Sample records for ii catalytic particulate

  1. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Final report

    SciTech Connect (OSTI)

    Weber, G.F.; Dunham, G.E.; Laudal, D.L.; Ness, S.R.; Schelkoph, G.L.

    1994-08-01T23:59:59.000Z

    The overall objective of the project proposed was to evaluate the catalyst-coated fabric filter concept for effective control of NO{sub 2} and particulate emissions simultaneously. General goals included demonstrating high removal efficiency of NO{sub x} and particulate matter, acceptable bag and catalyst life, and that process economics show a significant cost savings in comparison to a commercial SCR process and conventional particulate control. Specific goals included the following: reduce NO{sub x} emissions to 60 ppM or less; demonstrate particulate removal efficiency of >99.5%; demonstrate a bag/catalyst life of >1 year; Control ammonia slip to <25 ppM; show that catalytic fabric filtration can achieve a 50% cost savings over conventional fabric filtration and SCR control technology; determine compatibility with S0{sub 2} removal systems; and show that the concept results in a nonhazardous waste product.

  2. Mercury Oxidation via Catalytic Barrier Filters Phase II

    SciTech Connect (OSTI)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30T23:59:59.000Z

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  3. The effect of lubricant derived ash on the catalytic activity of diesel particulate filters

    E-Print Network [OSTI]

    Murray, Timothy Quinn

    2014-01-01T23:59:59.000Z

    A diesel particulate filter (DPF) is an aftertreatment device used to remove hazardous particulate matter (PM) from diesel engine exhaust. Modem emission restrictions have limited the acceptable amount of PM output by ...

  4. Catalytic fabric filtration for simultaneous NO sub x and particulate control

    SciTech Connect (OSTI)

    Weber, G.F.; Ness, S.R.; Laudal, D.L.; Dunham, G.

    1992-05-01T23:59:59.000Z

    The objective of this program is to develop advanced concepts for removal of NO{sub x} from flue gas emitted by coalfired utility boilers, or for the control of NO{sub x} formation by advanced combustion modification techniques. Funded projects are required to focus on the development of technology that significantly advances the state of the art using a process or a combination of processes capable of reducing NO{sub x}. emissions to 60 ppM or less. The concept must have successfully undergone sufficient laboratory-scale development to justify scaleup for further evaluation at the pilot scale (not to exceed 5 MWe in size). Other requirements include production of a nonhazardous waste or a salable byproduct. The concept should have application to both new and retrofit coal-fired systems. The concept should also show the potential for a 50% cost savings when compared to a commercial selective catalytic reduction (SCR) process capable of meeting the 60-ppM NO{sub x} emission limit.

  5. Tantalum pillard montmorillonite: II. Acidic and catalytic properties

    SciTech Connect (OSTI)

    Guiu, G.; Grange, P. [Universite Catholique de Louvain, Louvain-la-Neuve (Belgium)] [Universite Catholique de Louvain, Louvain-la-Neuve (Belgium)

    1997-06-01T23:59:59.000Z

    The acidic and catalytic properties of a series of Ta-PILCs synthesized with a different initial tantalum content were characterized by adsorption of gaseous probe molecules (TPD of ammonia and FTIR spectra of absorbed pyridine) and by the test reaction of 1-butanol dehydration. A large increase of acidity was noted in Ta-PILCs compared to Na-montmorillonite or tantalum oxide. Cross-linking pillars and silica layers of the clay induce stronger Lewis and new Bronsted sites. The lack of basic sites formation is evidenced by the dehydration of 1-butanol to butene selectivity (100%). The incorporation of the tantalum oxide between the montmorillonite sheets produce, within Ta-PILC, acid centers of the same nature as observed for the silicon-tantalum mixed oxides. 32 refs., 4 figs., 5 tabs.

  6. The catalytic reduction of nitric oxide with ammonia over tetraamminecopper (II) complexes

    E-Print Network [OSTI]

    Oates, Margaret Deron

    1979-01-01T23:59:59.000Z

    . Jack H. Lunsford The catalytic activity of tetraamminecopper(II) complexes in aque- ous solution in the reduction of nitric oxide with ammonia nas been in- vestigated. Kinetic data for the nitric oxide reduction reaction were determined in a closed... circulating system. Electron paramagnetic reso- spectroscopy was used to determine the zelative quantity of copper in the +2 oxidation state at different temperatures. A reaction mechanism is proposed from these experimental investigations in order...

  7. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, April 1--June 30, 1993

    SciTech Connect (OSTI)

    Weber, G.F.; Ness, S.R.; Laudal, D.L.; Dunham, G.E.

    1993-08-01T23:59:59.000Z

    The University of North Dakota Energy & Environmental Research Center (EERC), Owens-Corning Fiberglas Corporation (OCF), and Raytheon Engineers & Constructors (RE&C), are conducting research to develop a catalytic fabric filter (CFF) for simultaneous NO{sub x} and particulate control. Advances at OCF have shown that a high-activity catalyst can be applied to a high-temperature woven glass cloth resulting in a fabric filter material that can operate at temperatures higher than commercially available, coated glass fabric. The NO{sub x} is removed by catalytic reduction with ammonia to form nitrogen and water. The catalyst employed at this time is vanadium/titanium, but the exact catalyst composition and the unique method of applying the catalyst to high-temperature glass fabric are the property of OCF. Other catalyst options are being evaluated by OCF in order to improve catalyst performance and minimize catalyst cost. Bench-scale experimental results have shown that over 90% NO{sub x} removal can be achieved, that the catalyst/fabric has promising self-abrasion characteristics, and that the potential exists for substantially reduced cost compared to conventional SCR/fabric filtration technology. However, development of the technology requires further evaluation of air-to-cloth ratio effects, ammonia slip, SO{sub 2} oxidation to SO{sub 3}, temperature cycling, catalyst-coated fabric preparation, fuel impacts, fabric cleaning (reverse-gas versus pulse-jet), catalyst life (poisoning and resistance to erosion), and filter performance/life (particulate control, differential pressure, and durability).

  8. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, October 1--December 31, 1993

    SciTech Connect (OSTI)

    Weber, G.F.; Ness, S.R.; Schelkoph, G.L.

    1994-01-01T23:59:59.000Z

    The EERC approach to meeting the program objective involves the development of a CFF for simultaneous NO. and particulate control. The idea of applying either a permanent or throwaway catalyst to a high-temperature fabric filter for NO. control is not new (1--4). However, advances at OCF have shown that a high-activity catalyst can be applied to a high-temperature woven glass cloth, resulting in a fabric filter material that can operate at temperatures higher than commercially available, coated glass fabric. The NO. is removed by catalytic reduction with ammonia to form nitrogen and water. The catalyst employed at this time is vanadium-titanium, but the exact catalyst composition and the unique method of applying the catalyst to high-temperature glass fabric are the property of OCF (5). Other catalyst options are being evaluated by OCF in order to improve catalyst performance and minimize catalyst cost. Bench-scale experimental results have shown that over 90% NO. removal can be achieved, that the catalyst-coated fabric has promising self-abrasion characteristics, and that the potential exists for substantially reduced cost compared to conventional SCR and fabric filtration technologies (6,7). However, development of the technology required further evaluation of air-to-cloth ratio effects, ammonia slip, SO{sub 2} oxidation to SO{sub 3}, temperature cycling, catalyst-coated fabric preparation, fuel impacts, fabric cleaning (reverse-gas versus pulse-jet), catalyst life (poisoning and resistance to erosion), and filter performance/life (particulate control, differential pressure, and durability).

  9. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, July 1--September 30, 1993

    SciTech Connect (OSTI)

    Weber, G.F.; Ness, S.R.; Schelkoph, G.L.

    1993-11-01T23:59:59.000Z

    The EERC approach to meeting the program objective involves the development of a CFF for simultaneous NO{sub x} and particulate control. The idea of applying either a permanent or throwaway catalyst to a high-temperature fabric filter for NO{sub x} control is not new. However, advances at OCF have shown that a high-activity catalyst can be applied to a high-temperature woven glass cloth, resulting in a fabric filter material that can operate at temperatures higher than commercially available, coated glass fabric. The NO{sub x} is removed by catalytic reduction with ammonia to form nitrogen and water. The catalyst employed at this time is vanadium-titanium, but the exact catalyst composition and the unique method of applying the catalyst to high-temperature glass fabric are the property of OCF. Other catalyst options are being evaluated by OCF in order to improve catalyst performance and minimize catalyst cost. Bench-scale experimental results have shown that over 90% NO{sub x} removal can be achieved, that the catalyst-fabric has promising self-abrasion characteristics, and that the potential exists for substantially reduced cost compared to conventional SCR and fabric filtration technologies. However, development of the technology required further evaluation of air-to-cloth ratio effects, ammonia slip, SO{sub 2} oxidation to SO{sub 3}, temperature cycling, catalyst-coated fabric preparation, fuel impacts, fabric cleaning (reverse-gas versus pulse-jet), catalyst life (poisoning and resistance to erosion), and filter performance/life (particulate control, differential pressure, and durability).

  10. Particulate air pollution induces arrhythmia via oxidative stress and calcium calmodulin kinase II activation

    SciTech Connect (OSTI)

    Kim, Jin-Bae [The Division of Cardiology, Kyung Hee University College of Medicine, 1 Hoegi-dong, Dongdaemun-Gu, Seoul (Korea, Republic of)] [The Division of Cardiology, Kyung Hee University College of Medicine, 1 Hoegi-dong, Dongdaemun-Gu, Seoul (Korea, Republic of); Kim, Changsoo [The Department of Preventive Medicine, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of)] [The Department of Preventive Medicine, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Choi, Eunmi [Cardiovascular Research Institute and Severance Biomedical Science Institute, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of)] [Cardiovascular Research Institute and Severance Biomedical Science Institute, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Park, Sanghoon; Park, Hyelim; Pak, Hui-Nam; Lee, Moon-Hyoung [The Division of Cardiology, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of)] [The Division of Cardiology, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Shin, Dong Chun [The Department of Preventive Medicine, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of)] [The Department of Preventive Medicine, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Hwang, Ki-Chul [Cardiovascular Research Institute and Severance Biomedical Science Institute, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of) [Cardiovascular Research Institute and Severance Biomedical Science Institute, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); The Division of Cardiology, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Joung, Boyoung, E-mail: cby6908@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of)] [The Division of Cardiology, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of)

    2012-02-15T23:59:59.000Z

    Ambient particulate matter (PM) can increase the incidence of arrhythmia. However, the arrhythmogenic mechanism of PM is poorly understood. This study investigated the arrhythmogenic mechanism of PM. In Sprague–Dawley rats, QT interval was increased from 115.0 ± 14.0 to 142.1 ± 18.4 ms (p = 0.02) after endotracheal exposure of DEP (200 ?g/ml for 30 min, n = 5). Ventricular premature contractions were more frequently observed after DEP exposure (100%) than baseline (20%, p = 0.04). These effects were prevented by pretreatment of N-acetylcysteine (NAC, 5 mmol/L, n = 3). In 12 Langendorff-perfused rat hearts, DEP infusion of 12.5 ?g/ml for 20 min prolonged action potential duration (APD) at only left ventricular base increasing apicobasal repolarization gradients. Spontaneous early afterdepolarization (EAD) and ventricular tachycardia (VT) were observed in 8 (67%) and 6 (50%) hearts, respectively, versus no spontaneous triggered activity or VT in any hearts before DEP infusion. DEP-induced APD prolongation, EAD and VT were successfully prevented with NAC (5 mmol/L, n = 5), nifedipine (10 ?mol/L, n = 5), and active Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) blockade, KN 93 (1 ?mol/L, n = 5), but not by thapsigargin (200 nmol/L) plus ryanodine (10 ?mol/L, n = 5) and inactive CaMKII blockade, KN 92 (1 ?mol/L, n = 5). In neonatal rat cardiomyocytes, DEP provoked ROS generation in dose dependant manner. DEP (12.5 ?g/ml) induced apoptosis, and this effect was prevented by NAC and KN 93. Thus, this study shows that in vivo and vitro exposure of PM induced APD prolongation, EAD and ventricular arrhythmia. These effects might be caused by oxidative stress and CaMKII activation. -- Highlights: ? The ambient PM consistently prolonged repolarization. ? The ambient PM induced triggered activity and ventricular arrhythmia. ? These effects were prevented by antioxidants, I{sub CaL} blockade and CaMKII blockade. ? The ambient PM can induce arrhythmia via oxidative stress and activation of CaMKII.

  11. Method for recovering catalytic elements from fuel cell membrane electrode assemblies

    DOE Patents [OSTI]

    Shore, Lawrence (Edison, NJ); Matlin, Ramail (Berkeley Heights, NJ); Heinz, Robert (Ludwigshafen, DE)

    2012-06-26T23:59:59.000Z

    A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.

  12. Ni(II) Salts and 2-Propanol Effect Catalytic Reductive Coupling of Epoxides and Alkynes

    E-Print Network [OSTI]

    Beaver, Matthew G.

    A Ni-catalyzed reductive coupling of alkynes and epoxides using Ni(II) salts and simple alcohol reducing agents is described. Whereas previously reported conditions relied on Ni(cod)2 and Et3B, this system has several ...

  13. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect (OSTI)

    Weber, G.F.; Ness, S.R.; Laudal, D.L.; Dunham, G.

    1992-05-01T23:59:59.000Z

    The objective of this program is to develop advanced concepts for removal of NO{sub x} from flue gas emitted by coalfired utility boilers, or for the control of NO{sub x} formation by advanced combustion modification techniques. Funded projects are required to focus on the development of technology that significantly advances the state of the art using a process or a combination of processes capable of reducing NO{sub x}. emissions to 60 ppM or less. The concept must have successfully undergone sufficient laboratory-scale development to justify scaleup for further evaluation at the pilot scale (not to exceed 5 MWe in size). Other requirements include production of a nonhazardous waste or a salable byproduct. The concept should have application to both new and retrofit coal-fired systems. The concept should also show the potential for a 50% cost savings when compared to a commercial selective catalytic reduction (SCR) process capable of meeting the 60-ppM NO{sub x} emission limit.

  14. Catalytic Distillation

    E-Print Network [OSTI]

    Smith, L. A., Jr.; Hearn, D.; Wynegar, D. P.

    1984-01-01T23:59:59.000Z

    Catalytic Distillation' refers to a chemical process which performs both a catalyzed reaction and primary fractionation of the reaction components simultaneously. A structured catalyst which also is an effective distillation component has been...

  15. Lanthanides as particulate flow markers in ruminants

    E-Print Network [OSTI]

    Conner, Michael Cronan

    1977-01-01T23:59:59.000Z

    Suhj ect: Anindl I'lutri tion LANTHANIDES AS PARTICULATE FLOW NARVERS IN RUNINANTS A Thesis by MICUAEL CRONAN CONNER Approved as to style and content by: Yie, aber+ (Yieniber) August l977 ABSTPACT Lanthanides as Particulate Flow Markers... in Ruminants (Auoust 1977) Michael Cronan Conner, B. S. , California Polytechnic State University at San Luis Gbispo Chairman of Advisory Committee: Gr. Ii. C, Ellis The validity of lanthanides as par+iculate flow markers was evaluated by comparing...

  16. Tyrosine kinase activity of a Ca{sup 2+}/calmodulin-dependent protein kinase II catalytic fragment

    SciTech Connect (OSTI)

    Sugiyama, Yasunori [Department of Life Sciences, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kagawa 761-0795 (Japan); Ishida, Atsuhiko [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Sueyoshi, Noriyuki [Department of Life Sciences, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kagawa 761-0795 (Japan); Kameshita, Isamu [Department of Life Sciences, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kagawa 761-0795 (Japan)], E-mail: kamesita@ag.kagawa-u.ac.jp

    2008-12-12T23:59:59.000Z

    A 30-kDa fragment of Ca{sup 2+}/calmodulin-dependent protein kinase II (30K-CaMKII) is a constitutively active protein Ser/Thr kinase devoid of autophosphorylation activity. We have produced a chimeric enzyme of 30K-CaMKII (designated CX{sub 40}-30K-CaMKII), in which the N-terminal 40 amino acids of Xenopus Ca{sup 2+}/calmodulin-dependent protein kinase I (CX{sub 40}) were fused to the N-terminal end of 30K-CaMKII. Although CX{sub 40}-30K-CaMKII exhibited essentially the same substrate specificity as 30K-CaMKII, it underwent significant autophosphorylation. Surprisingly, its autophosphorylation site was found to be Tyr-18 within the N-terminal CX{sub 40} region of the fusion protein, although it did not show any Tyr kinase activity toward exogenous substrates. Several lines of evidence suggested that the autophosphorylation occurred via an intramolecular mechanism. These data suggest that even typical Ser/Thr kinases such as 30K-CaMKII can phosphorylate Tyr residues under certain conditions. The possible mechanism of the Tyr residue autophosphorylation is discussed.

  17. Airborne Particulate Threat Assessment

    SciTech Connect (OSTI)

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31T23:59:59.000Z

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our findings and APICD Gen II subsystems for automated collection, deposition and detection of ambient particulate matter. Key findings from the APTA Program include: Ambient biological PM taxonomy; Demonstration of key subsystems needed for autonomous bioaerosol detection; System design; Efficient electrostatic collection; Automated bioagent recognition; Raman analysis performance validating Td<9 sec; Efficient collection surface regeneration; and Development of a quantitative bioaerosol defection model. The objective of the APTA program was to advance the state of our knowledge of ambient background PM composition. Operation of an automated aerosol detection system was enhanced by a more accurate assessment of background variability, especially for sensitive and specific sensing strategies like Raman detection that are background-limited in performance. Based on this improved knowledge of background, the overall threat detection performance of Raman sensors was improved.

  18. Comparative Analysis on the Effects of Diesel Particulate Filter and

    E-Print Network [OSTI]

    Wu, Mingshen

    Comparative Analysis on the Effects of Diesel Particulate Filter and Selective Catalytic Reduction February 15, 2008. Revised manuscript received May 2, 2008. Accepted May 27, 2008. Two methods, diesel that these aftertreatment systems may have on the emission levels of a wide spectrum of chemical species found in diesel

  19. VOC Destruction by Catalytic Combustion Microturbine

    SciTech Connect (OSTI)

    Tom Barton

    2009-03-10T23:59:59.000Z

    This project concerned the application of a catalytic combustion system that has been married to a micro-turbine device. The catalytic combustion system decomposes the VOC's and transmits these gases to the gas turbine. The turbine has been altered to operate on very low-level BTU fuels equivalent to 1.5% methane in air. The performance of the micro-turbine for VOC elimination has some flexibility with respect to operating conditions, and the system is adaptable to multiple industrial applications. The VOC source that was been chosen for examination was the emissions from coal upgrading operations. The overall goal of the project was to examine the effectiveness of a catalytic combustion based system for elimination of VOCs while simultaneously producing electrical power for local consumption. Project specific objectives included assessment of the feasibility for using a Flex-Microturbine that generates power from natural gas while it consumes VOCs generated from site operations; development of an engineering plan for installation of the Flex-Microturbine system; operation of the micro-turbine through various changes in site and operation conditions; measurement of the VOC destruction quantitatively; and determination of the required improvements for further studies. The micro-turbine with the catalytic bed worked effectively to produce power on levels of fuel much lower than the original turbine design. The ability of the device to add or subtract supplemental fuel to augment the amount of VOC's in the inlet air flow made the device an effective replacement for a traditional flare. Concerns about particulates in the inlet flow and the presence of high sulfur concentrations with the VOC mixtures was identified as a drawback with the current catalytic design. A new microturbine design was developed based on this research that incorporates a thermal oxidizer in place of the catalytic bed for applications where particulates or contamination would limit the lifetime of the catalytic bed.

  20. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01T23:59:59.000Z

    LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

  1. Passive regeneration of catalyst coated knitted fiber diesel particulate traps

    SciTech Connect (OSTI)

    Mayer, A.; Emig, G.; Gmehling, B.; Popovska, N.; Hoelemann, K.; Buck, A.

    1996-09-01T23:59:59.000Z

    Knitted fiber particulate traps facilitate deep-bed structures. These have excellent filtration properties, particularly for ultra-fine particulates. They are also suitable as substrate for catalytic processes. The two characteristics are: high total surface area of the filaments, and good mass transfer. These are prerequisites for intense catalytic activity. The deposited soot is uniformly distributed. Therefore, temperature peaks are avoided during regeneration. The tested coatings lower the regeneration temperature by about 200 C to burn-off temperatures below 350 C. Further improvements seem attainable. Thus, a purely passive regeneration appears feasible for most applications. The system is autonomous and cost effective. However, in extreme low load situations, e.g. city bus services, the necessary exhaust temperatures are not attained. Hence, burners or electrical heating is necessary for trap regeneration. Nevertheless, catalytic coating is attractive for substantially reducing the regeneration energy requirements.

  2. Catalytic Coherence

    E-Print Network [OSTI]

    Johan Aberg

    2014-10-20T23:59:59.000Z

    Due to conservation of energy we cannot directly turn a quantum system with a definite energy into a superposition of different energies. However, if we have access to an additional resource in terms of a system with a high degree of coherence, as for standard models of laser light, we can overcome this limitation. The question is to what extent coherence gets degraded when utilized. Here it is shown that coherence can be turned into a catalyst, meaning that we can use it repeatedly without ever diminishing its power to enable coherent operations. This finding stands in contrast to the degradation of other quantum resources, and has direct consequences for quantum thermodynamics, as it shows that latent energy that may be locked into superpositions of energy eigenstates can be released catalytically.

  3. Catalytic reactor

    DOE Patents [OSTI]

    Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

    2009-03-10T23:59:59.000Z

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  4. Particulate Matter Standards (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law establishes that the Ohio Environmental Protection Agency sets the standards for particulate emissions from a variety of sources, including facilities that generate power. ...

  5. Airborne particulate discriminator

    DOE Patents [OSTI]

    Creek, Kathryn Louise (San Diego, CA); Castro, Alonso (Santa Fe, NM); Gray, Perry Clayton (Los Alamos, NM)

    2009-08-11T23:59:59.000Z

    A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

  6. CATALYTIC LIQUEFACTION OF BIOMASS

    E-Print Network [OSTI]

    Seth, Manu

    2012-01-01T23:59:59.000Z

    liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

  7. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01T23:59:59.000Z

    Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

  8. Microwave regenerated particulate trap

    SciTech Connect (OSTI)

    McDonald, A.C. Jr.; Yonushonis, T.M. [Cummins Engine Co., Inc., Columbus, IN (United States); Haberkamp, W.C.; Mako, F.; Len, L.K,; Silberglitt, R.; Ahmed, I. [FM Technologies, Inc., Fairfax, VA (United States)

    1997-12-31T23:59:59.000Z

    It has been demonstrated that a fibrous particulate filter can extract particulate matter from the diesel exhaust. However, additional engineering efforts remains to achieve the design target of 90%. It has also be shown that with minor modifications magnetrons produced for home ovens can endure a simulated diesel operating environment. Much work remains to develop a robust product ready to complete extensive engine testing and evaluation. These efforts include: (1) additional environmental testing of magnetrons; (2) vibration testing of the filter in the housing; (3) evaluating alternative methods/designs to seal the center bore; and (4) determining the optimum coating thickness that provides sufficient structural integrity while maintaining rapid heating rates.

  9. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Electrically-Assisted Diesel Particulate Filter Regeneration...

  10. Rich catalytic injection

    DOE Patents [OSTI]

    Veninger, Albert (Coventry, CT)

    2008-12-30T23:59:59.000Z

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  11. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    W. R. Laster; E. Anoshkina; P. Szedlacsek

    2006-03-31T23:59:59.000Z

    Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

  12. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1984-01-01T23:59:59.000Z

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  13. Particulate matter dynamics

    E-Print Network [OSTI]

    Cionco, Rodolfo G; Caligaris, Marta G

    2012-01-01T23:59:59.000Z

    A substantial fraction of the particulate matter released into the atmosphere by industrial or natural processes corresponds to particles whose aerodynamic diameters are greater than 50 mm. It has been shown that, for these particles, the classical description of Gaussian plume diffusion processes, is inadequate to describe the transport and deposition. In this paper we present new results concerning the dispersion of coarse particulate matter. The simulations are done with our own code that uses the Bulirsch Stoer numerical integrator to calculate threedimensional trajectories of particles released into the environment under very general conditions. Turbulent processes are simulated by the Langevin equation and weather conditions are modeled after stable (Monin-Obukhov length L> 0) and unstable conditions (L <0). We present several case studies based on Monte Carlo simulations and discusses the effect of weather on the final deposition of these particles.

  14. Regenerable particulate filter

    DOE Patents [OSTI]

    Stuecker, John N. (Albuquerque, NM); Cesarano, III, Joseph (Albuquerque, NM); Miller, James E. (Albuquerque, NM)

    2009-05-05T23:59:59.000Z

    A method of making a three-dimensional lattice structure, such as a filter used to remove particulates from a gas stream, where the physical lattice structure is designed utilizing software simulation from pre-defined mass transfer and flow characteristics and the designed lattice structure is fabricated using a free-form fabrication manufacturing technique, where the periodic lattice structure is comprised of individual geometric elements.

  15. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

    2000-12-01T23:59:59.000Z

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

  16. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    W. R. Laster; E. Anoshkina

    2008-01-31T23:59:59.000Z

    Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  17. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    Laster, W. R.; Anoshkina, E.

    2008-01-31T23:59:59.000Z

    Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  18. Electro Catalytic Oxidation (ECO) Operation

    SciTech Connect (OSTI)

    Morgan Jones

    2011-03-31T23:59:59.000Z

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large scale capture and sequestration projects. The objectives of this project were to prove at a commercial scale that ECO is capable of extended operations over a range of conditions, that it meets the reliability requirements of a typical utility, and that the fertilizer co-product can be consistently generated, providing ECO with an economic advantage over conventional technologies currently available. Further objectives of the project were to show that the ECO system provides flue gas that meets the inlet standards necessary for ECO{sub 2} to operate, and that the outlet CO{sub 2} and other constituents produced by the ECO{sub 2} pilot can meet Kinder-Morgan pipeline standards for purposes of sequestration. All project objectives are consistent with DOE's Pollution Control Innovations for Power Plants program goals.

  19. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1982-01-01T23:59:59.000Z

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  20. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1982-06-22T23:59:59.000Z

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  1. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1984-04-17T23:59:59.000Z

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  2. Particulate Matter Aerosols

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics OneOutreach EffortsSearchParticulate Matter

  3. II

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ I 1' . _ .t.fiom/ I'l7aaII

  4. II

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ I 1' . _ .t.fiom/ I'l7aaII

  5. II*

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14Has Hydrocarbon, a 1 II

  6. Apparatus for particulate matter analysis

    DOE Patents [OSTI]

    Gundel, Lara A.; Apte, Michael G.; Hansen, Anthony D.; Black, Douglas R.

    2007-01-30T23:59:59.000Z

    The apparatus described herein is a miniaturized system for particle exposure assessment (MSPEA) for the quantitative measurement and qualitative identification of particulate content in gases. The present invention utilizes a quartz crystal microbalance (QCM) or other mass-sensitive temperature compensated acoustic wave resonator for mass measurement. Detectors and probes and light sources are used in combination for the qualitative determination of particulate matter.

  7. Particle Number & Particulate Mass Emissions Measurements on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro...

  8. Catalytic nanoporous membranes

    DOE Patents [OSTI]

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27T23:59:59.000Z

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  9. Steam reformer with catalytic combustor

    DOE Patents [OSTI]

    Voecks, Gerald E. (La Crescenta, CA)

    1990-03-20T23:59:59.000Z

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  10. RETORT WATER PARTICULATES

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Effluents from In Situ Oil Shale Processing. Proceedings ofDecomposition of Colorado Oil Shale: II, Carbonate Minerals.LBL-8829(1 Presented at the Oil Shale Sampling, Analysis and

  11. RETORT WATER PARTICULATES

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Effluents from In Situ Oil Shale Processing. Proceedings ofDecomposition of Colorado Oil Shale: II, Carbonate Minerals.Suspension of Spent Shale Fines and Oil~ Oil shale becomes

  12. A Photosynthetic Hydrogel for Catalytic Hydrogen Production ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Photosynthetic Hydrogel for Catalytic Hydrogen Production Home > Research > ANSER Research Highlights > A Photosynthetic Hydrogel for Catalytic Hydrogen Production...

  13. Electrically heated particulate filter restart strategy

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-07-12T23:59:59.000Z

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a propagation module that estimates a propagation status of combustion of particulate matter in the particulate filter. A regeneration module controls current to the particulate filter to re-initiate regeneration based on the propagation status.

  14. Catalytic coal liquefaction process

    DOE Patents [OSTI]

    Garg, D.; Sunder, S.

    1986-12-02T23:59:59.000Z

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  15. Electrical diesel particulate filter (DPF) regeneration

    DOE Patents [OSTI]

    Gonze, Eugene V; Ament, Frank

    2013-12-31T23:59:59.000Z

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  16. Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell Applications1

    E-Print Network [OSTI]

    Peng, Huei

    Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell the anode field of fuel cell stack is considered. The first reactor that generates the majority in the fuel cell anode and (ii) the temperature of the catalytic partial oxidation reactor during transient

  17. POLLUTANT ASSOCIATIONS WITH PARTICULATES

    E-Print Network [OSTI]

    Pitt, Robert E.

    husband and my family. Without your love and support during all the years of my academic endeavors I would ii #12;LIST OF ABBREVIATIONS AND SYMBOLS Zn Zinc Cu Copper Cd Cadmium Pb Lead Mg Magnesium Mn CSO Combined Sewer Overflow USEPA United States Environmental Protection Agency ORP Ortho

  18. Hydrocarbon-enhanced particulate filter regeneration via microwave ignition

    DOE Patents [OSTI]

    Gonze, Eugene V. (Pinckney, MI); Brown, David B. (Brighton, MI)

    2010-02-02T23:59:59.000Z

    A regeneration method for a particulate filter includes estimating a quantity of particulate matter trapped within the particulate filter, comparing the quantity of particulate matter to a predetermined quantity, heating at least a portion of the particulate filter to a combustion temperature of the particulate matter, and introducing hydrocarbon fuel to the particulate filter. The hydrocarbon fuel facilitates combustion of the particulate matter to regenerate the particulate filter.

