site in Chaves County and concerns about future waterflooding in nearby oil fields helped eliminate the Alternate II site in Lea County. Ultimately, the Los Medanos site in Eddy County was selected, relying in part on the conclusion that there were no oil reserves at the site. For oil field operations, the problem of water migrating from the injection zone, through other formations such as the Salado, and onto adjacent property has long been recognized. In 1980, the DOE intended to prohibit secondary recovery by waterflooding in one mile buffer surrounding the WIPP Site. However, the DOE relinquished the right to restrict waterflooding based on a natural resources report which maintained that there was a minimal amount of crude oil likely to exist at the WIPP site, hence waterflooding adjacent to the WIPP would be unlikely. This document presents the workshop presentations and analyses for the fluid injection for salt water disposal and enhanced oil recovery utilizing fluid injection and their potential effects on the WIPP facility.

Silva, M.K.

1996-08-01T23:59:59.000Z

302

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado: Final report. Volume 3, Appendix F, Final design, specifications, and drawings  

SciTech Connect

This volume contains Appendix F, bid schedule and specifications for remedial action on three sites: Old Rifle processing site; New Rifle processing site and Estes Gulch disposal site.

Not Available

1992-02-01T23:59:59.000Z

303

Waste disposal and renewable resources.  

E-Print Network (OSTI)

?? Purpose/aim: The purpose of this dissertation is to find out the effect of waste disposal on environment and to explore the effect of renewable (more)

Hai, Qu; PiaoYi, Sun

2013-01-01T23:59:59.000Z

304

Public Preferences Related to Consent-Based Siting of Radioactive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal Public Preferences Related to Consent-Based Siting of Radioactive Waste...

305

Hanford site transuranic waste certification plan  

Science Conference Proceedings (OSTI)

As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP).

GREAGER, T.M.

1999-05-12T23:59:59.000Z

306

Engineering assessment of inactive uranium mill tailings, Naturita Site, Naturita, Colorado  

SciTech Connect

Ford, Bacon and Davis Utah Inc. has reevaluated the Naturita site in order to revise the November 1977 engineering assessment of the problems resulting from the existence of radioactive contamination at the former uranium mill tailings site at Naturita, Colorado. This evaluation has included the preparation of topographic maps, the drilling of boreholes and radiometric measurements sufficient to determine areas and volumes of contaminated materials and radiation exposures of individuals and nearby populations, and the evaluation and costing of alternative remedial actions. Radon gas released from the estimated 344,000 tons of contaminated materials that remain at the Naturita site constitutes the most significant environmental impact, although external gamma radiation also is a factor. The two alternative actions presented in this engineering assessment are stabilization of the site in its present location with the addition of 3 m of stabilization cover material (Option I), and removal of residual radioactive materials to a disposal site and decontamination of the Naturita site (Option II). Cost estimates for the two options are about $7,200,000 for stabilization in-place, and about $8,200,000 for disposal at the Ranchers Exploration and Development Corporations's reprocessing site. Truck haulage would be used to transport the contaminated materials from the Naturita site to the selected disposal site.Ranchers Exploration and Development Corporation removed the tailings from the site, reprocessed them, and disposed of them from 1977 to 1979. There is no noteworthy mineral resource remaining at the former tailings site; therefore, recovery of residual mineral values was not considered in this assessment.

Not Available

1981-07-01T23:59:59.000Z

307

Summary of the engineering assessment of inactive uranium mill tailings, Naturita site, Naturita, Colorado  

SciTech Connect

Ford, Bacon and Davis Utah Inc. has reevaluated the Naturita site in order to revise the November 1977 engineering assessment of the problems resulting from the existence of radioactive contamination at the former uranium mill tailings site at Naturita, Colorado. This evaluation has included the preparation of topographic maps, the drilling of boreholes and radiometric measurements sufficient to determine areas and volumes of contaminated materials and radiation exposures of individuals and nearby populations, and the evaluation and costing of alternative remedial actions. Radon gas released from the estimated 344,000 tons of contaminated materials that remain at the Naturita site constitutes the most significant environmental impact, although external gamma radiation also is a factor. The two alternative actions presented in this engineering assessment are stabilization of the site in its present location with the addition of 3 m of stabilization cover material (Option I), and removal of residual radioactive materials to a disposal site and decontamination of the Naturita site (Option II). Cost estimates for the two options are about $7,200,000 for stabilization in-place, and about $8,200,000 for disposal at the Ranchers Exploration and Development Corporation's reprocessing site. Truck haulage would be used to transport the contaminated materials from the Naturita site to the selected disposal site.Ranchers Exploration and Development Corporation removed the tailings from the site, reprocessed them, and disposed of them from 1977 to 1979. There is no noteworthy mineral resource remaining at the former tailings site; therefore, recovery of residual mineral values was not considered in this assessment.

Not Available

1981-07-01T23:59:59.000Z

308

WASTE DISPOSAL SECTION CORNELL UNIVERSITY  

E-Print Network (OSTI)

2/07 WASTE DISPOSAL SECTION CORNELL UNIVERSITY PROCEDURE for DISPOSAL of RADIOACTIVE MATERIALS This procedure has been developed to ensure the safety of those individuals who handle radioactive waste identified hazardous waste, or other unusual issues require special consideration. Contact the Department

Manning, Sturt

309

Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwestern Low-Level Radioactive Waste Disposal Compact (South Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Rural Electric Cooperative Fuel Distributor Program Info State South Dakota Program Type Siting and Permitting Provider Southwestern Low-Level Radioactive Waste Commission This legislation authorizes the state's entrance into the Southwestern Low-Level Radioactive Waste Disposal Compact, which provides for the cooperative management of low-level radioactive waste. The Compact is administered by a commission, which can regulate and impose fees on in-state radioactive waste generators. The states of Arizona, California,

310

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

311

Low and medium level radioactive waste disposal in France  

Science Conference Proceedings (OSTI)

ANDRA, as the national radioactive waste management agency of France, was created in 1979 as part of the French Atomic Energy, Commission and is responsible for radioactive waste disposal. Legislation passed on December 30, 1991 gave ANDRA greater autonomy and responsibility for radioactive waste management by making it a Public Service Company separate from the CEA and by placing it under the supervisory authority of the Ministries of Industry, of the Environment and of Research. The legislation specifically delegates the following responsibilities to ANDRA: (1) establishment of specifications for radioactive waste solidification and disposal; (2) design, siting and construction of new waste disposal facilities; (3) disposal facility operations; and (4) participation in research on, and design and construction of, isolation systems for long lived waste.

Potier, J.M.

1994-12-31T23:59:59.000Z

312

Hydrologic test plan for the Environmental Remediation Disposal Facility  

SciTech Connect

Hydrologic tests are planned at seven wells that will be drilled at the proposed Environmental Remediation Disposal Facility (ERDF). These wells are supporting hydrologic, geologic, and hydrochemical characterization at this new facility. Hydrologic testing will consist of instantaneous slug tests, slug interference tests, step-drawdown tests, and constant rate discharge tests (generally single-well). These test results and later groundwater monitoring data will be used to determine groundwater flow directions, flow rates, and the chemical makeup of the groundwater below the proposed ERDF. The seven wells will be drilled in two phases. In Phase I four wells will be drilled and tested: Two to the top of the uppermost aquifer (water table) and two as characterization boreholes to the top of basalt. The Phase I wells are located in the northern portion of the proposed ERDF site (699-32-72, 699-SDF-6, -7 and -8) (Figure 1). If Phase II drilling proceeds, the remaining three wells will be installed and tested (two deep and one shallow). A phased approach to drilling is warranted because of current uncertainty in the land use requirements at the proposed ERDF.

Swanson, L.C.

1993-09-30T23:59:59.000Z

313

UNREVIEWED DISPOSAL QUESTION EVALUATION: WASTE DISPOSAL IN ENGINEERED TRENCH #3  

SciTech Connect

Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

Hamm, L.; Smith, F.; Flach, G.; Hiergesell, R.; Butcher, T.

2013-07-29T23:59:59.000Z

314

Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011  

Science Conference Proceedings (OSTI)

The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call into question certain aspects of the analyses. For example, if the volumes and activities of waste disposed of during the remainder of the disposal facility's lifetime differ significantly from those projected, the doses projected by the analyses may no longer apply. DOE field sites are required to implement a performance assessment and composite analysis maintenance program. The purpose of this program is to ensure the continued applicability of the analyses through incremental improvement of the level of understanding of the disposal site and facility. Site personnel are required to conduct field and experimental work to reduce the uncertainty in the data and models used in the assessments. Furthermore, they are required to conduct periodic reviews of waste receipts, comparing them to projected waste disposal rates. The radiological inventory for Area G was updated in conjunction with Revision 4 of the performance assessment and composite analysis (Shuman, 2008). That effort used disposal records and other sources of information to estimate the quantities of radioactive waste that have been disposed of at Area G from 1959, the year the facility started receiving waste on a routine basis, through 2007. It also estimated the quantities of LLW that will require disposal from 2008 through 2044, the year in which it is assumed that disposal operations at Area G will cease. This report documents the fourth review of Area G disposal receipts since the inventory was updated and examines information for waste placed in the ground during fiscal years (FY) 2008 through 2011. The primary objective of the disposal receipt review is to ensure that the future waste inventory projections developed for the performance assessment and composite analysis are consistent with the actual types and quantities of waste being disposed of at Area G. Toward this end, the disposal data that are the subject of this review are used to update the future waste inventory projections for the disposal facility. These projections are compared to the future inventory projections that were develope

French, Sean B. [Los Alamos National Laboratory; Shuman, Robert [WPS: WASTE PROJECTS AND SERVICES

2012-04-17T23:59:59.000Z

315

Environmental Assessment for the Construction, Operation, and Closure of the Burma Road II Borrow Pit at the Savannah River Site  

NLE Websites -- All DOE Office Websites (Extended Search)

i This page is intentionally left blank ii TABLE OF CONTENTS Page 1.0 INTRODUCTION 1 1.1 Background 1 1.2 Purpose and Need for Action 3 2.0 PROPOSED ACTION AND ALTERNATIVES 3 2.1 Proposed Action 3 2.2 Alternatives to the Proposed Action 7 2.2.1 No Action, Continue to Use Existing SRS Borrow Pits 7 2.2.2 Build the Proposed Borrow Pit at Another Onsite Location 7 2.2.3 Use Offsite Commercial Sources of Structural Fill Material 8 3.0 AFFECTED ENVIRONMENT 8 3.1 Land Use 8 3.2 Meteorology and Climatology 8 3.3 Geology and Seismology 8 3.4 Hydrology 9 3.5 Ecological and Cultural Resources 10 3.6 Radiation Environment 12 4.0 ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED ACTION AND ALTERNATIVES 12 4.1 Facility Construction 12

316

Maintenance Guide for DOE Low-Level Waste Disposal Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 G Approved: XX-XX-XX IMPLEMENTATION GUIDE for use with DOE M 435.1-1 Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses U.S. DEPARTMENT OF ENERGY DOE G 435.1-4 i (and ii) DRAFT XX-XX-XX LLW Maintenance Guide Revision 0, XX-XX-XX Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses CONTENTS 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . .

