National Library of Energy BETA

Sample records for ihsgi inforum icf

  1. The Inforum LIFT Model

    U.S. Energy Information Administration (EIA) Indexed Site

    Inforum LIFT Model U.S. Energy and Economic Outlook Douglas S. Meade 2011 EIA Energy Conference Overview  The Inforum LIFT Model  Treatment of energy flows and emissions in LIFT.  Calibrating to AEO  Model extensions  U.S. Energy and Macroeconomic Outlook  Modeling of energy and environmental regulation April 26, 2011 2 2011 EIA Energy Conference LIFT: An Interindustry Macro (IM) Model  Input-Output (IO) relationships form the core of LIFT, both for output and price

  2. How ICF Works

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    icf / how icf works How ICF Works Shiva Laser When the 20-beam Shiva laser was completed in 1978, it was the world's most powerful laser. It delivered more than ten kilojoules of energy in less than a billionth of a second in its first full-power firing. About the size of a football field, Shiva was the latest in a series of laser systems built over two decades, each five to ten times more powerful than its predecessor. Since the late 1940s, researchers have used magnetic fields to confine hot,

  3. ICF Annual Report 1997

    SciTech Connect (OSTI)

    Correll, D

    1998-06-01

    The continuing objective of Lawrence Livermore National Laboratory's (LLNL's) Inertial Confinement Fusion (ICF) Program is the demonstration of thermonuclear fusion ignition and energy gain in the laboratory and to support the nuclear weapons program in its use of ICF facilities. The underlying theme of all ICF activities as a science research and development program is the Department of Energy's (DOE's) Defense Programs (DP) science-based Stockpile Stewardship Program (SSP). The mission of the US Inertial Fusion Program is twofold: (1) to address high-energy-density physics issues for the SSP and (2) to develop a laboratory microfusion capability for defense and energy applications. In pursuit of this mission, the ICF Program has developed a state-of-the-art capability to investigate high-energy-density physics in the laboratory. The near-term goals pursued by the ICF Program in support of its mission are demonstrating fusion ignition in the laboratory and expanding the Program's capabilities in high-energy-density science. The National Ignition Facility (NIF) project is a cornerstone of this effort.

  4. icf | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    The demonstration of laboratory ignition and its use to support the... ICF Reports There are a wide variety of reports that address the world class research and experiments in ICF ...

  5. ICF International | Open Energy Information

    Open Energy Info (EERE)

    search Name: ICF International Address: 9300 Lee Highway, Fairfax, VA 22031-1207 USA Place: Washington, District of Columbia Year Founded: 1969 References: http:...

  6. Nuclear Diagnostics of ICF

    SciTech Connect (OSTI)

    Izumi, N; Ierche, R A; Moran, M J; Phillips, T W; Sangster, T C; Schmid, G J; Stoyer, M A; Disdier, L; Bourgade, J L; Rouyer, A; Fisher, R K; Gerggren, R R; Caldwen, S E; Faulkner, J R; Mack, J M; Oertel, J A; Young, C S; Glebov, V Y; Jaanimagi, P A; Meyerhofer, D D; Soures, J M; Stockel, C; Frenje, J A; Li, C K; Petrasso, R D

    2001-10-18

    In inertial confinement fusion (ICF), a high temperature and high density plasma is produced by the spherical implosion of a small capsule. A spherical target capsule is irradiated uniformly by a laser beam (direct irradiation) or x-rays from a high Z enclosure (hohlraum) that is irradiated by laser or ion beams (indirect irradiation). Then high-pressure ablation of the surface causes the fuel to be accelerated inward. Thermonuclear fusion reactions begin in the center region of the capsule as it is heated to sufficient temperature (10 keV) by the converging shocks (hot spot formation). During the stagnation of the imploded shell, the fuel in the shell region is compressed to high density ({approx} 10{sup 3} times solid density in fuel region). When these conditions are established, energy released by the initial nuclear reactions in center ''hot-spot'' region can heat up the cold ''fuel'' region and cause ignition. They are developing advanced nuclear diagnostics for imploding plasmas of the ignition campaign on the National Ignition Facility (NIF). The NIF is a 1.8MJ, 192-beam glass laser system that is under construction at Lawrence Livermore National Laboratory. One objective of the NIF is to demonstrate ignition and gain in an inertial confinement fusion plasma. Extreme physical conditions characterize the imploded plasmas on the NIF. First, the thickness of the plasma, expressed by areal density (plasma density times radius), is large, up to {approx} 1 g/cm{sup 2}. Highly penetrating probes such as energetic neutrons, hard x-rays, or {gamma} rays are required to see deep inside the plasma. Second, the implosion time is quite short. The implosion process takes {approx} 20 ns and the duration of the fusion reaction is on the order of 100 picoseconds. To observe the time history of the nuclear reactions, time resolution better than 10 ps is required. Third, the size of the imploded plasma is quite small ({approx} 100 {micro}m). To see the shape of burning region

  7. ICF Reports | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Fusion ICF Reports There are a wide variety of reports that address the world class research and experiments in ICF being performed on behalf of the U.S. ICF Program and stockpile stewardship. Some of these reports are listed below: 2016 Inertial Confinement Fusion Program Framework, U.S. Department of Energy, National Nuclear Security Administration, May 16, 2016. DOE/NA-0044 2015 Review of the Inertial Confinement Fusion and High Energy Density Science Portfolio, U.S. Department of Energy,

  8. ICF Program Framework | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    Evaluation Inertial Confinement Fusion ICF Program Framework 2016 Inertial Confinement Fusion Program Framework, U.S. Department of Energy, National Nuclear Security ...

  9. ICF Facilities | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    ICF operates a set of world-class experimental facilities to create HEDP conditions and to obtain quantitative data in support of its numerous stockpile stewardship-related ...

  10. ICF program annual report, 1988--89

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    This report contains discussions on the following topics: Target Physics; Nova Experiments; Nova Laser Science and Technology; Target Science and Technology; Advanced Drivers; and ICF Applications.

  11. icf

    National Nuclear Security Administration (NNSA)

    in size from a pinhead to a small pea, is filled with a mixture of two isotopes of hydrogen (deuterium (D) and tritium (T)) and is subjected to a sudden application of...

  12. icf

    National Nuclear Security Administration (NNSA)

    in size from a pinhead to a small pea, is filled with a mixture of two isotopes of hydrogen (deuterium (D) and tritium (T)) and is subjected to a sudden application of intense...

  13. ICF Facilities | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Facilities Nike mirror array and lens array ICF operates a set of world-class experimental facilities to create HEDP conditions and to obtain quantitative data in support of its numerous stockpile stewardship-related activities. To learn about three high energy experimental facilities and two small lasers that provide ICF capabilities, select the links below. National Ignition Facility, Lawrence Livermore National Laboratory OMEGA and OMEGA EP, University of Rochester Laboratory for Laser

  14. Wetted foam liquid fuel ICF target experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olson, R. E.; Leeper, R. J.; Yi, S. A.; Kline, J. L.; Zylstra, A. B.; Peterson, R. R.; Shah, R.; Braun, T.; Biener, J.; Kozioziemski, B. J.; et al

    2016-05-01

    Here, we are developing a new NIF experimental platform that employs wetted foam liquid fuel layer ICF capsules. We will use the liquid fuel layer capsules in a NIF sub-scale experimental campaign to explore the relationship between hot spot convergence ratio (CR) and the predictability of hot spot formation. DT liquid layer ICF capsules allow for flexibility in hot spot CR via the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density. Our hypothesis is that the predictive capability of hot spot formation is robust and 1D-like for a relatively low CR hot spot (CR~15), but willmore » become less reliable as hot spot CR is increased to CR>20. Simulations indicate that backing off on hot spot CR is an excellent way to reduce capsule instability growth and to improve robustness to low-mode x-ray flux asymmetries. In the initial experiments, we will test our hypothesis by measuring hot spot size, neutron yield, ion temperature, and burn width to infer hot spot pressure and compare to predictions for implosions with hot spot CR's in the range of 12 to 25. Larger scale experiments are also being designed, and we will advance from sub-scale to full-scale NIF experiments to determine if 1D-like behavior at low CR is retained as the scale-size is increased. The long-term objective is to develop a liquid fuel layer ICF capsule platform with robust thermonuclear burn, modest CR, and significant α-heating with burn propagation.« less

  15. Suppressed-fission ICF hybrid reactor

    SciTech Connect (OSTI)

    Hogan, W.J.; Meier, W.R.

    1986-05-20

    A suppressed-fission ICF hybrid reactor has been designed to maximize the production of /sup 233/U. In this design, Be is used as a neutron multiplier. An annular array of Be columns surrounds the fusion pulse inside the reaction chember. The Be columns consist of short cylinders of Be joined together with steel snap rings. Vertical holes in the Be carry liquid lithium coolant and steel-clad thorium fuel pins. The lithium coolant is supplied at the top of the chamber, traverses through the Be columns and exits at the bottom. The columns are attached to top and bottom plates in such a way as to tolerate radiation-induced swelling and the vibrations resulting from each fusion pulse. A thin (10 cm) liquid Li fall region protects the Be columns from direct exposure to the X-rays and debris emitted by the fuel capsule. A neutronics study of this design indicates that the specific production of /sup 233/U fuel is increased by operating at relatively large thorium volume fractions. A design at a fertile fuel fraction of 30 vol % produces a total breeding ratio of over 2.1. The /sup 6/Li to /sup 7/Li ratio is adjusted to keep the tritium breeding ratio at about 1.0. In such a reactor, about 3400 kg of /sup 233/U can be produced per full power year at a fusion power level of 800 MW. Reactor support ratios greater than 13 can be achieved, leading to beneficial results even if the fusion reactor cost is significantly greater than that of a fission reactor.

  16. Progress on achieving the ICF conditions needed for high gain

    SciTech Connect (OSTI)

    Lindl, J.D.

    1988-12-23

    Progress during the past two years has moved us much closer to demonstrating the scientific and technological requirements for high gain ICF in the laboratory. This progress has been made possible by operating at the third harmonic of 1..mu..m light which dramatically reduces concern about hot electrons and by advances in diagnostics such as 100 ps x-ray framing cameras which greatly increase the data available from each experiment. Making use of many of these new capabilities, major improvements in confinement conditions have been achieved for ICF implosions. In particular, in an optimized hohlraum on Nova, radiation driven implosions with convergence ratio in excess of 30 (volume compression /approximately/3 /times/ 10/sup 4/) have performed essentially as predicted by spherical implosion calculations. This paper presents these results as well as examples of advances in several other areas and discusses the implications for the future of ICF with lasers and heavy ion beam drivers. 8 refs., 10 figs.

  17. Contributions to the Genesis and Progress of ICF

    SciTech Connect (OSTI)

    Nuckolls, J H

    2006-02-15

    Inertial confinement fusion (ICF) has progressed from the detonation of large-scale fusion explosions initiated by atomic bombs in the early 1950s to final preparations for initiating small-scale fusion explosions with giant lasers. The next major step after ignition will be development of high performance targets that can be initiated with much smaller, lower cost lasers. In the 21st century and beyond, ICF's grand challenge is to develop practical power plants that generate low cost, clean, inexhaustible fusion energy. In this chapter, I first describe the origin in 1960-61 of ICF target concepts, early speculations on laser driven 'Thermonuclear Engines' for power production and rocket propulsion, and encouraging large-scale nuclear explosive experiments conducted in 1962. Next, I recall the 40-year, multi-billion dollar ignition campaign - to develop a matched combination of sufficiently high-performance implosion lasers and sufficiently stable targets capable of igniting small fusion explosions. I conclude with brief comments on the NIF ignition campaign and very high-performance targets, and speculations on ICF's potential in a centuries-long Darwinian competition of future energy systems. My perspectives in this chapter are those of a nuclear explosive designer, optimistic proponent of ICF energy, and Livermore Laboratory leader. The perspectives of Livermore's post 1970 laser experts and builders, and laser fusion experimentalists are provided in a chapter written by John Holzrichter, a leading scientist and leader in Livermore's second generation laser fusion program. In a third chapter, Ray Kidder, a theoretical physicist and early laser fusion pioneer, provides his perspectives including the history of the first generation laser fusion program he led from 1962-1972.

  18. Effect of inactive impurities on the burning of ICF targets

    SciTech Connect (OSTI)

    Gus'kov, S. Yu.; Il'in, D. V.; Sherman, V. E.

    2011-12-15

    The efficiency of thermonuclear burning of the spherical deuterium-tritium (DT) plasma of inertial confinement fusion (ICF) targets in the presence of low-Z impurities (such as lithium, carbon, or beryllium) with arbitrary concentrations is investigated. The effect of impurities produced due to the mixing of the thermonuclear fuel with the material of the structural elements of the target during its compression on the process of target burning is studied, and the possibility of using solid noncryogenic thermonuclear fuels in ICF targets is analyzed. Analytical dependences of the ignition energy and target thermonuclear gain on the impurity concentration are obtained. The models are constructed for homogeneous and inhomogeneous plasmas for the case in which the burning is initiated in the central heated region of the target and then propagates into the surrounding relatively cold fuel. Two possible configurations of an inhomogeneous plasma, namely, an isobaric configuration formed in the case of spark ignition of the target and an isochoric configuration formed in the case of fast ignition, are considered. The results of numerical simulations of the burning of the DT plasma of ICF targets in a wide range of impurity concentrations are presented. The simulations were performed using the TEPA one-dimensional code, in which the thermonuclear burning kinetics is calculated by the Monte Carlo method. It is shown that the strongest negative effect related to the presence of impurities is an increase in the energy of target ignition. It is substantiated that the most promising solid noncryogenic fuel is DT hydride of beryllium (BeDT). The requirements to the plasma parameters at which BeDT can be used as a fuel in noncryogenic ICF targets are determined. Variants of using noncryogenic targets with a solid thermonuclear fuel are proposed.

  19. Hybrid-drive implosion system for ICF targets

    DOE Patents [OSTI]

    Mark, James W.

    1988-01-01

    Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.

  20. Hybrid-drive implosion system for ICF targets

    DOE Patents [OSTI]

    Mark, J.W.K.

    1987-10-14

    Hybrid-drive implosion systems for ICF targets are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator surroundingly disposed around fusion fuel. The ablator is first compressed to higher density by a laser system, or by an ion beam system, that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system that is optimized for this second phase of operation of the target. The fusion fuel is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion. 3 figs.

  1. Hybrid-drive implosion system for ICF targets

    DOE Patents [OSTI]

    Mark, James W.

    1988-08-02

    Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.

  2. X-ray ablation measurements and modeling for ICF applications

    SciTech Connect (OSTI)

    Anderson, A.T.

    1996-09-01

    X-ray ablation of material from the first wall and other components of an ICF (Inertial Confinement Fusion) chamber is a major threat to the laser final optics. Material condensing on these optics after a shot may cause damage with subsequent laser shots. To ensure the successful operation of the ICF facility, removal rates must be predicted accurately. The goal for this dissertation is to develop an experimentally validated x-ray response model, with particular application to the National Ignition Facility (NIF). Accurate knowledge of the x-ray and debris emissions from ICF targets is a critical first step in the process of predicting the performance of the target chamber system. A number of 1-D numerical simulations of NIF targets have been run to characterize target output in terms of energy, angular distribution, spectrum, and pulse shape. Scaling of output characteristics with variations of both target yield and hohlraum wall thickness are also described. Experiments have been conducted at the Nova laser on the effects of relevant x-ray fluences on various materials. The response was diagnosed using post-shot examinations of the surfaces with scanning electron microscope and atomic force microscope instruments. Judgments were made about the dominant removal mechanisms for each material. Measurements of removal depths were made to provide data for the modeling. The finite difference ablation code developed here (ABLATOR) combines the thermomechanical response of materials to x-rays with models of various removal mechanisms. The former aspect refers to energy deposition in such small characteristic depths ({approx} micron) that thermal conduction and hydrodynamic motion are significant effects on the nanosecond time scale. The material removal models use the resulting time histories of temperature and pressure-profiles, along with ancillary local conditions, to predict rates of surface vaporization and the onset of conditions that would lead to spallation.

  3. Site support program plan for ICF Kaiser Hanford Company, Revision 1

    SciTech Connect (OSTI)

    1995-10-01

    This document is the general administrative plan implemented by the Hanford Site contractor, ICF Kaiser Hanford Company. It describes the mission, administrative structure, projected staffing, to be provided by the contractor. The report breaks out the work responsibilities within the different units of the company, a baseline schedule for the different groups, and a cost summary for the different operating units.

  4. Inertial confinement fusion. 1995 ICF annual report, October 1994--September 1995

    SciTech Connect (OSTI)

    1996-06-01

    Lawrence Livermore National Laboratory`s (LLNL`s) Inertial Confinement Fusion (ICF) Program is a Department of Energy (DOE) Defense Program research and advanced technology development program focused on the goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory. During FY 1995, the ICF Program continued to conduct ignition target physics optimization studies and weapons physics experiments in support of the Defense Program`s stockpile stewardship goals. It also continued to develop technologies in support of the performance, cost, and schedule goals of the National Ignition Facility (NIF) Project. The NIF is a key element of the DOE`s Stockpile Stewardship and Management Program. In addition to its primary Defense Program goals, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application to inertial fusion energy (IFE). Also, ICF technologies have had spin-off applications for industrial and governmental use. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. Inference of ICF Implosion Core Mix using Experimental Data and Theoretical Mix Modeling

    SciTech Connect (OSTI)

    Welser-Sherrill, L; Haynes, D A; Mancini, R C; Cooley, J H; Tommasini, R; Golovkin, I E; Sherrill, M E; Haan, S W

    2008-04-30

    The mixing between fuel and shell materials in Inertial Confinement Fusion (ICF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model performed well in predicting trends in the width of the mix layer. With these results, we have contributed to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increased our confidence in the methods used to extract mixing information from experimental data.

  6. Application of Spatially Resolved High Resolution Crystal Spectrometry to ICF Plasmas

    Office of Scientific and Technical Information (OSTI)

    11 PPPL- 4811 Application of Spatially Resolved High Resolution Crystal Spectrometry to ICF Plasmas September, 2012 Kenneth W. Hill, M. Bitter, L. Delgado-Aprico, N.A. Pablant, P. Beiersdorfer, M. Schneider, K. Widmann, M. Sanchez del Rio and L. Zhang Princeton Plasma Physics Laboratory Report Disclaimers Full Legal Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any

  7. X-ray Digital Radiography and Computed Tomography of ICF and HEDP Materials, Subassemblies and Targets

    SciTech Connect (OSTI)

    Brown, W D; Martz Jr., H E

    2006-05-31

    Inertial confinement fusion (ICF) and high energy density physics (HEDP) research are being conducted at large laser facilities, such as the University of Rochester's Laboratory for Laser Energetics OMEGA facility and the Lawrence Livermore National Laboratory's (LLNL) National Ignition Facility (NIF). At such facilities, millimeter-sized targets with micrometer structures are studied in a variety of hydrodynamic, radiation transport, equation-of-state, inertial confinement fusion and high-energy density experiments. The extreme temperatures and pressures achieved in these experiments make the results susceptible to imperfections in the fabricated targets. Targets include materials varying widely in composition ({approx}3 < Z < {approx}82), density ({approx}0.03 to {approx}20 g/cm{sup 3}), geometry (planar to spherical) and embedded structures (joints to subassemblies). Fabricating these targets with structures to the tolerances required is a challenging engineering problem the ICF and HEDP community are currently undertaking. Nondestructive characterization (NDC) provides a valuable tool in material selection, component inspection, and the final pre-shot assemblies inspection. X-rays are a key method used to NDC these targets. In this paper we discuss X-ray attenuation, X-ray phase effects, and the X-ray system used, its performance and application to characterize low-temperature Raleigh-Taylor and non-cryogenic double-shell targets.