  19. Catalytic two-stage coal hydrogenation and hydroconversion process

    DOE Patents [OSTI]

    MacArthur, James B. (Denville, NJ); McLean, Joseph B. (So. Somerville, NJ); Comolli, Alfred G. (Yardley, PA)

    1989-01-01T23:59:59.000Z

    A process for two-stage catalytic hydrogenation and liquefaction of coal to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal is slurried with a process-derived liquid solvent and fed at temperature below about 650.degree. F. into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils at conditions favoring hydrogenation reactions. The first stage reactor is maintained at 650.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-60 lb coal/hr/ft.sup.3 reactor space velocity. The partially hydrogenated material from the first stage reaction zone is passed directly to the close-coupled second stage catalytic reaction zone maintained at a temperature at least about 25.degree. F. higher than for the first stage reactor and within a range of 750.degree.-875.degree. F. temperature for further hydrogenation and thermal hydroconversion reactions. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, which results in significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of undesirable residuum and unconverted coal and hydrocarbon gases, with use of less energy to obtain the low molecular weight products, while catalyst life is substantially increased.

  20. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Particulate Filters...

  1. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

    2009-06-02T23:59:59.000Z

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  2. Concentric catalytic combustor

    DOE Patents [OSTI]

    Bruck, Gerald J. (Oviedo, FL); Laster, Walter R. (Oviedo, FL)

    2009-03-24T23:59:59.000Z

    A catalytic combustor (28) includes a tubular pressure boundary element (90) having a longitudinal flow axis (e.g., 56) separating a first portion (94) of a first fluid flow (e.g., 24) from a second portion (95) of the first fluid flow. The pressure boundary element includes a wall (96) having a plurality of separate longitudinally oriented flow paths (98) annularly disposed within the wall and conducting respective portions (100, 101) of a second fluid flow (e.g., 26) therethrough. A catalytic material (32) is disposed on a surface (e.g., 102, 103) of the pressure boundary element exposed to at least one of the first and second portions of the first fluid flow.

  3. Catalytic hydrodesulfurization of bitumen

    SciTech Connect (OSTI)

    Sharma, R.K.; Olson, E.S. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-31T23:59:59.000Z

    Investigations of the catalytic hydrodesulfurization of Venezuela bitumen and its water emulsion (Orimulsion) were carried out. This material contained a large amount of sulfur and organometallics, such as vanadium and nickel compounds. A variety of nickel and molybdenum catalysts were prepared. These, as well as two commercial catalysts, were tested with Orimulsion and vacuum-dried, pentane-insoluble and soluble bitumen. Catalytic hydrotreatment removed up to 75% of sulfur from the bitumen. Hydrodesulfurization was found to be affected by reaction temperature, reaction time, catalyst, and feed material. Moisture-free bitumen and a pentane-soluble bitumen fraction were desulfurized more effectively than Orimulsion. Zeolite-based catalysts gave higher desulfurization than synthetic clay catalysts.

  4. Catalytic reforming catalyst

    SciTech Connect (OSTI)

    Buss, W.C.; Kluksdahl, H.E.

    1980-12-09T23:59:59.000Z

    An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

  5. Effects of Advanced Combustion Technologies on Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Technologies on Particulate Matter Emissions Characteristics Effects of Advanced Combustion Technologies on Particulate Matter Emissions Characteristics...

  6. Catalytic reforming methods

    DOE Patents [OSTI]

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14T23:59:59.000Z

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  7. Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Preserving Diesel Exhaust...

  8. Plasma regenerated particulate trap and NO.sub.x reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA); Brusasco, Raymond M. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    A non-catalytic two-stage process for removal of NO.sub.x and particulates from engine exhaust comprises a first stage that plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, and a second stage, which preferably occurs simultaneously with the first stage, that converts NO.sub.2 and carbon soot particles to respective environmentally benign gases that include N.sub.2 and CO.sub.2. By preconverting NO to NO.sub.2 in the first stage, the efficiency of the second stage for NO.sub.x reduction is enhanced while carbon soot from trapped particulates is simultaneously converted to CO.sub.2 when reacting with the NO.sub.2 (that converts to N.sub.2). For example, an internal combustion engine exhaust is connected by a pipe to a chamber where carbon-containing particulates are electrostatically trapped or filtered and a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. Volatile hydrocarbons (C.sub.x H.sub.y) from the trapped particulates are oxidized in the plasma and the remaining soot from the particulates reacts with the NO.sub.2 to convert NO.sub.2 to N.sub.2, and the soot to CO.sub.2. The nitrogen exhaust components remain in the gas phase throughout the process, with no accompanying adsorption.

  9. 7, 1569315721, 2007 Particulate PAH

    E-Print Network [OSTI]

    Boyer, Edmond

    dioxide, particulate PAHs are most strongly correlated with NOx. Mexico City's PAH-to-black carbon mass and particu- late properties at six locations throughout the city. The measurements were intended to5 support of sources and15 ages of particles are present. Among carbon monoxide, nitrogen oxides (NOx), and carbon

  10. Catalytic hydrodesulfurization of bitumen

    SciTech Connect (OSTI)

    Sharma, R.K.; Olson, E.S. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-31T23:59:59.000Z

    Investigations of the catalytic hydrodesulfurization of Venezuela bitumen and its water-emulsion (Orimulsion) were carried out. A variety of catalysts were prepared and some impregnated with molybdenum and sulfided. These and two commercial catalysts were tested with Orimulsion, vacuum-dried Orimulsion, and pentane-insoluble and soluble Orimulsion. Hydrotreatment of feed material was done in a 15-mL tube reactor using a variety of catalysts at 390{degrees}C under an initial 1000-psi hydrogen pressure with a reaction time of 1-3 hours. The hydrotreated products were analyzed by total sulfur analysis. Catalytic hydrotreatment removed up to 75% of sulfur from the bitumen. Nickel and/or molybdenum impregnation on various supports promoted sulfur removal from Orimulsion. Hydrodesulfurization was found to be affected by reaction temperature, reaction time, catalyst, and feed material. A moisture-free bitumen and a pentane-soluble bitumen fraction were desulfurized more effectively than Orimulsion. Zeolite-based catalysts gave higher desulfurization than synthetic clay catalysts or commercial AMOCAT and HDN catalysts.

  11. Novel Catalytic Membrane Reactors

    SciTech Connect (OSTI)

    Stuart Nemser, PhD

    2010-10-01T23:59:59.000Z

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  12. Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx

    SciTech Connect (OSTI)

    McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

    2003-08-24T23:59:59.000Z

    The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

  13. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants...

  14. Methods and apparatus for catalytic hydrothermal gasification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods and apparatus for catalytic hydrothermal gasification of biomass Re-direct Destination: Continuous processing of wet biomass feedstock by catalytic hydrothermal...

  15. Synthesis, Characterization, and Catalytic Function of Novel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization, and Catalytic Function of Novel Highly Dispersed Tungsten Oxide Catalysts on Mesoporous Silica . Synthesis, Characterization, and Catalytic Function of Novel...

  16. Preparation, Characterization, and Catalytic Properties of Tungsten...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preparation, Characterization, and Catalytic Properties of Tungsten Trioxide Cyclic Trimers on FeO(111)Pt(111). Preparation, Characterization, and Catalytic Properties of Tungsten...

  17. The catalytic oxidation of propane 

    E-Print Network [OSTI]

    Sanderson, Charles Frederick

    1949-01-01T23:59:59.000Z

    THE CATALYTIC OXIDATION OP PROPANE A Thesis By Charles Frederick Sandersont * * June 1949 Approval as to style and content recommended: Head of the Department of Chemical Engineering THE CATALYTICi OXIDATTON OF PROPANE A Thesis By Charles... Frederick ;Sandersonit * June 1949 THE CATALYTIC OXIDATION OP PROPANE A Thesis Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Major...

  18. The catalytic oxidation of propane

    E-Print Network [OSTI]

    Sanderson, Charles Frederick

    1949-01-01T23:59:59.000Z

    THE CATALYTIC OXIDATION OP PROPANE A Thesis By Charles Frederick Sandersont * * June 1949 Approval as to style and content recommended: Head of the Department of Chemical Engineering THE CATALYTICi OXIDATTON OF PROPANE A Thesis By Charles... Frederick ;Sandersonit * June 1949 THE CATALYTIC OXIDATION OP PROPANE A Thesis Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Major...

  19. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    ... 3000 kg/m³ gas = 1.2 kg/m³ at 20°C, 1 bar (air) N L L H b c 2 Eff d d d p p ( ) 1 1 50 2 d W&ParticulateSystems 424514/2010 Fluid&ParticulateSystems ÅA424514/2014 Separation efficiency )( 27.0 gaspin cgas 50pc w&ParticulateSystems ÅA424514/2014 A "standard" cyclone (Lapple) Lb Lc De Dd W H D S High Conventional High efficiency

  20. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    fluidr L wDdrag v½bL Lv dxbFF 331 0 . Picture: BMH99 PTG #12;Fluid&ParticulateSystems 424514/2010 Fluid/2010 Fluid&ParticulateSystems ÅA424514/2014 Basic concept wFAw A F VpVpP losscs cs loss losspumppump carlosscar wFP 212121 ,0, ppwwzz F w wFP #12;Fluid&ParticulateSystems 424514/2010 Fluid

  1. Diesel particulate filter with zoned resistive heater

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-03-08T23:59:59.000Z

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  2. Zone heated diesel particulate filter electrical connection

    DOE Patents [OSTI]

    Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI)

    2010-03-30T23:59:59.000Z

    An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

  3. Electrically heated particulate filter using catalyst striping

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore, Jr., Michael J; Ament, Frank

    2013-07-16T23:59:59.000Z

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating is applied to the PF that increases a temperature of the combustion of the particulates within the PF.

  4. Electrically heated particulate filter embedded heater design

    DOE Patents [OSTI]

    Gonze, Eugene V.; Chapman, Mark R.

    2014-07-01T23:59:59.000Z

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  5. Diesel Particulate Filtration (DPF) Technology: Success stories...

    Broader source: Energy.gov (indexed) [DOE]

    Diesel Particulate Filtration (DPF) Technology: Success stories at the High Temperature Materials Laboratory (HTML) User Program Dr. Amit Shyam, ORNL Sponsored by U.S. Department...

  6. Particulate residue separators for harvesting devices

    SciTech Connect (OSTI)

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, John R.

    2010-06-29T23:59:59.000Z

    A particulate residue separator and a method for separating a particulate residue stream may include a plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams which are formed by the harvesting device and which travel, at least in part, along the plenum and in a direction of the second, exhaust end; and a baffle assembly which is located in partially occluding relation relative to the plenum, and which substantially separates the first and second particulate residue air streams.

  7. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation pm041lance2011p.pdf More Documents & Publications Electrically-Assisted Diesel Particulate Filter Regeneration Substrate Studies of an Electrically-Assisted Diesel...

  8. Diesel Particulate Filtration (DPF) Technology: Success stories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Success stories at the High Temperature Materials Laboratory (HTML) User Program Diesel Particulate Filtration (DPF) Technology: Success stories at the High Temperature...

  9. Trapping efficiency depending on particulate size

    SciTech Connect (OSTI)

    Mayer, A.; Czerwinski, J.; Scheidegger, P.

    1996-09-01T23:59:59.000Z

    There is growing concern about the risk potential of Diesel particulates. This prompted two Swiss R and D projects focused on the capabilities of different soot trap concepts for filtering finest particulates. Eight different filter media, some in numerous variants, were tested on four different Diesel engines. All traps attained their gravimetric target. However, there are noticeable performance differences for finest particulates at or smaller than 50 nm. Fiber deep filters seem to be noticeably better than other filter types. If the carcinogens are mainly the finest particulates, then this criterion may become important in future trap evaluation.

  10. Methods of separating particulate residue streams

    DOE Patents [OSTI]

    Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Wright, Christopher T. (Idaho Falls, ID); Hess, J. Richard (Idaho Falls, ID)

    2011-04-05T23:59:59.000Z

    A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

  11. Advanced Particulate Filter Technologies for Direct Injection...

    Broader source: Energy.gov (indexed) [DOE]

    Public * Continuing efforts for further CO 2 and PN reduction create a challenging environment for vehicles equipped with DI gasoline engines * Gasoline particulate filters...

  12. Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol

    DOE Patents [OSTI]

    Steinberg, Meyer (Melville, NY); Grohse, Edward W. (Port Jefferson, NY)

    1995-01-01T23:59:59.000Z

    A process for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol.

  13. Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol

    DOE Patents [OSTI]

    Steinberg, M.; Grohse, E.W.

    1995-06-27T23:59:59.000Z

    A process is described for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol. 3 figs.

  14. Combustor for fine particulate coal

    DOE Patents [OSTI]

    Carlson, L.W.

    1988-11-08T23:59:59.000Z

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  15. Combustor for fine particulate coal

    DOE Patents [OSTI]

    Carlson, L.W.

    1988-01-26T23:59:59.000Z

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  16. Refining and upgrading of synfuels from coal and oil shales by advanced catalytic processes. Sixth interim report Task 9: hydrotreating 400/sup 0/F+ SRC-II oil for biological studies

    SciTech Connect (OSTI)

    Sullivan, R.F.

    1982-04-01T23:59:59.000Z

    400/sup 0/F+ SRC-II oil derived from Pittsburgh Seam coal was hydrotreated to provide DOE samples for subsequent biological testing at the Oak Ridge National Laboratory. Samples containing about 500 ppM nitrogen, 2000 ppM nitrogen, and 5000 ppM nitrogen were prepared. These samples do not represent finished products, but conditions were selected to provide a wide range of processing severities. The feedstock was somewhat higher boiling and more difficult to hydrotreat than another 400/sup 0/F+ SRC-II oil studied previously.

  17. Fabrication of fuel cell electrodes and other catalytic structures

    DOE Patents [OSTI]

    Smith, J.L.

    1987-02-11T23:59:59.000Z

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte. 1 fig.

  18. Edinburgh Research Explorer Pulmonary diesel particulate increases susceptibility to

    E-Print Network [OSTI]

    Millar, Andrew J.

    Edinburgh Research Explorer Pulmonary diesel particulate increases susceptibility to myocardial, MR & Gray, GA 2014, 'Pulmonary diesel particulate increases susceptibility to myocardial ischemia. Pulmonary diesel particulate increases susceptibility to myocardial ischemia/reperfusion injury via

  19. Non-thermal Aftertreatment of Particulates

    SciTech Connect (OSTI)

    Thomas, S.E.

    2000-08-20T23:59:59.000Z

    Modern diesel passenger vehicles employing common rail, high speed direct injection engines are capable of matching the drivability of gasoline powered vehicles with the additional benefit of providing high torque at low engine speed [1]. The diesel engine also offers considerable fuel economy and CO2 emissions advantages. However, future emissions standards [2,3] present a significant challenge for the diesel engine, as its lean exhaust precludes the use of aftertreatment strategies employing 3- way catalytic converters, which operate under stoichiometric conditions. In recent years significant developments by diesel engine manufacturers have greatly reduced emissions of both particulates (PM) and oxides of nitrogen (NOx) [4,5]. However to achieve compliance with future legislative limits it has been suggested that an integrated approach involving a combination of engine modifications and aftertreatment technology [1] will be required. A relatively new approach to exhaust aftertreatment is the application of non-thermal plasma (NTP) or plasma catalyst hybrid systems. These have the potential for treatment of both NOx and PM emissions [6- 8]. The primary focus of recent plasma aftertreatment studies [9-12] has concentrated on the removal of NOx. It has been shown that by combining plasmas with catalysts it is possible to chemically reduce NOx. The most common approach is to use a 2- stage system relying upon the plasma oxidation of hydrocarbons to promote NO to NO2 conversion as a precursor to NO2 reduction over a catalyst. However, relatively little work has yet been published on the oxidation of PM by plasma [ 8,13]. Previous investigations [8] have reported that a suitably designed NTP reactor containing a packing material designed to filter and retain PM can effect the oxidation of PM in diesel exhausts at low temperatures. It has been suggested that the retained PM competes with hydrocarbons for O, and possibly OH, radicals. This is an important consideration in plasma - catalyst hybrid schemes for the removal of NOx employing an NO2 selective catalyst, as the oxidation of PM may deplete the key radicals necessary for NO to NO2 conversion. It was also suggested that where simultaneous NOx and PM removal are required, alternative catalyst formulations may be needed which may be selective to NO rather than NO2.

  20. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOE Patents [OSTI]

    MacArthur, J.B.; Comolli, A.G.; McLean, J.B.

    1989-10-17T23:59:59.000Z

    A process is described for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600--750 F to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650 F and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710--800 F temperature, 1,000--4,000 psig hydrogen partial pressure, and 10-90 lb/hr per ft[sup 3] catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760--860 F temperature for further hydrogenation and hydroconversion reactions. A 600--750 F[sup +] fraction containing 0--20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials. 2 figs.

  1. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOE Patents [OSTI]

    MacArthur, James B. (Denville, NJ); Comolli, Alfred G. (Yardley, PA); McLean, Joseph B. (Somerville, NJ)

    1989-01-01T23:59:59.000Z

    A process for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600.degree.-750.degree. F. to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650.degree. F. and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-90 lb/hr per ft.sup.3 catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760.degree.-860.degree. F. temperature for further hydrogenation and hydroconversion reactions. A 600.degree.-750.degree. F..sup.+ fraction containing 0-20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials.

  2. Electrically heated particulate filter propagation support methods and systems

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-06-07T23:59:59.000Z

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate combustion of particulate matter in the particulate filter. A propagation module estimates a propagation status of the combustion of the particulate matter based on a combustion temperature. A temperature adjustment module controls the combustion temperature by selectively increasing a temperature of exhaust that passes through the particulate filter.

  3. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    .zevenhoven@abo.fi 2Fluid&ParticulateSystems 424514/2010 Fluid&ParticulateSystems ÅA424514/2014 2.1 Flow tube sections / Turku Finland RoNz 3 Fluid Flow in Tube Systems loss 2 2 1 pump 2 2 1 ppwzgppwzg outoutoutoutininininloss,311 ' 3 ppzgp 2loss,322 ' 3 ppzgp 210 VVV For a fully developed turbulent flow (horizontal

  4. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    cake solids mass/m2, w 3. Ruth equation using dw = (1-)solid dx fluidL p Ku solidK )1( 1 resistance, , with cake porosity : velocity, u layer thickness, L pressure drop, p dynamic viscosity, fluid Finland februari 2014 Unit w: kg/m2 Fluid&ParticulateSystems 424514/2010 Fluid&ParticulateSystems ÅA424514

  5. Advanced particulate matter control apparatus and methods

    DOE Patents [OSTI]

    Miller, Stanley J. (Grand Forks, ND); Zhuang, Ye (Grand Forks, ND); Almlie, Jay C. (East Grand Forks, MN)

    2012-01-10T23:59:59.000Z

    Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

  6. Non-Destructive Neutron Imaging to Analyze Particulate Filters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Neutron Imaging to Analyze Particulate Filters Non-Destructive Neutron Imaging to Analyze Particulate Filters Non-destructive, non-invasive imaging is being employed in the...

  7. Local Soot Loading Distribution in Cordierite Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by Dynamic Neutron Radiography Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by...

  8. Emissions and Durability of Underground Mining Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Durability of Underground Mining Diesel Particulate Filter Applications Emissions and Durability of Underground Mining Diesel Particulate Filter Applications Presentation given at...

  9. Detailed Assessment of Particulate Characteristics from Low-Temperatur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Particulate Characteristics from Low-Temperature Combustion Engines Detailed Assessment of Particulate Characteristics from Low-Temperature Combustion Engines 2012...

  10. Durability of Diesel Engine Particulate Filters (Agreement ID...

    Broader source: Energy.gov (indexed) [DOE]

    Durability of Diesel Engine Particulate Filters (Agreement ID:10461) Durability of Diesel Engine Particulate Filters (Agreement ID:10461) 2013 DOE Hydrogen and Fuel Cells Program...

  11. Feasibility of the detection of trace elements in particulate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of trace elements in particulate matter using online High-Resolution Aerosol Mass Spectrometry. Feasibility of the detection of trace elements in particulate matter using online...

  12. Measuring PM Distribution in a Catalyzed Particulate Filter using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in a Catalyzed Particulate Filter using a Terahertz Wave Scanner Terahertz scanning system produced 3-dimensional image of local PM density in catatalyzed particulate...

  13. Value Analysis of Alternative Diesel Particulate Filter (DPF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Value Analysis of Alternative Diesel Particulate Filter (DPF) Substrates for Future Diesel Aftertreatment Systems Value Analysis of Alternative Diesel Particulate Filter (DPF)...

  14. Durability of Diesel Particulate Filters - Bench Studies on Cordierite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filters - Bench Studies on Cordierite Filters Durability of Diesel Particulate Filters - Bench Studies on Cordierite Filters Presentation given at DEER 2006, August...

  15. Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel...

    Office of Environmental Management (EM)

    Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D 100 Award Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D...

  16. New Cordierite Diesel Particulate Filters for Catalyzed and Non...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications New Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications 2003 DEER...

  17. CARB Verification of Catalyzed Diesel Particulate Filters for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets 2005...

  18. Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel Consumption Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel...

  19. Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape Presentation given at DEER 2006, August 20-24,...

  20. Development of Acicular Mullite Materials for Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Multifunctional Diesel Particulate Filters Future Trends for DPFSCR On-Filter (SCRF) fundamental Modeling and Experimental Studies of Acicular Mullite Diesel Particulate...

  1. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filters Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA)...

  2. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of...

  3. Characterization of Particulate Emissions from GDI Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels Characterization of Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels Analysis...

  4. Requirements-Driven Diesel Catalyzed Particulate Trap Design...

    Broader source: Energy.gov (indexed) [DOE]

    Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization 2005 Diesel Engine...

  5. Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency Studies Using Laboratory Generated Particles. Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency...

  6. Advanced Fine Particulate Characterization Methods

    SciTech Connect (OSTI)

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31T23:59:59.000Z

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and sunflower hulls for the biomass material to be carbonized. The ability to remove mercury from a bituminous coal's derived flue gas was low. Removals of only 15% were attained while injecting 6 lb/Macf of activated carbon upstream of an electrostatic precipitator. Poisoning of sites on the activated carbon by SO{sub 2} and SO{sub 3} contributed to the poor mercury capture performance.

  7. Radiant zone heated particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-12-27T23:59:59.000Z

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  8. INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING

    E-Print Network [OSTI]

    INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE Prepared For: California Energy REPORT (FAR) INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE CYCLES EISG AWARDEE University://www.energy.ca.gov/research/index.html. #12;Page 1 Integral Catalytic Combustion/Fuel Reforming for Gas Turbine Cycles EISG Grant # 99

  9. Electrically heated particulate filter enhanced ignition strategy

    SciTech Connect (OSTI)

    Gonze, Eugene V; Paratore, Jr., Michael J

    2012-10-23T23:59:59.000Z

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating applied to at least one of the PF and the grid. A control module estimates a temperature of the grid and controls the engine to produce a desired exhaust product to increase the temperature of the grid.

  10. An improved visualization of diesel particulate filter/

    E-Print Network [OSTI]

    Boehm, Kevin (Kevin W.)

    2011-01-01T23:59:59.000Z

    The prevalence of diesel particulate filters (DPF) is increasing as emissions standards worldwide evolve to match current technologies. Since the first application of DPFs in the 1980's, PM trapping effectiveness has ...

  11. Durability of Diesel Engine Particulate Filters

    Broader source: Energy.gov (indexed) [DOE]

    Durability of Diesel Engine Particulate Filters Thomas Watkins, Amit Shyam, H.T. Lin, Edgar Lara-Curzio and Amit Pandey; ORNL Randall Stafford; Cummins Inc. Sponsored by U.S....

  12. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    size distribution (CSD) and quality #12;Fluid&ParticulateSystems 424514/2010 Fluid solution ­ Selective distribution of impurities between a liquid phase and a solid phase uniformity, purity

  13. Desorption of hexachlorobiphenyl from selected particulate matter

    E-Print Network [OSTI]

    Rorschach, Reagan Cartwright

    1989-01-01T23:59:59.000Z

    DESORPTION OF HEXACHLOROBIPHENYL FROM SELECTED PARTICULATE MATTER A Thesis by REAGAN CARTWRIGHT RORS CHACH Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1989 Major Subject: Civil Engineering DESORPTION OF HEXACHLOROBIPHENYL FROM SELECTED PARTICULATE MATTER A Thesis by REAGAN C. RORSCHACH Approved as to style and content by: Robin L. Autenrieth (Chair of Committee...

  14. SOUTHERN FINE PARTICULATE MONITORING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-04-01T23:59:59.000Z

    This quarterly report presents results and analysis of continuous onsite ambient fine particulate data at the North Birmingham sampling site during the January-March, 2002 study period. The continuous data include PM{sub 2.5} mass concentrations measured by TEOM, particle sulfate using the R&P 8400S monitor, particle size distributions measured by SMPS and APS monitors, and PM{sub 2.5} light scattering extinction coefficient as measured by nephelometer. Some instrumental issues were noted with the upgrade of the APS model 3320 are described in the report, as well as preliminary performance indications for the upgraded instrument. During the quarter preliminary data analysis and modeling studies were conducted to test the potential of the North Birmingham site data for source attribution analyses. Our initial assessment has continued to be optimistic in this regard due to the location of the site relative to several important classes of local and midrange emission sources. We anticipate that these analyses will provide good separations of the effects of major source classes and spatial source clusters, and will provide useful information relevant to PM{sub 2.5} implementation strategies.

  15. 3-Nitropropionic Acid is a Suicide Inhibitor of MitochondrialRespiration that, Upon Oxidation by Complex II, Forms a Covalent AdductWith a Catalytic Base Arginine in the Active Site of the Enzyme

    SciTech Connect (OSTI)

    Huang, Li-shar; Sun, Gang; Cobessi, David; Wang, Andy C.; Shen,John T.; Tung, Eric Y.; Anderson, Vernon E.; Berry, Edward A.

    2005-12-01T23:59:59.000Z

    We report three new structures of mitochondrial respiratory Complex II (succinate ubiquinone oxidoreductase, E.C. 1.3.5.1) at up to 2.1 {angstrom} resolution, with various inhibitors. The structures define the conformation of the bound inhibitors and suggest the residues involved in substrate binding and catalysis at the dicarboxylate site. In particular they support the role of Arg297 as a general base catalyst accepting a proton in the dehydrogenation of succinate. The dicarboxylate ligand in oxaloacetate-containing crystals appears to be the same as that reported for Shewanella flavocytochrome c treated with fumarate. The plant and fungal toxin 3-nitropropionic acid, an irreversible inactivator of succinate dehydrogenase, forms a covalent adduct with the side chain of Arg297. The modification eliminates a trypsin cleavage site in the flavoprotein, and tandem mass spectroscopic analysis of the new fragment shows the mass of Arg 297 to be increased by 83 Da and to have potential of losing 44 Da, consistent with decarboxylation, during fragmentation.

  16. Advanced Hybrid Particulate Collector Project Management Plan

    SciTech Connect (OSTI)

    Miller, S.J.

    1995-11-01T23:59:59.000Z

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  17. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as Reductants Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx...

  18. Plasma-assisted catalytic reduction system

    DOE Patents [OSTI]

    Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

    1998-01-27T23:59:59.000Z

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

  19. Superconducting Cuprates on Catalytic Substrates - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Electricity Transmission Find More Like This Return to Search Superconducting Cuprates on Catalytic Substrates Brookhaven National Laboratory Contact BNL About...

  20. Catalytic membranes for fuel cells

    DOE Patents [OSTI]

    Liu, Di-Jia (Naperville, IL); Yang, Junbing (Bolingbrook, IL); Wang, Xiaoping (Naperville, IL)

    2011-04-19T23:59:59.000Z

    A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.

  1. Catalytic Nanostructures | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C lKieling ,CatalysisPortalCatalytic

  2. Method for dispersing catalyst onto particulate material

    DOE Patents [OSTI]

    Utz, Bruce R. (Pittsburgh, PA); Cugini, Anthony V. (Pittsburgh, PA)

    1992-01-01T23:59:59.000Z

    A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.

  3. Particulate hot gas stream cleanup technical issues

    SciTech Connect (OSTI)

    Pontius, D.H.; Snyder, T.R.

    1999-09-30T23:59:59.000Z

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  4. Method of dispersing particulate aerosol tracer

    DOE Patents [OSTI]

    O'Holleran, Thomas P. (Belleville, MI)

    1988-01-01T23:59:59.000Z

    A particulate aerosol tracer which comprises a particulate carrier of sheet silicate composition having a particle size up to one micron, and a cationic dopant chemically absorbed in solid solution in the carrier. The carrier is preferably selected from the group consisting of natural mineral clays such as bentonite, and the dopant is selected from the group consisting of rare earth elements and transition elements. The tracers are dispersed by forming an aqueous salt solution with the dopant present as cations, dispersing the carriers in the solution, and then atomizing the solution under heat sufficient to superheat the solution droplets at a level sufficient to prevent reagglomeration of the carrier particles.

  5. Modeling of Particulate Behavior in Pinhole Breaches

    SciTech Connect (OSTI)

    Casella, Andrew M.; Loyalka, Sudarshan K.; Hanson, Brady D.

