Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ihsgi inforum icf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

icf  

National Nuclear Security Administration (NNSA)

6%2A en ICF Facilities http:nnsa.energy.govaboutusourprogramsdefenseprogramsstockpilestewardshipinertialconfinementfusionicffacilities

2

ICF International | Open Energy Information  

Open Energy Info (EERE)

ICF International ICF International Jump to: navigation, search Name ICF International Address 9300 Lee Highway, Fairfax, VA 22031-1207 USA Place Washington, District of Columbia Stock Symbol NASDAQ:ICFI Year founded 1969 Number of employees 1001-5000 References http://www.icfi.com/ No information has been entered for this organization. Add Organization Contents 1 Organization Overview 1.1 Markets 2 Resources 2.1 Programs 3 References Organization Overview "ICF International partners with government and commercial clients to deliver professional services and technology solutions in the energy, environment, and infrastructure; health, social programs, and consumer/financial; and public safety and defense markets." Markets Aviation Climate Community Development Defense Education

3

ICF research at Los Alamos  

SciTech Connect (OSTI)

It is apparent that short wavelength lasers (<500 nm) provide efficient coupling of laser energy into ICF target compression. KrF lasers (248 nm) operate at near-optimum wavelength and provide other potential benefits to ICF target coupling (e.g., bandwidth) and applications (high wallplug efficiency and relatively low cost). However, no driver technology has yet been shown to meet all of the requirements for a high-gain ICF capability at a currently acceptable cost, and there are still significant uncertainties in the driver-target coupling and capsule hydrodynamics that must be addressed. The Los Alamos research program is designed to assess the potential of KrF lasers for ICF and to determine the feasibility of achieving high gain in the laboratory with a KrF laser driver. Major efforts in KrF laser development and technology, target fabrication and materials development, and laser-matter interaction and hydrodynamics research are discussed. 27 refs., 10 figs.

Goldstone, P.D.; Ackerhalt, J.R.; Blair, L.S.; Cartwright, D.C.; Foreman, C.A.; Hauer, A.; Hanson, D.E.; Hoffer, J.K.; Kristal, R.; Fenstermacher, C.A.

1987-01-01T23:59:59.000Z

4

ICF program annual report, 1988--89  

SciTech Connect (OSTI)

This report contains discussions on the following topics: Target Physics; Nova Experiments; Nova Laser Science and Technology; Target Science and Technology; Advanced Drivers; and ICF Applications.

Not Available

1993-09-01T23:59:59.000Z

5

Monte Carlo methods in ICF  

SciTech Connect (OSTI)

Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ion and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burns nd burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.

Zimmerman, G.B.

1997-06-24T23:59:59.000Z

6

Advanced ignition options for laser ICF  

E-Print Network [OSTI]

Advanced ignition options for laser ICF FPA Meeting, Washington DC, December 1-3, 2010 R. Betti shock) · Fast Ignition requires major hardware upgrades: 100kJ-class multi-PW laser [also talk by P explore high-gain shock ignition - Polar Shock Ignition (uses half the NIF beams to drive the implosion

7

E-Print Network 3.0 - aperture icf optics Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thedemonstrationofthelaserin1960beganthequesttodevelopICF and, eventually, create thermonuclear... cryogenic target implosions ... Source: Fusiongnition Research Experiment...

8

ICF in the U. S. : Facilities and diagnostics  

SciTech Connect (OSTI)

In the last few years there has been significant progress in ICF research in laboratories in the United States and elsewhere. These advances have occurred in areas that range from demonstrating an innovative laser beam smoothing techniques important for both directly and indirectly driven ICF, to achieving a more complete understanding of capsule implosions and related physics. This progress has been possible because of the capabilities provided by the ICF laser-target facilities currently in operation and the new developments in diagnostics, particularly for measurements of the implosion process and the conditions in the compressed capsule core. Both of these topics, facilities and selected new diagnostics capabilities in the US ICF Program, are summarized in this paper. 32 refs., 19 figs., 6 tabs.

Coleman, L.W.

1988-08-01T23:59:59.000Z

9

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

1. Comparisons of electricity projections, 2025, 2035, and 2040 1. Comparisons of electricity projections, 2025, 2035, and 2040 (billion kilowatthours, except where noted) Other projections Projection 2011 AEO2013 Reference case EVA IHSGI INFORUM ICF NREL 2025 2026 Average end-use price (2011 cents per kilowatthour)a 9.9 9.5 -- 11.2 10.0 -- 10.4 Residential 11.7 11.6 -- 13.3 11.8 -- -- Commercial 10.2 9.7 -- 11.6 10.3 -- -- Industrial 6.8 6.5 -- 7.6 6.8 -- -- Total generation including CHP plus imports 4,130 4,612 4,570 5,207 4,296 4,860 4,693 Coal 1,730 1,727 1,726 1,605 -- -- 1,860 Petroleum 28 18 -- 33 -- -- 0 Natural gasb 1,000 1,252 1,387 1,732 -- -- 1,041 Nuclear 790 912 890 923 -- -- 794 Hydroelectric/otherc 544 681 567 852 -- -- 997

10

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

Table 14. Comparisons of coal projections, 2011-2040 (million short tons, except where noted) Projection 2011 AEO2013 Reference case Other projections (million short tons) (quadrillion Btu) EVA a ICF b IHSGI INFORUM IEA Exxon- Mobil c (million short tons) (quadrillion Btu) 2025 Production 1,096 1,113 22.54 958 1,104 1,107 1,061 -- -- East of the Mississippi 456 447 -- 402 445 -- -- -- -- West of the Mississippi 639 666 -- 556 659 -- -- -- -- Consumption Electric power 929 929 17.66 786 939 864 -- -- 13 Coke plants 21 22 0.58 22 15 19 -- -- -- Coal-to-liquids -- 6 -- -- 36 -- -- -- -- Other industrial/buildings 49 53 1.69 d 29 72 44 1.96 d -- -- Total consumption (quadrillion Btu) 19.66 -- 19.35 -- -- 18.34 -- -- 13 Total consumption (million short tons) 999 1,010 -- 836 1,061 927 1,015 e -- -- Net coal exports (million short tons) 96 124 -- 118 43 181 46 -- --

11

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

1. Comparisons of electricity projections, 2025, 2035, and 2040 1. Comparisons of electricity projections, 2025, 2035, and 2040 (billion kilowatthours, except where noted) Other projections Projection 2011 AEO2013 Reference case EVA IHSGI INFORUM ICF NREL 2025 2026 Average end-use price (2011 cents per kilowatthour)a 9.9 9.5 -- 11.2 10.0 -- 10.4 Residential 11.7 11.6 -- 13.3 11.8 -- -- Commercial 10.2 9.7 -- 11.6 10.3 -- -- Industrial 6.8 6.5 -- 7.6 6.8 -- -- Total generation including CHP plus imports 4,130 4,612 4,570 5,207 4,296 4,860 4,693 Coal 1,730 1,727 1,726 1,605 -- -- 1,860 Petroleum 28 18 -- 33 -- -- 0 Natural gasb 1,000 1,252 1,387 1,732 -- -- 1,041 Nuclear 790 912 890 923 -- -- 794 Hydroelectric/otherc 544 681 567 852 -- -- 997

12

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

2. Comparisons of natural gas projections, 2025, 2035, and 2040 2. Comparisons of natural gas projections, 2025, 2035, and 2040 (trillion cubic feet, except where noted) Other projections Projection 2011 AEO2013 Reference case IHSGI EVA ICF ExxonMobil INFORUM 2025 Dry gas productiona 23.00 28.59 32.29 29.86b 32.39 -- 26.26 Net imports 1.95 -1.58 -1.45 1.05 -0.63 -- -- Pipeline 1.67 -0.52 -- 2.21 0.60 -- -- LNG 0.28 -1.06 -- -1.16 -1.23 -- -- Consumption 24.37 26.87 30.87 31.49 30.34c 29.00c 23.61d Residential 4.72 4.44 4.58 4.98 5.05 7.00f 4.84 Commercial 3.16 3.35 3.23 3.33 3.01 -- 3.42 Industrialf 6.77 7.82 7.31 8.23 8.79 9.00 7.07 Electricity generatorsg 7.60 8.45 12.57 11.75 10.83 13.00 8.28 Othersh 2.11 2.81 3.19 3.20 2.66 0.00i --

13

Progress on achieving the ICF conditions needed for high gain  

SciTech Connect (OSTI)

Progress during the past two years has moved us much closer to demonstrating the scientific and technological requirements for high gain ICF in the laboratory. This progress has been made possible by operating at the third harmonic of 1..mu..m light which dramatically reduces concern about hot electrons and by advances in diagnostics such as 100 ps x-ray framing cameras which greatly increase the data available from each experiment. Making use of many of these new capabilities, major improvements in confinement conditions have been achieved for ICF implosions. In particular, in an optimized hohlraum on Nova, radiation driven implosions with convergence ratio in excess of 30 (volume compression /approximately/3 /times/ 10/sup 4/) have performed essentially as predicted by spherical implosion calculations. This paper presents these results as well as examples of advances in several other areas and discusses the implications for the future of ICF with lasers and heavy ion beam drivers. 8 refs., 10 figs.

Lindl, J.D.

1988-12-23T23:59:59.000Z

14

Contributions to the Genesis and Progress of ICF  

SciTech Connect (OSTI)

Inertial confinement fusion (ICF) has progressed from the detonation of large-scale fusion explosions initiated by atomic bombs in the early 1950s to final preparations for initiating small-scale fusion explosions with giant lasers. The next major step after ignition will be development of high performance targets that can be initiated with much smaller, lower cost lasers. In the 21st century and beyond, ICF's grand challenge is to develop practical power plants that generate low cost, clean, inexhaustible fusion energy. In this chapter, I first describe the origin in 1960-61 of ICF target concepts, early speculations on laser driven 'Thermonuclear Engines' for power production and rocket propulsion, and encouraging large-scale nuclear explosive experiments conducted in 1962. Next, I recall the 40-year, multi-billion dollar ignition campaign - to develop a matched combination of sufficiently high-performance implosion lasers and sufficiently stable targets capable of igniting small fusion explosions. I conclude with brief comments on the NIF ignition campaign and very high-performance targets, and speculations on ICF's potential in a centuries-long Darwinian competition of future energy systems. My perspectives in this chapter are those of a nuclear explosive designer, optimistic proponent of ICF energy, and Livermore Laboratory leader. The perspectives of Livermore's post 1970 laser experts and builders, and laser fusion experimentalists are provided in a chapter written by John Holzrichter, a leading scientist and leader in Livermore's second generation laser fusion program. In a third chapter, Ray Kidder, a theoretical physicist and early laser fusion pioneer, provides his perspectives including the history of the first generation laser fusion program he led from 1962-1972.

Nuckolls, J H

2006-02-15T23:59:59.000Z

15

Hybrid-drive implosion system for ICF targets  

DOE Patents [OSTI]

Hybrid-drive implosion systems for ICF targets are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator surroundingly disposed around fusion fuel. The ablator is first compressed to higher density by a laser system, or by an ion beam system, that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system that is optimized for this second phase of operation of the target. The fusion fuel is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion. 3 figs.

Mark, J.W.K.

1987-10-14T23:59:59.000Z

16

The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome  

Science Journals Connector (OSTI)

...20q11.2 by fluorescence in situ hybridization analysis, a region consistent with ICF mapping data. In addition, stSG20534/SHGC-15969 is an STS within the DNMT3B gene that has been localized by radiation hybrid mapping to the ICF region near D20S187...

R. Scott Hansen; Cisca Wijmenga; Ping Luo; Ann M. Stanek; Theresa K. Canfield; Corry M. R. Weemaes; Stanley M. Gartler

1999-01-01T23:59:59.000Z

17

Structural effects in ICF foam-buffered targets  

SciTech Connect (OSTI)

Experiments have indicated that low-density foam buffer layers can significantly mitigate the perturbing effects of beam non-uniformities in direct drive laser-matter interactions. A smooth drive is essential to obtaining ignition in the Direct Drive approach to ICF ignition. Consequently, the authors have conducted a detailed study of the mitigating capabilities of foam-buffers, and how to optimize then. Smoothly driven implosions may prove crucial to obtaining the high energy and neutron yields needed for Science Based Stockpile Steward ship applications.

Mason, R.J.; Kopp, R.A.; Goldman, S.R.; Wilson, D.C.; Watt, R.G.

1997-10-01T23:59:59.000Z

18

Concept of nuclear reactor pumped laser for ICF  

SciTech Connect (OSTI)

It is well known that attempts of civil utilization of fusion energy encounter many difficulties. At the same time we know that creation of thermonuclear weapon had been possible by using of the nuclear fission reaction as ignition of the nuclear fusion. The question arises{emdash}can help us similar idea in civil case and how that can be realized? In paper, it is shown that such idea is useful in this case and can be realized using nuclear reactor pumped laser. Contemporary state of research in nuclear reactor pumped laser for ICF field is considered. Progress by IPPE (Obninsk, Russia) in the development of the energy model of pulse reactor pumped laser system with waiting output energy about 50 kJ is reported. {copyright} {ital 1996 American Institute of Physics.}

Dyachenko, P.P. [Institute of Physics and Power Engineering, 1, Bondarenko Sq., Obninsk, 249020, Kaluga Reg. (Russia)

1996-05-01T23:59:59.000Z

19

Analyses in support of the Laboratory Microfusion Facility and ICF commercial reactor designs  

SciTech Connect (OSTI)

Our work on this contract was divided into two major categories; two thirds of the total effort was in support of the Laboratory Microfusion Facility (LMF), and one third of the effort was in support of Inertial Confinement Fusion (ICF) commercial reactors. This final report includes copies of the formal reports, memoranda, and viewgraph presentations that were completed under this contract.

Meier, W.R.; Monsler, M.J.

1988-12-28T23:59:59.000Z

20

Inertial confinement fusion. 1995 ICF annual report, October 1994--September 1995  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory`s (LLNL`s) Inertial Confinement Fusion (ICF) Program is a Department of Energy (DOE) Defense Program research and advanced technology development program focused on the goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory. During FY 1995, the ICF Program continued to conduct ignition target physics optimization studies and weapons physics experiments in support of the Defense Program`s stockpile stewardship goals. It also continued to develop technologies in support of the performance, cost, and schedule goals of the National Ignition Facility (NIF) Project. The NIF is a key element of the DOE`s Stockpile Stewardship and Management Program. In addition to its primary Defense Program goals, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application to inertial fusion energy (IFE). Also, ICF technologies have had spin-off applications for industrial and governmental use. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

NONE

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "ihsgi inforum icf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Contribution of different mechanisms of energy transfer in the development of the thermonuclear combustion wave upon fast ignition of ICF-targets  

Science Journals Connector (OSTI)

Temporal characteristics of the thermonuclear combustion wave, critical parameters of the igniter ... fast ignition of the spherically symmetric inertial confinement fusion (ICF) target of the reactor type ... co...

N. B. Gubinskaya; S. Yu. Gus’kov; D. V. Il’in…

2008-01-01T23:59:59.000Z

22

EIA - Annual Energy Outlook 2009 - Comparison with Other Projections  

Gasoline and Diesel Fuel Update (EIA)

Comparison with Other Projections Comparison with Other Projections Annual Energy Outlook 2009 with Projections to 2030 Comparison with Other Projections Only IHS Global Insight (IHSGI) produces a comprehensive energy projection with a time horizon similar to that of AEO2009. Other organizations, however, address one or more aspects of the U.S. energy market. The most recent projection from IHSGI, as well as others that concentrate on economic growth, international oil prices, energy consumption, electricity, natural gas, petroleum, and coal, are compared here with the AEO2009 projections. Economic Growth Projections of the average annual real GDP growth rate for the United States from 2007 through 2010 range from 0.2 percent to 3.1 percent (Table 15). Real GDP grows at an annual rate of 0.6 percent in the AEO2009 reference case over the period, significantly lower than the projections made by the Office of Management and Budget (OMB), the Bureau of Labor Statistics (BLS), and the Social Security Administration (SSA)—although not all of those projections have been updated to take account of the current economic downturn. The AEO2009 projection is slightly lower than the projection by IHSGI and slightly higher than the projection by the Interindustry Forecasting Project at the University of Maryland (INFORUM). In March 2009, the consensus Blue Chip projection was for 2.2-percent average annual growth from 2007 to 2010.

23

EIA - AEO2010 - Comparison With Other Projections  

Gasoline and Diesel Fuel Update (EIA)

Comparison With Other Projections Comparison With Other Projections Annual Energy Outlook 2010 with Projections to 2035 Comparison With Other Projections Only IHS Global Insights, Inc. (IHSGI) produces a comprehensive energy projection with a time horizon similar to that of AEO2010. Other organizations, however, address one or more aspects of the U.S. energy market. The most recent projection from IHSGI, as well as others that concentrate on economic growth, international oil prices, energy consumption, electricity, natural gas, petroleum, and coal, are compared here with the AEO2010 projections. Economic growth Projections of the average annual growth rate of real GDP in the United States from 2008 to 2018 range from 2.1 percent to 2.8 percent (Table 9). In the AEO2010 Reference case, real GDP grows by an average of 2.2 percent per year over the period, lower than projected by the Office of Management and Budget (OMB), the Congressional Budget Office (CBO), the Social Security Administration (SSA), and the Bureau of Labor Statistics (BLS)—although none of those projections has been updated since August 2009. The AEO2010 projection is similar to the IHSGI projection and slightly higher than projections by the Interindustry Forecasting Project at the University of Maryland (INFORUM). In March 2009, the consensus Blue Chip projection was for 2.2-percent average annual growth from 2008 to 2018.

24

Progress in laboratory high gain ICF (inertial confinement fusion): Prospects for the future  

SciTech Connect (OSTI)

Inertial confinement fusion (ICF), a thermonuclear reaction in a small (/approximately/5 mm diameter) fuel capsule filled with a few milligrams of deuterium and tritium, has been the subject of very fruitful experimentation since the early 1970's. High gain ICF is now on the threshold of practical applications. With a Laboratory Microfusion Facility (LMF), these applications will have major implications for national defense, basic and applied science, and power production. With a driver capable of delivering about 10 MJ in a 10-ns pulse at an intensity of /approximately/3 /times/ 10/sup 14/ W/cm/sup 2/, an appropriately configured cryogenic capsule could be compressed to a density of about 200 g/cm/sup 3/ and a temperature of 3--5 keV. Under these conditions, up to 10 mg of DT could be ignited, and with a burn efficiency of about 30%, release up to 1000 MJ of fusion energy, an energy gain of about 100. A thousand megajoules is equivalent to about one quarter ton of TNT, or about 7 gallons of oil--an amount of energy tractable under laboratory conditions and potentially very useful for a variety of applications. 61 refs., 33 figs.

Storm, E.; Lindl, J.D.; Campbell, E.M.; Bernat, T.P.; Coleman, L.W.; Emmett, J.L.; Hogan, W.J.; Hunt, J.T.; Krupke, W.F.; Lowdermilk, W.H.

1988-01-01T23:59:59.000Z

25

The LLNL (Lawrence Livermore National Laboratory) ICF (Inertial Confinement Fusion) Program: Progress toward ignition in the Laboratory  

SciTech Connect (OSTI)

The Inertial Confinement Fusion (ICF) Program at the Lawrence Livermore National Laboratory (LLNL) has made substantial progress in target physics, target diagnostics, and laser science and technology. In each area, progress required the development of experimental techniques and computational modeling. The objectives of the target physics experiments in the Nova laser facility are to address and understand critical physics issues that determine the conditions required to achieve ignition and gain in an ICF capsule. The LLNL experimental program primarily addresses indirect-drive implosions, in which the capsule is driven by x rays produced by the interaction of the laser light with a high-Z plasma. Experiments address both the physics of generating the radiation environment in a laser-driven hohlraum and the physics associated with imploding ICF capsules to ignition and high-gain conditions in the absence of alpha deposition. Recent experiments and modeling have established much of the physics necessary to validate the basic concept of ignition and ICF target gain in the laboratory. The rapid progress made in the past several years, and in particular, recent results showing higher radiation drive temperatures and implosion velocities than previously obtained and assumed for high-gain target designs, has led LLNL to propose an upgrade of the Nova laser to 1.5 to 2 MJ (at 0.35 {mu}m) to demonstrate ignition and energy gains of 10 to 20 -- the Nova Upgrade.

Storm, E.; Batha, S.H.; Bernat, T.P.; Bibeau, C.; Cable, M.D.; Caird, J.A.; Campbell, E.M.; Campbell, J.H.; Coleman, L.W.; Cook, R.C.; Correll, D.L.; Darrow, C.B.; Davis, J.I.; Drake, R.P.; Ehrlich, R.B.; Ellis, R.J.; Glendinning, S.G.; Haan, S.W.; Haendler, B.L.; Hatcher, C.W.; Hatchett, S.P.; Hermes, G.L.; Hunt, J.P.; Kania, D.R.; Kauffman, R.L.; Kilkenny, J.D.; Kornblum, H.N.; Kruer, W.L.; Kyrazis, D.T.; Lane, S.M.; Laumann

1990-10-02T23:59:59.000Z

26

The Edward Teller medal lecture: The evolution toward Indirect Drive and two decades of progress toward ICF ignition and burn  

SciTech Connect (OSTI)

In 1972, I joined the Livermore ICF Theory and Target Design group led by John Nuckolls, shortly after publication of John`s seminal Nature article on ICF. My primary role, working with others in the target design program including Mordy Rosen, Steve Haan, and Larry Suter, has been as a target designer and theorist who utilized the LASNEX code to perform numerical experiments, which along with analysis of laboratory and underground thermonuclear experiments allowed me to develop a series of models and physical insights which have been used to set the direction and priorities of the Livermore program. I have had the good fortune of working with an outstanding team of scientists who have established LLNL as the premier ICF laboratory in the world. John Emmett and the LLNL Laser Science team were responsible for developing a series of lasers from Janus to Nova which have given LLNL unequaled facilities. George Zimmerman and the LASNEX group developed the numerical models essential for projecting future performance and requirements as well as for designing and analyzing the experiments. Bill Kruer, Bruce Langdon and others in the plasma theory group developed the fundamental understanding of laser plasma interactions which have played such an important role in ICF. And a series of experiment program leaders including Mike Campbell and Joe Kilkenny and their laser experimental teams developed the experimental techniques and diagnostic capabilities which have allowed us to c increasingly complex and sophisticated experiments.

Lindl, J.D.

1993-12-01T23:59:59.000Z

27

Progress in Z-Pinch driven dynamic-hohlraums for high-temperature radiation-flow and ICF experiments at Sandia National Laboratories.  

SciTech Connect (OSTI)

Progress in understanding the physics of dynamic-hohlraums is reviewed for a system capable of generating 13 TW of axial radiation for high temperature (>200 eV) radiation-flow experiments and ICF capsule implosions.

Bailey, James E.; Haines, Malcolm G. (Imperial College, London, United Kingdom); Chandler, Gordon Andrew; Bliss, David Emery; Olson, Richard Edward; Sanford, Thomas W. L.; Olson, Craig Lee; Nash, Thomas J.; Ruiz, Carlos L.; Matzen, Maurice Keith; Idzorek, George C. (Los Alamos National Laboratory, Los Alamos, NM); Stygar, William A.; Apruzese, John P. (Naval Research Laboratory, Washington DC); Cuneo, Michael Edward; Cooper, Gary Wayne (University of New Mexico, Albuquerque, NM); Chittenden, Jeremy Paul (Imperial College, London, United Kingdom); Chrien, Robert E. (Los Alamos National Laboratory, Los Alamos, NM); Slutz, Stephen A.; Mock, Raymond Cecil; Leeper, Ramon Joe; Sarkisov, Gennady Sergeevich (Ktech Corporation, Albuquerque, NM); Peterson, Darrell L. (Los Alamos National Laboratory, Los Alamos, NM); Lemke, Raymond William; Mehlhorn, Thomas Alan; Roderick, Norman Frederick (University of New Mexico, Albuquerque, NM); Watt, Robert G. (Los Alamos National Laboratory, Los Alamos, New MM)

2004-06-01T23:59:59.000Z

28

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Release Date: June 2013 | Release Date: June 2013 | Report Number: DOE/EIA-0383(2012) Acronyms List of Acronyms AB Assembly Bill IHSGI IHS Global Insight AB32 California Assembly Bill 32 INFORUM Interindustry Forecasting Project at the University of Maryland ACI Activated carbon injection IOU Invester-owned utility AEO Annual Energy Outlook IREC Interstate Renewable Energy Council AEO2012 Annual Energy Outlook 2012 ITC Investment tax credit ANWR Arctic National Wildlife Refuge LCFS Low Carbon Fuel Standard ARRA2009 American Recovery and Reinvestment Act of 2009 LDV Light-duty vehicle ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers LED Light-emitting diode Blue Chip Blue Chip Consensus LFMM Liquid Fuels Market Module

29

History of HERMES III diode to z-pinch breakthrough and beyond : learning about pulsed power and z-pinch ICF.  

SciTech Connect (OSTI)

HERMES III and Z are two flagship accelerators of Sandia's pulsed-power program developed to generate intense-ray fields for the study of nuclear radiation effects, and to explore high energy-density physics (including the production of intense x-ray fields for Inertia Confinement Fusion [ICF]), respectively. A diode at the exit of HERMES III converts its 20-MeV electron beam into-rays. In contrast, at the center of Z, a z-pinch is used to convert its 20-MA current into an intense burst of x-rays. Here the history of how the HERMES III diode emerged from theoretical considerations to actual hardware is discussed. Next, the reverse process of how the experimental discovery of wire-array stabilization in a z-pinch, led to a better theory of wirearray implosions and its application to one of the ICF concepts on Z--the DH (Dynamic Hohlraum) is reviewed. Lastly, the report concludes with how the unexpected axial radiation asymmetry measured in the DH is understood. The first discussion illustrates the evolution of physics from theory-to-observationto- refinement. The second two illustrate the reverse process of observationto- theory-to refinement. The histories are discussed through the vehicle of my research at Sandia, illustrating the unique environment Sandia provides for personal growth and development into a scientific leader.

Sanford, Thomas W. L.

2013-04-01T23:59:59.000Z

30

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

0. Comparisons of energy consumption by sector projections, 2025, 2035, and 2040 0. Comparisons of energy consumption by sector projections, 2025, 2035, and 2040 (quadrillion Btu) Sector AEO2013 Reference INFORUM IHSGI ExxonMobil IEA 2011 Residential 11.3 11.5 10.8 -- -- Residential excluding electricity 6.4 6.6 6.0 5.0 -- Commercial 8.6 8.6 8.5 -- -- Commercial excluding electricity 4.1 4.1 4.0 4.0 -- Buildings sector 19.9 20.1 19.3 -- 19.3a Industrial 24.0 23.6 -- -- 23.7a Industrial excluding electricity 20.7 20.2 -- 20.0 -- Lossesb 0.7 -- -- -- -- Natural gas feedstocks 0.5 -- -- -- -- Industrial removing losses and feedstocks 22.9 -- 21.7 -- -- Transportation 27.1 27.2 26.2 27.0 23.1a Electric power 39.4 39.2 40.5 37.0 37.2a Less: electricity demandc 12.7 12.8 12.7 -- 15.0a

31

ICF Reports | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

and stockpile stewardship. Some of these reports are listed below: Advancing the Science of High Energy Density Laboratory Plasmas, U.S. Department of Energy, Office of...

32

Site support program plan for ICF Kaiser Hanford Company  

SciTech Connect (OSTI)

The Fiscal Year (FY) 1997 Inftastructure Program Site Support Program Plan (SSPP) addresses the mission objectives, workscope, work breakdown structures (WBS), management approach, and resource requirements for the Infrastructure Program. Attached to the plan are appendices that provide more detailed information associated with scope definition.

Dieterle, S.E.

1996-09-27T23:59:59.000Z

33

Mach-Zehnder Fiber-Optic Links for ICF Diagnostics  

SciTech Connect (OSTI)

This article describes the operation and evolution of Mach-Zehnder links for single-point detectors in inertial confinement fusion experimental facilities, based on the Gamma Reaction History (GRH) diagnostic at the National Ignition Facility.

Miller, E. K., Hermann, H. W.

2012-11-01T23:59:59.000Z

34

Status of the ICF program at Los Alamos National Laboratory  

SciTech Connect (OSTI)

In the Los Alamos program we are emphasizing the testing of targets uniquely designed for drive with the carbon dioxide (CO/sub 2/) laser. The two major facilities for this study are the eight-beam Helios system and the Antares laser system. Some recent results to be discussed demonstrate the dominant effect of self-generated magnetic fields in controlling energy transport by hot electrons. An understanding of this physics may permit the design of targets for CO/sub 2/ that are self-shielding in terms of hot electron preheat. Another consequence of the magnetic insulation is efficient energy conversion to ion motion. This occurs over a much largr surface than originally irradiated by the laser with in excess of 50 percent of the absorbed energy converted to ion motion in some experiments.

Rockwood, S.D.

1982-01-01T23:59:59.000Z

35

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

per day, except where noted) Other Projections Projection 2010 AEO2012 Reference case BPa EVA INFORUM P&G 2015 Average U.S. imported RAC (2010 dollars per barrel) 75.87 113.97...