  8. Progress in laboratory high gain ICF (inertial confinement fusion): Prospects for the future

    SciTech Connect (OSTI)

    Storm, E.; Lindl, J.D.; Campbell, E.M.; Bernat, T.P.; Coleman, L.W.; Emmett, J.L.; Hogan, W.J.; Hunt, J.T.; Krupke, W.F.; Lowdermilk, W.H.

    1988-01-01

    Inertial confinement fusion (ICF), a thermonuclear reaction in a small (/approximately/5 mm diameter) fuel capsule filled with a few milligrams of deuterium and tritium, has been the subject of very fruitful experimentation since the early 1970's. High gain ICF is now on the threshold of practical applications. With a Laboratory Microfusion Facility (LMF), these applications will have major implications for national defense, basic and applied science, and power production. With a driver capable of delivering about 10 MJ in a 10-ns pulse at an intensity of /approximately/3 /times/ 10/sup 14/ W/cm/sup 2/, an appropriately configured cryogenic capsule could be compressed to a density of about 200 g/cm/sup 3/ and a temperature of 3--5 keV. Under these conditions, up to 10 mg of DT could be ignited, and with a burn efficiency of about 30%, release up to 1000 MJ of fusion energy, an energy gain of about 100. A thousand megajoules is equivalent to about one quarter ton of TNT, or about 7 gallons of oil--an amount of energy tractable under laboratory conditions and potentially very useful for a variety of applications. 61 refs., 33 figs.

  9. The Edward Teller medal lecture: The evolution toward Indirect Drive and two decades of progress toward ICF ignition and burn

    SciTech Connect (OSTI)

    Lindl, J.D.

    1993-12-01

    In 1972, I joined the Livermore ICF Theory and Target Design group led by John Nuckolls, shortly after publication of John`s seminal Nature article on ICF. My primary role, working with others in the target design program including Mordy Rosen, Steve Haan, and Larry Suter, has been as a target designer and theorist who utilized the LASNEX code to perform numerical experiments, which along with analysis of laboratory and underground thermonuclear experiments allowed me to develop a series of models and physical insights which have been used to set the direction and priorities of the Livermore program. I have had the good fortune of working with an outstanding team of scientists who have established LLNL as the premier ICF laboratory in the world. John Emmett and the LLNL Laser Science team were responsible for developing a series of lasers from Janus to Nova which have given LLNL unequaled facilities. George Zimmerman and the LASNEX group developed the numerical models essential for projecting future performance and requirements as well as for designing and analyzing the experiments. Bill Kruer, Bruce Langdon and others in the plasma theory group developed the fundamental understanding of laser plasma interactions which have played such an important role in ICF. And a series of experiment program leaders including Mike Campbell and Joe Kilkenny and their laser experimental teams developed the experimental techniques and diagnostic capabilities which have allowed us to c increasingly complex and sophisticated experiments.

  10. The LLNL (Lawrence Livermore National Laboratory) ICF (Inertial Confinement Fusion) Program: Progress toward ignition in the Laboratory

    SciTech Connect (OSTI)

    Storm, E.; Batha, S.H.; Bernat, T.P.; Bibeau, C.; Cable, M.D.; Caird, J.A.; Campbell, E.M.; Campbell, J.H.; Coleman, L.W.; Cook, R.C.; Correll, D.L.; Darrow, C.B.; Davis, J.I.; Drake, R.P.; Ehrlich, R.B.; Ellis, R.J.; Glendinning, S.G.; Haan, S.W.; Haendler, B.L.; Hatcher, C.W.; Hatchett, S.P.; Hermes, G.L.; Hunt, J.P.; Kania, D.R.; Kauffman, R.L.; Kilkenny, J.D.; Kornblum, H.N.; Kruer, W.L.; Kyrazis, D.T.; Lane, S.M.; Laumann

    1990-10-02

    The Inertial Confinement Fusion (ICF) Program at the Lawrence Livermore National Laboratory (LLNL) has made substantial progress in target physics, target diagnostics, and laser science and technology. In each area, progress required the development of experimental techniques and computational modeling. The objectives of the target physics experiments in the Nova laser facility are to address and understand critical physics issues that determine the conditions required to achieve ignition and gain in an ICF capsule. The LLNL experimental program primarily addresses indirect-drive implosions, in which the capsule is driven by x rays produced by the interaction of the laser light with a high-Z plasma. Experiments address both the physics of generating the radiation environment in a laser-driven hohlraum and the physics associated with imploding ICF capsules to ignition and high-gain conditions in the absence of alpha deposition. Recent experiments and modeling have established much of the physics necessary to validate the basic concept of ignition and ICF target gain in the laboratory. The rapid progress made in the past several years, and in particular, recent results showing higher radiation drive temperatures and implosion velocities than previously obtained and assumed for high-gain target designs, has led LLNL to propose an upgrade of the Nova laser to 1.5 to 2 MJ (at 0.35 {mu}m) to demonstrate ignition and energy gains of 10 to 20 -- the Nova Upgrade.

  11. Low density gas and foam targets for ICF long scale length plasma experiments: Fabrication & characterization

    SciTech Connect (OSTI)

    Gobby, P.L.; Mitchell, M.A.; Eliott, N.E.; Salazar, M.A.; Fermandez, J.C.; Hsing, W.W.; Moore, J.E.; Gomez, V.M.

    1994-10-01

    Recent ICF experiments performed by the laser-matter interaction group at Los Alamos using the Nova laser to investigate long scale length plasmas required two types of special targets: gas-filled hohlraums and free-standing low density foams, both with densities in the range of 3-5 mg/cc. The mass in each case was provided by hydrogen and carbon - in the form of polymethylpentyene for the foam case and 2.2-dimethylpropane (i.e., neopentane, C{sub 5}H{sub 12}) at 1 atmosphere for the gas case. Dopants of Cl, Ti, Cr and Mn were added to the foams, while Ti and Cr coated carbon fibers were added to the hohlraums - both for isoelectronic x-ray spectroscopic temperature measurements.

  12. Inference of ICF implosion core mix using experimental data and theoretical mix modeling

    SciTech Connect (OSTI)

    Sherrill, Leslie Welser; Haynes, Donald A; Cooley, James H; Sherrill, Manolo E; Mancini, Roberto C; Tommasini, Riccardo; Golovkin, Igor E; Haan, Steven W

    2009-01-01

    The mixing between fuel and shell materials in Inertial Confinement Fusion (lCF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model predicted trends in the width of the mix layer as a function of initial shell thickness. These results contribute to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increasing confidence in the methods used to extract mixing information from experimental data.

  13. Experimental Study of High-Z Gas Buffers in Gas-Filled ICF Engines

    SciTech Connect (OSTI)

    Rhodes, M A; Kane, J; Loosmore, G; DeMuth, J; Latkowski, J

    2010-12-03

    ICF power plants, such as the LIFE scheme at LLNL, may employ a high-Z, target-chamber gas-fill to moderate the first-wall heat-pulse due to x-rays and energetic ions released during target detonation. To reduce the uncertainties of cooling and beam/target propagation through such gas-filled chambers, we present a pulsed plasma source producing 2-5 eV plasma comprised of high-Z gases. We use a 5-kJ, 100-ns theta discharge for high peak plasma-heating-power, an electrode-less discharge for minimizing impurities, and unobstructed axial access for diagnostics and beam (and/or target) propagation studies. We will report on the plasma source requirements, design process, and the system design.

  14. Experimental techniques for measuring Rayleigh-Taylor instability in inertial confinement fusion (ICF)

    SciTech Connect (OSTI)

    Smalyuk, V A

    2012-06-07

    Rayleigh-Taylor (RT) instability is one of the major concerns in inertial confinement fusion (ICF) because it amplifies target modulations in both acceleration and deceleration phases of implosion, which leads to shell disruption and performance degradation of imploding targets. This article reviews experimental results of the RT growth experiments performed on OMEGA laser system, where targets were driven directly with laser light. RT instability was studied in the linear and nonlinear regimes. The experiments were performed in acceleration phase, using planar and spherical targets, and in deceleration phase of spherical implosions, using spherical shells. Initial target modulations consisted of 2-D pre-imposed modulations, and 2-D and 3-D modulations imprinted on targets by the non-uniformities in laser drive. In planar geometry, the nonlinear regime was studied using 3-D modulations with broadband spectra near nonlinear saturation levels. In acceleration-phase, the measured modulation Fourier spectra and nonlinear growth velocities are in good agreement with those predicted by Haan's model [Haan S W 1989 Phys. Rev. A 39 5812]. In a real-space analysis, the bubble merger was quantified by a self-similar evolution of bubble size distributions [Oron D et al 2001 Phys. Plasmas 8, 2883]. The 3-D, inner-surface modulations were measured to grow throughout the deceleration phase of spherical implosions. RT growth rates are very sensitive to the drive conditions, therefore they can be used to test and validate drive physics in hydrodynamic codes used to design ICF implosions. Measured growth rates of pre-imposed 2-D target modulations below nonlinear saturation levels were used to validate non-local thermal electron transport model in laser-driven experiments.

  15. Lawrence Livermore National Laboratories Perspective on Code Development and High Performance Computing Resources in Support of the National HED/ICF Effort

    SciTech Connect (OSTI)

    Clouse, C. J.; Edwards, M. J.; McCoy, M. G.; Marinak, M. M.; Verdon, C. P.

    2015-07-07

    Through its Advanced Scientific Computing (ASC) and Inertial Confinement Fusion (ICF) code development efforts, Lawrence Livermore National Laboratory (LLNL) provides a world leading numerical simulation capability for the National HED/ICF program in support of the Stockpile Stewardship Program (SSP). In addition the ASC effort provides high performance computing platform capabilities upon which these codes are run. LLNL remains committed to, and will work with, the national HED/ICF program community to help insure numerical simulation needs are met and to make those capabilities available, consistent with programmatic priorities and available resources.

  16. Diagnostic techniques for measuring temperature transients and stress transients in the first wall of an ICF reactor

    SciTech Connect (OSTI)

    Melamed, N.T.; Taylor, L.H.

    1983-01-01

    The primary challenge in the design of an Inertial Confinement Fusion (ICF) power reactor is to make the first wall survive the frequent explosions of the pellets. Westinghouse has proposed a dry wall design consisting of steel tubes coated with tantalum. This report describes the design of a test chamber and two diagnostic procedures for experimentally determining the reliability of the Westinghouse design. The test chamber simulates the x-ray and ion pulse irradiation of the wall due to a pellet explosion. The diagnostics consist of remote temperature sensing and surface deformation measurements. The chamber and diagnostics can also be used to test other first-wall designs.

  17. Laser-induced magnetic fields in ICF capsules, Final Report, DE-FG02-08ER85128, Phase 1

    SciTech Connect (OSTI)

    Lindman, Erick L

    2009-11-05

    Laser-induced magnetic fields in ICF capsules Final Report, DE-FG02-08ER85128, Phase 1 E. L. LINDMAN, Otowi Technical Services, Los Alamos, NM. The performance of an inertial-confinement-fusion (ICF) capsule can be improved by inserting a magnetic field into it before compressing it [Kirkpatrick, et al., Fusion Technol. 27, 205 (1995)]. To obtain standoff in an ICF power generator, a method of inserting the field without the use of low-inductance leads attached to the capsule is desired. A mechanism for generating such a field using a laser was discovered in Japan [Sakagami, et al., Phys. Rev. Lett. 42, 839 (1979), Kolodner and Yablonovitch, Phys. Rev. Lett. 43, 1402 (1979)] and studied at Los Alamos in the 1980s [M. A. Yates, et al., Phys. Rev. Lett. 49, 1702 (1982); Forslund and Brackbill, Phys. Rev. Lett. 48, 1614 (1982)]. In this mechanism, a p-polarized laser beam strikes a solid target producing hot electrons that are accelerated away from the target surface by resonant absorption. An electric field is created that returns the hot electrons to the target. But, they do not return to the target along the same trajectory on which they left. The resulting current produces a toroidal magnetic field that was observed to spread over a region outside the hot spot with a radius of a millimeter. No experimental measurements of the magnetic field strength were performed. Estimates from computer simulation suggest that field strengths in the range of 1 to 10 Mega gauss (100 to 1000 Tesla) were obtained outside of the laser spot. To use this mechanism to insert a magnetic field into an ICF capsule, the capsule must be redesigned. In one approach, a central conductor is added, a toroidal gap is cut in the outer wall and the DT fuel is frozen on the inner surface of the capsule. The capsule is dropped into the reaction chamber and struck first with the laser that generates the magnetic field. The laser hot spot is positioned at the center of the toroidal gap. As the

  18. Comparison of electric and magnetic quadrupole focusing for the low energy end of an induction-linac-ICF (Inertial-Confinement-Fusion) driver

    SciTech Connect (OSTI)

    Kim, C.H.

    1987-04-01

    This report compares two physics designs of the low energy end of an induction linac-ICF driver: one using electric quadrupole focusing of many parallel beams followed by transverse combining; the other using magnetic quadrupole focusing of fewer beams without beam combining. Because of larger head-to-tail velocity spread and a consequent rapid current amplification in a magnetic focusing channel, the overall accelerator size of the design using magnetic focusing is comparable to that using electric focusing.

  19. Sol-gel optical thin films for an advanced megajoule-class Nd:glass laser ICF-driver

    SciTech Connect (OSTI)

    Floch, H.G.; Belleville, P.F.; Pegon, P.M.; Guerain, J.

    1996-12-31

    It is well established by manufacturers and users that optical coatings are generally prepared by the well known Physical Vapor Deposition (PVD) technology. In the authors` opinion sol-gel technology is an effective and competitive alternative. The aim of this paper is to emphasize on the sol-gel thin film work carried out at CEA Limeil-Valenton and concerning the technology for high power lasers. The authors will briefly discuss the chemistry of the sol-gel process, the production of optical coatings and the related deposition techniques. Finally, the paper describes performance of sol-gel optical coatings the authors have developed to fulfill the requirements of a future 1.8 MJ / 500 TW (351 nm) pulsed Nd:glass laser so-called << LMJ >> (Laser MegaJoules). This powerful laser is to be used for their national Inertial Confinement Fusion (ICF) program, to demonstrate at the laboratory scale, ignition of deuterium-tritium fusion fuel. Moreover, the aim of this article is, hopefully, to provide a convincing argument that coatings and particularly optical coatings, are some of the useful products available from sol-gel technology, and that exciting developments in other areas than high power laser technology are almost certain to emerge within the coming decade.

  20. Sol-gel optical thin films for an advanced megajoule-class Nd:glass laser ICF-driver

    SciTech Connect (OSTI)

    Floch, H.G.; Belleville, P.F.; Pegon, P.M.; Dijonneau, C.S.; Guerain, J.

    1995-12-31

    It is well established by manufacturers and users that optical coatings are generally prepared by the well known Physical Vapor Deposition (PVD) technology. In the authors` opinion sol-gel technology is an effective and competitive alternative. The aim of this paper is to emphasize on the sol-gel thin film work carried out at Centre d`Etudes de Limeil-Valenton (CEL-V) and concerning the technology for high power lasers. The authors will briefly discuss the chemistry of the sol-gel process, the production of optical coatings and the related deposition techniques. Finally, the paper describes the preparation and performance of sol-gel optical coatings they have developed to fulfill the requirements of a future 2 MJ/500 TW (351 nm) pulsed Nd:glass laser so-called LMJ (Laser MegaJoules). This powerful laser is to be used for their national Inertial Confinement Fusion (ICF) program, to demonstrate at the laboratory scale, ignition of deuterium-tritium fusion fuel. Moreover, the aim of this article is, hopefully, to provide a convincing argument that coatings and particularly optical coatings, are some of the useful products available from sol-gel technology, and that exciting developments in other areas are almost certain to emerge within the coming decade.

  1. History of HERMES III diode to z-pinch breakthrough and beyond : learning about pulsed power and z-pinch ICF.

    SciTech Connect (OSTI)

    Sanford, Thomas W. L.

    2013-04-01

    HERMES III and Z are two flagship accelerators of Sandia's pulsed-power program developed to generate intense-ray fields for the study of nuclear radiation effects, and to explore high energy-density physics (including the production of intense x-ray fields for Inertia Confinement Fusion [ICF]), respectively. A diode at the exit of HERMES III converts its 20-MeV electron beam into-rays. In contrast, at the center of Z, a z-pinch is used to convert its 20-MA current into an intense burst of x-rays. Here the history of how the HERMES III diode emerged from theoretical considerations to actual hardware is discussed. Next, the reverse process of how the experimental discovery of wire-array stabilization in a z-pinch, led to a better theory of wirearray implosions and its application to one of the ICF concepts on Z--the DH (Dynamic Hohlraum) is reviewed. Lastly, the report concludes with how the unexpected axial radiation asymmetry measured in the DH is understood. The first discussion illustrates the evolution of physics from theory-to-observationto- refinement. The second two illustrate the reverse process of observationto- theory-to refinement. The histories are discussed through the vehicle of my research at Sandia, illustrating the unique environment Sandia provides for personal growth and development into a scientific leader.

  2. U.S. Energy Information Administration (EIA) - Pub

    Gasoline and Diesel Fuel Update (EIA)

    from IHSGI, as well as others that concentrate on economic growth, international oil prices, energy consumption, electricity, natural gas, petroleum, and coal, are...

  3. Kinetic studies of ICF implosions

    SciTech Connect (OSTI)

    Kagan, Grigory; Herrmann, H. W.; Kim, Y. -H.; Schmitt, M. J.; Hakel, P.; Hsu, S. C.; Hoffman, N. M.; Svyatsky, D.; Baalrud, S. D.; Daligault, J. O.; Sio, H.; Zylstra, A. B.; Rosenberg, M. J.; Rinderknecht, H. G.; Johnson, M. Gatu; Frenje, J. A.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Albright, B. J.; Taitano, W.; Kyrala, G. A.; Bradley, P. A.; Huang, C. -K.; McDevitt, C. J.; Chacon, L.; Srinivasan, B.; McEvoy, A. M.; Joshi, T. R.; Adams, C. S.

    2016-01-01

    Here, kinetic effects on inertial confinement fusion have been investigated. In particular, inter-ion-species diffusion and suprathermal ion distribution have been analyzed. The former drives separation of the fuel constituents in the hot reacting core and governs mix at the shell/fuel interface. The latter underlie measurements obtained with nuclear diagnostics, including the fusion yield and inferred ion burn temperatures. Basic mechanisms behind and practical consequences from these effects are discussed.

  4. Foam shell cryogenic ICF target

    DOE Patents [OSTI]

    Darling, Dale H.

    1987-01-01

    A uniform cryogenic layer of DT fuel is maintained in a fusion target having a low density, small pore size, low Z rigid foam shell saturated with liquid DT fuel. Capillary action prevents gravitational slumping of the fuel layer. The saturated shell may be cooled to produce a solid fuel layer.

