Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Finished Motor Gasoline Net Production  

Gasoline and Diesel Fuel Update (EIA)

Data Series: Finished Motor Gasoline Finished Motor Gasoline (less Adj.) Reformulated Gasoline Reformulated Gasoline Blenede w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Other Conventional Gasoline Finished Motor Gasoline Adjustment Kerosene-Type Jet Fuel Kerosene-Type Jet, Commercial Kerosene-Type Jet, Military Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil > 15 ppm to 500 ppm Sulfur Distillate Fuel Oil > 500 ppm Sulfur Residual Fuel Oil Propane/Propylene Period: Weekly 4-Week Average

2

Motor gasolines, summer 1979  

SciTech Connect (OSTI)

Analytical data for 2401 samples of motor gasoline, from service stations throughout the country, were collected and analyzed under agreement between the Bartlesville Energy Technology Center and the American Petroleum Institute. The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing areas and districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The antiknock (octane) index ((R + M)/2) averages of gasoline sold in this country were 88.6, 89.3, and 93.7 unleaded, regular, and premium grades of gasolines, respectively.

Shelton, E.M.

1980-02-01T23:59:59.000Z

3

Retail Motor Gasoline Prices*  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Gasoline pump prices have backed down from the high prices experienced last summer and fall. The retail price for regular motor gasoline fell 11 cents per gallon from September to December. However, with crude oil prices rebounding somewhat from their December lows combined with lower than normal stock levels, we project that prices at the pump will rise modestly as the 2001 driving season begins this spring. For the summer of 2001, we expect only a little difference from the average price of $1.50 per gallon seen during the previous driving season, as motor gasoline stocks going into the driving season are projected to be slightly less than they were last year. The situation of relatively low inventories for gasoline could set the stage for some regional imbalances in supply that could once again

4

Motor gasolines, summer 1980  

SciTech Connect (OSTI)

Analytical data for 2062 samples of motor gasoline were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The anitknock (octane) index ((R + M)/2) averages of gasolines sold in this country were 87.8 for the unleaded below 90.0, 91.6 for the unleaded 90.0 and above, 88.9 for the regular, and 92.8 for the premium grades of gasoline.

Shelton, E.M.

1981-02-01T23:59:59.000Z

5

Motor gasolines, Summer 1982  

SciTech Connect (OSTI)

The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The analytical data for 796 samples of motor gasoline, were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). They represent the products of 22 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M)/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, 89.0 for leaded below 93.0, and no data in this report for 93.0 and above grades of leaded gasoline.

Shelton, E.M.

1983-03-01T23:59:59.000Z

6

Motor gasolines, summer 1981  

SciTech Connect (OSTI)

The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The analytical data for 715 samples of motor gasoline were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). They represent the products of 33 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing included in this report shows marketing districts into which the country is divided. A map included in this report shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.4 for unleaded below 90.0, 91.3 for unleaded 90.0 and above, 89.0 for leaded below 93.0, and no data in this report for 93.0 and above grades of leaded gasoline.

Shelton, E.M.

1982-04-01T23:59:59.000Z

7

MTBE, Oxygenates, and Motor Gasoline  

Gasoline and Diesel Fuel Update (EIA)

MTBE, Oxygenates, and MTBE, Oxygenates, and Motor Gasoline Contents * Introduction * Federal gasoline product quality regulations * What are oxygenates? * Who gets gasoline with oxygenates? * Which areas get MTBE? * How much has been invested in MTBE production capacity? * What does new Ethanol capacity cost? * What would an MTBE ban cost? * On-line information resources * Endnotes * Summary of revisions to this analysis Introduction The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an

8

Price of Motor Gasoline Through Retail Outlets  

Gasoline and Diesel Fuel Update (EIA)

Prices, Sales Volumes & Stocks by State Prices, Sales Volumes & Stocks by State (Dollars per Gallon Excluding Taxes) Data Series: Retail Price - Motor Gasoline Retail Price - Regular Gasoline Retail Price - Midgrade Gasoline Retail Price - Premium Gasoline Retail Price - Aviation Gasoline Retail Price - Kerosene-Type Jet Fuel Retail Price - Propane Retail Price - Kerosene Retail Price - No. 1 Distillate Retail Price - No. 2 Distillate Retail Price - No. 2 Fuel Oil Retail Price - No. 2 Diesel Fuel Retail Price - No. 4 Fuel Oil Prime Supplier Sales - Motor Gasoline Prime Supplier Sales - Regular Gasoline Prime Supplier Sales - Midgrade Gasoline Prime Supplier Sales - Premium Gasoline Prime Supplier Sales - Aviation Gasoline Prime Supplier Sales - Kerosene-Type Jet Fuel Prime Supplier Sales - Propane (Consumer Grade) Prime Supplier Sales - Kerosene Prime Supplier Sales - No. 1 Distillate Prime Supplier Sales - No. 2 Distillate Prime Supplier Sales - No. 2 Fuel Oil Prime Supplier Sales - No. 2 Diesel Fuel Prime Supplier Sales - No. 4 Fuel Oil Prime Supplier Sales - Residual Fuel Oil Stocks - Finished Motor Gasoline Stocks - Reformulated Gasoline Stocks - Conventional Gasoline Stocks - Motor Gasoline Blending Components Stocks - Kerosene Stocks - Distillate Fuel Oil Stocks - Distillate F.O., 15 ppm and under Sulfur Stocks - Distillate F.O., Greater than 15 to 500 ppm Sulfur Stocks - Distillate F.O., Greater 500 ppm Sulfur Stocks - Residual Fuel Oil Stocks - Propane/Propylene Period: Monthly Annual

9

EIS-0039: Motor Gasoline Deregulation and the Gasoline Tilt  

Broader source: Energy.gov [DOE]

The Economic Regulatory Administration developed this EIS to evaluate the environmental impacts, including social and economic impacts, that may result from either of two proposed regulatory changes: (1) the exemption of motor gasoline from the Department of Energy's Mandatory Petroleum Price and Allocation Regulations, and (2) the adoption of the gasoline tilt, a proposed regulation that would allow refiners to recover an additional amount of their total increased costs on gasoline.

10

Motor Gasoline Outlook and State MTBE Bans  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Outlook Motor Gasoline Outlook and State MTBE Bans Tancred Lidderdale Contents 1. Summary 2. MTBE Supply and Demand 3. Ethanol Supply 4. Gasoline Supply 5. Gasoline Prices A. Long-Term Equilibrium Price Analysis B. Short-Term Price Volatility 6. Conclusion 7. Appendix A. Estimating MTBE Consumption by State 8. Appendix B. MTBE Imports and Exports 9. Appendix C. Glossary of Terms 10. End Notes 11. References 1. Summary The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending State bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year. Three impending State bans on MTBE blending could significantly affect gasoline

11

EIA-878 Motor Gasoline Price Survey ? Reference Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Motor Gasoline Price Survey - Reference Guide For the purposes of the Motor Gasoline Price Survey (EIA-878), we collect prices for the following gasoline grades as defined by...

12

Gasoline Engine Economy as Affected by the Time of Ignition  

E-Print Network [OSTI]

KU ScholarWorks | The University of Kansas Pre-1923 Dissertations and Theses Collection Gasoline Engine Economy as Affected by the Time of Ignition 1907 by George Jay Hopkins This work was digitized by the Scholarly Communications program staff... in the KU Librariesí Center for Digital Scholarship. http://kuscholarworks.ku.edu Submitted to the University of Kansas in partial fulfillment of the requirements for the Degree of Bachelor of Science GASOLINE ENCUNE ECONOMY as Affected W the Time...

Hopkins, George Jay

1907-01-01T23:59:59.000Z

13

Motor gasolines, winter 1979-1980  

SciTech Connect (OSTI)

Analytical data for 1857 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report shows marketing areas districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas, 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The antiknock (octane) index ((R+M)/2) averages of gasoline sold in this country were 87.9, 92.1, 89.0, and 93.3 unleaded below 90.0, unleaded 90.0 and above, regular, and premium grades of gasolines, respectively.

Shelton, E.M.

1980-07-01T23:59:59.000Z

14

Motor gasolines, Winter 1980-81  

SciTech Connect (OSTI)

Analytical data for 546 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 23 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.6 unleaded below 90.0, 91.4 unleaded 90.0 and above, 89.1 leaded below 93.0, and 93.3 leaded 93.0 and above grades of gasoline.

Shelton, E.M.

1981-07-01T23:59:59.000Z

15

Summer 2002 Motor Gasoline Outlook2.doc  

Gasoline and Diesel Fuel Update (EIA)

Summer 2002 Motor Gasoline Outlook Summary For the upcoming summer season (April to September 2002), rising average crude oil costs are expected to yield above -average seasonal gasoline price increases at the pump. However, year-over-year comparisons for pump prices are still likely to be lower this summer. Inventories are at higher levels than last year in April, so some cushion against early-season price spikes is in place and price levels are expected to range below last year's averages, assuming no unanticipated disruptions. Still, OPEC production restraint and tightening world oil markets now probably mark the end of the brief respite (since last fall) from two years of relatively high gasoline prices. * Retail gasoline prices (regular grade) are expected to average $1.46 per gallon, 5

16

Blender Net Production of Finished Motor Gasoline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Special Naphthas Lubricants Asphalt and Road Oil Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

17

Summer 2003 Motor Gasoline Outlook.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1 Short-Term Energy Outlook April 2003 Summer 2003 Motor Gasoline Outlook Summary For the upcoming summer season (April to September 2003), high crude oil costs and other factors are expected to yield average retail motor gasoline prices higher than those of last year. Current crude oil prices reflect a substantial uncertainty premium due to concerns about the current conflict in the Persian Gulf, lingering questions about whether Venezuelan oil production will recover to near pre-strike levels in time for the peak driving season, and the impact of recent disruptions in Nigerian oil output. Moreover, unusually low crude oil and gasoline inventory levels at the outset of the driving season are expected to keep prices high throughout much of the

18

Motor gasolines, winter 1981-1982  

SciTech Connect (OSTI)

Analytical data for 905 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 30 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.4 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, and 88.9 for leaded below 93.0. Only one sample was reported as 93.0 for leaded gasolines with an antiknock index (R+M)/2 93.0 and above.

Shelton, E M

1982-07-01T23:59:59.000Z

19

Motor gasolines, winter 1982-83  

SciTech Connect (OSTI)

Analytical data for 1330 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 28 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.5 for unleaded 90.0 and above, and 89.1 for leaded below 93.0, and no data was reported in this report for leaded gasolines with an antiknock index (R + M)/2 93.0 and above. 21 figures, 5 tables.

Shelton, E.M.

1983-07-01T23:59:59.000Z

20

Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995  

Gasoline and Diesel Fuel Update (EIA)

Demand, Supply, and Price Outlook for Reformulated Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995 by Tancred Lidderdale* Provisions of the Clean Air Act Amendments of 1990 designed to reduce ground-level ozone will increase the demand for reformulated motor gaso- line in a number of U.S. metropolitan areas. Refor- mulated motor gasoline is expected to constitute about one-third of total motor gasoline demand in 1995, and refiners will have to change plant opera- tions and modify equipment in order to meet the higher demand. The costs incurred are expected to create a wholesale price premium for reformu- lated motor gasoline of up to 4.0 cents per gallon over the price of conventional motor gasoline. This article discusses the effects of the new regulations on the motor gasoline market and the refining

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Gasoline and Diesel Fuel Update (EIA)

by Grade, Sales Type, PAD District, and State 56 Energy Information Administration Petroleum Marketing Annual 1996 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD...

22

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Gasoline and Diesel Fuel Update (EIA)

by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1996 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

23

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Gasoline and Diesel Fuel Update (EIA)

by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1997 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

24

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1998 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons per...

25

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information Administration Petroleum Marketing Annual 1995 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

26

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Administration Petroleum Marketing Annual 1995 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

27

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

- - - - W W - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

28

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information AdministrationPetroleum Marketing Annual 1999 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons per...

29

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1998 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

30

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Administration Petroleum Marketing Annual 1995 Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

31

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

- - - - W W - - - - - - See footnotes at end of table. 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State 292 Energy Information...

32

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

- - - - - - - - - - - - See footnotes at end of table. 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 116 Energy Information...

33

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Administration Petroleum Marketing Annual 1995 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

34

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information AdministrationPetroleum Marketing Annual 1999 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

35

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Petroleum Marketing Annual 1999 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) - Continued...

36

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Petroleum Marketing Annual 1995 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) - Continued...

37

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Information Administration Petroleum Marketing Annual 1995 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons per...

38

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information AdministrationPetroleum Marketing Annual 1998 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) -...

39

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1998 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

40

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) -...

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Petroleum Marketing Annual 1998 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) - Continued...

42

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1999 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) -...

43

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

- - - - 64.7 64.7 - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

44

U.S. Motor Gasoline Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Motor Gasoline Regular Gasoline Midgrade Gasoline Premium Gasoline Conventional Gasoline Oxygenated Gasoline Reformulated Gasoline Product: Motor Gasoline Regular Gasoline Midgrade Gasoline Premium Gasoline Conventional Gasoline Oxygenated Gasoline Reformulated Gasoline Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Sales to End Users, Total 28,179.6 24,384.0 24,143.9 23,567.1 24,120.5 23,282.9 1983-2013 Through Retail Outlets 26,507.1 22,632.7 22,641.3 22,038.2 22,474.5 21,660.0 1983-2013 Sales for Resale, Total NA NA NA NA NA NA 1983-2013 DTW 24,954.1 29,704.3 30,138.3 29,222.8 30,011.9 28,880.3 1994-2013 Rack 236,373.7 242,166.6 243,892.5 243,789.7 248,761.4 237,431.5 1994-2013

45

A comparative study of laser ignition and spark ignition with gasolineĖair mixtures  

Science Journals Connector (OSTI)

Abstract The ignition probability and minimum ignition energy (MIE) of premixed gasolineĖair mixture for different equivalence ratio was experimentally studied using a nanosecond pulse at 532†nm and 1064†nm from a Q-switched Nd:YAG laser in a constant-volume combustion chamber (CVCC) The result was compared with the spark ignition. The initial pressure and temperature of the mixture was 0.1†MP and 363†K, respectively. The research indicates that within the flammable range, the probability increases when the ignition energy increases and the distribution of MIE with the equivalence ratios is U-shape for both laser and spark ignition. For laser ignition with 532†nm, when the incident energy is higher than 110†mJ or the absorbed energy is high than 31†mJ, 100% of ignition could be obtained within equivalence ratios of 0.8Ė1.6. For 1064†nm it is 235†mJ and 30†mJ. To get the same ignition probability of mixture with identical equivalence ratio, the incident energy of 1064†nm is twice more than the incident energy of 532†nm, while the absorbed energy values are virtually the same. It indicates that significant wavelength dependence is expected for the initial free electrons but irrelevant for the process of absorbing energy. The initial free electrons are produced from impurities in gasolineĖair mixture because the intensity in the focus (1012†W/cm2) is too low to ionize gas molecules via the multi-photon ionization process, which requires higher irradiance (?1014†W/cm2). The MIE obtained with a laser-spark ignition is greater than that measured by electrical sparks. The MIE for laser ignition was obtained at equivalence ratio of 1.0 both of 532†nm and 1064†nm, and it was 13.5†mJ and 9.5†mJ, respectively. But for spark ignition, the MIE is 3.76†mJ with equivalence ratio of 1.6. What?s more, laser ignition extends the lean flammability limit from 0.8 to 0.6.

Cangsu Xu; Donghua Fang; Qiyuan Luo; Jian Ma; Yang Xie

2014-01-01T23:59:59.000Z

46

Microsoft Word - Summer 2004 Motor Gasoline Outlook.doc  

Gasoline and Diesel Fuel Update (EIA)

April 2004 April 2004 Summer 2004 Motor Gasoline Outlook Summary * Gasoline markets are tight as the 2004 driving season begins and conditions are likely to remain volatile through the summer. High crude oil costs, strong gasoline demand growth, low gasoline inventories, uncertainty about the availability of gasoline imports, high transportation costs, and changes in gasoline specifications have added to current and expected gasoline costs and pump prices. * For the upcoming summer driving season (April to September 2004), retail gasoline prices (regular grade, all formulations) are projected to average $1.76 per gallon, about 20 cents above last summer. A 95-percent confidence range for the summer price average, excluding specific consideration of major

47

Motor Gasoline Outlook and State MTBE Bans  

Reports and Publications (EIA)

The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending state bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

2003-01-01T23:59:59.000Z

48

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

99.2 - 105.3 See footnotes at end of table. 56 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD...

49

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Gasoline and Diesel Fuel Update (EIA)

66.6 - 72.3 See footnotes at end of table. 56 Energy Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD...

50

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

133.6 - 276.4 See footnotes at end of table. 220 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

51

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

201.3 - 453.3 See footnotes at end of table. 262 Energy Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

52

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

2,026.7 W W 234.5 161.7 - 396.3 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

53

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

70.8 92.7 90.7 81.5 72.8 - 78.0 See footnotes at end of table. 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 146 Energy Information...

54

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

2,222.4 W W 206.4 134.3 - 340.7 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

55

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

466.1 466.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information Administration...

56

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

71.7 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 146 Energy Information...

57

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

532.1 532.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information Administration...

58

Restructuring: The Changing Face of Motor Gasoline Marketing  

Reports and Publications (EIA)

This report reviews the U.S. motor gasoline marketing industry during the period 1990 to 1999, focusing on changes that occurred during the period. The report incorporates financial and operating data from the Energy Information Administration's Financial Reporting System (FRS), motor gasoline outlet counts collected by the National Petroleum News from the states, and U.S. Census Bureau salary and employment data published in County Business Patterns.

2001-01-01T23:59:59.000Z

59

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

W W 78.6 W 85.7 81.8 W 69.3 73.8 See footnotes at end of table. 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District and State 176 Energy Information...

60

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

W 70.5 78.9 W 76.0 83.6 W 69.2 75.2 See footnotes at end of table. 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District and State 176 Energy Information...

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Estimation of Individual C8 to C10 Aromatic Hydrocarbons in Naphthas and Motor Gasolines by Capillary Gas Chromatography  

Science Journals Connector (OSTI)

......naphthas and motor gasolines is o f great importance...C10 aromatics in straight run, processed naphtha...reformed, and motor gasolines), or i n aromatic...analysis in any straight run, reformed naphthas, and gasolines with final boiling......

Basant Kumar; R.K. Kuchhal; Pradeep Kumar; P.L. Gupta

1986-03-01T23:59:59.000Z

62

Motor Gasoline Market Spring 2007 and Implications for Spring 2008  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Market Spring 2007 Motor Gasoline Market Spring 2007 and Implications for Spring 2008 April 2008 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requestor. Preface and Contacts

63

MTBE, Oxygenates, and Motor Gasoline (Released in the STEO October 1999)  

Reports and Publications (EIA)

The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

1999-01-01T23:59:59.000Z

64

Hybrid combustion-premixed gasoline homogeneous charge ignited by injected diesel fuel-4-stroke cycle engines  

SciTech Connect (OSTI)

This paper describes the formation and testing of two hybrid combustion engines, wherein a premixed gasoline homogeneous charge was ignited by a small amount of injected diesel fuel under high compression ratio, by modifying open chamber and prechamber 4-stroke cycle diesel engines. It was found that the premixed gasoline was effective not only for decreasing the fuel consumption but also for reducing the smoke density both in the heavy and over-load regions. The effect of introducing a small amount N/sub 2/ gas for suppressing the diesel knock in the heavy load region also was examined.

Yonetani, H.; Okanishi, N.; Fukutani, I.; Watanabe, E.

1989-01-01T23:59:59.000Z

65

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

56 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

66

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

56 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

67

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

68

Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AdministrationPetroleum Marketing Annual 1999 401 Table A1. RefinerReseller Motor Gasoline Prices by Grade, PAD District and State, 1984-Present (Cents per Gallon Excluding...

69

Organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends  

E-Print Network [OSTI]

The organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends have been assessed under warmed-up and cold idle conditions. The speciated emissions show that the ...

Kar, Kenneth

70

Particulate Matter Emissions from a Direct Injection Spark Ignition Engine under Cold Fast Idle Conditions for Ethanol-Gasoline Blends  

E-Print Network [OSTI]

The engine out particular matter number (PN) distributions at engine coolant temperature (ECT) of 0į C to 40į C for ethanol/ gasoline blends (E0 to E85) have been measured for a direct-injection spark ignition engine under ...

Dimou, Iason

71

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

Science Journals Connector (OSTI)

In the present study we describe measurements of gas- and particle-phase carbonyl emissions from light-duty gasoline (LDV) and heavy-duty diesel (HDDV) motor vehicles operated on a chassis dynamometer under realistic driving cycles. ... Vehicles were tested under a five-mode driving cycle (HHDDT, heavy heavy-duty diesel truck) consisting of 30-min idle, 17-min creep, and 11-min transient stages and two cruise stages of 34 and 31 min, with a top speed of 65 miles h?1 for the second cruise (30). ... In general, as the volatility of the carbonyl decreased, so did the PUF/total particulate carbonyl ratio. ...