    2014-04-01T23:59:59.000Z

    A model is presented for calculating depressurization time for and particulate release from used nuclear fuel dry storage containers that have developed a pinhole breach. Particular attention is given to particulate deposition and transmission within the breach pathway. The model is modular in nature and is developed in a way that allows for more advanced treatments of internal temperature, internal component geometry, or aerosol flow to be readily incorporated. The model can be treated as a basis for addressing concerns associated with monitoring and verification efforts during long-term dry cask storage

  6. ambient particulate matterpm10: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , E 12;ACPD 7, 15693-15721, 2007 Particulate PAH spatial variability and aging in Mexico City D. A Boyer, Edmond 7 Different Genes Interact with Particulate Matter and...

  7. Partial-Flow Diesel Particulate Filter of Sintered Metal Fiber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partial-Flow Diesel Particulate Filter of Sintered Metal Fiber Fleece Partial-Flow Diesel Particulate Filter of Sintered Metal Fiber Fleece Poster presented at the 16th Directions...

  8. Size-Dependent Filtration of Non-Loaded Particulate Traps

    E-Print Network [OSTI]

    White, Jessica

    2014-12-12T23:59:59.000Z

    This work investigates the filtration efficiency of uncoated, commercial Diesel Particulate Filter (DPF) substrates of three porosities (55.8%, 61.1%, 65.0%) for particulate sizes representative of Gasoline Direct Injection (GDI) exhaust, and also...

  9. Electrically heated particulate filter preparation methods and systems

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2012-01-31T23:59:59.000Z

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a fuel control module that controls injection of fuel into exhaust that passes through the particulate filter. A regeneration module controls current to the particulate filter to initiate regeneration after the fuel has been injected into the exhaust.

  10. Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons...

  11. Measurement of diesel solid nanoparticle emissions using a catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    diesel solid nanoparticle emissions using a catalytic stripper for comparison with Europe's PMP protocol Measurement of diesel solid nanoparticle emissions using a catalytic...

  12. Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium-Nickel Nanoalloys. Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium-Nickel Nanoalloys....

  13. High Catalytic Rates for Hydrogen Production Using Nickel Electrocatal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Catalytic Rates for Hydrogen Production Using Nickel Electrocatalysts with Seven-Membered Diphosphine Ligands Containing High Catalytic Rates for Hydrogen Production Using...

  14. Nanoporous carbon catalytic membranes and method for making the same

    DOE Patents [OSTI]

    Foley, Henry C. (Hockessin, DE); Strano, Michael (Wilmington, DE); Acharya, Madhav (New Castle, DE); Raich, Brenda A. (Houston, TX)

    2002-01-01T23:59:59.000Z

    Catalytic membranes comprising highly-dispersed, catalytically-active metals in nanoporous carbon membranes and a novel single-phase process to produce the membranes.

  15. Microscopy investigations of ash and particulate matter accumulation in diesel particulate filter surface pores

    E-Print Network [OSTI]

    Beauboeuf, Daniel P

    2010-01-01T23:59:59.000Z

    There has been increased focus on the environmental impact of automobile emissions in recent years. These environmental concerns have resulted in the creation of more stringent particulate matter emissions regulations in ...

  16. ORIGINAL ARTICLE Fine Particulate Matter and Mortality

    E-Print Network [OSTI]

    Dominici, Francesca

    landmark cohort studies for estimating the chronic effects of fine particulate air pollution (PM2 that the Medicare files can be used to construct on-going cohorts for tracking the risk of air pollution over time- tory diseases, and also with increased mortality.1­6 Chronic effects of air pollution potentially

  17. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    SciTech Connect (OSTI)

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C. (Cummins, Inc.); Howden, Kenneth C.; Chalk, Steven (U.S. Dept. of Energy)

    2002-06-01T23:59:59.000Z

    Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulations. Meeting the Tier II standards requires NOX and PM emissions to be reduced dramatically. Achieving such low emissions while minimizing fuel economy penalty cannot be done through engine development and fuel reformulation alone, and requires application of NOX and PM aftertreatment control devices. A joint effort was made between Cummins Inc. and the Department of Energy to develop the generic aftertreatment subsystem technologies applicable for Light-Duty Vehicle (LDV) and Light-Duty Truck (LDT) engines. This paper provides an update on the progress of this joint development program. Three NOX reduction technologies including plasmaassisted catalytic NOX reduction (PACR), active lean NOX catalyst (LNC), and adsorber catalyst (AC) technology using intermittent rich conditions for NOX reduction were investigated in parallel in an attempt to select the best NOX control approach for light-duty aftertreatment subsystem integration and development. Investigations included system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  18. A catalytic approach to estimate the redox potential of heme-peroxidases

    SciTech Connect (OSTI)

    Ayala, Marcela [Departamento de Ingenieria Celular y Biocatalisis, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos 62210 (Mexico)]. E-mail: maa@ibt.unam.mx; Roman, Rosa [Departamento de Ingenieria Celular y Biocatalisis, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos 62210 (Mexico); Vazquez-Duhalt, Rafael [Departamento de Ingenieria Celular y Biocatalisis, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos 62210 (Mexico)

    2007-06-08T23:59:59.000Z

    The redox potential of heme-peroxidases varies according to a combination of structural components within the active site and its vicinities. For each peroxidase, this redox potential imposes a thermodynamic threshold to the range of oxidizable substrates. However, the instability of enzymatic intermediates during the catalytic cycle precludes the use of direct voltammetry to measure the redox potential of most peroxidases. Here we describe a novel approach to estimate the redox potential of peroxidases, which directly depends on the catalytic performance of the activated enzyme. Selected p-substituted phenols are used as substrates for the estimations. The results obtained with this catalytic approach correlate well with the oxidative capacity predicted by the redox potential of the Fe(III)/Fe(II) couple.

  19. Catalytic converter with thermoelectric generator

    SciTech Connect (OSTI)

    Parise, R.J.

    1998-07-01T23:59:59.000Z

    The unique design of an electrically heated catalyst (EHC) and the inclusion of an ECO valve in the exhaust of an internal combustion engine will meet the strict new emission requirements, especially at vehicle cold start, adopted by several states in this country as well as in Europe and Japan. The catalytic converter (CC) has been a most useful tool in pollution abatement for the automobile. But the emission requirements are becoming more stringent and, along with other improvements, the CC must be improved to meet these new standards. Coupled with the ECO valve, the EHC can meet these new emission limits. In an internal combustion engine vehicle (ICEV), approximately 80% of the energy consumed leaves the vehicle as waste heat: out the tail pipe, through the radiator, or convected/radiated off the engine. Included with the waste heat out the tail pipe are the products of combustion which must meet strict emission requirements. The design of a new CC is presented here. This is an automobile CC that has the capability of producing electrical power and reducing the quantity of emissions at vehicle cold start, the Thermoelectric Catalytic Power Generator. The CC utilizes the energy of the exothermic reactions that take place in the catalysis substrate to produce electrical energy with a thermoelectric generator. On vehicle cold start, the thermoelectric generator is used as a heat pump to heat the catalyst substrate to reduce the time to catalyst light-off. Thus an electrically heated catalyst (EHC) will be used to augment the abatement of tail pipe emissions. Included with the EHC in the exhaust stream of the automobile is the ECO valve. This valve restricts the flow of pollutants out the tail pipe of the vehicle for a specified amount of time until the EHC comes up to operating temperature. Then the ECO valve opens and allows the full exhaust, now treated by the EHC, to leave the vehicle.

  20. Simultaneous Removal of Particulates and NOx Using Catalyst Impregnated Fibrous Ceramic Filters

    SciTech Connect (OSTI)

    Choi, J.I.; Mun, S.H.; Kim, S.T.; Hong, M.S.; Lee, J.C.

    2002-09-19T23:59:59.000Z

    The research is focused on the development and commercialization of high efficiency, cost effective air pollution control system, which can replace in part air pollution control devices currently in use. In many industrial processes, hot exhaust gases are cooled down to recover heat and to remove air pollutants in exhaust gases. Conventional air pollution control devices such as bag filters, E.P. and adsorption towers withstand operating temperatures up to 300 C. Also, reheating is sometimes necessary to meet temperature windows for S.C.R. Since Oxidation reactions of acid gases such as SO{sub 2}, and HCl with lime are enhanced at high temperatures, catalyst impregnated ceramic filters can be candidate for efficient and cost effective air pollution control devices. As shown on Fig. 1., catalytic ceramic filters remove particulates on exterior surface of filters and acid gases are oxidized to salts reacting with limes injected in upstream ducts. Oxidation reactions are enhanced in the cake formed on exterior of filters. Finally, injected reducing gas such as NH{sub 3} react with NOx to form N{sub 2} and H{sub 2}O interior of filters in particulate-free environment. Operation and maintenance technology is similar to conventional bag filters except that systems are exposed to relatively high temperatures ranging 300-500 C.

  1. Face crack reduction strategy for particulate filters

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2012-01-31T23:59:59.000Z

    A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion. A control module initiates combustion of PM in the PM filter using a heater and selectively adjusts oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter. A method comprises providing a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion; initiating combustion of PM in the PM filter using a heater; selectively adjusting oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter.

  2. Apparatus for measuring surface particulate contamination

    DOE Patents [OSTI]

    Woodmansee, Donald E. (Simpsonville, SC)

    2002-01-01T23:59:59.000Z

    An apparatus for measuring surface particulate contamination includes a tool for collecting a contamination sample from a target surface, a mask having an opening of known area formed therein for defining the target surface, and a flexible connector connecting the tool to the mask. The tool includes a body portion having a large diameter section defining a surface and a small diameter section extending from the large diameter section. A particulate collector is removably mounted on the surface of the large diameter section for collecting the contaminants. The tool further includes a spindle extending from the small diameter section and a spool slidingly mounted on the spindle. A spring is disposed between the small diameter section and the spool for biasing the spool away from the small diameter section. An indicator is provided on the spindle so as to be revealed when the spool is pressed downward to compress the spring.

  3. Generator powered electrically heated diesel particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore, Jr., Michael J

    2014-03-18T23:59:59.000Z

    A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

  4. Vacuum-insulated catalytic converter

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO)

    2001-01-01T23:59:59.000Z

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  5. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Ye Zhuang; Stanley J. Miller

    2005-05-01T23:59:59.000Z

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. An additional task was included in this project to evaluate mercury oxidation upstream of a dry scrubber by using mercury oxidants. This project demonstrated at the pilot-scale level a technology that provides a cost-effective technique to control mercury and, at the same time, greatly enhances fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution for improved fine particulate control combined with effective mercury control for a large segment of the U.S. utility industry as well as other industries.

  6. Method of forming particulate materials for thin-film solar cells

    DOE Patents [OSTI]

    Eberspacher, Chris; Pauls, Karen Lea

    2004-11-23T23:59:59.000Z

    A method for preparing particulate materials useful in fabricating thin-film solar cells is disclosed. Particulate materials is prepared by the method include for example materials comprising copper and indium and/or gallium in the form of single-phase, mixed-metal oxide particulates; multi-phase, mixed-metal particulates comprising a metal oxide; and multinary metal particulates.

  7. Diesel particulate filter regeneration via resistive surface heating

    DOE Patents [OSTI]

    Gonze, Eugene V; Ament, Frank

    2013-10-08T23:59:59.000Z

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine; and a grid of electrically resistive material that is applied to an exterior upstream surface of the PF and that selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  8. Shielded regeneration heating element for a particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-01-04T23:59:59.000Z

    An exhaust system includes a particulate filter (PF) that is disposed downstream from an engine. The PF filters particulates within an exhaust from the engine. A heating element heats particulate matter in the PF. A catalyst substrate or a flow converter is disposed upstream from said heating element. The catalyst substrate oxidizes the exhaust prior to reception by the heating element. The flow converter converts turbulent exhaust flow to laminar exhaust flow prior to reception by the heating element.

  9. Selective oxidation of hydrocarbons in a catalytic dense membrane reactor: Catalytic properties of BIMEVOX (Me = Ta)

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Selective oxidation of hydrocarbons in a catalytic dense membrane reactor: Catalytic properties for syngas or H2 production from light hydrocarbons. #12;2 Keywords: Dense membrane reactor, BIMEVOX, BITAVOX to decouple the two steps of the redox mechanism that prevails in selective oxidation of hydrocarbons [1

  10. PARAMETRIC STUDY OF SUBMICRON PARTICULATES FROM PULVERIZED COAL COMBUSTION

    E-Print Network [OSTI]

    Pennucci, J.

    2014-01-01T23:59:59.000Z

    Chemistry of Coal during Combustion and the Emissions fromParticulates Generated by Combustion of Pulverized Coal,Particles from Coal Combustion, presented at the Eighteenth

  11. air particulate samples: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2. Measurements of fine quantitative information on fine airborne particulate-size and chemically resolved mass concentration from composition, urban, organic, mass...

  12. Air Pollution Control Regulations: No. 13 - Particulate Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Regulations Provider Department of Environmental Management The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and...

  13. Electrically heated particulate filter regeneration using hydrocarbon adsorbents

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-02-01T23:59:59.000Z

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material selectively heats exhaust passing through the upstream end to initiate combustion of particulates within the PF. A hydrocarbon adsorbent coating applied to the PF releases hydrocarbons into the exhaust to increase a temperature of the combustion of the particulates within the PF.

  14. Particulate Produced from Advanced Combustion Operation in a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Produced from Advanced Combustion Operation in a Compression Ignition Engine Particulate Produced from Advanced Combustion Operation in a Compression Ignition Engine Determine...

  15. Fuel-Neutral Studies of Particulate Matter Transport Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program Annual Merit Review and Peer Evaluation ace056stewart2011o.pdf More Documents & Publications Fuel-Neutral Studies of Particulate Matter Transport Emissions...

  16. Development and Demonstration of an Electronic Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway Engine Advanced Radio Frequency-Based Sensors for Monitoring Diesel Particulate Filter Loading and...

  17. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) ace22lee.pdf More Documents & Publications...

  18. Diesel Particulate Oxidation Model: Combined Effects of Fixed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxidation Model: Combined Effects of Fixed & Volatile Carbon Diesel Particulate Oxidation Model: Combined Effects of Fixed & Volatile Carbon Poster presented at the 16th Directions...

  19. Improvement and Simplification of Diesel Particulate Filter System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement and Simplification of Diesel Particulate Filter System using a Ceria-Based Fuel-Borne Catalyst in Serial Applications Improvement and Simplification of Diesel...

  20. Development of Advanced Diesel Particulate Filtration (DPF) Systems

    Broader source: Energy.gov (indexed) [DOE]

    heat release in DPF regeneration. - Derive equations for the oxidation rate of diesel particulates - Measure the amount of heat release from the oxidation Characterize...

  1. Diesel Particulate Filter: A Success for Faurecia Exhaust Systems

    Broader source: Energy.gov (indexed) [DOE]

    DIESEL PARTICULATE FILTER: A SUCCESS FOR FAURECIA EXHAUST SYSTEMS Robert Parmann, Emmanuel Jean, Eric Quemere Faurecia Exhaust Systems DPF with Fuel Borne Catalyst DPF Experience...

  2. airborne particulate threat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particulate pollution in Beijing. Overall, coal burning and the traffic exhausts, plus mineral aerosol and it could provide the basic information in controlling the air-borne...

  3. airborne fungi particulate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particulate pollution in Beijing. Overall, coal burning and the traffic exhausts, plus mineral aerosol and it could provide the basic information in controlling the air-borne...

  4. airborne particulates european: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particulate pollution in Beijing. Overall, coal burning and the traffic exhausts, plus mineral aerosol and it could provide the basic information in controlling the air-borne...

  5. Characterization of Pre-Commercial Gasoline Engine Particulates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    analysis methods were used to examine particulates from single cylinder test engines running on gasoline and ethanol blends. deer12zelenyuk.pdf More Documents & Publications...

  6. Development of Advanced Diesel Particulate Filtration (DPF) Systems

    Broader source: Energy.gov (indexed) [DOE]

    Filtration (DPF) Systems Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) February 26, 2008 DOE Merit Review PI: Kyeong Lee (Postdoc: Joe Song) Transportation...

  7. air particulate matter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WetLabs, personal communication. There is variability in composition of particulate matter through the water column, so different correlations of PMbb or POCbb may exist in...

  8. airborne particulate matter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WetLabs, personal communication. There is variability in composition of particulate matter through the water column, so different correlations of PMbb or POCbb may exist in...

  9. ambient particulate matter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WetLabs, personal communication. There is variability in composition of particulate matter through the water column, so different correlations of PMbb or POCbb may exist in...

  10. Requirements-Driven Diesel Catalyzed Particulate Trap Design...

    Broader source: Energy.gov (indexed) [DOE]

    Requirements Driven Diesel Catalyzed Particulate Trap (DCPT) Design and Optimization Tom Harris, Donna McConnell and Danan Dou Delphi Catalyst Tulsa, Oklahoma 2 Euro 45 Light Duty...

  11. Effect of Biodiesel Blends on Diesel Particulate Filter Performance

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

    2006-11-01T23:59:59.000Z

    Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

  12. Partitioning of Volatile Organics in Diesel Particulate and Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Diesel Particulate and Exhaust Evaluation of how sampling details affect the measurement of volatile organic compounds in diesel exhaust deer08strzelec.pdf More Documents...

  13. active fine particulates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology Websites Summary: Effects of Sampling Conditions on the Size Distribution of Fine Particulate Matter Emitted from complex because the dilution...

  14. airborne fine particulate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology Websites Summary: Effects of Sampling Conditions on the Size Distribution of Fine Particulate Matter Emitted from complex because the dilution...

  15. ambient fine particulate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology Websites Summary: Effects of Sampling Conditions on the Size Distribution of Fine Particulate Matter Emitted from complex because the dilution...

  16. Final Report: Particulate Emissions Testing, Unit 1, Potomac...

    Broader source: Energy.gov (indexed) [DOE]

    were completed while Unit 1 was operating at 90% of full load (84MW) or greater. Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria,...

  17. Particulate Produced from Advanced Combustion Operation in a...

    Broader source: Energy.gov (indexed) [DOE]

    Produced From Advanced Combustion Operation in a Compression Ignition Engine P-1 Particulate Produced From Advanced Combustion Operation in a Compression Ignition Engine P-1...

  18. Electronic Structure of Nickel(II) and Zinc(II) Borohydrides from Spectroscopic Measurements and Computational Modeling

    E-Print Network [OSTI]

    Weston, Ken

    Electronic Structure of Nickel(II) and Zinc(II) Borohydrides from Spectroscopic Measurements materials for solid phase hydrogen storage. In some cases, nickel and other transition metals can play a role in the catalytic decomposition of these solid phase hydrides.6 Nickel exhibits rich and varied

  19. Electrically heated particulate filter with reduced stress

    DOE Patents [OSTI]

    Gonze, Eugene V.

    2013-03-05T23:59:59.000Z

    A system comprises a particulate matter (PM) filter comprising an inlet for receiving exhaust gas. A zoned heater is arranged in the inlet and comprises a resistive heater comprising N zones, where N is an integer greater than one. Each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates others of the N zones.

  20. Neutron Imaging of Diesel Particulate Filters

    SciTech Connect (OSTI)

    Strzelec, Andrea [ORNL; Bilheux, Hassina Z [ORNL; FINNEY, Charles E A [ORNL; Daw, C Stuart [ORNL; Foster, Prof. Dave [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin; Schillinger, Burkhard [FRM-II, Technische Universitaet Munchen; Schulz, Michael [FRM-II, Technische Universitaet Munchen

    2009-01-01T23:59:59.000Z

    This article presents nondestructive neutron computed tomography (nCT) measurements of Diesel Particulate Filters (DPFs) as a method to measure ash and soot loading in the filters. Uncatalyzed and unwashcoated 200cpsi cordierite DPFs exposed to 100% biodiesel (B100) exhaust and conventional ultra low sulfur 2007 certification diesel (ULSD) exhaust at one speed-load point (1500rpm, 2.6bar BMEP) are compared to a brand new (never exposed) filter. Precise structural information about the substrate as well as an attempt to quantify soot and ash loading in the channel of the DPF illustrates the potential strength of the neutron imaging technique.

  1. Ceramic Particulate Filters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-Desertof Energy PresentationCeramic Particulate

  2. Trends in Particulate Nanostructure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenter GetsEnergySpecification: RevisionParticulate

  3. Modeling and interpreting the observed effects of ash on diesel particulate filter performance and regeneration

    E-Print Network [OSTI]

    Wang, Yujun, Ph. D. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Diesel particulate filters (DPF) are devices that physically capture diesel particulates to prevent their release to the atmosphere. Diesel particulate filters have seen widespread use in on- and off-road applications as ...

  4. Method for immobilizing particulate materials in a packed bed

    DOE Patents [OSTI]

    Even, Jr., William R. (Livermore, CA); Guthrie, Stephen E. (Livermore, CA); Raber, Thomas N. (Livermore, CA); Wally, Karl (Lafayette, CA); Whinnery, LeRoy L. (Livermore, CA); Zifer, Thomas (Manteca, CA)

    1999-01-01T23:59:59.000Z

    The present invention pertains generally to immobilizing particulate matter contained in a "packed" bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that a) the particulate retains its essential chemical nature, b) the local movement of the particulate particles is not unduly restricted, c) bulk powder migration and is prevented, d) physical and chemical access to the particulate is unchanged over time, and e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport.

  5. Particulate optical scattering coefficients along an Atlantic Meridional Transect

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    Particulate optical scattering coefficients along an Atlantic Meridional Transect G. Dall'Olmo,1, E, USA gdal@pml.ac.uk Abstract: The particulate optical backscattering coefficient (bbp) is a fundamental optical property that allows monitoring of marine suspended particles both in situ and from space

  6. Process for off-gas particulate removal and apparatus therefor

    DOE Patents [OSTI]

    Carl, D.E.

    1997-10-21T23:59:59.000Z

    In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector`s centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel`s wall in the form of a ``wavy film,`` while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs.

  7. Process for off-gas particulate removal and apparatus therefor

    DOE Patents [OSTI]

    Carl, Daniel E. (Orchard Park, NY)

    1997-01-01T23:59:59.000Z

    In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector's centerline in proceeding toward the downstream side of the collector. Gasflow in the outer channel maintains the fluid on the channel's wall in the form of a "wavy film," while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator.

  8. Emission abatement system utilizing particulate traps

    DOE Patents [OSTI]

    Bromberg, Leslie (Sharon, MA); Cohn, Daniel R. (Chestnut Hill, MA); Rabinovich, Alexander (Swampscott, MA)

    2004-04-13T23:59:59.000Z

    Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

  9. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and...

    Energy Savers [EERE]

    On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel...

  10. Process for forming a homogeneous oxide solid phase of catalytically active material

    DOE Patents [OSTI]

    Perry, Dale L. (Hercules, CA); Russo, Richard E. (Walnut Creek, CA); Mao, Xianglei (Berkeley, CA)

    1995-01-01T23:59:59.000Z

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  11. Diesel lube oils; Fourth dimension of diesel particulate control

    SciTech Connect (OSTI)

    Springer, K.J. (Southwest Research Institute, San Antonio, TX (US))

    1989-07-01T23:59:59.000Z

    Particulate emission control, for the HD diesel engine, has previously been considered a three-dimensional problem involving: combustion of the fuel by the engine, fuel modification, and exhaust aftertreatment. The lube oil contribution may be considered a fourth dimension of the problem. Historically, the heavy-duty engine manufacturer has met emission standards for smoke (1968 to present), CO, HC, and NOx (1974 to present) and particulates (1988 to present) through changes in engine design. This paper used the allocation method to estimate the reduction in lube oil consumption needed to meet 1991 and 1994 U.S. particulate emission standards. This analysis places the contribution of lube oil as a source of exhaust particulates into prospective with the contributions from fuel sulfur and fuel combustion. An emissions control strategy to meet future regulations is offered in which reductions from fuel modification, combustion improvement, reduced lube oil consumption, and exhaust particulate trap-catalysts are all involved.

  12. Analysis of characteristic of microwave regeneration for diesel particulate filter

    SciTech Connect (OSTI)

    Ning Zhi; Zhang Guanglong; Lu Yong; Liu Junmin; Gao Xiyan; Liang Iunhui; Chen Jiahua [Dalian Univ. of Technology (China)

    1995-12-31T23:59:59.000Z

    The mathematical model for the microwave regeneration of diesel particulate filter is proposed according to the characteristic of microwave regeneration process. The model is used to calculate the temperature field, distribution of particulate and density field of oxygen in the filter during the process of regeneration with typical ceramic foam particulate filter data. The parametric study demonstrates how some of the main parameters, such as microwave attenuation constant of the filter, filter particulate loading, the power and distribution of microwave energy and so on, affect the efficiency of regeneration, the maximum filter temperature and regeneration duration. The results show that it is possible to regenerate the diesel particulate filters in certain conditions by using microwave energy. This paper can give one a whole understanding to several main factors that have effects on the process of microwave regeneration and provide a theoretical basis for the optimal design of the microwave regeneration system.

  13. Porous Core-Shell Nanostructures for Catalytic Applications

    E-Print Network [OSTI]

    Ewers, Trevor David

    2012-01-01T23:59:59.000Z

    C.Y Mou. Catalytic nano-rattle of Au@ hollow silica: towardshollow nanostructures induced by the Kirkendall effect: The basic concept. NanoHollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors. ACS Nano,

  14. The Relationships of Particulate Matter and Particulate Organic Carbon with Hypoxic Conditions Along the Texas-Louisiana Shelf

    E-Print Network [OSTI]

    Zuck, Nicole A

    2014-08-06T23:59:59.000Z

    an onboard surface-water flow-through system, CTD casts, and by an undulating towed vehicle. Total particulate matter and particulate organic carbon samples were obtained from Niskin bottles on CTD casts. Samples were also taken to measure dissolved oxygen...

  15. CATALYTICALLY ENCHANCED SYSTEMS FOR HYDROGEN STORAGE

    E-Print Network [OSTI]

    to the conversion of the world to a "hydrogen economy" is the problem of onboard hydrogen storage. Despite decadesCATALYTICALLY ENCHANCED SYSTEMS FOR HYDROGEN STORAGE Craig M. Jensen, Dalin Sun, Sesha Sai RamanH/Al and the reverse hydrogenation reactions have been determined through kinetic studies of 2 mol % Ti and Zr doped

  16. Performance characterization of a hydrogen catalytic heater.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01T23:59:59.000Z

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  17. Transparent and Catalytic Carbon Nanotube Films

    E-Print Network [OSTI]

    Hone, James

    for the dye-sensitized solar cell. Other possible applications include batteries, fuel cells and intercalation in hydrogen fuel cells and lithium ion batteries.1,10,12,14 However, the electrochemical activity to optimize performance through processing. In this study, we quantify the catalytic activity of single

  18. Laser induced thermophoresis and particulate deposition efficiency

    SciTech Connect (OSTI)

    Cipolla, J.; Morse, T.F.; Wang, C.Y.

    1983-07-01T23:59:59.000Z

    The interaction of laser radiation and an absorbing aerosol in a tube flow has been considered. The aerosol is produced by external heating of reactants as in the MCVD (Modified Chemical Vapor Deposition) process to produce submicron size particles in the manufacture of optical fiber preforms. These are subsequently deposited by thermophoretic forces on the inner wall of the tube as they are convected by a Poiseuille velocity profile. Axial laser radiation in the tube interacts with the absorbing particles, and the laser heating of the gas induces additional thermophoretic forces that markedly increase the efficiency of particulate deposition. A particle concentration dependent absorption coefficient that appears in the energy equation couples the energy equation to the equation of particle conservation, so that a non-linear set of coupled partial integrodifferential equations must be solved. Numerical solutions for aerosol particle trajectories, and thus deposition efficiencies, have been obtained. It is shown that laser enhanced thermophoresis markedly improves the deposition efficiency.

  19. Overlap zoned electrically heated particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Chapman, Mark R [Brighton, MI

    2011-07-19T23:59:59.000Z

    A system includes a particulate matter (PM) filter that includes an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than or equal to one, and wherein the N zones and the M sub-zones are arranged in P layers, where P is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

  20. Particulate contamination removal from wafers using plasmas and mechanical agitation

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM)

    1998-01-01T23:59:59.000Z

    Particulate contamination removal from wafers using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer's position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates.

  1. Particulate contamination removal from wafers using plasmas and mechanical agitation

    DOE Patents [OSTI]

    Selwyn, G.S.

    1998-12-15T23:59:59.000Z

    Particulate contamination removal from wafers is disclosed using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer`s position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates. 4 figs.

  2. Method and apparatus for a catalytic firebox reactor

    DOE Patents [OSTI]

    Smith, Lance L. (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Ulkarim, Hasan (Hamden, CT); Castaldi, Marco J. (Bridgeport, CT); Pfefferle, William C. (Madison, CT)

    2001-01-01T23:59:59.000Z

    A catalytic firebox reactor employing an exothermic catalytic reaction channel and multiple cooling conduits for creating a partially reacted fuel/oxidant mixture. An oxidation catalyst is deposited on the walls forming the boundary between the multiple cooling conduits and the exothermic catalytic reaction channel, on the side of the walls facing the exothermic catalytic reaction channel. This configuration allows the oxidation catalyst to be backside cooled by any fluid passing through the cooling conduits. The heat of reaction is added to both the fluid in the exothermic catalytic reaction channel and the fluid passing through the cooling conduits. After discharge of the fluids from the exothermic catalytic reaction channel, the fluids mix to create a single combined flow. A further innovation in the reactor incorporates geometric changes in the exothermic catalytic reaction channel to provide streamwise variation of the velocity of the fluids in the reactor.

  3. aerosol bound particulates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data) cloud drop size distributions and (iv) TWP-ICE (Darwin, Australia) rain drop size distributions. A. M. Selvam 2010-05-08 26 7, 1569315721, 2007 Particulate PAH Computer...

  4. Emission factors for ammonia and particulate matter from broiler Houses

    E-Print Network [OSTI]

    Redwine, Jarah Suzanne

    2001-01-01T23:59:59.000Z

    Total suspended particulate (TSP) concentrations, ammonia (NH?) concentrations, and ventilation rates were measured in four commercial, tunnel ventilated broiler houses in June through December of 2000 in Brazos County, Texas. Particle size...