  5. Westinghouse ICF power plant study

    SciTech Connect (OSTI)

    Sucov, E. W.

    1980-10-01

    In this study, two different electric power plants for the production of about 1000 MWe which were based on a CO/sub 2/ laser driver and on a heavy ion driver have been developed and analyzed. The purposes of this study were: (1) to examine in a self consistent way the technological and institutional problems that need to be confronted and solved in order to produce commercially competitive electricity in the 2020 time frame from an inertial fusion reactor, and (2) to compare, on a common basis, the consequences of using two different drivers to initiate the DT fuel pellet explosions. Analytic descriptions of size/performance/cost relationships for each of the subsystems comprising the power plant have been combined into an overall computer code which models the entire plant. This overall model has been used to conduct trade studies which examine the consequences of varying critical design values around the reference point.

  6. ICF Reports | National Nuclear Security Administration | (NNSA...

    National Nuclear Security Administration (NNSA)

    Plasma Science: Advancing Knowledge in the National Interest, National Research Council of the National Academies, The National Academies Press, 2007. Report of the Interagency ...

  7. Metallic and nonmetallic coatings for ICF targets

    SciTech Connect (OSTI)

    Hendricks, C.D.; Crane, J.K.; Hsieh, E.J.; Meyer, S.F.

    1981-04-17

    Some fusion targets designed to be driven by 0.35 to 1 ..mu..m laser light are glass spheres coated with layers of various materials such as hydrocarbons, fluorocarbons, beryllium, copper, gold, platinum, etc. The glass shell, which is filled with gas, liquid or solid deuterium-tritium fuel, must have remarkably good surface and wall thickness uniformity. Methods for depositing the various materials will be discussed. They include plasma polymerization, electro-deposition, sputtering and evaporation. Many of the difficulties encountered in the coating processes are the result of coating on free spheres with very small radii - 35 to 500 micrometers. Several means of overcoming the problems will be described and experimental results presented.

  8. Mach-Zehnder Fiber-Optic Links for ICF Diagnostics

    SciTech Connect (OSTI)

    Miller, E. K., Hermann, H. W.

    2012-11-01

    This article describes the operation and evolution of Mach-Zehnder links for single-point detectors in inertial confinement fusion experimental facilities, based on the Gamma Reaction History (GRH) diagnostic at the National Ignition Facility.

  9. Site support program plan for ICF Kaiser Hanford Company

    SciTech Connect (OSTI)

    Dieterle, S.E.

    1996-09-27

    The Fiscal Year (FY) 1997 Inftastructure Program Site Support Program Plan (SSPP) addresses the mission objectives, workscope, work breakdown structures (WBS), management approach, and resource requirements for the Infrastructure Program. Attached to the plan are appendices that provide more detailed information associated with scope definition.

  10. ICF Program Framework | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Program Framework 2016 Inertial Confinement Fusion Program Framework, U.S. Department of Energy, National Nuclear Security Administration, May 16, 2016. DOE/NA-0044

  11. Laser-driven ICF experiments: Laboratory Report No. 223

    SciTech Connect (OSTI)

    McCrory, R.L.

    1991-04-01

    Laser irradiation uniformity is a key issue and is treated in some detail. The basic irradiation uniformity requirements and practical ways of achieving these requirements are both discussed, along with two beam-smoothing techniques: induced spatial incoherence (ISI), and smoothing by spectral dispersion (SSD). Experiments to measure and control the irradiation uniformity are also highlighted. Following the discussion of irradiation uniformity, a brief review of coronal physics is given, including the basic physical processes and their experimental signatures, together with a summary of pertinent diagnostics and results from experiments. Methods of determining ablation rates and thermal transport are also described. The hydrodynamics of laser-driven targets must be fully understood on the basis of experiments. Results from implosion experiments, including a brief description of the diagnostics, are presented. Future experiments aimed at determining ignition scaling and demonstrating hydrodynamically equivalent physics applicable to high-gain designs.

  12. Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies.

    SciTech Connect (OSTI)

    Bailey, James E.; Chandler, Gordon Andrew; Vesey, Roger Alan; Hanson, David Lester; Olson, Craig Lee; Nash, Thomas J.; Matzen, Maurice Keith; Ruiz, Carlos L.; Porter, John Larry, Jr.; Cuneo, Michael Edward; Varnum, William S.; Bennett, Guy R.; Cooper, Gary Wayne; Schroen, Diana Grace; Slutz, Stephen A.; MacFarlane, Joseph John; Leeper, Ramon Joe; Golovkin, I. E.; Mehlhorn, Thomas Alan; Mancini, Roberto Claudio

    2003-07-01

    Inertial confinement fusion capsule implosions absorbing up to 35 kJ of x-rays from a {approx}220 eV dynamic hohlraum on the Z accelerator at Sandia National Laboratories have produced thermonuclear D-D neutron yields of (2.6 {+-} 1.3) x 10{sup 10}. Argon spectra confirm a hot fuel with Te {approx} 1 keV and n{sub e} {approx} (1-2) x 10{sup 23} cm{sup -3}. Higher performance implosions will require radiation symmetry control improvements. Capsule implosions in a {approx}70 eV double-Z-pinch-driven secondary hohlraum have been radiographed by 6.7 keV x-rays produced by the Z-beamlet laser (ZBL), demonstrating a drive symmetry of about 3% and control of P{sub 2} radiation asymmetries to {+-}2%. Hemispherical capsule implosions have also been radiographed in Z in preparation for future experiments in fast ignition physics. Z-pinch-driven inertial fusion energy concepts are being developed. The refurbished Z machine (ZR) will begin providing scaling information on capsule and Z-pinch in 2006. The addition of a short pulse capability to ZBL will enable research into fast ignition physics in the combination of ZR and ZBL-petawatt. ZR could provide a test bed to study NIF-relevant double-shell ignition concepts using dynamic hohlraums and advanced symmetry control techniques in the double-pinch hohlraum backlit by ZBL.

  13. 1990s An Era of Profound and Rapid Change | OSTI, US Dept of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Inforum '97, providing a virtual library of energy science and technology 1997 R&D Project Summaries posted online, providing an important management resource for DOE R&D ...

  14. Microsoft Word - Final-Report-041811.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... inertial confinement fusion (ICF) and astrophysicalflowssucha...newinertialconfinementfusion(ICF)targets requires a very ...

  15. Some Thoughts on the Role of non-LTE Physics in ICF (Technical...

    Office of Scientific and Technical Information (OSTI)

    An effort to develop sub-critical-density high-Z metal-doped and pure metal foams as ... PLASMA DENSITY; METALS; ELECTRONS; FOAMS; DOPED MATERIALS; K SHELL; KEV RANGE; L ...

  16. Hydra modeling of experiments to study ICF capsule fill hole dynamics using surrogate targets

    SciTech Connect (OSTI)

    Elliott, J B

    2007-08-27

    In this section the results of HYDRA [1] design simulations will be discussed. The simulations were conducted in two dimensional, RZ geometry, with the fill tube on axis. The radiation transport was treated in the diffusion approximation using 15 energy groups. Opacities were calculated. The equations of state (EOS) for all materials used were from a combined analytic/Thomas-Fermi EOS which uses a modified Cowan model for the ion EOS, and uses a scaled Thomas-Fermi table for the electron EOS.

  17. Innovative high pressure gas MEM's based neutron detector for ICF and active SNM detection.

    SciTech Connect (OSTI)

    Martin, Shawn Bryan; Derzon, Mark Steven; Renzi, Ronald F.; Chandler, Gordon Andrew

    2007-12-01

    An innovative helium3 high pressure gas detection system, made possible by utilizing Sandia's expertise in Micro-electrical Mechanical fluidic systems, is proposed which appears to have many beneficial performance characteristics with regards to making these neutron measurements in the high bremsstrahlung and electrical noise environments found in High Energy Density Physics experiments and especially on the very high noise environment generated on the fast pulsed power experiments performed here at Sandia. This same system may dramatically improve active WMD and contraband detection as well when employed with ultrafast (10-50 ns) pulsed neutron sources.

  18. Target diagnostic technology research and development for the LLNL ICF and HED program (invited)

    SciTech Connect (OSTI)

    Bell, P.M.; Landen, O.L.; Weber, F.A.; Lowry, M.E.; Bennett, C.V.; Kimbrough, J.R.; Moody, J.D.; Holder, J.P.; Lerche, R.A.; Griffith, R.L.; Park, H.S.; Boni, R.; Jaanimagi, P.A.; Davies, T.

    2004-10-01

    The National Ignition Facility is operational at Lawrence Livermore National Laboratory (LLNL). The inertial confinement fusion and HED programs at LLNL have formed diagnostic research and development groups to institute improvements outside the charter of core diagnostics. We will present data from instrumentation being developed. A major portion of our work is improvements to detectors and readout systems. We have efforts related to charge-coupled device (CCD) development. Work has been done in collaboration with the University of Arizona to back thin a large format CCD device. We have developed in collaboration with a commercial vendor a large format, compact CCD system. We have coupled large format CCD systems to our optical and x-ray streak cameras leading to improvements in resolution and dynamic range. We will discuss gate width and uniformity improvements to microchannel plate-based framing cameras. We will present data from single shot data link work and discuss technology aimed at improvements of dynamic range for high-speed transient measurements from remote locations.

  19. A reduced model for the ICF gamma-ray reaction history diagnostic

    SciTech Connect (OSTI)

    Schmitt, Mark J; Wilson, Douglas C; Hoffman, Nelson M; Langenbrunner, Jamie R; Hermann, H W; Kim, Y H; Young, C S; Evans, S C; Cerjan, C J; Stoeffl, Wolfgang; Munro, D H; Dauffy, L S; Miller, K M; Horsfield, C J; Rubery, M S

    2009-01-01

    An analytic model for the gamma reaction history (GRH) diagnostic to be fielded on the National Ignition Facility is described. The application of the GRH diagnostic for the measurement of capsule rho-R during burn using 4.4 MeV carbon gamma rays is demonstrated by simulation.

  20. Benchmarking the x-ray phase contrast imaging for ICF DT ice characterization using roughened surrogates

    SciTech Connect (OSTI)

    Dewald, E; Kozioziemski, B; Moody, J; Koch, J; Mapoles, E; Montesanti, R; Youngblood, K; Letts, S; Nikroo, A; Sater, J; Atherton, J

    2008-06-26

    We use x-ray phase contrast imaging to characterize the inner surface roughness of DT ice layers in capsules planned for future ignition experiments. It is therefore important to quantify how well the x-ray data correlates with the actual ice roughness. We benchmarked the accuracy of our system using surrogates with fabricated roughness characterized with high precision standard techniques. Cylindrical artifacts with azimuthally uniform sinusoidal perturbations with 100 um period and 1 um amplitude demonstrated 0.02 um accuracy limited by the resolution of the imager and the source size of our phase contrast system. Spherical surrogates with random roughness close to that required for the DT ice for a successful ignition experiment were used to correlate the actual surface roughness to that obtained from the x-ray measurements. When comparing average power spectra of individual measurements, the accuracy mode number limits of the x-ray phase contrast system benchmarked against surface characterization performed by Atomic Force Microscopy are 60 and 90 for surrogates smoother and rougher than the required roughness for the ice. These agreement mode number limits are >100 when comparing matching individual measurements. We will discuss the implications for interpreting DT ice roughness data derived from phase-contrast x-ray imaging.

  1. Electron Generation and Transport in Intense Relativistic Laser-Plasma Interactions Relevant to Fast Ignition ICF

    SciTech Connect (OSTI)

    Ma, Tammy Yee Wing

    2010-01-01

    The reentrant cone approach to Fast Ignition, an advanced Inertial Confinement Fusion scheme, remains one of the most attractive because of the potential to efficiently collect and guide the laser light into the cone tip and direct energetic electrons into the high density core of the fuel. However, in the presence of a preformed plasma, the laser energy is largely absorbed before it can reach the cone tip. Full scale fast ignition laser systems are envisioned to have prepulses ranging between 100 mJ to 1 J. A few of the imperative issues facing fast ignition, then, are the conversion efficiency with which the laser light is converted to hot electrons, the subsequent transport characteristics of those electrons, and requirements for maximum allowable prepulse this may put on the laser system. This dissertation examines the laser-to-fast electron conversion efficiency scaling with prepulse for cone-guided fast ignition. Work in developing an extreme ultraviolet imager diagnostic for the temperature measurements of electron-heated targets, as well as the validation of the use of a thin wire for simultaneous determination of electron number density and electron temperature will be discussed.

  2. C:\\Users\\28105\\Documents\\Choi ICF\\ESPA-LPT work\\RFI\\PDF Conversions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bob Johnson ; Jayne Harkins ; Robert S. Lynch Subject: National Power Transformer ...

  3. KrF amplifier design issues and application to ICF system design

    SciTech Connect (OSTI)

    Sullivan, J.A.; Allen, G.R.; Berggren, R.R.; Czuchlewski, S.J.; Harris, D.B.; Jones, M.E.; Krohn, B.J.; Kurnit, N.A.; Leland, W.T.; Mansfield, C.; McLeod, J.; McCown, A.W.; McLeod, J.; Pendergrass, J.H.; Rose, E.A.; Rosocha, L.A.; Thomas, V.A.

    1991-01-01

    Los Alamos National Laboratory has assembled an array of experimental and theoretical tools to optimize amplifier design for future KrF lasers. The next opportunity to exercise these tools is with the design of the second generation NIKE system under construction at the Naval Research Laboratory with the collaboration of Los Alamos National Laboratory. Major issues include laser physics (energy extraction in large modules with amplified spontaneous emission) and diode performance and efficiency. High efficiency and low cost are increasingly important for larger future KrF amplifiers. In this paper we present our approach to amplifier scaling and discuss the more important design considerations for large KrF amplifiers. We point out where improvements in the fundamental data base for KrF amplifiers could lead to increased confidence in performance predictions for large amplifiers, and we address the currently unresolved issues of anomalous absorption near line center and the possibility of diode instabilities for low impedance designs. Los Alamos has designed a 100-kJ KrF laser-fusion system for both direct- and indirect-drive target physics experiments using 60-kJ amplifier modules. The design of this system will be reviewed. 38 refs., 110 figs., 3 tabs.

  4. Some Thoughts on the Role of non-LTE Physics in ICF (Technical...

    Office of Scientific and Technical Information (OSTI)

    An effort to develop sub-critical-density high-Z metal-doped and pure metal foams as laser-driven x-ray sources is described. The main idea is that the laser beams preferentially ...

  5. C:\\Users\\28105\\Documents\\Choi ICF\\ESPA-LPT work\\RFI\\PDF Conversions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... National Grid plc and its affiliates do not accept any liability for viruses. An e-mail reply to this address may be subject to monitoring for operational reasons or lawful ...

  6. Heat-transfer limitations on pellets used in ICF reaction chambers

    SciTech Connect (OSTI)

    Pitts, J.H.

    1981-10-12

    A spherically-symmetric, transient heat-transfer analysis conducted on a cryogenic multiple-shelled laser-driven pellet shows that injection velocities of 300 m/s are required. Support mechanisms for the inner shells must be able not only to withstand the maximum pellet acceleration but also to dissipate the heat generated in the frozen D-T fuel. Manufacturing, storage, and acceleration of pellets are also examined and found to require a cryogenic environment.

  7. Automated fabrication, characterization and transport of ICF pellets. Final report, March 1, 1979-October 31, 1980

    SciTech Connect (OSTI)

    Clifford, D W; Boyd, B A; Lilienkamp, R H

    1980-12-01

    The near-term objectives of the contract were threefold: (1) evaluate techniques for the production of frozen hydrogen microspheres and demonstrate concepts for coating them; (2) develop and demonstrate an optical characterization system which could lead to automated pellet inspection; and (3) develop and demonstrate a preliminary electrostatic pellet transport control system. This report describes the equipment assembled for these experiments and the results obtained.

  8. Experimental Study of High-Z Gas Buffers in Gas-Filled ICF Engines...

    Office of Scientific and Technical Information (OSTI)

    and energetic ions released during target detonation. To reduce the uncertainties of cooling and beamtarget propagation through such gas-filled chambers, we present a pulsed...

  9. Better Buildings Neighborhood Program Data & Evaluation Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Management System (SIMS) by ICF International * For Financials and ... Information Management System), by ICF International SIMS (Sustainability ...

  10. Soft X-Ray Spectroscopic Measurements of Plasma Conditions at Early Times in ICF Experiments on OMEGA. Final technical report

    SciTech Connect (OSTI)

    Griem, Hans R.; Elton, Raymond C.

    2000-02-28

    Our previously-reported observation of a disruptive prepulse on OMEGA, possibly as large as 1% of the extreme ultraviolet (euv) radiation measured from the main pulse, has recently been substantiated by the measurement of euv absorption spectra, prior to the main pulse. The absorption features have been identified with n=2 photoionization in aluminum atoms and ions up to Al5+. Cold aluminum is originally present as a 0.0125-um thick sealant coating applied to a neon-filled (10 atm) CH microballoon, with an euv transmission at the L-absorption edge of {approx}50%. The aluminum in turn is overcoated with 2 um of Mg. The spectra which show the absorption also include continua as well as line emissions from Mg9+ to Mg11+ ions. These occur prior to the onset of laser target irradiation by at least 10 ns, and imply a prepulse irradiance of about 10{sup 12} W/cm{sup 2}. Since the neon and CH are opaque to euv radiation from the rear, a likely scenario is early (prepulse) vaporization of the outer Mg layer, perhaps in hot spots, followed by laser radiation transmitted through the thin Al layer, thereby heating the CH surface. This could provide an euv continuum backlighter for the aluminum that leads to the euv absorption features in various ionic species, perhaps from different points on the target surface.

  11. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    SciTech Connect (OSTI)

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.; Delettrez, J. A.; Sangster, T. C.; Betti, R.; Wilks, S. C.; Pino, J.; Kagan, G.; Molvig, K.; Nikroo, A.

    2015-06-02

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  12. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; et al

    2015-06-02

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurementsmore » of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.« less

  13. Papers and Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "high-foot" inertial confinement fusion (ICF) experiments that reached the highest ... Nature Physics Logo The ICF experiments analyzed in the Nature Physics paper were ...

  14. Microsoft Word - XML Data Services 1.10

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... (ICF) is based on pulse- power capabilities that grew out of earlier developments of intense relativistic electron- beam (e-beam) radiation sources for weapon effects studies. ICF ...

  15. A technique for extending by ∼10{sup 3} the dynamic range of compact proton spectrometers for diagnosing ICF implosions on the National Ignition Facility and OMEGA

    SciTech Connect (OSTI)

    Sio, H. Séguin, F. H.; Frenje, J. A.; Gatu Johnson, M.; Zylstra, A. B.; Rinderknecht, H. G.; Rosenberg, M. J.; Li, C. K.; Petrasso, R. D.