317

Scenarios of the TWRS low-level waste disposal program  

Science Conference Proceedings (OSTI)

As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 Area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pretreating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste.

NONE

1994-10-01T23:59:59.000Z

318

Health Risks Associated with Disposal of Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposal DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Disposal of Depleted Uranium A discussion of risks associated with disposal...

319

FAQ 27-Are there any currently-operating disposal facilities that can  

NLE Websites -- All DOE Office Websites (Extended Search)

currently-operating disposal facilities that can accept all of the depleted uranium oxide that would be generated from conversion of DOE's depleted UF6 inventory? currently-operating disposal facilities that can accept all of the depleted uranium oxide that would be generated from conversion of DOE's depleted UF6 inventory? Are there any currently-operating disposal facilities that can accept all of the depleted uranium oxide that would be generated from conversion of DOE's depleted UF6 inventory? With respect to available capacity, three sites could accept the entire inventory of depleted uranium oxide: the Department of Energy's (DOE's) Hanford site in Washington State, DOE's Nevada Test Site, or EnergySolution Clive, Utah Facility, a commercial site. Each of these sites would have sufficient capacity for either the grouted or ungrouted oxide forms of depleted uranium (for the two DOE sites, this also takes into account other projected disposal volumes through the year 2070).

320

Documents: Disposal of DUF6 Conversion Products  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 Conversion Products Search Documents: Search PDF Documents View a list of all documents Disposal of DUF6 Conversion Products PDF Icon Engineering Analysis for Disposal of...

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Environmental Risks of Depleted UF6 Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Disposal A discussion of the environmental impacts...

322

PROPERTY DISPOSAL RECORDS | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

DISPOSAL RECORDS More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS (Revision 2) Records Management Handbook Inspection Report: INS-O-02-01...

323

Laboratory to demolish excavation enclosures at Material Disposal Area B  

NLE Websites -- All DOE Office Websites (Extended Search)

Excavation Enclosures At MDA B Excavation Enclosures At MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP Road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. Contact Communications Office (505) 667-7000 "We look forward to the day we officially turn the property over for the benefit of our community." Work is beginning this week LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory

324

Laboratory to demolish excavation enclosures at Material Disposal Area B  

NLE Websites -- All DOE Office Websites (Extended Search)

Excavation enclosures at MDA B Excavation enclosures at MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. Contact Colleen Curran Communications Office (505) 664-0344 Email "We look forward to the day we officially turn the property over for the benefit of our community." Work is beginning this week LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory

325

Laboratory to demolish excavation enclosures at Material Disposal Area B  

NLE Websites -- All DOE Office Websites (Extended Search)

Excavation Enclosures At MDA B Excavation Enclosures At MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP Road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. Contact Communications Office (505) 667-7000 "We look forward to the day we officially turn the property over for the benefit of our community." Work is beginning this week LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory

326

Expedited Site Characterization Geophysics: Geophysical Methods and Tools for Site Characterization  

E-Print Network (OSTI)

storage and disposal of mixed waste. References Bendix Fieldwas tested by Sandia at the Mixed Waste Landfill Integratedtested over Sandia's mixed-waste landfill test site. Both

Goldstein, N.E.

2009-01-01T23:59:59.000Z

327

WIPP - Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Disposal Cover Page and Table of Contents Closing the Circle The Long Road to WIPP - Part 1 The Long Road to WIPP - Part 2 Looking to the Future Related Reading and The...

328

Solid Waste Disposal Act (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

329

Crystalline ceramics: Waste forms for the disposal of weapons plutonium  

Science Conference Proceedings (OSTI)

At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

Ewing, R.C.; Lutze, W. [New Mexico Univ., Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

1995-05-01T23:59:59.000Z

330

EA-1793: Replacement Capability for Disposal of Remote-handled Low-level  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

793: Replacement Capability for Disposal of Remote-handled 793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site EA-1793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site Summary This EA evaluates the environmental impacts of replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017. Public Comment Opportunities Submit Comments to: Mr. Chuck Ljungberg 1955 Fremont Avenue, Mailstop 1216 Idaho Falls, ID 83415 Electronic mail: rhllwea@id.doe.gov Documents Available for Download December 21, 2011 EA-1793: Finding of No Significant Impact Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive

331

INTERIM RESULTS FROM A STUDY OF THE IMPACTS OF TIN(II) BASED MERCURY TREATMENT IN A SMALL STREAM ECOSYSTEM: TIMS BRANCH, SAVANNAH RIVER SITE  

Science Conference Proceedings (OSTI)

Mercury (Hg) has been identified as a 'persistent, bioaccumulative and toxic' pollutant with widespread impacts throughout North America and the world (EPA. 1997a, 1997b, 1998a, 1998b, 2000). Although most of the mercury in the environment is inorganic Hg, a small proportion of total Hg is transformed through the actions of aquatic microbes into methylmercury (MeHg). In contrast to virtually all other metals, MeHg biomagnifies or becomes increasingly concentrated as it is transferred through aquatic food chains so that the consumption of mercury contaminated fish is the primary route of this toxin to humans. For this reason, the ambient water quality criterion (AWQC) for mercury is based on a fish tissue endpoint rather than an aqueous Hg concentration, as the tissue concentration (e.g., fish are more closely linked to aqueous MeHg than to inorganic Hg concentrations (Sveinsdottir and Mason 2005), but MeHg production is not easily predicted or controlled. At point-source contaminated sites, mercury methylation is not only affected by the absolute mercury load, but also by the form of mercury loaded. In addition, once MeHg is formed, the hydrology, trophic structure, and water chemistry of a given system affect how it is transformed and transferred through the food chain to fish. Decreasing inorganic Hg concentrations and loading may often therefore be a more achievable remediation goal, but has led to mixed results in terms of responses in fish bioaccumulation. A number of source control measures have resulted in rapid responses in lake or reservoir fisheries (Joslin 1994, Turner and Southworth 1999; Orihel et al., 2007), but examples of similar responses in Hg-contaminated stream ecosystems are less common. Recent work suggests that stream systems may actually be more susceptible to mercury bioaccumulation than lakes, highlighting the need to better understand the ecological drivers of mercury bioaccumulation in stream-dwelling fish (Chasar et al. 2009, Ward et al. 2010). In the present study we examine the response of fish to remedial actions in Tims Branch, a point-source contaminated stream on the Department of Energy's (DOE) Savannah River Site in Aiken, South Carolina. This second order stream received inorganic mercury inputs at its headwaters from the 1950s-2000s which contaminated the water, sediments, and biota downstream. In 2007, an innovative mercury removal system using tin (II) chloride (stannous chloride, SnCl{sub 2}) was implemented at a pre-existing air stripper. Tin(II) reduces dissolved Hg (II) to Hg (0), which is removed by the air stripper. During this process, tin(II) is oxidized to tin (IV) which is expected to precipitate as colloidal tin(IV) oxides and hydroxides, particulate materials with relatively low toxicity (Hallas and Cooney, 1981, EPA 2002, ATSDR, 2005). The objectives of the present research are to provide an initial assessment of the net impacts of the tin(II) based mercury treatment on key biota and to document the distribution and fate of inorganic tin in this small stream ecosystem after the first several years of operating a full scale system. To support these objectives, we collected fish, sediment, water, invertebrates, and biofilm samples from Tims Branch to quantify the general behavior and accumulation patterns for mercury and tin in the ecosystem and to determine if the treatment process has resulted in: (1) a measurable beneficial impact on (i.e., decrease of) mercury concentration in upper trophic level fish and other biota; this is a key environmental endpoint since reducing mercury concen

Looney, B.; Bryan, L.; Mathews, T.

2012-03-30T23:59:59.000Z

332

Walla Walla River Basin Fish Screen Evaluations; Nursery Bridge Fishway, Garden City/Lowden II, and Little Walla Walla Sites, 2004 Annual Report.  

DOE Green Energy (OSTI)

Pacific Northwest National Laboratory evaluated the fish screens at the Nursery Bridge Fishway, the Garden City/Lowden II site west of Walla Walla, Washington, and the Little Walla Walla site in Milton-Freewater, Oregon, in the Walla Walla River Basin during 2004. The fish-screen facilities were examined to determine if they were being effectively operated and maintained to provide for safe fish passage. At the Nursery Bridge Fishway, the screens were evaluated specifically to determine whether the louvers that aid in controlling water flow from behind the screens could be adjusted so that the screens would meet fish-protection criteria. Data were collected to determine whether velocities in front of the screens met current National Oceanic and Atmospheric Administration's National Marine Fisheries Service (NOAA Fisheries) (formerly NMFS) criteria to promote safe and timely fish passage before and after changing the louver settings. The Little Walla Walla screens were evaluated to determine how a build-up of algae on the screens affected water velocities.

Vucelick, J.; McMichael, G.

2004-11-01T23:59:59.000Z

333

Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility  

Science Conference Proceedings (OSTI)

This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

BURBANK, D.A.