36

Ion kinetic effects on the ignition and burn in ICF Ion kinetic effects on the ignition and burn of ICF targets  

E-Print Network [OSTI]

and burn of the thermonuclear fuel in inertial confinement fusion pellets at the ion kinetic level to treat fusion products (suprathermal -particles) in a self-consistent manner with the thermal bulk enhancement of fusion products leads to a significant reduction of the fusion yield. I. MOTIVATION AND CONTEXT

37

Ion kinetic effects on the ignition and burn of ICF targets  

E-Print Network [OSTI]

In this Article, we study the hydrodynamics and burn of the thermonuclear fuel in inertial confinement fusion pellets at the ion kinetic level. The analysis is based on a two-velocity-scale Vlasov-Fokker-Planck kinetic model that is specially tailored to treat fusion products (suprathermal {\\alpha}-particles) in a self-consistent manner with the thermal bulk. The model assumes spherical symmetry in configuration space and axial symmetry in velocity space around the mean flow velocity. Compared to fluid simulations where a multi-group diffusion scheme is applied to model {\\alpha} transport, the full ion-kinetic approach reveals significant non-local effects on the transport of energetic $\\alpha$-particles. This has a direct impact on hydrodynamic spatial profiles during combustion: the hot spot reactivity is reduced, while the inner dense fuel layers are preheated by the escaping {\\alpha}-suprathermal particles, which are transported farther out of the hot spot. We show how the kinetic transport enhancement of...

Peigney, Benjamin-Edouard; Tikhonchuk, Vladimir

2014-01-01T23:59:59.000Z

38

Innovative high pressure gas MEM's based neutron detector for ICF and active SNM detection.  

SciTech Connect (OSTI)

An innovative helium3 high pressure gas detection system, made possible by utilizing Sandia's expertise in Micro-electrical Mechanical fluidic systems, is proposed which appears to have many beneficial performance characteristics with regards to making these neutron measurements in the high bremsstrahlung and electrical noise environments found in High Energy Density Physics experiments and especially on the very high noise environment generated on the fast pulsed power experiments performed here at Sandia. This same system may dramatically improve active WMD and contraband detection as well when employed with ultrafast (10-50 ns) pulsed neutron sources.

Martin, Shawn Bryan; Derzon, Mark Steven; Renzi, Ronald F.; Chandler, Gordon Andrew

2007-12-01T23:59:59.000Z

39

Ray-Based Calculations with DEPLETE of Laser Backscatter in ICF Targets  

SciTech Connect (OSTI)

A steady-state model for Brillouin and Raman backscatter along a laser ray path is presented. The daughter plasma waves are treated in the strong damping limit, and have amplitudes given by the (linear) kinetic response to the ponderomotive drive. Pump depletion, inverse-bremsstrahlung damping, bremsstrahlung emission, Thomson scattering off density fluctuations, and whole-beam focusing are included. The numerical code Deplete, which implements this model, is described. The model is compared with traditional linear gain calculations, as well as 'plane-wave' simulations with the paraxial propagation code pF3D. Comparisons with Brillouin-scattering experiments at the Omega Laser Facility show that laser speckles greatly enhance the reflectivity over the Deplete results. An approximate upper bound on this enhancement is given by doubling the Deplete coupling coefficient. Analysis with Deplete of an ignition design for the National Ignition Facility (NIF), with a peak radiation temperature of 285 eV, shows encouragingly low reflectivity. Doubling the coupling to bracket speckle effects suggests a less optimistic picture. Re-absorption of Raman light is seen to be significant in this design.

Strozzi, D J; Williams, E; Hinkel, D; Froula, D; London, R; Callahan, D

2008-05-19T23:59:59.000Z

40

Benchmarking the x-ray phase contrast imaging for ICF DT ice characterization using roughened surrogates  

SciTech Connect (OSTI)

We use x-ray phase contrast imaging to characterize the inner surface roughness of DT ice layers in capsules planned for future ignition experiments. It is therefore important to quantify how well the x-ray data correlates with the actual ice roughness. We benchmarked the accuracy of our system using surrogates with fabricated roughness characterized with high precision standard techniques. Cylindrical artifacts with azimuthally uniform sinusoidal perturbations with 100 um period and 1 um amplitude demonstrated 0.02 um accuracy limited by the resolution of the imager and the source size of our phase contrast system. Spherical surrogates with random roughness close to that required for the DT ice for a successful ignition experiment were used to correlate the actual surface roughness to that obtained from the x-ray measurements. When comparing average power spectra of individual measurements, the accuracy mode number limits of the x-ray phase contrast system benchmarked against surface characterization performed by Atomic Force Microscopy are 60 and 90 for surrogates smoother and rougher than the required roughness for the ice. These agreement mode number limits are >100 when comparing matching individual measurements. We will discuss the implications for interpreting DT ice roughness data derived from phase-contrast x-ray imaging.

Dewald, E; Kozioziemski, B; Moody, J; Koch, J; Mapoles, E; Montesanti, R; Youngblood, K; Letts, S; Nikroo, A; Sater, J; Atherton, J

2008-06-26T23:59:59.000Z

Note: This page contains sample records for the topic "ihsgi inforum icf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Electron generation and transport in intense relativistic laser-plasma interactions relevant to fast ignition ICF  

E-Print Network [OSTI]

Mason, and R. L. Morse, Thermonuclear burn characteristicsachieving controlled thermonuclear fusion, we’re also ex-and densi- ties that thermonuclear fusion between the D and

Ma, Tammy Yee Wing

2010-01-01T23:59:59.000Z

42

The ICF, Inc. coal and electric utilities model : an analysis and evaluation  

E-Print Network [OSTI]

v.1. The Electric Power Research Institute (EPRI) is sponsoring a series of evaluations of important energy policy and electric utility industry models by the MIT Energy Model Analysis Program (EMAP). The subject of this ...

Wood, David O.

1981-01-01T23:59:59.000Z

43

Electron generation and transport in intense relativistic laser-plasma interactions relevant to fast ignition ICF  

E-Print Network [OSTI]

achieving controlled thermonuclear fusion, we’re also ex-and densi- ties that thermonuclear fusion between the D and

Ma, Tammy Yee Wing

2010-01-01T23:59:59.000Z

44

Electron Generation and Transport in Intense Relativistic Laser-Plasma Interactions Relevant to Fast Ignition ICF  

SciTech Connect (OSTI)

The reentrant cone approach to Fast Ignition, an advanced Inertial Confinement Fusion scheme, remains one of the most attractive because of the potential to efficiently collect and guide the laser light into the cone tip and direct energetic electrons into the high density core of the fuel. However, in the presence of a preformed plasma, the laser energy is largely absorbed before it can reach the cone tip. Full scale fast ignition laser systems are envisioned to have prepulses ranging between 100 mJ to 1 J. A few of the imperative issues facing fast ignition, then, are the conversion efficiency with which the laser light is converted to hot electrons, the subsequent transport characteristics of those electrons, and requirements for maximum allowable prepulse this may put on the laser system. This dissertation examines the laser-to-fast electron conversion efficiency scaling with prepulse for cone-guided fast ignition. Work in developing an extreme ultraviolet imager diagnostic for the temperature measurements of electron-heated targets, as well as the validation of the use of a thin wire for simultaneous determination of electron number density and electron temperature will be discussed.

Ma, T

2010-04-21T23:59:59.000Z

45

Electron generation and transport in intense relativistic laser-plasma interactions relevant to fast ignition ICF  

E-Print Network [OSTI]

as a step towards laser fusion ignition, Nature, 412 (2001),tip. Full scale fast ignition laser systems are envisionedmodified. Full scale fast ignition laser systems of 100 kJ

Ma, Tammy Yee Wing

2010-01-01T23:59:59.000Z

46

KrF laser path to high gain ICF (inertial confinement fusion) laboratory microfusion facility  

SciTech Connect (OSTI)

The krypton-fluoride laser has many desirable features for inertial confinement fusion. Because it is a gas laser capable of operation with high efficiency, it is the only known laser candidate capable of meeting the driver requirements for inertial fusion energy (IFE) production. Los Alamos National Laboratory has defined a program plan to develop KrF lasers for IFE production. This plan develops the KrF laser and demonstrates the target performance in single-pulse facilities. A 100-kJ Laser Target Test Facility (LTTF) is proposed as the next step, to be followed by a 3 to 10-MJ Laboratory Microfusion Facility (LMF). The LTTF will resolve many target physics issues and accurately define the driver energy required for the LMF. It is also proposed that the technology development for IFE, such as the high-efficiency, high-reliability, repetitively pulsed driver, the reactor, mass production of targets, and the mechanism of injecting targets be developed in parallel with the single-pulse facilities. 11 refs., 4 figs.

Harris, D.B.; Sullivan, J.A.; Figueiro, J.F.; Cartwright, D.C.; McDonald, T.E.; Hauer, A.A.; Coggeshall, S.V.; Younger, S.M.

1990-01-01T23:59:59.000Z

47

U.S. Energy Information Administration (EIA) - Pub  

Gasoline and Diesel Fuel Update (EIA)

Comparison with other projections Comparison with other projections Only IHS Global Insight (IHSGI) produces a comprehensive energy projection with a time horizon similar to that of the Annual Energy Outlook 2013 (AEO2013). Other organizations, however, address one or more aspects of the U.S. energy market. The most recent projection from IHSGI, as well as others that concentrate on economic growth, international oil prices, energy consumption, electricity, natural gas, petroleum, and coal, are compared here with the AEO2013 Reference case. 1. Economic growth The range of projected economic growth in the outlooks included in the comparison tends to be wider over the first 5 years of the projection than over a longer period, because the group of variables-such as population, productivity, and labor force growth-that influence long-run economic

48

U.S. Energy Information Administration (EIA) - Pub  

Gasoline and Diesel Fuel Update (EIA)

Changes AEO 2011 Comparison with other projections Changes AEO 2011 Comparison with other projections Only IHS Global Insight (IHSGI) produces a comprehensive energy projection with a time horizon similar to that of the Annual Energy Outlook 2013 (AEO2013). Other organizations, however, address one or more aspects of the U.S. energy market. The most recent projection from IHSGI, as well as others that concentrate on economic growth, international oil prices, energy consumption, electricity, natural gas, petroleum, and coal, are compared here with the AEO2013 Reference case. 1. Economic growth The range of projected economic growth in the outlooks included in the comparison tends to be wider over the first 5 years of the projection than over a longer period, because the group of variables-such as population,

49

U.S. Energy Information Administration (EIA) - Pub  

Gasoline and Diesel Fuel Update (EIA)

Comparison with other projections Comparison with other projections Only IHS Global Insight (IHSGI) produces a comprehensive energy projection with a time horizon similar to that of Annual Energy Outlook2011 (AEO2011). Other organizations, however, address one or more aspects of the U.S. energy market. The most recent projection from IHSGI, as well as others that concentrate on economic growth, international oil prices, energy consumption, electricity, natural gas, petroleum, and coal, are compared here with the AEO2011 Reference case. 1. Economic growth The range of projected economic growth tends to be wider for the earlier years of the projection period and then narrows in the long run, because the group of conceptsâ€"such as population, productivity, and labor force growthâ€"that explain long-run growth trends is smaller than the

50

U.S. Energy Information Administration (EIA) - Pub  

Gasoline and Diesel Fuel Update (EIA)

Changes AEO 2011 Comparison with other projections Changes AEO 2011 Comparison with other projections Only IHS Global Insight (IHSGI) produces a comprehensive energy projection with a time horizon similar to that of the Annual Energy Outlook 2012 (AEO2012). Other organizations, however, address one or more aspects of the U.S. energy market. The most recent projection from IHSGI, as well as others that concentrate on economic growth, international oil prices, energy consumption, electricity, natural gas, petroleum, and coal, are compared here with the AEO2012 Reference case. 1. Economic growth The range of projected economic growth in the outlooks included in the comparison tends to be wider over the first 5 years of the projection period than over a longer period, because the group of variables-such as

51

E-Print Network 3.0 - additional diagnostic tool Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A fusion product source for ICF diagnostics development and education Johan... of several types of emergent fusion products. ICF diagnostics development is currently being done,...

52

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

relevance to Astrophysics and Inertial Confinement Fusion (ICF) Afterglow of gamma ray bursts Hot electron transport for Fast Igniter -- ICF Characteristics of CFI...

53

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network [OSTI]

Evans (now with EPA) • Rich Sweeney Redefining Progress • James Barrett ICF • Boddu Venkatesh • Kamala R.

Blair, N.

2010-01-01T23:59:59.000Z

54

Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network [OSTI]

Solid State Luminaires (SSL) • TVs/VCRs • Ventilating Fans • Water Heaters Source: ICF, 2009 • Battery

Homan, Gregory K

2011-01-01T23:59:59.000Z

55

Characterization of the deuteron beam current in a linear accelerator for nuclear-diagnostic calibrations  

E-Print Network [OSTI]

In Inertial Confinement Fusion (ICF) research, passive detection systems are often required in several applications for observing fusion-product spectra from an ICF-capsule implosion. These detection devices can be calibrated ...

Denis, Daniel (Daniel B.)

2009-01-01T23:59:59.000Z

56

Simultaneous and instantaneous measurement of velocity and density in rayleigh-taylor mixing layers  

E-Print Network [OSTI]

for the current research is to provide insight into the development of turbulent mixing that occurs in inertial confinement fusion (ICF). Thermonuclear fusion is a naturally occurring process in young supernova (Gull 1975) and ICF is being developed as a method... for artificially producing thermonuclear fusion. During ICF, a spherical capsule filled with light deuterium and tritium gas is accelerated or imploded (Betti et al. 2001). Hydrodynamic instabilities play an important role in the implosion phase of ICF...

Kraft, Wayne Neal

2009-05-15T23:59:59.000Z

57

technology  

National Nuclear Security Administration (NNSA)

1%2A en ICF Reports http:nnsa.energy.govaboutusourprogramsdefenseprogramsstockpilestewardshipinertialconfinementfusionicfreports

58

fusion  

National Nuclear Security Administration (NNSA)

7%2A en ICF Facilities http:nnsa.energy.govaboutusourprogramsdefenseprogramsstockpilestewardshipinertialconfinementfusionicffacilities

59

Introduction  

Broader source: Energy.gov (indexed) [DOE]

Electric Transmission in the West Electric Transmission in the West Planning  Siting  Issues February 7, 2012 2  What does Transmission Look Like?  Why is Transmission Important?  Transmission Planning  Transmission Siting  Select Transmission Issues  References Presentation Content © 2010 ICF International. All rights reserved. What does Transmission Look Like? © 2010 ICF International. All rights reserved. WHAT DOES ELECTRIC TRANSMISSION LOOK LIKE 4  Provide affordable/reliable electricity  Implement public policies - Renewable energy (RPS, PTC, ITC) Why is Transmission Important? © 2010 ICF International. All rights reserved. Renewable Portfolio Standards WHY IS TRANSMISSION IMPORTANT 5 Transmission Planning © 2010 ICF International. All rights reserved.

60

E-Print Network 3.0 - alternative target material Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

targets involves numerous steps. These steps are shared in common with many other types of Inertial... Confinement Fusion (ICF) targets but no other single target...

Note: This page contains sample records for the topic "ihsgi inforum icf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

SSQ V4 N4_Dec2014.indd  

National Nuclear Security Administration (NNSA)

capable of supporting gravitational collapse, thus sustaining star formation. 8 Thermonuclear fuel compression in ICF is highly susceptible to shock-induced hydrodynamic...

62

Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products  

E-Print Network [OSTI]

Administration, Office of Energy Markets and End Use.Administration, Office of Energy Markets and End Use.ICF Consulting. 2003. Energy Star Market Penetration Report

Homan, Gregory K

2011-01-01T23:59:59.000Z

63

Assumptions to the Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

for EIA (SENTECH Incorporated, 2010). Wind: The Cost and Performance of Distributed Wind Turbines, 2010-35 (ICF International, 2010). 31 U.S. Energy Information Administration |...

64

Residential Demand Module  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

for EIA (SENTECH Incorporated, 2010). Wind: The Cost and Performance of Distributed Wind Turbines, 2010-35 (ICF International, 2010). 33 U.S. Energy Information Administration |...

65

PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION  

E-Print Network [OSTI]

, ~1/4 PhD's - Specialized equipment - ISO 9001:2008 · Leveraged expertise from ICF to IFE · Target fab

66

DOE Technical Assistance Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Procuring and Implementing Solar Projects on Public Buildings Sarah Truitt, NREL Kim Owens & Craig Schultz, ICF International December 8, 2010 Photo courtesy of Bella Energy 2 |...

67

California CHP Market Assessment, July 2009 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California CHP Market Assessment, July 2009 California CHP Market Assessment, July 2009 Presentation by ICF International to the Integrated Energy Policy Report Committee at the...

68

EPA ENERGY STAR: Tackling Growth in Home Electronics and Small Appliances  

E-Print Network [OSTI]

ICF Consulting. 2003. Energy Star Market Penetration ReportConsulting. ———. 2004. Energy Star Market Penetration Reportmarket data. Figure 4. ENERGY STAR Market Penetration ENERGY

Sanchez, Marla Christine

2008-01-01T23:59:59.000Z

69

COLLOQUIUM: NIF An Unexpected Journey or Lessons Learned to Secure...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to secure any future large scale facility. The presentation will include a historical perspective on the ICF and Stockpile Stewardship program that motivated NIF and the...

70

E-Print Network 3.0 - advanced byproduct recovery Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dryer Wastes", EPRI CS-5782, May 1988. (5) ICF... Center for By-Products Utilization CLEAN COAL ... Source: Wisconsin-Milwaukee, University of - Department of Civil Engineering and...

71

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

Memorandum Encouraging Combined Heat and Power in California2012 ICF, 2012, “Combined Heat and Power: Policy AnalysisA New Generation of Combined Heat and Power: Policy Planning

Stadler, Michael

2014-01-01T23:59:59.000Z

72

E-Print Network 3.0 - advanced high chromium Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Medicine 2 ORAL REFERENCE: ICF100152OR EFFECTS OF DIFFUSION ON INTERFACIAL FRACTURE OF Summary: structure along the substrate interface in the gold-chromium films....

73

Alternative Fuels Implementation Team (AFIT) for North Carolina  

Broader source: Energy.gov (indexed) [DOE]

2013 Set up subcontractor & vendor agreements - 8 Clean Cities coalitions, Advanced Energy (non-profit) & ICF (consultant). Conduct quarterly AFIT meetings and monthly...

74

Neutron imaging with bubble chambers for inertial confinement fusion.  

E-Print Network [OSTI]

??One of the main methods to obtain energy from controlled thermonuclear fusion is inertial confinement fusion (ICF), a process where nuclear fusion reactions are initiated… (more)

Ghilea, Marian Constantin (1973 - ); Meyerhofer, David D.

2011-01-01T23:59:59.000Z

75

What Impedes Efficient Adoption of Products? Evidence from Randomized Variation in Sales Offers for Improved Cookstoves in Uganda  

E-Print Network [OSTI]

ICF International Inc. 2012. “Uganda Demographic and HealthSurvey 2011”. Kampala, Uganda: UBOS and Calverton, Maryland:Millennium Villages Project (Uganda and Tanzania) EcoZoom. ”

Levine, David I.; Beltramo, Theresa; Blalock, Garrick; Cotterman, Carolyn

2012-01-01T23:59:59.000Z

76

Does Peer Use Influence Adoption of Efficient Cookstoves? Evidence from a Randomized Controlled Trial in Uganda  

E-Print Network [OSTI]

for Improved Cookstoves in Uganda. ” Working Paper, U.C.NBER Working Paper 14865. Uganda Bureau of Statistics, andICF International Inc. 2012. “Uganda Demographic and Health

Beltramo, Theresa; Blalock, Garrick; Levine, David; Simons, Andrew

2014-01-01T23:59:59.000Z

77

DOE Announces Webinars on Alternative Fuel Online Tools and Resources...  

Energy Savers [EERE]

will present an overview of updates and new tools that have recently been added to the Energy Department's Alternative Fuels Data Center (AFDC). Alexis Schayowitz, from ICF...

78

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

E-Print Network [OSTI]

Ignition   Facility   (NIF)   the   world's   most   powerful   laser,   and  laser-­?plasma   interactions  relevant  to  direct-­? drive  ICF  implosions   Investigations  of  advanced   ignition  

Gerber, Richard

2014-01-01T23:59:59.000Z

79

ITP Distributed Energy: Combined Heat and Power Market Assessment...  

Broader source: Energy.gov (indexed) [DOE]

Governor COMBINED HEAT AND POWER MARKET ASSESSMENT Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: ICF International,...

80

National Ignition Facility | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

other ICF high energy density facilities leading to demonstrate fusion ignition and thermonuclear burn in the laboratory. The NIF is also being used to support basic science and...

Note: This page contains sample records for the topic "ihsgi inforum icf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Inertial Confinement Fusion | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

advanced science and technology portfolio, the Office of ICF is working to produce thermonuclear burn conditions in the laboratory, to develop laboratory capabilities that will...

82

Long-Term U.S. Energy Outlook: Different Perspectives  

U.S. Energy Information Administration (EIA) Indexed Site

Paul Holtberg, Moderator Paul Holtberg, Moderator April 26, 2011 | Washington, D.C. Long-Term U.S. Energy Outlook: Different Perspectives Speakers 2 Paul Holtberg, 2011 EIA Energy Conference Washington, D.C., April 26, 2011 * John Conti, Assistant Administrator of Energy Analysis, Energy Information Administration * Mark Finley, General Manager, Global Energy Markets and U.S. Economics, BP * Douglas Meade, Director of Research, INFORUM Forecasts/projections and uncertainty 3 Paul Holtberg, 2011 EIA Energy Conference Washington, D.C., April 26, 2011 * Forecast or projections? * Know your analyst * Tools * Uncertainty - Basic underlying trends (e.g., population growth, economic growth, social norms) - Technology (e.g., new technologies, improved technology, breakthroughs vs. evolutionary, new applications)

83

JOURNAL DE PHYSIQUE Colloque C7, suppl6ment au n012, Tome 49, d6cembre 1988  

E-Print Network [OSTI]

is necessary for the economy of the power plant run by an ICF reactor. In Fig. 1 we show the electrical power flow in an ICF power plant. Article published online by EDP Sciences and available at http volume et celui relatif h l'ignition centrale. Ce dernier est superieur au precedent. Une simulation

Boyer, Edmond

84

MISSION AND NEED FOR A FUSION NUCLEAR SCIENCE FACILITY  

E-Print Network [OSTI]

) Dave Hill (Lawrence Livermore National Laboratory) Rick Ku Directive ICF: NIF re-baselining and design reviews underway #12;FNSF: SOME HISTORICAL CONTEXT Recall FPA Annual Meeting of 2000: MFE: US out of ITER by Congressional Directive ICF: NIF re-baselining and design

85

Inertial Fusion in NNSA N AT I O N AL N U C L E AR S E C U R I T Y AD M I N I S T R AT I O N OFFICE OF DEFENSE PROGRAMS  

E-Print Network [OSTI]

" (significant alpha heating and ignition remain elusive) Performed initial tests of point design with the laser burning plasma platform for the Predictive Capability Framework (PCF) of the SSP (Ignition is the first;4 Developing robust burning plasma platforms remains principal goal of the ICF Program Achieving ICF ignition

86

1 Copyright 2004 by ASME Proceedings of Solar 2004  

E-Print Network [OSTI]

in overall savings. In this paper actual energy usage for an ICF house constructed in 1998 is compared1 Copyright © 2004 by ASME Proceedings of Solar 2004 July 11-14, 2004 Portland, Oregon ISEC2004-65022 USE OF INSULATED CONCRETE FORM (ICF) CONSTRUCTION FOR ENERGY CONSERVATION IN RESIDENTIAL CONSTRUCTION

Ribando, Robert J.

87

Prospects for inertial fusion as an energy source  

SciTech Connect (OSTI)

Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs.

Hogan, W.J.

1989-06-26T23:59:59.000Z

88

Development of multichannel low-energy neutron spectrometer  

SciTech Connect (OSTI)

A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments.

Arikawa, Y., E-mail: arikawa-y@ile.osaka-u.ac.jp; Nagai, T.; Abe, Y.; Kojima, S.; Sakata, S.; Inoue, H.; Utsugi, M.; Iwasa, Y.; Sarukura, N.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan); Murata, T. [Kumamoto University, 2-40-1 Kurokami, Kumamoto 860-8555 (Japan)

2014-11-15T23:59:59.000Z

89

Efficient laser acceleration of proton beams for intense sources of low energy neutrinos  

SciTech Connect (OSTI)

The existence of highly efficient ion acceleration regimes in collective laser-plasma interactions opens up the possibility to develop high-energy-physics (HEP) facilities in conjunction with projects for inertial confined nuclear fusion (ICF) and neutron spallation sources.

Pegoraro, F. [Department of Physics, University of Pisa, Pisa (Italy); CNISM, Pisa (Italy); Bulanov, S. V.; Esirkepov, T. Zh.; Tajima, T. [Advanced Photon Research Centre, JAEA, Kizu, Kyoto (Japan); Migliozzi, P. [INFN, Sez. di Napoli, Naples (Italy); Terranova, F. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy)

2006-04-07T23:59:59.000Z

90

DOE Zero Energy Ready Home Case Study, Manatee County Habitat...  

Energy Savers [EERE]

has R-23 ICF walls, a spray-foamed sealed attic, solar hot water, and a ducted mini-split heat pump. DOEZERHManateeCountyHabitat2013 More Documents & Publications DOE Zero...

91

Vlasov simulations of kinetic enhancement of Raman backscatter in laser fusion plasmas  

E-Print Network [OSTI]

Stimulated Raman scattering (SRS) is studied in plasmas relevant to inertial confinement fusion (ICF). The Eulerian Vlasov-Maxwell code ELVIS was developed and run for this purpose. Plasma waves are heavily Landau damped ...

Strozzi, D. J. (David J.)

2006-01-01T23:59:59.000Z

92

Investigation and characterization of single hot spot laser-plasma interactions  

E-Print Network [OSTI]

Control of parametric laser-plasma interactions (LPI) is essential to the success of inertial confinement fusion (ICF). Through a research collaboration with the Los Alamos National Laboratory (LANL), we have had the ...

Focia, Ronald J

2002-01-01T23:59:59.000Z

93

Assumptions to the Annual Energy Outlook 2013  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

and U.S. Energy Information Administration, The Cost and Performance of Distributed Wind Turbines, 2010-35 Final Report, ICF International, August 2010. 43 U.S. Energy Information...

94

PLASMA-PHYSICS-21 Heavy ion driven reactor-size double shell inertial fusion targets*  

E-Print Network [OSTI]

Inertial Confinement Fusion (ICF) is considered as an alternative to Magnetic Confinement Fusion to achieve controlled thermonuclear fusion. The main goal is to exploit the energy released from thermonuclear fusion reactions

M. C. Serna Moreno; N. A. Tahir; J. J. López Cela; A. R. Piriz; D. H. H. Hoffmann

95

A Framework for Comparative Assessments of Energy Efficiency Policy Measures  

E-Print Network [OSTI]

Energy Efficiency Baseline and Market Potential Study. ICF International, Fairfax, VA, USA.USA. McGrory, L V W et al (2002): “Market Leadership by Example: Government Sector Energy

Blum, Helcio

2012-01-01T23:59:59.000Z

96

DOE Zero Energy Ready Home: Montlake Modern - Seattle, Washington...  

Energy Savers [EERE]

ft2 custom home has 6-inch SIP walls, a 12-inch SIP roof, an R-28 ICF-insulated foundation slab edge with R-20 rigid foam under the slab; an air-to-water heat pump plus...

97

DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham...  

Broader source: Energy.gov (indexed) [DOE]

1,055-ft2 two-story production home has 6-in. SIP walls, a 10-in. SIP roof, and ICF foundation walls with R-20 high-density rigid EPS foam under the slab. A single ductless heat...

98

Building America Whole-House Solutions for New Homes: Devoted...  

Energy Savers [EERE]

Energy Office to design HERS-54 duplexes with ICF walls, high-efficiency mini-split heat pumps, ERVs, and a spray-foam plus blown cellulose covered ceiling deck. Devoted...

99

Guides and Case Studies for Marine Climates | Department of Energy  

Energy Savers [EERE]

Construction to design HERS-54 duplexes with ICF walls, high-efficiency mini-split heat pumps, ERVs, and a spray-foam plus blown cellulose covered ceiling deck. Project:...

100

Transmit beamforming for multiple antenna systems with imperfect feedback  

E-Print Network [OSTI]

channel estimation (PCE) at the receiver is investigatedImperfect Channel Feedback PCE: Perfect Channel EstimationICE and ICF; Ana N=2; B=2; PCE, No Delay; Sim N=2; B=2; PCE,

Isukapalli, Yogananda R.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ihsgi inforum icf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Spectrum and conversion efficiency measurements of suprathermal electrons from relativistic laser plasma interactions  

E-Print Network [OSTI]

Fast Ignition is an alternative scheme for Inertial Confinement Fusion (ICF) that uses a petawatt laser to ignite a hot spot in precompressed fuel. The laser delivers its energy into relativistic electrons at the critical ...

Chen, Cliff D. (Cliff Ding Yu)

2009-01-01T23:59:59.000Z

102

An improved method for measuring the absolute DD neutron yield and calibrating neutron time-of-flight detectors in inertial confinement fusion experiments  

E-Print Network [OSTI]

Since the establishment of nuclear physics in the early 1900's and the development of the hydrogen bomb in the 1950's, inertial confinement fusion (ICF) has been an important field in physics. Funded largely though the ...