Chris A. Jakober; Michael A. Robert; Sarah G. Riddle; Hugo Destaillats; M. Judith Charles; Peter G. Green; Michael J. Kleeman

2008-05-24T23:59:59.000Z

72

,"U.S. Motor Gasoline Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Prices" Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Motor Gasoline Prices",6,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_pri_allmg_c_nus_epm0_dpgal_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pri_allmg_c_nus_epm0_dpgal_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/2/2013 2:33:46 AM"

73

Why Do Motor Gasoline Prices Vary Regionally? California Case Study  

Reports and Publications (EIA)

Analysis of the difference between the retail gasoline prices in California and the average U.S. retail prices.

1998-01-01T23:59:59.000Z

74

Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

78.2 101.8 83.6 87.5 74.7 See footnotes at end of table. A1. RefinerReseller Motor Gasoline Prices by Grade, PAD District, and State, 1984-Present 452 Energy Information...

75

,"U.S. Sales to End Users, Total Refiner Motor Gasoline Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Users, Total Refiner Motor Gasoline Sales Volumes" Users, Total Refiner Motor Gasoline Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Products for Refiner Gasoline Volumes",1,"Monthly","9/2013","1/15/1983" ,"Data 2","by Grade",3,"Monthly","9/2013","1/15/1983" ,"Data 3","by Formulation",3,"Monthly","9/2013","1/15/1994" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refmg_d_nus_vtr_mgalpd_m.xls"

76

Microsoft Word - Summer 2006 Motor Gasoline Prices.doc  

Gasoline and Diesel Fuel Update (EIA)

Coast Chicago New York Harbor Sources: Ethanol spot prices through July 7, 2006 - Jim Jordan & Associates, Fuels Blendstock Report (www.jordan-associates.com); Gasoline prices -...

77

Effects of Some Oxygenated Substitutes on Gasoline Properties, Spark Ignition Engine Performance, and Emissions  

Science Journals Connector (OSTI)

It is worthwhile to mention that eucalyptol which can be steam-extracted from eucalyptus leaves has been tested as a co-solvent that prevents alcohol?gasoline blended fuels from phase separation. ... In this table, the compound along with the concentration in the respective base fuel, BRON, and its accuracy as well as relative effectiveness on a molar (RE-M) and a weight (RE-W) basis in comparison with MTBE are shown. ... All the compounds studied exhibited enhanced ignition quality, expressed with their capability to suppress engine knock, performance that can be confirmed from the BRON values of Table 3. From the data in the table, and given the accuracy of the BRON values, which is Ī10/x, where x is the w/v % concentration of the compound in the fuel, a decrease of BRON values with the increase of the RON of the base fuel is observed. ...

S. Gouli; E. Lois; S. Stournas

1998-08-12T23:59:59.000Z

78

Detailed kinetic models for the low-temperature auto ignition of gasoline surrogates  

E-Print Network [OSTI]

In the context of the search for gasoline surrogates for kinetic modeling purpose, this paper describes a new model for the low-temperature auto-ignition of n-heptane/iso-octane/hexene/toluene blends for the different linear isomers of hexene. The model simulates satisfactory experimental results obtained in a rapid compression machine for temperatures ranging from 650 to 850 K in the case of binary and ternary mixtures including iso octane, 1-hexene and toluene. Predictive simulations have also been performed for the autoignition of n heptane/iso octane/hexene/toluene quaternary mixtures: the predicted reactivity is close to that of pure iso octane with a retarding effect when going from 1- to 3-alkene.

Bounaceur, Roda; Fournet, Renť; Warth, Valťrie; Battin-Leclerc, Frťdťrique

2009-01-01T23:59:59.000Z

79

Transonic Combustion ?- Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine  

Broader source: Energy.gov [DOE]

Novel fuel injection equipment enables knock-free ignition with low noise and smoke in compression-ignition engines and low-particulates in spark-ignition engines.

80

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Gasoline and Diesel Fuel Update (EIA)

68.6 62.0 70.7 92.7 90.7 81.5 72.8 - 78.0 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information...

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Gasoline and Diesel Fuel Update (EIA)

68.9 62.6 71.6 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information...

82

Laser ignition  

Science Journals Connector (OSTI)

Due to their thermodynamic benefits, second-generation spark-ignition engines with gasoline direct injection systems have ... combination of a spray-guided combustion process with laser-induced ignition allows th...

Bernhard Geringer; Dominikus Klawatsch; Josef Graf; Hans Peter LenzÖ

2004-03-01T23:59:59.000Z

83

Numerical modeling of the ignition of a liquid hydrocarbon layer by a radiant heat pulse  

Science Journals Connector (OSTI)

A gas-phase model of radiative ignition of a flammable liquid is developed, allowing for absorption of the radiant flux in the gas phase. Using motor fuels (gasoline and diesel fuel), as examples, we demonstra...

Yu. V. Agabekov; F. G. Yagafarov

84

Performance of a spark ignition engine fueled with methanol or methanol-gasoline blends  

SciTech Connect (OSTI)

Engine torque and specific energy consumption of an automotive engine were studied under steady state condition using gasoline, methanol gasoline blends and straight methanol as fuel. At first the engine was run without any modification. Next the diameters of metering orifices in carburetor were modified to give the same excess air factor regardless of fuel type under each fixed engine operating condition. Finally the engine was run with 15% mixture methanol in gasoline by volume using the carburetor modified to have approximately 10% larger fuel flow area than the production carburetor. From the results of this study the effects of using methanol on engine torque and specific energy consumption can be explained on the basis of change in stoichiometry caused by the use of methanol.

You, B.C.

1983-11-01T23:59:59.000Z

85

,"U.S. Motor Gasoline Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Refiner Sales Volumes" Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Motor Gasoline Refiner Sales Volumes",6,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refmg_c_nus_epm0_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refmg_c_nus_epm0_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

86

Advantages of Oxygenates Fuels over Gasoline in Direct Injection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines...

87

,"Motor Gasoline Sales to End Users, Total Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Users, Total Refiner Sales Volumes" Users, Total Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Motor Gasoline Sales to End Users, Total Refiner Sales Volumes",60,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refmg_a_epm0_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refmg_a_epm0_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

88

,"U.S. Sales for Resale, Total Refiner Motor Gasoline Sales Volumes...  

U.S. Energy Information Administration (EIA) Indexed Site

for Refiner Gasoline Volumes" "Sourcekey","A103700001" "Date","U.S. Total Gasoline WholesaleResale Volume by Refiners (Thousand Gallons per Day)" 30331,217871.4 30362,217946.8...

89

,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1993" Monthly","9/2013","1/15/1993" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_stoc_st_a_epm0f_str_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_st_a_epm0f_str_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:32:19 AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks" "Sourcekey","MGFSXUS1","MGFSXP11","MGFSXCT1","MGFS3_SDE_1","MGFSXFL1","MGFSXGA1","MGFS3_SME_1","MGFS3_SMD_1","MGFSXMA1","MGFS3_SNH_1","MGFSXNJ1","MGFSXNY1","MGFSXNC1","MGFSXPA1","MGFSXRI1","MGFSXSC1","MGFS3_SVT_1","MGFSXVA1","MGFSXWV1","MGFSXP21","MGFSXIL1","MGFSXIN1","MGFSXIA1","MGFS3_SKS_1","MGFSXKY1","MGFSXMI1","MGFSXMN1","MGFSXMO1","MGFS3_SNE_1","MGFS3_SND_1","MGFSXOH1","MGFSXOK1","MGFS3_SSD_1","MGFSXTN1","MGFSXWI1","MGFSXP31","MGFSXAL1","MGFSXAR1","MGFSXLA1","MGFSXMS1","MGFSXNM1","MGFSXTX1","MGFSXP41","MGFSXCO1","MGFSXID1","MGFSXMT1","MGFSXUT1","MGFSXWY1","MGFSXP51","MGFSXAK1","MGFSXAZ1","MGFSXCA1","MGFSXHI1","MGFSXNV1","MGFSXOR1","MGFSXWA1"

90

,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1993" Annual",2012,"6/30/1993" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_stoc_st_a_epm0f_str_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_st_a_epm0f_str_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:32:18 AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks" "Sourcekey","MGFSXUS1","MGFSXP11","MGFSXCT1","MGFS3_SDE_1","MGFSXFL1","MGFSXGA1","MGFS3_SME_1","MGFS3_SMD_1","MGFSXMA1","MGFS3_SNH_1","MGFSXNJ1","MGFSXNY1","MGFSXNC1","MGFSXPA1","MGFSXRI1","MGFSXSC1","MGFS3_SVT_1","MGFSXVA1","MGFSXWV1","MGFSXP21","MGFSXIL1","MGFSXIN1","MGFSXIA1","MGFS3_SKS_1","MGFSXKY1","MGFSXMI1","MGFSXMN1","MGFSXMO1","MGFS3_SNE_1","MGFS3_SND_1","MGFSXOH1","MGFSXOK1","MGFS3_SSD_1","MGFSXTN1","MGFSXWI1","MGFSXP31","MGFSXAL1","MGFSXAR1","MGFSXLA1","MGFSXMS1","MGFSXNM1","MGFSXTX1","MGFSXP41","MGFSXCO1","MGFSXID1","MGFSXMT1","MGFSXUT1","MGFSXWY1","MGFSXP51","MGFSXAK1","MGFSXAZ1","MGFSXCA1","MGFSXHI1","MGFSXNV1","MGFSXOR1","MGFSXWA1"

91

U.S. Sales to End Users, Total Refiner Motor Gasoline Sales Volumes  

Gasoline and Diesel Fuel Update (EIA)

Sales Type: Sales to End Users, Total Through Retail Outlets Sales for Resale, Total DTW Rack Bulk Sales Type: Sales to End Users, Total Through Retail Outlets Sales for Resale, Total DTW Rack Bulk Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Motor Gasoline 28,179.6 24,384.0 24,143.9 23,567.1 24,120.5 23,282.9 1983-2013 by Grade Regular 23,757.8 20,526.5 20,356.1 19,806.6 20,240.9 19,586.1 1983-2013 Midgrade 1,876.1 1,545.0 1,534.8 1,527.0 1,561.5 1,484.7 1988-2013 Premium 2,545.7 2,312.4 2,252.9 2,233.5 2,318.1 2,212.1 1983-2013 by Formulation Conventional 16,716.2 14,277.3 13,878.1 13,588.6 14,053.9 13,516.9 1994-2013 Oxygenated - - - - - - 1994-2013

92

High Thermal Efficiency and Low Emissions with Supercritical Gasoline Injection-Ignition in a Light Duty Engine  

Broader source: Energy.gov [DOE]

A novel fuel injector has been developed and tested that addresses the technical challenges of LTC, HCCI, gasoline PPC, and RCCI by reducing complexity and cost.

93

Part-load performance and emissions of a spark ignition engine fueled with RON95 and RON97 gasoline: Technical viewpoint on Malaysiaís fuel price debate  

Science Journals Connector (OSTI)

Abstract Due to world crude oil price hike in the recent years, many countries have experienced increase in gasoline price. In Malaysia, where gasoline are sold in two grades; RON95 and RON97, and fuel price are regulated by the government, gasoline price have been gradually increased since 2009. Price rise for RON97 is more significant. By 2014, its per liter price is 38% more than that of RON95. This has resulted in escalated dissatisfaction among the mass. People argued they were denied from using a better fuel (RON97). In order to evaluate the claim, there is a need to investigate engine response to these two gasoline grades. The effect of gasoline RON95 and RON97 on performance and exhaust emissions in spark ignition engine was investigated on a representative engine: 1.6L, 4-cylinder Mitsubishi 4G92 engine with CR 11:1. The engine was run at constant speed between 1500 and 3500†rpm with 500†rpm increment at various part-load conditions. The original engine ECU, a hydraulic dynamometer and control, a combustion analyzer and an exhaust gas analyzer were used to determine engine performance, cylinder pressure and emissions. Results showed that RON95 produced higher engine performance for all part-load conditions within the speed range. RON95 produced on average 4.4% higher brake torque, brake power, brake mean effective pressure as compared to RON97. The difference in engine performance was more significant at higher engine speed and loads. Cylinder pressure and ROHR were evaluated and correlated with engine output. With RON95, the engine produces 2.3% higher fuel conversion efficiency on average but RON97 was advantageous with 2.3% lower brake specific fuel consumption throughout all load condition. In terms of exhaust emissions, RON95 produced 7.7% lower \\{NOx\\} emission but higher CO2, CO and HC emissions by 7.9%, 36.9% and 20.3% respectively. Higher octane rating of gasoline may not necessarily beneficial on engine power, fuel economy and emissions of polluting gases. Even though there is some advantage using RON97 in terms of emission reduction of CO2, CO and HC, the 38% higher price and higher \\{NOx\\} emission is more expensive in the long run. Therefore using RON95 is economically better and environmentally friendlier. The findings provide some techno-economic evaluation on the fuel price debate that surround the Malaysiaís population in the recent years. The increased of fuel price may have limited their ability to use higher octane gasoline but it did not negatively affecting the users as they perceive.

Taib Iskandar Mohamad; Heoy Geok How

2014-01-01T23:59:59.000Z

94

U.S. Sales to End Users Prices for Motor Gasoline  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Type: Sales to End Users, Average Through Retail Outlets Sales for Resale, Average DTW Rack Bulk Sales Type: Sales to End Users, Average Through Retail Outlets Sales for Resale, Average DTW Rack Bulk Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Formulation/ Grade Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Gasoline, Average - - - - - - 1983-2013 Regular Gasoline - - - - - - 1983-2013 Midgrade Gasoline - - - - - - 1988-2013 Premium Gasoline - - - - - - 1983-2013 Conventional, Average - - - - - - 1994-2013 Conventional Regular - - - - - - 1994-2013 Conventional Midgrade - - - - - - 1994-2013 Conventional Premium - - - - - - 1994-2013 Oxygenated, Average 1994-2006 Oxygenated Regular

95

Determination of Hydrocarbons Types and Oxygenates in Motor Gasoline: A Comparative Study by Different Analytical Techniques  

Science Journals Connector (OSTI)

Various standard and published methods based on chromatographic and spectroscopic techniques are routinely used for hydrocarbon types (aromatics, olefins, oxygenates, etc.) in gasoline range fuel products for the assessment of product quality monitoring (...

V. Bansal; G. J. Krishna; A. P. Singh; A. K. Gupta; A. S. Sarpal

2007-12-04T23:59:59.000Z

96

Premixed ignition behavior of alternative diesel fuel-relevant compounds in a motored engine experiment  

SciTech Connect (OSTI)

A motored engine study using premixed charges of fuel and air at a wide range of diesel-relevant equivalence ratios was performed to investigate autoignition differences among surrogates for conventional diesel fuel, gas-to-liquid (GTL) diesel fuel, and biodiesel, as well as n-heptane. Experiments were performed by delivering a premixed charge of vaporized fuel and air and increasing the compression ratio in a stepwise manner to increase the extent of reaction while monitoring the exhaust composition via Fourier transform infrared (FTIR) spectrometry and collecting condensable exhaust gas for subsequent gas chromatography/mass spectrometry (GC/MS) analysis. Each fuel demonstrated a two-stage ignition process, with a low-temperature heat release (LTHR) event followed by the main combustion, or high-temperature heat release (HTHR). Among the three diesel-relevant fuels, the magnitude of LTHR was highest for GTL diesel, followed by methyl decanoate, and conventional diesel fuel last. FTIR analysis of the exhaust for n-heptane, the conventional diesel surrogate, and the GTL diesel surrogate revealed that LTHR produces high concentrations of aldehydes and CO while producing only negligible amounts of CO{sub 2}. Methyl decanoate differed from the other two-stage ignition fuels only in that there were significant amounts of CO{sub 2} produced during LTHR; this was the result of decarboxylation of the ester group, not the result of oxidation. GC/MS analysis of LTHR exhaust condensate for n-heptane revealed high concentrations of 2,5-heptanedione, a di-ketone that can be closely tied to species in existing autoignition models for n-heptane. GC/MS analysis of the LTHR condensate for conventional diesel fuel and GTL diesel fuel revealed a series of high molecular weight aldehydes and ketones, which were expected, as well as a series of organic acids, which are not commonly reported as products of combustion. The GC/MS analysis of the methyl decanoate exhaust condensate revealed that the aliphatic chain acts similarly to n-paraffins during LTHR, while the ester group remains intact. Thus, although the FTIR data revealed that decarboxylation occurs at significant levels for methyl decanoate, it was concluded that this occurs after the aliphatic chain has been largely consumed by other LTHR reactions. (author)

Szybist, James P.; Boehman, Andre L.; Haworth, Daniel C. [Pennsylvania State University, Fuel Science Program, 405 Academic Activities Building, University Park, PA 16802 (United States); Koga, Hibiki [Honda R and D Company, Ltd., Asaka-shi, Saitama 351-0024 (Japan)

2007-04-15T23:59:59.000Z

97

Reformulated Gasoline Complex Model  

Gasoline and Diesel Fuel Update (EIA)

Refiners Switch to Reformulated Refiners Switch to Reformulated Gasoline Complex Model Contents * Summary * Introduction o Table 1. Comparison of Simple Model and Complex Model RFG Per Gallon Requirements * Statutory, Individual Refinery, and Compliance Baselines o Table 2. Statutory Baseline Fuel Compositions * Simple Model * Complex Model o Table 3. Complex Model Variables * Endnotes Related EIA Short-Term Forecast Analysis Products * RFG Simple and Complex Model Spreadsheets * Areas Particpating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Reformulated Gasoline Foreign Refinery Rules * Demand, Supply, and Price Outlook for Reformulated Motor Gasoline, 1995 , (Adobe

98

Reformulated Gasoline Foreign Refinery Rules  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Reformulated Gasoline Foreign Refinery Rules Contents * Introduction o Table 1. History of Foreign Refiner Regulations * Foreign Refinery Baseline * Monitoring Imported Conventional Gasoline * Endnotes Related EIA Short-Term Forecast Analysis Products * Areas Participating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Refiners Switch to Reformulated Gasoline Complex Model * Demand, Supply, and Price Outlook for Reformulated Motor Gasoline, 1995 Introduction On August 27, 1997, the EPA promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an

99

High compression ratio turbo gasoline engine operation using alcohol enhancement  

E-Print Network [OSTI]

Gasoline - ethanol blends were explored as a strategy to mitigate engine knock, a phenomena in spark ignition engine combustion when a portion of the end gas is compressed to the point of spontaneous auto-ignition. This ...

Lewis, Raymond (Raymond A.)

2013-01-01T23:59:59.000Z

100

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Sampling Methodology Gasoline Sampling Methodology The sample for the Motor Gasoline Price Survey was drawn from a frame of approximately 115,000 retail gasoline outlets. The gasoline outlet frame was constructed by combining information purchased from a private commercial source with information contained on existing EIA petroleum product frames and surveys. Outlet names, and zip codes were obtained from the private commercial data source. Additional information was obtained directly from companies selling retail gasoline to supplement information on the frame. The individual frame outlets were mapped to counties using their zip codes. The outlets were then assigned to the published geographic areas as defined by the EPA program area, or for conventional gasoline areas, as defined by the Census Bureau's Standard Metropolitan

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Gasoline Prices: What is Happening?  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Prices: What is Happening? Gasoline Prices: What is Happening? 5/10/01 Click here to start Table of Contents Gasoline Prices: What is Happening? Retail Motor Gasoline Price* Forecast Doesn't Reflect Potential Volatility Midwest Looking Like Last Year RFG Responding More Strongly Gasoline Prices Vary Among Locations.Retail Regular Gasoline Price, Cents per Gallon May 8, 2001 Crude Oil Affects Gasoline Prices WTI Crude Oil Prices Are Expected To Remain Relatively High Through At Least 2001 Low Total OECD Oil Stocks* Keep Market Balance Tight Low U.S. Stocks Indicate Tight U.S. Market Regional Inventories Tight Product Balance Pushes Up Product Spread (Spot Product - Crude Price) "New Factor" Contributing to Volatility: Excess Capacity is Gone Regional Refinery Utilization Shows Gulf Coast Pressure

102

Gasolin n  

Science Journals Connector (OSTI)

Gasolin n, Gasbenzin n ? natural gasoline, condensate, distillate [Liquid hydrocarbons, generally clear or pale straw-colo(u)red and of high API gravity (above 60į), that are produced wit...

2013-01-01T23:59:59.000Z

103

natural gasoline  

Science Journals Connector (OSTI)

natural gasoline, condensate, distillate [Liquid hydrocarbons, generally clear or pale straw-coloured and of high API gravity (above 6oį), that are produced with wet gas] ? Gasbenzin n, Gasolin n ...