2000-08-31T23:59:59.000Z

334

Phase II Documentation Overview of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Underground Test Area (UGTA) Subproject to assess and evaluate radiologic groundwater contamination resulting from underground nuclear testing at the NTS. These activities are overseen by the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended March 2010). For Frenchman Flat, the UGTA Subproject addresses media contaminated by the underground nuclear tests, which is limited to geologic formations within the saturated zone or 100 meters (m) or less above the water table. Transport in groundwater is judged to be the primary mechanism of migration for the subsurface contamination away from the Frenchman Flat underground nuclear tests. The intent of the UGTA Subproject is to assess the risk to the public from the groundwater contamination produced as a result of nuclear testing. The primary method used to assess this risk is the development of models of flow and contaminant transport to forecast the extent of potentially contaminated groundwater for the next 1,000 years, establish restrictions to groundwater usage, and implement a monitoring program to verify protectiveness. For the UGTA Subproject, contaminated groundwater is that which exceeds the radiological standards of the Safe Drinking Water Act (CFR, 2009) the State of Nevadas groundwater quality standard to protect human health and the environment. Contaminant forecasts are expected to be uncertain, and groundwater monitoring will be used in combination with land-use control to build confidence in model results and reduce risk to the public. Modeling forecasts of contaminant transport will provide the basis for negotiating a compliance boundary for the Frenchman Flat Corrective Action Unit (CAU). This compliance boundary represents a regulatory-based distinction between groundwater contaminated or not contaminated by underground testing. Transport modeling simulations are used to compute radionuclide concentrations in time and space within the CAU for the 1,000-year contaminant boundary. These three-dimensional (3-D) concentration simulations are integrated into probabilistic forecasts of the likelihood of groundwater exceeding or remaining below the radiological standards of the Safe Drinking Water Act (CFR, 2009) defined as the contaminant boundary. Contaminant boundaries are not discrete predictions of the location or concentration of contaminants, but instead are spatial representations of the probability of exceeding Safe Drinking Water Act radiological standards. The forecasts provide planning tools to facilitate regulatory decisions designed to protect the health and safety of the public.

Greg Ruskauff

2010-04-01T23:59:59.000Z

335

EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume I--The U.S. Site Selection Process Prior to the Nuclear Waste Policy Amendments Act  

Science Conference Proceedings (OSTI)

U.S. efforts to site and construct a deep geologic repository for used fuel and high level radioactive waste (HLW) proceeded in fits and starts over a three decade period from the late 1950s until 1982, when the U.S. Congress enacted the Nuclear Waste Policy Act (NWPA). This legislation codified a national approach for developing a deep geologic repository. Amendment of the NWPA in 1987 resulted in a number of dramatic changes in direction for the U.S. program, most notably the selection of Yucca Mountai...

2010-05-27T23:59:59.000Z

336

Moab Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Site Moab Site Moab Site Two scrapers work together to excavate Mancos Shale at the Crescent Junction site to create the second portion of a disposal cell for uranium mill tailings Two scrapers work together to excavate Mancos Shale at the Crescent Junction site to create the second portion of a disposal cell for uranium mill tailings One of two gantry cranes that load and unload tailings containers from the railcars is pictured on the hillside rail bench west of Moab One of two gantry cranes that load and unload tailings containers from the railcars is pictured on the hillside rail bench west of Moab Two scrapers work together to excavate Mancos Shale at the Crescent Junction site to create the second portion of a disposal cell for uranium mill tailings One of two gantry cranes that load and unload tailings containers from the railcars is pictured on the hillside rail bench west of Moab

337

Simulation of waste processing, transportation, and disposal operations  

E-Print Network (OSTI)

In response to the accelerated cleanup goals of the Department of Energy, Sandia National Laboratory (Sandia) has developed and utilized a number of simulation models to represent the processing, transportation, and disposal of radioactive waste. Sandia, in conjunction with Simulation Dynamics, has developed a Supply Chain model of the cradle to grave management of radioactive waste. Sandia has used this model to assist the Department of Energy in developing a cost effective, regulatory compliant and efficient approach to dispose of waste from 25 sites across the country over the next 35 years. 1

Janis Trone

2000-01-01T23:59:59.000Z

338

Simulation Of Waste Processing, Transportation, And Disposal Operations  

E-Print Network (OSTI)

In response to the accelerated cleanup goals of the Department of Energy, Sandia National Laboratory (Sandia) has developed and utilized a number of simulation models to represent the processing, transportation, and disposal of radioactive waste. Sandia, in conjunction with Simulation Dynamics, has developed a Supply Chain model of the cradle to grave management of radioactive waste. Sandia has used this model to assist the Department of Energy in developing a cost effective, regulatory compliant and efficient approach to dispose of waste from 25 sites across the country over the next 35 years.

J. A. Joines; R. R. Barton; K. Kang; P. A. Fishwick; Janis Trone; Angela Guerin

2000-01-01T23:59:59.000Z

339

Disposal Facility Reaches 15-Million-Ton Milestone | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Facility Reaches 15-Million-Ton Milestone Disposal Facility Reaches 15-Million-Ton Milestone Disposal Facility Reaches 15-Million-Ton Milestone July 30, 2013 - 12:00pm Addthis Matt McCormick, manager of the Richland Operations Office, commends a large group of Hanford workers for the 15-million-ton milestone at a public event at the Environmental Restoration Disposal Facility. Matt McCormick, manager of the Richland Operations Office, commends a large group of Hanford workers for the 15-million-ton milestone at a public event at the Environmental Restoration Disposal Facility. RICHLAND, Wash. - EM's Environmental Restoration Disposal Facility (ERDF) - a massive landfill for low-level radioactive and hazardous waste at the Hanford site - has achieved a major cleanup milestone. Since beginning operations in 1996, workers supporting the Richland

340

Depleted uranium disposal options evaluation  

SciTech Connect

The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Preliminary Transportation, Aging and Disposal Canister System Performance Specification  

SciTech Connect

This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. A list of system specified components and ancillary components are included in Section 1.2. The TAD canister, in conjunction with specialized overpacks will accomplish a number of functions in the management and disposal of spent nuclear fuel. Some of these functions will be accomplished at purchaser sites where commercial spent nuclear fuel (CSNF) is stored, and some will be performed within the Office of Civilian Radioactive Waste Management (OCRWM) transportation and disposal system. This document contains only those requirements unique to applications within Department of Energy's (DOE's) system. DOE recognizes that TAD canisters may have to perform similar functions at purchaser sites. Requirements to meet reactor functions, such as on-site dry storage, handling, and loading for transportation, are expected to be similar to commercially available canister-based systems. This document is intended to be referenced in the license application for the Monitored Geologic Repository (MGR). As such, the requirements cited herein are needed for TAD system use in OCRWM's disposal system. This document contains specifications for the TAD canister, transportation overpack and aging overpack. The remaining components and equipment that are unique to the OCRWM system or for similar purchaser applications will be supplied by others.

C.A Kouts

2006-11-22T23:59:59.000Z

342

Site Maintenance Plan: Part 2, Site Maintenance Action Plan for FY 1994  

SciTech Connect

This Fiscal Year (FY) 1994 Site Maintenance Action Plan (SMAP) is Part II of the Site Maintenance Plan, and has been written by Westinghouse Hanford Company (WHC) to outline the requirements stated in DOE Order 4330.4B, Maintenance Management Program, Chapter 1, Paragraph 3.3.1. The SMAP provides an annual status of maintenance initiatives completed and planned, a summary of performance indicators, a summary of maintenance backlog, a listing of real property and capital equipment maintenance cost estimates that were used to create the FY 1996 infrastructure and maintenance budget input, and a listing of proposed line item and general plant projects. Additionally, assumptions for various Site programs are listed to bring the Site Maintenance Plan into focus with overall Site activities. The primary mission at Hanford is to clean up the Site. In this cleanup process WHC will provide scientific and technological expertise to meet global needs, and partnership with stakeholders in the region to develop regional economic diversification. Other missions at the Hanford Site include energy research and development, and waste management and disposal activities. Their primary mission has a 30-year projected life span and will direct the shutting down and cleanup of defense production facilities and the Fast Flux Test Facility. This long-term mission requires continuous maintenance and in many instances, replacement of existing basic infrastructure, support facilities, and utilities. Without adequate maintenance and capital funding these infrastructure, support facilities, and utilities will continue to deteriorate causing an increase in backlogged work.

Fisk, E.L.

1994-06-01T23:59:59.000Z

343

Disposable telemetry cable deployment system  

DOE Patents (OSTI)

A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

Holcomb, David Joseph (Sandia Park, NM)

2000-01-01T23:59:59.000Z

344

DOE - Office of Legacy Management -- Shallow Land Disposal Area - PA 45  

Office of Legacy Management (LM)

Shallow Land Disposal Area - PA 45 Shallow Land Disposal Area - PA 45 FUSRAP Considered Sites Shallow Land Disposal Area, PA Alternate Name(s): Parks Township Shallow Land Disposal Area Nuclear Materials and Equipment Corporation (NUMEC) Babcox and Wilcox Parks Facilities PA.45-1 PA.45-5 PA.45-6 Location: PA Route 66 and Kissimere Road, Parks Township, Apollo, Pennsylvania PA.45-1 Historical Operations: Fabricated nulcear fuel under an NRC license as an extension of NUMEC Apollo production facilities. PA.45-1 PA.45-5 Eligibility Determination: Eligible PA.45-6 Radiological Survey(s): None Site Status: Cleanup in progress by U.S. Army Corps of Engineers. PA.45-6 USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Shallow Land Disposal Area, PA

345

INTERIM RESULTS FROM A STUDY OF THE IMPACTS OF TIN(II) BASED MERCURY TREATMENT IN A SMALL STREAM ECOSYSTEM: TIMS BRANCH, SAVANNAH RIVER SITE  