Waugh, C. (Caleb Joseph)

2014-01-01T23:59:59.000Z

103

Instability Versus Equilibrium Propagation of a Laser Beam in Plasma Pavel M. Lushnikov1,2  

E-Print Network [OSTI]

) at the National Ignition Facility (NIF) [1]. NIF's plasma environment, in the indirect drive approach to ICF, has that of actual experiments, as in the idealized ``top hat'' model of NIF optics: j ^EEkj const; k

Lushnikov, Pavel

104

Building America Zero Energy Ready Home Case Study: Southeast Volusia Habitat for Humanity, Edgewater, Florida  

Broader source: Energy.gov [DOE]

Case study describing a Habitat for Humanity home in coastal Florida with ICF walls, ducts in the thermal envelope in a furred-up ceiling chase, and HERS 49 without PV.

105

Atomistic methods in fluid simulation  

Science Journals Connector (OSTI)

...easily describable by traditional methods, as ICF involves a complex coupling between fluid instabilities and combustion processes at very small length and times scales. One contribution of 13 to a Theme Issue Turbulent mixing and beyond . Figure...

2010-01-01T23:59:59.000Z

106

INFORME ANUAL 2011 INSTITUTO DE CIENCIAS FSICAS  

E-Print Network [OSTI]

- INFORME ANUAL 2011 INSTITUTO DE CIENCIAS FĂŤSICAS UNIVERSIDAD NACIONAL AUTĂ?NOMA DE MĂ?XICO 1 #12;INTRODUCCIĂ?N El Instituto de Ciencias FĂ­sicas de la UNAM (ICF) fue creado por el Consejo Universitario el 29 de septiembre de 2006. El ICF surge como una transformaciĂłn del Centro de Ciencias FĂ­sicas (CCF) que iniciĂł sus

MejĂ­a-Monasterio, Carlos

107

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 45 (2005) S283S290 doi:10.1088/0029-5515/45/10/S24  

E-Print Network [OSTI]

at the Laboratory for Laser Energetics: charting the path to thermonuclear ignition R.L. McCrory1,2 , S.P. Regan1 to the OMEGA laser system to backlight direct-drive ICF implosions and study fast-ignition physics with focused-drive ICF ignition target designs for the National Ignition Facility (NIF), or other MJ-class lasers, rely

108

Indian Country Solar Energy Potential Estimates & DOE IE Updates  

Broader source: Energy.gov (indexed) [DOE]

Potential for Renewable Energy Potential for Renewable Energy Development on Tribal Lands October 2012 1 Introduction * The DOE Office of Indian Energy Policy and Programs (OI) requested ICF International (ICF) to identify areas within Tribal Lands that have a strong potential for renewable energy generation (solar and wind) as a source of Tribal revenue within the geographic area covered by the Western Electric Coordination Council (WECC) transmission grid * ICF used a combination of geospatial modeling and power flow modeling to identify sites where: - Conditions are optimal for solar or wind generation - Access to high-voltage transmission lines is favorable - Transmission upgrade costs would be minimal 2 Geospatial Analysis Phase I: Identify Potential Sites * Obtained GIS layers (e.g., wind/solar resources, transmission

109

Condensed hydrogen for thermonuclear fusion  

SciTech Connect (OSTI)

Inertial confinement fusion (ICF) power, in either pure fusion or fission-fusion hybrid reactors, is a possible solution for future world's energy demands. Formation of uniform layers of a condensed hydrogen fuel in ICF targets has been a long standing materials physics challenge. Here, we review the progress in this field. After a brief discussion of the major ICF target designs and the basic properties of condensed hydrogens, we review both liquid and solid layering methods, physical mechanisms causing layer nonuniformity, growth of hydrogen single crystals, attempts to prepare amorphous and nanostructured hydrogens, and mechanical deformation behavior. Emphasis is given to current challenges defining future research areas in the field of condensed hydrogens for fusion energy applications.

Kucheyev, S. O.; Hamza, A. V. [Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

2010-11-15T23:59:59.000Z

110

Prompt Beta Spectroscopy as a Diagnostic for Mix in Ignited NIF Capsules  

E-Print Network [OSTI]

The National Ignition Facility (NIF) technology is designed to drive deuterium-tritium (DT) internal confinement fusion (ICF) targets to ignition using indirect radiation from laser beam energy captured in a hohlraum. Hydrodynamical instabilities at interfaces in the ICF capsule leading to mix between the DT fue l and the ablator shell material are of fundamental physical interest and can affect the performance characteristics of the capsule. In this Letter we describe new radiochemical diagnostics for mix processes in ICF capsules with plastic or Be (0.9%Cu) ablator shells. Reactions of high-energy tritons with shell material produce high-energy $\\beta$-emitters. We show that mix between the DT fuel and the shell material enhances high-energy prompt beta emission from these reactions by more than an order of magnitude over that expected in the absence of mix.

A. C. Hayes; G. Jungman; J. C. Solem; P. A. Bradley; R. S. Rundberg

2004-08-12T23:59:59.000Z

111

Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression  

DOE Patents [OSTI]

The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

Lasche, G.P.

1983-09-29T23:59:59.000Z

112

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Inertial Confinement Fusion Inertial Confinement Fusion Facilities Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Inertial Confinement Fusion > Facilities Facilities Office of Inertial Confinement Fusion, Facilities ICF operates a set of world-class experimental facilities to create HEDP conditions and to obtain quantitative data in support of its numerous stockpile stewardship-related activities. To learn about three high energy experimental facilities and two small lasers that provide ICF capabilities, select the links below. National Ignition Facility, Lawrence Livermore National Laboratory OMEGA and OMEGA EP, University of Rochester Laboratory for Laser Energetics Z Machine, Sandia National Laboratories

113

Inertial fusion in the nineties  

SciTech Connect (OSTI)

The 1980s has proven to be an exicting time for the inertial confinement fusion (ICF) program. Major new laser and light-ion drivers have been constructed and have produced some encouraging results. The 1990s will be a crucial time for the ICF program. A decision for proceeding with the next facility is scheduled for the early 1990s. If the decision is positive, planning and construction of this facility will occur. Depending on the time required for design and construction, this next-generation facility could become operational near the turn of the century. 21 refs., 4 figs.

Harris, D.B.; Dudziak, D.J.; Cartwright, D.C.

1987-01-01T23:59:59.000Z

114

tTOURflAL DE PHYSIQUE Colloque C7, suppliment au n07, Tome 40, J u i l l e t 1979, page C7-775 DIAGNOSTICSPROGRAM FOR A MAGNETICALLY INSULATED ION DIODE FOR INERTIAL CONFINEMENT FUSION  

E-Print Network [OSTI]

, Albuquerque, flew Mexico, 87185. Inertial confinement fusion (ICF) schemes 2 require an ion power density of 1 the focused proton and carbon beam profiles via induced atomic excitation and thermal emission from targets exposure times of less than five nanoseconds. The resulting electron images were transported along a 2 k

Paris-Sud XI, Université de

115

THE CONCEPT OF ISOCHORIC CENTRAL SPARK IGNITION AND ITS FUEL GAIN IN INERTIAL FUSION  

E-Print Network [OSTI]

1 THE CONCEPT OF ISOCHORIC CENTRAL SPARK IGNITION AND ITS FUEL GAIN IN INERTIAL FUSION of the best methods in inertial confinement fusion (ICF) is the concept of central spark ignition, consisting of two distinct regions named as hot and cold regions and formed by hydro-dynamical implosion of fuel

Boyer, Edmond

116

John Lindl and Bruce Hammel Lawrence Livermore National Laboratory  

E-Print Network [OSTI]

Advances in Indirect Drive ICF Target Physics Presentation to 20th IAEA Fusion Energy Conference #12;NIF in Inertial Confinement Fusion Inertial Confinement Fusion uses direct or indirect drive to couple driver by cold, dense main fuel Direct Drive Hot spot (10 keV) Cold, dense main fuel (200-1000 g/cm3) Indirect

117

Plasma-Density Determination from X-Ray Radiography of Laser-Driven Spherical Implosions F. J. Marshall, P. W. McKenty, J. A. Delettrez, R. Epstein, J. P. Knauer, and V. A. Smalyuk  

E-Print Network [OSTI]

to sampling the areal density at the time of fusion particle production. In non-igniting capsules, the cold, R. D. Petrasso, and F. H. Se´guin Plasma Science and Fusion Center, Massachusetts Institute confinement fusion (ICF) relies on the com- pression of spherical targets by means of a high power driver

118

FPEOS: A First-Principles Equation of State Table of Deuterium for Inertial Confinement Fusion Applications  

E-Print Network [OSTI]

FPEOS: A First-Principles Equation of State Table of Deuterium for Inertial Confinement Fusion) Understanding and designing inertial confinement fusion (ICF) implosions through radiation- hydrodynamics. To minimize the drive energy for ignition, the imploding shell of DT- fuel needs to be kept as cold

Militzer, Burkhard

119

University of California, San Diego UCSD-ENG-090 Fusion Division  

E-Print Network [OSTI]

Jolla, CA 92093-0417, USA bUniversity of California, Los Angeles cLawrence Livermore National Laboratory Moir Lawrence Livermore National Laboratory Livermore, CA 94550 Contents: 1. Introduction 2. Background] and the National Ignition Facility (NIF) [7] will further the development of ICF targets and drivers. While

Krstic, Miroslav

120

Fusion Lecture Summary Eugene S. Evans  

E-Print Network [OSTI]

March 31, 2010 2 / 15 #12;National Ignition Facility (NIF) location: Lawrence Livermore National. Evans (2010) Fusion Lecture Summary March 31, 2010 1 / 15 #12;Outline 1 Overview of NIF Specifications Timeline Goals 2 Inertial Confinement Fusion (ICF) 3 Science at NIF 4 Fusion and the Future Laser Inertial

Budker, Dmitry

Note: This page contains sample records for the topic "ihsgi inforum icf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Production of hollow aerogel microspheres  

SciTech Connect (OSTI)

A method is described for making hollow aerogel microspheres of 800--1200{mu} diameter and 100--300{mu} wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

Upadhye, R.S.; Henning, S.A.

1990-12-31T23:59:59.000Z

122

STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

Grid Systems, Inc. Lowcost, Scalable, Fast Demand Response for Municipal Wastewater and Recycling $1 competed in the following project categories: 1) Water and Wastewater; 2) Data Centers; 3) Customer as an Intermediary Wastewater Treatment Step $1,418,800 $1,418,800 $568,800 Awardee 3 ICF International Data Center

123

Inertial confinement fusion research and development studies. Final report, October 1979-August 1980  

SciTech Connect (OSTI)

These Inertial Confinement Fusion (ICF) research and development studies were selected for structural, thermal, and vacuum pumping analyses in support of the High Yield Lithium Injection Fusion Energy (HYLIFE) concept development. An additional task provided an outlined program plan for an ICF Engineering Test Facility, using the HYLIFE concept as a model, although the plan is generally applicable to other ICF concepts. The HYLIFE is one promising type of ICF concept which features a falling array of liquid lithium jets. These jets surround the fusion reaction to protect the first structural wall (FSW) of the vacuum chamber by absorbing the fusion energy, and to act as the tritium breeder. The fusion energy source is a deuterium-tritium pellet injected into the chamber every second and driven by laser or heavy ion beams. The studies performed by Grumman have considered the capabilities of specific HYLIFE features to meet life requirements and the requirement to recover to preshot conditions prior to each subsequent shot. The components under investigation were the FSW which restrains the outward motion of the liquid lithium, the nozzle plate which forms the falling jet array, the graphite shield which is in direct top view of the fusion pellet, and the vacuum pumping system. The FSW studies included structural analysis, and definition of an experimental program to validate computer codes describing lithium motion and the resulting impact on the wall.

Bullis, R.; Finkelman, M.; Leng, J.; Luzzi, T.; Ojalvo, I.; Powell, E.; Sedgley, D.

1980-08-01T23:59:59.000Z

124

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT THE VALUE OF NATURAL GAS STORAGE-2013-131 Prepared for: California Energy Commission Prepared by: ICF International #12;PREPARED BY: Primary Author: California Energy Commission David Michel Contract Manager Fernando Pina Office Manager Energy Systems

125

Electro-optical deflectors as a method of beam smoothing for Inertial Confinement Fusion  

SciTech Connect (OSTI)

The electro-optic deflector is analyzed and compared to smoothing by spectral dispersion for efficacy as a beam smoothing method for ICF. It is found that the electro-optic deflector is inherently somewhat less efficient when compared either on the basis of equal peak phase modulation or equal generated bandwidth.

Rothenberg, J.E.

1997-01-01T23:59:59.000Z

126

5/3/12 96-2 1/4www.phy.ornl.gov/divops/ESH/96-2.html  

E-Print Network [OSTI]

Than Six Feet Occurrence Number: RL--WHC-KHPNL&L-1996-0001 (2/23/96) Westinghouse Hanford An ICF KH. The subcontractor advised BNL that the two employees who were working in an unsafe manner were fired. 4. Employees

127

Building America Whole-House Solutions for New Homes: Devoted Builders, LLC, Pasco, Washington  

Broader source: Energy.gov [DOE]

Case study of Devoted Builders who worked with Building America research partner WSU Extension Energy Office to design HERS-54 duplexes with ICF walls, high-efficiency mini-split heat pumps, ERVs, and a spray-foam plus blown cellulose covered ceiling deck.

128

Building America Whole-House Solutions for New Homes: Nelson Construction, Farmington, Connecticut  

Broader source: Energy.gov [DOE]

Case study of Nelson Construction, who worked with the Building America research partner Building Science Corporation to design ten HERS 53 homes with ICF foundations, foam-sheathed above-grade walls, and high-effciency furnaces with fresh air intake and jump ducts.

129

DOE Zero Energy Ready Home Case Study, Manatee County Habitat for Humanity, Ellenton, FL, Affordable  

Broader source: Energy.gov [DOE]

Case-study of a DOE Zero Energy Ready Home in Ellenton, FL that scored HERS 53 without PV, HERS 23 with PV. This 1,143 ft2 affordable home has R-23 ICF walls, a spray-foamed sealed attic, solar hot water, and a ducted mini-split heat pump.

130

Program Mission Campaigns are multi-year, multi-functional efforts involving, to varying degrees, every site in the nuclear  

E-Print Network [OSTI]

and reliability of aged and remanufactured weapons in the absence of nuclear testing. This technology base must with the cessation of underground nuclear testing. · Inertial Confinement Fusion Ignition and High Yield (ICF degrees, every site in the nuclear weapons complex. They provide specialized scientific knowledge

131

Initial experiments on the shock-ignition inertial confinement fusion concepta...  

E-Print Network [OSTI]

ignition is a concept for direct-drive laser inertial confinement fusion ICF Refs. 1­3 that was recently for conven- tional ignition to occur. Then a strong shock wave launched at the end of the laser pulseInitial experiments on the shock-ignition inertial confinement fusion concepta... W. Theobald,1,b R

132

Direct-drive cryogenic target implosion performance on OMEGAa... P. W. McKenty,b)  

E-Print Network [OSTI]

J OMEGA laser system1 at the Laboratory for Laser Energetics UR/LLE will validate the scaled-ignition fabrication and laser subsystems on the NIF, however, place restrictions on the robustness of ICF ignition to examine the minimum laser energy required to achieve ignition.4­7 All of these studies have concluded

133

Asymptotic Behavior of the Rayleigh-Taylor Instability Laurent Duchemin,1  

E-Print Network [OSTI]

) without surface tension plays a specific role since no stabilizing effects are present in the linear in inertial confinement fusion (ICF) where the mass ablation provides a stabilizing effect to the interface,11,12] presents a constant velocity rising bubble separated by free falling tiny spikes as dis- played in Fig. 1

Duchemin, Laurent

134

HYDRODYNAMIC ISSUES IN PAMS MANDREL TARGET FABRICATION  

SciTech Connect (OSTI)

OAK-B135 Imperfections in PAMS mandrels critically govern the quality of final ICF targets. Imperfections in the mandrels can have a wide range of origins. Here, they present observations of 3 types of imperfections, and data to support the proposal that hydrodynamic factors during the curing of the mandrel are potential causes of these imperfections.

McQUILLAN,B.W; PAGUIO,R; SUBRAMANIAN,P; TAKAGI,M; ZEBIB,A

2003-09-01T23:59:59.000Z

135

Technical risks and R and D requirements for inertial confinement fusion. Volume 2. Final report  

SciTech Connect (OSTI)

If the technology breakthroughs and/or inventions identified in this preliminary analysis occur in a timely manner, an aggressive R and D program may allow commercial demonstration of confinement fusion within 30 years. Using an innovative interview methodology analysts have mapped out near-term and long-term R and D requirements for ICF to become a viable energy source.

McCarville, T.J.; Gordon, J.D.; Salem, S.L.; Maniscalco, J.A.; Berwald, D.H.; Sicherman, A.; Kulkarni, R.B.; Cherdack, R.N.; Lee, K.C.

1985-02-01T23:59:59.000Z

136

Page 1 of 4 Radiogram No. 4014u Form 24 for 09/09/2010  

E-Print Network [OSTI]

:15-09:50 FE-6 CFE-ICF1 Test Operations 08:15-08:55 FE-4 Using PCBA to Draw Blood 08:25-09:55 FE-3 Physical-band) 09:45-09:55 FE-4 Post-sleep 09:50-10:20 FE-6 CFE Teardown 09:55-10:40 FE-3 CASCADE Glovebox

137

Direct-Drive Inerital Confinement Fusion Research at the Laboratory for Laser Energetics: Charting the Path to Thermonuclear Ignition  

SciTech Connect (OSTI)

Significant theoretical and experimental progress continues to be made at the University of Rocheter's Laboratory for Laser Energetics (LLE), charting the path to direct-drive inertial confinement fusion (ICF) ignition. Direct drive offers the potential for higher-gain implosions than x-ray drive and is a leading candidate for an inertial fusion enery power plant.

McCrory, R.L.; Regan, S.P.; Loucks, S.J.; Meyerhofer, D.D.; Skupsky, S.; Betti, R.; Boehly, T.R.; Craxton, R.S.; Collins, T.J.B.; Delettrez, J.A.; Edgell, D.; Epstein, R.; Fletcher, K.A.; Freeman, C.; Frenje, J.A.; Glebov, V.Yu.; Goncharov, V.N.; Harding, D.R.; Igumenshchev, I.V.; Keck, R.L.; Kilkenny, J.D.; Knauer, J.P.; Li, C.K.; Marciante, J.; Marozas, J.A.; Marshall, F.J.; Maximov, A.V.; McKenty, P.W.; Myatt, J.; Padalino, S.; Petrasso, R.D.; Radha, P.B.; Sangster, T.C.; Seguin, F.H.; Seka, W.; Smalyuk, V.A.; Soures, J.M.; Stoeckl, C.; Yaakobi, B.; Zuegel, J.D.

2005-10-07T23:59:59.000Z

138

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 7971  

E-Print Network [OSTI]

to the study of nuclear fusion by inertial confinement (ICF). Today, the differ- ent technologies useful image sensors in megajoule class laser radiative environment. (2012) IEEE Electronics Letters, vol. 48 class laser radiative environment V. Goiffon, S. Girard, P. Paillet, P. Magnan, A. Chabane, A. Rousseau

Mailhes, Corinne

139

D-T gamma-to-neutron branching ratio determined from inertial confinement fusion plasmasa)  

Science Journals Connector (OSTI)

A new deuterium-tritium (D-T)fusion gamma-to-neutron branching ratio [3H(d ?)5He/3H(d n)4He] value of (4.2?±?2.0)?×?10?5 was recently reported by this group [Y. Kim et al. Phys. Rev. C (submitted)]. This measurement conducted at the OMEGA laser facility located at the University of Rochester was made for the first time using inertial confinement fusion(ICF)plasmas. Neutron-induced backgrounds are significantly reduced in these experiments as compared to traditional beam-target accelerator-based experiments due to the short pulse nature of ICF implosions and the use of gas Cherenkov ?-ray detectors with fast temporal responses and inherent energy thresholds. It is expected that this ICF-based measurement will help resolve the large and long-standing inconsistencies in previously reported accelerator-based values which vary by a factor of approximately 30. The reported value at ICF conditions was determined by averaging the results of two methods: (1) a direct measurement of ICFD-T ?-ray and neutron emissions using absolutely calibrated detectors and (2) a separate cross-calibration against the better known D-3He gamma-to-proton branching ratio [3He(d ??)5Li/3He(d p)4He]. Here we include a detailed explanation of these results and introduce as a corroborative method an in-situ ?-ray detectorcalibration using neutron-induced ?-rays. Also by extending the established techniques to two additional series of implosions with significantly different ion temperatures we test the branching ratio dependence on ion temperature. The data show a D-T branching ratio is nearly constant over the temperature range 2–9?keV. These studies motivate further investigation into the 5He and 5Li systems resulting from D-T and D-3He fusion respectively and result in improved ICF ?-ray reaction history diagnosis at the National Ignition Facility.

Y. Kim; J. M. Mack; H. W. Herrmann; C. S. Young; G. M. Hale; S. Caldwell; N. M. Hoffman; S. C. Evans; T. J. Sedillo; A. McEvoy; J. Langenbrunner; H. H. Hsu; M. A. Huff; S. Batha; C. J. Horsfield; M. S. Rubery; W. J. Garbett; W. Stoeffl; E. Grafil; L. Bernstein; J. A. Church; D. B. Sayre; M. J. Rosenberg; C. Waugh; H. G. Rinderknecht; M. Gatu Johnson; A. B. Zylstra; J. A. Frenje; D. T. Casey; R. D. Petrasso; E. Kirk Miller; V. Yu Glebov; C. Stoeckl; T. C. Sangster

2012-01-01T23:59:59.000Z

140

Analysis of the Technical and Economic Potential for Mid-Scale Distributed Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of the Technical and Analysis of the Technical and Economic Potential for Mid-Scale Distributed Wind December 2007 - October 31, 2008 R. Kwartin, A. Wolfrum, K. Granfield, A. Kagel, and A. Appleton ICF International Fairfax, Virginia Subcontract Report NREL/SR-500-44280 December 2008 An Analysis of the Technical and Economic Potential for Mid-Scale Distributed Wind December 2007 - October 31, 2008 R. Kwartin, A. Wolfrum, K. Granfield, A. Kagel, and A. Appleton ICF International Fairfax, Virginia NREL Technical Monitor: T. Forsyth Prepared under Subcontract No. AAM-8-89001-01 Subcontract Report NREL/SR-500-44280 December 2008 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy

Note: This page contains sample records for the topic "ihsgi inforum icf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cost and Performance Assumptions for Modeling Electricity Generation Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost and Performance Cost and Performance Assumptions for Modeling Electricity Generation Technologies Rick Tidball, Joel Bluestein, Nick Rodriguez, and Stu Knoke ICF International Fairfax, Virginia Subcontract Report NREL/SR-6A20-48595 November 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Cost and Performance Assumptions for Modeling Electricity Generation Technologies Rick Tidball, Joel Bluestein, Nick Rodriguez, and Stu Knoke ICF International Fairfax, Virginia NREL Technical Monitor: Jordan Macknick

142

Microsoft Word - Smart Grid Economic Impact Report  

Broader source: Energy.gov (indexed) [DOE]

This report was prepared as an account of work sponsored by an agency of the United States This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor ICF International, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by tradename, trademark, manufacturer or otherwise doe not necessarily constitute or imply its endorsement, recommendation or favoring by the United States Government or any agency thereof, or ICF International. The views and opinions of

143

STATEMENT OF CONSIDERATIONS REQUEST BY CORNING INCORPORATED FOR AN ADVANCE WAIVER  

Broader source: Energy.gov (indexed) [DOE]

WAIVER WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE CONTRACT NO. B29143; DOE WAIVER NO. W(A)-95-029 The Petitioner, Corning Incorporated, has requested an Advance Waiver of the Government's domestic and foreign rights to inventions made under the above cited research and development contract (R&D Contract). The objective of the R&D Contract issued by the Lawrence Livermore National Laboratory (LLNL) on behalf of DP-11 is to reduce the costs associated with the manufacturing of large size high quality fused silica transmissive optics utilized in advanced Inertial Confinement Fusion (ICF) laser systems. The present cost of laser optics used in the ICF laser system is between $1.7/cm 3 to $2.0/cm 3 . After completion of the R&D Contract, it is believed that a 50% reduction in cost for the

144

EIA-914 Review April 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Results of the EIA-914 Review Results of the EIA-914 Review April 2010 Background In January 2009, in Texas, there was a significant change from the December 2008 production estimate. Most of the change was due to the annual update of the sample and estimation process, not a real change in production. A few months later, it became apparent that a growing difference between the EIA-914 based production estimates and estimates publish by the State of Texas had occurred in the latter part of 2008. These two situations prompted EIA to initiate an outside review of the EIA-914 methodologies. ICF International was contracted to review the entire EIA-914 program. ICF was directed to review the areas listed below, identify any problems or concerns, and suggest remedies or

145

Microsoft Word - NIF Industry Day Agenda  

National Nuclear Security Administration (NNSA)

Department of Energy Department of Energy National Nuclear Security Administration Washington, DC 20585 National Nuclear Security Administration (NNSA) National Ignition Facility (NIF) Target Fabrication Industry Day at Lawrence Livermore National Laboratory (LLNL) Agenda 9:00 - 9:15 Welcome and orientation Mr. Roger Lewis, Assistant Deputy Administrator for Research, Development, Test Capabilities and Evaluation (Acting), NNSA Mr. John Post, Assistant Principal Associate Director, NIF and Photon Science, LLNL 9:15 - 9:30 Inertial Confinement Fusion (ICF) program, current and future status Mr. Roger Lewis 9:30 -10:30 National Ignition Facility (NIF), introduction and overview Mr. John Post 10:30 - 11:30 NIF/ICF Targets - Introduction, current technical requirements, anticipated future

146

Methodology and Analysis Monthly Natural Gas Gross Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Methodology and Analysis Methodology and Analysis Methodology and Analysis 1 Methodology: Description of the sampling and estimating methodologies implemented in April 2010 PDF 2 Review Results: Description of the problem and the alternative methodologies tested PDF 3 2009 Revisions: A comparison of the current methodology estimates to the previous estimates PDF 4 ICF International Review: ICF International's review paper given to the American Statistical Association Committee on Energy Statistics PDF 5 Other Sources: EIA-914 Estimates Compared with Other sources PDF 6 Issues: EIA-914 Sample and Model Issues PDF 7 Data Analysis: EIA-914 Final Clearance Package October 2006 PDF 8 Revision Policy: EIA-914 and Natural Gas Monthly Revision Policy March 2007 PDF 9 Commercial Data Sources:

147

Interplanetary space transport using inertial fusion propulsion  

SciTech Connect (OSTI)

In this paper, we indicate how the great advantages that ICF offers for interplanetary propulsion can be accomplished with the VISTA spacecraft concept. The performance of VISTA is expected to surpass that from other realistic technologies for Mars missions if the energy gain achievable for ICF targets is above several hundred. Based on the good performance expected from the U. S. National Ignition Facility (NIF), the requirements for VISTA should be well within the realm of possibility if creative target concepts such as the fast ignitor can be developed. We also indicate that a 6000-ton VISTA can visit any planet in the solar system and return to Earth in about 7 years or less without any significant physiological hazards to astronauts. In concept, VISTA provides such short-duration missions, especially to Mars, that the hazards from cosmic radiation and zero gravity can be reduced to insignificant levels. VISTA therefore represents a significant step forward for space-propulsion concepts.

Orth, C.D.

1998-04-20T23:59:59.000Z

148

Measurement and simulation of jet mass caused by a high-aspect ratio hole perturbation  

SciTech Connect (OSTI)

Inertial confinement fusion (ICF) capsule performance can be negatively impacted by the presence of hydrodynamic instabilities. To perform a gas fill on an ICF capsule, current plans involve drilling a small hole and inserting a fill tube to inject the gas mixture into the capsule. This introduces a perturbation on the capsule, which can seed hydrodynamic instabilities. The small hole can cause jetting of the shell material into the gas, which might adversely affect the capsule performance. We have performed simulations and experiments to study the hydrodynamic evolution of jets from high-aspect ratio holes, such as the fill tube hole. Although simulations using cold materials overpredict the amount of mass in the jet, when a reasonable amount of preheat (<1 eV) is introduced, the simulations are in better agreement with the experiment.

Keiter, Paul A [Los Alamos National Laboratory; Cooley, James H [Los Alamos National Laboratory; Wilson, D C [Los Alamos National Laboratory; Kyrala, George A [Los Alamos National Laboratory; Blue, Brent E [LLNL; Edwards, J [LLNL; Elliott, James B [LLNL; Robey, H F [LLNL; Spears, B [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

149

Coated foams, preparation, uses and articles  

DOE Patents [OSTI]

Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.

Duchane, D.V.; Barthell, B.L.