    2014-11-15

    Wedge Range Filter (WRF) proton spectrometers are routinely used on OMEGA and the NIF for diagnosing ρR and ρR asymmetries in direct- and indirect-drive implosions of D{sup 3}He-, D{sub 2}-, and DT-gas-filled capsules. By measuring the optical opacity distribution in CR-39 due to proton tracks in high-yield applications, as opposed to counting individual tracks, WRF dynamic range can be extended by 10{sup 2} for obtaining the spectral shape, and by 10{sup 3} for mean energy (ρR) measurement, corresponding to proton fluences of 10{sup 8} and 10{sup 9} cm{sup −2}, respectively. Using this new technique, ρR asymmetries can be measured during both shock and compression burn (proton yield ∼10{sup 8} and ∼10{sup 12}, respectively) in 2-shock National Ignition Facility implosions with the standard WRF accuracy of ±∼10 mg/cm{sup 2}.

  16. Details of the response of Kodak high resolution plate to x-irradiation for the characterization of ICF targets and components

    SciTech Connect (OSTI)

    Martin, A.J.; Simms, R.J.

    1985-01-01

    Radiographic images are used in the characterization of Internal Confinement Fusion targets and target components. The use of this technique involves consideration of: (1) the continuum and line emission source spectra produced by a tungsten anode, (2) the attenuation of the source spectrum by material in the x-ray path, and (3) the response of the x-ray detector, a Kodak HRP (High Resolution Plate), to the incident x-ray flux. 5 refs., 4 figs.

  17. The Magnetically Driven Direct Drive Approach to Ignition: Responses to Questions by Panel 1 of the FY15 ICF Program Review.

    SciTech Connect (OSTI)

    Sinars, Daniel

    2015-07-01

    The long-term goal of the pulsed-­power based, magnetically driven target approach is to achieve high single­shot yields (0.5-­1 GJ per shot). This goal may take decades to achieve, but if successful we believe it would be a key capability for the Stockpile Stewardship program, as noted as far back as 1988 in the Laboratory Microfusion Capability Phase 1 (U) study. If this approach is successful, it may be possible to achieve these yields from targets absorbing up to 10 MJ in a laboratory pulsed power facility with a stored energy of roughly 130 MJ. Such a facility would be substantially cheaper, and not as complex, than the corresponding pulsed power facility required for producing comparable yields from x-ray driven capsule targets.

  18. Experimental Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    confinement fusion (ICF), as it provides a means to measure the density and asymmetries of the deuterium-tritium (DT) fuel in an ICF capsule near the time of peak compression. ...

  19. Papers and Presentations - 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    One of the factors that can limit the performance of NIF inertial confinement fusion (ICF) ... of Hot-Electron Emission in a Hohlraum An ICF target showing a surrogate bismuth capsule ...

  20. fusion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    The demonstration of laboratory ignition and its use to support the... ICF Facilities ICF operates a set of world-class experimental facilities to create HEDP conditions and to ...

  1. technology

    National Nuclear Security Administration (NNSA)

    1%2A en ICF Reports http:nnsa.energy.govaboutusourprogramsdefenseprogramsstockpilestewardshipinertialconfinementfusionicfreports

  2. A technique for extending by ~103 the dynamic range of compact proton spectrometers for diagnosing ICF implosions on the National Ignition Facility and OMEGAa)

    SciTech Connect (OSTI)

    Sio, H.; Séguin, F. H.; Frenje, J. A.; Gatu Johnson, M.; Zylstra, A. B.; Rinderknecht, H. G.; Rosenberg, M. J.; Li, C. K.; Petrasso, R. D.

    2014-11-01

    Wedge Range Filter (WRF) proton spectrometers are routinely used on OMEGA and the NIF for diagnosing ρR and ρR asymmetries in direct- and indirect-drive implosions of D3He-, D2-, and DT-gas-filled capsules. By measuring the optical opacity distribution in CR-39 due to proton tracks in high-yield applications, as opposed to counting individual tracks, WRF dynamic range can be extended by 102 for obtaining the spectral shape, and by 103 for mean energy (ρR) measurement, corresponding to proton fluences of 108 and 109 cm-2, respectively. Finally, using this new technique, ρR asymmetries can be measured during both shock and compression burn (proton yield ~108 and ~1012, respectively) in 2-shock National Ignition Facility implosions with the standard WRF accuracy of ±~10 mg/cm2.

  3. C:\Users\28105\Documents\Choi ICF\ESPA-LPT work\RFI\PDF Conversions for Phil\PDF Conversions for Phil\National Grid_Additional_RFI_Transformer Reserve.txt

    Office of Environmental Management (EM)

    onversions%20for%20Phil/PDF%20Conversions%20for%20Phil/National%20Grid_Additional_RFI_Transformer%20Reserve.txt[10/9/2015 1:59:21 PM] From: Lobko, William [mailto:William.Lobko@nationalgrid.com] Sent: Wednesday, October 07, 2015 2:26 PM To: LPT.RFI.2015 <LPT.RFI.2015@hq.doe.gov> Cc: Kelly, Chris <Chris.Kelly@nationalgrid.com>; Martuscello, Suzan E. <Suzan.Martuscello@nationalgrid.com> Subject: Comments to the FRN RFI on a Large Power Transformer Reserve Ms. Lippert, Additional

  4. Inertial confinement fusion quarterly report, April--June 1994. Volume 4, Number 3

    SciTech Connect (OSTI)

    Shaw, M.J.

    1994-06-01

    This issue of the ICF Quarterly contains six articles covering a wide range of activities within the Inertial Confinement Fusion (ICF) Program. It concentrates on target design; theoretical spectral analysis of ICF capsule surfaces; laser fusion experimental methods; and an alternative ICF design, based on ultrafast, ultrapowerful lasers. A key issue for the success of the ICF process is the hydrodynamic stability of the imploding capsule. There are two primary sources of instability growth in the ICF process: (1) asymmetries in the x-ray flux that drive the compression lead to asymmetric in the imploding surface; (2) imperfections on the capsule surface can grow into large perturbations, degrading the capsule performance. In recent years, a great deal of effort, both experimentally and theoretically, has been spent to enhance the Program`s ability to measure, model, and minimize instability growth during an implosion. Four the articles in this issue discuss this subject.

  5. Insulating concrete forms: Installed cost and acoustic performance

    SciTech Connect (OSTI)

    1999-03-01

    The NAHB Research Center conducted a study to compare the cost and performance of Insulating Concrete Form (ICF) walls to conventional wood-frame exterior walls. This report contains the results of the cost study and sound transmission tests. Three home were built and monitored. One home has an ICF plank system, one has an ICF block system, and one is of conventional 2x4 lumber construction. The homes have identical floor plans and are located side by side. The findings indicate that the labor costs for the ICFs were slightly to moderately higher than the wood framing. However, the sound tests indicate that the ICF walls perform significantly better than the wood walls when no openings were present. The report summarizes the findings and recommends ways to increase the cost-effectiveness of ICFs.

  6. ICYMI: Y-12 National Security Complex earns national Best Workplaces for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion ICF Reports There are a wide variety of reports that address the world class research and experiments in ICF being performed on behalf of the U.S. ICF Program and stockpile stewardship. Some of these reports are listed below: 2016 Inertial Confinement Fusion Program Framework, U.S. Department of Energy, National Nuclear Security Administration, May 16, 2016. DOE/NA-0044 2015 Review of the Inertial Confinement Fusion and High Energy Density Science Portfolio, U.S. Department of Energy,

  7. Investigating inertial confinement fusion target fuel conditions through x-ray spectroscopy

    SciTech Connect (OSTI)

    Hansen, Stephanie B.

    2012-05-15

    Inertial confinement fusion (ICF) targets are designed to produce hot, dense fuel in a neutron-producing core that is surrounded by a shell of compressing material. The x-rays emitted from ICF plasmas can be analyzed to reveal details of the temperatures, densities, gradients, velocities, and mix characteristics of ICF targets. Such diagnostics are critical to understand the target performance and to improve the predictive power of simulation codes.

  8. futuregen | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fusion Inertial Confinement Fusion The Office of ICF provides experimental capabilities and scientific understanding in high energy density physics (HEDP) necessary to ensure a safe, secure, and effective nuclear weapons stockpile without underground testing. The demonstration of laboratory ignition and its use to support the... ICF Facilities ICF operates a set of world-class experimental facilities to create HEDP conditions and to obtain quantitative data in support of its numerous stockpile

  9. PADDs 1 and 3 Transportation Fuels Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    PADDs 1 and 3 Transportation Fuels Markets A report prepared by ICF International for EIA Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 February 2016 February 2016 ICF International, LLC for EIA | PADDs 1 and 3 Transportation Fuels Markets i Acknowledgements This report was prepared by ICF International for the U.S. Energy Information Administration (EIA) under the general guidance of Lynn Westfall, Director of Office of Energy Markets and

  10. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Office Training & Technology * ICF International * id3A, LLC * LINC Housing * New Hampshire Electric Cooperative * NPS * Off The Grid Renovations * PG&E Energy Training ...

  11. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Resolution Crystal Spectrometry to ICF Plasmas Kenneth W Hill et al PLASMA PHYSICS AND FUSION TECHNOLOGY High Temperature High Temperature High resolution D imaging x ray...

  12. Application of Spatially Resolved High Resolution Crystal Spectrometry...

    Office of Scientific and Technical Information (OSTI)

    Crystal Spectrometry to ICF Plasmas Kenneth W. Hill, et. al. 70 PLASMA PHYSICS AND FUSION TECHNOLOGY High Temperature High Temperature High resolution (3; 10 000) 1D...

  13. U.S. LNG Exports:

    Energy Savers [EERE]

    generated by gas- and petrochemical-related activities National study assessed LNG export impacts on three export levels: ICF Base Case (4 Bcfd) Middle Exports Case ...

  14. Integrated Codes | National Nuclear Security Administration ...

    National Nuclear Security Administration (NNSA)

    Specialized codes have detailed physics focused on unique applications (e.g., radiation transport or ICF laser-plasma interactions) or are specific applications such as problem ...

  15. Design, Assembly, and Testing of the Neutron Imaging Lens for the National Ignition Facility

    SciTech Connect (OSTI)

    Malone, R. M., Kaufman, M. I.

    2010-12-01

    The Lawrence Livermore National Laboratory’s National Ignition Facility (NIF) is the world’s largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high energy density science. Neutron imaging of ICF targets provides a powerful tool for understanding the implosion conditions of deuterium and tritium (DT) filled targets. The primary purpose of imaging ICF targets at NIF is to determine the symmetry of the fuel in an imploded ICF target. The image data are then combined with other nuclear information to gain insight into the drive laser and radiation conditions required to drive the targets to ignition.

  16. technology

    National Nuclear Security Administration (NNSA)

    1%2A en ICF Reports http:www.nnsa.energy.govaboutusourprogramsdefenseprogramsstockpilestewardshipinertialconfinementfusionicfreports

  17. Papers and Presentations - 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How ICF Works Discovery ...

  18. Experimental Highlights - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How ICF Works Discovery ...

  19. Robin Miles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How ICF Works Discovery ...

  20. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its ...

  1. First-time measurements will advance turbulence models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In supersonic engines, RM enhances combustion efficiency by blending the fuel and the oxidizer. In inertial confinement fusion (ICF) reactions, the mixing induced by the RM ...

  2. CoMuEx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To lead the Laboratory in its diverse activities in the areas concerning mix and turbulence under extreme conditions as related to stockpile stewardship, weapons, ICF, ...

  3. 2014 TUNL REU PROJECTS 1. Commissioning the Enge Spectrometer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Ignition Facility (NIF) at Lawrence Livermore National Laboratory for measuring important parameters of the Deuterium-Tritium (DT) Inertial Confinement Fusion (ICF) plasma. ...

  4. Los Alamos physicist Hockaday

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... In 2006, she was named Deputy Associate Director of Weapons Physics and Program Director for Science and Inertial Confinement Fusion and High Yield (ICF) Campaigns. Hockaday, who ...

  5. Inertial Confinement Fusion Annual Report 1997

    SciTech Connect (OSTI)

    Correll, D

    1998-06-01

    The ICF Annual Report provides documentation of the achievements of the LLNL ICF Program during the fiscal year by the use of two formats: (1) an Overview that is a narrative summary of important results for the fiscal year and (2) a compilation of the articles that previously appeared in the ICF Quarterly Report that year. Both the Overview and Quarterly Report are also on the Web at http://lasers.llnl.gov/lasers/pubs/icfq.html. Beginning in Fiscal Year 1997, the fourth quarter issue of the ICF Quarterly was no longer printed as a separate document but rather included in the ICF Annual. This change provided a more efficient process of documenting our accomplishments with-out unnecessary duplication of printing. In addition we introduced a new document, the ICF Program Monthly Highlights. Starting with the September 1997 issue and each month following, the Monthly Highlights will provide a brief description of noteworthy activities of interest to our DOE sponsors and our stakeholders. The underlying theme for LLNL's ICF Program research continues to be defined within DOE's Defense Programs missions and goals. In support of these missions and goals, the ICF Program advances research and technology development in major interrelated areas that include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology. While in pursuit of its goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application of inertial fusion energy for civilian power production. ICF technologies continue to have spin-off applications for additional government and industrial use. In addition to these topics, the ICF Annual Report covers non-ICF funded, but related, laser research and development and associated applications. We also

  6. DOE Tour of Zero: The Hope Landing Lot 2 by Manatee County Habitat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 of 11 Volunteers are trained to construct thermal blanket walls using insulated concrete form (ICF) construction with hollow rigid foam insulation blocks that are filled with...

  7. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... November 2015 Integrated Diagnostic Analysis of ICF Capsule Performance Cerjan, C ; Springer, P T ; Sepke, S A Full Text Available November 2012 Nuclear Plasma Interactions on ...

  9. The Standard Energy Efficiency Database Platform

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEED: The Standard Energy Efficiency Database Platform Bill Prindle Bill Prindle ICF ... Features * SEED is built on a blank database structure for which users create their ...

  10. AMO Industrial Distributed Energy: Summary of EPA Final Rules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of EPA Final Rules for Air Toxic Standards for Industrial, Commercial, and Institutional (ICI) Boilers and Process Heaters ICF International for U.S. Department of Energy...

  11. CHP: A Technical & Economic Compliance Strategy - SEE Action...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center, and Bruce Hedman, ICF International, is from the January 17, 2012, SEE Action IEECHP Webinar 1: EPA's Air Regulations and CHP. chpcompliancecutticaandhedman.pdf (541.99 ...

  12. Pulsed Power Technology at Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Programs and Capabilities Experimental and Theoretical Programs Electromagnetic Technology at Sandia National Laboratories HEDP & ICF Simulation Codes ALEGRA Spect3D--A...

  13. Measurement of reaction-in-flight neutrons using thulium activation...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: SPIE Optics & Photonics 2014 - Target Diagnostics Physics and Engineering for ICF III ...

  14. Consolidated Resilience April Workshop Invitee List_Final for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Principal ICF International Mike Kangior Senior Director for Resilience Policy DHS John Laws DHS Infrastructure Protection Angela Blair Program Manager, DHS Science & ...

  15. Search | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Facility history holiday honors and awards house of representatives hpc hr hrp HSEMC hydrogen i-rapter iaea icf imaging impc IND infrastructure Infrastructure & Sustainability...

  16. Types of Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Insulating Concrete Forms Insulating concrete forms (ICFs) are basically forms for poured ... Unfaced boards can then be finished with reinforced insulating cement, canvas, or ...

  17. Transmission Infrastructure Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... by new facilities; however, additional reconfiguration, integration and reliability needs may also arise - ICF International, July 2015 6 Program Process: Summary * Goal: Provide ...

  18. Exploring the Business Link Opportunity: Transmission & Clean...

    Energy Savers [EERE]

    Henke, Senior Vice President, ICF International Laurie Woodall, Principal, URS Phoenix ... & RENEWABLES: NEW TECHNOLOGIES & INTEGRATION PROGRAMS AND GREEN LINE DEVELOPMENT DOE ...

  19. Search for: All records | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Thomas James ; et al In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed...

  20. PROPOSED RULEMAKING MEETING

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery & Energy Reliability 13 JULIE A. SMITH 14 Electricity Policy Analyst Office of ... Reliability 18 Also Present: 19 JOSHUA SMITH 20 ICF International 21 KATHERINE L. ...

  1. Prescriptive method for insulating concrete forms in residential construction

    SciTech Connect (OSTI)

    Vrankar, A.; Elhajj, N.

    1998-05-01

    Characterized as strong, durable, and energy-efficient, a new wall system for housing called Insulating Concrete Forms (ICFs) is emerging as an alternative to lumber wall frames. Due to rising costs and varying quality of framing lumber, home builders are increasing their use of ICFs even though added engineering costs make ICF homes slightly more expensive than homes with wood framing. To improve the affordability and acceptance of ICF homes, this report sets guidelines on the design, construction and inspection of ICF wall systems in residential construction. Based on thorough testing and research, the Prescriptive Method section of the report outlines minimum requirements for ICF systems including wall thickness, termite protection, reinforcement, lintel span, and connection requirements. It highlights construction and thermal guidelines for ICFs and explains how to apply the prescriptive requirements to one- and two-family homes. The Commentary section provides supplemental information and the engineering assumptions and methods used for the prescriptive method. Appendices contain step-by-step examples on how to apply ICF requirements when designing a home. They also contain engineering technical substantiation and metric conversion factors.

  2. High-performance inertial confinement fusion target implosions on OMEGA

    SciTech Connect (OSTI)

    Meyerhofer, D. D.; McCrory, R L; Betti, R; Boehly, T R; Casey, D T; Collins, T.J.B.; Craxton, R S; Delettrez, J A; Edgell, D H; Epstein, R; Fletcher, K A; Frenje, J A; Glebov, Y Yu; Goncharov, V N; Harding, D R; Hu, S X; Igumenshchev, I V; Knauer, J P; Li, C K; Marozas, J A; Marshall, F J; McKenty, P W; Nilson, P M; Padalino, S P; Petrasso, R D; Radha, P B; Regan, S P; Sangster, T C; Seguin, F H; Seka, W; Short, R W; Shvarts, D; Skupsky, S; Soures, J M; Stoeckl, C; Theobald, W; Yaakobi, B

    2011-04-18

    The Omega Laser Facility is used to study inertial confinement fusion (ICF) concepts. This paper describes progress in direct-drive central hot-spot (CHS) ICF, shock ignition (SI) and fast ignition (FI) since the 2008 IAEA FEC conference. CHS cryogenic deuterium-tritium (DT) target implosions on OMEGA have produced the highest DT areal densities yet measured in ICF implosions (~300 mg cm{sup -2}). Integrated FI experiments have shown a significant increase in neutron yield caused by an appropriately timed high-intensity, high-energy laser pulse.

  3. Development of multichannel low-energy neutron spectrometer

    SciTech Connect (OSTI)

    Arikawa, Y. Nagai, T.; Abe, Y.; Kojima, S.; Sakata, S.; Inoue, H.; Utsugi, M.; Iwasa, Y.; Sarukura, N.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H.; Murata, T.

    2014-11-15

    A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments.

  4. Application of Spatially Resolved High Resolution Crystal Spectrometry to

    Office of Scientific and Technical Information (OSTI)

    ICF Plasmas (Conference) | SciTech Connect Application of Spatially Resolved High Resolution Crystal Spectrometry to ICF Plasmas Citation Details In-Document Search Title: Application of Spatially Resolved High Resolution Crystal Spectrometry to ICF Plasmas High resolution (λ/Δ λ ~ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in

  5. Prospects for inertial fusion as an energy source

    SciTech Connect (OSTI)

    Hogan, W.J.