  5. Ultrasonic wave propagation in random and periodic particulate composites 

    E-Print Network [OSTI]

    Henderson, Benjamin Kyle

    1996-01-01T23:59:59.000Z

    Current theoretical models are insufficient to predict the dynamic behavior of particulate composites under ultrasonic loading. To facilitate the creation of more accurate models, ultrasonic tests have been performed to expand the database...

  6. REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1

    E-Print Network [OSTI]

    Minnesota, University of

    REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1 DIESEL EXHAUST.D. and Megan Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research....................................................................................... 3 Diesel aerosol size instrumentation............................................................ 4

  7. Diesel Particulate Filter Technology for Low-Temperature and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filter Technology for Low-Temperature and Low-NOxPM Applications Diesel Particulate Filter Technology for Low-Temperature and Low-NOxPM Applications 2004 DEER Conference...

  8. REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2

    E-Print Network [OSTI]

    Minnesota, University of

    REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2 AEROSOL DYMAMICS Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research................................................................................................. 3 Diesel aerosol composition and structure................................................... 3

  9. Durability of Diesel Engine Particulate Filters CRADA No. ORNL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filters CRADA No. ORNL-04-0692 with Cummins Inc. Durability of Diesel Engine Particulate Filters CRADA No. ORNL-04-0692 with Cummins Inc. Presentation from the U.S. DOE Office of...

  10. Concentrations and Size Distributions of Particulate Matter Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Matter Emissions from Catalyzed Trap-Equipped Heavy-duty Diesel Vehicles Operating on Ultra-low Sulfur EC-D Fuel Concentrations and Size Distributions of Particulate Matter...

  11. Mechanical Properties of Particulate Reinforced Aluminium Alloy Matrix Composite

    SciTech Connect (OSTI)

    Sayuti, M. [Faculty of Engineering, Malikussaleh University of Lhokseumawe, 24300 Aceh (Indonesia); Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Sulaiman, S.; Baharudin, B. T. H. T.; Arifin, M. K. A. [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Suraya, S.; Vijayaram, T. R.

    2011-01-17T23:59:59.000Z

    This paper discusses the mechanical properties of Titanium Carbide (TiC) particulate reinforced aluminium-silicon alloy matrix composite. TiC particulate reinforced LM6 alloy matrix composites were fabricated by carbon dioxide sand molding process with different particulate weight fraction. Tensile strength, hardness and microstructure studies were conducted to determine the maximum load, tensile strength, modulus of elasticity and fracture surface analysis have been performed to characterize the morphological aspects of the test samples after tensile testing. Hardness values are measured for the TiC reinforced LM6 alloy composites and it has been found that it gradually increases with increased addition of the reinforcement phase. The tensile strength of the composites increased with the increase percentage of TiC particulate.

  12. Modeling of Particulate Matter Emissions from Agricultural Operations

    E-Print Network [OSTI]

    Bairy, Jnana 1988-

    2013-01-02T23:59:59.000Z

    State Air Pollution Regulation Agencies (SAPRAs) issue and enforce permits that limit particulate matter emissions from all sources including layer and broiler facilities, cattle feedyards, dairies, cotton gins, and grain elevators...

  13. Automated particulate sampler field test model operations guide

    SciTech Connect (OSTI)

    Bowyer, S.M.; Miley, H.S.

    1996-10-01T23:59:59.000Z

    The Automated Particulate Sampler Field Test Model Operations Guide is a collection of documents which provides a complete picture of the Automated Particulate Sampler (APS) and the Field Test in which it was evaluated. The Pacific Northwest National Laboratory (PNNL) Automated Particulate Sampler was developed for the purpose of radionuclide particulate monitoring for use under the Comprehensive Test Ban Treaty (CTBT). Its design was directed by anticipated requirements of small size, low power consumption, low noise level, fully automatic operation, and most predominantly the sensitivity requirements of the Conference on Disarmament Working Paper 224 (CDWP224). This guide is intended to serve as both a reference document for the APS and to provide detailed instructions on how to operate the sampler. This document provides a complete description of the APS Field Test Model and all the activity related to its evaluation and progression.

  14. CEC-500-2010-FS-017 Volatility of Ultrafine Particulate

    E-Print Network [OSTI]

    Gas Vehicles TRANSPORTATION ENERGY RESEARCH PIER Transportation Research www. Limited research has been done to characterize compressed natural gas mass emissions and practically-volatile and semi-volatile fractions of ultrafine particulate matter emissions from compressed natural gas vehicles

  15. air particulate exposure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25 Next Page Last Page Topic Index 1 Research Commuters Exposure to Particulate Matter Air Pollution Is Affected by Mode of Transport, Fuel Type, and Route CiteSeer Summary: Ba...

  16. air particulate analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meta-analysis for Assessment of Relationships between Asthma Rates and Particulate Air Pollution Math Preprints (arXiv) Summary: Multi-dimensional meta-analysis (MDMA) is an...

  17. Catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect (OSTI)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21T23:59:59.000Z

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  18. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect (OSTI)

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.; Zeitoon, B.M.

    1995-12-01T23:59:59.000Z

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE`s inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results.

  19. Preface: Challenges for Catalytic Exhaust Aftertreatment

    SciTech Connect (OSTI)

    Nova, Isabella; Epling, Bill; Peden, Charles HF

    2014-03-31T23:59:59.000Z

    This special issue of Catalysis Today continues the tradition established since the 18th NAM in Cancun, 2003, of publishing the highlights coming from these catalytic after-treatment technologies sessions, where this volume contains 18 papers based on oral and poster presentations of the 23rd NAM, 2013. The guest editors would like to thank all of the catalyst scientists and engineers who presented in the "Emission control" sessions, and especially the authors who contributed to this special issue of Catalysis Today.

  20. Diesel particulate filter (DPF) regeneration by electrical heating of resistive coatings

    DOE Patents [OSTI]

    Williamson, Weldon S. (Malibu, CA); Gonze, Eugene V. (Pinckney, MI)

    2008-12-30T23:59:59.000Z

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is integrally formed in an upstream end of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  1. Ultrasonic wave propagation in random and periodic particulate composites

    E-Print Network [OSTI]

    Henderson, Benjamin Kyle

    1996-01-01T23:59:59.000Z

    ULTRASONIC WAVE PROPAGATION IN RANDOM AND PERIODIC PARTICULATE COMPOSITES A Thesis by BENJAMIN KYLE HENDERSON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfilltnent of the requirements for the degree... of MASTER OF SCIENCE May 1996 Major Subject: Aerospace Engineering ULTRASONIC WAVE PROPAGATION IN RANDOM AND PERIODIC PARTICULATE COMPOSITES A Thesis by BENJAMIN KYLE HENDERSON Submitted to Texas ASM University in partial fulfillment...

  2. Zone heated inlet ignited diesel particulate filter regeneration

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2012-06-26T23:59:59.000Z

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that is disposed downstream of the engine and that filters particulates from the exhaust; and a grid that includes electrically resistive material that is segmented by non-conductive material into a plurality of zones and wherein the grid is applied to an exterior upstream surface of the PF.

  3. Atmospheric particulates in a semi-rural environment

    E-Print Network [OSTI]

    Klein, Thomas Kelly

    1974-01-01T23:59:59.000Z

    and sampling results used in Figures 11 through 17 Comparison of the resultant monthly mean concentrations of airborne particulates over College Station with the mean concentrations detected by non-urban stations of the National Air Sampling Network 64... of variance table for the dependent variable C4 100 LIST OF FIGURES Figure Title Page Size distributions of airborne particulates over continents (After Junge, 1963) Nomenclature and importance of natural aerosols (After Junge, 1963) 10 The location...

  4. Method of feeding particulate material to a fluidized bed

    DOE Patents [OSTI]

    Borio, Richard W. (Somers, CT); Goodstine, Stephen L. (Windsor, CT)

    1984-01-01T23:59:59.000Z

    A centrifugal spreader type feeder that supplies a mixture of particulate limestone and coal to the top of a fluidized bed reactor having a flow of air upward therethrough. Large particles of particulate matter are distributed over the upper surface of the bed to utilize the natural mixing within the bed, while fine particles are adapted to utilize an independent feeder that separates them from the large particles and injects them into the bed.

  5. A particulate non-specific alkaline phosphatase in Saccharomyces cerevisiae

    E-Print Network [OSTI]

    Mitchell, James Kent

    1980-01-01T23:59:59.000Z

    utant Strain DO4-AP2 24 24 24 30 31 36 39 41 43 43 43 46 46 51 51 TABLE OF CONTENTS (Continued) Isoelectric Focussing Page 53 IV. Discussion and Conclusions 56 V. References 65 VI, Vita 68 LIST OF TABLES Tables Page 1.... Fluorescent Readings of 4-methylumbelliferone 25 2. Fluorescent Readings of a-naphthol 25 3. Substrate Specificity of Particulate Alkaline Phosohatase 40 Intracellular Localization of Particulate Alkaline Phos- phatase 45 5. Specific Activity of a...

  6. The distribution of particulate aluminum in the Gulf of Mexico

    E-Print Network [OSTI]

    Feely, Richard Alan

    1971-01-01T23:59:59.000Z

    THE DISTRIBUTION OF PARTICULATE ALUMINUM IN THE GULF OF MEXICO A Thesis RICHARD ALAN FEELY Submitted to the Graduate College of Texas A&M University in partial fulfillment of the reguirement for the degree of MASTER OF SCIENCE May, 1971... Major Subject: Oceanography THE DISTRIBUTION OF PARTICULATE ALUMINUM IN THE GULF OF MEXICO A Thesis by RICHARD ALAN FEELY Approved as to style a d content by: hairma of Committee Head Department (Member) Member) May, 1971 ABSTRACT...

  7. Fine particulate chemical composition and light extinction at Meadview, AZ

    SciTech Connect (OSTI)

    Delbert J. Eatough; Wenxuan Cui; Jeffery Hull; Robert J. Farber [Brigham Young University, Provo, UT (United States). Department of Chemistry and Biochemistry

    2006-12-15T23:59:59.000Z

    The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr daynight samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was {+-} 0.6 {mu}g/m{sup 3} organic material, {+-} 0.3 {mu}g/m{sup 3} ammonium sulfate, and {+-} 0.07 {mu}g/m{sup 3} ammonium nitrate. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction. 49 refs., 12 figs., 7 tabs.

  8. On the mechanism of NO selective catalytic reduction by hydrocarbons over Cu-ZSM-5 via X-ray absorption spectroscopic study

    SciTech Connect (OSTI)

    Liu, D.J. [AlliedSignal Inc., Des Plaines, IL (United States)] [AlliedSignal Inc., Des Plaines, IL (United States); Robota, H.J. [ASEC, Tulsa, OK (United States)] [ASEC, Tulsa, OK (United States)

    1999-04-08T23:59:59.000Z

    An understanding of the catalytic mechanism of NO{sub x} reduction is critical for the development of next-generation high-fuel efficiency, low-emission vehicles. This paper compiles the investigations in recent years on the mechanism of NO selective catalytic reduction (SCR) by hydrocarbon over Cu-ZSM-5. The studies were focused on the oxidation state and coordination chemistry of the exchanged Cu as the active site during the catalytic reaction using X-ray absorption spectroscopic (XAS) techniques, mainly XANES and EXAFS. Their experiment demonstrated the existence of a redox mechanism which involves cyclic switching of the oxidation states between Cu(II) and Cu(I) in an oxygen-rich gas mixture under elevated temperature. The authors also observed the coordination structural change of copper ion in ZSM-5 accompanying the change of oxidation state. A correlation between cuprous ion concentration and catalytic activity was found in NO SCR by propene. The impact of another two hydrocarbons, propane and methane, on the copper redox behavior also appears to correlate to catalytic activities in the respective mixtures. Discussions on the nature of the active sites and the mechanism of SCR are presented based on the XAS data analysis. The similarity and difference of the physical properties of copper ion between NO catalytic decomposition and NO SCR are also discussed.

  9. Microwave-Regenerated Diesel Exhaust Particulate Filter

    SciTech Connect (OSTI)

    Nixdorf, Richard D. (Industrial Ceramic Solution, LLC); Green, Johney Boyd; Story, John M.; Wagner, Robert M. (Oak Ridge National Laboratory)

    2001-03-05T23:59:59.000Z

    Development of a microwave-regenerated particulate filter system has evolved from bench scale work to actual diesel engine experimentation. The filter system was initially evaluated on a stationary mounted 1.2-L diesel engine and was able to remove a significant amount of carbon particles from the exhaust. The ability of the microwave energy to regenerate or clean the filter was also demonstrated on this engine under idle conditions. Based on the 1.2-L experiments, improvements to the filter design and materials were implemented and the system was re-evaluated on a vehicle equipped with a 7.3-L diesel engine. The 7.3-L engine was selected to achieve heavy filter loading in a relatively short period of time. The purpose of these experiments was to evaluate filter-loading capacity, power requirements for regeneration, and filter regeneration efficiency. A more detailed evaluation of the filter was performed on a stationary mounted 1.9-L diesel engine. The effect of exhaust flow rate, loading, transients, and regeneration on filter efficiency was evaluated with this setup. In addition, gaseous exhaust emissions were investigated with and without an oxidation catalyst on the filter cartridge during loading and regeneration. (SAE Paper SAE-2001-01-0903 © 2001 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  10. Piloted rich-catalytic lean-burn hybrid combustor

    DOE Patents [OSTI]

    Newburry, Donald Maurice (Orlando, FL)

    2002-01-01T23:59:59.000Z

    A catalytic combustor assembly which includes, an air source, a fuel delivery means, a catalytic reactor assembly, a mixing chamber, and a means for igniting a fuel/air mixture. The catalytic reactor assembly is in fluid communication with the air source and fuel delivery means and has a fuel/air plenum which is coated with a catalytic material. The fuel/air plenum has cooling air conduits passing therethrough which have an upstream end. The upstream end of the cooling conduits is in fluid communication with the air source but not the fuel delivery means.

  11. Catalytic Consequences of Acid Strength in the Conversion of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consequences of Acid Strength in the Conversion of Methanol to Dimethyl Ether. Catalytic Consequences of Acid Strength in the Conversion of Methanol to Dimethyl Ether. Abstract:...

  12. Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an individual catalytic nanoparticle while reactions are occurring. Catalysts are used in manufacturing everything from stain remover to rocket fuel; they make production more...

  13. Improved Low-Temperature Performance of Catalytic Converters...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalytic converters, installed on vehicles with internal combustion and diesel engines, convert the toxic byproducts of combustion to less toxic compounds. In two-way (lean...

  14. Catalytic reduction system for oxygen-rich exhaust

    DOE Patents [OSTI]

    Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

    1999-04-13T23:59:59.000Z

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

  15. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway...

    Broader source: Energy.gov (indexed) [DOE]

    the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium...

  16. The Effects of Trace Contaminants on Catalytic Processing of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing of Biomass-Derived Feedstocks . Abstract: Trace components in biomass feedstocks are potential catalyst poisons when catalytically processing these materials to...

  17. Catalytic multi-stage liquefaction (CMSL)

    SciTech Connect (OSTI)

    Comolli, A.G.; Ganguli, P.; Karolkiewicz, W.F.; Lee, T.L.K.; Pradhan, V.R.; Popper, G.A.; Smith, T.; Stalzer, R.

    1996-11-01T23:59:59.000Z

    Under contract with the U.S. Department of Energy, Hydrocarbon Technologies, Inc. has conducted a series of eleven catalytic, multi-stage, liquefaction (CMSL) bench scale runs between February, 1991, and September, 1995. The purpose of these runs was to investigate novel approaches to liquefaction relating to feedstocks, hydrogen source, improved catalysts as well as processing variables, all of which are designed to lower the cost of producing coal-derived liquid products. This report summarizes the technical assessment of these runs, and in particular the evaluation of the economic impact of the results.

  18. Thin film porous membranes for catalytic sensors

    SciTech Connect (OSTI)

    Hughes, R.C.; Boyle, T.J.; Gardner, T.J. [and others

    1997-06-01T23:59:59.000Z

    This paper reports on new and surprising experimental data for catalytic film gas sensing resistors coated with nanoporous sol-gel films to impart selectivity and durability to the sensor structure. This work is the result of attempts to build selectivity and reactivity to the surface of a sensor by modifying it with a series of sol-gel layers. The initial sol-gel SiO{sub 2} layer applied to the sensor surprisingly showed enhanced O{sub 2} interaction with H{sub 2} and reduced susceptibility to poisons such as H{sub 2}S.

  19. Catalytic Solutions Inc CSI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformationMissouri:Catalyst Regeneration MarketCatalytic

  20. BioCatalytics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |BigBigLakeBioCatalytics

  1. Mesoporous silica nanoparticles for biomedical and catalytical applications

    SciTech Connect (OSTI)

    Sun, Xiaoxing

    2011-05-15T23:59:59.000Z

    Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an alternative of the traditional Friedel-Crafts reaction. And we will compare the turnover numbers of MSN supported material with homogenous catalyst to evaluate the catalytical efficiency of our material.

  2. Catalytic reactor for low-Btu fuels

    DOE Patents [OSTI]

    Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

    2009-04-21T23:59:59.000Z

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  3. Method for dispersing catalyst onto particulate material and product thereof

    DOE Patents [OSTI]

    Utz, Bruce R. (Pittsburgh, PA); Cugini, Anthony V. (Pittsburgh, PA)

    1992-01-01T23:59:59.000Z

    A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.

  4. Method and apparatus for injecting particulate media into the ground

    DOE Patents [OSTI]

    Dwyer, Brian P.; Dwyer, Stephen F.; Vigil, Francine S.; Stewart, Willis E.

    2004-12-28T23:59:59.000Z

    An improved method and apparatus for injecting particulate media into the ground for constructing underground permeable reactive barriers, which are used for environmental remediation of subsurface contaminated soil and water. A media injector sub-assembly attached to a triple wall drill string pipe sprays a mixture of active particulate media suspended in a carrier fluid radially outwards from the sub-assembly, at the same time that a mixing fluid is sprayed radially outwards. The media spray intersects the mixing spray at a relatively close distance from the point of injection, which entrains the particulate media into the mixing spray and ensures a uniform and deep dispersion of the active media in the surrounding soil. The media injector sub-assembly can optionally include channels for supplying compressed air to an attached down-the-hole hammer drive assembly for use during drilling.

  5. Biodiesel Fuel Property Effects on Particulate Matter Reactivity

    SciTech Connect (OSTI)

    Williams, A.; Black, S.; McCormick, R. L.

    2010-06-01T23:59:59.000Z

    Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

  6. Ability of Catalytic Converters to Reduce Air Pollution

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    NOx - 1 Ability of Catalytic Converters to Reduce Air Pollution MEASUREMENT OF SELECTED AIR POLLUTANTS IN CAR EXHAUST Last updated: June 17, 2014 #12;NOx - 2 Ability of Catalytic Converters to Reduce Air Pollution MEASUREMENT OF SELECTED AIR POLLUTANTS IN CAR EXHAUST INTRODUCTION Automobile engines

  7. Testing an Active Diesel Particulate Filter on a 2-Cycle Marine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Testing an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Presentation given at DEER 2006, August 20-24,...

  8. Imaging of Diesel Particulate Filters using a High-Flux Neutron...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Imaging of Diesel Particulate Filters using a High-Flux Neutron Source Imaging of Diesel Particulate Filters using a High-Flux Neutron Source Detailed images of deposits identified...

  9. An Overview of Particulate Matter and its Cost-efficient Evaluation

    E-Print Network [OSTI]

    Zhang, F.; Zhang, G.; Zhang, Q.

    2006-01-01T23:59:59.000Z

    Ambient particulate matter (PM) is a complex mixture of sizes and types of particles. Exposure to airborne particulate matter adversely affects human health. In this paper, sources of particles are summarized, and epidemiological and toxicological...

  10. al-sic particulate composites: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (more) Li, Wei 2008-01-01 2 Damping and Stiffness of Particulate SiCInSn Composite Materials Science Websites Summary: Damping and Stiffness of Particulate SiC-InSn Composite...

  11. Incorporation of particulates into accreted ice above subglacial Vostok lake, Antarctica 

    E-Print Network [OSTI]

    Siegert, M. J.; Royston-Bishop, G.; Priscu, J. C.; Tranter, M.; Christner, B.; Lee, V.

    2005-01-01T23:59:59.000Z

    The nature of microscopic particulates in meteoric and accreted ice from the Vostok (Antarctica) ice core is assessed in conjunction with existing ice-core data to investigate the mechanism by which particulates are ...

  12. Preparation and characterization of VOx/TiO2 catalytic coatings on stainless steel plates for structured catalytic reactors.

    E-Print Network [OSTI]

    Boyer, Edmond

    for structured catalytic reactors. Thierry Giornelli, Axel Löfberg* and Elisabeth Bordes-Richard Unité de.Lofberg@univ-lille1.fr Abstract The parameters to be controlled to coat metallic walls by VOx/TiO2 catalysts which) was chosen because of its large application in industrial catalytic reactors. TiO2 films on stainless steel

  13. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1984-03-27T23:59:59.000Z

    A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  14. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1985-08-20T23:59:59.000Z

    A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  15. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M. (Friendswood, TX)

    1984-01-01T23:59:59.000Z

    A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  16. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M. (Friendswood, TX)

    1985-01-01T23:59:59.000Z

    A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  17. Catalytic cartridge SO/sub 3/ decomposer

    DOE Patents [OSTI]

    Galloway, T.R.

    1980-11-18T23:59:59.000Z

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO/sub 3/ decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO/sub 3/ gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO/sub 3/ gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety. A fusion reactor may be used as the heat source.

  18. Catalytic carbon membranes for hydrogen production

    SciTech Connect (OSTI)

    Damle, A.S.; Gangwal, S.K.

    1992-01-01T23:59:59.000Z

    Commercial carbon composite microfiltration membranes may be modified for gas separation applications by providing a gas separation layer with pores in the 1- to 10-nm range. Several organic polymeric precursors and techniques for depositing a suitable layer were investigated in this project. The in situ polymerization technique was found to be the most promising, and pure component permeation tests with membrane samples prepared with this technique indicated Knudsen diffusion behavior. The gas separation factors obtained by mixed-gas permeation tests were found to depend strongly on gas temperature and pressure indicating significant viscous flow at high-pressure conditions. The modified membranes were used to carry out simultaneous water gas shift reaction and product hydrogen separation. These tests indicated increasing CO conversions with increasing hydrogen separation. A simple process model was developed to simulate a catalytic membrane reactor. A number of simulations were carried out to identify operating conditions leading to product hydrogen concentrations over 90 percent. (VC)

  19. Catalytic cracking of residual petroleum fractions

    SciTech Connect (OSTI)

    Moore, H.F.; Mayo, S.L.; Goolsby, T.L. (Research and Development Dept., Ashland Petroleum Co., Ashland, KY (US))

    1991-01-01T23:59:59.000Z

    This paper reports on Arabian Light crude oil vacuum bottoms fractionated into five high-boiling fractions by wiped film evaporation, and the fractions subjected to catalytic cracking in a fixed-fluidized bed using a commercial equilibrium cracking catalyst. Density, aromaticity, and heteroatom content generally increased with boiling point, as did metals content except for vanadium and iron which demonstrated possible bimodal distributions. The cracking response of these fractions showed increasing yields of dry gas and coke, with decreasing gasoline yields, as a function of increasing apparent boiling point as would normally be expected. Surprisingly, however, local maxima were observed for wet gas yield and total conversion, with local minima for cycle oil and slurry yields, in the region of the 1200-1263{degrees}F (650-680{degrees}C) middle fraction. All fractions showed significant response to cracking, with coke yields generally being the only negative factor observed.

  20. 2008-01-0333 Detailed Effects of a Diesel Particulate Filter on the Reduction

    E-Print Network [OSTI]

    Wu, Mingshen

    2008-01-0333 Detailed Effects of a Diesel Particulate Filter on the Reduction of Chemical Species of Wisconsin-Madison Copyright © 2008 SAE International ABSTRACT Diesel particulate filters are designed to reduce the mass emissions of diesel particulate matter and have been proven to be effective

  1. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    DOE Patents [OSTI]

    Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI)

    2010-10-12T23:59:59.000Z

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  2. Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues

    E-Print Network [OSTI]

    Short, Daniel

    Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues: XAS XANES EXAFS Antimony Particulate matter Brake linings a b s t r a c t Insights into the speciation of Sb in samples of brake linings, brake pad wear residues, road dust, and atmospheric particulate

  3. Inductively heated particulate matter filter regeneration control system

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore Jr., Michael J; Kirby, Kevin W; Phelps, Amanda; Gregoire, Daniel J

    2012-10-23T23:59:59.000Z

    A system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas, a downstream end and zones. The system also includes a heating element. A control module selectively activates the heating element to inductively heat one of the zones.

  4. The Morgantown Energy Technology Center`s particulate cleanup program

    SciTech Connect (OSTI)

    Dennis, R.A.

    1995-12-01T23:59:59.000Z

    The development of integrated gasification combined cycle (IGCC) and pressurized fluidized-bed combustion (PFBC) power systems has made it possible to use coal while still protecting the environment. Such power systems significantly reduce the pollutants associated with coal-fired plants built before the 1970s. This superior environmental performance and related high system efficiency is possible, in part, because particulate gas-stream cleanup is conducted at high-temperature and high-pressure process conditions. A main objective of the Particulate Cleanup Program at the Morgantown Energy Technology Center (METC) is to ensure the success of the CCT demonstration projects. METC`s Particulate Cleanup Program supports research, development, and demonstration in three areas: (1) filter-system development, (2) barrier-filter component development, and (3) ash and char characterization. The support is through contracted research, cooperative agreements, Cooperative Research And Development Agreements (CRADAs), and METC`s own in-house research. This paper describes METC`s Particulate Cleanup Program.

  5. REVIEW OF DIESEL PARTICULATE MATTER SAMPLING FINAL REPORT

    E-Print Network [OSTI]

    Minnesota, University of

    REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS FINAL REPORT Prepared by David B. Kittelson of Mechanical Engineering Center for Diesel Research Minneapolis, MN January 14, 1999 #12;01/14/99 Page 2 TABLE ................................................................................................................5 DIESEL ENGINE TECHNOLOGY AND EMISSION REGULATIONS .............................7 PHYSICAL

  6. DIII-D Dust Particulate Characterization (June 1998 Vent)

    SciTech Connect (OSTI)

    Carmack, William Jonathan

    1999-01-01T23:59:59.000Z

    Dust is a key component of fusion power device accident source term. Understanding the amount of dust expected in fusion power devices and its physical and chemical characteristics is needed to verify assumptions currently used in safety analyses. An important part of this safety research and development work is to characterize dust from existing experimental tokamaks. In this report, we present the collection, data analysis methods used, and the characterization of dust particulate collected from various locations inside the General Atomics DIII-D vacuum vessel following the June 1998 vent. The collected particulate was analyzed at the Idaho National Engineering and Environmental Laboratory (INEEL). Two methods were used to collect particulate with the goal of preserving the particle size distribution and physical characteristics of the particulate. Choice of collection technique is important because the sampling method used can bias the particle size distribution collected. Vacuum collection on substrates and adhesion removal with metallurgical replicating tape were chosen as non-intrusive sampling methods. Seventeen samples were collected including plasma facing surfaces in lower, upper, and horizontal locations, surfaces behind floor tiles, surfaces behind divertor tiles, and surfaces behind ceiling tiles. The results of the analysis are presented.

  7. DIII-D dust particulate characterization (June 1998 Vent)

    SciTech Connect (OSTI)

    Carmack, W.J.

    1999-01-01T23:59:59.000Z

    Dust is a key component of fusion power device accident source term. Understanding the amount of dust expected in fusion power devices and its physical and chemical characteristics is needed to verify assumptions currently used in safety analyses. An important part of this safety research and development work is to characterize dust from existing experimental tokamaks. In this report, the authors present the collection, data analysis methods used, and the characterization of dust particulate collected from various locations inside the General Atomics DIII-D vacuum vessel following the June 1998 vent. The collected particulate was analyzed at the Idaho National Engineering and Environmental Laboratory (INEEL). Two methods were used to collect particulate with the goal of preserving the particle size distribution and physical characteristics of the particulate. Choice of collection technique is important because the sampling method used can bias the particle size distribution collected. Vacuum collection on substrates and adhesion removal with metallurgical replicating tape were chosen as non-intrusive sampling methods. Seventeen samples were collected including plasma facing surfaces in lower, upper, and horizontal locations, surfaces behind floor tiles, surfaces behind divert or tiles, and surfaces behind ceiling tiles. The results of the analysis are presented.

  8. Characterization of particulate emissions from non-ferrous smelters

    SciTech Connect (OSTI)

    Bennett, R.L.; Knapp, K.T.

    1989-01-01T23:59:59.000Z

    Chemical-composition and particle-size data for particulate emissions from stationary sources are required for environmental health-effect assessments, air chemistry studies, and air-quality-modelling investigations such as source apportionment. In this study, particulate emissions from a group of non-ferrous smelters were physically and chemically characterized. Emission samples were collected at the baghouse outlets from smelter furnaces and at smelter acid plant stacks at three locations: a zinc, a lead, and a copper smelter. Mass emission rate determinations were made by EPA reference methods. Cascade impactors were used to collect in-stack samples for particle-size distribution measurements. Particulate samples for chemical characterization were collected on membrane filters for analysis by X-ray fluorescence spectroscopy. Development measurement techniques required to determine the elemental composition of the total mass and sized fractions of the emission are discussed. Results of the tests at the three smelters include total mass and elemental emission rates, particle-size distribution, and the elemental composition of the total particulate mass and of sized fractions from both the smelter furnaces and acid plants.

  9. Electrically heated particulate filter diagnostic systems and methods

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2009-09-29T23:59:59.000Z

    A system that diagnoses regeneration of an electrically heated particulate filter is provided. The system generally includes a grid module that diagnoses a fault of the grid based on at least one of a current signal and a voltage signal. A diagnostic module at least one of sets a fault status and generates a warning signal based on the fault of the grid.