1982-10-21T23:59:59.000Z

150

6th target fabrication specialists meeting: Proceedings, June 23, 1988 Sessions  

SciTech Connect (OSTI)

The following papers were presented at the meeting: Laser Target Fabrication at the Naval Research Laboratory; High-Sensitivity Radiography Detects Very Small Defects in Laser Fusion Targets; Ablation Layer Coating on Inertial Fusion Targets at Laboratory for Laser Energetics; X-Ray Microscopy of Inertial Fusion Targets Using a Laser Produced Plasma as an X-Ray Source; A Study of Factors Affecting The Deposition of Smooth Plasma Polymers; Composite Foams; Low-Density Resorcinol-Formaldehyde Foams for Direct-Drive Laser ICF Targets; Low-Density Polystyrene Foams For Direct-Drive Laser ICF Targets; Characterization of Low-Density Materials and Their Precursers; and Low-Voltage Scanning Electron Microscopy of Target Materials. (JF)

Not Available

1988-01-01T23:59:59.000Z

151

The Standard Energy Efficiency Database Platform  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SEED: The Standard Energy SEED: The Standard Energy Efficiency Database Platform Bill Prindle Bill Prindle ICF International William.prindle@icfi.com 202-492-9698 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Data invisibility is a fundamental barrier in building end-use markets. Measuring and recognizing efficiency in U.S. buildings requires standardizing our energy data infrastructure via software conventions. Impact of Project: SEED is intended to provide public

152

Microsoft Word - Wind Report Final June 15 2010.doc  

Gasoline and Diesel Fuel Update (EIA)

B B EIA Task Order No. DE-DT0000804, Subtask 3 The Cost and Performance of Distributed Wind Turbines, 2010-35 Final Report June 2010 Prepared for: Office of Integrated Analysis & Forecasting U.S. Energy Information Administration Prepared by: ICF International Contact: Robert Kwartin T: (703) 934-3586 E: RKwartin@icfi.com ii Table of Contents Executive Summary ..................................................................................................................... iv Introduction ................................................................................................................................... v 1. Technology Overview............................................................................................................1

153

Microsoft Word - PV Report v20.doc  

Gasoline and Diesel Fuel Update (EIA)

A A EIA Task Order No. DE-DT0000804, Subtask 3 Photovoltaic (PV) Cost and Performance Characteristics for Residential and Commercial Applications Final Report August 2010 Prepared for: Office of Integrated Analysis and Forecasting U.S. Energy Information Administration Prepared by: ICF International Contact: Robert Kwartin T: (703) 934-3586 E: rkwartin@icfi.com ii Table of Contents Executive Summary ...................................................................................................................... v 1. Introduction ...........................................................................................................................1 1.1 Objective ....................................................................................................................1

154

The Standard Energy Efficiency Database Platform  

Broader source: Energy.gov (indexed) [DOE]

SEED: The Standard Energy SEED: The Standard Energy Efficiency Database Platform Bill Prindle Bill Prindle ICF International William.prindle@icfi.com 202-492-9698 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Data invisibility is a fundamental barrier in building end-use markets. Measuring and recognizing efficiency in U.S. buildings requires standardizing our energy data infrastructure via software conventions. Impact of Project: SEED is intended to provide public

155

2010 Vehicle Technologies Market Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This page intenti onally left blank. 2010 Vehicle Technologies Market Report i Primary Authors: Jacob Ward U.S. Department of Energy Stacy Davis Oak Ridge National Laboratory With Contributions From: Bill Batten (Eaton), Susan Diegel (ORNL) Vinod Duggal (Cummins), K.G. Duleep (ICF), Richard Smith (ORNL), Skip Yeakel (Volvo) Graphic Design: Debbie Bain (ORNL) Contents ABOUT THE REPORT ............................................................ ii EXECUTIVE SUMMARY .........................................................iii Transportation accounts for 28.5% of total U.S. energy

156

OMEGA FY13 HED requests - LANL  

SciTech Connect (OSTI)

This is a summary of scientific work to be performed on the OMEGA laser system located at the Laboratory for Laser Energetics in Rochester New York. The work is funded through Science and ICF Campagins and falls under the category of laser-driven High-Energy Density Physics experiments. This summary is presented to the Rochester scheduling committee on an annual basis for scheduling and planning purposes.

Workman, Jonathan B [Los Alamos National Laboratory; Loomis, Eric N [Los Alamos National Laboratory

2012-06-25T23:59:59.000Z

157

Inertial Confinement Fusion quarterly report, October--December 1994. Volume 5, No. 1  

SciTech Connect (OSTI)

The ICF quarterly report is published by the Inertial Confinement Fusion Program at the Lawrence Livermore National Laboratory. Topics included in this issue include: system description and initial performance results for beamlet, design and performance of the beamlet amplifiers and optical switch, beamlet pulse-generation and wavefront-control system, large-aperture, high- damage-threshold optics for beamlet, beamlet pulsed power system, beamlet laser diagnostics, and beam propagation and frequency conversion modeling for the beamlet laser.

NONE

1995-09-01T23:59:59.000Z

158

Financial constraints in capacity planning: a national utility regulatory model (NUREG). Volume III of III: software description. Final report  

SciTech Connect (OSTI)

This volume is the software description for the National Utility Regulatory Model (NUREG). This is the third of three volumes provided by ICF under contract number DEAC-01-79EI-10579. These three volumes are: a manual describing the NUREG methodology; a users guide; and a description of the software. This manual describes the software which has been developed for NUREG. This includes a listing of the source modules. All computer code has been written in FORTRAN.

None

1981-10-29T23:59:59.000Z

159

Effects of Single Mode Initial Conditions in Rayleigh-Taylor Turbulent Mixing  

E-Print Network [OSTI]

, and salt dome formations. The journal model is IEEE Transactions on Automatic Control. 2 In addition, the RT instability is partially responsible for the failure to attain a thermonuclear ignition in Inertial Con nement Fusion [4]. Inertial con nement... fusion (ICF) is a process by which a spherical capsule composed of a solid Deuterium-Tritium (DT) shell is imploded utilizing laser surface ablation [5]. During the implosion process the ablated material forces the shell to accelerate inwards thus...

Doron, Yuval

2011-02-22T23:59:59.000Z

160

DOE Zero Energy Ready Home Case Study, Weiss Building & Development, LLC., System Home, River Forest, IL  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready Home in River Forest, IL that scored HERS 17 without PV. This 4,763 ft2 custom passive house has R-54 ICF walls, a vented attic with R-100 blown fiberglass, plus R-40 rigid EPS under the slab, triple-pane windows, two ductless mini-split heat pumps, and redundant air sealing and flashing details.

Note: This page contains sample records for the topic "ihsgi inforum icf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The National Ignition Facility and the Ignition Campaign  

E-Print Network [OSTI]

February 14-18, 2013 Debra A. Callahan Group Leader for ICF/IFE Target design Lawrence Livermore National(atm-s) Indirect drive on the NIF is within a factor of 2-3 of the conditions required for ignition Callahan -- AAAS, February 14-18, 2013 82013-047661s2.ppt NIF Ignition #12;2013-047661s2.ppt Callahan -- AAAS

162

Experimental Investigation of the Effect of Initial Conditions on Rayleigh-Taylor Instability  

E-Print Network [OSTI]

efficiency _______________ This thesis follows the style of Journal of Fluid Mechanics. 2 of the ICF, which could be employed as a standard process of power generation in the future. Inertial confinement fusion at the Lawrence Livermore National...+?2) Shown in Figure 1 is a 2D schematic of the National Ignition Facility (NIF) scale ignition double shell using HYDRA simulation. A pie-shaped cross section of the area of 3 interest is depicted, certain duration after pellet is impinged upon...

Kuchibhatla, Sarat Chandra

2011-10-21T23:59:59.000Z

163

An Experimental Study of the Effect of Reshock on the Inclined Interface Richtmyer-Meshkov Instability  

E-Print Network [OSTI]

at the National Ignition Facility (NIF) [23] at Lawrence Livermore National Laboratory (LLNL). The National Ignition Facility is a prime example of the integrated progress of simulations and experiments. While experiments are being developed and performed... new fission fuel, from elements that are readily available in ocean water. Current developmental work in ICF is being done at the National Ignition Facility at Lawrence Livermore National Lab. In their work, the fuel target is compressed through...

Creel, Skylar

2014-04-29T23:59:59.000Z

164

Inertial confinement fusion quarterly report, October--December 1992. Volume 3, No. 1  

SciTech Connect (OSTI)

This report contains papers on the following topics: The Beamlet Front End: Prototype of a new pulse generation system;imaging biological objects with x-ray lasers; coherent XUV generation via high-order harmonic generation in rare gases; theory of high-order harmonic generation; two-dimensional computer simulations of ultra- intense, short-pulse laser-plasma interactions; neutron detectors for measuring the fusion burn history of ICF targets; the recirculator; and lasnex evolves to exploit computer industry advances.

Dixit, S.N. [ed.

1992-12-31T23:59:59.000Z

165

INFORME ANUAL 2009 INSTITUTO DE CIENCIAS FSICAS  

E-Print Network [OSTI]

INFORME ANUAL 2009 INSTITUTO DE CIENCIAS FĂŤSICAS UNIVERSIDAD NACIONAL AUTĂ?NOMA DE MĂ?XICO 1 #12 13 BiofĂ­sica y Ciencia de Materiales 13 FĂ­sica AtĂłmica Molecular y Ă?ptica Experimentales 13 FĂ­sica Correos electrĂłnicos 99 3 #12;INTRODUCCIĂ?N El Instituto de Ciencias FĂ­sicas de la UNAM (ICF) fue creado

MejĂ­a-Monasterio, Carlos

166

AXIS: An instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF  

SciTech Connect (OSTI)

Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV–200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Tommasini, R.; Carpenter, A. C.; Palmer, N. E.; Zacharias, R.; Felker, B.; Holder, J. P.; Allen, F. V.; Bell, P. M.; Bradley, D.; Montesanti, R.; Landen, O. L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)

2014-11-15T23:59:59.000Z

167

High power KrF laser development at Los Alamos  

SciTech Connect (OSTI)

The objective of the high power laser development program at Los Alamos is to appraise the potential of the KrF laser as a driver for inertial confinement fusion (ICF), ultimately at energy levels that will produce high target gain (gain of order 100). A KrF laser system prototype, the 10-kJ Aurora laser, which is nearing initial system operation, will serve as a feasibility demonstration of KrF technology and system design concepts appropriate to large scale ICF driver systems. The issues of affordable cost, which is a major concern for all ICF drivers now under development, and technology scaling are also being examined. It is found that, through technology advances and component cost reductions, the potential exists for a KrF driver to achieve a cost goal in the neighborhood of $100 per joule. The authors suggest that the next step toward a multimegajoule laboratory microfusion facility (LMF) is an ''Intermediate Driver'' facility in the few hundred kilojoule to one megajoule range, which will help verify the scaling of driver technology and cost to an LMF size. An Intermediate Driver facility would also increase the confidence in the estimates of energy needed for an LMF and would reduce the risk in target performance. 5 refs., 4 figs., 1 tab.

McDonald, T.; Cartwright, D.; Fenstermacher, C.; Figueira, J.; Goldstone, P.; Harris, D.; Mead, W.; Rosocha, L.

1988-01-01T23:59:59.000Z

168

Fast ignition of inertial confinement fusion targets  

SciTech Connect (OSTI)

Results of studies on fast ignition of inertial confinement fusion (ICF) targets are reviewed. The aspects of the fast ignition concept, which consists in the separation of the processes of target ignition and compression due to the synchronized action of different energy drivers, are considered. Criteria for the compression ratio and heating rate of a fast ignition target, the energy balance, and the thermonuclear gain are discussed. The results of experimental and theoretical studies of the heating of a compressed target by various types of igniting drivers, namely, beams of fast electrons and light ions produced under the action of a petawatt laser pulse on the target, a heavy-ion beam generated in the accelerator, an X-ray pulse, and a hydrodynamic flow of laser-accelerated matter, are analyzed. Requirements to the igniting-driver parameters that depend on the fast ignition criteria under the conditions of specific target heating mechanisms, as well as possibilities of practical implementation of these requirements, are discussed. The experimental programs of various laboratories and the prospects of practical implementation of fast ignition of ICF targets are reviewed. To date, fast ignition is the most promising method for decreasing the ignition energy and increasing the thermonuclear gain of an ICF plasma. A large number of publications have been devoted to investigations of this method and adjacent problems of the physics of igniting drivers and their interaction with plasma. This review presents results of only some of these studies that, in the author's opinion, allow one to discuss in detail the main physical aspects of the fast ignition concept and understand the current state and prospects of studies in this direction.

Gus'kov, S. Yu., E-mail: guskov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

2013-01-15T23:59:59.000Z

169

Formation of imploding plasma liners for fundamental HEDP studies and MIF Standoff Driver Concept  

SciTech Connect (OSTI)

The disciplines of High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF) are characterized by hypervelocity implosions and strong shocks. The Plasma Liner Experiment (PLX) is focused on reaching HEDP and/or ICF relevant regimes in excess of 1 Mbar peak pressure by the merging and implosion of discrete plasma jets, as a potentially efficient path towards these extreme conditions in a laboratory. In this work we have presented the first 3D simulations of plasma liner, formation, and implosion by the merging of discrete plasma jets in which ionization, thermal conduction, and radiation are all included in the physics model. The study was conducted by utilizing a smoothed particle hydrodynamics code (SPHC) and was a part of the plasma liner experiment (PLX). The salient physics processes of liner formation and implosion are studied, namely vacuum propagation of plasma jets, merging of the jets (liner forming), implosion (liner collapsing), stagnation (peak pressure), and expansion (rarefaction wave disassembling the target). Radiative transport was found to significantly reduce the temperature of the liner during implosion, thus reducing the thermal leaving more pronounced gradients in the plasma liner during the implosion compared with ideal hydrodynamic simulations. These pronounced gradients lead to a greater sensitivity of initial jet geometry and symmetry on peak pressures obtained. Accounting for ionization and transport, many cases gave higher peak pressures than the ideal hydrodynamic simulations. Scaling laws were developed accordingly, creating a non-dimensional parameter space in which performance of an imploding plasma jet liner can be estimated. It is shown that HEDP regimes could be reached with ~ 5 MJ of liner energy, which would translate to roughly 10 to 20 MJ of stored (capacitor) energy. This is a potentially significant improvement over the currently available means via ICF of achieving HEDP and nuclear fusion relevant parameters.

Cassibry, Jason [Univ. of AL in Huntsville; Hatcher, Richard [Univ. of AL in Huntsville; Stanic, Milos [Univ. of AL in Huntsville

2013-08-17T23:59:59.000Z

170

DOI-BLM-CA-C050-2009-0005-EA | Open Energy Information  

Open Energy Info (EERE)

-EA -EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-CA-C050-2009-0005-EA EA at Geysers Geothermal Area for Geothermal/Well Field Engineered Geothermal Enhancement System Demonstration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant AltaRock Energy Inc Consultant ICF International Geothermal Area Geysers Geothermal Area Project Location California Project Phase Geothermal/Well Field Techniques Development Drilling Time Frame (days) NEPA Process Time 155 Participating Agencies Lead Agency BLM Funding Agency DOE Managing District Office BLM Central California District Office Managing Field Office BLM Ukiah Field Office Funding Agencies none provided

171

DOE/EA-1680: Environmental Assessment and Initial Study/Proposed Mitigated Negative Declaration (March 2009)  

Broader source: Energy.gov (indexed) [DOE]

Engineered Geothermal Enhancement Engineered Geothermal Enhancement System Demonstration Project Environmental Assessment and Initial Study/Proposed Mitigated Negative Declaration March 2009 Prepared for The Bureau of Land Management 2550 North State Street Ukiah, CA 95482 Northern California Power Agency 651 Commerce Drive Roseville, CA 95678 Prepared by ICF Jones & Stokes 630 K Street, Suite 400 Sacramento, CA 95814 Environmental Assessment and Initial Study/Proposed Mitigated Negative Declaration Engineered Geothermal Enhancement System Demonstration Project March 2009 i Table of Contents Page Table of Contents ........................................................................................................................................... i List of Figures .............................................................................................................................................. iv

172

Massachusetts New Homes with ENERGY STAR | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Massachusetts New Homes with ENERGY STAR Massachusetts New Homes with ENERGY STAR Massachusetts New Homes with ENERGY STAR < Back Eligibility Construction Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate $8,000 Program Info Funding Source Energy Efficiency Fund (Public Benefits Fund) Expiration Date 12/2013 State Massachusetts Program Type State Rebate Program Rebate Amount Varies depending on type of housing (single or multi-family) and level achieved Provider ICF International Program Incentives may change in 2013; contact the program administrators to confirm. In Massachusetts, home builders constructing new homes in territories of sponsoring utilities and energy efficiency service providers* can receive

173

Financial constraints in capacity planning: a national utility regulatory model (NUREG). Volume II of III: user's guide. Final report  

SciTech Connect (OSTI)

This volume is a User's Guide to the National Utility Regulatory Model (NUREG) and its implementation of the National Coal Model. This is the second of three volumes provided by ICF under contract number DEAC-01-79EI-10579. These three volumes are: a manual describing the NUREG methodology; a users guide; and a description of the software. This manual provides a brief introduction to the National Utility Regulation Model, describes the various programs that comprise the National Utility Regulatory Model, gives sample input files, and provides information needed to run the model.

Not Available

1981-10-29T23:59:59.000Z

174

DOE Zero Energy Ready Home: Healthy Efficient Homes- Spirit Lake, Iowa  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready Home in Spirit Lake, Iowa, that scored HERS 41 without PV and HERS 28 with PV. This 3,048 ft2 custom home has advanced framed walls filled with 1.5 inches closed-cell spray foam, a vented attic with spray foam-sealed top plates and blown fiberglass over the ceiling deck. R-23 basement walls are ICF plus two 2-inch layers of EPS. The house also has a mini-split heat pump, fresh air fan intake, and a solar hot water heater.

175

Fast Ignitor coupling physics  

SciTech Connect (OSTI)

The Fast Ignitor is an alternate approach to ICF in which short pulse lasers are used to initiate burn at the surface of the compressed DT fuel. The aim is to avoid the need for careful central focusing of final shocks, and possibly to lower substantially the energy requirements for ignition. Ultimately, both goals may prove crucial to Science Based Stockpile Stewardship (SBSS). This will be the case should either emerging energetic needs, or finding difficulties render the presently planned radiative fusion approach to ignition with the NIF impractical. Ignition is a first step towards the achievement of substantial energy and neutron outputs for such Stewardship.

Mason, R.J. [Los Alamos National Lab., NM (United States); Tabak, M. [Lawrence Livermore National Lab., CA (United States)

1997-10-01T23:59:59.000Z

176

Page 1 of 3 Radiogram No. 8617u Form 24 for 03/06/2012  

E-Print Network [OSTI]

SM 13:25-14:00 FE-5 LUNCH 14:00-14:15 CDR CFE Maintenance Work Area Prep 14:00-15:00 FE-4 Food Warmer Cleaning 14:15-15:30 CDR CFE Hardware Setup 14:20-16:20 FE-2, FE-1 (assists) -14. Orthostatic stability:20-16:50 FE-5 Physical Exercise (ARED) #12;Page 3 of 3 15:30-16:00 CDR CFE-ICF1 Test Prep 16:00-16:40 CDR

Waliser, Duane E.

177

Partnering with Utilities Part 2: Advanced Topics for Local Governments in Creating Successful Partnerships with Utilities to Deliver Energy Efficiency Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 - Advanced 2 - Advanced Topics for Local Governments in Creating Successful Partnerships with Utilities to Deliver Energy Efficiency Programs Jennifer Clymer, ICF International Neal De Snoo, Berkeley, CA Dan Schoenholz, Fremont, CA Catherine Squire & Gina Blus, PG&E Jon Ippel, Orlando, FL Cameron Saulsby, Orlando Utilities Commission November 30, 2011 2 | TAP Webinar eere.energy.gov What is TAP? DOE's Technical Assistance Program (TAP) supports the Energy Efficiency and Conservation Block Grant Program (EECBG) and the State Energy Program (SEP) by providing state, local, and tribal officials the tools and resources needed to implement successful and sustainable clean energy programs.

178

Heavy Ion Fusion Accelerator Research (HIFAR) half-year report, October 1, 1988--March 31, 1989  

SciTech Connect (OSTI)

The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; and final bunching, transport, and accurate focusing on a small target.

Not Available

1989-06-01T23:59:59.000Z

179

Z, ZX, and X-1: A Realistic Path to High Fusion Yield  

SciTech Connect (OSTI)

Z-pinches now constitute the most energetic and powerful sources of x-rays available by a large margin. The Z accelerator at Sandia National Laboratories has produced 1.8 MJ of x-ray energy, 280 TW of power, and hohlraum temperatures of 200 eV. These advances are being applied to inertial confinement fusion (ICF) experiments on Z. The requirements for high fusion yield are exemplified in the target to be driven by the X-1 accelerator. X-1 will drive two z-pinches, each producing 7 MJ of x-ray energy and about 1000 TW of x-ray power. Together, these radiation sources will heat a hohlraum containing the 4-mm diameter ICF capsule to a temperature exceeding 225 eV for about 10 ns, with the pulse shape required to drive the capsule to high fusion yield, in the range of 200--1000 MJ. Since X-1 consists of two identical accelerators, it is possible to mitigate the technical risk of high yield by constructing one accelerator. This accelerator, ZX, will bridge the gap from Z to X-1 by driving an integrated target experiment with a very efficient energy source, ZX will also provide experimental condition that the full specifications of the X-1 accelerator for high yield are achievable, and that a realistic path to high fission yield exists.

COOK, DONALD L.

1999-10-07T23:59:59.000Z

180

Measurements of laser-plasma instability relevant to ignition hohlraums  

SciTech Connect (OSTI)

The potential for laser-plasma instability is a serious concern for indirect-drive inertial confinement fusion (ICF), where laser beams illuminate the interior of a cavity (called a hohlraum) to produce x-rays for imploding a fusion capsule symmetrically. The speckled nature of laser beams used in ICF is an important factor in laser-plasma instability processes. For example, models which calculate the spatial growth of convective instability by properly accounting for the laser speckles successfully predict the observed onsets of backscattering due to stimulated Brillouin and Raman scattering instabilities (SBS and SRS). Assuming pump depletion as the only saturation mechanism in these models results in very large predicted levels of SBS and SRS backscattering from the long-scale plasmas expected in ignition hohlraums. However, in the long-scale plasmas studied in the Nova and Trident lasers [E. M. Campbell, Rev. Sci. Instrum. {bold 57}, 2101 (1986) and N. K. Moncur {ital et al.}, Appl. Opt. {bold 34}, 4274 (1995)], SRS and SBS are observed to saturate much below the levels expected from pump depletion. While the mechanism of SBS saturation is not understood at present, the observations of SRS saturation are qualitatively understood. {copyright} {ital 1997 American Institute of Physics.}

Fernandez, J.C.; Bauer, B.S.; Cobble, J.A.; DuBois, D.F.; Kyrala, G.A.; Montgomery, D.S.; Rose, H.A.; Vu, H.X.; Watt, R.G.; Wilde, B.H.; Wilke, M.D.; Wood, W.M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Failor, B.H. [Physics International, San Leandro, California 94577 (United States)] [Physics International, San Leandro, California 94577 (United States); Kirkwood, R.; MacGowan, B.J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ihsgi inforum icf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House  

SciTech Connect (OSTI)

Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

Mallay, D.; Wiehagen, J.

2014-09-01T23:59:59.000Z

182

Magnetic-compression/magnetized-target fusion (MAGO/MTF): A marriage of inertial and magnetic confinement  

SciTech Connect (OSTI)

Intermediate between magnetic confinement (MFE) and inertial confinement (ICF) in time and density scales is an area of research now known in the US as magnetized target fusion (MTF) and in Russian as MAGO (MAGnitnoye Obzhatiye--magnetic compression). MAGO/MTF uses a magnetic field and preheated, wall-confined plasma fusion fuel within an implodable fusion target. The magnetic field suppresses thermal conduction losses in the fuel during the target implosion and hydrodynamic compression heating process. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (i.e., ICF), MAGO/MTF involves two steps: (a) formation of a warm (e.g., 100 eV or higher), magnetized (e.g., 100 kG) plasma within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression by an imploding pusher, of which a magnetically driven imploding liner is one example. In this paper, the authors present ongoing activities and potential future activities in this relatively unexplored area of controlled thermonuclear fusion.

Lindemuth, I.R.; Ekdahl, C.A.; Kirkpatrick, R.C. [and others

1996-12-31T23:59:59.000Z

183

Nebular Abundance Errors  

E-Print Network [OSTI]

The errors inherent to the use of the standard "ionization correction factor" ("i_CF") method of calculating nebular conditions and relative abundances of H, He, N, O, Ne, S, and Ar in emission line nebulae have been investigated under conditions typical for planetary nebulae. The photoionization code CLOUDY was used to construct a series of model nebulae with properties spanning the range typical of PNe. Its radial "profiles" of bright, frequently observed optical emission lines were then summed over a variety of "apertures" to generate sets of emission line measurements. These resulting line ratios were processed using the i_CF method to "derive" nebular conditions and abundances. We find that for lines which are summed over the entire nebula the i_CF-derived abundances differ from the input abundances by less than 5% for He and O up to 25% or more for Ne, S, and Ar. For resolved observations, however, the discrepancies are often much larger and are systematically variable with radius. This effect is especially pronounced in low-ionization zones where nitrogen and oxygen are neutral or once-ionized such as in FLIERs, ansae and ionization fronts. We argue that the reports of stellar-enriched N in the FLIERs of several PNe are probably specious.

J. Alexander; B. Balick

1997-04-30T23:59:59.000Z

184

Control System For Cryogenic THD Layering At The National Ignition Facility  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is the world largest and most energetic laser system for Inertial Confinement Fusion (ICF). In 2010, NIF began ignition experiments using cryogenically cooled targets containing layers of the tritium-hydrogen-deuterium (THD) fuel. The 75 {micro}m thick layer is formed inside of the 2 mm target capsule at temperatures of approximately 18 K. The ICF target designs require sub-micron smoothness of the THD ice layers. Formation of such layers is still an active research area, requiring a flexible control system capable of executing the evolving layering protocols. This task is performed by the Cryogenic Target Subsystem (CTS) of the NIF Integrated Computer Control System (ICCS). The CTS provides cryogenic temperature control with the 1 mK resolution required for beta-layering and for the thermal gradient fill of the capsule. The CTS also includes a 3-axis x-ray radiography engine for phase contrast imaging of the ice layers inside of the plastic and beryllium capsules. In addition to automatic control engines, CTS is integrated with the Matlab interactive programming environment to allow flexibility in experimental layering protocols. The CTS Layering Matlab Toolbox provides the tools for layer image analysis, system characterization and cryogenic control. The CTS Layering Report tool generates qualification metrics of the layers, such as concentricity of the layer and roughness of the growth boundary grooves. The CTS activities are automatically coordinated with other NIF controls in the carefully orchestrated NIF Shot Sequence.

Fedorov, M; Blubaugh, J; Edwards, O; Mauvais, M; Sanchez, R; Wilson, B

2011-03-18T23:59:59.000Z

185

Tail-ion transport and Knudsen layer formation in the presence of magnetic fields  

SciTech Connect (OSTI)

Knudsen layer losses of tail fuel ions could reduce significantly the fusion reactivity of highly compressed cylindrical and spherical targets in inertial confinement fusion (ICF). With the class of magnetized ICF targets in mind, the effect of embedded magnetic fields on Knudsen layer formation is investigated for the first time. The modified energy scaling of ion diffusivity in magnetized hot spots is found to suppress the preferential losses of tail-ions perpendicular to the magnetic field lines to a degree that the tail distribution can be at least partially, if not fully, restored. Two simple threshold conditions are identified leading to the restoration of fusion reactivity in magnetized hot spots. A kinetic equation for tail-ion transport in the presence of a magnetic field is derived, and solutions to the equation are obtained numerically in simulations. Numerical results confirm the validity of the threshold conditions for restored reactivity and identify two different asymptotic regimes of the fusion fuel. While Knudsen layer formation is shown to be suppressed entirely in strongly magnetized cylindrical hot spot cavities, uniformly magnetized spherical cavities demonstrate remnant, albeit reduced, levels of tail-ion depletion.

Schmit, P. F. [Sandia National Laboratories, MS 1186, P.O. Box 5800, Albuquerque, New Mexico 87185-1186 (United States)] [Sandia National Laboratories, MS 1186, P.O. Box 5800, Albuquerque, New Mexico 87185-1186 (United States); Molvig, Kim; Nakhleh, C. W. [Los Alamos National Laboratory, MS B259, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, MS B259, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)

2013-11-15T23:59:59.000Z

186

Laser Program annual report, 1985  

SciTech Connect (OSTI)

This volume presents the unclassified activities and accomplishments of the Inertial Confinement Fusion and Advanced Laser Development elements of the Laser Program at the Lawrence Livermore National Laboratory for the calendar year 1985. This report has been organized into major sections that correspond to our principal technical activities. Section 1 provides an overview. Section 2 comprises work in target theory, design, and code development. Target development and fabrication and the related topics in materials science are contained in Section 3. Section 4 presents work in experiments and diagnostics and includes developments in data acquisition and management capabilities. In Section 5 laser system (Nova) operation and maintenance are discussed. Activities related to supporting laser and optical technologies are described in Section 6. Basic laser research and development is reported in Section 7. Section 8 contains the results of studies in ICF applications where the work reported deals principally with the production of electric power with ICF. Finally, Section 9 is a comprehensive discussion of work to date on solid state lasers for average power applications. Individual sections, two through nine, have been cataloged separately.

Rufer, M.L.; Murphy, P.W. (eds.)