2014-08-01T23:59:59.000Z

104

Vehicle Technologies Office Merit Review 2014: The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability  

Broader source: Energy.gov [DOE]

Presentation given by General Motors LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the application of high...

105

FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fleet that operates more than 30,000 motorized vehicles and has hybrid electric (diesel and gasoline) vehicles currently in service. FedEx Express has deployed 20 gasoline...

106

FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ignition CO Carbon monoxide DOE U.S. Department of Energy DPF Diesel particulate filter gHEV Gasoline hybrid electric vehicle GVWR Gross vehicle weight rating HP...

107

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Learn more... Learn more... Price trends and regional differences What causes fluctuations in motor gasoline prices? Retail gasoline prices are mainly affected by crude oil prices and the level of gasoline supply relative to demand. Strong and increasing demand for gasoline and other petroleum products in the United States and the rest of the world at times places intense pressure on available supplies. Even when crude oil prices are stable... read more in Gasoline Explained What causes fluctuations in diesel fuel oil prices? The retail price of a gallon of diesel fuel reflects the underlying costs and profits (or losses) of producing and delivering the product to customers. The price of diesel at the pump reflects the costs and profits of the entire production and distribution chain, including... read more in

108

Microsoft Word - Gasoline_2008 Supplement.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 1 April 2008 Short-Term Energy Outlook Supplement: Motor Gasoline Consumption 2008 A Historical Perspective and Short-Term Projections 1 Highlights * Income growth rates have less of an impact on recent trends in gasoline consumption than in the past, but short-run effects are still significant. * High gasoline prices are once again motivating drivers to conserve by driving less and purchasing more fuel-efficient transportation. * The increasing share of lower-Btu-content ethanol has contributed to a growing divergence between volume-based and energy-content-based measures of trends in gasoline consumption. * Consumer sensitivity to gasoline price changes increases during periods when

109

Electric car Gasoline car  

E-Print Network [OSTI]

ENAC/ Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares of an electric vehicle? Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares preference survey with choice situation contexts involving gasoline cars (Renault and competitors

110

STATEMENT OF CONSIDERATIONS REQUEST BY GENERAL MOTORS CORPORATION FOR AN ADVANCE WAIVER OF  

Broader source: Energy.gov (indexed) [DOE]

GENERAL MOTORS CORPORATION FOR AN ADVANCE WAIVER OF GENERAL MOTORS CORPORATION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-05NT42415, W(A)-05-046, CH-1328 The Petitioner, General Motors Corporation (GM) was awarded this cooperative agreement for the performance of work entitled, "Development of High Efficiency Clean Combustion Engine Designs for Spark Ignition and Compression Ignition Internal Combustion Engines." The purpose of the cooperative agreement is the improvement of the efficiency of the internal combustion engine and the development of other alternative propulsion technologies useful to the automotive market. More specifically, GM will work to further develop the homogeneous charge compression- ignition (HCCI) combustion engine. This engine combines many of the benefits of both gasoline

111

Fast Ignition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ignition. The approach being taken by the National Ignition Facility to achieve thermonuclear ignition and burn is called the "central hot spot" scenario. This technique relies...

112

The Performance of Gasoline Fuels and Surrogates in Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion Almost 2 dozen gasoline...

113

Long-term historical trends in gasoline properties are charted  

SciTech Connect (OSTI)

Trends in motor gasolines between 1942 and 1981 have been evaluated based upon data contained in motor gasoline surveys that have been prepared and published by the Bartlesville Energy Technology Center (BETC). These surveys have been published twice annually since 1935 describing the properties of motor gasolines from throughout the country. They have been conducted in cooperation with the American Petroleum Institute since 1949. A typical report covers 2,400 samples from service stations throughout the country representing some 48 companies that manufacture and supply gasoline. The reports include trend charts, octane plots and properties obtained from a dozen different tests.

Shelton, E.M.; Whisman, M.L.; Woodward, P.W.

1982-08-02T23:59:59.000Z

114

Net Taxable Gasoline Gallons (Including Aviation Gasoline)  

E-Print Network [OSTI]

Net Taxable Gasoline Gallons (Including Aviation Gasoline) Period 2000 2001 (2) 2002 2003 2004 "gross" to "net" , was deemed impractical. (5) This report replaces the Gross Taxable Gasoline Gallons (Including Aviation Gasoline) report which will not be produced after December 2002. (6) The November 2007

115

Laser Ignition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laser Ignition Laser Ignition A first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable...

116

Gasoline vapor recovery  

SciTech Connect (OSTI)

In a gasoline distribution network wherein gasoline is drawn from a gasoline storage tank and pumped into individual vehicles and wherein the gasoline storage tank is refilled periodically from a gasoline tanker truck, a method of recovering liquid gasoline from gasoline vapor that collects in the headspace of the gasoline storage tank as the liquid gasoline is drawn therefrom, said method comprising the steps of: (a) providing a source of inert gas; (b) introducing inert gas into the gasoline storage tank as liquid gasoline is drawn therefrom so that liquid gasoline drawn from the tank is displaced by inert gas and gasoline vapor mixes with the inert gas in the headspace of the tank; (c) collecting the inert gas/gasoline vapor mixture from the headspace of the gasoline storage tank as the tank is refilled from a gasoline tanker truck; (d) cooling the inert gas/gasoline vapor mixture to a temperature sufficient to condense the gasoline vapor in the mixture to liquid gasoline but not sufficient to liquify the inert gas in the mixture; (e) separating the condensed liquid gasoline from the inert gas; and delivering the condensed liquid gasoline to a remote location for subsequent use.

Lievens, G.; Tiberi, T.P.

1993-06-22T23:59:59.000Z

117

Engines - Fuel Injection and Spray Research - Gasoline Sprays  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasoline Sprays Gasoline Sprays Animated image of fuel emerging from a gasoline injector Animated image of fuel emerging from a gasoline injector (simulated environment). Some newer automobiles in the U.S. use gasoline direct injection (GDI) engines. These advanced gasoline engines inject the fuel directly into the engine cylinder rather than into the intake port. These engines can achieve higher fuel efficiency, but they depend on a precise fuel/air mixture at the spark plug to initiate ignition. This leads to more stringent requirements on spray quality and reproducibility. GDI also enables new combustion strategies for gasoline engines such as lean burn engines that use less fuel and air. Lean burn engines may achieve efficiencies near those of diesels while producing low emissions. This

118

Engines - Spark Ignition Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spark Ignition Engines Spark Ignition Engines Thomas Wallner and omni engine Thomas Wallner and the omnivorous engine Background Today the United States import more than 60% of its crude oil and petroleum products. Transportation accounts for a major portion of these imports. Research in this field is focused on reducing the dependency on foreign oil by increasing the engine efficiency on the one hand and blending gasoline with renewable domestic fuels, such as ethanol, on the other. Argonne's Research The main focus of research is on evaluation of advanced combustion concepts and effects of fuel properties on engine efficiency, performance and emissions. The platforms used are a single-cylinder research engine as well as an automotive-size four-cylinder engine with direct fuel injection.

119

Chemistry Impacts in Gasoline HCCI  

SciTech Connect (OSTI)

The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its shortcomings, and its relevance to HCCI. Section 3 discusses the effects of fuel volatility on fuel and air mixing and the consequences it has on HCCI. The effects of alcohol fuels on HCCI performance, and specifically the effects that they have on the operable speed/load range, are reviewed in Section 4. Finally, conclusions are drawn in Section 5.

Szybist, James P [ORNL; Bunting, Bruce G [ORNL

2006-09-01T23:59:59.000Z

120

With Mathematica Gasoline Inventory  

E-Print Network [OSTI]

Preprint 1 With Mathematica and J: Gasoline Inventory Simulation Cliff Reiter Computational for the number of gallons of gasoline sold by a station for a thousand weeks. The pattern involves demands with the delivery and storage of the gasoline and we desire not to run out of gasoline or exceed the station

Reiter, Clifford A.

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development  

Broader source: Energy.gov [DOE]

Presentation given by Ford Motor Companyh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline...

122

Laser Ignition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laser Ignition Laser Ignition Laser Ignition A first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Available for thumbnail of Feynman Center (505) 665-9090 Email Laser Ignition A first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In two embodiments the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion

123

Insights into Spring 2008 Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

Insights into Spring 2008 Gasoline Prices Insights into Spring 2008 Gasoline Prices Insights into Spring 2008 Gasoline Prices EIA released a new analytical report entitled Motor Gasoline Market Spring 2007 and Implications for Spring 2008. It includes a discussion of scheduled refinery outages in 2008 prepared in accordance with Section 804 of the Energy Independence and Security Act (EISA) of 2007, which requires EIA to review and analyze information on such outages from commercial reporting services and assess to their expected effects on the price and supply of gasoline. Changes in wholesale gasoline prices relative to crude oil are determined by the tightness between gasoline supply (production and net imports) and demand. Expectations for U.S. gasoline supply relative to demand are for a more favorable situation in January through May 2008 than was the case in the comparable 2007 period. Demand growth, which varies seasonally and depends on economic factors, is expected to slow. New gasoline supply is affected by refinery outages, refinery run decisions, and import variations. Planned refinery outages for January through May 2008 are lower than for the same period in 2007. Given lower planned outages and assuming the return of unplanned outages to more typical levels, including the return of BP's Texas City refinery to full operation, gasoline production could increase between 100 and 200 thousand barrels per day over last year's level, depending on the market incentives. In addition, ethanol use, which adds to gasoline supply, is expected to continue to increase. Considering the uncertainty in all the gasoline supply components, there is little likelihood of events combining in 2008 to lead to the kind of tight supply downstream from crude oil markets seen in spring 2007. In summary, refinery outage and import impacts should contribute less to gasoline price increases in 2008 than in 2007. If all of the low-range estimates for supply occurred, total gasoline supply would increase about 200 thousand barrels per day (Figure S1). However, record crude oil prices are nonetheless pushing current and expected gasoline prices to record levels.

124

Fact #639: September 6, 2010 Gasoline Tax Rates by State  

Broader source: Energy.gov [DOE]

The Federal Excise Tax on motor gasoline is 18.4 cents per gallon for all states. Each state applies additional taxes which vary from state to state. As of July 2010, Alaska had the lowest overall...

125

Ignition system  

SciTech Connect (OSTI)

This patent describes an ignition system of an internal combustion engine which consists of: a permanent magnet supported by a rotary member of the engine adapted to rotate in synchronism with a rotary shaft of the engine; a generating coil for generating an electromotive force to produce an electric current as the permanent magnet acts on the generating coil during the rotation of the rotary member; an ignition capacitor charged by the electric current generated by the generating coil; a thyristor caused to turn on by a counter electromotive force generated by the generating coil to thereby cause the ignition capacitor to begin to discharge; and an ignition coil generating a high voltage as the ignition capacitor begins to discharge, to cause a spark discharge to take place in an ignition plug of the internal combustion engine.

Kondo, T.; Ohno, S.

1986-09-16T23:59:59.000Z

126

Gas Mileage of 1984 Vehicles by American Motors Corporation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 American Motors Corporation Vehicles 4 American Motors Corporation Vehicles EPA MPG MODEL City Comb Hwy 1984 American Motors Corporation Eagle 4WD 4 cyl, 2.5 L, Manual 4-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 19 City 20 Combined 22 Highway 1984 American Motors Corporation Eagle 4WD 4 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 19 City 21 Combined 23 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Automatic 3-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 15 City 17 Combined 20 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Manual 4-spd, Regular Gasoline Compare 1984 American Motors Corporation Eagle 4WD 16 City 17 Combined 20 Highway 1984 American Motors Corporation Eagle 4WD 6 cyl, 4.2 L, Manual 5-spd, Regular Gasoline

127

Ignition Experiments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ignition Experiments The goal of many NIF experiments is to create a self-sustaining "burn" of fusion fuel (the hydrogen isotopes deuterium and tritium) that produces as much or...

128

Speciated Engine-Out Organic Gas Emissions from a PFI-SI Engine Operating on Ethanol/Gasoline Mixtures  

E-Print Network [OSTI]

Engine-out HC emissions from a PFI spark ignition engine were measured using a gas chromatograph and a flame ionization detector (FID). Two port fuel injectors were used respectively for ethanol and gasoline so that the ...

Kar, Kenneth

129

Motor Exhaust-related Occupations and Bladder Cancer  

Science Journals Connector (OSTI)

...effects of diesel and gasoline engine exhaust...from the general population...Registrar General's decennial...14), diesel and traffic...gasoline engines (20, 21...that in the general population...Exposure to Diesel Exhaust...Motor Vehicle Engines; Gaseous...

Debra T. Silverman; Robert N. Hoover; Thomas J. Mason; and G. Marie Swanson

1986-04-01T23:59:59.000Z

130

The potential for low petroleum gasoline  

SciTech Connect (OSTI)

The Energy Policy Act requires the Secretary of Energy to determine the feasibility of producing sufficient replacement fuels to replace at least 30 percent of the projected consumption of motor fuels by light duty vehicles in the year 2010. The Act also requires the Secretary to determine the greenhouse gas implications of the use of replacement fuels. A replacement fuel is a non-petroleum portion of gasoline, including certain alcohols, ethers, and other components. The Oak Ridge National Laboratory Refinery Yield Model has been used to study the cost and refinery impacts for production of {open_quotes}low petroleum{close_quotes} gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and a major contributor to cost increase is investment in processes to produce and etherify light olefins. High oxygenation can also increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum components might be produced with cost increases of 23 to 37 cents per gallon of gasoline, and with greenhouse gas emissions changes between a 3 percent increase and a 16 percent decrease. Crude oil reduction, with decreased dependence on foreign sources, is a major objective of the low petroleum gasoline program. For year-round gasoline with near-30 percent non-petroleum components, crude oil use is reduced by 10 to 12 percent, at a cost $48 to $89 per barrel. Depending upon resolution of uncertainties about extrapolation of the Environmental Protection Agency Complex Model for pollutant emissions, availability of raw materials and other issues, costs could be lower or higher.

Hadder, G.R.; Webb, G.M.; Clauson, M.

1996-06-01T23:59:59.000Z

131

gasoline | OpenEI  

Open Energy Info (EERE)

gasoline gasoline Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline plastics polymers Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon plastics_dma_results_san.xlsx (xlsx, 4.9 MiB)

132

Laser ignition  

DOE Patents [OSTI]

In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

2002-01-01T23:59:59.000Z

133

Laser ignition  

DOE Patents [OSTI]

In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. The beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being recombined with the first portion after a delay before injection into the ignitor laser. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones.

Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

2002-01-01T23:59:59.000Z

134

Short-Term Energy Outlook April 1999-Summer Gasoline Outlook  

Gasoline and Diesel Fuel Update (EIA)

Summer Motor Gasoline Outlook Summer Motor Gasoline Outlook This year's base case outlook for summer (April-September) motor gasoline markets may be summarized as follows: * Pump Prices: (average regular) projected to average about $1.13 per gallon this summer, up 9-10 cents from last year. The increase, while substantial, still leaves average prices low compared to pre-1998 history, especially in inflation-adjusted terms. * Supplies: expected to be adequate, overall. Beginning-of-season inventories were even with the 1998 level, which was at the high end of the normal range. However, some refinery problems on the West Coast have tightened things up, at least temporarily. * Demand: up 2.0 percent from last summer due to solid economic growth and low (albeit rising) fuel prices; highway travel may reach 1.4 trillion miles for the

135

State Gasoline Taxes  

E-Print Network [OSTI]

BULLETIN OF THE UNIVERSITY OF KANSAS HUMANISTIC STUDIES Vol. III March 15, 192S No. 4 State Gasoline Taxes BY KDMUNI) IV LKAENKI), A. B., A, M. Instructor in Economics and Commerce The Unlvmity of Kansas PUBLISHED BY THE UNIVERSITY l... vast sums of money, Oregon was the first state to adopt a tax on gasoline to provide revenue for building and maintaining roads. Since this adoption in 1919, many states have passed laws provid ing for gasoline taxes until now forty-four states...

Learned, Edmund Philip

1925-03-15T23:59:59.000Z

136

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Apr Apr '00 to May '00: +3.6% May '99 to May '00: +0.6% YTD '99 to YTD '00: -1.3% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Apr '00 to M ay '00: +3.2% M ay '99 to M ay '00: +5.7% YTD '99 to YTD '00: -0.9% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Apr '00 to May '00: +0.8% May '99 to May '00: +4.0% YTD '99 to YTD '00: +3.9% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Apr '00 to May '00: +0.4% May '99 to May '00: -1.6% YTD '99 to YTD '00: -17.5% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons

137

Motor Gasoline Sales Through Retail Outlets Prices  

Gasoline and Diesel Fuel Update (EIA)

41 2.773 1.894 2.319 - - 1984-2012 41 2.773 1.894 2.319 - - 1984-2012 East Coast (PADD 1) 2.305 2.782 1.879 2.300 - - 1984-2012 New England (PADD 1A) 2.368 2.822 1.960 2.377 - - 1984-2012 Connecticut 2.388 2.808 1.943 2.422 - - 1984-2012 Maine 2.384 2.846 1.984 2.360 - - 1984-2012 Massachusetts 2.367 2.822 1.970 2.360 - - 1984-2012 New Hampshire 2.348 2.818 1.945 2.376 - - 1984-2012 Rhode Island 2.294 2.730 1.896 2.328 - - 1984-2012 Vermont 2.421 2.929 1.990 2.422 - - 1984-2012 Central Atlantic (PADD 1B) 2.310 2.787 1.900 2.328 - - 1984-2012 Delaware 2.274 2.754 1.872 2.313 - - 1984-2012 District of Columbia W W NA 2.449 - - 1984-2012 Maryland 2.321 2.760 1.882 2.321 - - 1984-2012 New Jersey 2.320 2.824 1.924 2.352 - - 1984-2012

138

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Nov Nov '00 to Dec '00: +1.3% Dec '99 to Dec '00: -5.0% YTD '99 to YTD '00: -1.7% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 A djusted Gro wth R ates* Nov '00 to Dec '00: +8.4% Dec '99 to Dec '00: +3.1% YTD '99 to YTD '00: +2.0% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 2,200 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adj usted Growth Rates* Nov '00 to Dec '00: -0.4% Dec '99 to Dec '00: -3.0% YTD '99 to YTD '00: +3.9% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Nov '00 to Dec '00: +35.9% Dec '99 to Dec '00: +41.0% YTD '99 to YTD '00: -4.1% U.S. Propane Sales 600 900 1,200 1,500 1,800 2,100 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons

139

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Jan Jan '01 to Feb '01: 5.1% Feb '00 to Feb '01: +0.9% YTD '00 to YTD '01: +3.8% U.S. Distillate Fuel Sales 4,000 4,300 4,600 4,900 5,200 5,500 5,800 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 A djusted Gro wth R ates* Jan '01 to Feb '01: -6.4% Feb '00 to Feb '01: +4.3% YTD '00 to YTD '01: +11.5% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 2,200 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 Adj usted Growth Rates* Jan '01 to Feb '01: +0.5% Feb '00 to Feb '01: -1.3% YTD '00 to YTD '01: +0.4% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Nov '00 to Dec '00: +35.9% Dec '99 to Dec '00: +41.0% YTD '99 to YTD '00: -4.1% U.S. Propane Sales 600 900 1,200 1,500 1,800 2,100 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions

140

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

May May '01 to Jun '01: +2.5% Jun '00 to Jun '01: +1.1% YTD '00 to YTD '01: +2.0% U.S. Distillate Fuel Sales 4,000 4,300 4,600 4,900 5,200 5,500 5,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 Adjusted Growth Rates* M ay '01 to Jun '01: -3.2% Jun '00 to Jun '01: -3.3% YTD '00 to YTD '01: +6.3% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 2,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 Adjusted Growth Rates* May '01 to Jun '01: +0.0% Jun '00 to Jun '01: -6.6% YTD '00 to YTD '01: -2.2% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Nov '00 to Dec '00: +35.9% Dec '99 to Dec '00: +41.0% YTD '99 to YTD '00: -4.1% U.S. Propane Sales 600 900 1,200 1,500 1,800 2,100 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Mar Mar '01 to Apr '01: +1.9% Apr '00 to Apr '01: +3.0% YTD '00 to YTD '01: +2.8% U.S. Distillate Fuel Sales 4,000 4,300 4,600 4,900 5,200 5,500 5,800 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 A djusted Gro wth R ates* Mar '01 to Apr '01: -5.4% Apr '00 to Apr '01: +9.5% YTD '00 to YTD '01: +10.2% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 2,200 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 Adj usted Growth Rates* Mar '01 to Apr '01: -2.4% Apr '00 to Apr '01: -4.7% YTD '00 to YTD '01: -1.4% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Nov '00 to Dec '00: +35.9% Dec '99 to Dec '00: +41.0% YTD '99 to YTD '00: -4.1% U.S. Propane Sales 600 900 1,200 1,500 1,800 2,100 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions

142

Prime Supplier Sales Volumes of Motor Gasoline  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. 376,636.4 362,968.6 362,798.5 365,247.6 354,951.9 347,234.5 1983-2012 East Coast (PADD 1) 134,534.8 128,463.4 129,135.1 128,893.5 125,252.4 119,021.3 1983-2012 New England (PADD 1A) 17,818.7 17,328.6 17,181.3 17,270.6 17,000.4 16,279.8 1983-2012 Connecticut 4,360.7 4,246.8 4,355.4 4,425.7 4,305.0 3,921.4 1983-2012 Maine 2,060.3 1,866.8 1,878.1 1,888.9 1,881.7 1,852.8 1983-2012 Massachusetts 7,598.2 7,425.7 7,022.2 6,997.2 6,993.4 6,821.5 1983-2012 New Hampshire 1,640.1 1,585.1 1,613.9 1,610.0 1,417.5 1,448.0 1983-2012 Rhode Island 1,286.3 1,401.8 1,380.8 1,417.8 1,514.9 1,340.0 1983-2012 Vermont 873.2 802.4 930.9 931.0 887.9 896.0 1983-2012 Central Atlantic (PADD 1B)

143

Motor Gasoline Sales to End Users Prices  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. 2.338 2.772 1.893 2.316 - - 1984-2012 East Coast (PADD 1) 2.302 2.780 1.877 2.298 - - 1984-2012 New England (PADD 1A) 2.366 2.819 1.959 2.375 - - 1984-2012 Connecticut 2.381 2.804 1.944 2.415 - - 1984-2012 Maine 2.384 2.848 1.984 2.360 - - 1984-2012 Massachusetts 2.366 2.820 1.969 2.358 - - 1984-2012 New Hampshire 2.348 2.809 1.940 2.375 - - 1984-2012 Rhode Island 2.294 2.729 1.896 2.329 - - 1984-2012 Vermont 2.420 2.925 1.989 2.422 - - 1984-2012 Central Atlantic (PADD 1B) 2.308 2.791 1.900 2.324 - - 1984-2012 Delaware 2.272 2.755 1.874 2.312 - - 1984-2012 District of Columbia 2.280 2.808 NA 2.396 - - 1984-2012 Maryland 2.313 2.808 1.883 2.315 - - 1984-2012

144

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

May May '00 to Jun '00: +0.9% Jun '99 to Jun '00: -2.1% YTD '99 to YTD '00: -1.4% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* May '00 to Jun '00: +0.1% Jun '99 to Jun '00: -0.1% YTD '99 to YTD '00: -0.8% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* May '00 to Jun '00: +6.9% Jun '99 to Jun '00: +8.2% YTD '99 to YTD '00: +4.6% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* May '00 to Jun '00: +12.2% Jun '99 to Jun '00: +5.1% YTD '99 to YTD '00: -14.7% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons

145

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Feb Feb '00 to Mar '00: -0.6% Mar '99 to Mar '00: -3.0% YTD '99 to YTD '00: -2.2% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Feb '00 to M ar '00: -4.7% M ar '99 to M ar '00: -9.2% YTD '99 to YTD '00: -2.6% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Feb '00 to Mar '00: +3.8% Mar '99 to Mar '00: +5.3% YTD '99 to YTD '00: +2.8% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Feb '00 to Mar '00: -12.2% Mar '99 to Mar '00: -22.9% YTD '99 to YTD '00: -22.5% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of

146

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Mar Mar '00 to Apr '00: +0.3% Apr '99 to Apr '00: -2.2% YTD '99 to YTD '00: -1.8% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 A djusted Gro wth R ates* Mar '00 to Apr '00: -5.8% Apr '99 to Apr '00: -1.9% YTD '99 to YTD '00: -2.4% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adj usted Growth Rates* Mar '00 to Apr '00: +0.3% Apr '99 to Apr '00: +5.8% YTD '99 to YTD '00: +3.9% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Mar '00 to Apr '00: -2.2% Apr '99 to Apr '00: -9.0% YTD '99 to YTD '00: -20.4% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons

147

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Jun Jun '00 to Jul '00: -2.3% Jul '99 to Jul '00: -3.9% YTD '99 to YTD '00: -2.2% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Jun '00 to Jul '00: -8.2% Jul '99 to Jul '00: +0.2% YTD '99 to YTD '00: +1.7% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Jun '00 to Jul '00: -1.1% Jul '99 to Jul '00: +5.0% YTD '99 to YTD '00: +5.2% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Jun '00 to Jul '00: +5.9% Jul '99 to Jul '00: +1.9% YTD '99 to YTD '00: -13.5% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons

148

Stocks of Motor Gasoline Blending Components  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

187,013 192,571 196,254 197,510 206,627 210,238 1983-2015 PADD 1 46,448 47,840 50,373 50,816 56,416 58,286 2004-2015 PADD 2 38,944 40,652 41,331 43,698 45,607 47,017 2004-2015 PADD...

149

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Aug Aug '00 to Sep '00: -4.5% Sep '99 to Sep '00: -1.0% YTD '99 to YTD '00: -1.6% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 A djusted Gro wth R ates* Aug '00 to Sep '00: -3.0% Sep '99 to Sep'00: +1.6% YTD '99 to YTD '00: +2.4% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 2,200 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adj usted Growth Rates* Aug '00 to Sep '00: -0.1% Sep '99 to Sep '00: +7.4% YTD '99 to YTD '00: +5.4% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Aug '00 to Sep '00: -0.6% Sep '99 to Sep '00: +0.8% YTD '99 to YTD '00: -10.7% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions

150

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Jan Jan '00 to Feb '00: +11.1% Feb '99 to Feb '00: -0.5% YTD '99 to YTD '00: -1.8% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Jan '00 to Feb '00: +6.7% Feb '99 to Feb '00: +2.5% YTD '99 to YTD '00: +1.3% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Jan '00 to Feb '00: +5.5% Feb '99 to Feb '00: +0.8% YTD '99 to YTD '00: +2.2% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Jan '00 to Feb '00: +4.6% Feb '99 to Feb '00: -19.3% YTD '99 to YTD '00: -21.7% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of

151

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Oct Oct '00 to Nov '00: -0.4% Nov '99 to Nov '00: -0.5% YTD '99 to YTD '00: -1.4% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 A djusted Gro wth R ates* Oct '00 to Nov '00: -1.3% Nov '99 to Nov '00: -0.7% YTD '99 to YTD '00: +2.0% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 2,200 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adj usted Growth Rates* Oct '00 to Nov '00: +1.5% Nov '99 to Nov '00: +0.6% YTD '99 to YTD '00: +4.6% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Oct '00 to Nov '00: -7.8% Nov '99 to Nov '00: +1.3% YTD '99 to YTD '00: -7.8% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions

152

Prime Supplier Sales Volumes of Motor Gasoline  

U.S. Energy Information Administration (EIA) Indexed Site

351,699.1 357,563.7 359,454.4 355,964.6 360,621.2 344,753.3 351,699.1 357,563.7 359,454.4 355,964.6 360,621.2 344,753.3 1983-2013 East Coast (PADD 1) 119,156.1 119,239.6 119,547.5 117,708.0 119,558.2 116,411.8 1983-2013 New England (PADD 1A) 16,290.9 16,389.7 16,865.8 17,252.5 17,023.4 15,696.1 1983-2013 Connecticut 3,962.5 3,969.5 4,012.0 3,982.9 4,034.9 3,938.4 1983-2013 Maine 1,996.1 2,019.3 2,115.5 2,325.4 2,352.0 1,993.8 1983-2013 Massachusetts 6,548.1 6,503.0 6,738.6 6,583.4 6,362.9 5,878.6 1983-2013 New Hampshire 1,640.7 1,674.8 1,710.0 1,881.9 1,811.8 1,630.1 1983-2013 Rhode Island 1,251.2 1,324.8 1,380.6 1,455.4 1,427.8 1,331.8 1983-2013 Vermont 892.2 898.4 909.2 1,023.5 1,034.1 923.4 1983-2013 Central Atlantic (PADD 1B) 41,665.6 41,737.2 42,371.2 42,040.6 42,068.1 41,170.2 1983-2013

153

Motor Gasoline Sales to End Users Prices  

U.S. Energy Information Administration (EIA) Indexed Site

83-2013 83-2013 East Coast (PADD 1) - - - - - - 1983-2013 New England (PADD 1A) - - - - - - 1983-2013 Connecticut - - - - - - 1983-2013 Maine - - - - - - 1983-2013 Massachusetts - - - - - - 1983-2013 New Hampshire - - - - - - 1983-2013 Rhode Island - - - - - - 1983-2013 Vermont - - - - - - 1983-2013 Central Atlantic (PADD 1B) - - - - - - 1983-2013 Delaware - - - - - - 1983-2013 District of Columbia - - - - - - 1983-2013 Maryland - - - - - - 1983-2013 New Jersey - - - - - - 1983-2013 New York - - - - - - 1983-2013 Pennsylvania - - - - - - 1983-2013 Lower Atlantic (PADD 1C) - - - - - - 1983-2013 Florida - - - - - - 1983-2013 Georgia - - - - - - 1983-2013 North Carolina - - - - - - 1983-2013

154

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Jul Jul '00 to Aug '00: +2.0% Aug '99 to Aug '00: +0.6% YTD '99 to YTD '00: -1.6% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Jul '00 to Aug '00: +12.2% Aug '99 to Aug '00: +8.2% YTD '99 to YTD '00: +2.5% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 2,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Jul '00 to Aug '00: -1.9% Aug '99 to Aug '00: +4.5% YTD '99 to YTD '00: +5.3% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Jul '00 to Aug '00: -4.1% Aug '99 to Aug '00: +0.0% YTD '99 to YTD '00: -11.8% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions

155

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Apr Apr '01 to May '01: +0.6% May '00 to May '01: -0.1% YTD '00 to YTD '01: +2.2% U.S. Distillate Fuel Sales 4,000 4,300 4,600 4,900 5,200 5,500 5,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 Adjusted Growth Rates* Apr '01 to M ay '01: -4.6% M ay '00 to M ay '01: +1.0% YTD '00 to YTD '01: +8.3% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 2,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 Adjusted Growth Rates* Apr '01 to May '01: +5.6% May '00 to May '01: -0.2% YTD '00 to YTD '01: -1.1% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Nov '00 to Dec '00: +35.9% Dec '99 to Dec '00: +41.0% YTD '99 to YTD '00: -4.1% U.S. Propane Sales 600 900 1,200 1,500 1,800 2,100 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions

156

U.S. Motor Gasoline Sales  

U.S. Energy Information Administration (EIA) Indexed Site

Dec Dec '00 to Jan '01: -6.9% Jan '00 to Jan '01: +7.6% YTD '00 to YTD '01: +7.6% U.S. Distillate Fuel Sales 4,000 4,300 4,600 4,900 5,200 5,500 5,800 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 A djusted Gro wth R ates* Dec '00 to Jan '01: +7.1% Jan '00 to Jan '01: +19.5% YTD '00 to YTD '01: +19.5% U.S. Kerosene-Type Jet Fuel Sales 1,600 1,700 1,800 1,900 2,000 2,100 2,200 Jan Feb Mar A pr May Jun Jul A ug Sep Oct Nov Dec Millions of Gallons 1999 2000 2001 Adj usted Growth Rates* Dec '00 to Jan '01: -3.3% Jan '00 to Jan '01: +2.4% YTD '00 to YTD '01: +2.4% U.S. Residual Fuel Sales 600 700 800 900 1,000 1,100 1,200 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Nov '00 to Dec '00: +35.9% Dec '99 to Dec '00: +41.0% YTD '99 to YTD '00: -4.1% U.S. Propane Sales 600 900 1,200 1,500 1,800 2,100 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions

157

Laser ignition  

DOE Patents [OSTI]

In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In the embodiment of the invention claimed herein, the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being combined with either the first portion after a delay before injection into the ignitor laser.

Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

2002-01-01T23:59:59.000Z

158

Laser ignition  

DOE Patents [OSTI]

In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

2003-01-01T23:59:59.000Z

159

Diesel vs Gasoline Production | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

vs Gasoline Production Diesel vs Gasoline Production A look at refinery decisions that decide "swing" between diesel and gasoline production deer08leister.pdf More Documents &...

160

Hydrogen-free domestic technologies for conversion of low-octane gasoline distillates on zeolite catalysts  

Science Journals Connector (OSTI)

This review is devoted to the problem of the Russian domestic manufacture of high-quality motor fuels using hydrogen-free catalytic conversion of straight-run gasoline on zeolites with a high content of...

L. M. Velichkina

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Regional Retail Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Retail gasoline prices, like those for distillate fuels, have hit record prices nationally and in several regions this year. The national average regular gasoline price peaked at $1.68 per gallon in mid-June, but quickly declined, and now stands at $1.45, 17 cents higher than a year ago. Two regions, in particular, experienced sharp gasoline price runups this year. California, which often has some of the highest prices in the nation, saw prices peak near $1.85 in mid-September, while the Midwest had average prices over $1.87 in mid-June. Local prices at some stations in both areas hit levels well over $2.00 per gallon. The reasons for the regional price runups differed significantly. In the Midwest, the introduction of Phase 2 RFG was hampered by low stocks,

162

El Paso Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Good morning. I’m glad to be here in El Paso to share some of my agency’s insights on crude oil and gasoline prices. I represent the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. My division has the responsibility to monitor petroleum supplies and prices in the United States. As part of that work, we operate a number of surveys on a weekly, monthly, and annual basis. One of these is a weekly survey of retail gasoline prices at about 800 stations nationwide. This survey in particular allows us to observe the differences between local gasoline markets in the United States. While we track relatively few stations in the El Paso area, we have compared our price data with that collected by the El Paso City-County Health and Environmental District and

163

Engines - Spark Ignition Engines - Direct Injection - Omnivorous Engine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Injection, Spark-Ignited Engines Direct Injection, Spark-Ignited Engines Omnivorous Engine Omnivorous Engine Setup Omnivorous Engine Setup New engine technology has made possible engines that will operate on a wide variety of fuel inputs, from gasoline to naptha to ethanol to methanol, without driver intervention. Although flexible fuel vehicles have been produced in the millions, their engines have always been optimized for gasoline operation while accepting significant performance and efficiency degradations when using the alternative fuel. This project seeks to combine in-cylinder measurement technology, and advanced controls to optimize spark timing, the quantity and timing of injected fuel, to produce an "omnivorous engine"--one that will be able to run on any liquid spark ignition fuel with optimal efficiency and low

164

Is the gasoline tax regressive?  

E-Print Network [OSTI]

Claims of the regressivity of gasoline taxes typically rely on annual surveys of consumer income and expenditures which show that gasoline expenditures are a larger fraction of income for very low income households than ...

Poterba, James M.

1990-01-01T23:59:59.000Z

165

Gasoline Jet Fuels  

E-Print Network [OSTI]

C4n= Diesel Gasoline Jet Fuels C O C5: Xylose C6 Fermentation of sugars Biofuel "Nanobowls" are inorganic catalysts that could provide the selectivity for converting sugars to fuels IACT Proposes Synthetic, Inorganic Catalysts to Produce Biofuels Current Process

Kemner, Ken

166

Gasoline demand in developing Asian countries  

SciTech Connect (OSTI)

This paper presents econometric estimates of motor gasoline demand in eleven developing countries of Asia. The price and GDP per capita elasticities are estimated for each country separately, and for several pooled combinations of the countries. The estimated elasticities for the Asian countries are compared with those of the OECD countries. Generally, one finds that the OECD countries have GDP elasticities that are smaller, and price elasticities that are larger (in absolute value). The price elasticities for the low-income Asian countries are more inelastic than for the middle-income Asian countries, and the GDP elasticities are generally more elastic. 13 refs., 6 tabs.

McRae, R. [Univ. of Calgary, Alberta (Canada)

1994-12-31T23:59:59.000Z

167

Fuel excise taxes and consumer gasoline demand: comparing average retail price effects and gasoline tax effects .  

E-Print Network [OSTI]

??Interest in using gasoline taxes as a gasoline consumption reduction policy has increased. This study asks three questions to help determine how consumer gasoline consumptionÖ (more)

Sauer, William

2007-01-01T23:59:59.000Z

168

Thermal ignition combustion system  

SciTech Connect (OSTI)

A thermal ignition combustion system adapted for use with an internal combustion engine is described comprising: (a) means for providing ignition chamber walls defining an ignition chamber, the chamber walls being made of a material having a thermal conductivity greater than 20 W/m/sup 0/C. and a specific heat greater than 480J/kg/sup 0/C., the ignition chamber being in constant communication with the main combustion chamber; (b) means for maintaining the temperature of the chamber walls above a threshold temperature capable of causing ignition of a fuel; and (c) means for conducting fuel to the ignition chamber.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

169

Thermonuclear Ignition of Dark Galaxies  

E-Print Network [OSTI]

thermonuclear ignition of stars by nuclear fission, and the corollary, non-ignition of stars. The possibility of

J. Marvin Herndon

2006-01-01T23:59:59.000Z

170

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology For Gasoline and Diesel Fuel Pump Components Methodology For Gasoline and Diesel Fuel Pump Components The components for the gasoline and diesel fuel pumps are calculated in the following manner in cents per gallon and then converted into a percentage: Crude Oil - the monthly average of the composite refiner acquisition cost, which is the average price of crude oil purchased by refiners. Refining Costs & Profits - the difference between the monthly average of the spot price of gasoline or diesel fuel (used as a proxy for the value of gasoline or diesel fuel as it exits the refinery) and the average price of crude oil purchased by refiners (the crude oil component). Distribution & Marketing Costs & Profits - the difference between the average retail price of gasoline or diesel fuel as computed from EIA's

171

Gasoline Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Price Pass-through Gasoline Price Pass-through January 2003 by Michael Burdette and John Zyren* The single most visible energy statistic to American consumers is the retail price of gasoline. While the average consumer probably has a general notion that gasoline prices are related to those for crude oil, he or she likely has little idea that gasoline, like most other goods, is priced at many different levels in the marketing chain, and that changes ripple through the system as prices rise and fall. When substantial price changes occur, especially upward, there are often allegations of impropriety, even price gouging, on the part of petroleum refiners and/or marketers. In order to understand the movement of gasoline prices over time, it is necessary to examine the relationship between prices at retail and various wholesale levels.

172

Gas Mileage of 1993 Vehicles by J.K. Motors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 J.K. Motors Vehicles 3 J.K. Motors Vehicles EPA MPG MODEL City Comb Hwy 1993 J.K. Motors 190E 2.3 MERC BENZ 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 190E 2.3 MERC BENZ 16 City 17 Combined 18 Highway 1993 J.K. Motors 230E MERC BENZ 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 230E MERC BENZ 16 City 17 Combined 18 Highway 1993 J.K. Motors 300SL 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors 300SL 14 City 15 Combined 16 Highway 1993 J.K. Motors BMW535I 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors BMW535I 12 City 14 Combined 18 Highway 1993 J.K. Motors BMW635CSI 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 1993 J.K. Motors BMW635CSI 12 City 14 Combined 18

173

Laser preheat enhanced ignition  

DOE Patents [OSTI]

A method for enhancing fuel ignition performance by preheating the fuel with laser light at a wavelength that is absorbable by the fuel prior to ignition with a second laser is provided.

Early, James W. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

174

Laser preheat enhanced ignition  

DOE Patents [OSTI]

A method for enhancing fuel ignition performance by preheating the fuel with laser light at a wavelength that is absorbable by the fuel prior to ignition with a second laser is provided. 11 figs.

Early, J.W.

1999-03-02T23:59:59.000Z

175

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

Principal Investigator 13MY11 2011 DOE Vehicle Technologies Review Gasoline Ultra Fuel Efficient Vehicle ACE064 "This presentation does not contain any proprietary,...