  10. Removal of residual particulate matter from filter media

    DOE Patents [OSTI]

    Almlie, Jay C; Miller, Stanley J

    2014-11-11T23:59:59.000Z

    A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.

  11. Parallel High-Resolution Finite Volume Simulation of Particulate Processes

    E-Print Network [OSTI]

    Braatz, Richard D.

    these methods is verified by application to PBMs for (1) aerosol coagulation and condensation, (2) the formation, coagulation, crystallization, distributed parameter systems, numerical analysis Introduction Particulate, in crystallization, x is the size of crystals measured by length or volume, f(x,t) is the crystal size distribution

  12. air pollution particulate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air pollution particulate First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Statistical Issues in the...

  13. Heat transfer rates in fixed bed catalytic reactors

    E-Print Network [OSTI]

    Levelton, Bruce Harding

    1951-01-01T23:59:59.000Z

    HEAT TRANSFER RATES IN FIXED BED CATALYTIC REACTORS H EATTRNSFSAIX DB DNCLR YFNOAXa rRJRuSIX nSeR 1951i HssNIJFu FT SI TSBuR FXO LIXSRXS NRLIeeRXOROt HEAT TRANSFER RATES IN FIXED BED CATALYTIC REACTORS H EATTRNSFSAIX BSar DNCLR YFNOAXa r...RJRuSIX June 1951 HEAT TRANSFER RATES IN FIXED BED CATALYTIC REACTORS A Dissertation Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Major...

  14. Sequential tasks performed by catalytic pumps for colloidal crystallization

    E-Print Network [OSTI]

    Ali Afshar Farniya; Maria J. Esplandiu; Adrian Bachtold

    2014-10-20T23:59:59.000Z

    Gold-platinum catalytic pumps immersed in a chemical fuel are used to manipulate silica colloids. The manipulation relies on the electric field and the fluid flow generated by the pump. Catalytic pumps perform various tasks, such as the repulsion of colloids, the attraction of colloids, and the guided crystallization of colloids. We demonstrate that catalytic pumps can execute these tasks sequentially over time. Switching from one task to the next is related to the local change of the proton concentration, which modifies the colloid zeta potential and consequently the electric force acting on the colloids.

  15. Assessment of Contribution of Contemporary Carbon Sources to Size-Fractionated Particulate Matter and Time-Resolved Bulk Particulate Matter Using the Measurement of Radiocarbon

    SciTech Connect (OSTI)

    Hwang, H M; Young, T M; Buchholz, B A

    2009-04-16T23:59:59.000Z

    This study was motivated by a desire to improve understanding of the sources contributing to the carbon that is an important component of airborne particulate matter (PM). The ultimate goal of this project was to lay a ground work for future tools that might be easily implemented with archived or routinely collected samples. A key feature of this study was application of radiocarbon measurement that can be interpreted to indicate the relative contributions from fossil and non-fossil carbon sources of atmospheric PM. Size-resolved PM and time-resolved PM{sub 10} collected from a site in Sacramento, CA in November 2007 (Phase I) and March 2008 (Phase II) were analyzed for radiocarbon and source markers such as levoglucosan, cholesterol, and elemental carbon. Radiocarbon data indicates that the contributions of non-fossil carbon sources were much greater than that from fossil carbon sources in all samples. Radiocarbon and source marker measurements confirm that a greater contribution of non-fossil carbon sources in Phase I samples was highly likely due to residential wood combustion. The present study proves that measurement of radiocarbon and source markers can be readily applied to archived or routinely collected samples for better characterization of PM sources. More accurate source apportionment will support ARB in developing more efficient control strategies.

  16. Control of Substrate Access to the Active Site and Catalytic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control of Substrate Access to the Active Site and Catalytic Mechanism of Methane and Toluene Monooxygenases Friday, June 22, 2012 - 3:30pm SSRL Main Conference Room 137-322 Prof....

  17. Hydrogen permeable protective coating for a catalytic surface

    DOE Patents [OSTI]

    Liu, Ping (Irvine, CA); Tracy, C. Edwin (Golen, CO); Pitts, J. Roland (Lakewood, CO); Lee, Se-Hee (Lakewood, CO)

    2007-06-19T23:59:59.000Z

    A protective coating for a surface comprising a layer permeable to hydrogen, said coating being deposited on a catalyst layer; wherein the catalytic activity of the catalyst layer is preserved.

  18. Emerging catalytic processes for the production of adipic acid

    E-Print Network [OSTI]

    Van de Vyver, Stijn

    Research efforts to find more sustainable pathways for the synthesis of adipic acid have led to the introduction of new catalytic processes for producing this commodity chemical from alternative resources. With a focus on ...

  19. Catalytic H2O2 decomposition on palladium surfaces

    E-Print Network [OSTI]

    Salinas, S. Adriana

    1998-01-01T23:59:59.000Z

    The catalytic decomposition of H?O? at smooth single-crystal and polycrystalline palladium surfaces that had been subjected to various surface modifications has been studied. Monolayer and submonolayer coverages of I, Br and Cl adsorbates were used...

  20. An Energy Analysis of the Catalytic Combustion Burner

    E-Print Network [OSTI]

    Dong, Q.; Zhang, S.; Duan, Z.; Zhou, Q.

    2006-01-01T23:59:59.000Z

    The gas boilers of conventional flame always produce varying degrees of combustion products NOx and CO, which pollute the environment and waste energy. As a new way of combustion, catalytic combustion breaks the flammable limits of conventional...

  1. In situ XAS Characterization of Catalytic Nano-Materials with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XAS Characterization of Catalytic Nano-Materials with Applications to Fuel Cells and Batteries Friday, July 12, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Qingying...

  2. atp catalytic domain: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 328 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  3. acidic multimetallic catalytic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 106 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  4. automobile catalytic converters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Odei 2006-01-01 408 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  5. atp catalytic cycle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 275 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  6. advanced catalytic hydrogenation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 188 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  7. apparent catalytic site: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 257 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  8. advanced catalytic materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 225 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  9. acrylamide catalytically inhibits: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 78 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  10. assisted catalytic oxidation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 251 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  11. active catalytic sites: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 337 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  12. atpase catalytic domain: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 266 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  13. advanced catalytic materials 1996: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 467 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  14. archaeal primase catalytic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 92 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  15. advanced catalytic science: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 488 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  16. Catalytic studies of supported Pd-Au catalysts 

    E-Print Network [OSTI]

    Boopalachandran, Praveenkumar

    2006-08-16T23:59:59.000Z

    Although Pd-Au high-surface area catalysts are used in industry to improve activity and selectivity, a thorough understanding of the nature of these enhancements is lacking. A molecular-level understanding of catalytic ...

  17. Catalytic Membrane Reactor for Extraction of Hydrogen from Bioethanol Reforming

    E-Print Network [OSTI]

    Kuncharam, Bhanu Vardhan

    2013-11-26T23:59:59.000Z

    This research explores a novel application of catalytic membrane reactors for high- purity hydrogen extraction from bioethanol reforming. Conventional membrane systems employ hydrogen permselective materials such as palladium, polymer membranes...

  18. Northwestern University Facility for Clean Catalytic Process Research

    SciTech Connect (OSTI)

    Marks, Tobin Jay [Northwestern University

    2013-05-08T23:59:59.000Z

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  19. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Biddy, M.; Jones, S.

    2013-03-01T23:59:59.000Z

    This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks have been identified.

  20. Final Report: Catalytic Hydrocarbon Reactions over Supported Metal Oxides, August 1, 1995 - July 31, 1999

    SciTech Connect (OSTI)

    Ekerdt, John G.

    1999-07-31T23:59:59.000Z

    The research program focused on the catalysis of hydrodesulfurization (HDS) over molybdenum-based catalysts and how catalyst composition, redox ability, structure and neighboring sites control the catalytic properties of metal oxides. We sought to understand the catalytic features/sites that control hydrogenation, hydrogenolysis, and isomerization during HDS. Unprompted silica-supported molybdenum oxides and molybdenum sulfides were studied. Model catalyst systems were prepared from organometallic precursors or cluster compounds to generate supported structures that feature Mo(II) and Mo(IV) cations that are isolated or in ensembles and that have either Mo-O or Mo-S bonds. Conventional MOS{sub 2} catalysts, which contain both edge and rim sites, were be studied. Finally, single-layer MOS{sub 2} structures were also prepared from 2H-MoS{sub 2} powder so that the model systems could be compared against a disulfide catalyst that only involves rim sites. Catalytic reactions for thiophene and tetrahydrothione were studied over the various catalysts. Oxidation states were determined using X-ray photoelectron spectroscopy. X-ray crystallography was used to characterize and follow changes in the MOS{sub 2} structures. The program on metal oxides prepared supported oxides that have a specific structure and oxidation state to serve as model templates for the more complex commercial catalysts and then employed these structures in reaction studies. This focus area examined the relationships between structure and cation redox characteristics in oxidation catalysis. Infrared and Raman spectroscopy were used to characterize the cations and reaction intermediates.

  1. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOE Patents [OSTI]

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17T23:59:59.000Z

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  2. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOE Patents [OSTI]

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-10-07T23:59:59.000Z

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  3. Microchannel Reactor System for Catalytic Hydrogenation

    SciTech Connect (OSTI)

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22T23:59:59.000Z

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  4. Perspectives on Localized Corrosion in Thin Layers of Particulate

    SciTech Connect (OSTI)

    Payer, Joe H. [Materials Science and Engineering, Case Western Reserve University, 10900 Euclid Ave., 404 White Bldg., Cleveland, OH, 44106 (United States); Kelly, Robert G. [Materials Science and Engineering, University of Virginia, 116 Engineer's Way, Materials Science Building 323, PO Box 400745, Charlottesville, VA, 22904-4745 (United States)

    2007-07-01T23:59:59.000Z

    The requirements for the initiation and propagation of localized corrosion are reviewed, and the stability criteria for sustained localized corrosion are discussed. A conceptual framework is applied to a specific scenario of a hot metal surface covered by a thin layer of particulate containing dissolvable salts in the presence of air of limited humidity. A number of processes are demonstrated to affect the crevice corrosion propagation, stifling and arrest. Contributions of the particulate layer properties, the anode, cathode and coupled processes are identified, showing that any of these can control localized corrosion propagation. Whether stifling or arrest occur will depend upon the material and environmental conditions for a given case. The findings add to the technical basis for the analysis of localized corrosion by a decision tree methodology. (authors)

  5. Design characteristics for facilities which process hazardous particulate

    SciTech Connect (OSTI)

    Abeln, S.P.; Creek, K.; Salisbury, S.

    1998-12-01T23:59:59.000Z

    Los Alamos National Laboratory is establishing a research and processing capability for beryllium. The unique properties of beryllium, including light weight, rigidity, thermal conductivity, heat capacity, and nuclear properties make it critical to a number of US defense and aerospace programs. Concomitant with the unique engineering properties are the health hazards associated with processing beryllium in a particulate form and the potential for worker inhalation of aerosolized beryllium. Beryllium has the lowest airborne standard for worker protection compared to all other nonradioactive metals by more than an order of magnitude. This paper describes the design characteristics of the new beryllium facility at Los Alamos as they relate to protection of the workforce. Design characteristics to be reviewed include; facility layout, support systems to minimize aerosol exposure and spread, and detailed review of the ventilation system design for general room air cleanliness and extraction of particulate at the source.

  6. Advanced hybrid particulate collector and method of operation

    DOE Patents [OSTI]

    Miller, Stanley J. (Grand Forks, ND)

    2003-04-08T23:59:59.000Z

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between the rows of filter elements are rows of high voltage discharge electrodes. Between the rows of discharge electrodes and the rows of filter elements are grounded perforated plates for creating electrostatic precipitation zones.

  7. Microwave mode shifting antenna system for regenerating particulate filters

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA; Gregoire, Daniel J [Thousand Oaks, CA

    2011-04-26T23:59:59.000Z

    A regeneration system comprises a particulate matter (PM) filter including a microwave energy absorbing surface, and an antenna system comprising N antennas and an antenna driver module that sequentially drives the antenna system in a plurality of transverse modes of the antenna system to heat selected portions of the microwave absorbing surface to regenerate the PM filter, where N is an integer greater than one. The transverse modes may include transverse electric (TE) and/or transverse magnetic (TM) modes.

  8. Device for measuring the flow of a gas containing particulates

    SciTech Connect (OSTI)

    Gordon, R.G.; Hofer, P.H.

    1991-01-08T23:59:59.000Z

    This patent describes an apparatus for continuously measuring the flow of a gas containing entrained particulates. It comprises: a flow channel, through which the gas flows; an orifice disposed within the flow channel, including at least a first surface and a second surface; means for causing the first surface and second surface independently to move in directions perpendicular to lines normal to the surfaces; scraping means, for intimately contacting at least a portion of the first surface and of the second surface, at all times while the surfaces are moving, whereby particulates which adhere to the first and second surfaces are removed by the movement of the surfaces past the scraping means; pressure taps, positioned so as to communicate with the flow channel upstream and downstream from the orifice, the pressure taps additionally in communication with pressure-measuring means, for measuring the pressure differential in the flow channel resulting from the passage of the gas through the orifice; and thermophoretic heaters, positioned so as to heat the gas within the pressure taps, and thereby excluding particulates therefrom.

  9. Removal of particulate solids from a hot hydrocarbon slurry oil

    SciTech Connect (OSTI)

    Rush, J.B.

    1991-12-31T23:59:59.000Z

    This patent describes a method of treating a hot, refractory hydrocarbon slurry oil having an initial boiling point at atmospheric pressure at least as high as 500{degrees} F and having a gravity of from about 5{degrees} API to about 15{degrees} API, to remove solid particulate material the slurry oil. It comprises mixing with the hot slurry oil, a hot vacuum reduced crude oil having an initial boiling point at atmospheric pressure which is higher than the initial boiling plant at atmospheric pressure of the slurry oil, and having an end point at atmospheric pressure which is higher than the end point at atmospheric pressure of the slurry oil; charging the mixture of hot vacuum reduced crude oil and hot slurry oil to a vacuum flash zone having a pressure of from 1.0 mm Hg to about 10.0 mm Hg and at the selected temperature of less than 700{degrees} F and more than 300{degrees} F to thereby vaporize a major portion of the slurry oil in the mixture, and to thereby transfer substantially all of the solid particulate material into the bottoms liquid remaining in the flash zone following the completion of the vaporization; recovering the overhead; and recovering the liquid bottoms containing the solid particulate material.

  10. Plasma-assisted catalytic storage reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA); Brusasco, Raymond M. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A two-stage method for NO.sub.x reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. The second stage employs a lean NO.sub.x trap to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage with a plasma, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, such as propene. A flow of such hydrocarbons (C.sub.x H.sub.y) is input from usually a second pipe into at least a portion of the first chamber. The NO.sub.2 from the plasma treatment proceeds to a storage reduction catalyst (lean NO.sub.x trap) that converts NO.sub.2 to N.sub.2, CO.sub.2, and H.sub.2 O, and includes a nitrate-forming catalytic site. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the lean-NO.sub.x trap catalyst. The method allows for enhanced NO.sub.x reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.

  11. Plasma-assisted catalytic storage reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA); Brusasco, Raymond M. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    A two-stage method for NO.sub.x reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. The second stage employs a lean NO.sub.x trap to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage with a plasma, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, such as propene. A flow of such hydrocarbons (C.sub.x H.sub.y) is input from usually a second pipe into at least a portion of the first chamber. The NO.sub.2 from the plasma treatment proceeds to a storage reduction catalyst (lean NO.sub.x trap) that converts NO.sub.2 to N.sub.2, CO.sub.2, and H.sub.2 O, and includes a nitrate-forming catalytic site. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the lean-NO.sub.x trap catalyst. The method allows for enhanced NO.sub.x reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.

  12. Photosystem II

    ScienceCinema (OSTI)

    James Barber

    2010-09-01T23:59:59.000Z

    James Barber, Ernst Chain Professor of Biochemistry at Imperial College, London, gives a BSA Distinguished Lecture titled, "The Structure and Function of Photosystem II: The Water-Splitting Enzyme of Photosynthesis."

  13. Ultra Low NOx Catalytic Combustion for IGCC Power Plants

    SciTech Connect (OSTI)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2008-03-31T23:59:59.000Z

    In order to meet DOE's goals of developing low-emissions coal-based power systems, PCI has further developed and adapted it's Rich-Catalytic Lean-burn (RCL{reg_sign}) catalytic reactor to a combustion system operating on syngas as a fuel. The technology offers ultra-low emissions without the cost of exhaust after-treatment, with high efficiency (avoidance of after-treatment losses and reduced diluent requirements), and with catalytically stabilized combustion which extends the lower Btu limit for syngas operation. Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using a two-stage (catalytic then gas-phase) combustion process for syngas fuel. In this process, the first stage consists of a fuel-rich mixture reacting on a catalyst with final and excess combustion air used to cool the catalyst. The second stage is a gas-phase combustor, where the air used for cooling the catalyst mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During testing, operating with a simulated Tampa Electric's Polk Power Station syngas, the NOx emissions program goal of less than 0.03 lbs/MMBtu (6 ppm at 15% O{sub 2}) was met. NOx emissions were generally near 0.01 lbs/MMBtu (2 ppm at 15% O{sub 2}) (PCI's target) over a range on engine firing temperatures. In addition, low emissions were shown for alternative fuels including high hydrogen content refinery fuel gas and low BTU content Blast Furnace Gas (BFG). For the refinery fuel gas increased resistance to combustor flashback was achieved through preferential consumption of hydrogen in the catalytic bed. In the case of BFG, stable combustion for fuels as low as 88 BTU/ft{sup 3} was established and maintained without the need for using co-firing. This was achieved based on the upstream catalytic reaction delivering a hotter (and thus more reactive) product to the flame zone. The PCI catalytic reactor was also shown to be active in ammonia reduction in fuel allowing potential reductions in the burner NOx production. These reductions of NOx emissions and expanded alternative fuel capability make the rich catalytic combustor uniquely situated to provide reductions in capital costs through elimination of requirements for SCR, operating costs through reduction in need for NOx abating dilution, SCR operating costs, and need for co-firing fuels allowing use of lower value but more available fuels, and efficiency of an engine through reduction in dilution flows.

  14. Correlations between surface structure and catalytic activity/selectivity

    SciTech Connect (OSTI)

    Goodman, D.W.

    1992-10-01T23:59:59.000Z

    Objective is to address the keys to understanding the relation between surface structure and catalytic activity/selectivity. Of concern are questions related to enhanced catalytic properties of mixed-metal catalysts and critical active site requirements for molecular synthesis and rearrangement. The experimental approach utilizes a microcatalytic reactor contiguous to a surface analysis system, an arrangement which allows in vacuo transfer of the catalyst from one chamber to the other. Surface techniques being used include Auger (AES), UV and X-ray photoemission spectroscopy (UPS and XPS), temperature programmed desorption (TPD), low energy electron diffraction (LEED), high resolution electron energy loss spectroscopy (HREELS) and infrared reflection-absorption spectroscopy (IRAS). Our research program builds upon our previous experience relating the results of single crystal kinetic measurements with the results obtained with supported analogs. As well we are exploiting our recent work on the preparation, the characterization, and the determination of the catalytic properties of ultra-thin metal and metal oxide films. The program is proceeding toward the study of the unique catalytic properties of ultrathin metal films; the investigation of the critical ensemble size requirements for principal catalytic reaction types; and the modelling of supported catalysts using ultra-thin planar oxide surfaces.

  15. Exposure assessment of particulate matter air pollution before, during, and after the 2003 Southern California wildfires

    E-Print Network [OSTI]

    Wu, J; Winer, A M; Delfino, R J

    2006-01-01T23:59:59.000Z

    Ostra, B. , 1997. Air pollution and emergency room visitsJ. , 1994. Indoor air pollution and asthma: Results from aof unmeasured particulate air pollution data for an

  16. Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about particulate...

  17. Development of a Sub-Grid Model of a Diesel Particulate Filter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications The State of the Science in Diesel Particulate Control fundamental Modeling and Experimental Studies of Acicular Mullite Diesel...

  18. Vehicle Technologies Office Merit Review 2015: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about particulate...

  19. Real-Time Particulate Mass Measurements Pre and Post Diesel Particulat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Vehicles 2005deeranderson.pdf More Documents & Publications Advanced Radio Frequency-Based Sensors for Monitoring Diesel Particulate Filter Loading and...

  20. E-Print Network 3.0 - ambient sulfate particulate Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MCMA. Whereas fresh particulate emissions from mixed-traffic are almost entirely... lubricating oil and water, ambient soot particles which have been processed for less than a few...

  1. Growth of Nanoscale Nickel Ferrite on Carbonaceous Matrix- A Novel Method of Turning Harmful Particulates into a Functional Nanocomposite: An XAFS Study

    SciTech Connect (OSTI)

    Pattanaik, S.; Huggins, F; Huffman, G

    2010-01-01T23:59:59.000Z

    Particulate matter (PM) emission from residual oil combustion typically consists of carbonaceous material accompanied by inorganic matter notably transition metal sulfates. Often a minor sulfide form is found in the coarse fraction while an oxide form is more common in the fine and ultrafine fractions. A composite comprising of nanoscale nickel ferrite dispersed on carbonaceous matrix has been obtained following liberation of metal sulfates from the fine PM - a novel method of turning harmful particulates into a functional nanocomposite without the need for elaborate preparation using expensive precursors. The nickel ferrite content in the composite varies with the Fe/Ni ratio in particulate, fuel type, and combustion condition. Such variation may lead to the composite exhibiting diverse physical behaviors. Detailed structure and cation distribution in dispersed ferrite have been studied using Fe and Ni K-edges XAFS spectroscopy. Peaks are identified in the radial structure function with specific atom pair correlations within the spinel ferrite from which the relative occupancy of the cations in the octahedral and tetrahedral sites can be discerned. The results show that Ni(II) has strong preference for the octahedral site, while Fe(III) prefers both sites which is consistent with that of an inverted spinel ferrite.

  2. Method for measuring recovery of catalytic elements from fuel cells

    DOE Patents [OSTI]

    Shore, Lawrence (Edison, NJ); Matlin, Ramail (Berkeley, NJ)

    2011-03-08T23:59:59.000Z

    A method is provided for measuring the concentration of a catalytic clement in a fuel cell powder. The method includes depositing on a porous substrate at least one layer of a powder mixture comprising the fuel cell powder and an internal standard material, ablating a sample of the powder mixture using a laser, and vaporizing the sample using an inductively coupled plasma. A normalized concentration of catalytic element in the sample is determined by quantifying the intensity of a first signal correlated to the amount of catalytic element in the sample, quantifying the intensity of a second signal correlated to the amount of internal standard material in the sample, and using a ratio of the first signal intensity to the second signal intensity to cancel out the effects of sample size.

  3. Gaseous and particulate emissions from a DC arc melter

    SciTech Connect (OSTI)

    Overcamp, T.J.; Speer, M.P.; Griner, S.J.; Cash, D.M. [Clemson Univ., Anderson, SC (United States)

    1997-12-31T23:59:59.000Z

    This paper presents the results of the gaseous and particulate emissions from eight experimental tests of a DC arc melter to treat simulated Savannah River soils contaminated with metals, surrogates for radionuclides, and organic debris. The gaseous analyses reported on the concentrations of oxygen, hydrogen, carbon monoxide, carbon dioxide, hydrogen, methane, nitric oxide, and nitrogen dioxide. The carbon dioxide concentration was high for all runs. For the runs with an air purge, the carbon monoxide concentration ranged up to 10% in the runs with the debris and 2% in the runs without debris. Hydrogen ranged up to 5% by with debris and up to 1% without debris. The methane concentration ranged up to 7,000 ppm{sub v} for the runs with debris and 2,000 ppm for the runs without debris. With a nitrogen purge, oxygen concentrations were less than 1%. The carbon dioxide concentrations ranged from 3 to 15%. Much of this carbon dioxide was probably due the carbonates added to the feed material. The carbon monoxide concentration ranged up to 20% with the debris and 7% without debris. Hydrogen was above 6% in with debris and up to 6% without debris. The methane concentration ranged up to 10,000 ppm{sub v} with debris and 4,000 ppm{sub v} without debris. The particulate concentrations exiting ranged from 32 to 145 g/m{sup 3}. From the chemical analyses, the primary elements were silicon and calcium. The CHN analyses indicated that carbon, probably as carbonates, are an additional component in the particulate matter. The estimated emissions were at a level of 3% or less for cerium, up to 7% for nickel, and 11 to 30% for cesium.

  4. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    SciTech Connect (OSTI)

    Eteman, Shahrokh

    2013-06-30T23:59:59.000Z

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  5. Wireless zoned particulate matter filter regeneration control system

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA

    2011-10-04T23:59:59.000Z

    An assembly includes a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and multiple zones. An absorbing layer absorbs microwave energy in one of N frequency ranges and is arranged with the upstream end. N is an integer. A frequency selective filter has M frequency selective segments and receives microwave energy in the N frequency ranges. M is an integer. One of the M frequency selective segments permits passage of the microwave energy in one of the N frequency ranges and does not permit passage of microwave energy in the other of the N frequency ranges.

  6. Electrically heated particulate filter with zoned exhaust flow control

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2012-06-26T23:59:59.000Z

    A system includes a particulate matter (PM) filter that includes X zones. An electrical heater includes Y heater segments that are associated with respective ones of the X zones. The electrical heater is arranged upstream from and proximate with the PM filter. A valve assembly includes Z sections that are associated with respective ones of the X zones. A control module adjusts flow through each of the Z sections during regeneration of the PM filter via control of the valve assembly. X, Y and Z are integers.

  7. Ash reduction system using electrically heated particulate matter filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16T23:59:59.000Z

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  8. Low exhaust temperature electrically heated particulate matter filter system

    DOE Patents [OSTI]

    Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI); Bhatia, Garima (Bangalore, IN)

    2012-02-14T23:59:59.000Z

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  9. Apparatus for removal of particulate matter from gas streams

    DOE Patents [OSTI]

    Smith, Peyton L. (Baton Rouge, LA); Morse, John C. (Baton Rouge, LA)

    2000-01-01T23:59:59.000Z

    An apparatus for the removal of particulate matter from the gaseous product stream of an entrained flow coal gasifier which apparatus includes an initial screen, an intermediate screen which is aligned with the direction of flow of the gaseous product stream and a final screen transversely disposed to the flow of gaseous product and which apparatus is capable of withstanding at least a pressure differential of about 10 psi (68.95 kPa) or greater at the temperatures of the gaseous product stream.

  10. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Stanley J. Miller; Ye Zhuang; Michelle R. Olderbak

    2002-11-01T23:59:59.000Z

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ADVANCED HYBRID{trademark} Filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

  11. Advanced hybrid particulate collector and method of operation

    DOE Patents [OSTI]

    Miller, S.J.

    1999-08-17T23:59:59.000Z

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements. 12 figs.

  12. Advanced hybrid particulate collector and method of operation

    DOE Patents [OSTI]

    Miller, Stanley J. (Grand Forks, ND)

    1999-01-01T23:59:59.000Z

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements.

  13. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17T23:59:59.000Z

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  14. Zoned electrical heater arranged in spaced relationship from particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-11-15T23:59:59.000Z

    A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

  15. Prospecting by sampling and analysis of airborne particulates and gases

    DOE Patents [OSTI]

    Sehmel, G.A.

    1984-05-01T23:59:59.000Z

    A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.

  16. The backflow cell model for fluidized bed catalytic reactors

    E-Print Network [OSTI]

    Ganapathy, E. V

    1967-01-01T23:59:59.000Z

    THE BACKFLOW CELL MODEL FOR FLUIDI2ED BED CATALYTIC REACTORS A Thesis By E. V. Ganapathy Submitted to the Graduate College of the Texas A&M University in partial fulfillment of' the requirements for the degree of MASTER OF SCIENCE May 1967... Major Subject Chemical En ineerin THE BACKFLOW CELL MODEL FOR FLUIDIZED BED CATALYTIC REACTORS A Thesis E. V. Ganapathy Approved as to style and content by: chairman of Committee ~H+d d D p t t Member Member) May 1967 SO THE BACKFLOW CELL...

  17. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    DOE Patents [OSTI]

    Rollins, Harry W. (Idaho Falls, ID); Petkovic, Lucia M. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID)

    2011-02-01T23:59:59.000Z

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  18. Continued investigations of the catalytic reduction of N? to NH? by molybdenum triamidoamine complexes

    E-Print Network [OSTI]

    Hanna, Brian S. (Brian Stewart)

    2011-01-01T23:59:59.000Z

    A study of the effects of employing different solvents and the introduction of dihydrogen during the catalytic reduction of dinitrogen to ammonia with [HIPTN 3N]Mo complexes was completed. During a catalytic reaction, the ...

  19. Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine

    E-Print Network [OSTI]

    Peck, Jhongwoo, 1976-

    2003-01-01T23:59:59.000Z

    As part of the MIT micro-gas turbine engine project, the development of a hydrocarbon-fueled catalytic micro-combustion system is presented. A conventionally-machined catalytic flow reactor was built to simulate the ...

  20. Impact of Biodiesel-Based Na on the Selective Catalytic Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using Cu-zeolite Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using...

  1. Final Report of a CRADA Between Pacific Northwest National Laboratory and the Ford Motor Company (CRADA No. PNNL/265): “Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials”

    SciTech Connect (OSTI)

    Gao, Feng; Kwak, Ja Hun; Lee, Jong H.; Tran, Diana N.; Peden, Charles HF; Howden, Ken; Cheng, Yisun; Lupescu, Jason; Cavattaio, Giovanni; Lambert, Christine; McCabe, Robert W.