    1989-06-26

    Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs.

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... icf lasers (1) classical and quantumm mechanics, general physics (1) computers (1) ... Shaw, M J (2) Adams, J J (1) Adams, J. J. (1) Arnold, P A (1) Baisden, P A (1) Bliss, E S ...

  7. DOE Zero Energy Ready Home: Healthy Efficient Homes - Spirit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R-23 basement walls are ICF plus two 2-inch layers of EPS. The house also has a mini-split heat pump, fresh air fan intake, and a solar hot water heater. PDF icon ...

  8. BPA-2012-01172-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    *** * Name: Peter Doran Organization: ICF Address: 9300 Lee Highway Fairfax VA 22031 Phone: 7032182698 No FAX number provided Email: pdoran@icfi.com 1CUVEI) B HP, 101A OFFICE...

  9. Initial Operation of the uTCAP using H2 and D2

    Office of Environmental Management (EM)

    to dispose * OMEGA users wish to examine fusion reactions at D-T ratios other than 1:1 ... 5050 to satisfy inertial confinement fusion (ICF) experimental requirements * Initial ...

  10. Integrated electric power and heat planning in Russia: The fossil-nuclear tradeoff

    SciTech Connect (OSTI)

    Shavel, I.H.; Blaney, J.C.

    1996-08-01

    For the Joint Energy Alternatives Study (JEAS), ICF Kaiser International was tasked to use its Integrated Planning Model (IPM{copyright}) to estimate the investment requirements for the Russian power sector. The IPM is a least-cost planning model that uses a linear programming algorithm to select investment options and to dispatch generating and load management resources to meet overall electricity demand. For the purpose, ICF was provided with input data by the five Working Groups established under the JEAS. Methodological approaches for processing and adjusting this data were specified by Working Group 5. In addition to the two Reference Cases, ICF used IPM to analyze over forty different Change Cases. For each of these cases, ICF generated summary reports on capacity additions, electric generation, and investment and system costs. These results, along with the parallel work undertaken by the Russian Energy Research Institute formed the analytical basis for the Joint Energy Alternatives Study.

  11. Calibration model for the DCXC x-ray camera

    SciTech Connect (OSTI)

    Fehl, D.L.; Chang, J.

    1980-01-01

    A physical model for the DCXC camera used in x-radiographic studies of inertial confinement fusion (ICF) targets is described. Empirical calibration procedures, based on pulsed, bremsstrahlung sources, are proposed.

  12. DOE Zero Energy Ready Home Case Study: Greenhill Contracting...

    Energy Savers [EERE]

    have R-22 ICF walls, R-20 closed-cell spray foam under the slab, a ground-source heat pump with desuperheater for hot water, triple-pane windows, very tight air sealing (0.14...

  13. Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 19, 2013 | Author(s): Alex Friedman, LLNL | Download File: Friedman-FESNERSC-2013slides-v1a.pdf | pdf | 13 MB Kinetic Modelling in ICF March 19, 2013 | Author(s): Chuang Ren, ...

  14. Strong Coupling and Degeneracy Effects in Inertial Confinement Fusion Implosions

    SciTech Connect (OSTI)

    Hu, S.X.; Militzer, B.; Goncharov, V.N.; Skupsky, S.

    2010-06-10

    Accurate knowledge about the equation of state (EOS) of deuterium is critical to inertial confinement fusion (ICF). Low-adiabat ICF implosions routinely access strongly coupled and degenerate plasma conditions. Using the path integral Monte Carlo method, we have derived a first-principles EOS (FPEOS) table of deuterium. It is the first ab initio EOS table which completely covers typical ICF implosion trajectory in the density and temperature ranges of rho = 0.002–1596 g/cm^3 and T = 1.35 eV–5.5 keV. Discrepancies in internal energy and pressure have been found in strongly coupled and degenerate regimes with respect to SESAME EOS. Hydrodynamics simulations of cryogenic ICF implosions using the FPEOS table have indicated significant differences in peak density, areal density, and neutron yield relative to SESAME simulations.

  15. Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 19, 2013 | Author(s): Alex Friedman, LLNL | Download File: ndcx40g.r6000res1280ipstep5faster.mov | mov | 26 MB Kinetic Modelling in ICF March 19, 2013 | Author(s): Chuang ...

  16. Building America Zero Energy Ready Home Case Study: Southeast...

    Energy Savers [EERE]

    Case study describing a Habitat for Humanity home in coastal Florida with ICF walls, ducts in the thermal envelope in a furred-up ceiling chase, and HERS 49 without PV. PDF icon ...

  17. New Whole-House Solutions Case Study: Devoted Builders, LLC

    SciTech Connect (OSTI)

    none,

    2013-02-01

    Devoted Builders meets 2012 IECC insulation requirements in the cold climate with R-25 ICF walls, R-25 slab insulation and R-49 spray foam and cellulose attic floors.

  18. Plainsandeastern From: Sent: To: Cc: Subject: Attachments:

    Broader source: Energy.gov (indexed) [DOE]

    ... by Appendix 2G, a Leidos 2 page "benefit analysis" that's bereft of analysis. ls the ICF Benefits Report used as support for this project, the Leidos 2 page "analysis", or both? ...

  19. U.S. Department of Energy Office of Inspector General

    Broader source: Energy.gov (indexed) [DOE]

    ... Recovery Act projects, and EERE wanted the expertise of ICF International, a subcontractor on the New West-Energetics contract that had provided NEPA support to EERE's HQ offices. ...

  20. Strong Coupling and Degeneracy Effects in Inertial Confinement Fusion Implosions

    SciTech Connect (OSTI)

    Hu, S. X.; Goncharov, V. N.; Skupsky, S.; Militzer, B.

    2010-06-11

    Accurate knowledge about the equation of state (EOS) of deuterium is critical to inertial confinement fusion (ICF). Low-adiabat ICF implosions routinely access strongly coupled and degenerate plasma conditions. Using the path integral Monte Carlo method, we have derived a first-principles EOS (FPEOS) table of deuterium. It is the first ab initio EOS table which completely covers typical ICF implosion trajectory in the density and temperature ranges of {rho}=0.002-1596 g/cm{sup 3} and T=1.35 eV-5.5 keV. Discrepancies in internal energy and pressure have been found in strongly coupled and degenerate regimes with respect to SESAME EOS. Hydrodynamics simulations of cryogenic ICF implosions using the FPEOS table have indicated significant differences in peak density, areal density ({rho}R), and neutron yield relative to SESAME simulations.

  1. Tue Wed Thu Fri Sat Sun Mon Tue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... LL58 MEC Kraus, Dominik Phase separation of hydrocarbons at conditions comparable to planetary interiors and the first shock in ICF LL71 MFX Lyubimov, Artem In-chip X-ray analysis ...

  2. New Whole-House Solutions Case Study: Nelson Construction, Farmington, Connecticut

    SciTech Connect (OSTI)

    none,

    2012-04-01

    The builder worked with Building Science Corporation to design ten HERS 53 homes with ICF foundations, foam-sheathed above-grade walls, and high-efficiency furnaces with fresh air intake and jump ducts.

  3. DOE Zero Energy Ready Home Case Study: Weiss Building & Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case study of a DOE Zero Energy Ready Home in River Forest, IL, that scored HERS 17 without PV. This 4,763-square-foot custom passive house has R-54 ICF walls, a vented attic with ...

  4. Building America Zero Energy Ready Home Case Study: Southeast Volusia Habitat for Humanity, Edgewater, Florida

    Broader source: Energy.gov [DOE]

    Case study describing a Habitat for Humanity home in coastal Florida with ICF walls, ducts in the thermal envelope in a furred-up ceiling chase, and HERS 49 without PV.

  5. DOE Tour of Zero: The Shore Road Project by Murphy Brothers Contractin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    floor slab. 9 of 13 The ultra-efficient wall insulation consists of insulated concrete form (ICF) construction where rigid foam blocks have steel-reinforcing added and are...

  6. Engineering design and analysis of advanced physical fine coal cleaning technologies. Final report

    SciTech Connect (OSTI)

    1994-08-01

    This report describes the gravity separation equipment models available in the Coal Cleaning Simulator developed by Aspen Technology, Inc. This flowsheet simulator was developed in collaboration with ICF Kaiser Engineers, a subcontractor to Aspen Technology, Inc., and CQ Inc., a subcontractor to ICF Kaiser Engineers. The algorithms and FORTRAN programs for modeling gravity separation, which include calculations for predicting process performance, and calculations for equipment sizing and costing, were developed by ICF Kaiser Engineers. Aspen Technology integrated these and other models into the ASPEN PLUS system to provide a simulator specifically tailored for modeling coal cleaning plants. ICF Kaiser Engineers also provided basic documentation for these models; Aspen Technology, Inc. has incorporated the information into this topical report. The report documents both the use and the design bases for the models, and provides to the user a good understanding of their range of applicability and limitations.

  7. DOE Zero Energy Ready Home Case Study: Greenhill Contracting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    All of the homes have R-22 ICF walls, R-20 closed-cell spray foam under the slab, a ground-source heat pump with desuperheater for hot water, triple-pane windows, very tight air ...

  8. DOE Zero Energy Ready Home Case Study: Manatee County Habitat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HERS 53 without PV, HERS 23 with PV. This 1,143-square-foot affordable home has R-23 ICF walls, a spray-foamed sealed attic, solar hot water, and a ducted mini-split heat pump. ...

  9. untitled

    National Nuclear Security Administration (NNSA)

    ... many opportunities to improve and better test the physics models that underlie ICF. ... Since the test bed for the HFM was the Au sphere experiments 17 on the University of ...

  10. LLE Review 101 (October-December 2004)

    SciTech Connect (OSTI)

    Shmayda, W. T.

    2005-03-01

    This volume of the LLE Review, covering October to December 2004, highlights the significance of shaped adiabats to inertial confinement fusion. Theory suggests that inertial confinement fusion (ICF) capsules compressed by shaped adiabats will exhibit improved hydrodynamic stability.

  11. Application of Spatially Resolved High Resolution Crystal Spectrometry...

    Office of Scientific and Technical Information (OSTI)

    11 PPPL- 4811 Application of Spatially Resolved High Resolution Crystal Spectrometry to ICF Plasmas September, 2012 Kenneth W. Hill, M. Bitter, L. Delgado-Aprico, N.A. Pablant, P. ...

  12. Development of KrF lasers for inertial confinement fusion

    SciTech Connect (OSTI)

    Sullivan, J.A.; Harris, D.B.

    1990-01-01

    Recent reviews of the Inertial Confinement Fusion (ICF) program have resulted in recommendations that promise to focus the research effort on the examination of the feasibility of pellet ignition at 1 MJ of energy on target. If successful, the next major step in the program has been defined to be the construction of an Ignition Facility. Los Alamos National Laboratory has developed a plan to reach single-pulse multimegajoule ICF facilities using the electron-beam-pumped KrF laser. The Los Alamos plan, its relation to the development of ICF for energy production, and the major features and design issues associated with ICF drivers will be covered in this presentation. 3 figs., 1 tab.

  13. Laser Program annual report 1987

    SciTech Connect (OSTI)

    O'Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W.

    1989-07-01

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies.

  14. California CHP Market Assessment, July 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California CHP Market Assessment, July 2009 California CHP Market Assessment, July 2009 Presentation by ICF International to the Integrated Energy Policy Report Committee at the California Energy Commission's July 2009 Combined Heat and Power Workshop. 2009-07-15_ICF_CHP_Market_Assessment.pdf (3.08 MB) More Documents & Publications CHP Assessment, California Energy Commission, October 2009 2008 CHP Baseline Assessment and Action Plan for the California Market CHP: Connecting the Gap between

  15. Possible in-lattice confinement fusion (LCF)

    SciTech Connect (OSTI)

    Kawarasaki, Y.

    1996-05-01

    New scheme of a nuclear fusion reactor system is proposed, the basic concept of which comes from ingenious combination of hitherto developed techniques and verified facts; (1) so-called cold fusion (CF), (2) plasma of both magnetic confinement fusion (MCF) and inertial confinement fusion (ICF), and (3) accelerator-based D-T (D) neutron source. Through the comparison of the characteristics among ICF, LCF, and MCF, the feasibility of the LCFs is discussed. {copyright} {ital 1996 American Institute of Physics.}

  16. DOE Zero Energy Ready Home Case Study: Greenhill Contracting, Green Acres #20, #26, #28, New Paltz, NY

    Broader source: Energy.gov [DOE]

    Case study of three DOE 2015 Housing Innovation Award winning custom homes in the cold climate that got a HERS of 26, 28, and 26 without PV or -3, -1, and -3.5 with PV; with R-22 ICFs, 10” ocsf plus 2.7” c ccsf in attic; ICF basements with 4.3” ccsf under slab; tri;e-pane windows; ERVs, ground source heat pumps (COP 5.7).

  17. Introduction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Transmission in the West Planning  Siting  Issues February 7, 2012 2  What does Transmission Look Like?  Why is Transmission Important?  Transmission Planning  Transmission Siting  Select Transmission Issues  References Presentation Content © 2010 ICF International. All rights reserved. What does Transmission Look Like? © 2010 ICF International. All rights reserved. WHAT DOES ELECTRIC TRANSMISSION LOOK LIKE 4  Provide affordable/reliable electricity 

  18. Joe Kilkenny

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    joe kilkenny Joe Kilkenny Joe Kilkenny Chief NIF Experimentalist for Measurements National Ignition Facility Joe Kilkenny, vice president for high energy density physics at General Atomics, currently is assigned to the NIF diagnostic program as the chief NIF experimentalist for measurements. He has made major contributions to experimental inertial confinement fusion (ICF) for more than 35 years. He has some 200 refereed publications on ICF. Dr. Kilkenny was an academic at Imperial College,

  19. ICHEP_2012_MB_HRay_post.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Nike mirror array and lens array ICF operates a set of world-class experimental facilities to create HEDP conditions and to obtain quantitative data in support of its numerous stockpile stewardship-related activities. To learn about three high energy experimental facilities and two small lasers that provide ICF capabilities, select the links below. National Ignition Facility, Lawrence Livermore National Laboratory OMEGA and OMEGA EP, University of Rochester Laboratory for Laser

  20. DOE ZERH Case Study: Greenhill Contracting, Green Acres #20, #26, #28, New Paltz, NY

    SciTech Connect (OSTI)

    none,

    2015-09-01

    Case study of three DOE 2015 Housing Innovation Award winning custom homes in the cold climate that got a HERS of 26, 28, and 26 without PV or -3, -1, and -3.5 with PV; with R-22 ICFs, 10” ocsf plus 2.7” c ccsf in attic; ICF basements with 4.3” ccsf under slab; tri;e-pane windows; ERVs, ground source heat pumps (COP 5.7).

  1. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions

    SciTech Connect (OSTI)

    Xu, Barry; Hu, S. X.

    2011-07-15

    The electron-ion temperature relaxation essentially affects both the laser absorption in coronal plasmas and the hot-spot formation in inertial confinement fusion (ICF). It has recently been reexamined for plasma conditions closely relevant to ICF implosions using either classical molecular-dynamics simulations or analytical methods. To explore the electron-ion temperature equilibration effects on ICF implosion performance, we have examined two Coulomb logarithm models by implementing them into our hydrocodes, and we have carried out hydrosimulations for ICF implosions. Compared to the Lee-More model that is currently used in our standard hydrocodes, the two models predict substantial differences in laser absorption, coronal temperatures, and neutron yields for ICF implosions at the OMEGA Laser Facility [Boehly et al. Opt. Commun. 133, 495 (1997)]. Such effects on the triple-picket direct-drive design at the National Ignition Facility (NIF) have also been explored. Based on the validity of the two models, we have proposed a combined model of the electron-ion temperature-relaxation rate for the overall ICF plasma conditions. The hydrosimulations using the combined model for OMEGA implosions have shown {approx}6% more laser absorption, {approx}6%-15% higher coronal temperatures, and {approx}10% more neutron yield, when compared to the Lee-More model prediction. It is also noticed that the gain for the NIF direct-drive design can be varied by {approx}10% among the different electron-ion temperature-relaxation models.

  2. Estimated radiactive and shock loading of fusion reactor armor

    SciTech Connect (OSTI)

    Swift, D C

    2008-11-25

    Inertial confinement fusion (ICF) is of interest as a source of neutrons for proliferation-resistant and high burn-up fission reactor designs. ICF is a transient process, each implosion leading to energy release over a short period, with a continuous series of ICF operations needed to drive the fission reactor. ICF yields energy in the form of MeV-range neutrons and ions, and thermal x-rays. These radiations, particularly the thermal x-rays, can deposit a pulse of energy in the wall of the ICF chamber, inducing loading by isochoric heating (i.e. at constant volume before the material can expand) or by ablation of material from the surface. The explosion of the hot ICF system, and the compression of any fill material in the chamber, may also result in direct mechanical loading by a blast wave (decaying shock) reaching the chamber wall. The chamber wall must be able to survive the repetitive loading events for long enough for the reactor to operate economically. It is thus necessary to understand the loading induced by ICF systems in possible chamber wall designs, and to predict the response and life time of the wall. Estimates are given for the loading induced in the wall armor of the fusion chamber caused by ablative thermal radiation from the fusion plasma and by the hydrodynamic shock. Taking a version of the LIFE design as an example, the ablation pressure was estimated to be {approx}0.6 GPa with an approximately exponential decay with time constant {approx}0.6 ns. Radiation hydrodynamics simulations suggested that ablation of the W armor should be negligible.

  3. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Suxing X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, Lee A.; Kress, Joel David; Militzer, B.

    2015-05-01

    A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state (EOS), thermal conductivity, opacity, and stopping power, were usually estimated by models in hydrocodes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken intomore » account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the pathintegral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state (FPEOS) table, thermal conductivities (KQMD), and first principles opacity table (FPOT) of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of ~2.5; the lower the adiabat of DT capsules, the more variations in hydro

  4. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militizer, B.

    2015-04-20

    In this study, a comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximatelymore » taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (KQMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of –2.5; the lower the adiabat of DT capsules, the more variations in hydro

  5. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    SciTech Connect (OSTI)

    Hu, S. X. Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militzer, B.

    2015-05-15

    A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (κ{sub QMD}), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of ∼2.5; the lower the adiabat of DT capsules, the more variations in hydro-simulations. The FP

  6. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    SciTech Connect (OSTI)

    Hu, Suxing X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, Lee A.; Kress, Joel David; Militzer, B.

    2015-05-01

    A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state (EOS), thermal conductivity, opacity, and stopping power, were usually estimated by models in hydrocodes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the pathintegral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state (FPEOS) table, thermal conductivities (KQMD), and first principles opacity table (FPOT) of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of ~2.5; the lower the adiabat of DT capsules, the more variations in hydro

  7. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designsa)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militizer, B.

    2015-04-20

    In this study, a comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximatelymore » taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (KQMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of –2.5; the lower the adiabat of DT capsules, the more variations in hydro

  8. An overview on incomplete fusion reaction dynamics at energy range ∼ 3-8 MeV/A

    SciTech Connect (OSTI)

    Ali, Rahbar; Singh, D.; Ansari, M. Afzal; Kumar, Rakesh; Muralithar, S.; Golda, K. S.; Singh, R. P.; Bhowmik, R. K.; Rashid, M. H.; Guin, R.; Das, S. K.