176

motor | OpenEI  

Open Energy Info (EERE)

0 0 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279950 Varnish cache server motor Dataset Summary Description The data included in this submission is United States Department of Transportation (DOT) data up to 1995. The data includes motor-fuel gallonage taxes 1950-1995, motor-fuel use 1919-1995, private and commercial highway use of special fuels, by state 1949-1995, highway use of gasoline, by state 1949-1995, gasohol sales by state, 1980-1992, and estimated use of gasohol, 1993-1995. The data is presented in .xlsx format. Source DOT Date Released Unknown Date Updated Unknown Keywords DOT Fuel highway motor vehicle Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Motor-fuel gallonage taxes 1950-1995 (xlsx, 37.3 KiB)

177

STATEMENT OF CONSIDERATIONS Request by Ford Motor Company Research and Advanced Engineering  

Broader source: Energy.gov (indexed) [DOE]

No No . DE-FC26-07NT 43276; W(A)-08-002 , CH-1429 The Petitioner, Ford Motor Company Research and Advanced Engineering Laboratory (Ford), was awarded this cooperative agreement for the performance of work entitled "E85 Optim ized Engine Application ." The goal of the cooperative agreement is to develop practical technology which improves vehicle fuel efficiency using E85 and which is feasible for production implementation in the short term . Ford will : 1) utilize the favorable knock suppression properties of ethanol to build upon and enhance the recent techn ica l development of spark ignition turbocharged direct injection gasoline engines; and 2) increase the "fun-to-drive" attribute normally associated with diesel vehicles in Europe

178

Thermal ignition combustion system  

DOE Patents [OSTI]

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

179

Thermal ignition combustion system  

SciTech Connect (OSTI)

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

1988-01-01T23:59:59.000Z

180

California Gasoline Price Study  

Gasoline and Diesel Fuel Update (EIA)

DIRECTOR, PETROLEUM DIVISION DIRECTOR, PETROLEUM DIVISION ENERGY INFORMATION ADMINISTRATION U.S. DEPARTMENT OF ENERGY BEFORE THE SUBCOMMITTEE ON ENERGY AND RESOURCES COMMITTEE ON GOVERNMENT REFORM U.S. HOUSE OF REPRESENTATIVES MAY 9, 2005 Mr. Chairman, I appreciate this opportunity to testify today on the Energy Information Administration's (EIA) insights into factors affecting recent gasoline prices. EIA is the statutorily chartered statistical and analytical agency within the U.S. Department of Energy. We are charged with providing objective, timely, and relevant data, analysis, and projections for the use of the Department of Energy, other Government agencies, the U.S. Congress, and the public. We produce data and analysis reports that are meant to assist policy makers in determining energy policy. Because we have an element of

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

U.S. average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012  

U.S. Energy Information Administration (EIA) Indexed Site

average gasoline and diesel fuel prices expected to be average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012 Despite the recent run-up in gasoline prices, the U.S. Energy Information Administration expects falling crude oil prices will lead to a small decline in average motor fuel costs this year compared with last year. The price for regular gasoline is expected to average $3.55 a gallon in 2013 and $3.39 next year, according to EIA's new Short-Term Energy Outlook. That's down from $3.63 a gallon in 2012. For the short-term, however, pump prices are expected to peak at $3.73 per gallon in May because of higher seasonal fuel demand and refiners switching their production to make cleaner burning gasoline for the summer. Diesel fuel will continue to cost more than gasoline because of strong global demand for diesel.

182

Gasoline Prices Also Influenced by Regional Gasoline Product Markets  

Gasoline and Diesel Fuel Update (EIA)

1 1 Notes: Next we examine the wholesale market's added contribution to gasoline price variation and analyze the factors that impact the gasoline balance. There are two points to take away from this chart: The U.S. market moves with the world market, as can be seen with the high inventories in 1998, being drawn down to low levels during 1999. Crude and product markets are not independent. Crude oil and product markets move together fairly closely, with some lead/lag effects during transitions. The relationship between international crude oil markets and domestic product markets raises another issue. A subtle, but very important point, lost in recent discussions of gasoline price increases: The statement has been made that crude markets are not a factor in this past spring's high gasoline prices, since crude prices were

183

GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY  

SciTech Connect (OSTI)

The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple relationship between number and mass emissions was not observed. Data were collected on-road to compare weekday with weekend air quality around the Twin Cities area. This portion of the study resulted in the development of a method to apportion the Diesel and SI contribution to on-road aerosol.

Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

2003-08-24T23:59:59.000Z

184

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Price Data Collection Procedures Gasoline Price Data Collection Procedures Every Monday, retail prices for all three grades of gasoline are collected by telephone from a sample of approximately 800 retail gasoline outlets. The prices are published around 5:00 p.m. ET Monday, except on government holidays, when the data are released on Tuesday (but still represent Monday's price). The reported price includes all taxes and is the pump price paid by a consumer as of 8:00 A.M. Monday. This price represents the self-serve price except in areas having only full-serve. The price data are used to calculate weighted average price estimates at the city, state, regional and national levels using sales and delivery volume data from other EIA surveys and population estimates from the Bureau of Census.

185

Gasoline Prices at Historical Lows  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Before looking at El Paso gasoline prices, let’s take a minute to look at the U.S. average price for context. Gasoline prices this year, adjusted for inflation, are the lowest ever. Back in March, before prices began to rise ahead of the traditional high-demand season, the U.S. average retail price fell to $1.00 per gallon. Prices rose an average of 7.5 cents, less than the typical seasonal runup, to peak in early June. Since then, prices have fallen back to $1.013. Given recent declines in crude oil and wholesale gasoline prices, we expect retail prices to continue to ease over at least the next few weeks. Since their sharp runup during the energy crises of the 1970’s, gasoline prices have actually been non-inflationary. Adjusting the historical prices by the Consumer Price Index, we can see that today’s

186

Gasoline Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

differences, whereas stationary series can be estimated in level form. The unit root test could not reject the hypothesis that the retail and spot gasoline price series have a...

187

Refiner Prices of Gasoline, All Grades - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Product/ Sales Type: Gasoline, All Grades - Sales to End Users (U.S. only) Gasoline, All Grades - Through Retail Outlets Gasoline, All Grades - Other End Users Gasoline, All Grades - Sales for Resale Gasoline, All Grades - DTW (U.S. only) Gasoline, All Grades - Rack (U.S. only) Gasoline, All Grades - Bulk (U.S. only) Regular Gasoline - Sales to End Users (U.S. only) Regular Gasoline - Through Retail Outlets Regular Gasoline - Other End Users Regular Gasoline - Sales for Resale Regular Gasoline - DTW (U.S. only) Regular Gasoline - Rack (U.S. only) Regular Gasoline - Bulk (U.S. only) Midgrade Gasoline - Sales to End Users (U.S. only) Midgrade Gasoline - Through Retail Outlets Midgrade Gasoline - Other End Users Midgrade Gasoline - Sales for Resale Midgrade Gasoline - DTW (U.S. only) Midgrade Gasoline - Rack (U.S. only) Midgrade Gasoline - Bulk (U.S. only) Premium - Sales to End Users (U.S. only) Premium Gasoline - Through Retail Outlets Premium Gasoline - Other End Users Premium Gasoline - Sales for Resale Premium Gasoline - DTW (U.S. only) Premium Gasoline - Rack (U.S. only) Premium Gasoline - Bulk (U.S. only) Period: Monthly Annual

188

Comparing air quality impacts of hydrogen and gasoline  

E-Print Network [OSTI]

from among existing gasoline station locations in Sacra-VOC emitted at gasoline service stations, because these arethe gasoline terminal storage and refueling stations, it is

Sperling, Dan; Wang, Guihua; Ogden, Joan M.

2008-01-01T23:59:59.000Z

189

Path to High Efficiency Gasoline Engine | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine deer10johansson.pdf More Documents & Publications Partially...

190

The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion  

Broader source: Energy.gov [DOE]

Almost 2 dozen gasoline fuels, blending components, and surrogates were evaluated in a single-cylinder HCCI gasoline engine for combustion, emissions, and efficiency performance.

191

Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City  

E-Print Network [OSTI]

The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive ...

Thornhill, D. A.

192

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Procedures, Methodology, and Coefficients of Variation Procedures, Methodology, and Coefficients of Variation Gasoline Price Data Collection Procedures Every Monday, retail prices for all three grades of gasoline are collected by telephone from a sample of approximately 800 retail gasoline outlets. The prices are published around 5:00 p.m. ET Monday, except on government holidays, when the data are released on Tuesday (but still represent Monday's price). The reported price includes all taxes and is the pump price paid by a consumer as of 8:00 A.M. Monday. This price represents the self-serve price except in areas having only full-serve. The price data are used to calculate weighted average price estimates at the city, state, regional and national levels using sales and delivery volume data from other EIA surveys and population estimates from the Bureau of Census.

193

Gasoline Prices Vary Among Locations  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The public is probably more knowledgeable about what they pay for gasoline than about anything else they use regularly. Most Americans are bombarded several times a day with the price of gasoline. Many people who phone our office don't only want to know why prices have risen, but why their prices are different than prices in some other area - the gasoline station two blocks away, the average price quoted on the news, the price their uncle is paying in a different region of the country. This chart shows some of the different state averages for a specific month. Besides taxes, these differences are due to factors such as distance from refining sources, and mix of reformulated versus conventional fuels. What this snapshot does not show,is that all of these prices can

194

Autoignition of gasoline surrogates mixtures at intermediate temperatures and high pressures  

SciTech Connect (OSTI)

Ignition times were determined in high-pressure shock-tube experiments for various stoichiometric mixtures of two multicomponent model fuels in air for the validation of ignition delay simulations based on chemical kinetic models. The fuel blends were n-heptane (18%)/isooctane (62%)/ethanol (20%) by liquid volume (14.5%/44.5%/41% by mole fraction) and n-heptane (20%)/toluene (45%)/isooctane (25%)/diisobutylene (10%) by liquid volume (17.5%/55%/19.5%/8.0% by mole fraction). These fuels have octane numbers comparable to a standard European gasoline of 95 RON and 85 MON. The experimental conditions cover temperatures from 690 to 1200 K and pressures at 10, 30, and 50 bar. The obtained ignition time data are scaled with respect to pressure and compared to previous results reported in the literature. (author)

Fikri, M.; Herzler, J.; Starke, R.; Schulz, C.; Roth, P. [IVG, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany); Kalghatgi, G.T. [Shell Global Solutions U.K., P.O. Box 1, Chester CH1 3SH (United Kingdom)

2008-01-15T23:59:59.000Z

195

STEO January 2013 - average gasoline prices  

U.S. Energy Information Administration (EIA) Indexed Site

gasoline prices are expected to decline over the next two years. The average pump price for regular unleaded gasoline was 3.63 a gallon during 2012. That is expected to fall...

196

Household gasoline demand in the United States  

E-Print Network [OSTI]

Continuing rapid growth in U.S. gasoline consumption threatens to exacerbate environmental and congestion problems. We use flexible semiparametric and nonparametric methods to guide analysis of household gasoline consumption, ...

Schmalensee, Richard

1995-01-01T23:59:59.000Z

197

Laser ignition studies  

SciTech Connect (OSTI)

The goal of this work is to study the details of laser induced ignition and combustion of high-temperature condensed-phase exothermic reactions. In this work high-speed photography (HSP) and real-time optical pyrometry have been combined to provide a diagnostic tool with a 1 ms temporal resolution for studying laser ignition and combustion wave propagation. Previous experiments have involved the use of HSP for studying combustion wave propagation (1) Real-time pyrometry studies of the ignition process have also been performed previously. The present paper describes how HSP has been expanded to include three-view split-frame photography to allow the ignition and combustion processes to be recorded and studied simultaneously. 2 refs., 3 figs.

Fredin, L.; Hansen, G.P.; Margrave, J.L.; Behrens, R.G.

1985-10-01T23:59:59.000Z

198

Vehicle Technologies Office Merit Review 2014: Advanced Gasoline...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI)...

199

What Drives U.S. Gasoline Prices?  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

weekly gasoline spot price 2011-14 ... 15 Table 3. Dickey-Fuller test and autocorrelogram results ......

200

Groundbreaking at National Ignition Facility | National Nuclear...  

National Nuclear Security Administration (NNSA)

Ignition Facility May 29, 1997 Groundbreaking at National Ignition Facility Livermore, CA Secretary Pena participates in the ground breaking ceremony for the National Ignition...

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The chemical origin of octane sensitivity in gasoline fuels containing nitroalkanes  

SciTech Connect (OSTI)

Experimental octane measurements are presented for a standard gasoline to which has been added various quantities of nitromethane, nitroethane and 1-nitropropane. The addition of nitroalkanes was found to suppress the Motor Octane Number to a much greater extent than the Research Octane Number. In other words addition of nitroalkanes increases the octane sensitivity of gasoline. Density Functional Theory was used to model the equilibrium thermodynamics and the barrier heights for reactions leading to the break-up of nitroethane. These results were used to develop a chemical kinetic scheme for nitroalkanes combined with a surrogate gasoline (for which a mechanism has been developed previously). Finally the chemical kinetic simulations were combined with a quasi-dimensional engine model in order to predict autoignition in octane rating tests. Our results suggest that the chemical origin of octane sensitivity in gasoline/nitroalkane blends cannot be fully explained on the conventional basis of the extent to which NTC behaviour is absent. Instead we have shown that the contribution of the two pathways leading to autoignition in gasoline containing nitroalkanes becomes much more significant under the more severe conditions of the Motor Octane method than the Research Octane method. (author)

Cracknell, R.F.; McAllister, L.J.; Norton, M.; Walmsley, H.L. [Shell Global Solutions, Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom); Andrae, J.C.G. [Shell Global Solutions, Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom); Dept. of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden)

2009-05-15T23:59:59.000Z

202

National Ignition Facility & Photon Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 National Ignition Facility & Photon Science how do Lasers work? how Do Lasers work? A laser can be as small as a microscopic computer chip or as immense as the National Ignition...

203

Motor fuel prices in Turkey  

Science Journals Connector (OSTI)

Abstract The world?s most expensive motor fuel (gasoline, diesel and LPG) is sold most likely in the Republic of Turkey. This paper investigates the key issues related to the motor fuel prices in Turkey. First of all, the paper analyses the main reason behind high prices, namely motor fuel taxes in Turkey. Then, it estimates the elasticity of motor fuel demand in Turkey using an econometric analysis. The findings indicate that motor fuel demand in Turkey is quite inelastic and, therefore, not responsive to price increases caused by an increase in either pre-tax prices or taxes. Therefore, fuel market in Turkey is open to opportunistic behavior by firms (through excessive profits) and the government (through excessive taxes). Besides, the paper focuses on the impact of high motor fuel prices on road transport associated activities, including the pattern of passenger transportation, motorization rate, fuel use, total kilometers traveled and CO2 emissions from road transportation. The impact of motor fuel prices on income distribution in Turkey and Turkish public opinion about high motor fuel prices are also among the subjects investigated in the course of the study.

Erkan Erdogdu

2014-01-01T23:59:59.000Z

204

Motors Motor controllers  

E-Print Network [OSTI]

Aluminium frame Motors Motor controllers Ultrasonic multi-channel acquisition PC Tank Tank 400 600 800 1000 0 50 2 4 6 8 x 10 -3 r/r 0 Range (mm) Depth(mm) 25 /t Tand / or #12;Shallow water

205

Designing Alternatives to State Motor Fuel Taxes  

E-Print Network [OSTI]

Designing Alternatives to State Motor Fuel Taxes All states rely on gasoline taxes as one source efficiency and alternative fuel vehicles reduce both the equity of the revenue source and its growth over, leading to higher fuel efficiency, wide variations in fuel efficiency, and alternative- fuel vehicles

Bertini, Robert L.

206

Three-stage autoignition of gasoline in an HCCI engine: An experimental and chemical kinetic modeling investigation  

SciTech Connect (OSTI)

The alternative HCCI combustion mode presents a possible means for decreasing the pollution with respect to conventional gasoline or diesel engines, while maintaining the efficiency of a diesel engine or even increasing it. This paper investigates the possibility of using gasoline in an HCCI engine and analyzes the autoignition of gasoline in such an engine. The compression ratio that has been used is 13.5, keeping the inlet temperature at 70 C, varying the equivalence ratio from 0.3 to 0.54, and the EGR (represented by N{sub 2}) ratio from 0 to 37 vol%. For comparison, a PRF95 and a surrogate containing 11 vol% n-heptane, 59 vol% iso-octane, and 30 vol% toluene are used. A previously validated kinetic surrogate mechanism is used to analyze the experiments and to yield possible explanations to kinetic phenomena. From this work, it seems quite possible to use the high octane-rated gasoline for autoignition purposes, even under lean inlet conditions. Furthermore, it appeared that gasoline and its surrogate, unlike PRF95, show a three-stage autoignition. Since the PRF95 does not contain toluene, it is suggested by the kinetic mechanism that the benzyl radical, issued from toluene, causes this so-defined ''obstructed preignition'' and delaying thereby the final ignition for gasoline and its surrogate. The results of the kinetic mechanism supporting this explanation are shown in this paper. (author)

Machrafi, Hatim; Cavadias, Simeon [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D'Alembert (France)

2008-12-15T23:59:59.000Z

207

Final Scientific and Technical Report - Practical Fiber Delivered Laser Ignition Systems for Vehicles  

SciTech Connect (OSTI)

Research has characterized advanced kagome fiber optics for their use in laser ignition systems. In comparison to past fibers used in laser ignition, these fibers have the important advantage of being relatively bend-insensitivity, so that they can be bent and coiled without degradation of output energy or beam quality. The results are very promising for practical systems. For pulse durations of ~12 ns, the fibers could deliver >~10 mJ pulses before damage onset. A study of pulse duration showed that by using longer pulse duration (~20 Ė 30 ns), it is possible to carry even higher pulse energy (by factor of ~2-3) which also provides future opportunities to implement longer duration sources. Beam quality measurements showed nearly single-mode output from the kagome fibers (i.e. M2 close to 1) which is the optimum possible value and, combined with their high pulse energy, shows the suitability of the fibers for laser ignition. Research has also demonstrated laser ignition of an engine including reliable (100%) ignition of a single-cylinder gasoline engine using the laser ignition system with bent and coiled kagome fiber. The COV of IMEP was <2% which is favorable for stable engine operation. These research results, along with the continued reduction in cost of laser sources, support our commercial development of practical laser ignition systems.

Yalin, Azer [Seaforth, LLC

2014-03-30T23:59:59.000Z

208

Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Gasoline Gallon Gasoline Gallon Equivalent (GGE) Definition to someone by E-mail Share Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Facebook Tweet about Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Twitter Bookmark Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Google Bookmark Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Delicious Rank Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Digg Find More places to share Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Gasoline Gallon Equivalent (GGE) Definition

209

Areas Participating in the Reformulated Gasoline Program  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Program Reformulated Gasoline Program Contents * Introduction * Mandated RFG Program Areas o Table 1. Mandated RFG Program Areas * RFG Program Opt-In Areas o Table 2. RFG Program Opt-In Areas * RFG Program Opt-Out Procedures and Areas o Table 3. History of EPA Rulemaking on Opt-Out Procedures o Table 4. RFG Program Opt-Out Areas * State Programs o Table 5. State Reformulated Gasoline Programs * Endnotes Spreadsheets Referenced in this Article * Reformulated Gasoline Control Area Populations Related EIA Short-Term Forecast Analysis Products * Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 * Environmental Regulations and Changes in Petroleum Refining Operations * Areas Participating in Oxygenated Gasoline Program

210

Effect of two-stage injection on combustion and emissions under high EGR rate on a diesel engine by fueling blends of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol and pure diesel  

Science Journals Connector (OSTI)

Abstract The effect of two-stage injection on combustion and emission characteristics under high EGR (46%) condition were experimentally investigated. Four different fuels including pure diesel and blended fuels of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol were tested. Results show that blending gasoline or/and n-butanol in diesel improves smoke emissions while induces increase in maximum pressure rise rate (MPRR). Adopting pilot injection close to main injection can effectively reduce the peak of premixed heat release rate and MPRR. However, for fuels blends with high percentage of low cetane number fuel, the effect of pilot fuel on ignition can be neglected and the improvement of MPRR is not that obvious. Pilot-main interval presents more obvious effect on smoke than pilot injection rate does, and the smoke emissions decrease with increasing pilot-main interval. A longer main-post interval results in a lower post heat release rate and prolonged combustion duration. While post injection rate has little effect on the start of ignition for post injection. The variation in fuel properties caused by blending gasoline or/and n-butanol into diesel does not impose obvious influence on post combustion. The smoke emission increases first and then declines with retard of post injection timing. Compared to diesel, the smoke emissions of blended fuels are more sensitive to the variation of post injection strategy.