    2013-02-14T23:59:59.000Z

    Reducing NOx emissions and particulate matter (PM) are primary concerns for diesel vehicles required to meet current LEV II and future LEV III emission standards which require 90+% NOx conversion. Currently, urea SCR as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) are being used for emission control system components by Ford Motor Company for 2010 and beyond diesel vehicles. Because the use of this technology for vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions. This is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations, and to develop a good understanding of deactivation mechanisms that can be used to develop improved catalyst materials. In addition to NOx and PM, the hydrocarbon (HC) emission standards are expected to become much more stringent during the next few years. Meanwhile, the engine-out HC emissions are expected to increase and/or be more difficult to remove. Since HC can be removed only when the catalyst becomes warm enough for its oxidation, three-way catalyst (TWC) and diesel oxidation catalyst (DOC) formulations often contain proprietary zeolite materials to hold the HC produced during the cold start period until the catalyst reaches its operating temperature (e.g., >200°C). Unfortunately, much of trapped HC tends to be released before the catalyst reaches the operating temperature. Among materials effective for trapping HC during the catalyst warm-up period, siliceous zeolites are commonly used because of their high surface area and high stability under typical operating conditions. However, there has been little research on the physical properties of these materials related to the adsorption and release of various hydrocarbon species found in the engine exhaust. For these reasons, automakers and engine manufacturers have difficulty improving their catalytic converters for meeting the stringent HC emission standards. In this collaborative program, scientists and engineers in the Institute for Integrated Catalysis at Pacific Northwest National Laboratory and at Ford Motor Company have investigated laboratory- and engine-aged SCR catalysts, containing mainly base metal zeolites. These studies are leading to a better understanding of various aging factors that impact the long-term performance of SCR catalysts and improve the correlation between laboratory and engine aging, saving experimental time and cost. We have also studied materials effective for the temporary storage of HC species during the cold-start period. In particular, we have examined the adsorption and desorption of various HC species produced during the combustion with different fuels (e.g., gasoline, E85, diesel) over potential HC adsorber materials, and measured the kinetic parameters to update Ford’s HC adsorption model. Since this CRADA has now been completed, in this final report we will provide brief summaries of most of the work carried out on this CRADA over the last several years.

  2. Fuel-Neutral Studies of Particulate Matter Transport Emissions

    Broader source: Energy.gov (indexed) [DOE]

    II 7 Shape (dynamic shape factor, asphericity, asymmetry) Hygroscopicity Fractal dimension High detection efficiency - 50% @ d85nm, 100% @ d125 nm High...

  3. Development of a Low-Cost Particulate Matter Monitor

    E-Print Network [OSTI]

    White, Richard M.

    2010-01-01T23:59:59.000Z

    and air mover ii. Thermophoretic deposition module iii.Figure 6. Microfabricated thermophoretic heaters and theirand characteristics of thermophoretic deposition Figure 6.

  4. Characterization and modification of particulate properties to enhance filtration performance

    SciTech Connect (OSTI)

    Snyder, T.R.; Vann Bush, P.; Robinson, M.S.

    1990-06-01T23:59:59.000Z

    The specific objectives of this project are to characterize the particulate properties that determine the filtration performance of fabric filters, and to investigate methods for modifying these particulate properties to enhance filtration performance. Inherent in these objectives is the development of an experimental approach that will lead to full-scale implementation of beneficial conditioning processes identified during the project. The general approach has included a large number of laboratory evaluations to be followed by optional field tests of a new successful conditioning processes performed on a sidestream device. This project was divided into five tasks. The schedule followed for these tasks is shown in Figure 4. Tasks 2 and 3 each focus on one of the two complementary parts of the project. Task 2 Parametric Tests of Ashes and Fabrics, evaluates the degree to which ash properties and fabric design determine filtration performance. Task 3 Survey of Methods to Modify the Particle Filtration Properties, provides a literature review and laboratory study of techniques to modify ash properties. The results of these two tasks were used in Task 4 Proof-of-Concept Tests of Methods to Modify Particle Filtration Properties to demonstrate the effects on filtration performance of modifying ash properties. The findings of all the tasks are summarized in this Final Report. 13 refs.

  5. Cooler and particulate separator for an off-gas stack

    DOE Patents [OSTI]

    Wright, G.T.

    1991-04-08T23:59:59.000Z

    This report describes an off-gas stack for a melter, furnace or reaction vessel comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes prevents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

  6. An evaluation of European air pollution regulations for particulate matter monitored from a

    E-Print Network [OSTI]

    Sahu, Sujit K

    An evaluation of European air pollution regulations for particulate matter monitored from, stationarity. Abstract Statistical methods are needed for evaluating many aspects of air pollution regu particulate matter (PM) is an important air pollutant for which regu- lations have been issued recently

  7. Interactions between diatom aggregates, minerals, particulate organic carbon, and dissolved organic matter: Further

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Interactions between diatom aggregates, minerals, particulate organic carbon, and dissolved organic October 2008. [1] Correlations of particulate organic carbon (POC) and mineral fluxes into sediment traps in the deep sea have previously suggested that interactions between organic matter and minerals play a key

  8. Resistive heater geometry and regeneration method for a diesel particulate filter

    SciTech Connect (OSTI)

    Phelps, Amanda (Malibu, CA); Kirby, Kevin W. (Calabasas Hills, CA); Gregoir, Daniel J. (Thousand Oaks, CA)

    2011-10-25T23:59:59.000Z

    One embodiment of the invention includes a diesel particulate filter comprising a first face and a second face; a bottom electrode layer formed over the first face of the diesel particulate filter; a middle resistive layer formed over a portion of the bottom electrode layer; and a top electrode layer formed over a portion of the middle resistive layer.

  9. Interacting FisherWright Diffusions in a Catalytic Medium Andreas Greven

    E-Print Network [OSTI]

    Klenke, Achim

    environment (catalytic medium). Here we introduce a model of interacting Fisher­Wright diffusions where environment, catalytic medium, longtime behaviour, rescaling. AMS Subject Classification: 60K35, 60J70Interacting Fisher­Wright Diffusions in a Catalytic Medium Andreas Greven Mathematisches Institut

  10. Developing an accelerated aging system for gasoline particulate filters and an evaluation test for effects on engine performance

    E-Print Network [OSTI]

    Jorgensen, James E. (James Eastman)

    2014-01-01T23:59:59.000Z

    Stringent regulations worldwide will limit the level of particulate matter (PM) emitted from gasoline engines equipped with direct fuel injection. Gasoline particulate filters (GPFs) present one strategy for meeting PM ...

  11. Synergistic effects of lubricant additive chemistry on ash properties impacting diesel particulate filter flow resistance and catalyst performance

    E-Print Network [OSTI]

    Munnis, Sean (Sean Andrew)

    2011-01-01T23:59:59.000Z

    Diesel particulate filters (DPF) have seen widespread use in recent years in both on- and offroad applications as an effective means for meeting the increasingly stringent particulate emission regulations. Overtime, ...

  12. Data reconciliation and optimal operation of a catalytic naphtha reformer

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Data reconciliation and optimal operation of a catalytic naphtha reformer Tore Lid Statoil Mongstad-mail:skoge@chemeng.ntnu.no) #12;Abstract The naphtha reforming process converts low-octane gasoline blending compo- nents to high-octane components for use in high-performance gasoline fuels. The reformer also has a important function

  13. Data reconciliation and optimal operation of a catalytic naphtha reformer

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Data reconciliation and optimal operation of a catalytic naphtha reformer Tore Lid Statoil Mongstad-mail:skoge@chemeng.ntnu.no) #12;Abstract The naphtha reforming process converts low-octane gasoline blending compo- nents to high-octane components for use in high-performance gasoline fuels. The reformer also has an important function

  14. Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines Peter Mauermann1,* , Michael Dornseiffer6 , Frank Amkreutz6 1 Institute for Combustion Engines , RWTH Aachen University, Schinkelstr. 8, D of the hydrocarbon exhaust of internal combustion engines. In contrast to other gaseous hydrocarbons, significant

  15. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01T23:59:59.000Z

    This technology pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  16. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01T23:59:59.000Z

    This technology pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  17. Catalytic, Enantioselective Alkylations of N,O-Acetals

    E-Print Network [OSTI]

    Lectka, Thomas

    , 10998-10999. (2) Hoveyda et al. have developed a Ni-catalyzed alkylation reaction of allylic acetalsCatalytic, Enantioselective Alkylations of N,O-Acetals Dana Ferraris, Travis Dudding, Brandon Young alkylation reactions of acetals have attained a prominent position in organic synthesis.1 Methods employing

  18. Catalytic Asymmetric Synthesis of Hydroxy Enol Ethers: Approach to a

    E-Print Network [OSTI]

    Walsh, Patrick J.

    for the generation of polypro- pionate backbone.1-7 In contrast, the asymmetric acetate aldol reaction that leads associated with acetate aldol reactions have prompted investigations into alternative methods to generate the catalytic asymmetric allylation of aldehydes followed by oxidative cleavage of the allyl group (Scheme 1, A

  19. Catalytic Domain of Phosphoinositide-specific Phospholipase C (PLC)

    E-Print Network [OSTI]

    Williams, Roger L.

    Catalytic Domain of Phosphoinositide-specific Phospholipase C (PLC) MUTATIONAL ANALYSIS OF RESIDUES WITHIN THE ACTIVE SITE AND HYDROPHOBIC RIDGE OF PLC 1* (Received for publication, November 20, 1997 Institute, University of Dundee, Dundee DD1 4HN, United Kingdom Structural studies of phospholipase C 1 (PLC

  20. Utilization of char from biomass gasification in catalytic applications

    E-Print Network [OSTI]

    temperature or time. In addition, micropores were observed in char that was made in CO2, but not in char, but sintering was not observed during gasification with CO2. This showed that the properties of char depend catalytically or thermally. However, thermal decomposition requires high temperatures, and catalyst deactivation

  1. Short Communication Catalytic coal gasification: use of calcium versus potassium*

    E-Print Network [OSTI]

    Short Communication Catalytic coal gasification: use of calcium versus potassium* Ljubisa R of calcium is related to its sintering via crystallite growth. (Keywords: coal; gasification; catalysis was to study the relative merits (or liabilities) of these two catalysts in coal char gasification. This work

  2. Structural Dynamics of a Catalytic Monolayer Probed by Ultrafast

    E-Print Network [OSTI]

    Fayer, Michael D.

    REPORTS Structural Dynamics of a Catalytic Monolayer Probed by Ultrafast 2D IR Vibrational Echoes in solutions. Here, we extend the technique to probing the interfacial dynamics and structure of a silica. The structural dynamics, as reported on by a carbonyl stretch vibration of the surface-bound complex, have

  3. Task 2.10 - Advanced Sampling and Analysis of Fine Particulates

    SciTech Connect (OSTI)

    Donald P. McCollor; Kurt E. Eyland

    1998-01-01T23:59:59.000Z

    The objectives of this study are to develop a sampling method to capture the fine particulate and classiyi the particulate according to their size and chemistry. When developing the sampling method, two criteria need to be met: 1) the particulate are randomly dispersed on the sampling media and 2) the sampling media can be put directly into a scanning electron microscope (SEM) for analysis to prevent any alteration of the particulate. Several methods for the sampling and analysis of fine particulate are to be tested. Each sampling test will be analyzed using the FPT technique for collecting the size, shape, and chemical composition of 1500 to 2000 individual fine particulate. The FPT data will be classified using cluster analysis and principal component analysis to provide a classification system for these particles. As reported previously, particulate samples were collected using the advanced hybrid particulate collector (AHPC) on the inlet port of the particulate test combustor (PTC) when the Absaloka coal was burned in early April. The samples were collected at the inlet rather than the outlet port because of the loading that was expected and the temperature at which the PTC was run. Samples at the inlet were expected to see a much greater particulate loading than at the outlet because of the efficiency of the particulate collection device on the PTC. Also, polycarbonate filters cannot withstand temperatures above 230oC for long periods of time; therefore, a quick loading time was required. The samples were briefly scanned and photographed using the SEM to determine the best particulate loading time. The particulate were too close together on the 20- and 30-second polycarbonate filters to be able to analyze individual particles. The particle dispersion on the vitreous carbon substrate appeared to be the best of the four samples. Aerosols were produced from pure 1.0 M aqueous solutions of NaCl, Na2S04, (NHq)2SOo, NHqNO~, and K20 (KOH) using a Tri-Jet Model 3460 aerosol generator and collected by direct impingement on a vitreous carbon substrate. Because NaCl is the normal aerosol produced with the generator, it was briefly examined using SEM to determine the degree of dispersion. Good dispersion with nearly all particulate size below 2 pm and the majority in the O.1-pm range was achieved with a substrate collection time of 2-3 minutes. The brief examination also demonstrated that the sample could be introduced directly into the SEM for analysis with no prior carbon coating or other preparation and that charging of the sample was minimal.

  4. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    SciTech Connect (OSTI)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2009-09-30T23:59:59.000Z

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOEâ??s goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines, Incorporated Saturn engine rig. High pressure single-injector rig and modified engine rig tests demonstrated NOx less than 2 ppm and CO less than 10 ppm over a wide flame temperature operating regime with low combustion noise (<0.15% peak-to-peak). Minimum NOx for the optimized engine retrofit Full RCL® designs was less than 1 ppm with CO emissions less than 10 ppm. Durability testing of the substrate and catalyst material was successfully demonstrated at pressure and temperature showing long term stable performance of the catalytic reactor element. Stable performance of the reactor element was achieved when subjected to durability tests (>5000 hours) at simulated engine conditions (P=15 atm, Tin=400C/750F.). Cyclic tests simulating engine trips was also demonstrated for catalyst reliability. In addition to catalyst tests, substrate oxidation testing was also performed for downselected substrate candidates for over 25,000 hours. At the end of the program, an RCL® catalytic pilot system has been developed and demonstrated to produce NOx emissions of less than 3 ppm (corrected to 15% O2) for 100% and 50% load operation in a production engine operating on natural gas. In addition, a Full RCL® combustor has been designed and demonstrated less than 2 ppm NOx (with potential to achieve 1 ppm) in single injector and modified engine testing. The catalyst/substrate combination has been shown to be stable up to 5500 hrs in simulated engine conditions.

  5. Integrated exhaust and electrically heated particulate filter regeneration systems

    DOE Patents [OSTI]

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2013-01-08T23:59:59.000Z

    A system includes a particulate matter (PM) filter that includes multiple zones. An electrical heater includes heater segments that are associated with respective ones of the zones. The electrical heater is arranged upstream from and proximate with the PM filter. A post-fuel injection system injects fuel into at least one of a cylinder of an engine and an exhaust system. A control module is configured to operate in a first mode that includes activating the electrical heater to heat exhaust of the engine. The control module is also configured to operate in a second mode that includes activating the post-injection system to heat the exhaust. The control module selectively operates in at least one of the first mode and the second mode.

  6. A new closing method for wall flow diesel particulate filters

    SciTech Connect (OSTI)

    Stobbe, P.; Petersen, H.G.; Sorenson, S.C.; Hoej, J.W.

    1996-09-01T23:59:59.000Z

    A new method has been developed to close the ends of a wall flow filter used for removing particulate matter from diesel engine exhaust. In this method, the ends of the honeycomb structure are capped by deforming and closing the ends of the channel walls between the extrusion and firing stages of production. The method increases the amount of filtration area per filter volume for a given cell geometry compared to the traditional plugging method, since the entire length of the honeycomb channels is used for filtration purposes. In addition, use of the capping method has a beneficial effect on the pressure loss characteristics of a filter with a given filtration area. These benefits are illustrated through experimental results.

  7. Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development

    SciTech Connect (OSTI)

    Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

    2010-08-01T23:59:59.000Z

    The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial velocity component of exhaust moving down the filter inlet channel. Soot mass collected in this way would have a smaller impact on backpressure than soot forced into the flow restrictions deeper in the porous wall structure. This project has focused on the development of computational, analytical, and experimental techniques that are generally applicable to a wide variety of exhaust aftertreatment technologies. By helping to develop improved fundamental understanding pore-scale phenomena affecting filtration, soot oxidation, and NOX abatement, this cooperative research and development agreement (CRADA) has also assisted Dow Automotive in continuing development and commercialization of the ACM filter substrate. Over the course of this research project, ACM filters were successfully deployed on the Audi R10 TDI racecar which won the 24 Hours of LeMans endurance race in 2006, 2007, and 2008; and the 12 Hours of Sebring endurance race in 2006 and 2007. It would not have been possible for the R10 to compete in these traditionally gasoline-dominated events without reliable and effective exhaust particulate filtration. These successes demonstrated not only the performance of automotive diesel engines, but the efficacy of DPF technology as it was being deployed around the world to meet new emissions standards on consumer vehicles. During the course of this CRADA project, Dow Automotive commercialized their ACM DPF technology under the AERIFYTM DPF brand.

  8. An Optical Backscatter Sensor for Particulate Matter Measurement

    SciTech Connect (OSTI)

    Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL; Partridge Jr, William P [ORNL

    2009-01-01T23:59:59.000Z

    Diesel engines are prone to emit particulate matter (PM) emissions under certain operation conditions. In-cylinder production of PM from diesel combustion control can occur under a wide variety of operating conditions, and in some cases, operation of a multi-cylinder engine can further complicate PM emissions due to variations in air or fuel charge due to manifold mixing effects. In this study, a probe for detecting PM in diesel exhaust was evaluated on a light-duty diesel engine. The probe is based on an optical backscattering effect. Due to the optical nature of the probe, PM sensing can occur at high rates. The feasibility of the probe for examining PM emissions in the exhaust manifold will be discussed.

  9. The chemistry of particulate formation in fluorocarbon plasmas

    SciTech Connect (OSTI)

    Buss, R.J.; Hareland, W.A.

    1993-10-01T23:59:59.000Z

    The production, suspension and transport of fluorocarbon particulates in rf discharges have been studied using in situ laser light scattering and ex situ chemical analysis. The time evolution of the spatial distribution of suspended particles was obtained by 2-D imaging of the scattered light. The chemistry of the discharge was varied by the use of a range of pure fluorocarbon gases and mixtures with argon, oxygen and hydrogen-containing molecules. The addition of hydrogen to a fluorocarbon discharge increases the rate of formation of particles although these powders are found by FTIR to contain negligible hydrogen. Particle formation rates correlate with polymer deposition rates and are independent of apparatus history. It is proposed that this is a clear example of gas-phase rather than surface processes leading to particle nucleation and growth.

  10. Direct and quantitative photothermal absorption spectroscopy of individual particulates

    SciTech Connect (OSTI)

    Tong, Jonathan K.; Hsu, Wei-Chun; Eon Han, Sang; Burg, Brian R.; Chen, Gang, E-mail: gchen2@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Zheng, Ruiting [Key Laboratory of Radiation Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China)] [Key Laboratory of Radiation Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Shen, Sheng [Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)] [Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2013-12-23T23:59:59.000Z

    Photonic structures can exhibit significant absorption enhancement when an object's length scale is comparable to or smaller than the wavelength of light. This property has enabled photonic structures to be an integral component in many applications such as solar cells, light emitting diodes, and photothermal therapy. To characterize this enhancement at the single particulate level, conventional methods have consisted of indirect or qualitative approaches which are often limited to certain sample types. To overcome these limitations, we used a bilayer cantilever to directly and quantitatively measure the spectral absorption efficiency of a single silicon microwire in the visible wavelength range. We demonstrate an absorption enhancement on a per unit volume basis compared to a thin film, which shows good agreement with Mie theory calculations. This approach offers a quantitative approach for broadband absorption measurements on a wide range of photonic structures of different geometric and material compositions.

  11. Development of diesel particulate filter made of porous metal

    SciTech Connect (OSTI)

    Matsunuma, Kenji; Ihara, Tomohiko; Hanamoto, Yuichi; Nakajima, Shiro; Okamoto, Satoru

    1996-09-01T23:59:59.000Z

    Pollution is worsening in cities. The exhaust gas from vehicles is the main cause of air pollution in cities. The major drawback of the diesel engine is the Particulate Matter (PM) contained in the exhaust fumes which is also said to lead to cancer. For about 20 years many tests have been conducted in order to reduce PM in diesel exhaust gas. However the exhaust gas in present diesel engines contains a significant amount of PM. This is because there is no practical material for the Diesel Particulate Filter (DPF). Conventional ceramic materials have problems such as cracking and melting during regeneration and conventional metal materials lack adequate corrosion resistance for practical use. The authors present a new type of DPF made of metal porous matter (Celmet) which is designed with a thermal construction and simple control system in order to solve the problem of diesel exhaust gas. As metal porous matter has low pressure loss per unit filter area during filtering, two-cylinder filters have similar trapping performance to the honeycomb type filter such as pressure loss and trapping efficiency, In this paper, 2,800--3,400cc diesel engines were used. Then a cycle of collection and regeneration with an electric heater and 12V battery was performed under several conditions on the engine bench and trapping efficiency and pressure loss were measured. It was confirmed that this new type DPF has good practical use in automobiles. Tests on forklifts were also performed. In a simple control system, this DPF can be applied to practical use. It is trouble-free for 6 months. The total performance of DPF for vehicles such as forklifts and heavy duty vehicles and the possibilities for other practical uses was mainly discussed.

  12. Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation

    SciTech Connect (OSTI)

    Joo, Sang Hoon; Park, Jeong Y.; Renzas, J. Russell; Butcher, Derek R.; Huang, Wenyu; Somorjai, Gabor A.

    2010-04-04T23:59:59.000Z

    Carbon monoxide oxidation over ruthenium catalysts has shown an unusual catalytic behavior. Here we report a particle size effect on CO oxidation over Ru nanoparticle (NP) catalysts. Uniform Ru NPs with a tunable particle size from 2 to 6 nm were synthesized by a polyol reduction of Ru(acac){sub 3} precursor in the presence of poly(vinylpyrrolidone) stabilizer. The measurement of catalytic activity of CO oxidation over two-dimensional Ru NPs arrays under oxidizing reaction conditions (40 Torr CO and 100 Torr O{sub 2}) showed an activity dependence on the Ru NP size. The CO oxidation activity increases with NP size, and the 6 nm Ru NP catalyst shows 8-fold higher activity than the 2 nm catalysts. The results gained from this study will provide the scientific basis for future design of Ru-based oxidation catalysts.

  13. Protocol development for evaluation of commercial catalytic cracking catalysts

    SciTech Connect (OSTI)

    Mitchell, M.M. Jr.; Moore, H.F. (Ashland Petroleum Co., KY (USA))

    1988-09-01T23:59:59.000Z

    A complete, new set of testing protocols has been developed for qualification of catalysts for Ashland's commercial catalytic cracking units. The objective of this test development is to identify new generations of improved cracking catalysts. Prior test protocols have classically utilized microactivity (MAT) testing of steamed virgin catalysts, while more advanced methods have utilized fixed fluid bed and/or circulating pilot units. Each of these techniques, however, have been limited by their correlation to commercial operations, weaknesses in metallation and preparation of pseudo-equilibrium catalysts, and mechanical constraints on the use of heavy, vacuum bottoms-containing feedstocks. These new protocols have been baselined, compared to commercial Ashland results on known catalytic cracking catalysts, and utilized to evaluate a range of potentially new catalyst samples.

  14. Catalytic destruction of groundwater contaminants in reactive extraction wells

    DOE Patents [OSTI]

    McNab, Jr., Walt W. (Concord, CA); Reinhard, Martin (Stanford, CA)

    2002-01-01T23:59:59.000Z

    A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

  15. Selective dehydrogenation of propane over novel catalytic materials

    SciTech Connect (OSTI)

    Sault, A.G.; Boespflug, E.P.; Martino, A.; Kawola, J.S.

    1998-02-01T23:59:59.000Z

    The conversion of small alkanes into alkenes represents an important chemical processing area; ethylene and propylene are the two most important organic chemicals manufactured in the U.S. These chemicals are currently manufactured by steam cracking of ethane and propane, an extremely energy intensive, nonselective process. The development of catalytic technologies (e.g., selective dehydrogenation) that can be used to produce ethylene and propylene from ethane and propane with greater selectivity and lower energy consumption than steam cracking will have a major impact on the chemical processing industry. This report details a study of two novel catalytic materials for the selective dehydrogenation of propane: Cr supported on hydrous titanium oxide ion-exchangers, and Pt nanoparticles encapsulated in silica and alumina aerogel and xerogel matrices.

  16. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Jones, Susanne B.

    2013-03-31T23:59:59.000Z

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc.. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks have been identified.

  17. APOLLO II

    SciTech Connect (OSTI)

    Sanchez, R.; Mondot, J.; Stankovski, Z.; Cossic, A.; Zmijarevic, I.

    1988-11-01T23:59:59.000Z

    APOLLO II is a new, multigroup transport code under development at the Commissariat a l'Energie Atomique. The code has a modular structure and uses sophisticated software for data structuralization, dynamic memory management, data storage, and user macrolanguage. This paper gives an overview of the main methods used in the code for (a) multidimensional collision probability calculations, (b) leakage calculations, and (c) homogenization procedures. Numerical examples are given to demonstrate the potential of the modular structure of the code and the novel multilevel flat-flux representation used in the calculation of the collision probabilities.

  18. II f

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-I I ,Is II:c* -W.f - f

  19. Ii1

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-I I ,Is II:c*1r' (-r

  20. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    SciTech Connect (OSTI)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30T23:59:59.000Z

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  1. Catalytic membrane reactors for chemicals upgrading and environmental control

    SciTech Connect (OSTI)

    Sammells, A.F. [Eltron Research, Inc., Boulder, CO (United States)

    1994-12-31T23:59:59.000Z

    Mixed ionic and electronic conducting catalytic membrane reactors are being developed for promoting a number of spontaneous chemical reactions either leading to synthesis of value added products or decomposition of environmental contaminants. The dense non-porous ceramic materials behave as short-circuited electrochemical devices whereby ions (oxygen anions or protons) and electrons become simultaneously mediated for one reaction surface to another. The rationale behind membrane materials selection and specific applications will be discussed.

  2. Hybrid lean premixing catalytic combustion system for gas turbines

    DOE Patents [OSTI]

    Critchley, Ian L.

    2003-12-09T23:59:59.000Z

    A system and method of combusting a hydrocarbon fuel is disclosed. The system combines the accuracy and controllability of an air staging system with the ultra-low emissions achieved by catalytic combustion systems without the need for a pre-heater. The result is a system and method that is mechanically simple and offers ultra-low emissions over a wide range of power levels, fuel properties and ambient operating conditions.

  3. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect (OSTI)

    Mizell, Steve A [DRI; Nikolich, George [DRI; Shadel, Craig [DRI; McCurdy, Greg [DRI; Etyemezian, Vicken [DRI; Miller, Julianne J [DRI

    2014-10-01T23:59:59.000Z

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  4. Development of Soft Ionization for Particulate Organic Detection with the Aerodyne Aerosol Mass Spectrometer

    SciTech Connect (OSTI)

    Trimborn, A; Williams, L R; Jayne, J T; Worsnop, D R

    2008-06-19T23:59:59.000Z

    During this DOE SBIR Phase II project, we have successfully developed several soft ionization techniques, i.e., ionization schemes which involve less fragmentation of the ions, for use with the Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS). Vacuum ultraviolet single photon ionization was demonstrated in the laboratory and deployed in field campaigns. Vacuum ultraviolet single photon ionization allows better identification of organic species in aerosol particles as shown in laboratory experiments on single component particles, and in field measurements on complex multi-component particles. Dissociative electron attachment with lower energy electrons (less than 30 eV) was demonstrated in the measurement of particulate organics in chamber experiments in Switzerland, and is now a routine approach with AMS systems configured for bipolar, negative ion detection. This technique is particularly powerful for detection of acidic and other highly oxygenated secondary organic aerosol (SOA) chemical functionality. Low energy electron ionization (10 to 12 eV) is also a softer ionization approach routinely available to AMS users. Finally, Lithium ion attachment has been shown to be sensitive to more alkyl-like chemical functionality in SOA. Results from Mexico City are particularly exciting in observing changes in SOA molecular composition under different photochemical/meteorological conditions. More recent results detecting biomass burns at the Montana fire lab have demonstrated quantitative and selective detection of levoglucosan. These soft ionization techniques provide the ToF-AMS with better capability for identifying organic species in ambient atmospheric aerosol particles. This, in turn, will allow more detailed study of the sources, transformations and fate of organic-containing aerosol.

  5. Model catalytic oxidation studies using supported monometallic and heterobimetallic oxides

    SciTech Connect (OSTI)

    Ekerdt, J.G.

    1992-02-03T23:59:59.000Z

    This research program is directed toward a more fundamental understanding of the effects of catalyst composition and structure on the catalytic properties of metal oxides. Metal oxide catalysts play an important role in many reactions bearing on the chemical aspects of energy processes. Metal oxides are the catalysts for water-gas shift reactions, methanol and higher alcohol synthesis, isosynthesis, selective catalytic reduction of nitric oxides, and oxidation of hydrocarbons. A key limitation to developing insight into how oxides function in catalytic reactions is in not having precise information of the surface composition under reaction conditions. To address this problem we have prepared oxide systems that can be used to study cation-cation effects and the role of bridging (-O-) and/or terminal (=O) surface oxygen anion ligands in a systematic fashion. Since many oxide catalyst systems involve mixtures of oxides, we selected a model system that would permit us to examine the role of each cation separately and in pairwise combinations. Organometallic molybdenum and tungsten complexes were proposed for use, to prepare model systems consisting of isolated monomeric cations, isolated monometallic dimers and isolated bimetallic dimers supported on silica and alumina. The monometallic and bimetallic dimers were to be used as models of more complex mixed- oxide catalysts. Our current program was to develop the systems and use them in model oxidation reactions.

  6. Enantioselective Alkenylation of Aldehydes with Boronic Acids via the Synergistic Combination of Copper(II) and Amine Catalysis

    E-Print Network [OSTI]

    MacMillan, David W. C.

    recently applied the synergistic catalysis paradigm to the development of several new asymmetric bond of Copper(II) and Amine Catalysis Jason M. Stevens and David W. C. MacMillan* Merck Center for Catalysis combination of copper and chiral amine catalysis. The merger of two highly utilized and robust catalytic

  7. Air Pollution Control Regulations: No. 3- Particulate Emissions from Industrial Processes (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations limit particulate emissions into the atmosphere by process weight per hour, where process weight is the total weight of all materials introduced into any specific process which...