SciTech Connect

Mercury (Hg) has been identified as a 'persistent, bioaccumulative and toxic' pollutant with widespread impacts throughout North America and the world (EPA. 1997a, 1997b, 1998a, 1998b, 2000). Although most of the mercury in the environment is inorganic Hg, a small proportion of total Hg is transformed through the actions of aquatic microbes into methylmercury (MeHg). In contrast to virtually all other metals, MeHg biomagnifies or becomes increasingly concentrated as it is transferred through aquatic food chains so that the consumption of mercury contaminated fish is the primary route of this toxin to humans. For this reason, the ambient water quality criterion (AWQC) for mercury is based on a fish tissue endpoint rather than an aqueous Hg concentration, as the tissue concentration (e.g., < 0.3 {mu}g/g fillet) is considered to be a more consistent indicator of exposure and risk (EPA, 2001). Effective mercury remediation at point-source contaminated sites requires an understanding of the nature and magnitude of mercury inputs, and also knowledge of how these inputs must be controlled in order to achieve the desired reduction of mercury contamination in biota necessary for compliance with AWQC targets. One of the challenges to remediation is that mercury body burdens in fish are more closely linked to aqueous MeHg than to inorganic Hg concentrations (Sveinsdottir and Mason 2005), but MeHg production is not easily predicted or controlled. At point-source contaminated sites, mercury methylation is not only affected by the absolute mercury load, but also by the form of mercury loaded. In addition, once MeHg is formed, the hydrology, trophic structure, and water chemistry of a given system affect how it is transformed and transferred through the food chain to fish. Decreasing inorganic Hg concentrations and loading may often therefore be a more achievable remediation goal, but has led to mixed results in terms of responses in fish bioaccumulation. A number of source control measures have resulted in rapid responses in lake or reservoir fisheries (Joslin 1994, Turner and Southworth 1999; Orihel et al., 2007), but examples of similar responses in Hg-contaminated stream ecosystems are less common. Recent work suggests that stream systems may actually be more susceptible to mercury bioaccumulation than lakes, highlighting the need to better understand the ecological drivers of mercury bioaccumulation in stream-dwelling fish (Chasar et al. 2009, Ward et al. 2010). In the present study we examine the response of fish to remedial actions in Tims Branch, a point-source contaminated stream on the Department of Energy's (DOE) Savannah River Site in Aiken, South Carolina. This second order stream received inorganic mercury inputs at its headwaters from the 1950s-2000s which contaminated the water, sediments, and biota downstream. In 2007, an innovative mercury removal system using tin (II) chloride (stannous chloride, SnCl{sub 2}) was implemented at a pre-existing air stripper. Tin(II) reduces dissolved Hg (II) to Hg (0), which is removed by the air stripper. During this process, tin(II) is oxidized to tin (IV) which is expected to precipitate as colloidal tin(IV) oxides and hydroxides, particulate materials with relatively low toxicity (Hallas and Cooney, 1981, EPA 2002, ATSDR, 2005). The objectives of the present research are to provide an initial assessment of the net impacts of the tin(II) based mercury treatment on key biota and to document the distribution and fate of inorganic tin in this small stream ecosystem after the first several years of operating a full scale system. To support these objectives, we collected fish, sediment, water, invertebrates, and biofilm samples from Tims Branch to quantify the general behavior and accumulation patterns for mercury and tin in the ecosystem and to determine if the treatment process has resulted in: (1) a measurable beneficial impact on (i.e., decrease of) mercury concentration in upper trophic level fish and other biota; this is a key environmental endpoint since reducing mercury concen

Looney, B.; Bryan, L.; Mathews, T.

2012-03-30T23:59:59.000Z

346

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

00: Managing Treatment, Storage, and Disposal of Radioactive 00: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This EIS evaluates the potential environmental and cost impacts of strategic managment alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 7, 2011 EIS-0200-SA-03: Supplement Analysis Treatment of Transuranic Waste at the Idaho National Laboratory, Carlsbad Field Office March 7, 2008 EIS-0200: Amendment to the Record of Decision Treatment and Storage of Transuranic Waste

347

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY Final Waste Management Programmatic Environmental Impact Statement examines the potential environmental and cost impacts of strategic managment alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 7, 2011 EIS-0200-SA-03: Supplement Analysis Treatment of Transuranic Waste at the Idaho National Laboratory, Carlsbad Field Office March 7, 2008

348

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to public utilities and entities furnishing natural gas, heat, water, sewerage, and street railway services to the public. The legislation addresses rates and services, exemptions, investigations, and records. Article 4 (58-5-400 et seq.) of this

349

DOE - Office of Legacy Management -- Green River Mill Site - UT 0-01  

Office of Legacy Management (LM)

Green River Mill Site - UT 0-01 Green River Mill Site - UT 0-01 FUSRAP Considered Sites Site: Green River Mill Site (UT.0-01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Green River, Utah, Disposal Site Documents Related to Green River Mill Site Data Validation Package for the June 2009 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site; LMS/GRN/S0609; October 2009 2012 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Green River, Utah, Disposal Site. LMS/S09461. February 2013 Historic Fact Sheet: Green River Disposal Site Uranium ore was

350

Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns  

Science Conference Proceedings (OSTI)

In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste contaminated by NORM''.

Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

1999-01-21T23:59:59.000Z

351

Reactor Vessel Head Disposal Campaign for Nuclear Management Company  

SciTech Connect

After establishing a goal to replace as many reactor vessel heads as possible - in the shortest time and at the lowest cost as possible - Nuclear Management Company (NMC) initiated an ambitious program to replace the heads on all six of its pressurized water reactors. Currently, four heads have been replaced; and four old heads have been disposed of. In 2002, NMC began fabricating the first of its replacement reactor vessel heads for the Kewaunee Nuclear Plant. During its fall 2004 refueling outage, Kewaunee's head was replaced and the old head was prepared for disposal. Kewaunee's disposal project included: - Down-ending, - Draining, - Decontamination, - Packaging, - Removal from containment, - On-Site handling, - Temporary storage, - Transportation, - Disposal. The next two replacements took place in the spring of 2005. Point Beach Nuclear Plant (PBNP) Unit 2 and Prairie Island Nuclear Generating Plant (PINGP) Unit 2 completed their head replacements during their scheduled refueling outages. Since these two outages were scheduled so close to each other, their removal and disposal posed some unique challenges. In addition, changes to the handling and disposal programs were made as a result of lessons learned from Kewaunee. A fourth head replacement took place during PBNP Unit 1's refueling outage during the fall of 2005. A number of additional changes took place. All of these changes and challenges are discussed in the paper. NMC's future schedule includes PINGP Unit 1's installation in Spring 2006 and Palisades' installation during 2007. NMC plans to dispose of these two remaining heads in a similar manner. This paper presents a summary of these activities, plus a discussion of lessons learned. (authors)

Hoelscher, H.L.; Closs, J.W. [Nuclear Management Company, LLC, 700 First Street, Hudson, WI 54016 (United States); Johnson, S.A. [Duratek, Inc., 140 Stoneridge Drive, Columbia, SC 29210 (United States)

2006-07-01T23:59:59.000Z

352

NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA  

Science Conference Proceedings (OSTI)

This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

2005-07-01T23:59:59.000Z

353

Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria  

SciTech Connect

The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

W. Mahlon Heileson

2006-10-01T23:59:59.000Z

354

Electrochemical Apparatus with Disposable and Modifiable Parts  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts The invention also includes electrochemical apparatus that can interface with optical instrumentation. If the working electrode is transparent, light from an optical fiber may be directed through the working electrode and into a cuvette. July 3, 2013 Electrochemical Apparatus with Disposable and Modifiable Parts Available for thumbnail of Feynman Center (505) 665-9090 Email Electrochemical Apparatus with Disposable and Modifiable Parts Applications: Electrochemical experiments in solution Electrochemical experiments on surfaces Bulk electrolysis experiments Fuel cells Corrosion studies Academic Labs Teaching and research Benefits: Incorporates disposable, commercially available cuvettes

355

Laboratory Waste Disposal HAZARDOUS GLASS  

E-Print Network (OSTI)

Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can liners. This waste stream must be boxed to protect custodial staff. It goes directly to the landfill lined cardboard box. Tape seams with heavy duty tape to contain waste. Limit weight to 20 lbs. Or

Sheridan, Jennifer

356

Savannah River Site Approved Site Treatment Plan, 1998 Annual Update  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy, Savannah River Operations Office (DOE- SR),has prepared the Site Treatment Plan (STP) for Savannah River Site (SRS) mixed wastes in accordance with RCRA Section 3021(b), and SCDHEC has approved the STP (except for certain offsite wastes) and issued an order enforcing the STP commitments in Volume I. DOE-SR and SCDHEC agree that this STP fulfills the requirements contained in the FFCAct, RCRA Section 3021, and therefore,pursuant to Section 105(a) of the FFCAct (RCRA Section 3021(b)(5)), DOE`s requirements are to implement the plan for the development of treatment capacities and technologies pursuant to RCRA Section 3021.Emerging and new technologies not yet considered may be identified to manage waste more safely, effectively, and at lower cost than technologies currently identified in the plan. DOE will continue to evaluate and develop technologies that offer potential advantages in public acceptance, privatization, consolidation, risk abatement, performance, and life-cycle cost. Should technologies that offer such advantages be identified, DOE may request a revision/modification of the STP in accordance with the provisions of Consent Order 95-22-HW.The Compliance Plan Volume (Volume I) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions (LDR). Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume II) and is provided for information.

Lawrence, B. [Westinghouse Savannah River Company, AIKEN, SC (United States); Berry, M.

1998-03-01T23:59:59.000Z

357

EA-1889: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

89: Disposal of Decommissioned, Defueled Naval Reactor Plants 89: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) at the Hanford Site, Richland, Washington EA-1889: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) at the Hanford Site, Richland, Washington Summary This EA, prepared by the Department of the Navy, evaluates the environmental impacts of the disposal of decommissioned, defueled, naval reactor plants from the USS Enterprise at DOE's Hanford Site, Richland, Washington. DOE participated as a cooperating agency in the preparation of this EA. The Department of the Navy issued its FONSI on August 23, 2012. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download August 23, 2012

358

Disposal of NORM waste in salt caverns  

Science Conference Proceedings (OSTI)

Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

1998-07-01T23:59:59.000Z

359

FAQ 42-What are the potential environmental impacts from disposal...  

NLE Websites -- All DOE Office Websites (Extended Search)

disposal of depleted uranium as an oxide? What are the potential environmental impacts from disposal of depleted uranium as an oxide? Disposal as oxide could result in adverse...

360

Repository Reference Disposal Concepts and Thermal Load Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists...