1986-11-01T23:59:59.000Z

187

Building America Case Study: Lancaster County Career and Technology Center Green Home 3, Mt Joy, Pennsylvania  

SciTech Connect (OSTI)

Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction.This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

Not Available

2014-12-01T23:59:59.000Z

188

Pulsed power supply for Nova Upgrade. Final report, August 1, 1991 to March 31, 1992  

SciTech Connect (OSTI)

This report describes work carried out at the Center for Electromechanics at The University of Texas at Austin (CEM-UT). A baseline design of the Nova Upgrade has been completed by Lawrence Livermore National Laboratory. The Nova Upgrade is an 18 beamline Nd: glass laser design utilizing fully relayed 4x4 30 cm aperture segmented optical components. The laser thus consists of 288 independent beamlets nominally producing 1.5 to 2.0 MJ of 0.35 {mu}m light in a 3 to 5 ns pulse. The laser design is extremely flexible and will allow a wide range of pulses to irradiate ICF targets. This facility will demonstrate ignition/gain and the scientific feasibility of ICF for energy and defense applications. The pulsed power requirements for the Nova Upgrade are given. CEM-UT was contracted to study and develop a design for a homopolar generator/inductor (HPG/inductor) opening switch system which would satisfy the pulsed power supply requirements of the Nova Upgrade. The Nd:glass laser amplifiers used in the Nova Upgrade will be powered by light from xenon flashlamps. The pulsed power supply for the Nova Upgrade powers the xenon flashlamps. This design and study was for a power supply to drive flashlamps.

Bacon, J.L.; Kajs, J.P.; Walls, A.; Weldon, W.F.; Zowarka, R.C. [Univ. of Texas, Austin, TX (US). Center for Electromechanics] [Univ. of Texas, Austin, TX (US). Center for Electromechanics

1992-12-31T23:59:59.000Z

189

Radiation in molecular dynamic simulations  

SciTech Connect (OSTI)

Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of Megabars to thousands of Gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The new technique passes a key test: it relaxes to a blackbody spectrum for a plasma in local thermodynamic equilibrium. This new tool also provides a method for assessing the accuracy of energy and momentum exchange models in hot dense plasmas. As an example, we simulate the evolution of non-equilibrium electron, ion, and radiation temperatures for a hydrogen plasma using the new molecular dynamics simulation capability.

Glosli, J; Graziani, F; More, R; Murillo, M; Streitz, F; Surh, M

2008-10-13T23:59:59.000Z

190

Design, fabrication and measurement of a novel cooling arm for fusion energy source  

E-Print Network [OSTI]

The issues of energy and environment are the main constraint of sustainable development in worldwide. Nuclear energy source is one important optional choice for long term sustainable development. The nuclear energy consists of fusion energy and fission energy. Compared with fission, inertial confinement fusion (ICF) is a kind of clean fusion energy and can generate large energy and little environmental pollution. ICF mainly consists of peripheral driver unit and target. The cooling arm is an important component of the target, which cools the hohlraum to maintain the required temperature and positions the thermal-mechanical package (TMP) assembly. This paper mainly investigates the cooling arm, including the structural design, the verticality of sidewall and the mechanical properties. The TMP assembly is uniformly clamped in its radial when using (111) crystal orientation silicon to fabricate cooling arm. The finite element method is used to design the structure of cooling arm with 16 clamping arms, and the MEMS technologies are employed to fabricate the micro-size cooling arm structure with high vertical sidewall. Finally, the mechanical test of cooling arm is taken, and the result can meet the requirement of positioning TMP assembly.

Shui-Dong Jiang; Jing-Quan Liu; Jia-Bin Mei; Bin Yang; Chun-Sheng Yang

2012-07-05T23:59:59.000Z

191

Real viscosity effects in inertial confinement fusion target deuterium–tritium micro-implosions  

SciTech Connect (OSTI)

We report on numerical studies of real viscous effects on the implosion characteristics of imploded DT micro-targets. We use the implicit ePLAS code to perform 2D simulations of spherical and slightly ellipsoidal DT shells on DT gas filled ?40??m diameter voids. Before their final implosions the shells have been nearly adiabatically compressed up to 10{sup 2} or 10{sup 3}?g/cm{sup 3} densities. While the use of conventional artificial viscosity can lead to high central densities for initially spherical shells, we find that a real physical viscosity from ion-ion collisions can give a high (>20?keV) central temperature but severely reduced central density (<200?g/cm{sup 3}), while the elliptical shells evidence p?=?2 distortion of the heated central fuel region. These results suggest that the general use of artificial viscosities in Inertial Confinement Fusion (ICF) modeling may have lead to overly optimistic yields for current NIF targets and that polar direct drive with more energy for the imploding capsule may be needed for ultimate ICF success.

Mason, R. J., E-mail: rodmason01@msn.com; Kirkpatrick, R. C.; Faehl, R. J. [Research Applications Corporation, Los Alamos, New Mexico 87544 (United States)] [Research Applications Corporation, Los Alamos, New Mexico 87544 (United States)

2014-02-15T23:59:59.000Z

192

Fusion-neutron-yield, activation measurements at the Z accelerator: Design, analysis, and sensitivity  

SciTech Connect (OSTI)

We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r{sup 2} decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm{sup 2} and is ? 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

Hahn, K. D., E-mail: kdhahn@sandia.gov; Ruiz, C. L.; Fehl, D. L.; Chandler, G. A.; Knapp, P. F.; Smelser, R. M.; Torres, J. A. [Sandia National Laboratories, Diagnostics and Target Physics, Albuquerque, New Mexico 87123 (United States)] [Sandia National Laboratories, Diagnostics and Target Physics, Albuquerque, New Mexico 87123 (United States); Cooper, G. W.; Nelson, A. J. [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States)] [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Leeper, R. J. [Los Alamos National Laboratories, Plasma Physics Group, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratories, Plasma Physics Group, Los Alamos, New Mexico 87545 (United States)

2014-04-15T23:59:59.000Z

193

Office of Inspector General audit report on ``The U.S. Department of Energy`s X-Change 1997: The global D and D marketplace conference``  

SciTech Connect (OSTI)

The Department of Energy and Florida International University (FIU), a state university, cosponsored the X-Change 1997: The Global D and D Marketplace conference (X-Change Conference) that was held December 1--5, 1997, in Miami, Florida. The purpose of the conference was to disseminate information on decontamination and decommissioning problems, solutions, and technologies to an international audience of government, industry, and academia. Through a contract with the Department, FIU was responsible for conference planning, organization, and logistical support. FIU awarded a subcontract to ICF, Inc. to work on the conference. ICF, Inc. is a major Department contractor with responsibilities for projects at Hanford, Argonne National laboratory and Los Alamos National Laboratory. The audit objectives were to determine whether FIU had controls in place to ensure that public funds were used appropriately, and whether fiscal practices associated with the conference were consistent with Government requirements and Department policy. FIU implemented accounting and budget mechanisms to identify and control the sources and uses of funds. However, the absence of a Departmental policy on funding conferences resulted in questionable fiscal practices associated with the conference. These are discussed.

NONE

1998-10-01T23:59:59.000Z

194

New AB-Thermonuclear Reactor for Aerospace  

E-Print Network [OSTI]

There are two main methods of nulcear fusion: inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). Existing thermonuclear reactors are very complex, expensive, large, and heavy. They cannot achieve the Lawson creterion. The author offers an innovation. ICF has on the inside surface of the shell-shaped combustion chamber a covering of small Prism Reflectors (PR) and plasma reflector. These prism reflectors have a noteworthy advantage, in comparison with conventional mirror and especially with conventional shell: they multi-reflect the heat and laser radiation exactly back into collision with the fuel target capsule (pellet). The plasma reflector reflects the Bremsstrahlung radiation. The offered innovation decreases radiation losses, creates significant radiation pressure and increases the reaction time. The Lawson criterion increases by hundreds of times. The size, cost, and weight of a typical installation will decrease by tens of times. The author is researching the efficiency of these innovations. Keywords: Thermonuclear reactor, Multi-reflex AB-thermonuclear reactor, aerospace thermonuclear engine. This work is presented as paper AIAA-2006-7225 to Space-2006 Conference, 19-21 September, 2006, San Jose, CA, USA.

Alexander Bolonkin

2007-06-14T23:59:59.000Z

195

Ultrafast Spectroscopy of Warm Dense Matter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ultrafast Spectroscopy of Warm Dense Matter Print Ultrafast Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme temperatures and pressures, WDM tends to be drastically transient and thus difficult to study in the laboratory. Now, researchers have set up ultrafast x-ray absorption spectroscopy at the ALS to measure the electronic structure of WDMs, demonstrating that fast-changing electron temperatures of matter under extreme conditions can be determined with picosecond resolution.

196

Partnering with Utilities Part 1: Successful Partnerships and Lessons from the Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: 1: Successful Partnerships and Lessons from the Field Jennifer Clymer, ICF International Philip LaMay, Allegheny County, PA Christian Williss, Denver, CO Sharon Procopio, Denver, CO September 22, 2011 2 | TAP Webinar eere.energy.gov What is TAP? DOE's Technical Assistance Program (TAP) supports the Energy Efficiency and Conservation Block Grant Program (EECBG) and the State Energy Program (SEP) by providing state, local, and tribal officials the tools and resources needed to implement successful and sustainable clean energy programs. 3 | TAP Webinar eere.energy.gov * The Department of Energy's (DOE) Technical Assistance Program (TAP) is transitioning to a new era of assistance to state and local governments with a reduced set of resources beginning the week of September 30, 2011.

197

Thailand-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Thailand-Low Emissions Asian Development (LEAD) Program Thailand-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Thailand-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Thailand South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

198

Property:StockSymbol | Open Energy Information  

Open Energy Info (EERE)

StockSymbol StockSymbol Jump to: navigation, search This is a property of type String. Pages using the property "StockSymbol" Showing 25 pages using this property. (previous 25) (next 25) A A.O. Smith + AOS + AAON + AAON + Alterra Power + MGMXF + Ameresco, Inc. + AMRC + Applied Materials + AMAT + Archer Daniels Midland + ADM + Autodesk + ADSK + C China Integrated Energy + CBEH + E EEMAP, Inc. + N/A + EnerNOC + ENOC + Evergreen Solar, Inc. + ESLR + ExxonMobil + XOM + G General Electric + GE + Geothermal Resources Council + Geothermal Resources Council + Goodwill Instrument + TPE 2423 + GreenShift Corporation + GERS.OB + Gulfsands Petroleum + AIM:GPX + H Helix Wind Corp. + HLXW + I ICF International + NASDAQ:ICFI + J Johnson Controls + JCI + M Molycorp Inc. + MCP +

199

Large Power Transformers and the U.S. Electric Grid  

Broader source: Energy.gov (indexed) [DOE]

Infrastructure Security and Energy Restoration Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S. Department of Energy LARGE POWER TRANSFORMERS AND THE U.S. ELECTRIC GRID Large Power Transformers and the U.S. Electric Grid i This page intentionally left blank. Large Power Transformers and the U.S. Electric Grid DOE / OE / ISER June 2012 ii FOR FURTHER INFORMATION This report was prepared by the Office of Electricity Delivery and Energy Reliability under the direction of Patricia Hoffman, Assistant Secretary, and William Bryan, Deputy Assistant Secretary. Specific questions about information in this report may be directed to Dr. Kenneth Friedman, Senior Policy Advisor (kenneth.friedman@hq.doe.gov). Tiffany Y. Choi of ICF International contributed to this report.

200

Bangladesh-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Bangladesh-Low Emissions Asian Development (LEAD) Program Bangladesh-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Bangladesh-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Bangladesh Southern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

Note: This page contains sample records for the topic "ihsgi inforum icf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

K DOE/ER/72018~9  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

.^ay^4l.« XlUU..,^!^.:.^ .^ay^4l.« XlUU..,^!^.:.^ K DOE/ER/72018~9 DE92 007472 Ninth Progress Report for the Division of Basic Energy Sciences Department of Energy, Contract DOE EY 76-S-03-0034, P.A. 218 (includes results of the last three years) MULTIHETEROMACROCYCLES THAT COMPLEX METAL IONS PRINCIPAL INVESTIGATOR: INSTITUTIONAL AFFILIATION: REPORTING PERIOD: DATE OF THIS REPORT: Donald J. Cram, Professor of Chemistry Department of Chemistry University of California at Los Angeles 405 Hilgard Avenue Los Angeles, California 90024 1 May 1980-30 April 1983 15 September 1982 Prepared for the Department of Energy, Division of Basic Energy Sciences, under Contract No. DOE EY 76 5 03 0Q3/I, P.A. 218, A^^S '7Ce/K 'i^c:,f 5?, DISTRlBUTIOfSi OF THIS DOCUMENT \B UNuiMiTED DISCLAIMER

202

Microsoft PowerPoint - PortfolioManager_Webinar_4Feb10_Updated  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water and Energy Use in Portfolio Manager & the C&W EC Challenge Water and Energy Use in Portfolio Manager & the C&W EC Challenge Training Webinar Feb4th, 2010 2 Presentation Team EPA ENERGY STAR Alyssa Quarforth, Program Manager, Commercial Property Markets Andrew Schulte, ICF International in support of ENERGY STAR C&W Client Solutions Eleni Reed, Director, Sustainability Strategies 3 Agenda Training Objectives Background (C&W) ENERGY STAR Program C&W Energy Efficiency & Water Efficiency Policies C&W Environmental Challenge requirements Benchmarking 201 (EPA ENERGY STAR) Sharing data with the C&W Master Account Tracking metrics for Environmental Challenge Frequently asked questions on benchmarking and Portfolio Manager 4 Training Objectives Review C&W procedures for tracking energy

203

Nepal-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Nepal-Low Emissions Asian Development (LEAD) Program Nepal-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Nepal-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Nepal Southern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

204

Vietnam-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Vietnam-Low Emissions Asian Development (LEAD) Program Vietnam-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Vietnam-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Vietnam South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

205

Malaysia-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Malaysia-Low Emissions Asian Development (LEAD) Program Malaysia-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Malaysia-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Malaysia South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

206

Papua New Guinea-Low Emissions Asian Development (LEAD) Program | Open  

Open Energy Info (EERE)

Papua New Guinea-Low Emissions Asian Development (LEAD) Program Papua New Guinea-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Papua New Guinea-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Papua New Guinea Melanesia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

207

National Ignition Facility & Photon Science - Bringing Star Power to Earth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NIF Go NIF Go LLNL Logo Lawrence Livermore National Laboratory LLNL Home NIF Home LIFE Home Jobs Site Map Contact News Press Releases In the News Status Update Media Assistance About Us National Ignition Facility About NIF How NIF Works The Seven Wonders of NIF Building NIF An Engineering Marvel NIFFY Early Light Collaborators Status Visiting NIF Missions National Security Energy for the Future Understanding the Universe People The People of NIF Awards NIF Professor Sabbatical Opportunities NIF Online Store Programs National Ignition Campaign How to Make a Star (ICF) Target Physics Target Fabrication Cryogenic Target System Diagnostics Participants Photon Science & Applications Advanced Optics Advanced Radiography Directed Energy Fusion Energy Inertial Fusion Energy How IFE Works Science at the Extremes

208

Insulation Strategies to Meet Upcoming Code and Above Code Programs  

Broader source: Energy.gov (indexed) [DOE]

Insulation Strategies to Meet Insulation Strategies to Meet Upcoming Code and Above Code Programs 1 Christopher Little, BASF Corporation, Center for Building Excellence 3/2/2012 Presentation Overview Innovative insulating & wall assembly strategies  Typical assembly  New innovations  Features & benefits of each 2 3/2/2012 Typical Site Built Residential Wall Concept: Site built wood frame wall with exterior sheathing and batt insulation Components:  Exterior Finish (bulk moisture control)  Building wrap  Exterior sheathing 2x4 Studs @16" O.C.  Batt Insulation (+/- 3.7 R per inch)  Gypsum board Benefits: Relatively low cost ICF Site-built 3 3/2/2012 Typical Site Built Residential Wall Key performance deficiencies  Low effective R-value  Difficulty meeting IECC 2012 R-value

209

Building Green in Greensburg: Greensburg State Bank  

Broader source: Energy.gov (indexed) [DOE]

Greensburg State Bank Greensburg State Bank When a tornado leveled 95% of Greensburg, the only thing left of Greensburg State Bank was the original vault. So the bank was rebuilt on its original site and re-opened for business just one year later. It was the second commercial building in Greensburg to do so. The new bank boasts a variety of green building features including an east-west building orientation that maximizes natural daylight inside, insulated concrete form (ICF) construction for an energy- efficient building envelope, and a high efficiency heating and cooling system. ENERGY EFFICIENCY FEATURES * An east-west building orientation maximizes natural daylighting in the interior and reduces the wall area on the east and west that the sun can heat up, decreasing the need for cooling

210

2013 Propane Market Outlook  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

3 3 Propane Market Outlook Assessment of Key Market Trends, Threats, and Opportunities Facing the Propane Industry Through 2020 P R E S E N T E D B Y : Prepared for the Propane Education & Research Council (PERC) by: ICF International, Inc. 9300 Lee Highway Fairfax, VA 22031 Tel (703) 218-2758 www.icfi.com Principal Authors: Mr. Michael Sloan msloan@icfi.com Mr. Warren Wilczewski wwilczewski@icfi.com Propane Market Outlook at a Glance ¡ Total consumer propane sales declined by more than 17 percent between 2009 and 2012, including 3.3 percent in 2011 and 10 to 12 percent in 2012. The declines in 2011 and 2012 were due primarily to much warmer than normal weather, as well as the impact of higher propane prices and continuing efficiency trends. Sales are expected to rebound in 2013 with a return to more

211

Indonesia-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Indonesia-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Indonesia-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Indonesia South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and

212

Microsoft Word - Defense Science Quarterly 11-08 v2.doc  

National Nuclear Security Administration (NNSA)

December 2008 December 2008 Defense Science Quarterly Inside This Issue 1 Message from the Director 2 The National Boost Initiative 3 HEDP to Support Our Understanding of Radiation Flow 4 Publication Highlights 5 Awards and Highlights Message from the Director Chris Deeney, Defense Science Division It's been another productive year. I am so proud of the progress we have made this year - boost, DARHT, energy-balance, JASPER... The list is too long to go through. Thank you. My father had a simple piece of advice that he used to give me: "leave a place better than you found it!" In October 2008 the Science and ICF campaigns left stockpile stewardship better than it was in October 2007. How do I know? Well here are some

213

Property:NEPA Consultant | Open Energy Information  

Open Energy Info (EERE)

Consultant Consultant Jump to: navigation, search Property Name NEPA Consultant Property Type Page Pages using the property "NEPA Consultant" Showing 25 pages using this property. (previous 25) (next 25) B BLM-NV-WN-ES-08-01-1310, NV-020-08-01 + Environmental Management Associates + C CA-017-05-051 + Environmental Management Associates, Inc. + CA-067-2006-12 + Environmental Management Associates, Inc. + CA-170-02-15 + EMA Associates + CA-670-2010-107 + NA + CA-670-2010-CX + NA + CA-96062042 + MHA Environmental Consulting, Inc. + D DOE-EA-1621 + MHA Environmental Consulting + DOE-EA-1733 + RMT Inc + DOE-EIS-0298 + Environmental Management Associates, Inc. + DOI-BLM-CA-C050-2009-0005-EA + ICF International + DOI-BLM-CA-EA-2002-??? + MHA Environmental Consulting, Inc. +

214

EIA 914 Survey Â… Investigation of Alternate Methods and Data Sources  

U.S. Energy Information Administration (EIA) Indexed Site

1 September 2009 1 1 September 2009 1 EIA 914 Survey - Investigation of Alternate Methods and Data Sources Prepared for: Meeting of the American Statistical Association (ASA) Committee on Energy Statistics with the Energy Information Administration (EIA) October 1 and 2, 2009 Washington, D.C. Prepared by: ICF International Bill Pepper, Asa Janney, and Harry Vidas This is a working document prepared for the Energy Information Administration (EIA) in order to solicit advice and comment on statistical matters from the American Statistical Association Committee on Energy Statistics. This topic will be discussed at EIA's fall 2009 meeting with the Committee to be held on October 1, 2009. 11 September 2009 2 This report summarizes our progress to date on improving the sampling and estimation procedures of the

215

Philippines-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Philippines-Low Emissions Asian Development (LEAD) Program Philippines-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Philippines-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Philippines South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

216

Time resolved side scatter diagnostics at NOVA  

SciTech Connect (OSTI)

Side scattering of the radiation during the interaction of a laser beam with the long scale length plasma in hohlraum is a difficult problem of relevance to the viability of ICF. It is important to measure the absolute amount of the laser side scatter as well as the angular distribution of that scatter. The OSA diagnostics has been implemented on NOVA to measure these quantities. We have implemented a fiber-optically coupled streak camera to measure the temporally and angularly resolved side scatter radiation at 351 nm at 9 different angles. Filtered PIN diodes were positioned at 31 various angles in the E-field planed and B-field plane of the incident probe beam to sample and measure the scattered radiation at the 351 nm wavelength of the probe. The diode data was used to calibrate the Brillouin power received by the 9 strategically located fiber optic channels. This presentation will describe the OSA and associated diagnostics.

Kyrala, G.A.; Evans, S.C.; Jimerson, J.R.; Fernandez, J.C.

1996-06-01T23:59:59.000Z

217

Nonlinear Electron Heat Conduction Equation and Self similar method for 1-D Thermal Waves in Laser Heating of Solid Density DT Fuel  

E-Print Network [OSTI]

Electron heat conduction is one of the ways that energy transports in laser heating of fusible target material. The aim of Inertial Confinement Fusion (ICF) is to show that the thermal conductivity is strongly dependent on temperature and the equation of electron heat conduction is a nonlinear equation. In this article, we solve the one-dimensional (1-D) nonlinear electron heat conduction equation with a self-similar method (SSM). This solution has been used to investigate the propagation of 1-D thermal wave from a deuterium-tritium (DT) plane source which occurs when a giant laser pulse impinges onto a DT solid target. It corresponds to the physical problem of rapid heating of a boundary layer of material in which the energy of laser pulse is released in a finite initial thickness.

A. Mohammadian Pourtalari; M. A. Jafarizadeh; M. Ghoranneviss

2011-05-22T23:59:59.000Z

218

Direct Drive Heavy-Ion-Beam Inertial Fusion at High Coupling Efficiency  

SciTech Connect (OSTI)

Issues with coupling efficiency, beam illumination symmetry and Rayleigh Taylor (RT) instability are discussed for spherical heavy-ion-beam-driven targets with and without hohlraums. Efficient coupling of heavy ion beams to compress direct-drive inertial fusion targets without hohlraums is found to require ion range increasing several-fold during the drive pulse. One-dimensional implosion calculations using the LASNEX ICF target physics code shows the ion range increasing four-fold during the drive pulse to keep ion energy deposition following closely behind the imploding ablation front, resulting in high coupling efficiencies (shell kinetic energy/incident beam energy of 16 to 18%). Ways to increase beam ion range while mitigating Rayleigh-Taylor instabilities are discussed for future work.

Logan, B. Grant; Logan, B. Grant; Perkins, L.J.; Barnard, J.J.

2007-06-25T23:59:59.000Z

219

Mini-chamber, an advanced protection concept for NIF  

SciTech Connect (OSTI)

Inertial confinement fusion (ICF) target debris and ablated near-target materials pose the primary threat to the National Ignition Facility (NIF) final optics debris shields, as well as a major challenge in future inertial fusion energy (IFE) power plants. This work discusses a NIF `mini-chamber,` designed to mitigate the debris threat. Although the NIF base-line design protects against debris using a frost-protected target positioner and refractory first-wall coatings, the mini-chamber provides important flexibility in three areas: debris-shield protection from beyond-design basis shots (i.e. heavy hohlraums, special diagnostics, shields); fielding of large experiments with significant surface ablation; and studying key ablation and gas-dynamics issues for liquid-wall IFE power plants. Key mini-chamber modeling results are presented, followed by discussion of equipment requirements for fielding a NIF mini-chamber. 7 refs., 3 figs.

Peterson, P.F.; Scott, J.M. [Univ. of California, Berkeley, CA (United States)

1996-12-31T23:59:59.000Z

220

The PETAL+ project: X-ray and charged particle diagnostics for plasma experiments at LMJ-PETAL  

Science Journals Connector (OSTI)

The first experiments on the National Ignition Facility (NIF) in the US started and will be followed by the Laser MégaJoule (LMJ) in France. Such facilities will provide unique tools for inertial confinement fusion (ICF) physics & for basic science. A petawatt short pulse laser (ps) is being added to the ns pulse beams of the LMJ. This is PETAL (PETawatt Aquitaine Laser), under construction on the LMJ site near Bordeaux (France). The Petal+ project is aiming at the design and construction of diagnostics dedicated to experiments with PETAL and LMJ laser beams. Within Petal+, three types of diagnostics are under study: a proton spectrometer, an electron spectrometer and a large-band X-ray spectrometer. The first goal of these diagnostics will be to characterize the secondary radiation and particle sources produced with PETAL. They will also be used for experiments using both ns and ps beams. In the present paper emphasis is put on the charged-particle diagnostics.

J.-E. Ducret; S. Bastiani-Ceccotti; D. Batani; N. Blanchot; E. Brambrink; A. Casner; T. Ceccotti; A. Compant La Fontaine; E. d'Humičres; S. Dobosz-Dufrénoy; A. Duval; J. Fuchs; S. Hulin; M. Koenig; I. Lantuéjoul-Thfoin; E. Lefebvre; J.-R. Marqučs; J.-L. Miquel; C. Reverdin; L. Serani; C. Szabo-Foster; R. Wrobel

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ihsgi inforum icf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A New Gated X-Ray Detector for the Orion Laser Facility  

SciTech Connect (OSTI)

Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from the what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.

Clark, David D. [Los Alamos National Laboratory; Aragonez, Robert J. [Los Alamos National Laboratory; Archuleta, Thomas N. [Los Alamos National Laboratory; Fatherley, Valerie E. [Los Alamos National Laboratory; Hsu, Albert H. [Los Alamos National Laboratory; Jorgenson, H. J. [Los Alamos National Laboratory; Mares, Danielle [Los Alamos National Laboratory; Oertel, John A. [Los Alamos National Laboratory; Oades, Kevin [Atomic Weapons Establishment; Kemshall, Paul [Atomic Weapons Establishment; Thomas, Philip [Atomic Weapons Establishment; Young, Trevor [Atomic Weapons Establishment; Pederson, Neal [VI Control Systems

2012-08-08T23:59:59.000Z

222

Development of a Bayesian method for the analysis of inertial confinement fusion experiments on the NIF  

E-Print Network [OSTI]

The complex nature of inertial confinement fusion (ICF) experiments results in a very large number of experimental parameters that are only known with limited reliability. These parameters, combined with the myriad physical models that govern target evolution, make the reliable extraction of physics from experimental campaigns very difficult. We develop an inference method that allows all important experimental parameters, and previous knowledge, to be taken into account when investigating underlying microphysics models. The result is framed as a modified $\\chi^{2}$ analysis which is easy to implement in existing analyses, and quite portable. We present a first application to a recent convergent ablator experiment performed at the NIF, and investigate the effect of variations in all physical dimensions of the target (very difficult to do using other methods). We show that for well characterised targets in which dimensions vary at the 0.5% level there is little effect, but 3% variations change the results of i...

Gaffney, Jim A; Sonnad, Vijay; Libby, Stephen B

2013-01-01T23:59:59.000Z

223

The National Ignition Facility Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network [OSTI]

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control roo...

Moses, E I

2001-01-01T23:59:59.000Z

224

Ignition of deuterium-tritium fuel targets  

DOE Patents [OSTI]

Disclosed is a method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom. 5 figures.

Musinski, D.L.; Mruzek, M.T.

1991-08-27T23:59:59.000Z

225

Thermal imaging investigation of modified fused silica at surface damage sites for understanding the underlying mechanisms of damage growth  

SciTech Connect (OSTI)

We use an infrared thermal imaging system in combination with a fluorescence microscope to map the dynamics of the local surface temperature and fluorescence intensity under cw, UV excitation of laser-modified fused silica within a damage site. Based on a thermal diffusion model, we estimate the energy deposited via linear absorption mechanisms and derive the linear absorption coefficient of the modified material. The results indicate that the damage growth mechanism is not entirely based on linear absorption. Specifically, the absorption cross-section derived above would prove insufficient to cause a significant increase in the temperature of the modified material under nanosecond, pulsed excitation (via linear absorption at ICF laser fluences). In addition, irreversible changes in the absorption cross-section following extended cw, UV laser exposure were observed.