  8. The Role of Particulate Matter in the Development of Hypoxia on the Texas-Louisiana Shelf

    E-Print Network [OSTI]

    Cochran, Emma Mary

    2013-07-31T23:59:59.000Z

    particle composition and processes that dominate those areas – river-dominated water, highly productive surface waters, and clear, nutrient-poor low-productivity surface waters. The distribution and bulk composition of particulate matter in the northern...

  9. Flue Gas Conditioning to Reduce Particulate Emissions in Industrial Coal-Fired Boilers 

    E-Print Network [OSTI]

    Miller, B.; Keon, E.

    1980-01-01T23:59:59.000Z

    Chemical technology has been used successfully to solve many of the operational and emissions problems that result from burning coal. This paper describes the use of blended chemical flue gas conditioners to significantly reduce particulate...

  10. Neutral carbohydrate geochemistry of particulate material (trap and core sediments) in an eutrophic lake (Aydat,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Neutral carbohydrate geochemistry of particulate material (trap and core sediments) in an eutrophic Carbohydrate compositions were determined on sinking particles and core samples from eutrophic lake Aydat; Eutrophic lake; Aydat lake 1. Introduction Polysaccharides are common structural and storage polymers

  11. Effects of calcium carbonate particulate releasing surgical anchors on bone and tendon healing

    E-Print Network [OSTI]

    Medeiros, Jordan-Ryan J. I. K

    2007-01-01T23:59:59.000Z

    The Calaxo ® screw, developed by Smith and Nephew, is a novel biomedical composite composed of poly-DL-lactide-co-glycolide (PLLA:PGA) 85:15 and calcium carbonate particulates. Comparisons to an identical surgical anchor ...

  12. Air dispersion modeling of particulate matter from ground-level area sources 

    E-Print Network [OSTI]

    Meister, Michael Todd

    2000-01-01T23:59:59.000Z

    State Air Pollution Regulatory Agencies (SAPRAs) often use dispersion modeling to predict downwind concentrations of particulate matter (PM) from a facility. As such, a facility may be granted or denied an operating permit ...

  13. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines

    SciTech Connect (OSTI)

    Hall, Matt; Matthews, Ron

    2011-09-30T23:59:59.000Z

    The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

  14. Passive regeneration : long-term effects on ash characteristics and diesel particulate filter performance

    E-Print Network [OSTI]

    Bahr, Michael J., Nav. E. (Michael James). Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Diesel particulate filters (DPF) have seen widespread growth as an effective means for meeting increasingly rigorous particle emissions regulations. There is growing interest to exploit passive regeneration of DPFs to ...

  15. New Chemical Aerosol Characterization Methods- Examples Using Agricultural and Urban Airborne Particulate Matter

    E-Print Network [OSTI]

    Zhou, Lijun

    2010-10-12T23:59:59.000Z

    This study explored different chemical characterization methods of agricultural and urban airborne particulate matter. Three different field campaigns are discussed. For the agricultural aerosols, measurement of the chemical composition of size...

  16. 2008-01-1748 An Analysis of Methods for Measuring Particulate Matter Mass

    E-Print Network [OSTI]

    Wu, Mingshen

    . The particulate organics are typically considered to be derived from diesel fuel and lubrication oil [1]. Typical PM mass speciation reveals a roughly even distribution between the organic and inorganic

  17. Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations

    E-Print Network [OSTI]

    Salcedo, D.

    We report the first measurements of particulate lead (Pb) from Aerodyne Aerosol Mass Spectrometers, which were deployed in and around Mexico City during the Megacity Initiative: Local and Global Research Observations ...

  18. Exposure assessment of particulate matter air pollution before, during, and after the 2003 Southern California wildfires

    E-Print Network [OSTI]

    Wu, J; Winer, A M; Delfino, R J

    2006-01-01T23:59:59.000Z

    particulate air pollution data for an epidemiological studyOstra, B. , 1997. Air pollution and emergency room visitsJ. , 1994. Indoor air pollution and asthma: Results from a

  19. OPERATING EXPERIENCE LEVEL 3, Requalification Test Failure of Certain High Efficiency Particulate Air (HEPA) Filters- Update

    Broader source: Energy.gov [DOE]

    Operating Experience Level 3 (OE-3) document provides information regarding the previous requalification test failure and subsequent successful requalification, of certain high efficiency particulate air (HEPA) filter models manufactured by Flanders Corporation.

  20. How does pulmonary exposure to particulate matter predispose the heart to increased injury after myocardial infarction? 

    E-Print Network [OSTI]

    Robertson, Sarah

    2013-07-06T23:59:59.000Z

    One of the most prevalent pollutants in urban cities is diesel exhaust particulate (DEP). Air pollution has been linked with increased risk of recurrent myocardial infarction (MI) and MI related death (Brook, 2008). This ...

  1. Optical backscatter probe for sensing particulate in a combustion gas stream

    DOE Patents [OSTI]

    Parks, James E; Partridge, William P

    2013-05-28T23:59:59.000Z

    A system for sensing particulate in a combustion gas stream is disclosed. The system transmits light into a combustion gas stream, and thereafter detects a portion of the transmitted light as scattered light in an amount corresponding to the amount of particulates in the emissions. Purge gas may be supplied adjacent the light supply and the detector to reduce particles in the emissions from coating or otherwise compromising the transmission of light into the emissions and recovery of scattered light from the emissions.

  2. Relationship between meteorological variables and total suspended and heavy metal particulates in Little Rock, Arkansas

    E-Print Network [OSTI]

    Avery, Mary Gwendolyn

    1985-01-01T23:59:59.000Z

    RELATIONSHIP BETWEEN METEOROLOGICAL VARIABLES AND TOTAL SUSPENDED AND HEAVY NFXAL PARTICULATES IN LITTLE ROCK, ARKANSAS A Thesis MARY GWENDOLl'N AVERY Submitted to the Graduate College of Texas ALM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1985 Major Subject: Meteorology RELATIONSHIP BETWEEN METEOROLOGICAL VARIABLES AND TOTAL SUSPENDED AND HEAVY METAL PARTICULATES IN LITTLE ROCK, ARKANSAS A Thesis MARY GWENDOLYN AVERY Approved...

  3. Development of a hot isostatic pressing process for manufacturing silicon carbide particulate reinforced iron 

    E-Print Network [OSTI]

    Oakeson, David Oscar

    1992-01-01T23:59:59.000Z

    to aluminum, titanium, and some other metals and alloys. However, information obtained in processing iron can be used in developing guidelines for processing other metals. For example, the processing temperature as a fraction of the melting temperature... processes can be used for particulate reinforced MMCs which would break whisker or fiber reinforcements. ~' Conse- quently, particulate reinforced MMCs have appeared in other industries and have been demonstrated in applications including aluminum...

  4. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    SciTech Connect (OSTI)

    Shen, M.; Yang, R.T.

    1980-09-30T23:59:59.000Z

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  5. Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device

    DOE Patents [OSTI]

    Schmieg, Steven J; Viola, Michael B; Cheng, Shi-Wai S; Mulawa, Patricia A; Hilden, David L; Sloane, Thompson M; Lee, Jong H

    2014-05-06T23:59:59.000Z

    A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined. If the temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is below the threshold temperature, operation of the engine is controlled to regenerate the hydrocarbon-selective catalytic reactor device.

  6. Shape-selective catalysts for Fischer-Tropsch chemistry : atomic layer deposition of active catalytic metals. Activity report : January 1, 2005 - September 30, 2005.

    SciTech Connect (OSTI)

    Cronauer, D. C. (Chemical Sciences and Engineering Division)

    2011-04-15T23:59:59.000Z

    Argonne National Laboratory is carrying out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry - specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it is desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. The broad goal is to produce diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. Originally the goal was to prepare shape-selective catalysts that would limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' Such catalysts were prepared with silica-containing fractal cages. The activity was essentially the same as that of catalysts without the cages. We are currently awaiting follow-up experiments to determine the attrition strength of these catalysts. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those expected for complete monolayer coverage. In addition, there was likely to be significant variation in the Fe and Ru loading among the membranes due to difficulties in nucleating these materials on the aluminum oxide surfaces. The first series of experiments using coated membranes demonstrated that the technology needed further improvement. Specifically, observed catalytic FT activity was low. This low activity appeared to be due to: (1) low available surface area, (2) atomic deposition techniques that needed improvements, and (3) insufficient preconditioning of the catalyst surface prior to FT testing. Therefore, experimentation was expanded to the use of particulate silica supports having defined channels and reasonably high surface area. This later experimentation will be discussed in the next progress report. Subsequently, we plan to evaluate membranes after the ALD techniques are improved with a careful study to control and quantify the Fe and Ru loadings. The preconditioning of these surfaces will also be further developed. (A number of improvements have been made with particulate supports; they will be discussed in the subsequent report.) In support of the above, there was an opportunity to undertake a short study of cobalt/promoter/support interaction using the Advanced Photon Source (APS) of Argonne. Five catalysts and a reference cobalt oxide were characterized during a temperature programmed EXAFS/XANES experimental study with the combined effort of Argonne and the Center for Applied Energy Research (CAER) of the University of Kentucky. This project was completed, and it resulted in an extensive understanding of the preconditioning step of reducing Co-containing FT catalysts. A copy of the resulting manuscript has been submitted and accepted for publication. A similar project was undertaken with iron-containing FT catalysts; the data is currently being studied.

  7. Atmospheric particulate emissions from dry abrasive blasting using coal slag

    SciTech Connect (OSTI)

    Bhaskar Kura; Kalpalatha Kambham; Sivaramakrishnan Sangameswaran; Sandhya Potana [University of New Orleans, New Orleans, LA (United States). Department of Civil and Environmental Engineering

    2006-08-15T23:59:59.000Z

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. 40 refs., 5 figs., 2 tabs.

  8. Characterization of particulate matter deposited in diesel particulate filters: Visual and analytical approach in macro-, micro- and nano-scales

    SciTech Connect (OSTI)

    Liati, Anthi; Dimopoulos Eggenschwiler, Panayotis [EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for I.C. Engines, Duebendorf (Switzerland)

    2010-09-15T23:59:59.000Z

    Multi-scale analytical investigations of particulate matter (soot and ash) of two loaded diesel particulate filters (DPF) from (a) a truck (DPF1) and (b) a passenger car (DPF2) reveal the following: in DPF1 (without fuel-borne additives), soot aggregates form an approximately 130-270 {mu}m thick, homogeneous porous cake with pronounced orientation. Soot aggregates consist of 15-30 nm large individual particles exhibiting relatively mature internal nanostructures, however, far from being graphite. Ash aggregates largely accumulate at the outlet part of DPF1, while minor amounts are deposited directly on the channel walls all along the filter length. They consist of crystalline phases with individual particles of sizes down to the nanoscale range. Chemically, the ash consists mainly of Mg, S, Ca, Zn and P, elements encountered in lubricating oil additives. In the passenger car DPF2 (with fuel-borne additives), soot aggregates form an approximately 200-500 {mu}m thick, inhomogeneous porous cake consisting of several superposed layers corresponding to different soot generations. The largest part of the soot cake is composed of unburned, oriented soot aggregates left behind despite repeated regenerations, while a small part constitutes a loose layer with randomly oriented aggregates, which was deposited last and has not seen any regeneration. Fe-oxide particles of micro- to nano-scale sizes, originating from the fuel-borne additive, are often dispersed within the part of the soot cake composed of the unburned soot leftovers. The individual soot nanoparticles in DPF2 are approximately 15-40 nm large and generally less mature than in the truck DPF1. The presence of soot leftovers in DPF2 indicates that the addition of fuel-borne material does not fully compensate for the temperatures needed for complete soot removal. Ash in DPF2 is filling up more than half of the filter volume (at the downstream part) and is dominated by Fe-oxide aggregates, due to the Fe-based fuel-borne additive, but otherwise its chemical composition reflects compounds of lubricating oil additives. (author)

  9. Scaling Issues of Micro Catalytic Reactors Tzong-Shyng Leu1,a

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    combustor, Microscale combustion, Power MEMS Abstract. Micro catalytic combustors are studied experimentally thermal management. For example, "Swiss Roll" [4] and multi-quartz tubes[5] utilized insulated conditions

  10. A Simple Approach of Tuning Catalytic Activity of MFI-Zeolites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Catalysts via First Principles (Agreement ID:10635) Catalysts via First Principles Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons...

  11. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    SciTech Connect (OSTI)

    Schwartz, Michael (Boulder, CO); White, James H. (Boulder, CO); Sammells, Anthony F. (Boulder, CO)

    2001-01-01T23:59:59.000Z

    A process for production of synthesis gas employing a catalytic membrane reactor wherein the membrane comprises a mixed metal oxide material.

  12. New sub-family of lysozyme-like proteins shows no catalytic activity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modest sequence similarity to phage-like lysozyme (N-acetylmuramidase) but appears to lack essential catalytic residues that are strictly conserved in all lysozymes. Close...

  13. Artificial Photosynthesis II -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    II - Artificial Photosynthesis II - Joint Center for Artificial Photosynthesis (JCAP) Simulations NathanLewis.png Schematic of a photoelectrochemical cell being designed to harness...

  14. Method and apparatus for decoupled thermo-catalytic pollution control

    DOE Patents [OSTI]

    Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric

    2006-07-11T23:59:59.000Z

    A new method for design and scale-up of thermocatalytic processes is disclosed. The method is based on optimizing process energetics by decoupling of the process energetics from the DRE for target contaminants. The technique is applicable to high temperature thermocatalytic reactor design and scale-up. The method is based on the implementation of polymeric and other low-pressure drop support for thermocatalytic media as well as the multifunctional catalytic media in conjunction with a novel rotating fluidized particle bed reactor.

  15. Recent Advances in Catalytic Conversion of Ethanol to Chemicals

    SciTech Connect (OSTI)

    Sun, Junming; Wang, Yong

    2014-04-30T23:59:59.000Z

    With increased availability and decreased cost, ethanol is potentially a promising platform molecule for the production of a variety of value-added chemicals. In this review, we provide a detailed summary of recent advances in catalytic conversion of ethanol to a wide range of chemicals and fuels. We particularly focus on catalyst advances and fundamental understanding of reaction mechanisms involved in ethanol steam reforming (ESR) to produce hydrogen, ethanol conversion to hydrocarbons ranging from light olefins to longer chain alkenes/alkanes and aromatics, and ethanol conversion to other oxygenates including 1-butanol, acetaldehyde, acetone, diethyl ether, and ethyl acetate.

  16. Method for low temperature catalytic production of hydrogen

    DOE Patents [OSTI]

    Mahajan, Devinder

    2003-07-22T23:59:59.000Z

    The invention provides a process for the catalytic production of a hydrogen feed by exposing a hydrogen feed to a catalyst which promotes a base-catalyzed water-gas-shift reaction in a liquid phase. The hydrogen feed can be provided by any process known in the art of making hydrogen gas. It is preferably provided by a process that can produce a hydrogen feed for use in proton exchange membrane fuel cells. The step of exposing the hydrogen feed takes place preferably from about 80.degree. C. to about 150.degree. C.

  17. Catalytic Filter for Diesel Exhaust Purification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change RequestFirstchampions,Department ofConversionCatalytic

  18. New Developments in Titania-Based Catalysts for Selective Catalytic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForum |EnergyNew CatalyticDemands on Heavy

  19. Sizes, graphitic structures and fractal geometry of light-duty diesel engine particulates.

    SciTech Connect (OSTI)

    Lee, K. O.; Zhu, J.; Ciatti, S.; Choi, M. Y.; Energy Systems; Drexel Univ.

    2003-01-01T23:59:59.000Z

    The particulate matter of a light-duty diesel engine was characterized in its morphology, sizes, internal microstructures, and fractal geometry. A thermophoretic sampling system was employed to collect particulates directly from the exhaust manifold of a 1.7-liter turbocharged common-rail direct-injection diesel engine. The particulate samples collected at various engine-operating conditions were then analyzed by using a high-resolution transmission electron microscope (TEM) and an image processing/data acquisition system. Results showed that mean primary particle diameters (dp), and radii of gyration (Rg), ranged from 19.4 nm to 32.5 nm and 77.4 nm to 134.1 nm, respectively, through the entire engine-operating conditions of 675 rpm (idling) to 4000 rpm and 0% to 100% loads. It was also revealed that the other important parameters sensitive to the particulate formation, such as exhaust-gas recirculation (EGR) rate, equivalence ratio, and temperature, affected particle sizes significantly. Bigger primary particles were measured at higher EGR rates, higher equivalence ratios (fuel-rich), and lower exhaust temperatures. Fractal dimensions (D{sup f}) were measured at a range of 1.5 - 1.7, which are smaller than those measured for heavy-duty direct-injection diesel engine particulates in our previous study. This finding implies that the light-duty diesel engine used in this study produces more stretched chain-like shape particles, while the heavy-duty diesel engine emits more spherical particles. The microstructures of diesel particulates were observed at high TEM magnifications and further analyzed by a Raman spectroscope. Raman spectra revealed an atomic structure of the particulates produced at high engine loads, which is similar to that of typical graphite.

  20. Particulate Air Pollution, Ambulatory Heart Rate Variability, and Cardiac Arrhythmia in Retirement Community Residents with Coronary Artery Disease

    E-Print Network [OSTI]

    Bartell, Scott M.; Longhurst, John; Tjoa, Thomas; Sioutas, Constantinos; Delfino, Ralph J.

    2013-01-01T23:59:59.000Z

    in association with air pollution and air temperature amongvariability with traffic and air pollution in patients withParticulate matter air pollution and cardiovascular disease:

  1. Particulate air pollution, ambulatory heart rate variability, and cardiac arrhythmia in retirement community residents with coronary artery disease.

    E-Print Network [OSTI]

    Bartell, Scott M; Longhurst, John; Tjoa, Thomas; Sioutas, Constantinos; Delfino, Ralph J

    2013-01-01T23:59:59.000Z

    in association with air pollution and air temperature amongvariability with traffic and air pollution in patients withParticulate matter air pollution and cardiovascular disease:

  2. Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)

    Broader source: Energy.gov [DOE]

    The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

  3. Studies Relevent to Catalytic Activation Co & other small Molecules

    SciTech Connect (OSTI)

    Ford, Peter C

    2005-02-22T23:59:59.000Z

    Detailed annual and triannual reports describing the progress accomplished during the tenure of this grant were filed with the Program Manager for Catalysis at the Office of Basic Energy Sciences. To avoid unnecessary duplication, the present report will provide a brief overview of the research areas that were sponsored by this grant and list the resulting publications and theses based on this DOE supported research. The scientific personnel participating in (and trained by) this grant's research are also listed. Research carried out under this DOE grant was largely concerned with the mechanisms of the homogeneous catalytic and photocatalytic activation of small molecules such as carbon monoxide, dihydrogen and various hydrocarbons. Much of the more recent effort has focused on the dynamics and mechanisms of reactions relevant to substrate carbonylations by homogeneous organometallic catalysts. A wide range of modern investigative techniques were employed, including quantitative fast reaction methodologies such as time-resolved optical (TRO) and time-resolved infrared (TRIR) spectroscopy and stopped flow kinetics. Although somewhat diverse, this research falls within the scope of the long-term objective of applying quantitative techniques to elucidate the dynamics and understand the principles of mechanisms relevant to the selective and efficient catalytic conversions of fundamental feedstocks to higher value materials.

  4. Catalytic combustor for integrated gasification combined cycle power plant

    DOE Patents [OSTI]

    Bachovchin, Dennis M. (Mauldin, SC); Lippert, Thomas E. (Murrysville, PA)

    2008-12-16T23:59:59.000Z

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  5. DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY

    SciTech Connect (OSTI)

    Tom Hrdlicka; William Swanson

    2005-12-01T23:59:59.000Z

    The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

  6. Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures

    E-Print Network [OSTI]

    Goodman, Wayne

    oxidation over platinum group metals has been investigated for some eight decades by many researchersCatalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures A Catalytic oxidation of CO over platinum group metals (Pt, Ir, Rh and Pd) has been the subject of many

  7. Micro Catalytic Combustor with Pd/Nano-porous Alumina for High-Temperature Application

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    Micro Catalytic Combustor with Pd/Nano-porous Alumina for High-Temperature Application Takashi: A micro-scale catalytic combustor using high-precision ceramic tape-casting technology has been developed surface reaction of butane. In combustion experiments with a prototype combustor, the wall temperature

  8. Non-uniform Heat Generation in Micro Catalytic Combustor Takashi Okamasa*, Yuji Suzuki, and Nobuhide Kasagi

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    Non-uniform Heat Generation in Micro Catalytic Combustor Takashi Okamasa*, Yuji Suzuki@thtlab.t.u-tokyo.ac.jp Abstract We developed a micro catalytic combustor using high-precision ceramic tape-casting technology and nano-porous alumina catalyst layer. It is found that failure of the ceramic combustor occurs due

  9. Catalytic Transformation of Toluene over High Acidity Y-Zeolite Based S. Al-Khattaf*

    E-Print Network [OSTI]

    Al-Khattaf, Sulaiman

    Catalytic Transformation of Toluene over High Acidity Y-Zeolite Based Catalyst S. Al Abstract Catalytic transformation of toluene has been investigated over Y-zeolite based catalysts in the temperature range of 400-500o C to understand the transformation of toluene over high acidity Y-based zeolite

  10. Multiscale Modeling and Solution Multiplicity in Catalytic Pellet Reactors Kedar Kulkarni,

    E-Print Network [OSTI]

    Linninger, Andreas A.

    Multiscale Modeling and Solution Multiplicity in Catalytic Pellet Reactors Kedar Kulkarni, Jeonghwa phenomena in catalytic pellet reactors are often difficult to analyze because of coupling between heat at the macroscopic level as well as the catalyst pellets at the microscopic level. The resulting approach yields

  11. ENGINEERING SCALE UP OF RENEWABLE HYDROGEN PRODUCTION BY CATALYTIC STEAM REFORMING OF PEANUT

    E-Print Network [OSTI]

    ENGINEERING SCALE UP OF RENEWABLE HYDROGEN PRODUCTION BY CATALYTIC STEAM REFORMING OF PEANUT SHELLS, and academic organizations is developing a steam reforming process to be demonstrated on the gaseous byproducts, catalytic, steam-reforming reactor was then successfully operated on methane and peanut shell pyrolysis

  12. MEMS-based fuel cells with integrated catalytic fuel processor and method thereof

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Morse, Jeffrey D. (Martinez, CA); Upadhye, Ravindra S. (Pleasanton, CA); Havstad, Mark A. (Davis, CA)

    2011-08-09T23:59:59.000Z

    Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

  13. The Catalytic Chemistry of HCN+NO over Na- and Ba-Y, FAU: An...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Catalytic Chemistry of HCN+NO over Na- and Ba-Y, FAU: An In Situ FTIR and TPDTPR Study. The Catalytic Chemistry of HCN+NO over Na- and Ba-Y, FAU: An In Situ FTIR and TPDTPR...

  14. Burning Velocities in Catalytically Assisted Self-Propagating High-Temperature Combustion Synthesis Systems

    E-Print Network [OSTI]

    Wooldridge, Margaret S.

    Burning Velocities in Catalytically Assisted Self-Propagating High-Temperature Combustion Synthesis of catalytically assisted self-propagating high-temperature synthesis (SHS) of the tantalum/carbon material system. © 2001 by The Combustion Institute INTRODUCTION Self-propagating high-temperature combustion synthesis

  15. Development of a Low-Cost Particulate Matter Monitor

    SciTech Connect (OSTI)

    White, Richard M.; Apte, Michael G.; Gundel, Lara A.; Black, Justin

    2008-08-01T23:59:59.000Z

    We describe a small, inexpensive portable monitor for airborne particulates, composed of the following elements: a. A simple size-selective inlet (vertical elutriator) that permits only particles below a pre-set diameter to pass and enter the measurement section; b. A measurement section in which passing particles are deposited thermophoretically on a micro-fabricated resonant piezoelectric mass sensor; c. An optical characterization module co-located with the mass sensor module that directs infrared and ultraviolet beams through the deposit. The emergent optical beams are detected by a photodiode. The optical absorption of the deposit can be measured in order to characterize the deposit, and determine how much is due to diesel exhaust and/or environmental tobacco smoke; and d. A small pump that moves air through the device, which may also be operated in a passive mode. The component modules were designed by the project team, and fabricated at UCB andLBNL. Testing and validation were performed in a room-sized environmental chamber at LBNL in to which was added either environmental tobacco smoke (ETS, produced by a cigarette smoking machine) or diesel exhaust (from a conventional diesel engine). Two pilot field tests in a dwelling compared the monitor with existing aerosol instruments during exposure to infiltrated ambient air to which cigarette smoke, diesel exhaust, wood smoke and cooking fumes were added. The limit of detection (LOD) derived from statistical analysis of field data is 18 mu g m-3, at the 99percent confidence level. The monitor weighs less than 120 g and has a volume of roughly 250 cm3. Power consumption is approximately 100 milliwatts. During this study, the optical component of the device was not fully implemented and has been left for future efforts. Suggested improvements in the current prototype include use of integrated thermal correction, reconfiguration of the resonator for increased particle collection area, increased thermophoretic collection efficiency using an increased temperature gradient, and shielding the resonator electronics from deposition of ultrafine particles.

  16. An Analytical Study of Thermophoretic Particulate Deposition in Turbulent Pipe Flows

    SciTech Connect (OSTI)

    Abarham, Mehdi [University of Michigan; Hoard, John W. [University of Michigan; Assanis, Dennis [University of Michigan; Styles, Dan [Ford Motor Company; Sluder, Scott [ORNL; Storey, John Morse [ORNL

    2010-01-01T23:59:59.000Z

    The presence of a cold surface in non-isothermal pipe flows conveying submicron particles causes thermophoretic particulate deposition. In this study, an analytical method is developed to estimate thermophoretic particulate deposition efficiency and its effect on overall heat transfer coefficient of pipe flows in transition and turbulent flow regimes. The proposed analytical solution has been validated against experiments conducted at Oak Ridge National Laboratory. Exhaust gas carrying submicron soot particles was passed through pipes with a constant wall temperature and various designed boundary conditions to correlate transition and turbulent flow regimes. Prediction of the reduction in heat transfer coefficient and particulate mass deposited has been compared with experiments. The results of the analytical method are in a reasonably good agreement with experiments.

  17. Apparatus for real-time airborne particulate radionuclide collection and analysis

    DOE Patents [OSTI]

    Smart, John E. (West Richland, WA); Perkins, Richard W. (Richland, WA)

    2001-01-01T23:59:59.000Z

    An improved apparatus for collecting and analyzing an airborne particulate radionuclide having a filter mounted in a housing, the housing having an air inlet upstream of the filter and an air outlet downstream of the filter, wherein an air stream flows therethrough. The air inlet receives the air stream, the filter collects the airborne particulate radionuclide and permits a filtered air stream to pass through the air outlet. The improvement which permits real time counting is a gamma detecting germanium diode mounted downstream of the filter in the filtered air stream. The gamma detecting germanium diode is spaced apart from a downstream side of the filter a minimum distance for a substantially maximum counting detection while permitting substantially free air flow through the filter and uniform particulate radionuclide deposition on the filter.

  18. Impact of Biodiesel on the Oxidation Kinetics and Morphology of Diesel Particulate

    SciTech Connect (OSTI)

    Strzelec, Andrea [ORNL] [ORNL; Toops, Todd J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    We compare the oxidation characteristics of four different diesel particulates generated with a modern light-duty engine. The four particulates represent engine fueling with conventional ultra-low sulfur diesel (ULSD), biodiesel, and two intermediate blends of these fuels. The comparisons discussed here are based on complementary measurements implemented in a laboratory micro-reactor, including temperature programmed desorption and oxidation, pulsed isothermal oxidation, and BET surface area. From these measurements we have derived models that are consistent with the observed oxidation reactivity differences. When accessible surface area effects are properly accounted for, the oxidation kinetics of the fixed carbon components were found to consistently exhibit an Arrhenius activation energy of 113 6 kJ/mol. Release of volatile carbon from the as-collected particulate appears to follow a temperaturedependent rate law.

  19. Particulate dispersion apparatus for the validation of plume models 

    E-Print Network [OSTI]

    Bala, William D

    2001-01-01T23:59:59.000Z

    roughness of the particle as it penetrates layers near the ground surface, and the subsequent friction velocity. Friction velocity is denoted as u. and is given by the equation: Eq. 6: u- = u, (Dingman, 1994), where k I+I In ? ' n u = friction velocity... ?, (Dingman, 1994), where L = Monin-Obukhov length (m), u = friction velocity (cm/s), and z = height (m). For u = 1. 485 cm/s, and using an L of 1 (assuming an open, rural test location), r, = 56. 814 s/cm. The deposition layer resistance, r& is given...