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Disposal Systems Evaluations and Tool Development - Engineered...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

... 156 Table 5-5 Fuel cycle, disposal environment, and aging time for 24 base case combinations. ......

362

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network (OSTI)

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE January 2010 Prepared for the Interagency DE-AC05-76RL01830 Waste Disposal Workshops: Anthrax-Contaminated Waste AM Lesperance JF Upton SL #12;#12;PNNL-SA-69994 Waste Disposal Workshops: Anthrax- Contaminated Waste AM Lesperance JF Upton SL

363

DOE - Office of Legacy Management -- Conoco Conquista Site -...  

Office of Legacy Management (LM)

This site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in Texas. UMTRA Title II sites are privately owned and operated sites that were active when the...

364

Recommended strategy for the disposal of remote-handled transuranic waste  

SciTech Connect

The current baseline plan for RH TRU (remote-handled transuranic) waste disposal is to package the waste in special canisters for emplacement in the walls of the waste disposal rooms at the Waste Isolation Pilot Plant (WIPP). The RH waste must be emplaced before the disposal rooms are filled by contact-handled waste. Issues which must be resolved for this plan to be successful include: (1) construction of RH waste preparation and packaging facilities at large-quantity sites; (2) finding methods to get small-quantity site RH waste packaged and certified for disposal; (3) developing transportation systems and characterization facilities for RH TRU waste; (4) meeting lag storage needs; and (5) gaining public acceptance for the RH TRU waste program. Failure to resolve these issues in time to permit disposal according to the WIPP baseline plan will force either modification to the plan, or disposal or long-term storage of RH TRU waste at non-WIPP sites. The recommended strategy is to recognize, and take the needed actions to resolve, the open issues preventing disposal of RH TRU waste at WIPP on schedule. It is also recommended that the baseline plan be upgraded by adopting enhancements such as revised canister emplacement strategies and a more flexible waste transport system.

Bild, R.W. [Sandia National Lab., Albuquerque, NM (United States). Program Integration Dept.

1994-07-01T23:59:59.000Z

365

Environmental waste disposal contracts awarded  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental contracts awarded locally Environmental contracts awarded locally Environmental waste disposal contracts awarded locally Three small businesses with offices in Northern New Mexico awarded nuclear waste clean-up contracts. April 3, 2012 Worker moves drums of transuranic (TRU) waste at a staging area A worker stages drums of transuranic waste at Los Alamos National Laboratory's Technical Area 54. the Lap ships such drums to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) in Southern New Mexico. The Lab annually averages about 120 shipments of TRU waste to WIPP. Contact Small Business Office (505) 667-4419 Email "They will be valuable partners in the Lab's ability to dispose of the waste safely and efficiently." Small businesses selected for environmental work at LANL

366

D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 CFR Ch. X (1-1-12 Edition) Pt. 1022 D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE Siting, construction or expansion, and op- eration of disposal facilities for transuranic (TRU) waste and TRU mixed waste (TRU waste also containing hazardous waste as designated in 40 CFR part 261). D12 INCINERATORS Siting, construction, and operation of in- cinerators, other than research and develop- ment incinerators or incinerators for non- hazardous solid waste (as designated in 40 CFR 261.4(b)). PART 1022-COMPLIANCE WITH FLOODPLAIN AND WETLAND EN- VIRONMENTAL REVIEW REQUIRE- MENTS Subpart A-General Sec. 1022.1 Background. 1022.2 Purpose and scope. 1022.3 Policy. 1022.4 Definitions. 1022.5 Applicability. 1022.6 Public inquiries. Subpart B-Procedures for Floodplain and

367

NDAA Section 3116 Waste Determinations with Related Disposal Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NDAA Section NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 authorizes the Secretary of Energy, in consultation with the Nuclear Regulatory Commission, to reclassify certain waste from reprocessing spent nuclear fuel from high-level waste to low-level waste if it meets the criteria set forth in Section 3116. Section 3116 is currently only applicable to Idaho National Laboratory (INL) and the Savannah River Site (SRS). The other two DOE sites with similar waste (residuals remaining after cleaning out tanks and equipment that held liquid high-level waste)

368

DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER  

SciTech Connect

The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis is to support Site Recommendation reports and to assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the Development Plan ''Design Analysis for the Defense High-Level Waste Disposal Container'' (CRWMS M&O 2000c) with no deviations from the plan.

G. Radulesscu; J.S. Tang

2000-06-07T23:59:59.000Z

369

Options and costs for offsite disposal of oil and gas exploration and production wastes.  

Science Conference Proceedings (OSTI)

In the United States, most of the exploration and production (E&P) wastes generated at onshore oil and gas wells are disposed of or otherwise managed at the well site. Certain types of wastes are not suitable for onsite management, and some well locations in sensitive environments cannot be used for onsite management. In these situations, operators must transport the wastes offsite for disposal. In 1997, Argonne National Laboratory (Argonne) prepared a report that identified offsite commercial disposal facilities in the United States. This information has since become outdated. Over the past year, Argonne has updated the study through contacts with state oil and gas agencies and commercial disposal companies. The new report, including an extensive database for more than 200 disposal facilities, provides an excellent reference for information about commercial disposal operations. This paper describes Argonne's report. The national study provides summaries of the types of offsite commercial disposal facilities found in each state. Data are presented by waste type and by disposal method. The categories of E&P wastes in the database include: contaminated soils, naturally occurring radioactive material (NORM), oil-based muds and cuttings, produced water, tank bottoms, and water-based muds and cuttings. The different waste management or disposal methods in the database involve: bioremediation, burial, salt cavern, discharge, evaporation, injection, land application, recycling, thermal treatment, and treatment. The database includes disposal costs for each facility. In the United States, most of the 18 billion barrels (bbl) of produced water, 149 million bbl of drilling wastes, and 21 million bbl of associated wastes generated at onshore oil and gas wells are disposed of or otherwise managed at the well site. However, under certain conditions, operators will seek offsite management options for these E&P wastes. Commercial disposal facilities are offsite businesses that accept and manage E&P wastes for a fee. Their services include waste management and disposal, transportation, cleaning of vehicles and tanks, disposal of wash water, and, in some cases, laboratory analysis. Commercial disposal facilities offer a suite of waste management methods and technologies.

Puder, M. G.; Veil, J. A.; Environmental Science Division

2007-01-01T23:59:59.000Z

370

Microsoft Word - S00336_Title I & II Guidance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Nuclear Regulatory Commission, "General License for Custody and Long- Term Care of Residual Radioactive Material Disposal Sites," Code of Federal Regulations, January 1,...

371

First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site - Part 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRR-CWDA-2010-00128 SRR-CWDA-2010-00128 Revision 0 PERFORMANCE ASSESSMENT for the H-AREA TANK FARM at the SAVANNAH RIVER SITE March 2011 Prepared by: Savannah River Remediation LLC Closure & Waste Disposal Authority Aiken, SC 29808 Prepared for U.S. Department of Energy Under Contract No. DE-AC09-09SR22505 Performance Assessment for the SRR-CWDA-2010-00128 H-Area Tank Farm at the Revision 0 Savannah River Site March 2011 Page ii of 864 REVISION SUMMARY REV. # DESCRIPTION DATE OF ISSUE 0a Initial issue to DOE-SR 09/17/2010

372

Mixed waste characterization, treatment, and disposal focus area. Technology summary  

Science Conference Proceedings (OSTI)

This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

NONE

1995-06-01T23:59:59.000Z

373

Disposable Absorbent Material for the Removal of Arsenic from Water  

Science Conference Proceedings (OSTI)

Soils and groundwater at many substation sites are contaminated with arsenic-containing compounds. Cost effective water treatment technologies are needed to remove arsenic and other trace metals from underlying aquifers, especially now that drinking water standard for arsenic has been lowered to 10 g/L from the previous value of 50 g/L. The current project tested a disposable ferric oxide adsorbent material, Bayoxide E33, which has been reported to have a high capacity for arsenic removal.

2008-09-10T23:59:59.000Z

374

Operational Issues at the Environmental Restoration Disposal Facility at Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Operations Hanford Operations Evaluating Operational Issues at the Environmental Restoration Disposal Facility at Hanford By Craig H. Benson, PhD, PE; William H. Albright, PhD; and David P. Ray, PE Sponsored by: The Office of Engineering and Technology (EM-20) 17 June 2007 i TABLE OF CONTENTS EXECUTIVE SUMMARY ii ACKNOWLEDGEMENTS iv INTRODUCTION 1 BACKGROUND 1 Environmental Restoration Disposal Facility 1 Source of Concern 2 LINES OF INQUIRY 2 1. Validate Scope of Identified Problems 2 2. Assess Contractor Evaluation of the Elevated Leachate Level on the Landfill Liner 3 3. Evaluate Adequacy of Landfill Performance in View of the Discovered Falsified Compaction Data and Potential Leachate Level Problems 4

375

Savannah River Site Approved Site Treatment Plan, 1998 Annual Update  

SciTech Connect

The Compliance Plan Volume (Volume I) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions. Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume II) and is provided for information.

Lawrence, B.