    2014-08-14

    The information of ICF reaction has been obtained from the measurement of excitation function (EF) of ERs populated in the interaction of {sup 20}Ne and {sup 16}O on {sup 55}Mn, {sup 159}Tb and {sup 156}Gd targets. Sizable enhancement in the measured cross-sections has been observed in α-emitting channels over theoretical predictions, which has been attributed to ICF of the projectile. In order to confirm the findings of the measurements and analysis of EFs, the forward recoil range distributions of ERs populated in {sup 20}Ne+{sup 159}Tb (E ∼165MeV) and {sup 16}O+{sup 156}Gd (E ∼ 72, 82 and 93MeV) systems, have been measured. It has been observed that peaks appearing at different cumulative thicknesses in the stopping medium are related with different degree of linear momentum transfer from projectile to target nucleus by adopting the break-up fusion model consideration. In order to deduce the angular momentum involved in various CF and / or ICF reaction products, spin distribution and side-feeding intensity profiles of radio-nuclides populated via CF and ICF channels in {sup 16}O+{sup 160}Gd system at energy, E ∼ 5.6 MeV/A, have been studied. Spin distribution of ICF products are found to be distinctly different than that observed from CF products.

  9. Investigations into the seeding of instabilities due to x-ray preheat in beryllium-based inertial confinement fusion targets

    SciTech Connect (OSTI)

    Loomis, E. N.; Greenfield, S. R.; Johnson, R. P.; Cobble, J. A.; Luo, S. N.; Montgomery, D. S.; Marinak, M. M.

    2010-05-15

    The geometry of inertial confinement fusion (ICF) capsules makes them susceptible to various types of hydrodynamic instabilities at different stages during an ICF implosion. From the beginnings of ICF research, it has been known that grain-level anisotropy and defects could be a significant source of instability seeding in solid beryllium capsules. We report on experiments conducted at the Trident laser facility [S. H. Batha et al., Rev. Sci. Instrum. 79, 10F305 (2008)] to measure dynamic surface roughening from hard x-ray preheat due to anisotropic thermal expansion. M-band emission from laser-produced gold plasma was used to heat beryllium targets with different amounts of copper doping to temperatures comparable to ICF ignition preheat levels. Dynamic roughening measurements were made on the surface away from the plasma at discrete times up to 8 ns after the beginning of the drive pulse using a surface displacement interferometer with nanometer scale sensitivity. Undoped large-grained targets were measured to roughen between 15 and 50 nm rms. Fine-grained, copper-doped targets were observed to roughen near the sensitivity limit of the interferometer. The results of this work have shed light on the effects of high-Z doping and microstructural refinement on the dynamics of differential thermal expansion and have shown that current ICF capsule designs using beryllium are very effective in reducing preheat related roughening ahead of the first shock.

  10. Comparison of Vehicle Efficiency Technology Attributes and Synergy Estimates

    SciTech Connect (OSTI)

    Duleep, G.

    2011-02-01

    Analyzing the future fuel economy of light-duty vehicles (LDVs) requires detailed knowledge of the vehicle technologies available to improve LDV fuel economy. The National Highway Transportation Safety Administration (NHTSA) has been relying on technology data from a 2001 National Academy of Sciences (NAS) study (NAS 2001) on corporate average fuel economy (CAFE) standards, but the technology parameters were updated in the new proposed rulemaking (EPA and NHTSA 2009) to set CAFE and greenhouse gas standards for the 2011 to 2016 period. The update is based largely on an Environmental Protection Agency (EPA) analysis of technology attributes augmented by NHTSA data and contractor staff assessments. These technology cost and performance data were documented in the Draft Joint Technical Support Document (TSD) issued by EPA and NHTSA in September 2009 (EPA/NHTSA 2009). For these tasks, the Energy and Environmental Analysis (EEA) division of ICF International (ICF) examined each technology and technology package in the Draft TSD and assessed their costs and performance potential based on U.S. Department of Energy (DOE) program assessments. ICF also assessed the technologies? other relevant attributes based on data from actual production vehicles and from recently published technical articles in engineering journals. ICF examined technology synergy issues through an ICF in-house model that uses a discrete parameter approach.

  11. Comparison of Vehicle Efficiency Technology Attributes and Synergy Estimates

    SciTech Connect (OSTI)

    Duleep, G.

    2011-02-01

    Analyzing the future fuel economy of light-duty vehicles (LDVs) requires detailed knowledge of the vehicle technologies available to improve LDV fuel economy. The National Highway Transportation Safety Administration (NHTSA) has been relying on technology data from a 2001 National Academy of Sciences (NAS) study (NAS 2001) on corporate average fuel economy (CAFE) standards, but the technology parameters were updated in the new proposed rulemaking (EPA and NHTSA 2009) to set CAFE and greenhouse gas standards for the 2011 to 2016 period. The update is based largely on an Environmental Protection Agency (EPA) analysis of technology attributes augmented by NHTSA data and contractor staff assessments. These technology cost and performance data were documented in the Draft Joint Technical Support Document (TSD) issued by EPA and NHTSA in September 2009 (EPA/NHTSA 2009). For these tasks, the Energy and Environmental Analysis (EEA) division of ICF International (ICF) examined each technology and technology package in the Draft TSD and assessed their costs and performance potential based on U.S. Department of Energy (DOE) program assessments. ICF also assessed the technologies, other relevant attributes based on data from actual production vehicles, and recently published technical articles in engineering journals. ICF examined technology synergy issues through an ICF in-house model that uses a discrete parameter approach.

  12. Design review plan for Multi-Function Waste Tank Facility (Project W-236A)

    SciTech Connect (OSTI)

    Renfro, G.G.

    1994-12-20

    This plan describes how the Multi-Function Waste Tank Facility (MWTF) Project conducts reviews of design media; describes actions required by Project participants; and provides the methodology to ensure that the design is complete, meets the technical baseline of the Project, is operable and maintainable, and is constructable. Project W-236A is an integrated project wherein the relationship between the operating contractor and architect-engineer is somewhat different than that of a conventional project. Working together, Westinghouse Hanford Company (WHC) and ICF Karser Hanford (ICF KH) have developed a relationship whereby ICF KH performs extensive design reviews and design verification. WHC actively participates in over-the-shoulder reviews during design development, performs a final review of the completed design, and conducts a formal design review of the Safety Class I, ASME boiler and Pressure Vessel Code items in accordance with WHC-CM-6-1, Standard Engineering Practices.

  13. Inertial Confinement Fusion and the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Ross, P.

    2012-08-29

    Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF. NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.

  14. Manufactured solutions for the three-dimensional Euler equations with relevance to Inertial Confinement Fusion

    SciTech Connect (OSTI)

    Waltz, J.; Canfield, T.R.; Morgan, N.R.; Risinger, L.D.; Wohlbier, J.G.

    2014-06-15

    We present a set of manufactured solutions for the three-dimensional (3D) Euler equations. The purpose of these solutions is to allow for code verification against true 3D flows with physical relevance, as opposed to 3D simulations of lower-dimensional problems or manufactured solutions that lack physical relevance. Of particular interest are solutions with relevance to Inertial Confinement Fusion (ICF) capsules. While ICF capsules are designed for spherical symmetry, they are hypothesized to become highly 3D at late time due to phenomena such as Rayleigh–Taylor instability, drive asymmetry, and vortex decay. ICF capsules also involve highly nonlinear coupling between the fluid dynamics and other physics, such as radiation transport and thermonuclear fusion. The manufactured solutions we present are specifically designed to test the terms and couplings in the Euler equations that are relevant to these phenomena. Example numerical results generated with a 3D Finite Element hydrodynamics code are presented, including mesh convergence studies.

  15. Condensed hydrogen for thermonuclear fusion

    SciTech Connect (OSTI)

    Kucheyev, S. O.; Hamza, A. V.

    2010-11-15

    Inertial confinement fusion (ICF) power, in either pure fusion or fission-fusion hybrid reactors, is a possible solution for future world's energy demands. Formation of uniform layers of a condensed hydrogen fuel in ICF targets has been a long standing materials physics challenge. Here, we review the progress in this field. After a brief discussion of the major ICF target designs and the basic properties of condensed hydrogens, we review both liquid and solid layering methods, physical mechanisms causing layer nonuniformity, growth of hydrogen single crystals, attempts to prepare amorphous and nanostructured hydrogens, and mechanical deformation behavior. Emphasis is given to current challenges defining future research areas in the field of condensed hydrogens for fusion energy applications.

  16. The search for solid state fusion lasers

    SciTech Connect (OSTI)

    Weber, M.J. )

    1989-04-01

    Inertial confinement fusion (ICF) research puts severe demands on the laser driver. In recent years large, multibeam Nd:glass lasers have provided a flexible experimental tool for exploring fusion target physics because of their high powers, variable pulse length and shape, wavelength flexibility using harmonic generation, and adjustable that Nd:glass lasers can be scaled up to provide a single-phase, multi-megajoule, high-gain laboratory microfusion facility, and gas-cooled slab amplifiers with laser diode pump sources are viable candidates for an efficient, high repetition rate, megawatt driver for an ICF reactor. In both applications requirements for energy storage and energy extraction drastically limit the choice of lasing media. Nonlinear optical effects and optical damage are additional design constraints. New laser architectures applicable to ICF drivers and possible laser materials, both crystals and glasses, are surveyed. 20 refs., 2 figs.

  17. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, G.P.

    1983-09-29

    The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

  18. FY15 LLNL OMEGA Experimental Programs

    SciTech Connect (OSTI)

    Heeter, R. F.; Baker, K. L.; Barrios, M. A.; Beckwith, M. A.; Casey, D. T.; Celliers, P. M.; Chen, H.; Coppari, F.; Fournier, K. B.; Fratanduono, D. E.; Frenje, J.; Huntington, C. M.; Kraus, R. G.; Lazicki, A. E.; Martinez, D. A.; McNaney, J. M.; Millot, M. A.; Pak, A. E.; Park, H. S.; Ping, Y.; Pollock, B. B.; Smith, R. F.; Wehrenberg, C. E.; Widmann, K.; Collins, G. W.; Landen, O. L.; Wan, A.; Hsing, W.

    2015-12-04

    In FY15, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall these LLNL programs led 468 target shots in FY15, with 315 shots using just the OMEGA laser system, 145 shots using just the EP laser system, and 8 Joint shots using Omega and EP together. Approximately 25% of the total number of shots (56 OMEGA shots and 67 EP shots, including the 8 Joint shots) supported the Indirect Drive Inertial Confinement Fusion Campaign (ICF-ID). The remaining 75% (267 OMEGA shots and 86 EP shots) were dedicated to experiments for High-Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports.

  19. SU-E-T-477: An Efficient Dose Correction Algorithm Accounting for Tissue Heterogeneities in LDR Brachytherapy

    SciTech Connect (OSTI)

    Mashouf, S; Lai, P; Karotki, A; Keller, B; Beachey, D; Pignol, J

    2014-06-01

    Purpose: Seed brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose surrounding the brachytherapy seeds is based on American Association of Physicist in Medicine Task Group No. 43 (TG-43 formalism) which generates the dose in homogeneous water medium. Recently, AAPM Task Group No. 186 emphasized the importance of accounting for tissue heterogeneities. This can be done using Monte Carlo (MC) methods, but it requires knowing the source structure and tissue atomic composition accurately. In this work we describe an efficient analytical dose inhomogeneity correction algorithm implemented using MIM Symphony treatment planning platform to calculate dose distributions in heterogeneous media. Methods: An Inhomogeneity Correction Factor (ICF) is introduced as the ratio of absorbed dose in tissue to that in water medium. ICF is a function of tissue properties and independent of source structure. The ICF is extracted using CT images and the absorbed dose in tissue can then be calculated by multiplying the dose as calculated by the TG-43 formalism times ICF. To evaluate the methodology, we compared our results with Monte Carlo simulations as well as experiments in phantoms with known density and atomic compositions. Results: The dose distributions obtained through applying ICF to TG-43 protocol agreed very well with those of Monte Carlo simulations as well as experiments in all phantoms. In all cases, the mean relative error was reduced by at least 50% when ICF correction factor was applied to the TG-43 protocol. Conclusion: We have developed a new analytical dose calculation method which enables personalized dose calculations in heterogeneous media. The advantages over stochastic methods are computational efficiency and the ease of integration into clinical setting as detailed source structure and tissue segmentation are not needed. University of Toronto, Natural Sciences and

  20. New heavy-ion-fusion accelerator research program

    SciTech Connect (OSTI)

    Herrmannsfeldt, W.B.

    1983-05-01

    This paper will briefly summarize the concepts of Heavy Ion Fusion (HIF), especially those aspects that are important to its potential for generating electrical power. It will also note highlights of the various HIF programs throughout the world. Especially significant is that the US Department of Energy (DOE) plans a program, beginning in 1984, aimed at determining the feasibility of using heavy ion accelerators as drivers for Inertial Confinement Fusion (ICF). The new program concentrates on the aspects of accelerator design that are important to ICF, and for this reason is called HIF Accelerator Research.

  1. DOE Zero Energy Ready Home Case Study: Shore Road Project - Old Greenwich, Connecticut

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Old Greenwich, CT, that scored HERS 40 without PV and HERS 27 with PV. This 4,100 ft2 custom home has 13-inch ICF basement walls and 11-inch ICF above-grade walls with a closed-cell spray foam-insulated roof deck, and a continuously running ERV. The house has a dual-fuel heat pump, an instantaneous condensing water heater, and 4.5-kW solar shingles.

  2. Experiments at Scale with In-Situ Visualization Using ParaView/Catalyst in RAGE

    SciTech Connect (OSTI)

    Kares, Robert John

    2014-10-31

    In this paper I describe some numerical experiments performed using the ParaView/Catalyst in-situ visualization infrastructure deployed in the Los Alamos RAGE radiation-hydrodynamics code to produce images from a running large scale 3D ICF simulation on the Cielo supercomputer at Los Alamos. The detailed procedures for the creation of the visualizations using ParaView/Catalyst are discussed and several images sequences from the ICF simulation problem produced with the in-situ method are presented. My impressions and conclusions concerning the use of the in-situ visualization method in RAGE are discussed.

  3. Direct asymmetry measurement of temperature and density spatial distributions in inertial confinement fusion plasmas from pinhole space-resolved spectra

    SciTech Connect (OSTI)

    Nagayama, T.; Mancini, R. C.; Florido, R.; Mayes, D.; Tommasini, R.; Koch, J. A.; Delettrez, J. A.; Regan, S. P.; Smalyuk, V. A.

    2014-05-15

    Two-dimensional space-resolved temperature and density images of an inertial confinement fusion (ICF) implosion core have been diagnosed for the first time. Argon-doped, direct-drive ICF experiments were performed at the Omega Laser Facility and a collection of two-dimensional space-resolved spectra were obtained from an array of gated, spectrally resolved pinhole images recorded by a multi-monochromatic x-ray imager. Detailed spectral analysis revealed asymmetries of the core not just in shape and size but in the temperature and density spatial distributions, thus characterizing the core with an unprecedented level of detail.

  4. Science & Technology - 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    may Science & Technology - 2016 May Solving the Challenges of Making Liquid-Hydrogen Targets Just like water, hydrogen can exist in three different states, or phases-solid, liquid, and gas-depending on the temperature and pressure. Both solid and liquid phases can be used in NIF inertial confinement fusion (ICF) and high energy density (HED) implosions, and each has its own distictive advantages. Most NIF ICF experiments to date have relied on the formation of a thin solid layer of the

  5. Propane Market Outlook Key Market Trends, Opportunities, and Threats Facing the Consumer

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Market Outlook Key Market Trends, Opportunities, and Threats Facing the Consumer Propane Industry Through 2025 Prepared for the Propane Education & Research Council (PERC) by: ICF International, Inc. 9300 Lee Highway Fairfax, VA 22031 Tel (703) 218-2758 www.icfi.com Principal Author: Mr. Michael Sloan msloan@icfi.com P R E S E N T E D B Y : Propane Market Outlook at a Glance ¡ ICF projects consumer propane sales to grow by about 800 million gallons (9 percent) between 2014 and

  6. VISTA -- A Vehicle for Interplanetary Space Transport Application Powered by Inertial Confinement Fusion

    SciTech Connect (OSTI)

    Orth, C D

    2005-03-31

    Inertial Confinement Fusion (ICF) is an ideal technology to power self-contained single-stage piloted (manned) spacecraft within the solar system because of its inherently high power/mass ratios and high specific impulses (i.e., high exhaust velocities). These technological advantages are retained when ICF is utilized with a magnetic thrust chamber, which avoids the plasma thermalization and resultant degradation of specific impulse that are unavoidable with the use of mechanical thrust chambers. We started with Rod Hyde's 1983 description of an ICF-powered engine concept using a magnetic thrust chamber, and conducted a more detailed systems study to develop a viable, realistic, and defensible spacecraft concept based on ICF technology projected to be available in the first half of the 21st century. The results include an entirely new conical spacecraft conceptual design utilizing near-existing radiator technology. We describe the various vehicle systems for this new concept, estimate the missions performance capabilities for general missions to the planets within the solar system, and describe in detail the performance for the baseline mission of a piloted roundtrip to Mars with a 100-ton payload. For this mission, we show that roundtrips totaling {ge}145 days are possible with advanced DT fusion technology and a total (wet) spacecraft mass of about 6000 metric tons. Such short-duration missions are advantageous to minimize the known cosmic-radiation hazards to astronauts, and are even more important to minimize the physiological deteriorations arising from zero gravity. These ICF-powered missions are considerably faster than those available using chemical or nuclear-electric-propulsion technologies with minimum-mass vehicle configurations. VISTA also offers onboard artificial gravity and propellant-based shielding from cosmic rays, thus reducing the known hazards and physiological deteriorations to insignificant levels. We emphasize, however, that the degree to

  7. DOE Zero Energy Ready Home Case Study: Shore Road Project - Old Greenwich,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut | Department of Energy Shore Road Project - Old Greenwich, Connecticut DOE Zero Energy Ready Home Case Study: Shore Road Project - Old Greenwich, Connecticut Case study of a DOE Zero Energy Ready Home in Old Greenwich, CT, that scored HERS 40 without PV and HERS 27 with PV. This 4,100 ft2 custom home has 13-inch ICF basement walls and 11-inch insulated concrete form (ICF) above-grade walls with a closed-cell spray foam-insulated roof deck, and a continuously running energy

  8. Magnetized liner inertial fusion (MagLIF)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetized liner inertial fusion (MagLIF) [1] is an inertial confinement fusion (ICF) scheme using cylindrical compression of magnetized, preheated DT gas. A 10 - 30 T axial magnetic field reduces electron thermal conductivity allowing near-adiabatic compression at implosion velocities of order 100 km/s, much lower than the 300 km/s or more required for conventional ICF. Preheating to at least 100 eV ensures that keV temperatures are reached with a convergence ratio no greater than 30. The

  9. Damage mechanisms avoided or managed for NIF large optics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Manes, K. R.; Spaeth, M. L.; Adams, J. J.; Bowers, M. W.; Bude, J. D.; Carr, C. W.; Conder, A. D.; DiNicola, J. M. G.; Dixit, S. N.; Feigenbaum, E.; et al

    2016-02-09

    After every other failure mode has been considered, in the end, the high-performance limit of all lasers is set by optical damage. The demands of inertial confinement fusion (ICF) pushed lasers designed as ICF drivers into this limit from their very earliest days. The first ICF lasers were small, and their pulses were short. Their goal was to provide as much power to the target as possible. Typically, they faced damage due to high intensity on their optics. As requests for higher laser energy, longer pulse lengths, and better symmetry appeared, new kinds of damage also emerged, some of themmore » anticipated and others unexpected. This paper will discuss the various types of damage to large optics that had to be considered, avoided to the extent possible, or otherwise managed as the National Ignition Facility (NIF) laser was designed, fabricated, and brought into operation. Furthermore, it has been possible for NIF to meet its requirements because of the experience gained in previous ICF systems and because NIF designers have continued to be able to avoid or manage new damage situations as they have appeared.« less

  10. Upcoming Events, Conferences and Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Jets Time: 3:30 p.m., Thursday, October 7, 2014 Place: T4 3D Simulations of OMEGA-type ICF Capsules Time: 3:30 p.m., Thursday, October 2, 2014 Place: T4 Experiments on the ...