Negres, R A; Burke, M W; DeMange, P; Sutton, S B; Feit, M D; Demos, S G

2006-11-01T23:59:59.000Z

226

Laos-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Laos-Low Emissions Asian Development (LEAD) Program Laos-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Laos-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Laos South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

227

Low Emissions Asian Development (LEAD) Program | Open Energy Information  

Open Energy Info (EERE)

Development (LEAD) Program Development (LEAD) Program (Redirected from Low Emission Asian Development (LEAD) Program) Jump to: navigation, search Name Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Bangladesh, Cambodia, India, Indonesia, Laos, Malaysia, Nepal, Papua New Guinea, Philippines, Thailand, Vietnam Southern Asia, South-Eastern Asia, Southern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, Southern Asia, Melanesia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia

228

Low Emissions Asian Development (LEAD) Program | Open Energy Information  

Open Energy Info (EERE)

Emissions Asian Development (LEAD) Program Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Bangladesh, Cambodia, India, Indonesia, Laos, Malaysia, Nepal, Papua New Guinea, Philippines, Thailand, Vietnam Southern Asia, South-Eastern Asia, Southern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, Southern Asia, Melanesia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia References LEAD Program[1]

229

On specification of initial conditions in turbulence models  

SciTech Connect (OSTI)

Recent research has shown that initial conditions have a significant influence on the evolution of a flow towards turbulence. This important finding offers a unique opportunity for turbulence control, but also raises the question of how to properly specify initial conditions in turbulence models. We study this problem in the context of the Rayleigh-Taylor instability. The Rayleigh-Taylor instability is an interfacial fluid instability that leads to turbulence and turbulent mixing. It occurs when a light fluid is accelerated in to a heavy fluid because of misalignment between density and pressure gradients. The Rayleigh-Taylor instability plays a key role in a wide variety of natural and man-made flows ranging from supernovae to the implosion phase of Inertial Confinement Fusion (ICF). Our approach consists of providing the turbulence models with a predicted profile of its key variables at the appropriate time in accordance to the initial conditions of the problem.

Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory

2010-12-01T23:59:59.000Z

230

Interactive tools designed to study mix in inertial confinement fusion implosions  

SciTech Connect (OSTI)

Graphical user interface tools have been built in IDL to study mix in inertial confinement fusion (ICF) implosion cores. FLAME (Fall-Line Analysis Mix Evaluator), a code which investigates yield degradation due to mix , was designed to post-process 1D hydrodynamic simulation output by implementing a variety of mix models. Three of these mix models are based on the physics of the fall-line. In addition, mixing data from other sources can be incorporated into the yield degradation analysis. Two independent tools called HAME (Haan Analysis Mix Evaluator) and YAME (Youngs Analysis Mix Evaluator) were developed to calculate the spatial extent of the mix region according to the Haan saturation model and Youngs' phenomenological model, respectively. FLAME facilitates a direct comparison to experimental data. The FLAME, HAME, and YAME interfaces are user-friendly, flexible, and platform-independent.

Welser-sherrill, Leslie [Los Alamos National Laboratory; Cooley, James H [Los Alamos National Laboratory; Wilson, Doug C [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

231

Maintenance and operations contractor plan for transition to the project Hanford management contract (PHMC)  

SciTech Connect (OSTI)

This plan has been developed by Westinghouse Hanford Company (WHC), and its subcontractors ICF Kaiser Hanford (ICF KH) and BCS Richland, Inc. (BCSR), at the direction of the US Department of Energy (DOE), Richland Operations Office (RL). WHC and its subcontractors are hereafter referred to as the Maintenance and Operations (M and O) Contractor. The plan identifies actions involving the M and O Contractor that are critical to (1) prepare for a smooth transition to the Project Hanford Management Contractor (PHMC), and (2) support and assist the PHMC and RL in achieving transition as planned, with no or minimal impact to ongoing baseline activities. The plan is structured around two primary phases. The first is the pre-award phase, which started in mid-February 1996 and is currently scheduled to be completed on June 1, 1996, at which time the contract is currently planned to be awarded. The second is the follow-on four-month post-award phase from June 1, 1996, until October 1, 1996. Considering the magnitude and complexity of the scope of work being transitioned, completion in four months will require significant effort by all parties. To better ensure success, the M and O Contractor has developed a pre-award phase that is intended to maximize readiness for transition. Priority is given to preparation for facility assessments and processing of personnel, as these areas are determined to be on the critical path for transition. In addition, the M and O Contractor will put emphasis during the pre-award phase to close out open items prior to contract award, to include grievances, employee concerns, audit findings, compliance issues, etc.

Waite, J.L.

1996-04-12T23:59:59.000Z

232

Advances in inertial confinement fusion at the National Ignition Facility (NIF)  

Science Journals Connector (OSTI)

The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory—temperatures over 100 million K, densities of 1000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

Edward I. Moses

2010-01-01T23:59:59.000Z

233

Observation of strong electromagnetic fields around laser-entrance holes of ignition-scale hohlraums in inertial-confinement fusion experiments at the National Ignition Facility  

Science Journals Connector (OSTI)

Energy spectra and spectrally resolved one-dimensional fluence images of self-emitted charged-fusion products (14.7 MeV D3He protons) are routinely measured from indirectly driven inertial-confinement fusion (ICF) experiments utilizing ignition-scaled hohlraums at the National Ignition Facility (NIF). A striking and consistent feature of these images is that the fluence of protons leaving the ICF target in the direction of the hohlraum's laser entrance holes (LEHs) is very nonuniform spatially, in contrast to the very uniform fluence of protons leaving through the hohlraum equator. In addition, the measured nonuniformities are unpredictable, and vary greatly from shot to shot. These observations were made separately at the times of shock flash and of compression burn, indicating that the asymmetry persists even at ~0.5–2.5 ns after the laser has turned off. These phenomena have also been observed in experiments on the OMEGA laser facility with energy-scaled hohlraums, suggesting that the underlying physics is similar. Comprehensive data sets provide compelling evidence that the nonuniformities result from proton deflections due to strong spontaneous electromagnetic fields around the hohlraum LEHs. Although it has not yet been possible to uniquely determine whether the fields are magnetic (B) or electric (E), preliminary analysis indicates that the strength is ~1 MG if B fields or ~109 V cm?1 if E fields. These measurements provide important physics insight into the ongoing ignition experiments at the NIF. Understanding the generation, evolution, interaction and dissipation of the self-generated fields may help to answer many physics questions, such as why the electron temperatures measured in the LEH region are anomalously large, and may help to validate hydrodynamic models of plasma dynamics prior to plasma stagnation in the center of the hohlraum.

C K Li; A B Zylstra; J A Frenje; F H Séguin; N Sinenian; R D Petrasso; P A Amendt; R Bionta; S Friedrich; G W Collins; E Dewald; T Döppner; S H Glenzer; D G Hicks; O L Landen; J D Kilkenny; A J Mackinnon; N Meezan; J Ralph; J R Rygg; J Kline; G Kyrala

2013-01-01T23:59:59.000Z

234

Advances in Inertial Confinement Fusion at the National Ignition Facility (NIF)  

SciTech Connect (OSTI)

The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory - temperatures over 100 million K, densities of 1,000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

Moses, E

2009-10-15T23:59:59.000Z

235

Ignition on the National Ignition Facility: a path towards inertial fusion energy  

Science Journals Connector (OSTI)

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8?MJ, 500?TW of light at the third-harmonic, ultraviolet light of 351?nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0?MJ of light at the fundamental wavelength of 1053?nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium–tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications.The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization.Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed (Lindl 1998 Inertial Confinement Fusion: the Quest for Ignition and Energy Gain Using Indirect Drive (New York: American Institute of Physics)) and has a high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and fast ignition concepts (Tabak et al 1994 Phys. Plasmas 1 1626–34, Tabak et al 2005 Phys. Plasmas 12 057305). Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science.This paper summarizes the design, performance and status of NIF, experimental plans for NIC, and will present laser inertial confinement fusion–fission energy (LIFE) as a path to achieve carbon-free sustainable energy.

Edward I. Moses

2009-01-01T23:59:59.000Z

236

The National Ignition Facility (NIF) and the National Ignition Campaign (NIC)  

SciTech Connect (OSTI)

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF construction was certified by the Department of Energy as complete on March 27, 2009. NIF, a 192-beam Nd:glass laser facility, will ultimately produce 1.8-MJ, 500-TW of 351-nm third-harmonic, ultraviolet light. On March 10, 2009, total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and broader frontier scientific exploration. NIF experiments in support of indirect-drive ignition began in August 2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments includes diagnostics, a cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational, integrated into the facility, and ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and Fast Ignition concepts. Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. The NIC will develop the full set of capabilities required to operate NIF as a major national and international user facility. A solicitation for NIF frontier science experiments is planned for summer 2009. This paper summarizes the design, performance, and status of NIF and plans for the NIF ignition experimental program. A brief summary of the overall NIF experimental program is also presented.

Moses, E

2009-09-17T23:59:59.000Z

237

RR UECX I DEUEetdJ16 T LEMON7 ILL =@I9 V  

Office of Legacy Management (LM)

4 , 4 , RR UECX I DEUEetdJ16 T LEMON7 ILL =@I9 V : w ~?g+QZ FM USAEC NYK @5 TO USAEC LEMUMT Ill.. AEC WWC ; I _. _' FOR A TAMwsflO h@G NR tt0 PD Tti18~18~~10 APPROVE pf TWJNTY GRAM8 ENRICHED 1 '. , URANlUM TO 8YLyANI~q FOR W8E. IWTREPARIWG~F~VE U&AN,!UU SLUGS 7/.8 lF4j34 ' .' : ' . ~ , . LQ~JG m S/8 1%~ ~IAhiiilER pa THE-DIE WI& CW!. APOROX 300 DOLLARS Am " , SIX ~uN-~Y# WILL BE REQI!!REl! FW WJG FA~ICf' TlW PD ?eJJRCt+A= @ fmR woull] BE m OUT to 8YLVANIA AND WNT TO, V L PAf?SEGIAN Cy ,NYOO CP tN .I. . THE AMOUNT OF ?j50 DOLLARS fOR COIUIPLE~~W~RK,, PI) THE- ENR ICHED MATER I AL ,_ ..o ._ 8tiotlLD BE SHIPPEB TO W 4% DQNO@@ CMU SYLVANA ELECTR lc PiMDUCTS~ INC * * . .i. ,. ., .,, I&@40 WlLLhT8 PTJUUkEVARD MY84~d#EW~Y~K CMIU AM) ACCOUWfdBlLtTY

238

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

8. Comparisons of average annual economic growth projections, 8. Comparisons of average annual economic growth projections, 2011-2040 Average annual percentage growth rates Projection 2011-2015 2011-2025 2025-2040 2011-2040 AEO2013 (Reference case) 2.5 2.6 2.4 2.5 AEO2012 (Reference case)a 2.7 2.6 2.5 2.6 IHS Global Insight (August 2012 2.5 2.6 2.5 2.5 OMB (January 2013)a 2.2 2.8 -- -- CBO (February 2013)a 2.6 2.7 -- -- NFORUM (November 2012) 2.6 2.6 2.4 2.5 Social Security Administration (August 2012) 2.9 2.7 2.2 2.4 IEA (2012)b 2.5 2.6 -- 2.4 Blue Chip Consensus (October 2012)a 2.4 2.5 -- -- Exxon/Mobil -- 2.5 2.2 2.4 ICF International -- -- -- 2.6 Oxford Economics Group (January 2013) 2.7 2.7 2.6 2.6 -- = not reported or not applicable. a OMB, CBO, and Blue Chip forecasts end in 2022, and growth rates cited are for 2011-2022. AEO2012 projections end in 2035, and growth rates cited are for 2011-2035.

239

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

8. Comparisons of average annual economic growth projections, 8. Comparisons of average annual economic growth projections, 2011-2040 Average annual percentage growth rates Projection 2011-2015 2011-2025 2025-2040 2011-2040 AEO2013 (Reference case) 2.5 2.6 2.4 2.5 AEO2012 (Reference case)a 2.7 2.6 2.5 2.6 IHS Global Insight (August 2012 2.5 2.6 2.5 2.5 OMB (January 2013)a 2.2 2.8 -- -- CBO (February 2013)a 2.6 2.7 -- -- NFORUM (November 2012) 2.6 2.6 2.4 2.5 Social Security Administration (August 2012) 2.9 2.7 2.2 2.4 IEA (2012)b 2.5 2.6 -- 2.4 Blue Chip Consensus (October 2012)a 2.4 2.5 -- -- Exxon/Mobil -- 2.5 2.2 2.4 ICF International -- -- -- 2.6 Oxford Economics Group (January 2013) 2.7 2.7 2.6 2.6 -- = not reported or not applicable. a OMB, CBO, and Blue Chip forecasts end in 2022, and growth rates cited are for 2011-2022. AEO2012 projections end in 2035, and growth rates cited are for 2011-2035.

240

Status of the National Ignition Facility project  

SciTech Connect (OSTI)

The ultimate goal of worldwide research in inertial confinement fusion (ICF) is to develop fusion as an inexhaustible, economic, environmentally safe source of electric power. Following nearly thirty years of laboratory and underground fusion experiments, the next step toward this goal is to demonstrate ignition and propagating burn of fusion fuel in the laboratory. The National Ignition Facility(NIF) Project is being constructed at Lawrence Livermore National Laboratory (LLNL), for just this purpose. NIF will use advanced Nd-glass laser technology to deliver 1.8 MJ of 0.35-um laser light in a shaped pulse, several nanoseconds in duration, achieving a peak power of 500 TW. A national community of U.S. laboratories is participating in this project, now in its final design phase. Franceand the United Kingdom are collaborating on development of required technology under bilateral agreements with the US. This paper presents thestatus of the laser design and development of its principal components and optical elements.

Paisner, J.A.; Lowdermilk, W.H.; Boyes, J.D.; Sorem, M.S.; Soures, J.M.

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "ihsgi inforum icf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Achieving competitive excellence in nuclear energy: The threat of proliferation; the challenge of inertial confinement fusion  

SciTech Connect (OSTI)

Nuclear energy will have an expanding role in meeting the twenty-first-century challenges of population and economic growth, energy demand, and global warming. These great challenges are non-linearly coupled and incompletely understood. In the complex global system, achieving competitive excellence for nuclear energy is a multi-dimensional challenge. The growth of nuclear energy will be driven by its margin of economic advantage, as well as by threats to energy security and by growing evidence of global warming. At the same time, the deployment of nuclear energy will be inhibited by concerns about nuclear weapons proliferation, nuclear waste and nuclear reactor safety. These drivers and inhibitors are coupled: for example, in the foreseeable future, proliferation in the Middle East may undermine energy security and increase demand for nuclear energy. The Department of Energy`s nuclear weapons laboratories are addressing many of these challenges, including nuclear weapons builddown and nonproliferation, nuclear waste storage and burnup, reactor safety and fuel enrichment, global warming, and the long-range development of fusion energy. Today I will focus on two major program areas at the Lawrence Livermore National Laboratory (LLNL): the proliferation of nuclear weapons and the development of inertial confinement fusion (ICF) energy.

Nuckolls, J.H.

1994-06-01T23:59:59.000Z

242

Progress toward high-gain laser fusion  

SciTech Connect (OSTI)

A 1985-1986 Review of the US inertial confinement fusion program by the National Academy of Sciences concluded that five more years might be required to obtain enough data to determine the future course of the program. Since then, data from the Nova laser and from the Halite/Centurion program have resolved most of the outstanding problems identified by the NAS review. In particular, we now believe that we can produce a sufficiently uniform target; that we can keep the energy content in hot electrons and high-energy photons low enough (/approximately/1--10% of drive energy, depending on target design) and achieve enough pulse-shaping accuracy (/approximately/10%, with a dynamic range of 100:1) to keep the fuel on a near-Fermi-degenerate adiabat; that we can produce an /approximately/100-Mbar pressure pulse of sufficient uniformity (/approximately/1%), and can we control hydrodynamic instabilities so that the mix of the pusher into the hot spot is low enough to permit marginal ignition. These results are sufficiently encouraging that the US Department of Energy is planning to complete a 10-MJ laboratory microfusion facility to demonstrate high-gain ICF in the laboratory within a decade. 22 refs., 1 fig.

Storm, E.

1988-09-28T23:59:59.000Z

243

3000 Area Phase 1 environmental assessment  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is planning to sell the 3000 Area to prospective buyers. Environmental Services was requested by the WHC Economic Transition group to assess potential environmental liabilities in the area. Historical review of the area indicated that the site was the location of ``Camp Hanford`` in 1951 and has been used for a variety of purposes since then. The activities in the area have changed over the years. A number of Buildings from the area have been demolished and at least 15 underground storage tanks (USTs) have been removed. Part of the 3000 Area was identified as Operable Unit 1100-EM-3 in the Tri-Party Agreement and was cleaned up by the US Army Corps of Engineers (USACE). The cleanup included removal of contaminated soil and USTS. WHC and ICF KH had also performed sampling and analysis at some locations in the 3000 Area prior to USACE`s work on the Operable Unit 1100-EM-3. They removed a number of USTs and performed remediation.

Ranade, D.G.

1995-09-01T23:59:59.000Z

244

Determination of laser damage initiation probability and growth on fused silica scratches  

SciTech Connect (OSTI)

Current methods for the manufacture of optical components inevitably leaves a variety of sub-surface imperfections including scratches of varying lengths and widths on even the finest finishes. It has recently been determined that these finishing imperfections are responsible for the majority of laser-induced damage for fluences typically used in ICF class lasers. We have developed methods of engineering subscale parts with a distribution of scratches mimicking those found on full scale fused silica parts. This much higher density of scratches provides a platform to measure low damage initiation probabilities sufficient to describe damage on large scale optics. In this work, damage probability per unit scratch length was characterized as a function of initial scratch width and post fabrication processing including acid-based etch mitigation processes. The susceptibility of damage initiation density along scratches was found to be strongly affected by the post etching material removal and initial scratch width. We have developed an automated processing procedure to document the damage initiations per width and per length of theses scratches. We show here how these tools can be employed to provide predictions of the performance of full size optics in laser systems operating at 351 nm. In addition we use these tools to measure the growth rate of a damage site initiated along a scratch and compare this to the growth measured on an isolated damage site.

Norton, M A; Carr, C W; Cross, D A; Negres, R A; Bude, J D; Steele, W A; Monticelli, M V; Suratwala, T I

2010-10-26T23:59:59.000Z

245

Improved recovery from Gulf of Mexico reservoirs. Quarterly status report, January 1--March 31, 1996  

SciTech Connect (OSTI)

On February 18, 1992, Louisiana State University with two technical subcontractors, BDM, Inc. and ICF, Inc., began a research program to estimate the potential oil and gas reserve additions that could result from the application of advanced secondary and enhanced oil recovery technologies and the exploitation of undeveloped and attic oil zones in the Gulf of Mexico oil fields that are related to piercement salt domes. This project is a one year continuation of this research and will continue work in reservoir description, extraction processes, and technology transfer. Detailed data will be collected for two previously studies reservoirs: a South Marsh Island reservoir operated by Taylor Energy and one additional Gulf of Mexico reservoir operated by Mobil. Additional reservoirs identified during the project will also be studied if possible. Data collected will include reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. The new data will be used to refine reservoir and geologic characterization of these reservoirs. Further laboratory investigation will provide additional simulation input data in the form of PVT properties, relative permeabilities, capillary pressure, and water compatibility. Geological investigations will be conducted to refine the models of mud-rich submarine fan architectures used by seismic analysts and reservoir engineers. Research on advanced reservoir simulation will also be conducted. This report describes a review of fine-grained submarine fans and turbidite systems.

Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.

1996-04-30T23:59:59.000Z

246

New model of calculating the energy transfer efficiency for the spherical theta-pinch device  

E-Print Network [OSTI]

Ion-beam-plasma-interaction plays an important role in the field of Warm Dense Matter (WDM) and Inertial Confinement Fusion (ICF). A spherical theta pinch is proposed to act as a plasma target in various applications including a plasma stripper cell. One key parameter for such applications is the free electron density. A linear dependency of this density to the amount of energy transferred into the plasma from an energy storage was found by C. Teske. Since the amount of stored energy is known, the energy transfer efficiency is a reliable parameter for the design of a spherical theta pinch device. The traditional two models of energy transfer efficiency are based on assumptions which comprise the risk of systematical errors. To obtain precise results, this paper proposes a new model without the necessity of any assumption to calculate the energy transfer efficiency for an inductively coupled plasma device. Further, a comparison of these three different models is given at a fixed operation voltage for the full ...

Xu, G; Loisch, G; Xiao, G; Jacoby, J; Weyrich, K; Li, Y; Zhao, Y

2015-01-01T23:59:59.000Z

247

The performance check between whole building thermal performance criteria and exterior wall measured clear wall R-value, thermal bridging, thermal mass, and airtightness  

SciTech Connect (OSTI)

At the last IEA Annex 32 meeting it was proposed that the annex develop the links between level 1 (the whole building performance) and level 2 (the envelope system). This paper provides a case study of just that type of connection. An exterior wall mockup is hot box tested and modeled in the laboratory. Measurements of the steady state and dynamic behavior of this mockup are used as the basis to define the thermal bridging, thermal mass benefit and air tightness of the whole wall system. These level two performance characteristics are related to the whole building performance. They can be analyzed by a finite difference modeling of the wall assembly. An equivalent wall theory is used to convert three dimensional heat flow to one dimensional terms that capture thermal mass effects, which in turn are used in a common whole building simulation model. This paper illustrates a performance check between the thermal performance of a Massive ICF (Insulating Concrete Form) wall system mocked up (level 2) and Whole Building Performance criteria (level 1) such as total space heating and cooling loads (thermal comfort).

Kosny, J.; Christian, J.E.; Desjarlais, A.O. [Oak Ridge National Lab., TN (United States). Buildings Technology Center; Kossecka, E. [Polish Academy of Sciences (Poland); Berrenberg, L. [American Polysteel Forms (United States)

1998-06-01T23:59:59.000Z

248

Will NIF Work  

E-Print Network [OSTI]

It is vital that new clean and abundant sources of energy be developed for the sustainability of modern society. Nuclear fusion of the hydrogen isotopes deuterium and tritium, if successful, might make a major contribution toward satisfying this need. The U.S. has an important effort aimed at achieving practical inertial confinement fusion, ICF, which has been under development for decades at the Lawrence Livermore National Laboratory. The National Ignition Facility (NIF) is a giant laser to multiply-shock and thus quasi-isentropically compress a capsule of deuterium-tritium (DT) to high density and temperature, where the fusion rate is proportional to density squared times temperature to the fourth power. The principal problem that must be solved for NIF to work successfully is elimination of the Rayleigh-Tailor (R-T) instability that originates from the interface between the solid shell and the DT fuel within it. The R-T instability poisons the fusion reaction by reducing the temperature of the DT achieved ...

Nellis, W J

2009-01-01T23:59:59.000Z

249

Anomalous yield reduction in direct-drive DT implosions due to 3He addition  

SciTech Connect (OSTI)

Glass capsules were imploded in direct drive on the OMEGA laser [T. R. Boehly et aI., Opt. Commun. 133, 495, 1997] to look for anomalous degradation in deuterium/tritium (DT) yield (i.e., beyond what is predicted) and changes in reaction history with {sup 3}He addition. Such anomalies have previously been reported for D/{sup 3}He plasmas, but had not yet been investigated for DT/{sup 3}He. Anomalies such as these provide fertile ground for furthering our physics understanding of ICF implosions and capsule performance. A relatively short laser pulse (600 ps) was used to provide some degree of temporal separation between shock and compression yield components for analysis. Anomalous degradation in the compression component of yield was observed, consistent with the 'factor of two' degradation previously reported by MIT at a 50% {sup 3}He atom fraction in D{sub 2} using plastic capsules [Rygg et aI., Phys. Plasmas 13, 052702 (2006)]. However, clean calculations (i.e., no fuel-shell mixing) predict the shock component of yield quite well, contrary to the result reported by MIT, but consistent with LANL results in D{sub 2}/{sup 3}He [Wilson, et aI., lml Phys: Conf Series 112, 022015 (2008)]. X-ray imaging suggests less-than-predicted compression ofcapsules containing {sup 3}He. Leading candidate explanations are poorly understood Equation-of-State (EOS) for gas mixtures, and unanticipated particle pressure variation with increasing {sup 3}He addition.

Herrmann, Hans W [Los Alamos National Laboratory; Langenbrunner, James R [Los Alamos National Laboratory; Mack, Joseph M [Los Alamos National Laboratory; Cooley, James H [Los Alamos National Laboratory; Wilson, Douglas C [Los Alamos National Laboratory; Evans, Scott C [Los Alamos National Laboratory; Sedillo, Tom J [Los Alamos National Laboratory; Kyrala, George A [Los Alamos National Laboratory; Caldwell, Stephen E [Los Alamos National Laboratory; Young, Carlton A [Los Alamos National Laboratory; Nobile, Arthur [Los Alamos National Laboratory; Wermer, Joseph R [Los Alamos National Laboratory; Paglieri, Stephen N [Los Alamos National Laboratory; Mcevoy, Aaron M [Los Alamos National Laboratory; Kim, Yong Ho [Los Alamos National Laboratory; Batha, Steven H [Los Alamos National Laboratory; Horsfield, Colin J [AWE, UK; Drew, Dave [AWE, UK; Garbett, Warren [AWE, UK; Rubery, Michael [AWE, UK; Glebov, Vladimir Yu [UNIV OF ROCHESTER; Roberts, Samuel [UNIV OF ROCHESTER; Frenje, Johan A [MIT

2008-01-01T23:59:59.000Z

250

Indirect drive experiments utilizing multiple beam cones in cylindrical hohlraums on OMEGA  

SciTech Connect (OSTI)

Current plans for time-dependent control of flux asymmetry in the National Ignition Facility [J. A. Paisner, J. D. Boyes, S. A. Kumpan, and M. Sorem, {open_quotes}The National Ignition Facility Project,{close_quotes} ICF Quart. {bold 5}, 110 (1995)] hohlraums rely on multiple beam cones with different laser power temporal profiles in each cone. Experiments with multiple beam cones have begun on the Omega laser facility [T. R. Boehly {ital et al.}, Opt. Commun. {bold 133}, 495 (1997)] at the University of Rochester. In addition to allowing symmetry experiments similar to those performed on Nova [A. Hauer {ital et al.}, Rev. Sci. Instrum. {bold 66}, 672 (1995)], the Omega facility allows multiple beam cones to be moved independently to confirm our ability to model the resulting implosion image shapes. Results indicate that hohlraum symmetry behaves similarly with multiple rings of beams as with a single ring, but with the weighted beam spot position used to parametrize the beam pointing.

Murphy, T.J.; Wallace, J.M.; Delamater, N.D.; Barnes, C.W.; Gobby, P.; Hauer, A.A.; Lindman, E.L.; Magelssen, G.; Moore, J.B.; Oertel, J.A.; Watt, R. [Los Alamos National Laboratory, Los Alamos, New Mexico87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico87545 (United States); Landen, O.L.; Amendt, P.; Cable, M.; Decker, C.; Hammel, B.A.; Koch, J.A.; Suter, L.J.; Turner, R.E.; Wallace, R.J. [Lawrence Livermore National Laboratory, Livermore, California94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California94550 (United States); Marshall, F.J.; Bradley, D.; Craxton, R.S.; Keck, R.; Knauer, J.P.; Kremens, R.; Schnittman, J.D. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York14627 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York14627 (United States)

1998-05-01T23:59:59.000Z

251

Energetics of Multiple-Ion Species Hohlraum Plasmas  

SciTech Connect (OSTI)

A study of the laser-plasma interaction processes in multiple-ion species plasmas has been performed in plasmas that are created to emulate the plasma conditions in indirect drive inertial confinement fusion targets. Gas-filled hohlraums with densities of xe22/cc are heated to Te=3keV and backscattered laser light is measured by a suite of absolutely calibrated backscatter diagnostics. Ion Landau damping is increased by adding hydrogen to the CO2/CF4 gas fill. We find that the backscatter from stimulated Brillouin scattering is reduced is monotonically reduced with increasing damping, demonstrating that Landau damping is the controlling damping mechanism in ICF relevant high-electron temperature plasmas. The reduction in backscatter is accompanied by a comparable increase in both transmission of a probe beam and an increased hohlraum radiation temperature, showing that multiple-ion species plasmas improve the overall hohlraum energetics/performance. Comparison of the experimental data to linear gain calculations as well as detailed full-scale 3D laser-plasma interaction simulations show quantitative agreement. Our findings confirm the importance of Landau damping in controlling backscatter from high-electron temperature hohlraum plasmas and have lead to the inclusion of multi-ion species plasmas in the hohlraum point design for upcoming ignition campaigns at the National Ignition Facility.

Neumayer, P; Berger, R; Callahan, D; Divol, L; Froula, D; London, R; MacGowan, B J; Meezan, N; Michel, P; Ross, J S; Sorce, C; Widmann, K; Suter, L; Glenzer, S H

2007-11-05T23:59:59.000Z

252

Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh  

Science Journals Connector (OSTI)

A Monte Carlo algorithm for alpha particle tracking and energy deposition on a RZ cylindrical computational mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is presented. The straight line approximation is used to follow propagation of “Monte Carlo particles” which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) reactions. Energy deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about 30picosecond earlier ignition than predicted by the diffusion method, and generates higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.

J. Yuan; G. A. Moses; P. W. McKenty

2005-10-10T23:59:59.000Z

253

Neutron spectrometry - An essential tool for diagnosing implosions at the National Ignition Facility  

SciTech Connect (OSTI)

DT neutron yield (Y{sub n}), ion temperature (T{sub i}) and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of Inertial Confinement Fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-Time-Of-Flight (nTOF) spectrometers and a Magnetic Recoil Spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the redundancy required for reliable measurements of Yn, Ti and dsr. From the measured dsr value, an areal density ({rho}R) is determined from the relationship {rho}R{sub tot} (g/cm{sup 2}) = (20.4 {+-} 0.6) x dsr{sub 10-12 MeV}. The proportionality constant is determined considering implosion geometry, neutron attenuation and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration. The spectrometers are now performing to the required accuracy, as indicated by the good agreement between the different measurements over several commissioning shots. In addition, recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental Ignition Threshold Factor (ITFx) which is a function of dsr (or fuel {rho}R) and Y{sub n}, has improved almost two orders of magnitude since the first shot in September, 2010.