1999-04-20T23:59:59.000Z

376

Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crews Overcome Challenges to Safely Dispose 1-Million-Pound Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell American Recovery and Reinvestment Act cleanup crews at the Idaho site recently disposed of a hot cell as heavy as nine fully loaded Boeing 737s. Unlike the aircrafts, the 1-million-pound concrete structure moved about two miles per hour on a trailer with 224 tires towed by a semi-truck. Workers safely transported the cell from the Advanced Test Reactor Complex (ATR-C) to an onsite landfill two miles away. Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell More Documents & Publications 2011 ARRA Newsletters CX-001627: Categorical Exclusion Determination Occupational Safety Performance Trends

377

Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crews Overcome Challenges to Safely Dispose 1-Million-Pound Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell American Recovery and Reinvestment Act cleanup crews at the Idaho site recently disposed of a hot cell as heavy as nine fully loaded Boeing 737s. Unlike the aircrafts, the 1-million-pound concrete structure moved about two miles per hour on a trailer with 224 tires towed by a semi-truck. Workers safely transported the cell from the Advanced Test Reactor Complex (ATR-C) to an onsite landfill two miles away. Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell More Documents & Publications 2011 ARRA Newsletters CX-002327: Categorical Exclusion Determination CX-001627: Categorical Exclusion Determination

378

DOE Selects Two Contractors for Multiple-Award Waste Disposal Contract |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Two Contractors for Multiple-Award Waste Disposal Two Contractors for Multiple-Award Waste Disposal Contract DOE Selects Two Contractors for Multiple-Award Waste Disposal Contract April 12, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) awarded two fixed price unit rate Indefinite Delivery/Indefinite Quantity (ID/IQ) multiple-award contracts for the permanent disposal of Low-Level Waste (LLW) and Mixed-Low Level Waste (MLLW) today to EnergySolutions, LLC and Waste Control Specialists, LLC. The goal of these contracts is to establish a vehicle that allows DOE sites to place timely, competitive and cost-effective task orders for the permanent disposal of: Class A, B, and C LLW and MLLW 11e(2) byproduct material Technology Enhanced Naturally Occurring Radioactive Material

379

Performance assessment for a hypothetical low-level waste disposal facility  

Science Conference Proceedings (OSTI)

Disposing of low-level waste (LLW) is a concern for many states throughout the United States. A common disposal method is below-grade concrete vaults. Performance assessment analyses make predictions of contaminant release, transport, ingestion, inhalation, or other routes of exposure, and the resulting doses for various disposal methods such as the below-grade concrete vaults. Numerous assumptions are required to simplify the processes associated with the disposal facility to make predictions feasible. In general, these assumptions are made conservatively so as to underestimate the performance of the facility. The objective of this report is to describe the methodology used in conducting a performance assessment for a hypothetical waste facility located in the northeastern United States using real data as much as possible. This report consists of the following: (a) a description of the disposal facility and site, (b) methods used to analyze performance of the facility, (c) the results of the analysis, and (d) the conclusions of this study.

Smith, C.S.; Rohe, M.J.; Ritter, P.D. [and others

1997-01-01T23:59:59.000Z

380

Establishing the Technical Basis for Disposal of Heat-generating Waste in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Establishing the Technical Basis for Disposal of Heat-generating Establishing the Technical Basis for Disposal of Heat-generating Waste in Salt Establishing the Technical Basis for Disposal of Heat-generating Waste in Salt The report summarizes available historic tests and the developed technical basis for disposal of heat-generating waste in salt, and the means by which a safety case for disposal of heat generating waste at a generic salt site can be initiated from the existing technical basis. Though the basis for a salt safety case is strong and has been made by the German repository program, RD&D programs continue in order to help reduce uncertainty, to improve understanding of certain complex processes, to demonstrate operational concepts, to confirm performance expectations, and to improve modeling capabilities utilizing the latest software platforms.

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

UMTRA project disposal cell cover biointrusion sensitivity assessment, Revision 1  

SciTech Connect

This study provides an analysis of potential changes that may take place in a Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell cover system as a result of plant biointrusion. Potential changes are evaluated by performing a sensitivity analysis of the relative impact of root penetrations on radon flux out of the cell cover and/or water infiltration into the cell cover. Data used in this analysis consist of existing information on vegetation growth on selected cell cover systems and information available from published studies and/or other available project research. Consistent with the scope of this paper, no new site-specific data were collected from UMTRA Project sites. Further, this paper does not focus on the issue of plant transport of radon gas or other contaminants out of the disposal cell cover though it is acknowledged that such transport has the potential to be a significant pathway for contaminants to reach the environment during portions of the design life of a disposal cell where plant growth occurs. Rather, this study was performed to evaluate the effects of physical penetration and soil drying caused by plant roots that have and are expected to continue to grow in UMTRA Project disposal cell covers. An understanding of the biological and related physical processes that take place within the cover systems of the UMTRA Project disposal cells helps the U.S. Department of Energy (DOE) determine if the presence of a plant community on these cells is detrimental, beneficial, or of mixed value in terms of the cover system`s designed function. Results of this investigation provide information relevant to the formulation of a vegetation control policy.

NONE

1995-10-01T23:59:59.000Z

382

Plans and Progress on Hanford MLLW Treatment and Disposal  

SciTech Connect

Mixed low-level waste (MLLW) contains both low-level radioactive materials and low-level hazardous chemicals. The hazardous component of mixed waste has characteristics identified by any or all of the following statutes: the Resource Conservation and Recovery Act of 1976 (RCRA), as amended; the Toxic Substances Control Act of 1976; and Washington State dangerous waste regulations. The Fluor Hanford Waste Management Project (WMP) is responsible for storing, treating, and disposing of solid MLLW, which includes organic and inorganic solids, organics and inorganic lab packs, debris, lead, mercury, long-length equipment, spent melters, and remote-handled (RH) and oversized MLLW. Hanford has 7,000 cubic meters, or about 25%, of the MLLW in storage at U.S. Department of Energy (DOE) sites. Hanford plans to receive 57,000 cubic meters from on-site generators, or about 50% of DOE's newly generated MLLW. In addition, the Hanford Environment Restoration Program and off-site generators having approved Federal Facility Consent Agreement site treatment plans will most likely send 200 cubic meters of waste to be treated and returned to the generators. Volumes of off-site waste receipts will be affected when the MLLW Record of Decision is issued as part of the process for the Hanford Site Solid Waste Environmental Impact Statement (EIS). The WMP objective relative to MLLW is to treat and dispose of {approx}8000 cubic meters of existing inventory and newly-generated waste by September 30, 2006.

McDonald, K. M.; Blackford, L. T.; Nester, D. E.; Connolly, R. R.; McKenney, D. E.; Moy, S. K.

2003-02-24T23:59:59.000Z

383

LANL completes excavation of 1940s waste disposal site  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment Feature Stories Public Reading Room: Environmental Documents, Reports LANL Home Phonebook Calendar Video Business Business Stories Excavation of waste...

384

Potential Release Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

PRS PRS Potential Release Sites Legacy sites where hazardous materials are found to be above acceptable levels are collectively called potential release sites. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Less than 10 percent of the total number of potential release sites need to go through the full corrective action process. What are potential release sites? Potential release sites are areas around the Laboratory and the town of Los Alamos at which hazardous materials from past activities have been found. Some examples of potential release sites include septic tanks and associated drain lines chemical storage areas wastewater outfalls material disposal areas incinerators sumps firing ranges

385

EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0250: Geologic Repository for the Disposal of Spent Nuclear EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada Summary This EIS analyzes DOE's proposed action to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain for the disposal of spent nuclear fuel and high-level radioactive waste. The EIS evaluates not only impacts from constructing, operating, monitoring, and closing a repository, but also from transporting the materials from 72 commercial and 4 DOE sites to the Yucca Mountain repository site in Nye County, Nevada. Public Comment Opportunities

386

Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect

A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

Timothy Solack; Carol Mason

2012-03-01T23:59:59.000Z

387

Disposal of low-level and low-level mixed waste: audit report  

Science Conference Proceedings (OSTI)

The Department of Energy (Department) is faced with the legacy of thousands of contaminated areas and buildings and large volumes of `backlog` waste requiring disposal. Waste management and environmental restoration activities have become central to the Department`s mission. One of the Department`s priorities is to clean up former nuclear weapons sites and find more effective and timely methods for disposing of nuclear waste. This audit focused on determining if the Department was disposing of low-level and low-level mixed waste in the most cost-effective manner.

NONE

1998-09-03T23:59:59.000Z

388

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado  

SciTech Connect

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site began in 1995 and is scheduled for completion in 1996. The tailings are being stabilized in place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results presented in this document and other evaluations will determine whether any action is needed to protect human health or the environment.

NONE

1996-03-01T23:59:59.000Z

389

Aerosol can waste disposal device  

DOE Patents (OSTI)

Disclosed is a device for removing gases and liquid from containers. The ice punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container.

O' Brien, Michael D. (Las Vegas, NV); Klapperick, Robert L. (Las Vegas, NV); Bell, Chris (Las Vegas, NV)

1993-01-01T23:59:59.000Z

390

Aerosol can waste disposal device  

DOE Patents (OSTI)

Disclosed is a device for removing gases and liquid from containers. The device punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container. 7 figures.

O' Brien, M.D.; Klapperick, R.L.; Bell, C.

1993-12-21T23:59:59.000Z

391

Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect

Groundwater impacts have been analyzed for the proposed remote-handled low-level waste disposal facility. The analysis was prepared to support the National Environmental Policy Act environmental assessment for the top two ranked sites for the proposed disposal facility. A four-phase screening and analysis approach was documented and applied. Phase I screening was site independent and applied a radionuclide half-life cut-off of 1 year. Phase II screening applied the National Council on Radiation Protection analysis approach and was site independent. Phase III screening used a simplified transport model and site-specific geologic and hydrologic parameters. Phase III neglected the infiltration-reducing engineered cover, the sorption influence of the vault system, dispersion in the vadose zone, vertical dispersion in the aquifer, and the release of radionuclides from specific waste forms. These conservatisms were relaxed in the Phase IV analysis which used a different model with more realistic parameters and assumptions. Phase I screening eliminated 143 of the 246 radionuclides in the inventory from further consideration because each had a half-life less than 1 year. An additional 13 were removed because there was no ingestion dose coefficient available. Of the 90 radionuclides carried forward from Phase I, 57 radionuclides had simulated Phase II screening doses exceeding 0.4 mrem/year. Phase III and IV screening compared the maximum predicted radionuclide concentration in the aquifer to maximum contaminant levels. Of the 57 radionuclides carried forward from Phase II, six radionuclides were identified in Phase III as having simulated future aquifer concentrations exceeding maximum contaminant limits. An additional seven radionuclides had simulated Phase III groundwater concentrations exceeding 1/100th of their respective maximum contaminant levels and were also retained for Phase IV analysis. The Phase IV analysis predicted that none of the thirteen remaining radionuclides would exceed the maximum contaminant levels for either site location. The predicted cumulative effective dose equivalent from all 13 radionuclides also was less than the dose criteria set forth in Department of Energy Order 435.1 for each site location. An evaluation of composite impacts showed one site is preferable over the other based on the potential for commingling of groundwater contamination with other facilities.