Zunqing Zheng; Lang Yue; Haifeng Liu; Yuxuan Zhu; Xiaofan Zhong; Mingfa Yao

2015-01-01T23:59:59.000Z

211

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

84.5 84.5 84.3 77.3 74.4 72.2 75.5 93.4 93.0 82.9 78.3 W 81.7 February ............................. 84.3 84.0 77.5 71.6 71.6 74.6 93.3 92.9 83.1 75.4 81.2 81.0 March .................................. 82.7 82.5 77.8 70.5 71.8 74.1 91.7 91.3 83.3 74.2 W 80.7 April .................................... 82.8 82.6 79.3 68.6 68.2 73.7 91.9 91.5 84.4 72.5 W 80.9 May ..................................... 82.3 81.6 77.5 68.2 63.8 71.9 91.5 90.8 83.2 72.3 W 79.9 June .................................... 80.3 79.4 75.0 63.9 58.9 68.5 89.9 89.0 80.9 68.7 W 77.2 July ..................................... 78.8 78.0 73.0 64.8 59.0 67.9 88.3 87.5 79.0 69.2 W 75.8 August ................................ 85.0 84.5 80.6 74.0 70.7 76.5 94.5 93.9 86.5 78.3 W 83.9 September .......................... 88.1 87.2 83.6 71.9 71.2 77.2 97.6 96.7 89.4 75.8 W

212

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

73.0 73.0 72.5 68.2 57.5 55.3 62.2 82.0 81.4 74.0 61.5 W 70.2 February ............................. 67.2 66.8 62.0 54.9 53.1 57.9 76.8 76.4 67.7 58.9 W 65.0 March .................................. 62.7 62.4 57.3 52.2 49.7 54.3 72.2 71.9 63.2 56.0 W 61.0 April .................................... 65.2 65.0 59.8 55.6 53.9 57.3 74.1 73.9 65.6 59.7 W 63.8 May ..................................... 69.7 69.3 65.1 58.0 53.8 60.7 78.8 78.4 70.9 62.1 W 68.2 June .................................... 68.6 68.0 63.7 54.5 48.4 57.8 77.8 77.3 69.8 58.9 W 66.3 July ..................................... 66.9 66.4 61.6 51.8 47.6 55.5 76.6 76.1 68.0 56.2 W 64.1 August ................................ 65.0 64.4 59.4 48.1 45.2 52.8 75.1 74.5 65.7 52.4 W 61.4 September .......................... 63.4 63.0 58.4 49.1 46.1 52.8 73.4 73.0 64.6 53.1 W

213

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

91.0 91.0 91.0 80.1 77.2 - 78.5 100.2 100.0 84.9 80.2 - 82.6 February ............................. 93.1 92.9 83.8 77.7 - 80.4 101.1 100.8 88.1 80.2 - 84.1 March .................................. 91.7 91.5 85.2 75.1 - 79.8 96.8 96.8 90.1 NA - 84.4 April .................................... 88.3 88.1 79.3 69.6 - NA 94.0 93.9 83.7 70.7 - NA May ..................................... 89.4 89.3 81.7 75.8 - 78.1 95.8 95.7 88.0 76.9 - 81.6 June .................................... 88.5 88.4 79.4 71.7 - 74.6 95.5 95.5 84.5 72.9 - 77.2 July ..................................... 86.2 86.1 75.4 71.2 - 72.8 93.0 93.0 81.2 72.8 - 75.9 August ................................ 89.3 89.2 79.6 77.7 - 78.4 96.6 96.5 85.0 79.2 - 81.3 September .......................... 91.3 91.0 84.4 74.8 - 78.3 97.9 97.7 88.2 77.7 - 81.5 October

214

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

59.5 59.5 58.9 54.4 42.1 37.1 46.8 70.2 69.7 61.7 46.4 - 56.9 February ............................. 57.3 56.7 52.7 40.6 39.2 45.9 68.2 67.7 60.2 44.8 W 55.3 March .................................. 64.5 64.4 60.1 52.3 48.6 55.3 74.2 73.8 67.6 55.6 W 63.8 April .................................... 82.3 81.6 79.9 62.3 57.2 69.6 92.4 91.6 84.9 65.4 W 78.7 May ..................................... 79.8 78.9 76.3 59.2 54.0 66.0 90.6 89.9 82.9 63.9 W 76.6 June .................................... 74.7 74.6 71.0 61.1 58.0 64.9 85.2 84.8 77.6 64.9 W 73.4 July ..................................... 79.4 79.3 75.9 69.7 66.3 71.9 89.3 88.9 81.9 72.6 NA 78.7 August ................................ 86.5 86.0 82.9 73.3 73.5 77.7 96.4 95.7 88.9 76.6 W 84.8 September .......................... 86.9 86.3 82.0 73.5 70.5 76.9 96.3 95.6 88.7 77.5 W

215

Motor Gasoline Sales to End Users, Total Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

28,179.6 24,384.0 24,143.9 23,567.1 24,120.5 23,282.9 1983-2013 28,179.6 24,384.0 24,143.9 23,567.1 24,120.5 23,282.9 1983-2013 East Coast (PADD 1) 7,388.3 7,633.2 7,424.0 7,266.3 7,278.4 6,996.8 1993-2013 New England (PADD 1A) W W W W W W 1993-2013 Connecticut W W W W W W 1993-2013 Maine - - - - - - 1993-2013 Massachusetts W W W W W W 1993-2013 New Hampshire W W W W W W 1993-2013 Rhode Island W W W W W W 1993-2013 Vermont - - - - - - 1993-2013 Central Atlantic (PADD 1B) 4,037.6 4,235.4 4,284.8 4,251.9 4,152.3 3,982.5 1993-2013 Delaware W W W W W W 1993-2013 District of Columbia W W W - W W 1993-2013 Maryland W W W W W W 1993-2013 New Jersey W W W W W W 1993-2013 New York 2,402.7 2,514.6 2,563.6 2,537.4 2,464.5 2,368.9 1993-2013 Pennsylvania W W 762.9 773.0 767.2 732.1 1993-2013

216

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

83.6 83.6 83.3 77.1 71.3 66.2 71.8 91.6 91.1 82.2 75.5 - 78.4 February ............................. 82.1 81.8 74.8 68.6 64.3 69.3 90.3 89.8 80.0 72.5 - 75.7 March .................................. 79.9 79.7 72.6 66.3 62.6 67.2 88.1 87.8 78.3 70.3 W 73.5 April .................................... 79.0 78.8 72.4 65.2 60.7 66.3 87.3 87.0 77.8 69.3 - 72.7 May ..................................... 79.6 79.5 73.0 67.5 61.8 67.9 87.5 87.2 78.4 70.7 - 73.8 June .................................... 78.9 78.7 70.9 63.9 59.0 65.0 86.8 86.5 76.6 67.2 - 71.0 July ..................................... 77.3 77.2 69.7 63.8 57.6 64.3 85.4 85.1 75.7 67.3 - 70.6 August ................................ 82.1 81.9 75.4 71.0 63.7 70.9 89.9 89.6 81.0 74.8 - 77.3 September .......................... 80.9 80.7 73.3 66.3 60.8 67.1 89.1 88.6 79.2 69.9 -

217

Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. 71,470 61,525 55,254 40,534 39,717 37,768 1993-2012 PAD District 1 19,732 16,074 10,858 3,913 3,741 3,513 1993-2012 Connecticut 1993-2004 Delaware 292 105 498 1993-2009 Florida 4,484 1,877 914 586 734 747 1993-2012 Georgia 2,141 1,724 800 374 251 220 1993-2012 Maine 889 374 130 152 1993-2012 Maryland 67 31 1993-2008 Massachusetts 2 4 3 1993-2012 New Hampshire 1993-2005 New Jersey 1,982 2,956 2,026 667 275 795 1993-2012 New York 1,768 1,469 273 194 628 483 1993-2012 North Carolina 1,977 1,724 1,470 591 389 317 1993-2012 Pennsylvania 3,731 3,595 3,421 697 782 188 1993-2012 Rhode Island 1993-2005 South Carolina 839 720 787 444 276 288 1993-2012

218

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

6 6 68.7 60.7 56.0 64.5 85.1 84.6 73.7 64.3 - 70.0 February ............................. 76.3 76.1 67.3 62.9 55.2 65.1 84.6 83.9 70.0 65.5 - 68.2 March .................................. 78.1 77.9 72.0 65.0 W 68.5 84.1 83.8 75.1 66.1 - 70.1 April .................................... 82.6 82.5 76.1 67.9 - 71.4 89.7 89.6 80.0 69.7 - 73.8 May ..................................... 87.9 87.9 79.9 71.8 - 75.1 94.3 94.2 84.6 73.5 - 77.7 June .................................... 90.2 90.2 80.0 66.5 - 72.0 96.4 96.3 84.0 68.7 - 75.0 July ..................................... 86.3 86.4 77.3 62.6 - 68.5 92.5 92.5 78.3 63.9 - 69.6 August ................................ 82.8 82.8 76.3 63.7 - 68.7 87.9 87.8 77.6 65.3 - 69.8 September .......................... 82.4 81.9 73.9 66.4 NA 69.4 NA NA 75.7 68.9 - 72.4 October ...............................

219

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

7 7 69.7 61.6 W 65.5 84.2 83.9 75.4 65.0 - 71.8 February ............................. 78.1 77.6 71.3 64.5 - 68.0 85.6 85.1 77.4 67.6 - 73.8 March .................................. 83.3 83.0 79.0 72.2 W 75.7 89.7 89.4 85.1 74.4 - 81.1 April .................................... 92.1 91.9 86.0 76.1 - 79.5 100.6 100.1 93.3 77.6 - 84.9 May ..................................... 96.8 96.4 92.4 76.5 - 81.5 105.4 104.6 99.0 77.5 - 86.2 June .................................... 95.6 95.3 NA 76.7 - 81.6 103.7 103.2 98.0 77.5 - 85.8 July ..................................... 93.8 93.5 NA 75.3 - 80.2 101.5 101.1 96.1 76.2 - 84.7 August ................................ 95.2 95.0 NA 78.5 - 82.7 102.2 102.0 NA 80.0 - 86.7 September .......................... 97.1 96.7 88.1 79.7 - 82.9 104.7 104.4 93.7 82.0 - 87.4 October

220

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

51.0 51.0 50.8 45.0 38.1 33.0 39.1 59.9 59.7 51.9 42.3 - 46.1 February ............................. 49.4 49.3 43.4 36.3 32.8 37.6 58.6 58.4 50.4 40.4 - 44.3 March .................................. 57.2 57.1 52.4 46.9 39.7 47.1 65.7 65.5 58.6 50.5 - 53.7 April .................................... 68.1 68.0 64.2 56.7 47.2 56.2 76.5 76.2 69.8 60.5 - 63.9 May ..................................... 68.9 68.8 63.6 56.3 48.2 56.1 77.4 77.0 69.4 60.0 - 63.4 June .................................... 68.2 68.2 63.7 56.3 48.6 56.7 76.5 76.3 69.1 59.8 - 63.2 July ..................................... 73.6 73.6 69.8 63.6 55.3 63.8 81.8 81.6 75.0 67.2 - 70.0 August ................................ 78.7 78.7 74.6 68.4 62.5 69.0 87.5 87.2 79.9 72.0 - 74.9 September .......................... 82.1 81.9 77.5 71.5 64.7 71.9 90.9 90.5 83.1 75.3 -

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

9.0 9.0 68.8 61.7 55.1 51.1 56.0 77.1 76.6 66.9 59.4 - 62.6 February ............................. 69.6 69.4 63.4 56.3 52.0 57.4 77.6 77.2 68.9 60.4 - 64.3 March .................................. 75.3 75.1 69.2 63.6 57.7 64.3 83.2 82.8 74.6 67.5 W 70.8 April .................................... 83.2 83.0 77.3 71.5 64.3 71.6 91.1 90.7 82.5 75.8 - 78.9 May ..................................... 86.2 85.9 79.2 71.7 65.6 72.6 94.1 93.6 84.2 75.8 - 79.5 June .................................... 83.7 83.4 75.2 66.6 59.9 67.4 91.6 90.9 80.2 69.5 - 74.2 July ..................................... 81.8 81.5 74.0 66.6 60.0 67.3 89.6 89.1 79.2 70.2 - 74.2 August ................................ 80.3 80.2 73.1 66.2 60.0 66.9 88.0 87.6 78.4 69.8 W 73.5 September .......................... 80.6 80.5 73.7 67.2 60.4 67.8 88.3 87.9 78.8 70.9 -

222

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

66.1 66.1 65.8 58.4 51.1 49.2 52.4 74.6 74.2 64.6 55.6 - 59.1 February ............................. 63.3 63.2 56.3 50.1 47.4 51.0 72.0 71.6 62.1 54.1 - 57.3 March .................................. 61.3 61.2 54.2 47.9 45.4 48.9 69.9 69.5 60.0 51.9 - 55.0 April .................................... 62.6 62.5 56.3 51.1 47.1 51.5 71.0 70.7 61.8 55.1 - 57.7 May ..................................... 65.3 65.2 58.8 53.8 48.4 53.9 73.5 73.1 64.3 57.6 - 60.3 June .................................... 64.6 64.4 57.4 51.2 46.2 51.7 73.2 72.6 63.2 54.9 W 58.2 July ..................................... 63.4 63.2 56.0 49.8 45.1 50.5 72.2 71.7 62.2 53.4 - 56.9 August ................................ 60.5 60.3 52.9 45.0 41.0 46.3 69.6 69.2 59.2 48.8 - 53.0 September .......................... 59.2 59.1 52.8 45.8 40.8 46.7 68.2 67.9 58.8 49.7 -

223

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

2.2 2.2 71.6 66.6 60.0 56.1 63.1 81.2 80.6 71.7 64.6 - 69.7 February ............................. 72.7 72.2 67.3 60.3 56.4 63.3 81.5 80.9 72.7 64.8 - 70.4 March .................................. 77.0 76.6 71.7 66.0 64.7 68.7 85.9 85.3 77.7 70.0 - 75.5 April .................................... 87.8 87.6 82.8 76.2 76.2 79.5 96.1 95.6 88.4 80.5 - 86.2 May ..................................... 94.1 93.7 89.0 76.6 74.5 82.0 103.1 102.3 93.9 80.5 - 90.1 June .................................... 91.6 91.0 86.1 70.6 67.0 77.6 100.7 99.7 91.6 74.8 - 86.7 July ..................................... 87.8 87.6 83.0 70.8 68.0 76.3 96.9 96.3 88.3 74.9 - 84.3 August ................................ 84.0 83.8 78.3 68.9 65.0 72.8 93.1 92.5 83.5 73.3 W 80.6 September .......................... 82.1 82.0 76.0 69.6 66.1 72.2 91.0 90.6 81.2 73.7 W

224

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

8,502.8 8,502.8 30,091.1 22,860.9 121,863.2 24,529.2 169,253.3 7,955.3 8,081.1 12,658.5 10,618.5 1,152.7 24,429.7 February ............................. 33,160.7 35,054.9 31,625.2 135,105.9 26,023.8 192,754.9 5,205.4 5,273.9 5,951.6 5,714.2 333.0 11,998.8 March .................................. 37,159.8 39,011.8 35,012.6 142,409.7 27,404.1 204,826.5 2,090.0 2,127.2 2,619.4 2,344.1 - 4,963.5 April .................................... 38,869.0 40,735.1 36,827.8 142,606.1 26,540.1 205,973.9 568.3 580.0 980.8 1,461.1 - 2,442.0 May ..................................... 39,582.4 41,396.9 37,319.3 150,843.9 27,558.2 215,721.4 573.6 584.7 957.5 1,537.7 - 2,495.2 June .................................... 40,991.9 42,912.3 37,954.3 156,346.5 32,447.1 226,747.9 591.6 592.0 990.8 1,609.0 -

225

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

220.9 220.9 31,104.3 23,193.9 128,995.0 28,849.6 181,038.6 5,089.3 5,164.2 4,062.8 5,720.8 - 9,783.6 February ............................. 31,284.4 33,213.6 24,062.8 134,673.5 33,175.3 191,911.6 4,908.5 4,980.9 4,025.8 5,317.8 - 9,343.6 March .................................. 34,100.8 36,002.0 25,985.0 139,340.5 30,160.8 195,486.2 2,710.3 2,764.7 2,622.6 2,796.9 - 5,419.5 April .................................... 35,684.3 37,877.0 27,895.8 146,733.8 29,409.3 204,038.9 1,203.7 1,224.2 652.4 2,016.6 - 2,669.0 May ..................................... 35,150.2 36,866.7 27,401.6 148,271.7 28,449.3 204,122.6 1,711.4 1,730.6 1,284.0 2,091.9 - 3,375.9 June .................................... 36,536.0 38,235.2 27,402.2 151,739.3 24,832.7 203,974.3 1,956.2 1,978.1

226

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

4,707.0 4,707.0 35,821.0 18,450.2 130,177.8 22,726.5 171,354.5 3,900.7 3,926.0 4,696.8 7,088.7 - 11,785.5 February ............................. 36,412.6 37,699.7 20,174.0 142,313.8 25,388.9 187,876.8 3,924.9 3,949.8 5,137.3 6,882.9 - 12,020.2 March .................................. 36,632.6 38,121.0 21,255.9 152,151.5 30,915.0 204,322.3 3,382.2 3,401.8 4,711.1 5,122.9 - 9,833.9 April .................................... 37,971.4 39,384.5 23,410.4 155,157.1 40,216.9 218,784.4 1,927.8 1,934.5 1,997.5 3,438.3 - 5,435.9 May ..................................... 37,771.0 39,109.5 22,504.7 154,536.5 34,938.2 211,979.5 1,944.7 1,953.1 1,570.1 3,450.5 - 5,020.5 June .................................... 37,777.7 38,969.0 22,350.8 163,781.5 29,805.1 215,937.4 2,027.1

227

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

161.3 161.3 30,767.0 22,353.2 127,342.1 24,284.9 173,980.2 8,319.4 8,460.9 13,456.3 W W 24,653.0 February ............................. 32,286.1 34,080.3 31,066.3 138,106.2 29,977.1 199,149.6 6,264.3 6,341.7 6,239.1 5,890.3 - 12,129.4 March .................................. 36,529.7 38,362.8 35,134.3 141,063.5 25,588.4 201,786.1 2,972.7 3,032.6 2,589.4 W W 4,958.5 April .................................... 36,904.9 38,994.6 31,715.8 147,020.0 33,979.9 212,715.8 1,558.8 1,592.8 1,049.5 1,668.8 - 2,718.3 May ..................................... 36,751.1 38,541.5 28,743.2 148,337.4 29,640.9 206,721.5 1,299.8 1,333.0 1,005.5 1,838.7 - 2,844.3 June .................................... 37,465.1 39,108.4 28,592.7 147,682.3 36,046.6 212,321.6

228

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

3,177.2 3,177.2 34,690.6 19,370.8 133,144.1 32,691.0 185,205.9 4,123.8 4,154.0 3,780.0 6,946.2 - 10,726.2 February ............................. 34,982.2 36,460.3 20,433.1 137,937.1 31,470.5 189,840.6 3,923.6 3,954.4 3,674.9 6,513.4 - 10,188.4 March .................................. 37,598.4 39,137.5 21,474.3 144,372.0 29,697.5 195,543.8 2,947.2 2,972.1 3,243.6 4,126.4 - 7,370.0 April .................................... 34,901.4 36,438.7 22,519.1 148,658.4 39,120.8 210,298.2 2,159.0 2,174.7 1,880.2 3,562.0 - 5,442.2 May ..................................... 35,698.2 37,200.2 22,890.9 150,690.5 35,704.2 209,285.5 2,007.8 2,022.5 1,824.9 3,446.9 - 5,271.8 June .................................... 36,351.1 37,897.0 23,252.4 157,837.8 38,644.7 219,734.8 2,006.0

229

Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 31,576 31,334 35,019 34,533 32,174 27,872 1993-2013 PAD District 1 2,286 2,947 3,296 3,722 3,755 2,837 1993-2013 Connecticut 1993-2005 Delaware 1993-2010 Florida 635 638 666 711 724 563 1993-2013 Georgia 179 213 239 277 244 191 1993-2013 Maine 126 263 324 270 310 112 1993-2013 Maryland 1993-2009 Massachusetts 7 6 7 5 8 7 1993-2013 New Hampshire 1993-2006 New Jersey 206 344 270 604 785 463 1993-2013 New York 325 455 535 508 465 521 1993-2013 North Carolina 251 387 522 535 457 320 1993-2013 Pennsylvania 116 165 232 202 234 178 1993-2013 Rhode Island 1993-2007 South Carolina 250 237 271 306 293 275 1993-2013 Vermont 20 30 19 15 24 19 1993-2013

230

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

7.2 7.2 66.8 59.8 52.5 48.2 53.6 75.7 75.1 65.4 57.1 W 60.9 February ............................. 67.0 66.6 60.6 53.5 49.6 54.8 75.4 74.9 66.1 58.1 NA 61.8 March .................................. 67.9 67.6 61.1 54.5 50.4 55.7 75.8 75.3 66.5 58.3 NA 62.2 April .................................... 73.1 72.8 66.9 62.3 56.4 62.6 80.8 80.4 72.4 66.7 W 69.3 May ..................................... 79.0 78.6 72.1 67.7 62.0 68.0 87.2 86.6 77.4 72.5 NA 74.8 June .................................... 79.2 78.6 70.3 62.4 58.5 63.9 87.6 86.8 75.9 66.8 NA 71.0 July ..................................... 75.6 75.0 66.0 56.4 52.9 58.5 83.8 83.0 71.4 60.2 NA 65.5 August ................................ 73.0 72.6 64.8 57.0 51.8 58.3 81.0 80.5 69.8 60.8 NA 64.9 September .......................... 72.0 71.8 64.8 57.7 52.3 58.7 79.8 79.5 69.6

231

U.S. Motor Gasoline Refiner Sales Volumes  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

NA NA NA 1983-2013 DTW 39,898.1 39,895.9 35,650.2 30,105.1 27,170.0 27,572.4 1994-2013 Rack 220,794.8 226,076.6 232,908.6 233,671.8 239,186.6 238,580.7 1994-2013 Bulk 45,667.8...