Mackinnon, A J; Johnson, M G; Frenje, J A; Casey, D T; Li, C K; Seguin, F H; Petrasso, R; Ashabranner, R; Cerjan, C; Clancy, T J; Bionta, R; Bleuel, D; Bond, E J; Caggiano, J A; Capenter, A; Eckart, M J; Edwards, M J; Friedrich, S; Glenzer, S H; Haan, S W; Hartouni, E P; Hatarik, R; Hachett, S P; McKernan, M; Jones, O; Lepape, S; Lerche, R A; Landen, O L; Moran, M; Moses, E; Munro, D; McNaney, J; Rygg, J R; Sepke, S; Spears, B; Springer, P; Yeamans, C; Farrell, M; Kilkenny, J D; Nikroo, A; Paguio, R; Knauer, J; Glebov, V; Sangster, T; Betti, R; Stoeckl, C; Magoon, J; Shoup, M J; Grim, G P; Moran, G L; Murphy, T J; Leeper, R J; Ruiz, C

2012-05-02T23:59:59.000Z

254

A Virtualized Computing Platform For Fusion Control Systems  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. 2,500 servers, 400 network devices and 700 terabytes of networked attached storage provide the foundation for NIF's Integrated Computer Control System (ICCS) and Experimental Data Archive. This talk discusses the rationale & benefits for server virtualization in the context of an operational experimental facility, the requirements discovery process used by the NIF teams to establish evaluation criteria for virtualization alternatives, the processes and procedures defined to enable virtualization of servers in a timeframe that did not delay the execution of experimental campaigns and the lessons the NIF teams learned along the way. The virtualization architecture ultimately selected for ICCS is based on the Open Source Xen computing platform and 802.1Q open networking standards. The specific server and network configurations needed to ensure performance and high availability of the control system infrastructure will be discussed.

Frazier, T; Adams, P; Fisher, J; Talbot, A

2011-03-18T23:59:59.000Z

255

Laser Inertial Fusion Energy Control Systems  

SciTech Connect (OSTI)

A Laser Inertial Fusion Energy (LIFE) facility point design is being developed at LLNL to support an Inertial Confinement Fusion (ICF) based energy concept. This will build upon the technical foundation of the National Ignition Facility (NIF), the world's largest and most energetic laser system. NIF is designed to compress fusion targets to conditions required for thermonuclear burn. The LIFE control systems will have an architecture partitioned by sub-systems and distributed among over 1000's of front-end processors, embedded controllers and supervisory servers. LIFE's automated control subsystems will require interoperation between different languages and target architectures. Much of the control system will be embedded into the subsystem with well defined interface and performance requirements to the supervisory control layer. An automation framework will be used to orchestrate and automate start-up and shut-down as well as steady state operation. The LIFE control system will be a high parallel segmented architecture. For example, the laser system consists of 384 identical laser beamlines in a 'box'. The control system will mirror this architectural replication for each beamline with straightforward high-level interface for control and status monitoring. Key technical challenges will be discussed such as the injected target tracking and laser pointing feedback. This talk discusses the the plan for controls and information systems to support LIFE.

Marshall, C; Carey, R; Demaret, R; Edwards, O; Lagin, L; Van Arsdall, P

2011-03-18T23:59:59.000Z

256

Stress evaluation of the primary tank of a double-shell underground storage tank facility  

SciTech Connect (OSTI)

A facility called the Multi-Function Waste Tank Facility (MWTF) is being designed at the Department of Energy`s Hanford site. The MWTF is expected to be completed in 1998 and will consist of six underground double-shell waste storage tanks and associated systems. These tanks will provide safe and environmentally acceptable storage capacity to handle waste generated during single-shell and double-shell tank safety mitigation and remediation activities. This paper summarizes the analysis and qualification of the primary tank structure of the MWTF, as performed by ICF Kaiser Hanford during the latter phase of Title 1 (Preliminary) design. Both computer finite element analysis (FEA) and hand calculations methods based on the so-called Tank Seismic Experts Panel (TSEP) Guidelines were used to perform the analysis and evaluation. Based on the evaluations summarized in this paper, it is concluded that the primary tank structure of the MWTF satisfies the project design requirements. In addition, the hand calculations performed using the methodologies provided in the TSEP Guidelines demonstrate that, except for slosh height, the capacities exceed the demand. The design accounts for the adverse effect of the excessive slosh height demand, i.e., inadequate freeboard, by increasing the hydrodynamic wall and roof pressures appropriately, and designing the tank for such increased pressures.

Atalay, M.B. [ICF Kaiser Engineers, Inc., Oakland, CA (United States); Stine, M.D. [ICF Kaiser Hanford Co., Richland, WA (United States); Farnworth, S.K. [Westinghouse Hanford Co., Richland, WA (United States)

1994-12-01T23:59:59.000Z

257

Foam shell project: Progress report  

SciTech Connect (OSTI)

The authors report on their work to produce a foam shell target for two possible applications: (1) as liquid-layered cryogenic target on Omega Upgrade, and (2) as a back-up design for the NIF. This target consists of a roughly 1 mm diameter and 100 {mu}m thick spherical low-density foam shell surrounding a central void. The foam will be slightly overfilled with liquid D{sub 2} or DT, the overfilled excess being symmetrically distributed on the inside of the shell and supported by thermal gradient techniques. The outside of the foam is overcoated with full density polymer which must be topologically smooth. The technology for manufacturing this style of foam shell involves microencapsulation techniques and has been developed by the Japanese at ILE. Their goal is to determine whether this technology can be successfully adapted to meet US ICF objectives. To this end a program of foam shell development has been initiated at LLNL in collaboration with both the General Atomics DOE Target Fabrication Contract Corporation and the Target Fabrication Group at LLE.

Overturf, G.; Reibold, B.; Cook, B. [Lawrence Livermore National Lab., CA (United States); Schroen-Carey, D. [WJSA (United States)

1994-03-25T23:59:59.000Z

258

Neutron source reconstruction from pinhole imaging at National Ignition Facility  

SciTech Connect (OSTI)

The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the ignition stage of inertial confinement fusion (ICF) implosions at NIF. Since the neutron source is small (?100 ?m) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-?m resolution are 20-cm long, single-sided tapers in gold. These apertures, which have triangular cross sections, produce distortions in the image, and the extended nature of the pinhole results in a non-stationary or spatially varying point spread function across the pinhole field of view. In this work, we have used iterative Maximum Likelihood techniques to remove the non-stationary distortions introduced by the aperture to reconstruct the underlying neutron source distributions. We present the detailed algorithms used for these reconstructions, the stopping criteria used and reconstructed sources from data collected at NIF with a discussion of the neutron imaging performance in light of other diagnostics.

Volegov, P.; Danly, C. R.; Grim, G. P.; Guler, N.; Merrill, F. E.; Wilde, C. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N.; Izumi, N.; Ma, T.; Warrick, A. L. [Livermore National Laboratory, Livermore, California 94550 (United States)] [Livermore National Laboratory, Livermore, California 94550 (United States)

2014-02-15T23:59:59.000Z

259

Acceptance test report for core sample trucks 3 and 4  

SciTech Connect (OSTI)

The purpose of this Acceptance Test Report is to provide documentation for the acceptance testing of the rotary mode core sample trucks 3 and 4, designated as HO-68K-4600 and HO-68K-4647, respectively. This report conforms to the guidelines established in WHC-IP-1026, ``Engineering Practice Guidelines,`` Appendix M, ``Acceptance Test Procedures and Reports.`` Rotary mode core sample trucks 3 and 4 were based upon the design of the second core sample truck (HO-68K-4345) which was constructed to implement rotary mode sampling of the waste tanks at Hanford. Successful completion of acceptance testing on June 30, 1995 verified that all design requirements were met. This report is divided into four sections, beginning with general information. Acceptance testing was performed on trucks 3 and 4 during the months of March through June, 1995. All testing was performed at the ``Rock Slinger`` test site in the 200 West area. The sequence of testing was determined by equipment availability, and the initial revision of the Acceptance Test Procedure (ATP) was used for both trucks. Testing was directed by ICF-KH, with the support of WHC Characterization Equipment Engineering and Characterization Project Operations. Testing was completed per the ATP without discrepancies or deviations, except as noted.

Corbett, J.E.

1996-04-10T23:59:59.000Z

260

National Ignition Facility project acquisition plan  

SciTech Connect (OSTI)

The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

Callaghan, R.W.

1996-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "ihsgi inforum icf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Status Of The National Ignition Campaign And National Ignition Facility Integrated Computer Control System  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that will contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn. NIF is operated by the Integrated Computer Control System (ICCS) in an object-oriented, CORBA-based system distributed among over 1800 frontend processors, embedded controllers and supervisory servers. In the fall of 2010, a set of experiments began with deuterium and tritium filled targets as part of the National Ignition Campaign (NIC). At present, all 192 laser beams routinely fire to target chamber center to conduct fusion and high energy density experiments. During the past year, the control system was expanded to include automation of cryogenic target system and over 20 diagnostic systems to support fusion experiments were deployed and utilized in experiments in the past year. This talk discusses the current status of the NIC and the plan for controls and information systems to support these experiments on the path to ignition.

Lagin, L; Brunton, G; Carey, R; Demaret, R; Fisher, J; Fishler, B; Ludwigsen, P; Marshall, C; Reed, R; Shelton, R; Townsend, S

2011-03-18T23:59:59.000Z

262

The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network [OSTI]

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

E. I. Moses

2001-11-09T23:59:59.000Z

263

Progress Toward Meeting NIF Specifications for Vapor Deposited Polyimide Ablator Coatings  

SciTech Connect (OSTI)

We are developing an evaporative coating technique for deposition of thick polyimide (PI) ablator layers on ICF targets. The PI coating technique utilizes stoichiometrically controlled fluxes from two Knudsen cell evaporators containing a dianhydride and a diamine to deposit a polyamic acid (PAA) coating. Heating the PAA coating to 300 deg. C converts the PAA coating to a polyimide. Coated shells are rough due to particles on the substrate mandrels and from damage to the coating caused by the agitation used to achieve a uniform coating. We have developed a smoothing process that exposes an initially rough PAA coated shell to solvent vapor using gas levitation. We found that after smoothing the coatings developed a number of wide (low-mode) defects. We have identified two major contributors to low-mode roughness: surface hydrolysis, and deformation during drying/curing. By minimizing air exposure prior to vapor smoothing, avoiding excess solvent sorption during vapor smoothing, and using slow drying we are able to deposit and vapor smooth coatings 160 {mu}m thick with a surface roughness less than 20 nm RMS.

Letts, Stephan A.; Anthamatten, Mitchell; Buckley, Steven R.; Fearon, Evelyn; Nissen, April E.H.; Cook, Robert C. [Lawrence Livermore National Laboratory (United States)

2004-03-15T23:59:59.000Z

264

Simulations and model of the nonlinear Richtmyer–Meshkov instability  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The nonlinear evolution of the Richtmyer-Meshkov (RM) instability is investigated using numerical simulations with the FLASH code in two-dimensions (2D). The purpose of the simulations is to develop an empiricial nonlinear model of the RM instability that is applicable to inertial confinement fusion (ICF) and ejecta formation, namely, at large Atwood number A and scaled initial amplitude kho (k ? wavenumber) of the perturbation. The FLASH code is first validated with a variety of RM experiments that evolve well into the nonlinear regime. They reveal that bubbles stagnate when they grow by an increment of 2/k and that spikes accelerate for A > 0.5 due to higher harmonics that focus them. These results are then compared with a variety of nonlinear models that are based on potential flow. We find that the models agree with simulations for moderate values of A oo. Our hope is that such empirical models concisely capture the RM simulations and inspire more rigorous solutions.

None

2010-01-21T23:59:59.000Z

265

Micro -Thermonuclear AB-Reactors for Aerospace  

E-Print Network [OSTI]

The author offers several innovations that he first suggested publicly early in 1983 for the AB multi-reflex engine, space propulsion, getting energy from plasma, etc. (see: A. Bolonkin, Non-Rocket Space Launch and Flight, Elsevier, London, 2006, Chapters 12, 3A). It is the micro-thermonuclear AB-Reactors. That is new micro-thermonuclear reactor with very small fuel pellet that uses plasma confinement generated by multi-reflection of laser beam or its own magnetic field. The Lawson criterion increases by hundreds of times. The author also suggests a new method of heating the power-making fuel pellet by outer electric current as well as new direct method of transformation of ion kinetic energy into harvestable electricity. These offered innovations dramatically decrease the size, weight and cost of thermonuclear reactor, installation, propulsion system and electric generator. Non-industrial countries can produce these researches and constructions. Currently, the author is researching the efficiency of these innovations for two types of the micro-thermonuclear reactors: multi-reflection reactor (ICF) and self-magnetic reactor (MCF).

Alexander Bolonkin

2007-01-08T23:59:59.000Z

266

Neutron detector for fusion reaction-rate measurements  

SciTech Connect (OSTI)

We have developed a fast, sensitive neutron detector for recording the fusion reaction-rate history of inertial-confinement fusion (ICF) experiments. The detector is based on the fast rise-time of a commercial plastic scintillator (BC-422) and has a response < 25-ps FWHM. A thin piece of scintillator material acts as a neutron-to- light converter. A zoom lens images light from the scintillator surface to a high-speed (15 ps) optical streak camera for recording. The zoom lens allows the scintillator to be positioned between 1 and 50 cm from a target. The camera simulaneously records an optical fiducial pulse which allows the camera time base to be calibrated relative to the incident laser power. Bursts of x rays formed by focusing 20-ps, 2.5-TW laser pulses onto gold disk targets demonstrate the detector resolution to be < 25 ps. We have recorded burn histories for deuterium/tritium-filled targets producing as few as 3 {times} 10{sup 7} neutrons.

Lerche, R.A.; Phillion, D.W.; Tietbohl, G.L.

1993-09-03T23:59:59.000Z

267

Imaging System to Measure Kinetics of Material Cluster Ejection During Exit-Surface Damage Initiation and Growth in Fused Silica  

SciTech Connect (OSTI)

Laser-induced damage on the surface of optical components typically is manifested by the formation of microscopic craters that can ultimately degrade the optics performance characteristics. It is believed that the damage process is the result of the material exposure to high temperatures and pressures within a volume on the order of several cubic microns located just below the surface. The response of the material following initial localized energy deposition by the laser pulse, including the timeline of events and the individual processes involved during this timeline, is still largely unknown. In this work we introduce a time-resolved microscope system designed to enable a detailed investigation of the sequence of dynamic events involved during surface damage. To best capture individual aspects of the damage timeline, this system is employed in multiple imaging configurations (such as multi-view image acquisition at a single time point and multi-image acquisition at different time points of the same event) and offers sensitivity to phenomena at very early delay times. The capabilities of this system are demonstrated with preliminary results from the study of exit-surface damage in fused silica. The time-resolved images provide information on the material response immediately following laser energy deposition, the processes later involved during crater formation or growth, the material ejecta kinetics, and overall material motion and transformation. Such results offer insight into the mechanisms governing damage initiation and growth in the optical components of ICF class laser systems.

Raman, R N; Negres, R A; Demos, S G

2009-10-29T23:59:59.000Z

268

Hanford Site Long-term Surface Barrier Development Program: Fiscal year 1994 highlights  

SciTech Connect (OSTI)

The Hanford Site Surface Barrier Development Program was organized in 1985 to test the effectiveness of various barrier designs in minimizing the effects of water infiltration; plant, animal and human intrusion; and wind and water erosion on buried wastes, plus preventing or minimizing the emanation of noxious gases. A team of scientists from the Pacific Northwest Laboratory (PNL) and engineers from Westinghouse Hanford Company (WHC) direct the barrier development effort. ICF Kaiser Hanford Company, in conjunction with WHC and PNL, developed design drawings and construction specifications for a 5-acre prototype barrier. The highlight of efforts in FY 1994 was the construction of the prototype barrier. The prototype barrier was constructed on the Hanford Site at the 200 BP-1 Operable Unit of the 200 East Area. Construction was completed in August 1994 and monitoring instruments are being installed so experiments on the prototype barrier can begin in FY 1995. The purpose of the prototype barrier is to provide insights and experience with issues regarding barrier design, construction, and performance that have not been possible with individual tests and experiments conducted to date. Additional knowledge and experience was gained in FY 1994 on erosion control, physical stability, water infiltration control, model testing, Resource Conservation and Recovery Act (RCRA) comparisons, biointrusion control, long-term performance, and technology transfer.

Petersen, K.L.; Link, S.O.; Gee, G.W.

1995-08-01T23:59:59.000Z

269

Inertial fusion program, January 1-June 30, 1979  

SciTech Connect (OSTI)

Progress in the development of high-energy short-pulse carbon dioxide laser systems for fusion research is reported. Improvements are outlined for the Los Alamos National Laboratory's Gemini System, which permitted over 500 shots in support of 10 different target experiments; the transformation of our eight-beam system, Helios, from a developmental to an operational facility that is capable of irradiating targets on a routine basis is described; and progress made toward completion of Antares, our 100- to 200-TW target irradiation system, is detailed. Investigations of phenomena such as phase conjugation by degenerate four-wave mixing and its applicability to laser fusion systems, and frequency multiplexing as a means toward multipulse energy extraction are summarized. Also discussed are experiments with targets designed for adiabatic compression. Progress is reported in the development of accurate diagnostics, especially for the detection of expanding ions, of neutron yield, and of x-ray emission. Significant advances in our theoretical efforts are summarized, such as the adaptation of our target design codes for use with the CRAY-1 computer, and new results leading to a better understanding of implosion phenomena are reported. The results of various fusion reactor studies are summarized, including the development of an ICF reactor blanket that offers a promising alternative to the usual lithium blanket, and the formulation of a capital-cost data base for laser fusion reactors to permit meaningful comparisons with other technologies.

Skoberne, F. (comp.)

1981-06-01T23:59:59.000Z

270

Thermal oscillation smoothing of DT solid layers for HAPL and NIF scale targets  

SciTech Connect (OSTI)

Deuterium-Tritium (D-T) solid fuel layers must meet stringent roughness specifications for both the ICF and IFE laser fusion programs and native beta-layering alone is unable to provide sufficient solid layer smoothing to meet these specifications at 18.3 K or below. Consequently, several supplemental smoothing options have been proposed to resolve this issue, including a technique called 'Thermal Breathing'. This technique consists of oscillating the temperature of the solid D-T layer about its equilibration temperature for a period of one to several hours. Recently, thermal oscillations have been used to successfully smooth rough solid D{sub 2} in spherical targets. In order to study this particular smoothing technique, we examined the effects of thermal oscillations on equilibrated D-T solid layers, using both ICF and IFE scale layering cells and layer thicknesses. The D-T solid layers that were Subjected to thermal breathing in these studies were equilibrated at temperatures ranging from 16.0 K to 19.25 K, followed by 1.5 to 2 hours of temperature oscillations. During the HAPL scale experiments the amplitude and period of the oscillations were both varied to examine parametric effects of these variables on final layer roughness. In both sets of experiments, once the oscillations completed we allowed the layers to 'relax' at their initial equilibration temperature for another 1 to 2 hours, to observe any 'rebounding' or re-roughening that might occur. The rCF scale experiments were performed using a 2 mm beryllium torus, for which the layer was free from optical distortions that were observed in our IFE scale cell (a 4 mm dia. sapphire sphere-cylinder). Our results showed a temperature dependent smoothing effect ofthe DT solid layer ranging from 20% to 35% over the temperature range of 17.3 K to 19.0 K for the rCF-scale, 2-mm celL The final RMS roughness for layers grown in this 2-mm Be torus was on average less than 1 /lm for modes 7 and above. Results for the rFE scale cell showed a temperature dependent smoothing effect that varied from 5% to more than 30% over a 16.0 K to 18.3 K temperature span, and which resulted in an average overall RMS roughness of3.8 /lm at 17.3 K and 3.2 /lm at 18.3 K. We discuss the configuration ofboth of these DT layering cells, the equilibration and oscillation parameters were used, and results that show thermal oscillations can make significant contributions to the smoothing of normally equilibrated beta-layered surfaces, as well as potentially reducing the time required to produce smooth solid DT surfaces.

Sheliak, John D [Los Alamos National Laboratory; Geller, Drew A [Los Alamos National Laboratory; Hoffer, James K [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

271

Configuring the National Ignition Facility for direct-drive experiments  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is a project whose primary mission is to provide an above-ground experimental capability for maintaining nuclear competence and weapons effects simulation, and to pursue the achievement of fusion ignition utilizing solid state lasers as the energy driver. In this facility a large number of laser beams are focused onto a small target located at the center of a spherical target chamber. The laser energy is delivered in a few billionths of a second, raising the temperature and density of the nuclear materials in the target to levels where significant thermonuclear energy is released. The thermonuclear reaction proceeds very rapidly, so that the target materials remain confined by their own inertia during the thermonuclear reaction. This type of approach is called inertial confinement fusion (ICF). The proposed project is described in a conceptual design report (CDR) that was released in May 1994. Early in FY95, a collaboration between the University of Rochester and the Lawrence Livermore National Laboratory was established to study reconfiguring the NIF to accommodate direct-drive experiments. The present paper is a report to the scientific community, primarily the scientists and engineers working on the design of the NIF. It represents results from work in progress, specifically work completed by the end of the second quarter FY95. This report has two main sections. The first describes the target requirements on the laser drive, and the second part describes how the NIF laser can be configured to accommodate both indirect and direct drive. The report includes a description of the scientific basis for these conclusions. Though a complete picture does not exist, the present understanding is sufficient to conclude that the primary target requirements and laser functional requirements for indirect and direct drive are quite compatible. It is evidently straightforward to reconfigure the NIF to accommodate direct and indirect drive.

Eimerl, D. [ed.

1995-07-01T23:59:59.000Z

272

Status of target physics for inertial confinement fusion: Report on the review at DOE Headquarters, Germantown, MD on November 14--17, 1988  

SciTech Connect (OSTI)

A four day review to assess the status of target physics of inertial confinement fusion was held at US Department of Energy (DOE) Headquarters on November 14--17, 1988. This review completes the current series of reviews of the inertial fusion program elements to assess the status of the data base for a decision to proceed with the proposed Laboratory Microfusion Facility (LMF) that is being planned. In addition to target physics, the program elements that have been reviewed previously include the driver technology development for KrF and solid-state lasers, and the light-on beam pulsed power system. This series of reviews was undertaken for internal DOE assessment in anticipation of the ICF program review mandated by the Congress in 1988 to be completed in 1990 to assess the significance and implications of the progress that has been realized in the laboratory and the underground Halite/Centurion experiments. For this target physics review, both the direct and the indirect drive approaches were considered. The principal issues addressed in this review were: Is the present target physics data base adequate for a decision to proceed with design and construction of LMF now as opposed to continue planning activities at this time What specific additional target physics data are desirable to reduce the risk for a DOE decision to construct an LMF What is the role for continuation of Halite/Centurion experiments What priority should be given to the direct drive approach Are the program elements optimally structured to resolve the critical issues for an LMF decision Specific findings relating to these five issues are summarized in the following.

Not Available

1990-03-09T23:59:59.000Z

273

An Invariant-Preserving ALE Method for Solids under Extreme Conditions  

SciTech Connect (OSTI)

We are proposing a fundamentally new approach to ALE methods for solids undergoing large deformation due to extreme loading conditions. Our approach is based on a physically-motivated and mathematically rigorous construction of the underlying Lagrangian method, vector/tensor reconstruction, remapping, and interface reconstruction. It is transformational because it deviates dramatically from traditionally accepted ALE methods and provides the following set of unique attributes: (1) a three-dimensional, finite volume, cell-centered ALE framework with advanced hypo-/hyper-elasto-plastic constitutive theories for solids; (2) a new physically and mathematically consistent reconstruction method for vector/tensor fields; (3) advanced invariant-preserving remapping algorithm for vector/tensor quantities; (4) moment-of-fluid (MoF) interface reconstruction technique for multi-material problems with solids undergoing large deformations. This work brings together many new concepts, that in combination with emergent cell-centered Lagrangian hydrodynamics methods will produce a cutting-edge ALE capability and define a new state-of-the-art. Many ideas in this work are new, completely unexplored, and hence high risk. The proposed research and the resulting algorithms will be of immediate use in Eulerian, Lagrangian and ALE codes under the ASC program at the lab. In addition, the research on invariant preserving reconstruction/remap of tensor quantities is of direct interest to ongoing CASL and climate modeling efforts at LANL. The application space impacted by this work includes Inertial Confinement Fusion (ICF), Z-pinch, munition-target interactions, geological impact dynamics, shock processing of powders and shaped charges. The ALE framework will also provide a suitable test-bed for rapid development and assessment of hypo-/hyper-elasto-plastic constitutive theories. Today, there are no invariant-preserving ALE algorithms for treating solids with large deformations. Therefore, this is a high-impact effort that will significantly advance the state of ALE methods and position LANL as world leaders in advanced ALE methods.

Sambasivan, Shiv Kumar [Los Alamos National Laboratory; Christon, Mark A [Los Alamos National Laboratory

2012-07-17T23:59:59.000Z

274

Dynamic compression of materials: metallization of fluid hydrogen at high pressures  

Science Journals Connector (OSTI)

Dynamic high pressure is 1?GPa (10?kbar) or greater with a rise time and a duration ranging from 1?ps (10?12?s) to 1?µs (10?6?s). Today it is possible in a laboratory to achieve pressures dynamically up to ~500?GPa (5?Mbar) and greater, compressions as much as ~15-fold greater than initial density in the case of hydrogen and temperatures from ~0.1 up to several electronvolts (11?600?K). At these conditions materials are extremely condensed semiconductors or degenerate metals. Temperature can be tuned independently of pressure by a combination of shock and isentropic compression. As a result, new opportunities are now available in condensed matter physics at extreme conditions. The basic physics of the dynamic process, experimental methods of generating and diagnosing matter at these extreme conditions and a technique to recover metastable materials intact from ~100?GPa shock pressures are discussed.Results include (i) generation of pressure standards at static pressures up to ~200?GPa (2?Mbar) at 300?K, (ii) single-shock compression of small-molecular fluids, including resolution of the recent controversy over the correct shock-compression curve of liquid D2 at 100?GPa pressures, (iii) the first observations of metallization of fluid hydrogen, nitrogen and oxygen compressed quasi-isentropically at 100?GPa pressures, (iv) implications for the interiors of giant planets within our solar system, extrasolar giant planets and brown dwarfs discovered recently and the equation of state of deuterium–tritium in inertial confinement fusion (ICF) and (v) prospects of recovering novel materials from extreme conditions, such as metastable solid metallic hydrogen. Future research is suggested.

W J Nellis

2006-01-01T23:59:59.000Z

275

Current and Perspective Applications of Dense Plasma Focus Devices  

Science Journals Connector (OSTI)

Dense Plasma Focus (DPF) devices' applications which are intended to support the main?stream large?scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one are described. In the first direction such problems as self?generated magnetic fields implosion stability of plasma shells having a high aspect ratio etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF) whereas different problems of current disruption phenomenon plasma turbulence mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement—MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad?band current applications some results obtained in the fields of radiation material sciences radiobiology nuclear medicine express Neutron Activation Analysis (including a single?shot interrogation of hidden illegal objects) dynamic non?destructive quality control X?Ray microlithography and micromachining and micro?radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high?flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics for the goals of radiation treatment of malignant tumors for neutron tests of materials of the first wall blankets and NFP device's constructions (with fluences up to 1 dpa per a year term) and ns pulses of fast electrons neutrons and hard X?Rays for brachytherapy.

V. A. Gribkov

2008-01-01T23:59:59.000Z

276

The National Ignition Facility and the Path to Fusion Energy  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

Moses, E

2011-07-26T23:59:59.000Z

277

Ultrashort x-ray backlighters and applications  

SciTech Connect (OSTI)

Previously, using ultrashort laser pulses focused onto solid targets, we have experimentally studied a controllable ultrafast broadband radiation source in the extreme ultraviolet for time-resolved dynamical studies in ultrafast science [J. Workman, A. Maksimchuk, X. Llu, U. Ellenberger, J. S. Coe, C.-Y. Chien, and D. Umstadter, ``Control of Bright Picosecond X-Ray Emission from Intense Sub- Picosecond Laser-Plasma Interactions,`` Phys. Rev. Lett. 75, 2324 (1995)]. Once armed with a bright ultrafast broadband continuum x-ray source and appropriate detectors, we used the source as a backlighter to study a remotely produced plasma. The application of the source to a problem relevant to high-density matter completes the triad: creating and controlling, efficiently detecting, and applying the source. This work represented the first use of an ultrafast laser- produced x-ray source as a time-resolving probe in an application relevant to atomic, plasma and high-energy-density matter physics. Using the x-ray source as a backlighter, we adopted a pump-probe geometry to investigate the dynamic changes in electronic structure of a thin metallic film as it is perturbed by an ultrashort laser pulse. Because the laser deposits its energy in a skin depth of about 100 {Angstrom} before expansion occurs, up to gigabar pressure shock waves lasting picosecond in duration have been predicted to form in these novel plasmas. This raises the possibility of studying high- energy-density matter relevant to inertial confinement fusion (ICF) and astrophysics in small-scale laboratory experiments. In the past, time-resolved measurements of K-edge shifts in plasmas driven by nanosecond pulses have been used to infer conditions in highly compressed materials. In this study, we used 100-fs laser pulses to impulsively drive shocks into a sample (an untamped 1000 {Angstrom} aluminum film on 2000 {Angstrom} of parylene-n), measuring L-edge shifts.