Annette Schafer, Arthur S. Rood, A. Jeffrey Sondrup

2011-12-23T23:59:59.000Z

392

Disposal of EOR and waste fluids. Final report  

SciTech Connect

When enhanced oil recovery (EOR) chemicals and/or waste fluids are injected into deep wells for recovery of oil or for disposal, they may pose environmental problems. This report, based only on a study of the literature, discusses injection waters, water compatibilities, and formation rocks with emphasis on clay minerals, corrosion, bacterial problems, EOR operations, waste fluid injection operations, injection well design, radioactive wastes, transport and fate processes, and mathematical models. Environmental problems can result from petroleum production operations such as: (1) primary recovery, (2) secondary recovery, (3) tertiary and/or EOR, and (4) waste disposal. Present environmental laws and probable future amendments are such that the petroleum production industry and government should implement research in specific areas. For example, characterization of a waste disposal site with respect to a contaminant such as an EOR chemical involves not only characterization of the site (injection well and reservoir), but also the contaminant (the EOR chemical). The major environmental impacts associated with EOR are: (1) possible contamination of surface and ground water, (2) possible contamination of agricultural land, (3) use of potable water in EOR operations, and (4) possible contamination of air quality (primarily related to steamflooding). This report addresses items 1 and 2 above. 12 refs., 1 fig.

Collins, A.G.; Madden, M.P.

1986-06-01T23:59:59.000Z

393

Hanford land disposal restrictions plan for mixed wastes  

Science Conference Proceedings (OSTI)

Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

Not Available

1990-10-01T23:59:59.000Z

394

Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts have been made to utilize the remaining disposal capacity within MDA G to the greatest extent possible. One approach for doing this has been to dispose of low-activity waste from cleanup operations at LANL in the headspace of selected disposal pits. Waste acceptance criteria (WAC) for the material placed in the headspace of pits 15, 37, and 38 have been developed (LANL, 2010) and the impacts of placing waste in the headspace of these units has been evaluated (LANL, 2012a). The efforts to maximize disposal efficiency have taken on renewed importance because of the disposal demands placed on MDA G by the large volumes of waste that are being generated at LANL by cleanup efforts. For example, large quantities of waste were recently generated by the retrieval of waste formerly disposed of at TA-21, MDA B. A portion of this material has been disposed of in the headspace of pit 38 in compliance with the WAC developed for that disposal strategy; a large amount of waste has also been sent to off-site facilities for disposal. Nevertheless, large quantities of MDA B waste remain that require disposal. An extension of pit 38 was proposed to provide the disposal capacity that will be needed to dispose of institutional waste and MDA B waste through 2013. A special analysis was prepared to evaluate the impacts of the pit extension (LANL, 2012b). The analysis concluded that the disposal unit could be extended with modest increases in the exposures projected for the Area G performance assessment and composite analysis, as long as limits were placed on the radionuclide concentrations in the waste that is placed in the headspace of the pit. Based, in part, on the results of the special analysis, the extension of pit 38 was approved and excavation of the additional disposal capacity was started in May 2012. The special analysis presented here uses performance modeling to identify a disposal plan for the placement of waste in pit 38. The modeling uses a refined design of the disposal unit and updated radionuclide inventories to identify a disposal configuration that promotes efficie

French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [URS Coporation

2012-06-26T23:59:59.000Z

395

Disposal Authorization Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and closure of the SDF, and is a requirement under the Department of Energy's (DOE) Radioactive Waste Management Manual 435.1-1. Disposal Authorization Statement More...

396

Operational Issues at the Environmental Restoration Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ERDF is operated by Stoller Corporation (Stoller) under subcontract to Washington Closure Hanford (WCH). Currently, six disposal cells comprise the ERDF, with four more...

397

Date: ____________ MATERIAL FOR HAZARDOUS WASTE DISPOSAL  

E-Print Network (OSTI)

Feb 2003 Date: ____________ MATERIAL FOR HAZARDOUS WASTE DISPOSAL 1) Source: Bldg: ________________________________________ Disinfection? cc YES, Autoclaved (each container tagged with `Treated Biomedical Waste') cc YES, Chemical

Sinnamon, Gordon J.

398

DOE - Office of Legacy Management -- Tuba City Mill Site - AZ 0-02  

Office of Legacy Management (LM)

Mill Site - AZ 0-02 Mill Site - AZ 0-02 FUSRAP Considered Sites Site: Tuba City Mill Site (AZ.0-02 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Tuba City, Arizona, Disposal Site Documents Related to Tuba City Mill Site 2012 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Tuba City, Arizona, Disposal Site. LMS/S09461. February 2013 2008 UMTRCA Title I Annual Report January 2009 Tuba City, Arizona February 2009 Groundwater and Surface Water Sampling at the Tuba City, Arizona Disposal Site May 2009 This fact sheet provides information about the Uranium Mill Tailings

399

WASTE DISPOSAL TREATMENT OF PWR HOT LAUNDRY AND DECONTAMINATION ROOM WASTES. Appendix I: SURVEY OF APPLICATION OF STANDARD WATER CLARIFICATION PROCEDURES TO PWR LAUNDRY AND DECONTAMINATION ROOM WASTES. Appendix II: CONFERENCE BETWEEN R. LLOYD AND J.R. POINTE TO ESTABLISH TENTATIVE PROCEDURES AND DETERMINE EQUIPMENT FOR APPLYING ADSORPTION-FLOCCULATION TREATMENT TO PWR LAUNDRY W  

SciTech Connect

This report and three appendixes were issued separately, but are cataloged as a unit. The necessity for treatment of hot laundry and decontamination room wastes prior to disposal at the out, and means for accomplishing this are discussed. A feasible procedure suggested consists of an adsorptionflocculation treatment with supernate disposal by dilution, pass through an evaporator, transfer to surge and decay tanks, with final sludge concentration in drums for retention and burial at sea. (T.R.H.)

Cohen, P.; Lloyd, R.; LaPointe, J.R.; Abrams, C.S.

1956-03-23T23:59:59.000Z

400

Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

The groundwater impacts have been analyzed for the proposed RH-LLW disposal facility. A four-step analysis approach was documented and applied. This assessment compared the predicted groundwater ingestion dose to the more restrictive of either the 25 mrem/yr all pathway dose performance objective, or the maximum contaminant limit performance objective. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives. The analysis was prepared to support the NEPA-EA for the top two ranking of the proposed RH-LLW sites. As such, site-specific conditions were incorporated for each set of results generated. These site-specific conditions were included to account for the transport of radionuclides through the vadose zone and through the aquifer at each site. Site-specific parameters included the thickness of vadose zone sediments and basalts, moisture characteristics of the sediments, and aquifer velocity. Sorption parameters (Kd) were assumed to be very conservative values used in Track II analysis of CERCLA sites at INL. Infiltration was also conservatively assumed to represent higher rates corresponding to disturbed soil conditions. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives.

Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ii disposal site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

The groundwater impacts have been analyzed for the proposed RH-LLW disposal facility. A four-step analysis approach was documented and applied. This assessment compared the predicted groundwater ingestion dose to the more restrictive of either the 25 mrem/yr all pathway dose performance objective, or the maximum contaminant limit performance objective. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives. The analysis was prepared to support the NEPA-EA for the top two ranking of the proposed RH-LLW sites. As such, site-specific conditions were incorporated for each set of results generated. These site-specific conditions were included to account for the transport of radionuclides through the vadose zone and through the aquifer at each site. Site-specific parameters included the thickness of vadose zone sediments and basalts, moisture characteristics of the sediments, and aquifer velocity. Sorption parameters (Kd) were assumed to be very conservative values used in Track II analysis of CERCLA sites at INL. Infiltration was also conservatively assumed to represent higher rates corresponding to disturbed soil conditions. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives.

Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

2011-08-01T23:59:59.000Z

402

Remote-Handled Low Level Waste Disposal Project Alternatives Analysis  

Science Conference Proceedings (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energys mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2010-10-01T23:59:59.000Z

403

Justification Of The Use Of Boreholes For Disposal Of Sealed Radiological Sources  

Science Conference Proceedings (OSTI)

Soon there will be only 14 states in two compacts that are able to dispose of Low Level Waste (LLW): the Northwest and Rocky Mountain compact with disposal options in Richland, Washington, and the Atlantic compact with disposal options in Barnwell, South Carolina. How do states not in one of the two compacts dispose of their LLW? The Off-Site Source Recovery Project can take possession and dispose of some of the unwanted transuranic sources at the Waste Isolation Pilot Plant (WIPP). However, there will be no path forward for states outside of the two compacts for disposal of their non-transuranic LLW. A solution that has been much discussed, debated and researched, but has not been put into wide scale practice, is the borehole disposal concept. It is the author's position that companies that drill and explore for oil have been disposing of sources in borehole-like structures for years. It should be noted that these companies are not purposely disposing of these sources, but the sources are irretrievable and must be abandoned. Additionally, there are Nuclear Regulatory Commission (NRC) regulations that must be followed to seal the well that contains the lost and abandoned source. According to the NRC Event Notification Reports database, there were a minimum of 29 reports of lost and abandoned sources in oil wells between December 1999 and October 2006. The sources were lost at depths between 2,018-18,887 feet, or 600-5,750 meters. The companies that are performing explorations with the aid of sealed radiological sources must follow regulation 10 CFR Part 39. Subsection 15 outlines the procedures that must be followed if sources are determined to be irretrievable and abandoned in place. If the NRC allows and has regulations in place for oil companies, why can't states and/or companies be allowed to dispose of LLW in a similar fashion?

Zarling, John [Los Alamos National Laboratory; Johnson, Peter [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

404

Phase II Corrective Action Investigation Plan for Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nevada Test Site, Nye County, Nevada, Revision 2  

SciTech Connect

This Phase II CAIP describes new work needed to potentially reduce uncertainty and achieve increased confidence in modeling results. This work includes data collection and data analysis to refine model assumptions, improve conceptual models of flow and transport in a complex hydrogeologic setting, and reduce parametric and structural uncertainty. The work was prioritized based on the potential to reduce model uncertainty and achieve an acceptable level of confidence in the model predictions for flow and transport, leading to model acceptance by NDEP and completion of the Phase II CAI stage of the UGTA strategy.