232

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 62.2 61.7 57.6 46.2 43.3 50.8 72.8 72.3 64.2 50.3 W 59.7 December ... 59.8 59.2 55.2 41.0 37.5 46.8 70.5 70.0 62.2 45.5 W...

233

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 86.2 85.7 80.5 74.4 68.6 75.9 95.2 94.7 86.9 78.5 W 84.2 December ... 88.4 87.8 82.4 74.9 71.5 77.6 97.7 97.1 88.8 79.1 W...

234

Refinery & Blender Net Production of Finished Motor Gasoline  

Gasoline and Diesel Fuel Update (EIA)

2008 2009 2010 2011 2012 2013 View History U.S. 3,128,673 3,206,726 3,306,400 3,306,028 3,267,022 3,370,460 1945-2013 PADD 1 723,212 872,233 993,681 1,055,660 1,044,853 1,062,487...

235

Motor Gasoline Market Spring 2007 and Implications for Spring...  

Gasoline and Diesel Fuel Update (EIA)

positions on policy issues. Because of EIA's statutory independence with respect to the content of its energy information program, the analysis presented herein is strictly its...

236

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

4.6 4.6 73.9 70.5 59.6 55.7 64.4 84.2 83.3 75.7 63.9 - 72.4 February ............................. 73.7 73.0 69.3 59.8 57.2 64.1 82.9 82.1 74.2 64.6 - 71.6 March .................................. 72.3 71.6 68.0 57.9 54.1 62.3 81.7 80.8 73.1 62.4 - 70.1 April .................................... 74.8 74.2 70.8 64.0 59.7 67.0 83.8 83.2 75.8 68.3 - 73.7 May ..................................... 80.4 80.0 75.3 69.5 64.6 71.9 89.2 88.6 80.5 74.2 - 78.7 June .................................... 81.7 81.0 75.3 65.9 61.6 70.3 90.3 89.5 80.6 70.7 - 77.7 July ..................................... 78.7 77.8 71.7 60.3 57.9 65.6 87.5 86.5 77.1 65.1 - 73.6 August ................................ 75.5 74.7 68.8 59.9 56.7 63.6 83.9 83.2 73.8 64.5 - 71.0 September .......................... 73.5 72.9 67.4 61.0 56.9 63.4 81.6 81.0 72.2 65.2 -

237

Interaction blending equations enhance reformulated gasoline profitability  

SciTech Connect (OSTI)

The interaction approach to gasoline blending gives refiners an accurate, simple means of re-evaluating blending equations and increasing profitability. With reformulated gasoline specifications drawing near, a detailed description of this approach, in the context of reformulated gasoline is in order. Simple mathematics compute blending values from interaction equations and interaction coefficients between mixtures. A timely example of such interactions is: blending a mixture of catalytically cracked gasoline plus light straight run (LSR) from one tank with alkylate plus reformate from another. This paper discusses blending equations, using interactions, mixture interactions, other blending problems, and obtaining equations.

Snee, R.D. (Joiner Associates, Madison, WI (United States)); Morris, W.E.; Smith, W.E.

1994-01-17T23:59:59.000Z

238

Renewable Oxygenate Blending Effects on Gasoline Properties  

Science Journals Connector (OSTI)

Renewable Oxygenate Blending Effects on Gasoline Properties ... National Renewable Energy Laboratory, Golden, Colorado 80401, United States ... Energy Fuels, 2011, 25 (10), ...

Earl Christensen; Janet Yanowitz; Matthew Ratcliff; Robert L. McCormick

2011-08-16T23:59:59.000Z

239

Emissions Control for Lean Gasoline Engines  

Broader source: Energy.gov (indexed) [DOE]

to achieve cost-effective compliance * minimize precious metal content while maximizing fuel economy * Relevance: - U.S. passenger car fleet is dominated by gasoline-fueled...

240

Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...  

Broader source: Energy.gov (indexed) [DOE]

in Gasoline Turbocharged Direct Injection (GTDI) engine technology in the near term as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost...

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Emissions Control for Lean Gasoline Engines  

Broader source: Energy.gov (indexed) [DOE]

SCR Urea TankInjector Cost Customer Acceptance Not in Project Scope Specific Key Issues: Cost, Durability, Fuel Penalty, Operating Temp.,+... Lean Gasoline SI Direct Injection...

242

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Pump Components History Gasoline Pump Components History WHAT WE PAY FOR IN A GALLON OF REGULAR GASOLINE Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage) Taxes (percentage) Crude Oil (percentage) Jan-00 1.289 7.8 13.0 32.1 47.1 Feb-00 1.377 17.9 7.5 30.1 44.6 Mar-00 1.517 15.4 12.8 27.3 44.6 Apr-00 1.465 10.1 20.2 28.3 41.4 May-00 1.485 20.2 9.2 27.9 42.7 Jun-00 1.633 22.2 8.8 25.8 43.1 Jul-00 1.551 13.2 15.8 27.2 43.8 Aug-00 1.465 15.8 7.5 28.8 47.8 Sep-00 1.550 15.4 9.0 27.2 48.3 Oct-00 1.532 13.7 10.1 27.5 48.6 Nov-00 1.517 10.4 11.8 27.8 50.0 Dec-00 1.443 8.0 17.9 29.2 44.8 Jan-01 1.447 17.8 10.4 29.2 42.7 Feb-01 1.450 17.3 11.0 29.1 42.6 Mar-01 1.409 18.8 9.7 30.0 41.5

243

Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending  

SciTech Connect (OSTI)

Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

244

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy  

E-Print Network [OSTI]

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy Ashley Langer University evidence that automobile manufacturers set vehicle prices as if consumers respond to gasoline prices. We consumer preferences for fuel efficiency. Keywords: automobile prices, gasoline prices, environmental

Sadoulet, Elisabeth

245

Burner ignition system  

DOE Patents [OSTI]

An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

Carignan, Forest J. (Bedford, MA)

1986-01-21T23:59:59.000Z

246

From Gasoline Alleys to Electric Avenues  

Science Journals Connector (OSTI)

...From Gasoline Alleys to Electric Avenues 10.1126...for next-generation electric cars could help make...next-generation hybrid vehicle. Like today's hybrids...have dual gasoline and electric engines. But whereas...authorizing $1 million for rebates for future plug-in hybrid...

Eli Kintisch

2008-02-08T23:59:59.000Z

247

Ethers have good gasoline-blending attributes  

SciTech Connect (OSTI)

Because of their compatibility with hydrocarbon gasoline-blending components, their high octane blending values, and their low volatility blending values, ethers will grow in use as gasoline blending components. This article discusses the properties of ethers as blending components, and environmental questions.

Unzelman, G.H.

1989-04-10T23:59:59.000Z

248

What Drives U.S. Gasoline Prices?  

Reports and Publications (EIA)

This analysis provides context for considering the impact of rising domestic light crude oil production on the price that U.S. consumers pay for gasoline, and provides a framework to consider how changes to existing U.S. crude oil export restrictions might affect gasoline prices.

2014-01-01T23:59:59.000Z

249

COLLOQUIUM: In Pursuit of Ignition on the National Ignition Facility...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Lawrence Livermore National Laboratory with the goal of igniting a propagating thermonuclear burn wave in DT fuel leading to energy gain (defined as fusion yieldinput laser...

250

Design Case Summary: Production of Gasoline and Diesel from Biomass...  

Energy Savers [EERE]

Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking Design Case Summary: Production of Gasoline and Diesel from...

251

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,...

252

Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...  

Energy Savers [EERE]

Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid The National Renewable Energy...

253

Reductant Chemistry during LNT Regeneration for a Lean Gasoline...  

Broader source: Energy.gov (indexed) [DOE]

Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Poster presented at the 16th...

254

DOE's Gasoline/Diesel PM Split Study | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GasolineDiesel PM Split Study DOE's GasolineDiesel PM Split Study 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerfujita.pdf More...

255

Load Expansion with Diesel/Gasoline RCCI for Improved Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

256

Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of...

257

In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate...

258

High Efficiency Clean Combustion Engine Designs for Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen...

259

Central ignition scenarios for TFTR  

SciTech Connect (OSTI)

The possibility of obtaining ignition in TFTR by means of very centrally peaked density profiles is examined. It is shown that local central alpha heating can be made to exceed local central energy losses (''central ignition'') under global conditions for which Q greater than or equal to 1. Time dependent 1-D transport simulations show that the normal global ignition requirements are substantially relaxed for plasmas with peaked density profiles. 18 refs., 18 figs.

Zweben, S.J.; Redi, M.H.; Bateman, G.

1986-03-01T23:59:59.000Z

260

Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine  

SciTech Connect (OSTI)

Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model  

SciTech Connect (OSTI)

Experiments in a homogeneous charge compression ignition (HCCI) engine have been conducted with four gasoline surrogate fuel blends. The pure components in the surrogate fuels consisted of n-heptane, isooctane, toluene, ethanol and diisobutylene and fuel sensitivities (RON-MON) in the fuel blends ranged from two to nine. The operating conditions for the engine were p{sub in}=0.1 and 0.2 MPa, T{sub in}=80 and 250 C, {phi}=0.25 in air and engine speed 1200 rpm. A semidetailed chemical kinetic model (142 species and 672 reactions) for gasoline surrogate fuels, validated against ignition data from experiments conducted in shock tubes for gasoline surrogate fuel blends at 1.0{<=} p{<=}5.0MPa, 700{<=} T{<=}1200 K and {phi}=1.0, was successfully used to qualitatively predict the HCCI experiments using a single zone modeling approach. The fuel blends that had higher fuel sensitivity were more resistant to autoignition for low intake temperature and high intake pressure and less resistant to autoignition for high intake temperature and low intake pressure. A sensitivity analysis shows that at high intake temperature the chemistry of the fuels ethanol, toluene and diisobutylene helps to advance ignition. This is consistent with the trend that fuels with the least Negative Temperature Coefficient (NTC) behavior show the highest octane sensitivity, and become less resistant to autoignition at high intake temperatures. For high intake pressure the sensitivity analysis shows that fuels in the fuel blend with no NTC behavior consume OH radicals and acts as a radical scavenger for the fuels with NTC behavior. This is consistent with the observed trend of an increase in RON and fuel sensitivity. With data from shock tube experiments in the literature and HCCI modeling in this work, a correlation between the reciprocal pressure exponent on the ignition delay to the fuel sensitivity and volume percentage of single-stage ignition fuel in the fuel blend was found. Higher fuel sensitivity and single-stage fuel content generally gives a lower value of the pressure exponent. This helps to explain the results obtained while boosting the intake pressure in the HCCI engine. (author)

Andrae, J.C.G. [Dept. of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Head, R.A. [Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom)

2009-04-15T23:59:59.000Z

262

Ignition enhancement for scramjet combustion.  

E-Print Network [OSTI]

??The process of shock-induced ignition has been investigated both computa- tionally and experimentally, with particular emphasis on the concept of radical farming. The first componentÖ (more)

McGuire, Jeffrey Robert

2007-01-01T23:59:59.000Z

263

Laser Ignition of Single Magnesium Particles  

Science Journals Connector (OSTI)

The minimum ignition temperature and minimum ignition energy of single magnesium particles was determined ... levitated ultrasonically and was ignited by a short laser pulse. The temperature transient of the part...

J. F. Zevenbergen; A. E. DahoeÖ

2000-01-01T23:59:59.000Z

264

Gasoline Price Differences Caused by:  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: While my agency cannot be expert in every local gasoline market in the United States, we are familiar with a number of factors that can account for significant differences in prices between markets: Proximity of supply - distance from the refineries supplying the local market. Additionally, the proximity of those refineries to crude oil supplies can be a factor, as well as shipping logistics, including pipeline or waterborne, from refinery to market. Cost of supply - including crude oil, refinery operating, and transportation costs. Supply/demand balance - some regions are typically in excess or short supply, while others may vary seasonally, or when supply interruptions (such as refinery shutdowns) occur. Competitive environment - including the number of suppliers, and the

265

Premix charge, compression ignition combustion system optimization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24,...

266

Princeton Plasma Physics Lab - National Ignition Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

national-ignition-facility National Ignition Facility en Summary of Assessment of Prospects for Inertial Fusion Energy http:www.pppl.govnode1361

267

Chemical kinetic modeling of component mixtures relevant to gasoline  

SciTech Connect (OSTI)

Detailed kinetic models of pyrolysis and combustion of hydrocarbon fuels are nowadays widely used in the design of internal combustion engines and these models are effectively applied to help meet the increasingly stringent environmental and energetic standards. In previous studies by the combustion community, such models not only contributed to the understanding of pure component combustion, but also provided a deeper insight into the combustion behavior of complex mixtures. One of the major challenges in this field is now the definition and the development of appropriate surrogate models able to mimic the actual features of real fuels. Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. Their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. Aside the most commonly used surrogates containing iso-octane and n-heptane only, the so called Primary Reference Fuels (PRF), new mixtures have recently been suggested to extend the reference components in surrogate mixtures to also include alkenes and aromatics. It is generally agreed that, including representative species for all the main classes of hydrocarbons which can be found in real fuels, it is possible to reproduce very effectively in a wide range of operating conditions not just the auto-ignition propensity of gasoline or Diesel fuels, but also their physical properties and their combustion residuals [1]. In this work, the combustion behavior of several components relevant to gasoline surrogate formulation is computationally examined. The attention is focused on the autoignition of iso-octane, hexene and their mixtures. Some important issues relevant to the experimental and modeling investigation of such fuels are discussed with the help of rapid compression machine data and calculations. Following the model validation, the behavior of mixtures is discussed on the basis of computational results.

Mehl, M; Curran, H J; Pitz, W J; Dooley, S; Westbrook, C K

2008-05-29T23:59:59.000Z

268

Fast Ignition Program Presented at  

E-Print Network [OSTI]

Laser drive Direct Laser drive #12;Fast Ignition may allow longer wavelength laser implosion systemsFast Ignition Program Presented at FESAC Development Path Panel General Atomics January 14, 2003 E. Michael Campbell ·Promise ·Status ·Challenges ·Implementation ·Plan #12;The original FI concept uses laser

269

Process for producing gasoline of high octane number, in particular lead-free gasoline  

SciTech Connect (OSTI)

A process is described for producing gasoline of high octane number from C/sub 3/ and C/sub 4/ olefinic cuts, such as those obtained by fractional distillation of a C/sub 3/ / C/sub 4/ catalytic cracking cut. It includes the steps of: (A) oligomerizing propylene of the C/sub 3/ cut to obtain a first gasoline fraction, (B) reacting the isobutene of the C/sub 4/ cut with methanol to produce methyl tert.-butyl ether which is separated from the unreacted C/sub 4/ hydrocarbons to form a second gasoline fraction, (C) alkylating said unreacted C/sub 4/ hydrocarbons with isobutane in the presence of an alkylation catalyst such as hydrofluoric acid, to form a third gasoline fraction, and (D) admixing, at least partially, said first, second and third gasoline fractions, so as to obtain gasoline of high octane number.

Chauvin, Y.; Gaillard, J.; Hellin, M.; Torck, B.; Vu, Q.D.

1981-06-02T23:59:59.000Z

270

Ignition distributor voltage generator  

SciTech Connect (OSTI)

This patent describes a voltage pulse generator and ignition distributor comprising, a base, a shaft rotatably supported by the base, a distributor cap supported by the base having a center electrode and circumferentially spaced outer electrodes. The pulse generator and ignition distribution also include a first rotor driven by the shaft formed of electrical insulating material having electrically conductive means connected to the center terminal and a portion that rotates past the outer electrodes. The portion of the electrically conductive means that rotates past the outer electrodes is spaced from the outer electrodes to form a gap therebetween. A voltage pulse generator comprises a second rotor driven by the shaft, at least one permanent magnet and an annular pickup coil supported by the base. The pickup coil has inner turns and outer turns, the beginning turn of the inner turns connected to a first lead and the last turn of the outer turns connected to a second lead, the outer turns enclosing the inner turns. The pickup coil also has a circuit connected directly between the second lead and ground which is operative to provide a direct conductive path to ground for high frequency energy capacitively coupled to the outer turns from the gap discharge between the electrically conductive means of the first rotor and an outer electrode, the outer turns forming a grounded shield for the inner turns.

Boyer, J.A.

1986-11-04T23:59:59.000Z

271

Why are gasoline prices falling so rapidly?  

Gasoline and Diesel Fuel Update (EIA)

Why are gasoline prices falling so rapidly? Why are gasoline prices falling so rapidly? As of October 29, 2001, the national average retail price of regular gasoline was $1.235 per gallon, its lowest level since November 8, 1999 (Figure 1). The average price has fallen 29 cents in 6 weeks since September 17, with further declines perhaps to come. The sharpest decline has been in the Midwest (Petroleum Administration for Defense District 2), where the average has dropped 57 cents in 8 weeks since Labor Day (September 3). Additionally, this decline comes on the heels of a 33-cent drop in the national average in 10 weeks from Memorial Day through August 6, interrupted only by a brief 17-cent rise in August. In total, the national average retail gasoline price has fallen nearly 48 cents from its peak on May 14. This is already the widest one-year range in retail prices

272

Eliminating MTBE in Gasoline in 2006  

Gasoline and Diesel Fuel Update (EIA)

02/22/2006 02/22/2006 Eliminating MTBE in Gasoline in 2006 Summary In 2005, a number of petroleum companies announced their intent to remove methyl tertiary-butyl ether (MTBE) from their gasoline in 2006. Companies' decisions to eliminate MTBE have been driven by State bans due to water contamination concerns, continuing liability exposure from adding MTBE to gasoline, and perceived potential for increased liability exposure due to the elimination of the oxygen content requirement for reformulated gasoline (RFG) included in the Energy Policy Act of 2005. EIA's informal discussions with a number of suppliers indicate that most of the industry is trying to move away from MTBE before the 2006 summer driving season. Currently, the largest use of MTBE is in RFG consumed on the East Coast outside of

273

U.S. gasoline prices increase slightly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

average retail price for regular gasoline rose slightly to 3.55 a gallon on Monday. That's up 2-tenths of a penny from a week ago, based on the weekly price survey by the U.S....

274

Edgeworth price cycles in retail gasoline markets  

E-Print Network [OSTI]

In this dissertation, I present three essays that are motivated by the interesting and dynamic price-setting behavior of firms in Canadian retail gasoline markets. In the first essay, I examine behavior at the market level ...

Noel, Michael David, 1971-

2002-01-01T23:59:59.000Z

275

Plastic ablator ignition capsule design for the National Ignition Facility  

SciTech Connect (OSTI)

This paper describes current efforts to develop a plastic ablator capsule design for the first ignition attempt on the National Ignition Facility. The trade-offs in capsule scale and laser energy that must be made to achieve ignition probabilities comparable to those with other candidate ablators, beryllium and high-density carbon, are emphasized. Large numbers of 1-D simulations, meant to assess the statistical behavior of the target design, as well as 2-D simulations to assess the target's susceptibility to Rayleigh-Taylor growth are discussed.

Clark, D S; Haan, S W; Hammel, B A; Salmonson, J D; Callahan, D A; Town, R J

2009-10-06T23:59:59.000Z

276

Advanced ignition options for laser ICF  

E-Print Network [OSTI]

Advanced ignition options for laser ICF FPA Meeting, Washington DC, December 1-3, 2010 R. Betti shock) · Fast Ignition requires major hardware upgrades: 100kJ-class multi-PW laser [also talk by P explore high-gain shock ignition - Polar Shock Ignition (uses half the NIF beams to drive the implosion

277

Impact of cetane improvers on ignition delay times of several alternative biofuels  

SciTech Connect (OSTI)

Biofuel technology could be approaching one of its greatest development milestones--being accepted as a standard item on new vehicle technology. In particular, the Partnership for a New Generation Vehicle (PNGV) lists the evaluation and possible utilization of alternative fuels as one of the technological focuses to be evaluated by the year 2000. Synergy 2010, Ford`s newest Taurus model concept car, includes the use of a 20:1 compression-ratio, compression-ignition (CI) engine as the preferred engine. The preferred fuels include diesel, gasoline, and methanol. Cetane improvers make methanol fuel practical with a 20:1 compression ratio engine such as that proposed with Synergy 2010 and are a key technology for biofuel success. CI engines have a high probability of becoming the preferred engines for PNGV vehicles since CI engines are 20% to 30% more efficient than spark-ignition engines. In addition, CI engines allow a wider range of viable biofuels to be used. This paper is on the impact of cetane improvers on methanol and other biofuels. Fuels are evaluated through ignition delay time studies in a constant volume combustor. Ignition delay times measured at several temperatures and with biofuels of different compositions provide much more data than conventional cetane numbers and provide an understanding which is essential to engineer biofuels for the best possible performance in new engines. Ignition delay times are reported for several biofuels including mixtures containing biodiesel, methanol, and syrup.