  11. Current-Driven Filament Instabilities in Relativistic Plasmas. Final report

    SciTech Connect (OSTI)

    Chuang Ren

    2013-02-13

    This grant has supported a study of some fundamental problems in current- and flow-driven instabilities in plasmas and their applications in inertial confinement fusion (ICF) and astrophysics. It addressed current-driven instabilities and their roles in fast ignition, and flow-driven instabilities and their applications in astrophysics.

  12. A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion

    SciTech Connect (OSTI)

    Zhou, C. D.; Betti, R.

    2008-01-01

    This article demonstrates how the ignition condition (Lawson criterion) for inertial confinement fusion (ICF) can be cast in a form depending on the only two parameters of the compressed fuel assembly that can be measured with methods already in existence: the hot spot ion temperature and the total areal density.

  13. 1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas. Proceedings

    SciTech Connect (OSTI)

    Ichimaru, S.; Tajima, T.

    1991-10-01

    The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas.

  14. Laser programs highlights, July--August 1990

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    Laser research at LLNL is divided into five major programmatic areas: inertial confinement fusion (ICF), uranium atomic vapor laser isotope separation (U-AVLIS), special (plutonium) isotope separation (SIS), laser technology, and advanced applications. We have made important progress this past year in each of these areas. This report covers the current state of these 5 areas.

  15. DOE Zero Energy Ready Home Case Study: Manatee County Habitat for Humanity, Ellenton, FL, Affordable

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready Home in Ellenton, FL, that scored HERS 53 without PV, HERS 23 with PV. This 1,143-square-foot affordable home has R-23 ICF walls, a spray-foamed sealed attic, solar hot water, and a ducted mini-split heat pump.

  16. Production of hollow aerogel microspheres

    DOE Patents [OSTI]

    Upadhye, Ravindra S.; Henning, Sten A.

    1993-01-01

    A method is described for making hollow aerogel microspheres of 800-1200 .mu. diameter and 100-300 .mu. wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  17. NIF Target Shot Metrics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    target shot metrics NIF Target Shot Metrics Exp Cap - Experimental Capability Natl Sec Appl - National Security Applications DS - Discovery Science ICF - Inertial Confinement Fusion HED - High Energy Density For internal LLNL firewall viewing - if the page is blank, please open www.google.com to flush out BCB

  18. LANL HED Programs Overview

    SciTech Connect (OSTI)

    Flippo, Kirk Adler

    2015-04-23

    The Powerpoint presentation provides an overview of High-Energy Density (HED) Physis, ICF and Burning Plasma research programs at Los Alamos National Lab. in New Mexico. Work in nuclear diagnostics is also presented, along with a summary of collaborations and upcoming projects.

  19. Laser Programs Highlights 1998

    SciTech Connect (OSTI)

    Lowdermilk, H.; Cassady, C.

    1999-12-01

    This report covers the following topics: Commentary; Laser Programs; Inertial Confinement Fusion/National Ignition Facility (ICF/NIF); Atomic Vapor Laser Isotope Separation (AVLIS); Laser Science and Technology (LS&T); Information Science and Technology Program (IS&T); Strategic Materials Applications Program (SMAP); Medical Technology Program (MTP) and Awards.

  20. Introduction to Energy Performance Contracting

    Broader source: Energy.gov [DOE]

    Provides a tutorial in the fundamentals of Energy Savings Performance Contracting (ESPC) for policymakers who need to understand how ESPC fits into the broader context of energy efficiency policy and programs. Author: ICF International National Association of Energy Services Companies for the U.S. Environmental Protection Agency

  1. Building America Whole-House Solutions for New Homes: Nelson Construction, Farmington, Connecticut

    Broader source: Energy.gov [DOE]

    Case study of Nelson Construction, who worked with the Building America research partner Building Science Corporation to design ten HERS 53 homes with ICF foundations, foam-sheathed above-grade walls, and high-effciency furnaces with fresh air intake and jump ducts.

  2. D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition

    SciTech Connect (OSTI)

    Miley, George H.

    2012-10-24

    Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the 'converter-foil' which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of the available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra 'bonus' energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for 'hot spot' ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10% - meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn at the National Ignition

  3. D-T gamma-to-neutron branching ratio determined from inertial confinement fusion plasmas

    SciTech Connect (OSTI)

    Kim, Y.; Mack, J. M.; Herrmann, H. W.; Young, C. S.; Hale, G. M.; Caldwell, S.; Hoffman, N. M.; Evans, S. C.; Sedillo, T. J.; McEvoy, A.; Langenbrunner, J.; Hsu, H. H.; Huff, M. A.; Batha, S.; Horsfield, C. J.; Rubery, M. S.; Garbett, W. J.; Stoeffl, W.; Grafil, E.; Bernstein, L.; and others

    2012-05-15

    A new deuterium-tritium (D-T) fusion gamma-to-neutron branching ratio [{sup 3}H(d,{gamma}){sup 5}He/{sup 3}H(d,n){sup 4}He] value of (4.2 {+-} 2.0) Multiplication-Sign 10{sup -5} was recently reported by this group [Y. Kim et al. Phys. Rev. C (submitted)]. This measurement, conducted at the OMEGA laser facility located at the University of Rochester, was made for the first time using inertial confinement fusion (ICF) plasmas. Neutron-induced backgrounds are significantly reduced in these experiments as compared to traditional beam-target accelerator-based experiments due to the short pulse nature of ICF implosions and the use of gas Cherenkov {gamma}-ray detectors with fast temporal responses and inherent energy thresholds. It is expected that this ICF-based measurement will help resolve the large and long-standing inconsistencies in previously reported accelerator-based values, which vary by a factor of approximately 30. The reported value at ICF conditions was determined by averaging the results of two methods: (1) a direct measurement of ICF D-T {gamma}-ray and neutron emissions using absolutely calibrated detectors and (2) a separate cross-calibration against the better known D-{sup 3}He gamma-to-proton branching ratio [{sup 3}He(d, {gamma}){sup 5}Li/{sup 3}He(d,p){sup 4}He]. Here we include a detailed explanation of these results, and introduce as a corroborative method an in-situ{gamma}-ray detector calibration using neutron-induced {gamma}-rays. Also, by extending the established techniques to two additional series of implosions with significantly different ion temperatures, we test the branching ratio dependence on ion temperature. The data show a D-T branching ratio is nearly constant over the temperature range 2-9 keV. These studies motivate further investigation into the {sup 5}He and {sup 5}Li systems resulting from D-T and D-{sup 3}He fusion, respectively, and result in improved ICF {gamma}-ray reaction history diagnosis at the National Ignition

  4. Coated foams, preparation, uses and articles

    DOE Patents [OSTI]

    Duchane, D.V.; Barthell, B.L.

    1982-10-21

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.

  5. 6th target fabrication specialists meeting: Proceedings, June 23, 1988 Sessions

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The following papers were presented at the meeting: Laser Target Fabrication at the Naval Research Laboratory; High-Sensitivity Radiography Detects Very Small Defects in Laser Fusion Targets; Ablation Layer Coating on Inertial Fusion Targets at Laboratory for Laser Energetics; X-Ray Microscopy of Inertial Fusion Targets Using a Laser Produced Plasma as an X-Ray Source; A Study of Factors Affecting The Deposition of Smooth Plasma Polymers; Composite Foams; Low-Density Resorcinol-Formaldehyde Foams for Direct-Drive Laser ICF Targets; Low-Density Polystyrene Foams For Direct-Drive Laser ICF Targets; Characterization of Low-Density Materials and Their Precursers; and Low-Voltage Scanning Electron Microscopy of Target Materials. (JF)

  6. Generalized Lawson Criteria for Inertial Confinement Fusion

    SciTech Connect (OSTI)

    Tipton, Robert E.

    2015-08-27

    The Lawson Criterion was proposed by John D. Lawson in 1955 as a general measure of the conditions necessary for a magnetic fusion device to reach thermonuclear ignition. Over the years, similar ignition criteria have been proposed which would be suitable for Inertial Confinement Fusion (ICF) designs. This paper will compare and contrast several ICF ignition criteria based on Lawson’s original ideas. Both analytical and numerical results will be presented which will demonstrate that although the various criteria differ in some details, they are closely related and perform similarly as ignition criteria. A simple approximation will also be presented which allows the inference of each ignition parameter directly from the measured data taken on most shots fired at the National Ignition Facility (NIF) with a minimum reliance on computer simulations. Evidence will be presented which indicates that the experimentally inferred ignition parameters on the best NIF shots are very close to the ignition threshold.

  7. The National Ignition Facility (NIF) and the issue of nonproliferation. Final study

    SciTech Connect (OSTI)

    1995-12-19

    NIF, the next step proposed by DOE in a progression of Inertial Confinement Fusion (ICF) facilities, is expected to reach the goal of ICF capsule ignition in the laboratory. This report is in response to a request of a Congressman that DOE resolve the question of whether NIF will aid or hinder U.S. nonproliferation efforts. Both technical and policy aspects are addressed, and public participation was part of the decision process. Since the technical proliferation concerns at NIF are manageable and can be made acceptable, and NIF can contribute positively to U.S. arms control and nonproliferation policy goals, it is concluded that NIF supports the nuclear nonproliferation objectives of the United States.

  8. A Novel Neutron Imaging Calibration System Using a Neutron Generating Accelerator Tube

    SciTech Connect (OSTI)

    Ali, Z., Davis, B., Tinsley, J. R., Miller, E. K.

    2009-09-04

    Neutron Imaging is a key diagnostic for use in inertial confinement fusion (ICF) experiments, and has been fielded on experiments at Omega and Z. It will also be a key diagnostics at the National Ignition Facility (NIF) located at Lawrence Livermore National Laboratory (LLNL) and eventually at the Laser Megajoule in France. Most systems are based on a neutron pinhole array placed at the target chamber while it is imaged by a scintillating fiber block. The light output of this scintillator is coupled via a reducer to a fiber bundle which transports the image to a CCD camera. Alternatively some systems use optical lens assemblies to focus the light onto a camera.For ICF applications the neutron imaging systems will primarily look at 14.2 MeV neutrons. However, 2.2 MeV and 20+ MeV neutrons will also be present and will potentially provide key information.

  9. Development of nuclear diagnostics for the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Glebov, V. Yu.; Meyerhofer, D. D.; Sangster, T. C.; Stoeckl, C.; Roberts, S.; Barrera, C. A.; Celeste, J. R.; Cerjan, C. J.; Dauffy, L. S.; Eder, D. C.; Griffith, R. L.; Haan, S. W.; Hammel, B. A.; Hatchett, S. P.; Izumi, N.; Kimbrough, J. R.; Koch, J. A.; Landen, O. L.; Lerche, R. A.; MacGowan, B. J.

    2006-10-15

    The National Ignition Facility (NIF) will provide up to 1.8 MJ of laser energy for imploding inertial confinement fusion (ICF) targets. Ignited NIF targets are expected to produce up to 10{sup 19} DT neutrons. This will provide unprecedented opportunities and challenges for the use of nuclear diagnostics in ICF experiments. In 2005, the suite of nuclear-ignition diagnostics for the NIF was defined and they are under development through collaborative efforts at several institutions. This suite includes PROTEX and copper activation for primary yield measurements, a magnetic recoil spectrometer and carbon activation for fuel areal density, neutron time-of-flight detectors for yield and ion temperature, a gamma bang time detector, and neutron imaging systems for primary and downscattered neutrons. An overview of the conceptual design, the developmental status, and recent results of prototype tests on the OMEGA laser will be presented.

  10. Improved understanding of first-mall vaporization-condensation in inertial confinement fusion reactors. Revision 1

    SciTech Connect (OSTI)

    Orth, C.D.

    1986-08-01

    We report approximate x-ray and debris spectra emanating from a region of compressed DT fuel representing the imploded configuration of a generic direct-drive ICF reactor pellet. We show how the spectra are modified by spherical lead shields of various thicknesses placed near the pellet, and show that it is not possible to lessen the ablation of the first wall or blanket of a low-pressure ICF reactor chamber through use of such shields. Then we report that the calculated x-ray spectra alone (i.e., without the associated debris) cause vaporization of a first wall placed at a radius of 4 m that is much more than previously expected. This result increases the importance of understanding the details of the vaporization and condensation phenomena.

  11. Anisotropy of radiation emitted from planar wire arrays

    SciTech Connect (OSTI)

    Kantsyrev, V. L.; Esaulov, A. A.; Safronova, A. S.; Williamson, K. M.; Osborne, G. C.; Shrestha, I. K.; Weller, M. E.; Shlyaptseva, V. V.; Chuvatin, A. S.; Rudakov, L. I.; Velikovich, A.

    2013-07-15

    The planar wire array (PWA) is a promising load for new multi-source inertial confinement fusion (ICF) hohlraums [B. Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The hohlraum radiation symmetry is an important issue for ICF. It was found that extreme ultraviolet and sub-keV photon emission from PWAs may have considerable anisotropy in the load azimuthal plane. This experimental result is obtained on the UNR 1–1.7 MA Zebra generator. The time-dependent anisotropy effect is detected. This feature is studied in 2D numerical simulations and can be explained by initial anisotropy of implosion of those non-cylindrical loads radiating essentially as surface sources in sub-keV quanta and also by radiation absorption in cold magnetized plasma tails forming in the direction of magnetic compression.

  12. Tent-induced perturbations on areal density of implosions at the National Ignition Facility

    SciTech Connect (OSTI)

    Tommasini, R. Field, J. E.; Hammel, B. A.; Landen, O. L.; Haan, S. W.; Aracne-Ruddle, C.; Benedetti, L. R.; Bradley, D. K.; Callahan, D. A.; Dewald, E. L.; Doeppner, T.; Edwards, M. J.; Hurricane, O. A.; Izumi, N.; Jones, O. A.; Ma, T.; Meezan, N. B.; Nagel, S. R.; Rygg, J. R.; Stadermann, M.; and others

    2015-05-15

    Areal density non-uniformities seeded by time-dependent drive variations and target imperfections in Inertial Confinement Fusion (ICF) targets can grow in time as the capsule implodes, with growth rates that are amplified by instabilities. Here, we report on the first measurements of the perturbations on the density and areal density profiles induced by the membranes used to hold the capsule within the hohlraum in indirect drive ICF targets. The measurements are based on the reconstruction of the ablator density profiles from 2D radiographs obtained using pinhole imaging coupled to area backlighting, as close as 150 ps to peak compression. Our study shows a clear correlation between the modulations imposed on the areal density and measured neutron yield, and a 3× reduction in the areal density perturbations comparing a high-adiabat vs. low-adiabat pulse shape.

  13. Reduction of solvent emissions within a paint booth

    SciTech Connect (OSTI)

    Zirps, N.A.; Wiener, R.K.; Shaver, D.K.

    1988-12-31

    ICF Technology is currently performing a waste minimization study at Vandenberg Air Force Base. As part of the study, ICF has been examining planned freon-113 usage operations within Martin Marietta`s new Titan fairing paint booths. The booths are to be used for painting payload fairing (PLF) for Titan II and Titan IV vehicles. Approximately 1,050 gallons of Freon-113 are planned for use within the paint booths. The following alternatives have been examined to reduce emissions: substitution of the primary coating with an alternative coating such as powder, waterborne, or high solids; recovery of Freon-113 vapors using carbon adsorption or condensation; and use of a different application method.

  14. Spallation as a dominant source of pusher-fuel and hot-spot mix in inertial confinement fusion capsules

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Orth, Charles D.

    2016-02-23

    We suggest that a potentially dominant but previously neglected source of pusher-fuel and hot-spot “mix” may have been the main degradation mechanism for fusion energy yields of modern inertial confinement fusion (ICF) capsules designed and fielded to achieve high yields — not hydrodynamic instabilities. This potentially dominant mix source is the spallation of small chunks or “grains” of pusher material into the fuel regions whenever (1) the solid material adjacent to the fuel changes its phase by nucleation, and (2) this solid material spalls under shock loading and sudden decompression. Finally, we describe this mix mechanism, support it with simulationsmore » and experimental evidence, and explain how to eliminate it and thereby allow higher yields for ICF capsules and possibly ignition at the National Ignition Facility.« less

  15. Effects of processing techniques on the shock response of Be

    SciTech Connect (OSTI)

    Loomis, E.; Luo, S. N.; Paisley, D.; Swift, D.; Johnson, R.; Greenfield, S.

    2007-12-12

    Microstructural effects including material anisotropy, impurities, grain size, and texture alter a material's response to dynamic loading through wave front dispersion and inelastic processes. The spatial variations created by these effects are a challenge for inertial confinement fusion (ICF) as they may seed instabilities, which could reduce thermonuclear yield, if not controlled through material processing. To this end, laser-driven confined shock experiments have been conducted on Be to characterize its dynamic strength properties and usefulness as an ICF ablator. Disks of Be 3 mm in diameter and 100 to 250 microns thick in the form of single crystal, rolled foil, and equal channel angular extruded were dynamically loaded to 100's kbar while the material behavior was measured with in-situ diagnostics. Clear two-wave structures were observed in free surface velocity records, providing a comparison of flow stress and other dynamic properties between Be types.

  16. Target Fabrication: A View from the Users

    SciTech Connect (OSTI)

    Kyrala, George A.; Balkey, Matthew M.; Barnes, Cris W.; Batha, Steven H.; Christensen, Cindy R.; Cobble, James A.; Fincke, James; Keiter, Paul; Lanier, Nicholas; Paisley, Dennis; Sorem, Michael; Swift, Damian; Workman, Jonathan

    2004-03-15

    Targets are used for a variety of purposes, but ultimately we use them to validate codes that help us predict and understand new phenomena or effects. The sophistication and complexity of High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF) targets has increased in to match the advances made in modeling complex phenomena. The targets have changed from simple hohlraums, spherical geometries, and planar foils, to 3-dimensional geometries that require precision in construction, alignment, and metrology. Furthermore, material properties, such as surface morphologies and volume texture, have significant impact on the behavior of the targets and must be measured and controlled. In the following we will discuss how experimental physicists view targets and the influence that target construction has on interpreting the experimental results. We review a representative sampling of targets fabricated at the Los Alamos National Laboratory that are used in different experiments in support of ICF and HEDP.