Jeff Wurtz

2009-07-01T23:59:59.000Z

405

Disposal of chemical agents and munitions stored at Umatilla Depot Activity, Hermiston, Oregon  

SciTech Connect

The Umatilla Depot Activity (UMDA) near Hermiston, Oregon, is one of eight US Army installations in the continental United States where lethal unitary chemical agents and munitions are stored, and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at UMDA consists of 11.6%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts), using a method based on five measures of risk for potential human health and ecosystem/environmental effects; the effectiveness and adequacy of emergency preparedness capabilities also played a key role in the FPEIS selection methodology. In some instances, the FPEIS included generic data and assumptions that were developed to allow a consistent comparison of potential impacts among programmatic alternatives and did not include detailed conditions at each of the eight installations. The purpose of this Phase 1 report is to examine the proposed implementation of on-site disposal at UMDA in light of more recent and more detailed data than those included in the FPEIS. Specifically, this Phase 1 report is intended to either confirm or reject the validity of on-site disposal for the UMDA stockpile. Using the same computation methods as in the FPEIS, new population data were used to compute potential fatalities from hypothetical disposal accidents. Results indicate that onsite disposal is clearly preferable to either continued storage at UMDA or transportation of the UMDA stockpile to another depot for disposal.

Zimmerman, G.P.; Hillsman, E.L.; Johnson, R.O.; Miller, R.L.; Patton, T.G.; Schoepfle, G.M.; Tolbert, V.R.; Feldman, D.L.; Hunsaker, D.B. Jr.; Kroodsma, R.L.; Morrissey, J.; Rickert, L.W.; Staub, W.P.; West, D.C.

1993-02-01T23:59:59.000Z

406

Used Fuel Disposition Campaign Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Campaign Disposal Research and Development Roadmap Prepared for U.S. Department of Energy Used Fuel Disposition Campaign September 2012 FCR&D-USED-2011-000065 REV 1 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or

407

Nevada Test Site Waste Acceptance Criteria (NTSWAC)  

SciTech Connect

This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

NNSA /NSO Waste Management Project

2008-06-01T23:59:59.000Z

408

Chemical Disposal The Office of Environmental Health & Safety operates a Chemical Waste Disposal Program  

E-Print Network (OSTI)

Chemical Disposal Dec, 2011 Chemicals: The Office of Environmental Health & Safety operates a Chemical Waste Disposal Program where all University chemical waste is picked up and sent out for proper disposal. (There are some chemicals that they will not take because of their extreme hazards

Machel, Hans

409

Radiological Surveys Performed in Support of the Demolition and Bulk Disposal Decommissioning Method  

SciTech Connect

Connecticut Yankee Atomic Power Company is decommissioning the Haddam Neck Plant using the 'Demolition and Bulk Disposal' method, or commonly referred to as 'Rip and Ship'. In general, completing the project using this method entails the removal of all irradiated fuel and highly contaminated systems and components, and the subsequent demolition of the above ground portions of most site structures. Since most structures are removed from site, cost and time savings are realized by virtually eliminating the need for remediation. However, this method of decommissioning creates more waste, both radiological and non-radiological, which must be segregated, packaged and disposed of properly. Prior to demolition, various types of radiological surveys must be performed and work controls put into place to minimize the spread of contamination to other areas of the site, and to prevent the inadvertent release of radioactive materials from the site. This paper will discuss the various types of radiological surveys performed, and controls implemented, in support of the demolition and bulk material disposal decommissioning method, with the emphasis on pre-demolition surveys. Details will be provided on the release criteria, survey design, survey implementation and data analysis on each of the various surveys, as well as a discussion on the controls implemented to prevent the various wastes from inadvertently being shipped to an inappropriate disposal facility. This paper will also strive to provide lessons learned for future projects that utilize the demolition and bulk disposal decommissioning method. (authors)

Yetter, R.F. [Babcock Services, Inc., 1840 Terminal Drive, Richland, WA 99352 (United States); Newson, C.T. [Connecticut Yankee Atomic Power Company, 362 Injun Hollow Road, East Hampton, CT 06424 (United States)

2006-07-01T23:59:59.000Z

410

Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona  

Science Conference Proceedings (OSTI)

Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

Not Available

1981-10-01T23:59:59.000Z

411

Study of the Mn-binding sites in photosystem II using antibodies raised against lumenal regions of the D1 and D2 reaction center proteins  

DOE Green Energy (OSTI)

The experiments discussed in this thesis focus on identifying the protein segments or specific amino acids which provide ligands to the Mn cluster of photosystem II (PS II). This Mn cluster plays a central role in the oxygen-evolving complex (OEC) of PS II. The Mn cluster is thought to be bound by lumenal regions of the PS II reaction center proteins known as D1 and D2. First, several peptides were synthesized which correspond to specific lumenal segments of the D1 and D2 proteins. Next, polyclonal antibodies were successfully elicited using three of these peptides. The peptides recognized by these antibodies correspond to protein segments of the spinach reaction center proteins: Ile-321 to Ala-344 of D1 (D1-a), Asp-319 to Arg-334 of D1 (D1-b), and Val-300 to Asn-319 of D2 (D2-a). These antibodies were then used in assays which were developed to structurally or functionally probe the potential Mn-binding regions of the D1 and D2 proteins.

Dalmasso, E.A.

1992-04-01T23:59:59.000Z

412

Petroleum Engineering Techniques for HLW Disposal  

Science Conference Proceedings (OSTI)

This paper describes why petroleum engineering techniques are of importance and can be used for underground disposal of HLW (high-level radioactive waste). It is focused on rock salt as a geological host medium in combination with disposal of the HLW canisters in boreholes drilled from the surface. Both permanent disposal and disposal with the option to retrieve the waste are considered. The paper starts with a description of the disposal procedure. Next disposal in deep boreholes is treated. Then the possible use of deviated boreholes and of multiple boreholes is discussed. Also waste isolation aspects and the implications of the HLW heat generation are treated. It appears that the use of deep boreholes can be beneficial, and also that--to a certain extent--borehole deviation offers possibilities. The benefits of using multiple boreholes are questionable for permanent disposal, while this technique cannot be applied for retrievable disposal. For the use of casing material, the additional temperature rise due to the HLW heat generation must be taken into account.

van den Broek, W. M. G. T.

2002-02-25T23:59:59.000Z

413

? Disposal concepts (enclosed): crystalline, clay/shale,  

E-Print Network (OSTI)

salt, deep borehole (Re: January, 2012 briefing) ? Thermal analysis for mined, enclosed concepts ? Finite element analysis for generic salt repository (waste package size up to 32-PWR) ? Open disposal concept development: shale unbackfilled, sedimentary backfilled, and hard-rock unsaturated (waste package sizes up to 32-PWR) ? Thermal analysis for mined, open concepts ? Cost estimation for 5 disposal concepts ? Summary and conclusions

Ernest Hardin (snl; Jim Blink; Harris Greenberg (llnl; Joe Carter (srnl; Rob Howard (ornl

2012-01-01T23:59:59.000Z

414

Evaluation of waste disposal by shale fracturing  

SciTech Connect

The shale fracturing process is evaluated as a means for permanent disposal of radioactive intermediate level liquid waste generated at the Oak Ridge National Laboratory. The estimated capital operating and development costs of a proposed disposal facility are compared with equivalent estimated costs for alternative methods of waste fixation.

Weeren, H.O.

1976-02-01T23:59:59.000Z

415

site_transition.cdr  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Legacy Legacy Management U.S. DEPARTMENT OF This fact sheet explains the process for transferring a site to the U.S. Department of Energy Office of Legacy Management. Site Transition Process Upon Cleanup Completion Introduction Transition Process After environmental remediation is completed at a site and there is no continuing mission, responsibility for the site and the associated records are transferred to the U.S. Department of Energy (DOE) Office of Legacy Management for post-closure management. Where residual hazards (e.g., disposal cells, ground water contamination) remain, active long-term surveillance and maintenance will be required to ensure protection of human health and the environment. The DOE Office of Legacy Management (LM) established transition guidance for remediated sites that will transfer to LM for long-term surveillance and maintenance. The

416

Alternatives for the disposal of NORM (naturally occurring radioactive materials) wastes in Texas  

SciTech Connect

Some of the Texas wastes containing naturally occurring radioactive materials (NORM) have been disposed of in a uranium mill tailings impoundment. There is currently no operating disposal facility in Texas to accept these wastes. As a result, some wastes containing extremely small amounts of radioactivity are sent to elaborate disposal sites at extremely high costs. The Texas Low-Level Radioactive Waste Disposal Authority has sponsored a study to investigate lower cost, alternative disposal methods for certain wastes containing small quantities of NORM. This paper presents the results of a multipathway safety analysis of various scenarios for disposing of wastes containing limited quantities of NORM in Texas. The wastes include pipe scales and sludges from oil and gas production, residues from rare-earth mineral processing, and water treatment resins, but exclude large-volume, diffuse wastes (coal fly ash, phosphogypsum). The purpose of the safety analysis is to define concentration and quantity limits for the key nuclides of NORM that will avoid dangerous radiation exposures under different waste disposal scenarios.

Nielson, K.K.; Rogers, V.C. (Rogers Associates Engineering Corporation, Salt Lake City, UT (USA)); Pollard, C.G. (Texas Low-Level Radioactive Waste Disposal Authority, Austin (USA))

1989-11-01T23:59:59.000Z

417

Land Management and Disposal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Management and Disposal Land Management and Disposal Land Management and Disposal Land Management and Disposal 42 USC 2201(g), Section 161(g), of the AEA 42 USC Section 2224, Section 174 DOE, July 2004, Real Property Desk Guide Requirements: Document Title P.L. 83-703 (68 Stat. 919), Section 161g Grants Special Authority as Required in the Act to Acquire, Sell, Dispose, etc., of Real Property in Furtherance of the Department's Mission (Under the Atomic Energy Act of 1954) P.L. 95-91, 91 Stat. 578 (Sections 302 and 347) Department of Energy Organizational Act of 1977, Delegated Authority for Real Property P.L. 106-580 Federal Property