  20. The Three-Dimensional Structural Basis of Type II Hyperprolinemia

    SciTech Connect (OSTI)

    Srivastava, Dhiraj; Singh, Ranjan K.; Moxley, Michael A.; Henzl, Michael T.; Becker, Donald F.; Tanner, John J. (UNL); (UMC)

    2012-08-31T23:59:59.000Z

    Type II hyperprolinemia is an autosomal recessive disorder caused by a deficiency in {Delta}{sup 1}-pyrroline-5-carboxylate dehydrogenase (P5CDH; also known as ALDH4A1), the aldehyde dehydrogenase that catalyzes the oxidation of glutamate semialdehyde to glutamate. Here, we report the first structure of human P5CDH (HsP5CDH) and investigate the impact of the hyperprolinemia-associated mutation of Ser352 to Leu on the structure and catalytic properties of the enzyme. The 2. 5-{angstrom}-resolution crystal structure of HsP5CDH was determined using experimental phasing. Structures of the mutant enzymes S352A (2.4 {angstrom}) and S352L (2.85 {angstrom}) were determined to elucidate the structural consequences of altering Ser352. Structures of the 93% identical mouse P5CDH complexed with sulfate ion (1.3 {angstrom} resolution), glutamate (1.5 {angstrom}), and NAD{sup +} (1.5 {angstrom}) were determined to obtain high-resolution views of the active site. Together, the structures show that Ser352 occupies a hydrophilic pocket and is connected via water-mediated hydrogen bonds to catalytic Cys348. Mutation of Ser352 to Leu is shown to abolish catalytic activity and eliminate NAD{sup +} binding. Analysis of the S352A mutant shows that these functional defects are caused by the introduction of the nonpolar Leu352 side chain rather than the removal of the Ser352 hydroxyl. The S352L structure shows that the mutation induces a dramatic 8-{angstrom} rearrangement of the catalytic loop. Because of this conformational change, Ser349 is not positioned to interact with the aldehyde substrate, conserved Glu447 is no longer poised to bind NAD{sup +}, and Cys348 faces the wrong direction for nucleophilic attack. These structural alterations render the enzyme inactive.

  1. Studies of coupled chemical and catalytic coal conversion methods

    SciTech Connect (OSTI)

    Stock, L.M.; Chatterjee, K.; Cheng, C.; Ettinger, M.; Flores, F.; Jiralerspong, S.; Miyake, M.; Muntean, J.

    1991-12-01T23:59:59.000Z

    The objective of this research was to convert coal into a soluble substance under mild conditions. The strategy involved two steps, first to breakdown the macromolecular network of coal, and second to add hydrogen catalytically. We investigated different basic reagents that could, in priciple, break down coal's structure and alkylation strategies that might enhance its solubility. We examined O- and C-alkylation, the importance of the strength of the base, the character of the added alkyl groups and other reaction parameters. This work provided new information concerning the way in which hydrogen bonding, polarization interactions between aromatic structures and covalent bonding could be disrupted and solubility enhanced. The objective of our research was to explore new organochromium chemistry that might be feasible for the hydrogenation of coal under mild conditions.

  2. Studies of coupled chemical and catalytic coal conversion methods

    SciTech Connect (OSTI)

    Stock, L.M.; Chatterjee, K.; Cheng, C.; Ettinger, M.; Flores, F.; Jiralerspong, S.; Miyake, M.; Muntean, J.

    1991-12-01T23:59:59.000Z

    The objective of this research was to convert coal into a soluble substance under mild conditions. The strategy involved two steps, first to breakdown the macromolecular network of coal, and second to add hydrogen catalytically. We investigated different basic reagents that could, in priciple, break down coal`s structure and alkylation strategies that might enhance its solubility. We examined O- and C-alkylation, the importance of the strength of the base, the character of the added alkyl groups and other reaction parameters. This work provided new information concerning the way in which hydrogen bonding, polarization interactions between aromatic structures and covalent bonding could be disrupted and solubility enhanced. The objective of our research was to explore new organochromium chemistry that might be feasible for the hydrogenation of coal under mild conditions.

  3. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31T23:59:59.000Z

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline, diesel, and jet range blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  4. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31T23:59:59.000Z

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline , diesel and jet range blendstocks . Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  5. Coal hydrogenation and deashing in ebullated bed catalytic reactor

    DOE Patents [OSTI]

    Huibers, Derk T. A. (Pennington, NJ); Johanson, Edwin S. (Princeton, NJ)

    1983-01-01T23:59:59.000Z

    An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

  6. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2006-02-14T23:59:59.000Z

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

  7. Methods and apparatus for catalytic hydrothermal gasification of biomass

    DOE Patents [OSTI]

    Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

    2012-08-14T23:59:59.000Z

    Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  8. Catalytic carbon membranes for hydrogen production. Final report

    SciTech Connect (OSTI)

    Damle, A.S.; Gangwal, S.K.

    1992-01-01T23:59:59.000Z

    Commercial carbon composite microfiltration membranes may be modified for gas separation applications by providing a gas separation layer with pores in the 1- to 10-nm range. Several organic polymeric precursors and techniques for depositing a suitable layer were investigated in this project. The in situ polymerization technique was found to be the most promising, and pure component permeation tests with membrane samples prepared with this technique indicated Knudsen diffusion behavior. The gas separation factors obtained by mixed-gas permeation tests were found to depend strongly on gas temperature and pressure indicating significant viscous flow at high-pressure conditions. The modified membranes were used to carry out simultaneous water gas shift reaction and product hydrogen separation. These tests indicated increasing CO conversions with increasing hydrogen separation. A simple process model was developed to simulate a catalytic membrane reactor. A number of simulations were carried out to identify operating conditions leading to product hydrogen concentrations over 90 percent. (VC)

  9. Model catalytic oxidation studies using supported monometallic and heterobimetallic oxides

    SciTech Connect (OSTI)

    Ekerdt, J.G.

    1991-04-30T23:59:59.000Z

    This research program is directed toward developing a fundamental understanding of how catalyst composition, redox ability, and structure control the catalytic properties of metal oxides. Oxide systems that permit examination of the role of metal oxide cations separately and in pairwise combinations are being developed. Organometallic complexes containing C{sub 3}-allyl, cyclopentadienyl, or carbonyl ligands are exchanged with the hydroxide ligands of silica, alumina, titania, zirconia and magnesia supports. The exchange technique is used to achieve high metal oxide loadings without the formation of supported crystallites over silica. The organometallic route may also lead to oxygen-bridged cations and/or cation pairs over the supports prior to full oxidation. The anchored complex is subsequently oxidized to generate a supported oxide. 2 refs., 1 tab.

  10. Method for selective catalytic reduction of nitrogen oxides

    DOE Patents [OSTI]

    Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

    2005-02-15T23:59:59.000Z

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  11. Method For Selective Catalytic Reduction Of Nitrogen Oxides

    DOE Patents [OSTI]

    Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

    2005-02-15T23:59:59.000Z

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  12. Method for the removal of ultrafine particulates from an aqueous suspension

    DOE Patents [OSTI]

    Chaiko, David J. (Naperville, IL); Kopasz, John P. (Bolingbrook, IL); Ellison, Adam J. G. (Corning, NY)

    2000-01-01T23:59:59.000Z

    A method of separating ultra-fine particulates from an aqueous suspension such as a process stream or a waste stream. The method involves the addition of alkali silicate and an organic gelling agent to a volume of liquid, from the respective process or waste stream, to form a gel. The gel then undergoes syneresis to remove water and soluble salts from the gel containing the particulates, thus, forming a silica monolith. The silica monolith is then sintered to form a hard, nonporous waste form.

  13. The distribution of dissolved and particulate organic carbon in the southeastern Indian Ocean

    E-Print Network [OSTI]

    Abd El-Reheim, Hussein Anwar

    1976-01-01T23:59:59.000Z

    . rbe rloSxee of NASTI. R OP SCIENCE Decerabex 1976 Na)or Subject: OueanoStaPby THE DISTRIBUTION OF DISSOLVED AND PARTICULATE ORGANIC CARBON IN THE SOUTHEASTERN INDIAN OCEAN A Thesis by HUSSEIN ANWAR ABD EL-REHEIM (Co-Chairman of ommittee) (Co...-C irman of Commit e) (Head of Department) (Member) r (Member) December 1976 ABSTtlACT The Distribution of Dissolved and Particulate Organic Carbon In the Southeastern Indian Ocean. (December 1976) Hussein Anwan Abd El-Reheim B. Sc. , Alexandria...

  14. Control considerations for an on-line, active regeneration system for diesel particulate traps

    SciTech Connect (OSTI)

    Stiglic, P.; Hardy, J.; Gabelman, B. (Garrett Automotive Group, Allied-Singal, Torrance, CA (US))

    1989-07-01T23:59:59.000Z

    The authors are developing an exhaust aftertreatment system aimed at particulate emissions reduction from commercial diesel engines. The system uses a ceramic wall flow filter to trap the particulates, and regeneration is effected by raising gas temperature by throttling the exhaust downstream of the turbocharger. Lab testing at steady conditions demonstrated good performance with both catalyzed and uncatalyzed traps. Road testing shows the regeneration must be accomplished under severe transient conditions created by the normal vehicle operating modes. Primary efforts are to accommodate those transients using advanced control and digital computational techniques. Some of those techniques are described and are shown to yield improved control performance.

  15. Alpha B-crystallin prevents the arrhythmogenic effects of particulate matter isolated from ambient air by attenuating oxidative stress

    SciTech Connect (OSTI)

    Park, Hyelim [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of) [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Park, Sanghoon; Jeon, Hyunju [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of)] [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Song, Byeong-Wook [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of) [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Kim, Jin-Bae [Division of Cardiology, Kyung Hee University College of Medicine, Seoul (Korea, Republic of)] [Division of Cardiology, Kyung Hee University College of Medicine, Seoul (Korea, Republic of); Kim, Chang-Soo [The Department of Preventive Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of)] [The Department of Preventive Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of); Pak, Hui-Nam [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of)] [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Hwang, Ki-Chul [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of) [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Lee, Moon-Hyoung [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of)] [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Chung, Ji Hyung, E-mail: jhchung@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Joung, Boyoung, E-mail: cby6908@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of) [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of)

    2013-01-15T23:59:59.000Z

    Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) is activated by particulate matter (PM) isolated from ambient air and linked to prolonged repolarization and cardiac arrhythmia. We evaluated whether alpha B-crystallin (CryAB), a heat shock protein, could prevent the arrhythmogenic effects of PM by preventing CaMKII activation. CryAB was delivered into cardiac cells using a TAT-protein transduction domain (TAT-CryAB). ECGs were measured before and after tracheal exposure of diesel exhaust particles (DEP) and each intervention in adult Sprague–Dawley rats. After endotracheal exposure of DEP (200 ?g/mL for 30 minutes, n = 11), QT intervals were prolonged from 115 ± 14 ms to 144 ± 20 ms (p = 0.03), and premature ventricular contractions were observed more frequently (0% vs. 44%) than control (n = 5) and TAT-Cry (n = 5). However, DEP-induced arrhythmia was not observed in TAT-CryAB (1 mg/kg) pretreated rats (n = 5). In optical mapping of Langendorff-perfused rat heats, compared with baseline, DEP infusion of 12.5 ?g/mL (n = 12) increased apicobasal action potential duration (APD) differences from 2 ± 6 ms to 36 ± 15 ms (p < 0.001), APD restitution slope from 0.26 ± 0.07 to 1.19 ± 0.11 (p < 0.001) and ventricular tachycardia (VT) from 0% to 75% (p < 0.001). DEP infusion easily induced spatially discordant alternans. However, the effects of DEP were prevented by TAT-CryAB (1 mg/kg, n = 9). In rat myocytes, while DEP increased reactive oxygen species (ROS) generation and phosphated CaMKII, TAT-CryAB prevented these effects. In conclusion, CryAB, a small heat shock protein, might prevent the arrhythmogenic effects of PM by attenuating ROS generation and CaMKII activation. -- Highlights: ? Particulate matter (PM) increases arrhythmia. ? PM induced arrhythmias are related with oxidative stress and CaMKII activation. ? Alpha B-crystallin (CryAB) could attenuate the arrhythmogenic effect of PM. ? CryAB decreases oxidative stress and CaMKII activation induced by ambient PM.

  16. PII S0016-7037(01)00632-9 Preservation of particulate non-lithogenic uranium in marine sediments

    E-Print Network [OSTI]

    van Geen, Alexander

    PII S0016-7037(01)00632-9 Preservation of particulate non-lithogenic uranium in marine sediments in revised form March 26, 2001) Abstract--Particulate non-lithogenic uranium (PNU), excess U above detrital removal pathways in the ocean via precipi- tation in chemically-reducing sediments (Anderson, 1987; Bar

  17. Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube-Oil-Consumption Control

    E-Print Network [OSTI]

    Brown, Alan

    1 Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube the effectiveness of reducing engine lube-oil consumption as a means to reduce particulate pollutants. In this study-lube-oil-consumption designs, for example, could be an option with existing engines. AIR POLLUTION FROM SHIPS The motivation

  18. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    SciTech Connect (OSTI)

    Kamil Klier; Richard G. Herman

    2005-11-30T23:59:59.000Z

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Br�������¸nsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with blending octane No. of 105, and can replace aromatics in liquid fuels.

  19. Catalytic gasification studies in a pressurized fluid-bed unit

    SciTech Connect (OSTI)

    Mudge, L.K.; Baker, E.G.; Mitchell, D.H.; Robertus, R.J.; Brown, M.D.

    1983-07-01T23:59:59.000Z

    The purpose of the project is to evaluate the technical and economic feasibility of producing specific gas products via the catalytic gasification of biomass. This report presents the results of research conducted from October 1980 to November 1982. In the laboratory scale studis, active catalysts were developed for generation of synthesis gases from wood by steam gasification. A trimetallic catalyst, Ni-Co-Mo on silica-alumina doped with 2 wt % Na, was found to retain activity indefinitely for generation of a methanol synthesis gas from wood at 1380/sup 0/F (750/sup 0/C) and 1 atm (100 kPa) absolute pressure. Catalysts for generation of a methane-rich gas were deactivated rapidly and could not be regenerated as required for economic application. Sodium carbonate and potassium carbonate were effective as catalysts for conversion of wood to synthesis gases and methane-rich gas and should be economically viable. Catalytic gasification conditions were found to be suitable for processing of alternative feedstocks: bagasse, alfalfa, rice hulls, and almond hulls. The PDU was operated successfully at absolute pressures of up to 10 atm (1000 kPa) and temperatures of up to 1380/sup 0/F (750/sup 0/C). Yields of synthesis gases at elevated pressure were greater than those used for previous economic evaluations. A trimetallic catalyst, Ni-Cu-Mo on silica-alumina, did not display a long life as did the doped trimetallic catalyst used in laboratory studies. A computer program for a Radio Shack TRS-80 Model I microcomputer was developed to evaluate rapidly the economics of producing either methane or methanol from wood. The program is based on economic evaluations reported in previous studies. Improved yields from the PDU studies were found to result in a reduction of about 9 cents/gal in methanol cost.

  20. Catalytic gasification of bagasse for the production of methanol

    SciTech Connect (OSTI)

    Baker, E.G.; Brown, M.D.; Robertus, R.J.

    1985-10-01T23:59:59.000Z

    The purpose of the study was to evaluate the technical and economic feasibility of catalytic gasification of bagasse to produce methanol. In previous studies, a catalytic steam gasification process was developed which converted wood to methanol synthesis gas in one step using nickel based catalysts in a fluid-bed gasifier. Tests in a nominal 1 ton/day process development unit (PDU) gasifier with these same catalysts showed bagasse to be a good feedstock for fluid-bed gasifiers, but the catalysts deactivated quite rapidly in the presence of bagasse. Laboratory catalyst screening tests showed K/sub 2/CO/sub 3/ doped on the bagasse to be a promising catalyst for converting bagasse to methanol synthesis gas. PDU tests with 10 wt % K/sub 2/CO/sub 3/ doped on bagasse showed the technical feasibility of this type of catalyst on a larger scale. A high quality synthesis gas was produced and carbon conversion to gas was high. The gasifier was successfully operated without forming agglomerates of catalyst, ash, and char in the gasifier. There was no loss of activity throughout the runs because catalysts is continually added with the bagasse. Laboratory tests showed about 80% of the potassium carbonate could be recovered and recycled with a simple water wash. An economic evaluation of the process for converting bagasse to methanol showed the required selling price of methanol to be significantly higher than the current market price of methanol. Several factors make this current evaluaton using bagasse as a feedstock less favorable: (1) capital costs are higher due to inflation and some extra costs required to use bagasse, (2) smaller plant sizes were considered so economies of scale are lost, and (3) the market price of methanol in the US has fallen 44% in the last six months. 24 refs., 14 figs., 16 tabs.

  1. Contrasting Surface Ozone and Particulate Matter measurements with meteorological conditions in South Florida and its possible impacts on the number of Asthma cases: Five years of correlations.

    E-Print Network [OSTI]

    Miami, University of

    Contrasting Surface Ozone and Particulate Matter measurements with meteorological conditions, wind speed and direction), and air quality indicators (ozone O3 and particulate matter PM2.5) are presented in this study. Surface Ozone and Particulate Matter have been both important triggers of asthma

  2. DWPF CATALYTIC HYDROGEN GENERATION PROGRAM - REVIEW OF CURRENT STATUS

    SciTech Connect (OSTI)

    Koopman, D.

    2009-07-10T23:59:59.000Z

    Significant progress has been made in the past two years in improving the understanding of acid consumption and catalytic hydrogen generation during the Defense Waste Processing Facility (DWPF) processing of waste sludges in the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME). This report reviews issues listed in prior internal reviews, describes progress with respect to the recommendations made by the December 2006 external review panel, and presents a summary of the current understanding of catalytic hydrogen generation in the DWPF Chemical Process Cell (CPC). Noble metals, such as Pd, Rh, and Ru, are historically known catalysts for the conversion of formic acid into hydrogen and carbon dioxide. Rh, Ru, and Pd are present in the DWPF SRAT feed as by-products of thermal neutron fission of {sup 235}U in the original waste. Rhodium appears to become most active for hydrogen as the nitrite ion concentration becomes low (within a factor of ten of the Rh concentration). Prior to hydrogen generation, Rh is definitely active for nitrite destruction to N{sub 2}O and potentially active for nitrite to NO formation. These reactions are all consistent with the presence of a nitro-Rh complex catalyst, although definite proof for the existence of this complex during Savannah River Site (SRS) waste processing does not exist. Ruthenium does not appear to become active for hydrogen generation until nitrite destruction is nearly complete (perhaps less nitrite than Ru in the system). Catalytic activity of Ru during nitrite destruction is significantly lower than that of either Rh or Pd. Ru appears to start activating as Rh is deactivating from its maximum catalytic activity for hydrogen generation. The slow activation of the Ru, as inferred from the slow rate of increase in hydrogen generation that occurs after initiation, may imply that some species (perhaps Ru itself) has some bound nitrite on it. Ru, rather than Rh, is primarily responsible for the hydrogen generation in the SME cycle when the hydrogen levels are high enough to be noteworthy. Mercury has a role in catalytic hydrogen generation. Two potentially distinct roles have been identified. The most dramatic effect of Hg on hydrogen generation occurs between runs with and without any Hg. When a small amount of Hg is present, it has a major inhibiting effect on Rh-catalyzed H{sub 2} generation. The Rh-Ru-Hg matrix study showed that increasing mercury from 0.5 to 2.5 wt% in the SRAT receipt total solids did not improve the inhibiting effect significantly. The next most readily identified role for Hg is the impact it has on accelerating NO production from nitrite ion. This reaction shifts the time that the ideal concentration of nitrite relative to Rh occurs, and consequently causes the most active nitro-Rh species to form sooner. The potential consequences of this shift in timing are expected to be a function of other factors such as amount of excess acid, Rh concentration, etc. Graphical data from the Rh-Ru-Hg study suggested that Hg might also be responsible for partially inhibiting Ru-catalysis initially, but that the inhibition was not sustained through the SRAT and SME cycles. Continued processing led to a subsequent increase in hydrogen generation that was often abrupt and that frequently more than doubled the hydrogen generation rate. This phenomenon may have been a function of the extent of Hg stripping versus the initial Ru concentration in these tests. Palladium is an active catalyst, and activates during (or prior to) nitrite destruction to promote N{sub 2}O formation followed by a very small amount of hydrogen. Pd then appears to deactivate. Data to date indicate that Pd should not be a species of primary concern relative to Rh and Ru for hydrogen generation. Pd was a very mild catalyst for hydrogen generation compared to Rh and Ru in the simulated waste system. Pd was comparable to Rh in enhancing N{sub 2}O production when present at equal concentration. Pd, however, is almost always present at less than a quarter of the Rh concentration in S

  3. Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments

    E-Print Network [OSTI]

    Commentary Respiratory disease and particulate air pollution in Santiago Chile: Contribution pollution Santiago Erosion Sedimentation a b s t r a c t Air pollution in Santiago is a serious problem for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10

  4. Evaluation of the TEOM method for the measurement of particulate matter for Texas cattle feedlots

    E-Print Network [OSTI]

    Skloss, Stewart James

    2009-05-15T23:59:59.000Z

    and Patashnick (R&P) Series1400a monitors. The R&P Series 1400a monitor uses the TEOM method to measure particulate matter (PM) concentrations and was approved by EPA in 1990 as an automated equivalent method PM10 sampler. Since its approval, many state air...

  5. High-heat-flux removal by phase-change fluid and particulate flow

    SciTech Connect (OSTI)

    Gorbis, Z.R.; Raffray, A.R.; Abdou, M.A. (Univ. of California, Los Angeles (United States))

    1993-07-01T23:59:59.000Z

    A new concept based on particulate flow in which either or both the particulates and the fluid could undergo phase changes is proposed. The presence of particulates provides not only a mechanism for additional heat removal through phase change but also the potential for increasing the rate of heat transfer by enhancing convection through surface region/bulk [open quotes]mixing[close quotes], by enhancing radiation, particularly for high-temperature cases; and for the case of multiphase fluid, by enhancing the boiling process. One particularly interesting coolant system based on this concept is [open quotes]subcooled boiling water-ice particulate[close quotes] flow. A preliminary analysis of this coolant system is presented, the results of which indicate that such a coolant system is better applied for cooling of relatively small surface areas with high local heat fluxes, where a conventional cooling system would come short of providing the required heat removal at acceptable coolant pressure levels. 14 refs., 8 figs.

  6. EXPOS ET MISE AU POINT BIBLIOGRAPHIQUE LA FORMATION DES PARTICULES DE CARBONE DANS LES FLAMMES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    graphitique du carbone-suie confirmait leur hypothèse selon laquelle les particules se forment à partir d'hydrocarbures réalise le cracking des hydrocarbures dans un tube chauffé, les parois du tube se recouvrent d Fisher, est la pyrolyse du méthane et des hydrocarbures. Pui

  7. FTIR Analysis of Particulate Matter Collected on Teflon Filters in Columbus, OH A Senior Honors Thesis

    E-Print Network [OSTI]

    in the undergraduate colleges of The Ohio State University by Patrick Veres The Ohio State University June 2005 Project of particulate matter (PM) to which humans are exposed to provides information important to the understanding of our chemical environment and associated health risks. In this research, experimental methods have been

  8. Fabrication and evaluation of SMA-silicone rubber continuous-fiber and particulate composites

    E-Print Network [OSTI]

    deBlonk, Brett Jeffrey

    1995-01-01T23:59:59.000Z

    of an SMA particulate-elastomeric matrix composite. The embedding of Ni-Ti SMA wire actuators into flexible silicone rubber rods can affect the composite structural behavior by causing the rods to deflect upon heating and shape recovery of the SMA wires...

  9. Pourquoi trouver un marqueur atmosphrique d'exposition aux particules diesel ?

    E-Print Network [OSTI]

    Boyer, Edmond

    Pourquoi trouver un marqueur atmosphérique d'exposition aux particules diesel ? Dominique LAFON rôle cancérigène possible des émissions diesel a suscité de nombreuses études depuis 20 ans. Nous avons sérieux ne nous permet d'incriminer plus les émissions des véhicules à moteur diesel que ceux à moteur

  10. Impacts of a Nanosized Ceria Additive on Diesel Engine Emissions of Particulate and Gaseous Pollutants

    E-Print Network [OSTI]

    Garfunkel, Eric

    Impacts of a Nanosized Ceria Additive on Diesel Engine Emissions of Particulate and Gaseous incorporating nanosized ceria have been increasingly used in diesel engines as combustion promoters. However- cylinder, four-cycle diesel engine using fuel mixes containing nanoceria of varying concentrations

  11. Atmospheric Environment 38 (2004) 57455758 Characterization of urban and rural organic particulate

    E-Print Network [OSTI]

    Jimenez, Jose-Luis

    of the urban organic particulate are similar to those of internal combustion engine lubricating oil. Jaynec , Arthur A. Garfortha , Shao-Meng Lie , Douglas R. Worsnopc a Department of Chemical Engineering and toluene with Pearson's r values of 0.76, 0.71, 0.79 and 0.69, respectively, suggesting that combustion

  12. Estimating particulate matter health impact related to the combustion of different fossil fuels

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Estimating particulate matter health impact related to the combustion of different fossil fuels generated a web map service that allows to access information on fuel dependent health effects due a simulation. Combined with a dedicated emission inventory PM2.5 maps specified by fuel type were generated

  13. Elemental composition of airborne particulates in uranium mining and milling operations

    SciTech Connect (OSTI)

    Paschoa, A.S.; Wrenn, M.E.; Jones, K.W.; Cholewa, M.; Carvalho, S.M.

    1984-01-01T23:59:59.000Z

    Airborne particulates were collected through filters in occupational areas of the uranium mining and milling complex located in Pocos de Caldas, Brazil. The filters were analyzed by microPIXE (particle induced x-ray emission) combined with Rutherford Backscattering (RBS) of the incident protons. The results are discussed in the paper. 4 references, 6 figures, 1 table.

  14. SEVERE PARTICULATE POLLUTION IN LANZHOU Peter C. Chu, Yuchun Chen*, Shihua Lu*, Zhenchao Li*, Yaqiong Lu**

    E-Print Network [OSTI]

    Chu, Peter C.

    SEVERE PARTICULATE POLLUTION IN LANZHOU CHINA Peter C. Chu, Yuchun Chen*, Shihua Lu*, Zhenchao Li and fall, but much worse in winter, reaching low to mid alert level of air pollution. Since 1999 increasing, and become major pollutants. The mean concentration of PM10 is 2.56 mg m-3 . Even in summer

  15. DDT RESIDUES IN SEAWATER AND PARTICULATE MATTER IN THE CALIFORNIA CURRENT SYSTEM

    E-Print Network [OSTI]

    DDT RESIDUES IN SEAWATER AND PARTICULATE MATTER IN THE CALIFORNIA CURRENT SYSTEM JAMES L. COX in the California current system were analyzed for DDT residues. DDT residue concentrations in whole seawater are discussed in relation to mechanisms of land-sea DDT residue transfer. DDT residue concentrations

  16. Modeling water column structure and suspended particulate matter on the Middle Atlantic continental shelf

    E-Print Network [OSTI]

    Chang, Grace C.

    that contributed to the evolution of observed thermal structure and resuspension of particulate matter during resuspension processes. It is concluded that wave-current bottom shear stress was clearly the most important process for sediment resuspension during and following both hurricanes. Discrepancies between modeled

  17. A physical model of particulate wash-off from rough impervious surfaces

    E-Print Network [OSTI]

    Walter, M.Todd

    ; accepted 23 January 2006 Summary Current urban water quality models rely on empirical, catchment of particulate available. Current urban stormwater models such as SWMM and HSPF are still based on this original urban storm runoff pollution. There are few published explanations of physical wash- off mechanisms

  18. Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter

    E-Print Network [OSTI]

    Washington at Seattle, University of

    of the Workshop was to initiate a statistical research program relevant to setting air quality standardsStatistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Lawrence H. Cox NRCSET e c h n i c a l R e p o r t S e r i e s NRCSE-TRS No. 041 January 10, 2000 The NRCSEwas

  19. Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends

    SciTech Connect (OSTI)

    Merritt, P. M.; Ulmet, V.; McCormick, R. L.; Mitchell, W. E.; Baumgard, K. J.

    2005-11-01T23:59:59.000Z

    Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent). Benzene emissions were reduced by up to 50 percent with the ethanol-blended fuels. Emissions of 1,3-butadiene were also substantially decreased, with reductions ranging from 24 to 82 percent. Isolated trends were noted for certain PAHs. There was a decrease in 1-nitropyrene with use of ethanol in all cases. Particulate phase 1-nitropyrene was reduced from 18 to 62 percent. There was also a general increase in the proportion of heavy PAHs in the particulate phase with ethanol use, and although less pronounced, a general decrease in light PAHs in the particulate phase.

  20. Rare earth element components in atmospheric particulates in the Bayan Obo mine region

    SciTech Connect (OSTI)

    Wang, Lingqing, E-mail: wanglq@igsnrr.ac.cn; Liang, Tao, E-mail: liangt@igsnrr.ac.cn; Zhang, Qian; Li, Kexin

    2014-05-01T23:59:59.000Z

    The Bayan Obo mine, located in Inner Mongolia, China, is the largest light rare earth body ever found in the world. The research for rare earth elements (REEs) enrichment in atmospheric particulates caused by mining and ore processing is fairly limited so far. In this paper, atmospheric particulates including total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter less than 10 ?m (PM{sub 10}) were collected around the Bayan Obo mine region, in August 2012 and March 2013, to analyze the levels and distributions of REEs in particles. The total concentrations of REEs for TSP were 149.8 and 239.6 ng/m{sup 3}, and those for PM{sub 10} were 42.8 and 68.9 ng/m{sup 3}, in August 2012 and March 2013, respectively. Enrichment factor was calculated for all 14 REEs in the TSP and PM{sub 10} and the results indicated that REEs enrichment in atmosphere particulates was caused by anthropogenic sources and influenced by the strong wind in springtime. The spatial distribution of REEs in TSP showed a strong gradient concentration in the prevailing wind direction. REE chondrite normalized patterns of TSP and PM{sub 10} were similar and the normalized curves inclined to the right side, showing the conspicuous fractionation between the light REEs and heavy REE, which supported by the chondrite normalized concentration ratios calculated for selected elements (La{sub N}/Yb{sub N}, La{sub N}/Sm{sub N}, Gd{sub N}/Yb{sub N}). - Highlights: • TSP and PM{sub 10} samples were collected to analyze the levels and distributions of REE. • Enrichment factors indicated that REE enrichment was caused by anthropogenic sources. • The distribution of REEs showed a strong gradient in the prevailing wind direction. • Obvious fractionation between LREEs and HREEs is observed in atmospheric particulates.