  17. TARGET FABRICATION: A VIEW FROM THE USERS.

    SciTech Connect (OSTI)

    Kyrala, George A.; Balkey, Matthew M.; Batha, Steven H.; Barnes, Cris W.; Christensen, Cindy; Cobble, James; Fincke, James; Keiter, Paul; Lanier, Nicholas; Paisley, Dennis; Sorem, Michael S.; Swift, Damian; Workman, Jonathan

    2003-07-18

    Targets are used for a variety of purposes, but ultimately we use them to validate codes that help us predict and understand new phenomena or effects. The sophistication and complexity of High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF) targets has increased in time to match the advances made in modeling complex phenomena. The targets have changed from simple hohlraums, spherical geometries, and planar foils, to 3-dimensional geometries that require precision in construction, alignment, and metrology. Furthermore, material properties, such as surface morphologies and volume texture, have significant impact on the behavior of the targets and must be measured and controlled. In the following we will discuss how experimental physicists view targets and the influence that target construction has on interpreting the experimental results. We review a representative sampling of targets fabricated at the Los Alamos National Laboratory that are used in different experiments in support of ICF and HEDP.

  18. Proceedings of the twelfth target fabrication specialists` meeting

    SciTech Connect (OSTI)

    1999-04-01

    Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of an ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research.

  19. LLE 2008 annual report, October 2007 - September 2008

    SciTech Connect (OSTI)

    2009-01-31

    The research program at the University of Rochester’s Laboratory for Laser Energetics (LLE) focuses on inertial confinement fusion (ICF) research supporting the goal of achieving ignition on the National Ignition Facility (NIF). This program includes the full use of the OMEGA EP Laser System. Within the National Ignition Campaign (NIC), LLE is the lead laboratory for the validation of the performance of cryogenic target implosions, essential to all forms of ICF ignition. LLE has taken responsibility for a number of critical elements within the Integrated Experimental Teams (IET’s) supporting the demonstration of indirect-drive ignition on the NIF and is the lead laboratory for the validation of the polardrive approach to ignition on the NIF. LLE is also developing, testing, and building a number of diagnostics to be deployed on the NIF for the NIC.

  20. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    SciTech Connect (OSTI)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Barnard, J. J.; Cohen, R. H.; Dorf, M. A.; Lund, S. M.; Perkins, L. J.; Terry, M. R.; Logan, B. G.; Bieniosek, F. M.; Faltens, A.; Henestroza, E.; Jung, J. Y.; Kwan, J. W.; Lee, E. P.; Lidia, S. M.; Ni, P. A.; Reginato, L. L.; Roy, P. K.; Seidl, P. A.; Takakuwa, J. H.; Vay, J.-L.; Waldron, W. L.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R. A.; Koniges, A. E.

    2011-03-31

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  1. Heavy ion induction linac drivers for inertial confinement fusion

    SciTech Connect (OSTI)

    Lee, E.P.; Hovingh, J.

    1988-10-01

    Intense beams of high energy heavy ions (e.g., 10 GeV Hg) are an attractive option for an ICF driver because of their favorable energy deposition characteristics. The accelerator systems to produce the beams at the required power level are a development from existing technologies of the induction linac, rf linac/storage ring, and synchrotron. The high repetition rate of the accelerator systems, and the high efficiency which can be realized at high current make this approach especially suitable for commercial ICF. The present report gives a summary of the main features of the induction linac driver system, which is the approach now pursued in the USA. The main subsystems, consisting of injector, multiple beam accelerator at low and high energy, transport and pulse compression lines, and final focus are described. Scale relations are given for the current limits and other features of these subsystems. 17 refs., 1 fig., 1 tab.

  2. eHXI: A permanently installed, hard x-ray imager for the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Doppner, T.; Bachmann, B.; Albert, F.; Bell, P.; Burns, S.; Celeste, J.; Chow, R.; Divol, L.; Dewald, E. L.; Hohenberger, M.; et al

    2016-06-14

    We have designed and built a multi-pinhole imaging system for high energy x-rays (≥ 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. Lastly, eHXI provides valuable information onmore » hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.« less

  3. Performance and Mix Measurements of Indirect Drive Cu-Doped Be Implosions

    SciTech Connect (OSTI)

    Casey, D.  T.; Woods, D. T.; Smalyuk, V. A.; Hurricane, O.  A.; Glebov, V.  Y.; Stoeckl, C.; Theobald, W.; Wallace, R.; Nikroo, A.; Schoff, M.; Shuldberg, C.; Wu, K. J.; Frenje, J.  A.; Landen, O.  L.; Remington, B.  A.; Glendinning, G.

    2015-05-19

    The ablator couples energy between the driver and fusion fuel in inertial confinement fusion (ICF). Because of its low opacity, high solid density, and material properties, beryllium has long been considered an ideal ablator for ICF ignition experiments at the National Ignition Facility. We report here the first indirect drive Be implosions driven with shaped laser pulses and diagnosed with fusion yield at the OMEGA laser. The results show good performance with an average DD neutron yield of ~2 × 10⁹ at a convergence ratio of R₀/R ~ 10 and little impact due to the growth of hydrodynamic instabilities and mix. In addition, the effect of adding an inner liner of W between the Be and DD is demonstrated.

  4. Measurement and simulation of jet mass caused by a high-aspect ratio pertubation

    SciTech Connect (OSTI)

    Keiter, Paul A; Cooley, James; Kyrala, George; Wilson, Doug; Blue, Brent; Edwards, John; Robey, Harry; Spears, Brian

    2009-01-01

    Inertial confinement fusion (ICF) capsule performance can be negatively impacted by the presence of hydrodynamic instabilities. To perform a gas fill on an ICF capsule current plans involve drilling a small hole and inserting a fill tube to inject the gas mixture into the capsule. This introduces a perturbation on the capsule, which can seed hydrodynamic instabilities. The small hole can cause jetting of the shell material into the gas, which might adversely affect the capsule performance. We have performed simulations and experiments to study the hydrodynamic evolution of jets from high-aspect ratio holes, such as the fill tube hole. Although simulations using cold materials over predict the amount of mass in the jet, when a reasonable amount of preheat (< 1 eV) is introduced, the simulations are in better agreement with the experiment.

  5. Interplanetary space transport using inertial fusion propulsion

    SciTech Connect (OSTI)

    Orth, C.D.

    1998-04-20

    In this paper, we indicate how the great advantages that ICF offers for interplanetary propulsion can be accomplished with the VISTA spacecraft concept. The performance of VISTA is expected to surpass that from other realistic technologies for Mars missions if the energy gain achievable for ICF targets is above several hundred. Based on the good performance expected from the U. S. National Ignition Facility (NIF), the requirements for VISTA should be well within the realm of possibility if creative target concepts such as the fast ignitor can be developed. We also indicate that a 6000-ton VISTA can visit any planet in the solar system and return to Earth in about 7 years or less without any significant physiological hazards to astronauts. In concept, VISTA provides such short-duration missions, especially to Mars, that the hazards from cosmic radiation and zero gravity can be reduced to insignificant levels. VISTA therefore represents a significant step forward for space-propulsion concepts.

  6. Method of forming a continuous polymeric skin on a cellular foam material

    DOE Patents [OSTI]

    Duchane, David V.; Barthell, Barry L.

    1985-01-01

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the outer surface of the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tensin of the polymer solution used to coat are all very important to the coating.

  7. LLE 2007 Annual Report, October 2006 - September 2007

    SciTech Connect (OSTI)

    None, None

    2008-01-31

    The laser-fusion research program at the University of Rochester’s Laboratory for Laser Energetics (LLE) is focused on the National Nuclear Security Administration’s (NNSA’s) Campaign-10 inertial confinement fusion (ICF) ignition and experimental support technology, operation of facilities (OMEGA), and the construction of OMEGA EP -- a high energy petawatt laser system. While LLE is the lead laboratory for research into the direct-drive approach to ICF ignition, it also takes a lead role in certain indirect-drive tasks within the National Ignition Campaign. During this past year progress in the laser-fusion research program was made in three principal areas: OMEGA direct drive and indirect-drive experiments and targets; development of diagnostics for experiments on OMEGA, OMEGA EP, and the National Ignition Facility (NIF); and theoretical analysis and design efforts aimed at improving direct-drive-ignition capsule designs and advanced ignition concepts such as fast ignition and shock ignition.

  8. Lintel testing for reduced shear reinforcement in insulation concrete form systems

    SciTech Connect (OSTI)

    1998-05-01

    Historically, cast-in-place concrete for residential construction has been primarily limited to below grade applications such as footings and foundation walls. Such construction was relatively labor intensive, and, therefore was not considered a viable alternative for other parts of the building. However, the recent advent of insulating concrete form (ICF) wall construction and the Prescriptive Method for Insulating Concrete Forms in Residential Construction (Prescriptive Method) has resulted in a competitive and energy efficient alternative for above grade walls in residential construction. The purpose of this test program is to investigate the structural capacity and performance of the concrete lintels typically used in ICF construction. Lintels are reinforced concrete structural elements that support loads above openings in concrete walls.

  9. CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2012 | Department of Energy CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar, January 2012 CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar, January 2012 This presentation, "Industrial/Commercial/Institutional Boiler MACT - Combined Heat and Power: A Technical & Economic Compliance Strategy," by John Cuttica, Midwest Clean Energy Application Center, and Bruce Hedman, ICF International, is from the January 17, 2012, SEE

  10. Developing inertial fusion energy - Where do we go from here?

    SciTech Connect (OSTI)

    Meier, W.R.; Logan, G.

    1996-06-11

    Development of inertial fusion energy (IFE) will require continued R&D in target physics, driver technology, target production and delivery systems, and chamber technologies. It will also require the integration of these technologies in tests and engineering demonstrations of increasing capability and complexity. Development needs in each of these areas are discussed. It is shown how IFE development will leverage off the DOE Defense Programs funded inertial confinement fusion (ICF) work.

  11. High Energy Density Laboratory Plasmas Program | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) High Energy Density Laboratory Plasmas Program Steady advances in increasing the energy, power, and brightness of lasers and particle beams and advances in pulsed power systems have made possible the exploration of matter at extremely high energy density in the laboratory. Exciting new experimental regimes are being realized by exploiting the scientific capabilities of existing ICF Office facilities, as well as the relevant Department of Defense (DoD) and university

  12. Inertial Confinement Fusion | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Evaluation Inertial Confinement Fusion Forty-eight final optic assemblies are symmetrically distributed around the upper and lower hemispheres of the target chamber (National Ignition Facility, Lawrence Livermore National Laboratory) The Office of ICF provides experimental capabilities and scientific understanding in high energy density physics (HEDP) necessary to ensure a safe, secure, and effective nuclear weapons stockpile without underground testing. The demonstration of

  13. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme temperatures and

  14. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration | (NNSA) High Energy Density Laboratory Plasmas Program Steady advances in increasing the energy, power, and brightness of lasers and particle beams and advances in pulsed power systems have made possible the exploration of matter at extremely high energy density in the laboratory. Exciting new experimental regimes are being realized by exploiting the scientific capabilities of existing ICF Office facilities, as well as the relevant Department of Defense (DoD) and university

  15. Inertial confinement fusion | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NNSA) Evaluation Inertial Confinement Fusion Forty-eight final optic assemblies are symmetrically distributed around the upper and lower hemispheres of the target chamber (National Ignition Facility, Lawrence Livermore National Laboratory) The Office of ICF provides experimental capabilities and scientific understanding in high energy density physics (HEDP) necessary to ensure a safe, secure, and effective nuclear weapons stockpile without underground testing. The demonstration of

  16. Ignition and burn of a small magnetized fuel target

    SciTech Connect (OSTI)

    Kirkpatrick, Ronald C.

    2012-06-01

    The crucial step for inertial confinement fusion (ICF) is ignition, which leads to sufficiently high gain to enable design of a power producing system. Thus far, this step has not been demonstrated. Magnetized targets may provide an alternative path to ignition. In addition, the 1-D calculations presented here suggest that this approach may provide the gain and other characteristics needed for a practical fusion reactor.

  17. Transparent electrode for optical switch

    DOE Patents [OSTI]

    Goldhar, J.; Henesian, M.A.

    1984-10-19

    The invention relates generally to optical switches and techniques for applying a voltage to an electro-optical crystal, and more particularly, to transparent electodes for an optical switch. System architectures for very large inertial confinement fusion (ICF) lasers require active optical elements with apertures on the order of one meter. Large aperture optical switches are needed for isolation of stages, switch-out from regenerative amplifier cavities and protection from target retroreflections.

  18. First-principles equation-of-state table of deuterium for inertial confinement fusion applications

    SciTech Connect (OSTI)

    Hu, S. X.; Goncharov, V. N.; Skupsky, S.; Militzer, B.

    2011-12-01

    Understanding and designing inertial confinement fusion (ICF) implosions through radiation-hydrodynamics simulations relies on the accurate knowledge of the equation of state (EOS) of the deuterium and tritium fuels. To minimize the drive energy for ignition, the imploding shell of DT fuel must be kept as cold as possible. Such low-adiabat ICF implosions can access to coupled and degenerate plasma conditions, in which the analytical EOS models become inaccurate due to many-body effects. Using the path-integral Monte Carlo (PIMC) simulations we have derived a first-principles EOS (FPEOS) table of deuterium that covers typical ICF fuel conditions at densities ranging from 0.002 to 1596 g/cm{sup 3} and temperatures of 1.35 eV to 5.5 keV. We report the internal energy and the pressure and discuss the structure of the plasma in terms of pair-correlation functions. When compared with the widely used SESAME table and the revised Kerley03 table, discrepancies in the internal energy and in the pressure are identified for moderately coupled and degenerate plasma conditions. In contrast to the SESAME table, the revised Kerley03 table is in better agreement with our FPEOS results over a wide range of densities and temperatures. Although subtle differences still exist for lower temperatures (T < 10 eV) and moderate densities (1 to 10 g/cm{sup 3}), hydrodynamics simulations of cryogenic ICF implosions using the FPEOS table and the Kerley03 table have resulted in similar results for the peak density, areal density ({rho}R), and neutron yield, which differ significantly from the SESAME simulations.

  19. OMEGA FY13 HED requests - LANL

    SciTech Connect (OSTI)

    Workman, Jonathan B; Loomis, Eric N

    2012-06-25

    This is a summary of scientific work to be performed on the OMEGA laser system located at the Laboratory for Laser Energetics in Rochester New York. The work is funded through Science and ICF Campagins and falls under the category of laser-driven High-Energy Density Physics experiments. This summary is presented to the Rochester scheduling committee on an annual basis for scheduling and planning purposes.

  20. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme

  1. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme

  2. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Spectroscopy of Warm Dense Matter Ultrafast Spectroscopy of Warm Dense Matter Print Wednesday, 25 April 2012 00:00 Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material

  3. DOE ZERH Case Study: Clifton View Homes, Marine Drive and Port Hadlcok, Coupeville and Port Hadlock WA

    SciTech Connect (OSTI)

    none,

    2015-09-01

    Case study of two DOE 2015 Housing Innovation Award winning custom homes in the marine climate that got HERS 39 and 38 without PV or HERS 2-12 and -9 with PV, with 6.5” SIP walls and 10.25” SIP roof; 11.75 ICF around slab, R-20 rigid foam under slab; radiant floor heat and passive design; air-to-water heatpump, fresh air intake with fan, triple-pane windows, 100% LED.

  4. NIF and Jupiter User Group Meeting 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    workshops / user group 2014 / NIF and Jupiter User Group Meeting 2014 About the NIF and Jupiter User Group Meeting The 192-beam National Ignition Facility (NIF), the most energetic inertial confinement fusion (ICF) facility in the world, is now operational. The NIF laser's unprecedented power, precision, and reproducibility, coupled with over 50 available diagnostics and sophisticated target fabrication capability, enable a wide range of leading edge scientific experiments. Initial experiments

  5. Experimental Highlights - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 / may Experimental Highlights - 2015 May Climbing the Mountain of Fusion Ignition: An Interview with Omar Hurricane LLNL Distinguished Scientist Omar Hurricane, Chief Scientist for the Laboratory's Inertial Confinement Fusion (ICF) program, is at the forefront of the drive to achieve nuclear fusion with energy gain for the first time in a laboratory. In a wide-ranging interview with NIF & Photon Science News, Hurricane outlines the NIF strategy for moving toward ignition and describes the

  6. DOE Zero Energy Ready Home Case Study: Clifton View Homes, Marine Drive and Port Hadlcok, Coupeville and Port Hadlock WA

    Broader source: Energy.gov [DOE]

    Case study of two DOE 2015 Housing Innovation Award winning custom homes in the marine climate that got HERS 39 and 38 without PV or HERS 2-12 and -9 with PV, with 6.5” SIP walls and 10.25” SIP roof; 11.75 ICF around slab, R-20 rigid foam under slab; radiant floor heat and passive design; air-to-water heatpump, fresh air intake with fan, triple-pane windows, 100% LED.

  7. DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham Power House, Bellingham, WA

    Broader source: Energy.gov [DOE]

    Case study of a DOE 2015 Housing Innovation Award winning custom home in the marine climate that got HERS 34 without PV or HERS -12 with PV, with 6” SIP walls and 10” SIP roof; R-28 ICF around slab, R-20 rigid foam under slab; radiant floor heat and passive design; air-to-water heat pump COP 4.4; HRV; earth tube ventilation; triple-pane windows, 100% LED.

  8. DOE Zero Energy Ready Home Case Study: New Town Builders, Town Homes at Perrin's Row, Wheat Ridge, CO

    Broader source: Energy.gov [DOE]

    Case study of a DOE 2015 Housing Innovation Award winning multifamily project with 26 units in the cold climate that got a HERS 54 without PV, or HERS 28 with PV, with 2x6 24” on center walls with R-23 blown fiberglass; slab foundation with R-10 rigid at slab edge; plus R-10 rigid exterior; R-22 ICF basement walls; vented attic with R-50 blown fiberglass; 92 AFUE furnace, 13 SEER AC.

  9. Laser fusion monthly -- August 1980

    SciTech Connect (OSTI)

    Ahlstrom, H.G.

    1980-08-01

    This report documents the monthly progress for the laser fusion research at Lawrence Livermore National Laboratory. First it gives facilities report for both the Shiva and Argus projects. Topics discussed include; laser system for the Nova Project; the fusion experiments analysis facility; optical/x-ray streak camera; Shiva Dante System temporal response; 2{omega}{sub 0} experiment; and planning for an ICF engineering test facility.

  10. 2015 HEDLP Awards | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    5 HEDLP Awards Institution PI Title Harvard College Jacobsen, Stein From Z to Planets: Phase II Princeton University Fisch, Nathaniel Fundamental Issues in the Interaction of Intense Lasers with Plasma Massachusetts Institute of Technology Petrasso, Richard Studying Hydrodynamics, Kinetic/multi-ion Effects, and Charged-Particle Stopping in HED Plasmas and ICF Implosions at Omega, Omega-EP and at the NIF University of California, Los Angeles Joshi, Chand Development of a Broadband (40-80 KV),