Umstadter, D., University of Michigan

1997-08-01T23:59:59.000Z

278

LLE Review 114 (January-March 2008)  

SciTech Connect (OSTI)

This volume of the LLE Review, covering January-March 2008, features 'Cryogenic Targets: Current Status and Future Development', by D. R. Harding, D. H. Edgell, M. D. Wittman, L. M. Elasky, S. J. Verbridge, A. J. Weaver, L. D. Lund, W. Seka, W. T. Shmayda, R. T. Janezic, M. J. Shoup III, M. Moore, R. Junquist, and A. V. Okishev. In this article (p. 57), the authors report on the status of layering cryogenic DT and D{sub 2} targets at LLE for inertial confinement fusion (ICF) targets. This critical effort achieves the important milestone of routinely providing cryogenic DT targets that meet the 1.0-{micro}m (rms) OMEGA ice-quality-surface specification. The best D{sub 2}-ice layers produced so far (rms roughness of 1.1 {micro}m) are approaching the quality typically achieved in DT targets. Efforts to improve the consistency of this process are reported along with investigations supporting the National Ignition Campaign studying issues relevant to indirect-drive and direct-drive cryogenic targets. Additional highlights of recent research presented in this issue include the following: (1) an improved laser speckle smoothing scheme that augments the current NIF 1-D SSD system by using multiple-FM modulators (MultiFM 1-D SSD) (p. 73). With a judicious choice of modulator frequencies, MultiFM 1-D SSD smoothes resonances produced at the higher spatial frequencies and can attain similar or even faster smoothing rates compared to the baseline NIF 2-D SSD system. DRACO simulations have shown that MultiFM 1-D SSD beam smoothing is sufficient for the direct-drive-ignition targets and pulse shapes analyzed thus far, and may even allow reducing the bandwidth enough to eliminate the need for dual-tripler frequency conversion on the NIF. (2) describes a time-gated, monoenergetic proton radiography that provides unique measurements of implosion dynamics of spherical targets in direct-drive inertial confinement fusion (ICF) (p. 81). Radiographs obtained at different implosion times, from acceleration, through coasting, deceleration, to final stagnation, display a comprehensive picture of spherical ICF implosion. Critical information inferred from such images characterizes the spatial structure and temporal evolution of self-generated fields and plasma areal density. (3) describes a single-shot cross-correlator based on a pulse replicator that produces a discrete sequence of sampling pulses that are nonlinearly mixed with the pulse under test (p. 86). The combination of a high reflector and partial reflector replicates an optical pulse by multiple internal reflections and generates a sequence of spatially displaced and temporally delayed sampling pulses. This principle is used in a cross-correlator characterizing optical pulses at 1053 nm, where a dynamic range higher than 60 dB is obtained over a temporal range larger than 200 ps. The dynamic range can be extended with standard optical-density filters and the temporal range extended with larger optics. (4) presents a novel focal-spot diagnostic developed for OMEGA EP that will be used to characterize on-shot focal spots to support high-quality laser-matter interaction experiments (p. 94). The complex fields in the region of the high-energy focus are calculated using high-resolution measurements of the main beam wavefront using the focal-spot diagnostic (FSD) located on the short-pulse diagnostic package and a careful calibration of the transfer wavefront between the FSD instrument and target chamber center. The concept of this calibration procedure is experimentally verified in the Multi-Terawatt (MTW) Laser System, which serves as a development platform for OMEGA EP. A technique based on phase retrieval is employed for the transfer-wavefront calibration since the OMEGA EP infrastructure cannot be replicated in the MTW laser; however, this approach also shows promise as an alternative method for OMEGA EP. (5) report on a systematic study to improve the laser-damage resistance of multilayer high-reflector coatings for use at 351 nm on the OMEGA EP Laser System (p. 103). A series of ha

Zuegel, J.D.

2008-07-30T23:59:59.000Z

279

Diode-pumped solid-state laser driver experiments for inertial fusion energy applications  

SciTech Connect (OSTI)

Although solid-state lasers have been the primary means by which the physics of inertial confinement fusion (ICF) have been investigated, it was previously thought that solid-state laser technology could not offer adequate efficiencies for an inertial fusion energy (IFE) power plant. Orth and co-workers have recently designed a conceptual IFE power plant, however, with a high efficiency diode-pumped solid-state laser (DPSSL) driver that utilized several recent innovations in laser technology. It was concluded that DPSSLs could offer adequate performance for IFE with reasonable assumptions. This system was based on a novel diode pumped Yb-doped Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) amplifier. Because this is a relatively new gain medium, a project was established to experimentally validate the diode-pumping and extraction dynamics of this system at the smallest reasonable scale. This paper reports on the initial experimental results of this study. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm{sup 2} using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0{times}10{sup {minus}20} cm{sup 2}. Up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6{times}6{times}44 mm{sup 3} Yb:S-FAP amplifier rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to {approximately}0.5 J per 1 ms pulse from a 3{times}3{times}30 mm{sup 3} rod. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 {mu}s pulses.

Marshall, C.D.; Payne, S.A.; Emanuel, M.E.; Smith, L.K.; Powell, H.T.; Krupke, W.F.

1995-07-11T23:59:59.000Z

280

Progress Toward Ignition on the National Ignition Facility  

SciTech Connect (OSTI)

The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays for symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer pulse lengths produce unique plasma conditions for laser-plasma instabilities that could reduce hohlraum coupling efficiency. Initial experiments have demonstrated efficient coupling of laser energy to x-rays. X-ray drive greater than 300 eV has been measured in gas-filled ignition hohlraum and shows the expected scaling with laser energy and hohlraum scale size. Experiments are now optimizing capsule implosions for ignition. Ignition conditions require assembling the fuel with sufficient density and temperature for thermonuclear burn. X-rays ablate the outside of the capsule, accelerating and spherically compressing the capsule for assembling the fuel. The implosion stagnates, heating the central core and producing a hot spot that ignites and burns the surrounding fuel. The four main characteristics of the implosion are shell velocity, central hot spot shape, fuel adiabat, and mix. Experiments studying these four characteristics of implosions are used to optimize the implosion. Integrated experiments using cryogenic fuel layer experiments demonstrate the quality of the implosion as the optimization experiments progress. The final compressed fuel conditions are diagnosed by measuring the x-ray emission from the hot core and the neutrons and charged particles produced in the fusion reactions. Metrics of the quality of the implosion are the neutron yield and the shell areal density, as well as the size and shape of the core. The yield depends on the amount of fuel in the hot core and its temperature and is a gauge of the energy coupling to the fuel. The areal density, the density of the fuel times its thickness, diagnoses the fuel assembly, which is measured using the fraction of neutrons that are down scattered passing through the dense shell. The yield and fraction of down scattered neutrons, or shell rho-r, from the cryogenic layered implosions are shown in Figure 3. The different sets of data represent results after a series of implosion optimization experiments. Both yield and areal density show significant increases as a result of the optimiza

Kauffman, R L

2011-10-17T23:59:59.000Z

Note: This page contains sample records for the topic "ihsgi inforum icf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield.  

SciTech Connect (OSTI)

Z-Pinch Inertial Fusion Energy (Z-IFE) complements and extends the single-shot z-pinch fusion program on Z to a repetitive, high-yield, power plant scenario that can be used for the production of electricity, transmutation of nuclear waste, and hydrogen production, all with no CO{sub 2} production and no long-lived radioactive nuclear waste. The Z-IFE concept uses a Linear Transformer Driver (LTD) accelerator, and a Recyclable Transmission Line (RTL) to connect the LTD driver to a high-yield fusion target inside a thick-liquid-wall power plant chamber. Results of RTL and LTD research are reported here, that include: (1) The key physics issues for RTLs involve the power flow at the high linear current densities that occur near the target (up to 5 MA/cm). These issues include surface heating, melting, ablation, plasma formation, electron flow, magnetic insulation, conductivity changes, magnetic field diffusion changes, possible ion flow, and RTL mass motion. These issues are studied theoretically, computationally (with the ALEGRA and LSP codes), and will work at 5 MA/cm or higher, with anode-cathode gaps as small as 2 mm. (2) An RTL misalignment sensitivity study has been performed using a 3D circuit model. Results show very small load current variations for significant RTL misalignments. (3) The key structural issues for RTLs involve optimizing the RTL strength (varying shape, ribs, etc.) while minimizing the RTL mass. Optimization studies show RTL mass reductions by factors of three or more. (4) Fabrication and pressure testing of Z-PoP (Proof-of-Principle) size RTLs are successfully reported here. (5) Modeling of the effect of initial RTL imperfections on the buckling pressure has been performed. Results show that the curved RTL offers a much greater buckling pressure as well as less sensitivity to imperfections than three other RTL designs. (6) Repetitive operation of a 0.5 MA, 100 kV, 100 ns, LTD cavity with gas purging between shots and automated operation is demonstrated at the SNL Z-IFE LTD laboratory with rep-rates up to 10.3 seconds between shots (this is essentially at the goal of 10 seconds for Z-IFE). (7) A single LTD switch at Tomsk was fired repetitively every 12 seconds for 36,000 shots with no failures. (8) Five 1.0 MA, 100 kV, 100 ns, LTD cavities have been combined into a voltage adder configuration with a test load to successfully study the system operation. (9) The combination of multiple LTD coaxial lines into a tri-plate transmission line is examined. The 3D Quicksilver code is used to study the electron flow losses produced near the magnetic nulls that occur where coax LTD lines are added together. (10) Circuit model codes are used to model the complete power flow circuit with an inductive isolator cavity. (11) LTD architectures are presented for drivers for Z-IFE and high yield. A 60 MA LTD driver and a 90 MA LTD driver are proposed. Present results from all of these power flow studies validate the whole LTD/RTL concept for single-shot ICF high yield, and for repetitive-shot IFE.

Sharpe, Robin Arthur; Kingsep, Alexander S. (Kurchatov Institute, Moscow, Russia); Smith, David Lewis; Olson, Craig Lee; Ottinger, Paul F. (Naval Research Laboratory, Washington, DC); Schumer, Joseph Wade (Naval Research Laboratory, Washington, DC); Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Kim, Alexander (High Currents Institute, Tomsk, Russia); Kulcinski, Gerald L. (University of Wisconsin, Madison, WI); Kammer, Daniel C. (University of Wisconsin, Madison, WI); Rose, David Vincent (Voss Scientific, Albuquerque, NM); Nedoseev, Sergei L. (Kurchatov Institute, Moscow, Russia); Pointon, Timothy David; Smirnov, Valentin P. (Kurchatov Institute, Moscow, Russia); Turgeon, Matthew C.; Kalinin, Yuri G. (Kurchatov Institute, Moscow, Russia); Bruner, Nichelle "Nicki" (Voss Scientific, Albuquerque, NM); Barkey, Mark E. (University of Alabama, Tuscaloosa, AL); Guthrie, Michael (University of Wisconsin, Madison, WI); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Genoni, Tom C. (Voss Scientific, Albuquerque, NM); Langston, William L.; Fowler, William E.; Mazarakis, Michael Gerrassimos

2007-01-01T23:59:59.000Z

282

A Concept Exploration Program in Fast Ignition Inertial Fusion — Final Report  

SciTech Connect (OSTI)

The Fast Ignition (FI) approach to Inertial Confinement Fusion (ICF) holds particular promise for fusion energy because the independently generated compression and ignition pulses allow ignition with less compression, resulting in (potentially) higher gain. Exploiting this concept effectively requires an understanding of the transport of electrons in prototypical geometries and at relevant densities and temperatures. Our consortium, which included General Atomics (GA), The Ohio State University (OSU), the University of California, San Diego (UCSD), University of California, Davis (UC-Davis), and Princeton University under this grant (~$850K/yr) and Lawrence Livermore National Laboratory (LLNL) under a companion grant, won awards in 2000, renewed in 2005, to investigate the physics of electron injection and transport relevant to the FI concept, which is crucial to understand electron transport in integral FI targets. In the last two years we have also been preparing diagnostics and starting to extend the work to electron transport into hot targets. A complementary effort, the Advanced Concept Exploration (ACE) program for Fast Ignition, was funded starting in 2006 to integrate this understanding into ignition schemes specifically suitable for the initial fast ignition attempts on OMEGA and National Ignition Facility (NIF), and during that time these two programs have been managed as a coordinated effort. This result of our 7+ years of effort has been substantial. Utilizing collaborations to access the most capable laser facilities around the world, we have developed an understanding that was summarized in a Fusion Science & Technology 2006, Special Issue on Fast Ignition. The author lists in the 20 articles in that issue are dominated by our group (we are first authors in four of them). Our group has published, or submitted 67 articles, including 1 in Nature, 2 Nature Physics, 10 Physical Review Letters, 8 Review of Scientific Instruments, and has been invited to give numerous talks at national and international conferences (including APS-DPP, IAEA, FIW). The advent of PW capabilities – at Rutherford Appleton Lab (UK) and then at Titan (LLNL) (2005 and 2006, respectively), was a major step toward experiments in ultra-high intensity high-energy FI relevant regime. The next step comes with the activation of OMEGA EP at LLE, followed shortly by NIF-ARC at LLNL. These capabilities allow production of hot dense material for electron transport studies. In this transitional period, considerable effort has been spent in developing the necessary tools and experiments for electron transport in hot and dense plasmas. In addition, substantial new data on electron generation and transport in metallic targets has been produced and analyzed. Progress in FI detailed in §2 is related to the Concept Exploration Program (CEP) objectives; this section is a summary of the publications and presentations listed in §5. This work has benefited from the synergy with work on related Department of Energy (DOE) grants, the Fusion Science Center and the Fast Ignition Advanced Concept Exploration grant, and from our interactions with overseas colleagues, primarily at Rutherford Appleton Laboratory in the UK, and the Institute for Laser Engineering in Japan.

Stephens, Richarad Burnite [General Atomics] [General Atomics; Freeman, Richard R. [The Ohio State University] [The Ohio State University; Van Woekom, L. D. [The Ohio State University] [The Ohio State University; Key, M. [Lawrence Livermore National Laboratory] [Lawrence Livermore National Laboratory; MacKinnon, Andrew J. [Lawrence Livermore National Laboratory] [Lawrence Livermore National Laboratory; Wei, Mingsheng [General Atomics] [General Atomics

2014-02-27T23:59:59.000Z

283

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Golden Gate National Recreation Area  

SciTech Connect (OSTI)

Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy's Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity's Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Golden Gate National Recreation Area (GGNRA) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies' fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. GGNRA identified 182 vehicles in its fleet, which are under the management of the U.S. General Services Administration. Fleet vehicle mission categories are defined in Section 4, and while the GGNRA vehicles conduct many different missions, only two (i.e., support and law enforcement missions) were selected by agency management to be part of this fleet evaluation. The selected vehicles included sedans, trucks, and sport-utility vehicles. This report will show that battery electric vehicles and/or PHEVs are capable of performing the required missions and providing an alternative vehicle for support vehicles and PHEVs provide the same for law enforcement, because each has a sufficient range for individual trips and time is available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle home base, high-use work areas, or intermediately along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in the emission of greenhouse gases and petroleum use, while also reducing fuel costs. The San Francisco Bay Area is a leader in the adoption of PEVs in the United States. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the GGNRA facility would be a benefit for both GGNRA fleets and general public use. Fleet drivers and park visitors operating privately owned PEVs benefit by using the charging infrastructure. ITSNA recommends location analysis of the GGNRA site to identify the optimal placement of the electric vehicle supply equipment station. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and GGNRA for participation in the study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and GGNRA personnel.

Stephen Schey; Jim Francfort

2014-03-01T23:59:59.000Z

284

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Fort Vancouver National Historic Site  

SciTech Connect (OSTI)

Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the use of advanced electric drive vehicle transportation. This report focuses on the Fort Vancouver National Historic Site (FVNHS) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of electric vehicles (EVs) into the agencies’ fleet. Individual observations of the selected vehicles provided the basis for recommendations related to EV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles) could fulfill the mission requirements. FVNHS identified three vehicles in its fleet for consideration. While the FVNHS vehicles conduct many different missions, only two (i.e., support and pool missions) were selected by agency management to be part of this fleet evaluation. The logged vehicles included a pickup truck and a minivan. This report will show that BEVs and PHEVs are capable of performing the required missions and providing an alternative vehicle for both mission categories, because each has sufficient range for individual trips and time available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle’s home base, high-use work areas, or in intermediate areas along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in emission of greenhouse gases and petroleum use, while also reducing fuel costs. The Vancouver, Washington area and neighboring Portland, Oregon are leaders in adoption of PEVs in the United States1. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the FVNHS facility would be a benefit for both FVNHS fleets and general public use. Fleet drivers and park visitors operating privately owned plug-in electric vehicles benefit by using the charging infrastructure. ITSNA recommends location analysis of the FVNHS site to identify the optimal station placement for electric vehicle supply equipment. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and FVNHS for participation in this study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and FVNHS personnel

Stephen Schey; Jim Francfort

2014-03-01T23:59:59.000Z

285

X-ray emission current scaling experiments for compact single-tungsten-wire arrays at 80-nanosecond implosion times  

Science Journals Connector (OSTI)

We report the results of a series of current scaling experiments with the Z accelerator for the compact, single, 20-mm diameter, 10-mm long, tungsten-wire arrays employed for the double-ended hohlraum ICF concept [M. E. Cuneo et al., Plasma Phys. Controlled Fusion 48, R1 (2006)]. We measured the z-pinch peak radiated x-ray power and total radiated x-ray energy as a function of the peak current, at a constant implosion time ?imp=80ns. Previous x-ray emission current scaling for these compact arrays was obtained at ?imp=95ns in the work of Stygar et al. [Phys. Rev. E 69, 046403 (2004)]. In the present study we utilized lighter single-tungsten-wire arrays. For all the measurements, the load hardware dimensions, materials, and array wire number (N=300) were kept constant and were the same as the previous study. We also kept the normalized load current spatial and temporal profiles the same for all experiments reported in this work. Two different currents, 11.2±0.2MA and 17.0±0.3MA, were driven through the wire arrays. The average peak x-ray power for these compact wire arrays increased by 26%±7%to158±26TW at 17±0.3MA from the 125±24TW obtained at a peak current of 18.8±0.5MA with ?imp=95ns. The higher peak power of the faster implosions may possibly be attributed to a higher implosion velocity, which in turn improves the implosion stability, and/or to shorter wire ablation times, which may lead to a decrease in trailing mass and trailing current. Our results show that the scaling of the radiated x-ray peak power and total radiated x-ray energy scaling with peak drive current to be closer to quadratic than the results of Stygar et al. We find that the x-ray peak radiated power is Pr?I1.57±0.20 and the total x-ray radiated energy Er?I1.9±0.24. We also find that the current scaling exponent of the power is sensitive to the inclusion of a single data point with a peak power at least 1.9? below the average. If we eliminate this particular shot from our analysis (shot 1608), the power and energy scaling becomes closer to quadratic. Namely, we find that the dependence on the peak load current of the peak x-ray radiated power and the total x-ray radiated energy become Pr?I1.71±0.10 and Er?I2.01±0.21, respectively. In this case, the power scaling exponent is different by more than 2? from the previously published results of Stygar et al. Larger data sets are likely required to resolve this uncertainty and eliminate the sensitivity to statistical fluctuations in any future studies of this type. Nevertheless, with or without the inclusion of shot 1608, our results with ?imp=80ns fall short of an I2 scaling of the peak x-ray radiated power by at least 2?. In either case, the results of our study are consistent with the heuristic wire ablation model proposed by Stygar et al. (Pr?I1.5). We also derive an empirical predictive relation that connects the power scaling exponent with certain array parameters.

Michael G. Mazarakis; Michael E. Cuneo; William A. Stygar; Henry C. Harjes; Daniel B. Sinars; Brent M. Jones; Christopher Deeney; Eduardo M. Waisman; Thomas J. Nash; Kenneth W. Struve; Dillon H. McDaniel

2009-01-29T23:59:59.000Z

286

Proposed Laser-Based HED physics experiments for Stockpile Stewardship  

SciTech Connect (OSTI)

An analysis of the scientific areas in High Energy Density (HED) physics that underpin the enduring LANL mission in Stockpile Stewardship (SS) has identified important research needs that are not being met. That analysis has included the work done as part of defining the mission need for the High Intensity Laser Laboratory (HILL) LANL proposal to NNSA, LDRD DR proposal evaluations, and consideration of the Predictive Capability Framework and LANL NNSA milestones. From that evaluation, we have identified several specific and scientifically-exciting experimental concepts to address those needs. These experiments are particularly responsive to physics issues in Campaigns 1 and 10. These experiments are best done initially at the LANL Trident facility, often relying on the unique capabilities available there, although there are typically meritorious extensions envisioned at future facilities such as HILL, or the NIF once the ARC short-pulse laser is available at sufficient laser intensity. As the focus of the LANL HEDP effort broadens from ICF ignition of the point design at the conclusion of the National Ignition Campaign, into a more SS-centric effort, it is useful to consider these experiments, which address well-defined issues, with specific scientific hypothesis to test or models to validate or disprove, via unit-physics experiments. These experiments are in turn representative of a possible broad experimental portfolio to elucidate the physics of interest to these campaigns. These experiments, described below, include: (1) First direct measurement of the evolution of particulates in isochorically heated dense plasma; (2) Temperature relaxation measurements in a strongly-coupled plasma; (3) Viscosity measurements in a dense plasma; and (4) Ionic structure factors in a dense plasma. All these experiments address scientific topics of importance to our sponsors, involve excellent science at the boundaries of traditional fields, utilize unique capabilities at LANL, and contribute to the Campaign milestone in 2018. Given their interdisciplinary nature, it is not surprising that these research needs are not being addressed by the other excellent high-energy density physics (HEDP) facilities coming on line, facilities aimed squarely at more established fields and missions. Although energy rich, these facilities deliver radiation (e.g., particle beams for isochoric heating) over a timescale that is too slow in these unit physics experiments to eliminate hydrodynamic evolution of the target plasma during the time it is being created. A theme shared by all of these experiments is the need to quickly create a quasi-homogeneous 'initial state' whose properties and evolution we wish to study. Otherwise, we cannot create unit experiments to isolate the physics of interest and validate the models in our codes, something that cannot be done with the integrated experiments often done in HED. Moreover, these experiments in some cases involve combinations of solid and plasmas, or matter in the warm-dense matter state, where neither the theoretical approximations of solid state or of fully-ionized weakly-coupled plasmas can be used. In all cases, the capability of 'isochoric heating' ('flash' heating at constant density) is important. In some cases, the ability to selectively heat to different degrees different species within a target, whether mixed or adjacent to each other, is critical for the experiment. This capability requires the delivery of very high power densities, which require the conversion of the laser into very short and intense pulses of secondary radiation (electrons, ions, neutrons, x-rays). Otherwise, there is no possibility of a clean experiment to constrain the models, in the cases there are any, or inform the creation of one. Another typical requirement of these experiments is the ability to probe these exotic extreme conditions of matter with flexible and diverse sources of secondary radiation. Without a high-intensity high-power laser with some unique attributes available on Trident today (e.g., ultra-high laser-puls

Benage, John F. [Los Alamos National Laboratory; Albright, Brian J. [Los Alamos National Laboratory; Fernandez, Juan C. [Los Alamos National Laboratory

2012-09-04T23:59:59.000Z

287

Simulations of Turbulent Flows with Strong Shocks and Density Variations: Final Report  

SciTech Connect (OSTI)

The target of this SciDAC Science Application was to develop a new capability based on high-order and high-resolution schemes to simulate shock-turbulence interactions and multi-material mixing in planar and spherical geometries, and to study Rayleigh-Taylor and Richtmyer-Meshkov turbulent mixing. These fundamental problems have direct application in high-speed engineering flows, such as inertial confinement fusion (ICF) capsule implosions and scramjet combustion, and also in the natural occurrence of supernovae explosions. Another component of this project was the development of subgrid-scale (SGS) models for large-eddy simulations of flows involving shock-turbulence interaction and multi-material mixing, that were to be validated with the DNS databases generated during the program. The numerical codes developed are designed for massively-parallel computer architectures, ensuring good scaling performance. Their algorithms were validated by means of a sequence of benchmark problems. The original multi-stage plan for this five-year project included the following milestones: 1) refinement of numerical algorithms for application to the shock-turbulence interaction problem and multi-material mixing (years 1-2); 2) direct numerical simulations (DNS) of canonical shock-turbulence interaction (years 2-3), targeted at improving our understanding of the physics behind the combined two phenomena and also at guiding the development of SGS models; 3) large-eddy simulations (LES) of shock-turbulence interaction (years 3-5), improving SGS models based on the DNS obtained in the previous phase; 4) DNS of planar/spherical RM multi-material mixing (years 3-5), also with the two-fold objective of gaining insight into the relevant physics of this instability and aiding in devising new modeling strategies for multi-material mixing; 5) LES of planar/spherical RM mixing (years 4-5), integrating the improved SGS and multi-material models developed in stages 3 and 5. This final report is outlined as follows. Section 2 shows an assessment of numerical algorithms that are best suited for the numerical simulation of compressible flows involving turbulence and shock phenomena. Sections 3 and 4 deal with the canonical shock-turbulence interaction problem, from the DNS and LES perspectives, respectively. Section 5 considers the shock-turbulence inter-action in spherical geometry, in particular, the interaction of a converging shock with isotropic turbulence as well as the problem of the blast wave. Section 6 describes the study of shock-accelerated mixing through planar and spherical Richtmyer-Meshkov mixing as well as the shock-curtain interaction problem In section 7 we acknowledge the different interactions between Stanford and other institutions participating in this SciDAC project, as well as several external collaborations made possible through it. Section 8 presents a list of publications and presentations that have been generated during the course of this SciDAC project. Finally, section 9 concludes this report with the list of personnel at Stanford University funded by this SciDAC project.

Sanjiva Lele

2012-10-01T23:59:59.000Z

288

Unit physics testing of a mix model in an eulerian fluid computation  

SciTech Connect (OSTI)

A K-L turbulence mix model driven with a drag-buoyancy source term is tested in an Eulerian code in a series of basic unit-physics tests, as part of a mix validation milestone. The model and the closure coefficient values are derived in the work of Dimonte-Tipton [D-T] in Phys.Flu.18, 085101 (2006), and many of the test problems were reported there, where the mix model operated in Lagrange computations. The drag-buoyancy K-L mix model was implemented within the Eulerian code framework by A.J. Scannapieco. Mix model performance is evaluated in terms of mix width growth rates compared to experiments in select regimes. Results in our Eulerian code are presented for several unit-physics I-D test problems including the decay of homogeneous isotropic turbulence (HIT), Rayleigh-Taylor (RT) unstable mixing, shock amplification of initial turbulence, Richtmyer-Meshkov (RM) mixing in several single shock test cases and in comparison to two RM experiments including re-shock (Vetter-Sturtevant and Poggi, et.al.). Sensitivity to model parameters, to Atwood number, and to initial conditions are examined. Results here are in good agreement in some tests (HIT, RT) with the previous results reported for the mix model in the Lagrange calculations. The HIT turbulent decay agrees closely with analytic expectations, and the RT growth rate matches experimental values for the default values of the model coefficients proposed in [D-T]. Results for RM characterized with a power law growth rate differ from the previous mix model work but are still within the range for reasonable agreement with experiments. Sensitivity to IC values in the RM studies are examined; results are sensitive to initial values of L[t=O], which largely determines the RM mix layer growth rate, and generally differs from the IC values used in the RT studies. Result sensitivity to initial turbulence, K[t=O], is seen to be small but significant above a threshold value. Initial conditions can be adjusted so that single shock RM mix width results match experiments but we have not been able to obtain a good match for first shock and re-shock growth rates in the same experiment with a single set of parameters and Ie. Problematic issues with KH test problems are described. Resolution studies for an RM test problem show the K-L mix growth rate decreases as it converges at a supra-linear rate, and, convergence requires a fine grid (on the order of 10 microns). For comparison, a resolution study of a second mix model [Scannapieco and Cheng, Phys.Lett.A, 299(1),49, (2002)] acting on a two fluid interface problem was examined. The mix in this case was found to increase with grid resolution at low to moderate resolutions, but converged at comparably fine resolutions. In conclusion, these tests indicate that the Eulerian code K-L model, using the Dimonte Tipton default model closure coefficients, achieve reasonable results across many of the unit-physics experimental conditions. However, we were unable to obtain good matches simultaneously for shock and re-shock mix in a single experiment. Results are sensitive to initial conditions in the regimes under study, with different IC best suited to RT or RM mix. It is reasonable to expect IC sensitivity in extrapolating to high energy density regimes, or to experiments with deceleration due to arbitrary combinations of RT and RM. As a final comparison, the atomically generated mix fraction and the mix width were each compared for the K-L mix model and the Scannapieco model on an identical RM test problem. The Scannapieco mix fraction and width grow linearly. The K-L mix fraction and width grow with the same power law exponent, in contrast to expectations from analysis. In future work it is proposed to do more head-to-head comparisons between these two models and other mix model options on a full suite of physics test problems, such as interfacial deceleration due to pressure build-up during an idealized ICF implosion.

Vold, Erik [Los Alamos National Laboratory; Douglass, Rod [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z