Suppes, G.J. [Univ. of Kansas, Lawrence, KS (United States); Bryan, M.; Chen, Z. [and others

1996-12-31T23:59:59.000Z

278

The National Ignition Facility and the Ignition Campaign  

E-Print Network [OSTI]

February 14-18, 2013 Debra A. Callahan Group Leader for ICF/IFE Target design Lawrence Livermore National(atm-s) Indirect drive on the NIF is within a factor of 2-3 of the conditions required for ignition Callahan -- AAAS, February 14-18, 2013 82013-047661s2.ppt NIF Ignition #12;2013-047661s2.ppt Callahan -- AAAS

279

Turbocharged spark ignition engine modelling and control strategy  

Science Journals Connector (OSTI)

This paper deals with the non-linear modelling and control of a turbocharged spark ignition engine. In the automotive industry, downsizing-based turbocharging is considered as a powerful technique to improve engine performances as fuel economy, pumping loss reduction to increase engine efficiency or driveability optimisation. This method is largely used for diesel engines. For gasoline engines, it is more complex in terms of control. In this work, a simplified control-oriented model is presented and validated using a Smart MCC three cylinders engine data. Then, based on this model, a fuzzy non-linear control law is calculated to achieve the fuel consumption and pumping losses reduction by setting the engine states to a given profile.

D. Khiar; J. Lauber; T.M. Guerra; T. Floquet; G. Colin; Y. Chamaillard

2008-01-01T23:59:59.000Z

280

Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: August 4, 9: August 4, 2003 Gasoline Stations to someone by E-mail Share Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Facebook Tweet about Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Twitter Bookmark Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Google Bookmark Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Delicious Rank Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Digg Find More places to share Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on AddThis.com... Fact #279: August 4, 2003 Gasoline Stations The number of retail outlets that sell gasoline to the public has declined by 17.7% from 1993 to 2002 - from 207,416 in 1993, to 170,678 in 2002.

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Low Gasoline Stocks Indicate Increased Odds of Spring Volatility  

Gasoline and Diesel Fuel Update (EIA)

We cannot just focus on distillate. Gasoline will likely be our next We cannot just focus on distillate. Gasoline will likely be our next major concern. Gasoline stock levels have fallen well below the typical band for this time of year, primarily for the same reason distillate stocks fell to low levels -- namely relatively low production due to low margins. At the end of January, total gasoline inventories were almost 13 million barrels (6%) below the low end of the normal band. While gasoline stocks are generally not as important a supply source to the gasoline market this time of year as are distillate stocks to the distillate market, gasoline stocks still are needed. Gasoline stocks are usually used to help meet gasoline demand during February and March as refiners go through maintenance and turnarounds, but we do not have the

282

TOWARD A STANDARD IGNITION SOURCE  

E-Print Network [OSTI]

and ignited with a small propane torch. The top center ofhead is supplied with propane. In these experiments allin the pre-mixed mode with propane alone to simulate trash

Volkingburg, David R. Van

2011-01-01T23:59:59.000Z

283

National Ignition Facility (NIF): Under Pressure: Ramp-Compression...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record American Fusion News Category: National Ignition Facility Link: National Ignition Facility (NIF):...

284

National Ignition Campaign Hohlraum Energetics  

SciTech Connect (OSTI)

The first series of experiments on the National Ignition Facility (NIF) [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, 'The National Ignition Facility: ushering in a new age for high energy density science,' Phys. Plasmas 16, 041006 (2009)] tested ignition hohlraum 'energetics,' a term described by four broad goals: (1) Measurement of laser absorption by the hohlraum; (2) Measurement of the x-ray radiation flux (T{sub RAD}{sup 4}) on the surrogate ignition capsule; (3) Quantitative understanding of the laser absorption and resultant x-ray flux; and (4) Determining whether initial hohlraum performance is consistent with requirements for ignition. This paper summarizes the status of NIF hohlraum energetics experiments. The hohlraum targets and experimental design are described, as well as the results of the initial experiments. The data demonstrate low backscattered energy (< 10%) for hohlraums filled with helium gas. A discussion of our current understanding of NIF hohlraum x-ray drive follows, including an overview of the computational tools, i.e., radiation-hydrodynamics codes, that have been used to design the hohlraums. The performance of the codes is compared to x-ray drive and capsule implosion data from the first NIF experiments. These results bode well for future NIF ignition hohlraum experiments.

Meezan, N B; Atherton, L J; Callahan, D A; Dewald, E L; Dixit, S N; Dzenitis, E G; Edwards, M J; Haynam, C A; Hinkel, D E; Jones, O S; Landen, O; London, R A; Michel, P A; Moody, J D; Milovich, J L; Schneider, M B; Thomas, C A; Town, R J; Warrick, A L; Weber, S V; Widmann, K; Glenzer, S H; Suter, L J; MacGowan, B J; Kline, J L; Kyrala, G A; Nikroo, A

2009-11-16T23:59:59.000Z

285

Gasoline marketing: Octane mislabeling in New York City  

SciTech Connect (OSTI)

The problem of octane mislabeling at gasoline stations in New York City has grown - from 46 or fewer citations in 1981 to 171 citations in 1986. No single source of octane mislabeling exists but the city has found both gasoline station operators and fuel distributors to blame. The problem does not seem to be unique to any one type of gasoline station but 57 percent of the 171 citations issued involved gasoline sold under the name of a major refiner; the rest involved unbranded gasoline. Octane cheating can be lucrative in New York City. A station intentionally mislabeling its gasoline could realize amounts many times the city's maximum $500 fine for cheating.

Not Available

1987-01-01T23:59:59.000Z

286

Ethanol Demand in United States Gasoline Production  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

Hadder, G.R.

1998-11-24T23:59:59.000Z

287

1995 Reformulated Gasoline Market Affected Refiners Differently  

Gasoline and Diesel Fuel Update (EIA)

5 Reformulated Gasoline Market Affected 5 Reformulated Gasoline Market Affected Refiners Differently by John Zyren, Charles Dale and Charles Riner Introduction The United States has completed its first summer driving season using reformulated gasoline (RFG). Motorists noticed price increases at the retail level, resulting from the increased cost to produce and deliver the product, as well as from the tight sup- ply/demand balance during the summer. This arti- cle focuses on the costs of producing RFG as experienced by different types of refiners and on how these refiners fared this past summer, given the prices for RFG at the refinery gate. RFG Regulatory Requirements The use of RFG is a result of the Clean Air Act Amendments of 1990 (CAAA). The CAAA cover a wide range of programs aimed at improving air qual-

288

Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Michigan Fleet Reduces Michigan Fleet Reduces Gasoline and Diesel Use to someone by E-mail Share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Facebook Tweet about Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Twitter Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Google Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Delicious Rank Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Digg Find More places to share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on AddThis.com... Feb. 11, 2010 Michigan Fleet Reduces Gasoline and Diesel Use D iscover how the City of Ann Arbor reduced municipal fleet gas and diesel

289

Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: February 26, 8: February 26, 2007 Gasoline Price Expectations to someone by E-mail Share Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Facebook Tweet about Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Twitter Bookmark Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Google Bookmark Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Delicious Rank Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Digg Find More places to share Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on AddThis.com... Fact #458: February 26, 2007 Gasoline Price Expectations

290

Factors Impacting Gasoline Prices and Areas for Further Study  

Gasoline and Diesel Fuel Update (EIA)

Factors Impacting Gasoline Prices and Areas for Further Study Factors Impacting Gasoline Prices and Areas for Further Study 8/10/01 Click here to start Table of Contents Factors Impacting Gasoline Prices and Areas for Further Study Different Factors Impact Different Aspects of Gasoline Price Correlation of Price to Inventory Levels Crude Prices Strongly Related to OECD.Crude & Product Inventories Gasoline Prices Also Influenced by Regional Gasoline Product Markets Tight Product Balance Pushes Up Product Spread (Spot Product - Crude Price) Retail Price Changes Lag Spot Prices Cumulative Gasoline Price Pass-through Illustration of How Lag Effect Dampens and Slows Retail Price Changes from Wholesale Recent Weekly Retail Price Changes Have Been as Expected Summary: Most Gasoline Price Movement Can Be Explained As Rational Market Behavior Author: Joanne Shore

291

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

292

U.S. gasoline price falls under $3 (short version)  

U.S. Energy Information Administration (EIA) Indexed Site

3, 2014 U.S. gasoline price falls under 3 (short version) The U.S. average retail price for regular gasoline fell to its lowest level since December 2010 at 2.99 a gallon on...

293

U.S. gasoline price falls under $3 (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

November 3, 2014 U.S. gasoline price falls under 3 (long version) The U.S. average retail price for regular gasoline fell to its lowest level since December 2010 at 2.99 a gallon...

294

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

295

The relationship between crude oil and gasoline prices  

Science Journals Connector (OSTI)

This study investigates the dynamic relationship between crude oil and retail gasoline prices during the last 21 years and determines ... that date, the results show that gasoline prices include higher profit mar...

Ali T. Akarca; Dimitri Andrianacos

1998-08-01T23:59:59.000Z

296

Fact #835: August 25, Average Historical Annual Gasoline Pump...  

Energy Savers [EERE]

5: August 25, Average Historical Annual Gasoline Pump Price, 1929-2013 Fact 835: August 25, Average Historical Annual Gasoline Pump Price, 1929-2013 When adjusted for inflation,...

297

Revisiting the Income Effect: Gasoline Prices and Grocery Purchases  

E-Print Network [OSTI]

Gasoline and Crude Oil Prices, 2000-2006 Figure I:Weekly Gasoline and Crude Oil Prices for 2001- 2006 Crudeargue that increases in oil prices may lead to recessions

Gicheva, Dora; Hastings, Justine; Villas-Boas, Sofia B

2008-01-01T23:59:59.000Z

298

Fact #824: June 9, 2014 EPA Sulfur Standards for Gasoline  

Broader source: Energy.gov [DOE]

Sulfur naturally occurs in gasoline and diesel fuel, contributing to pollution when the fuel is burned. Beginning in 2004, standards were set on the amount of sulfur in gasoline (Tier 2 standards)....

299

DOE's Gasoline/Diesel PM Split Study | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Desert Research Institute 2003deerfujita.pdf More Documents & Publications DOE's GasolineDiesel PM Split Study DOE's GasolineDiesel PM Split Study Long-Term Changes in Gas-...

300

Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines  

Broader source: Energy.gov [DOE]

Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

National Survey of E85 and Gasoline Prices  

SciTech Connect (OSTI)

Study compares the prices of E85 and regular gasoline nationally and regionally over time for one year.

Bergeron, P.

2008-10-01T23:59:59.000Z

302

Catalytic isomerization of the overhead fractions of straight run gasoline  

Science Journals Connector (OSTI)

The isomerization of the pentane and hexane fractions of gasoline on a platinum catalyst was studied, as...

N. R. Bursian; G. N. MaslyanskiiÖ

1965-06-01T23:59:59.000Z

303

Ignition problems in scramjet testing  

SciTech Connect (OSTI)

Ignition of H{sub 2} in heated air containing H{sub 2}O, radicals, and dust was investigated for scramjet testing. Using a reduced kinetic model for H{sub 2}{minus}O{sub 2} systems, the effects of H{sub 2}O and radicals in nozzles are discussed in relation to engine testing with vitiation heaters. Analysis using linearized rate-equations suggested that the addition of O atoms was 1.5 times more effective than the addition of H atoms for ignition. This result can be applied to the problem of premature ignition caused by residual radicals and to plasma-jet igniters. Thermal and chemical effects of dust, inevitable in storage air heaters, were studied next. The effects of heat capacity and size of dust were expressed in terms of an exponential integral function. It was found that the radical termination on the surface of dust produces an effect equivalent to heat loss. The inhibition of ignition by dust may result, if the mass fraction of dust becomes 10{sup {minus}3}.

Mitani, Tohru [National Aerospace Lab., Miyagi (Japan)] [National Aerospace Lab., Miyagi (Japan)

1995-05-01T23:59:59.000Z

304

Enhanced Model for Fast Ignition  

SciTech Connect (OSTI)

Laser Fusion is a prime candidate for alternate energy production, capable of serving a major portion of the nation‚??s energy needs, once fusion fuel can be readily ignited. Fast Ignition may well speed achievement of this goal, by reducing net demands on laser pulse energy and timing precision. However, Fast Ignition has presented a major challenge to modeling. This project has enhanced the computer code ePLAS for the simulation of the many specialized phenomena, which arise with Fast Ignition. The improved code has helped researchers to understand better the consequences of laser absorption, energy transport, and laser target hydrodynamics. ePLAS uses efficient implicit methods to acquire solutions for the electromagnetic fields that govern the accelerations of electrons and ions in targets. In many cases, the code implements fluid modeling for these components. These combined features, ‚??implicitness and fluid modeling,‚?Ě can greatly facilitate calculations, permitting the rapid scoping and evaluation of experiments. ePLAS can be used on PCs, Macs and Linux machines, providing researchers and students with rapid results. This project has improved the treatment of electromagnetics, hydrodynamics, and atomic physics in the code. It has simplified output graphics, and provided new input that avoids the need for source code access by users. The improved code can now aid university, business and national laboratory users in pursuit of an early path to success with Fast Ignition.

Dr. Rodney J. Mason

2010-10-12T23:59:59.000Z

305

1999 2000 2001 2002 2003 2004... 2005 2006 gasoline diesel  

E-Print Network [OSTI]

1999 2000 2001 2002 2003 2004... 2005 2006 gasoline diesel price +10% gasolinegasoline gasoline diesel... ... 2007 20081998 2009 ...2010 home work home work diesel diesel ... gasoline diesel price -7, households' decisions are affected by various other factors, from the vehicle market offer to governmental

Bierlaire, Michel

306

Pollutant Emissions from Gasoline Combustion. 1. Dependence on Fuel  

E-Print Network [OSTI]

Pollutant Emissions from Gasoline Combustion. 1. Dependence on Fuel Structural Functionalities H O fractions of gasoline fuels, the Utah Surrogate Mechanisms is extended to include submecha- nisms of gasoline surrogate compounds using a set of mechanism generation techniques. The mechanism yields very good

Utah, University of

307

Empirical Regularities of Asymmetric Pricing in the Gasoline Industry  

E-Print Network [OSTI]

Empirical Regularities of Asymmetric Pricing in the Gasoline Industry Marc Remer August 2, 2010 pricing in the retail gasoline industry, and also documents empirical regularities in the market. I find of asymmetric price movements in the retail gasoline industry. Yet, there is no general agreement as to whether

Niebur, Ernst

308

LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL  

E-Print Network [OSTI]

1 LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL P. Dirrenberger1 , P.A. Glaude*1 (2014) 162-169" DOI : 10.1016/j.fuel.2013.07.015 #12;2 LAMINAR BURNING VELOCITY OF GASOLINES, Sweden Abstract The adiabatic laminar burning velocities of a commercial gasoline and of a model fuel (n

Boyer, Edmond

309

Ethanol Production and Gasoline Prices: A Spurious Correlation  

E-Print Network [OSTI]

Ethanol Production and Gasoline Prices: A Spurious Correlation Christopher R. Knittel and Aaron Smith July 12, 2012 Abstract Ethanol made from corn comprises 10% of US gasoline, up from 3% in 2003 proponents of ethanol have argued that ethanol production greatly lowers gasoline prices, with one industry

Rothman, Daniel

310

NIST Technical Note 1666 Modeling the Effects of Outdoor Gasoline  

E-Print Network [OSTI]

NIST Technical Note 1666 Modeling the Effects of Outdoor Gasoline Powered Generator Use on Indoor Technical Note 1666 Modeling the Effects of Outdoor Gasoline Powered Generator Use on Indoor Carbon Monoxide and Technology (NIST) conducted a study for CDC to examine the impact of distance of gasoline-powered portable

311

ISSN 1745-9648 Gasoline Prices Jump Up on Mondays  

E-Print Network [OSTI]

ISSN 1745-9648 Gasoline Prices Jump Up on Mondays: an Outcome of Aggressive Competition? by √?ystein Research Council is gratefully acknowledged. #12;Gasoline prices jump up on Mondays: An outcome, 2008 Abstract This paper examines Norwegian gasoline pump prices using daily station

Feigon, Brooke

312

What Do Consumers Believe About Future Gasoline Soren T. Anderson  

E-Print Network [OSTI]

What Do Consumers Believe About Future Gasoline Prices? Soren T. Anderson Michigan State University of consumers about their expectations of future gasoline prices. Overall, we find that consumer beliefs follow a random walk, which we deem a reasonable forecast of gasoline prices, but we find a deviation from

Silver, Whendee

313

Production of high-octane automobile gasolines by the catalytic reforming of straight-run gasoline fractions from mangyshlak crude  

Science Journals Connector (OSTI)

High-octane components for AI-93 and AI-98 automobile gasolines can be obtained in 86 and 82% ... 140, 140Ė180, and 85Ė180įC gasoline fractions from Mangyshlak crude.

V. A. Kuprianov; A. A. Timofeev; V. E. GavrunÖ

1971-08-01T23:59:59.000Z

314

Study of methanol-to-gasoline process for production of gasoline from coal  

Science Journals Connector (OSTI)

The methanol-to-gasoline (MTG) process is an efficient way to produce liquid ... The academic basis of the coal-to-liquid process is described and two different synthesis processes are focused on: Fixed MTG process

Tian-cai He; Xiao-han Cheng; Ling LiÖ

2009-03-01T23:59:59.000Z

315

Reformulated gasoline: Costs and refinery impacts  

SciTech Connect (OSTI)

Studies of reformulated gasoline (RFG) costs and refinery impacts have been performed with the Oak Ridge National Laboratory Refinery Yield Model (ORNL-RYM), a linear program which has been updated to blend gasolines to satisfy emissions constraints defined by preliminary complex emissions models. Policy makers may use the reformulation cost knee (the point at which costs start to rise sharply for incremental emissions control) to set emissions reduction targets, giving due consideration to the differences between model representations and actual refining operations. ORNL-RYM estimates that the reformulation cost knee for the US East Coast (PADD I) is about 15.2 cents per gallon with a 30 percent reduction of volatile organic compounds (VOCs). The estimated cost knee for the US Gulf Coast (PADD III) is about 5.5 cents per gallon with a VOC reduction of 35 percent. Reid vapor pressure (RVP) reduction is the dominant VOC reduction mechanism. Even with anti-dumping constraints, conventional gasoline appears to be an important sink which permits RFG to be blended with lower aromatics and sulfur contents in PADD III. In addition to the potentially large sensitivity of RFG production to different emissions models, RFG production is sensitive to the non-exhaust VOC share assumption for a particular VOC model. ORNL-RYM has also been used to estimate the sensitivity of RFG production to the cost of capital; to the RVP requirements for conventional gasoline; and to the percentage of RFG produced in a refining region.

Hadder, G.R.

1994-02-01T23:59:59.000Z

316

Electric Motors  

Broader source: Energy.gov [DOE]

Section 313 of the Energy Independence and Security Act (EISA) of 2007 raised Federal minimum efficiency standards for general-purpose, single-speed, polyphase induction motors of 1 to 500 horsepower (hp). This new standard took effect in December 2010. The new minimum efficiency levels match FEMP's performance requirement for these motors.

317

Laser Ignition of Alternative Liquid Fuels  

Science Journals Connector (OSTI)

Within a research project at the TU Vienna, the potential and mechanism of laser-induced ignition with respect to mixture inflammation and combustion were investigated compared to conventional spark ignition. A s...

Dr. Josef Graf; Dr. Thomas Lauer; Univ.-Prof. Dr. Bernhard Geringer

2012-05-01T23:59:59.000Z

318

National Ignition Facility & Photon Science What  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What is NiF? the national ignition Facility: bringing star Power to earth The National Ignition Facility (NIF) is the world's largest and highest energy laser system. NIF is an...

319

State of Development of Laser Ignition  

Science Journals Connector (OSTI)

A holistic optimization of combustion engines with the aim of conserving resources has to include an improvement of the ignition mechanism as well. In the field of spark-ignition combustion engines the developmen...

Prof. Dr.-Ing. Dieter BrŁggeman; Dipl.-Ing. Christian HŁttl

2009-03-01T23:59:59.000Z

320

Thermonuclear Ignition of Dark Galaxies  

E-Print Network [OSTI]

Dark matter is thought to be at least an order of magnitude more abundant than luminous matter in the Universe, but there has yet to be an unambiguous identification of a wholly dark, galactic-scale structure. There is, however, increasing evidence that VIRGOHI 21 may be a dark galaxy. If VIRGOHI 21 turns out to be composed of dark stars, having approximately the same mass of stars found in luminous galaxies, it will pose an enigma within the framework of current astrophysical models, but will provide strong support for my concept, published in 1994 in the Proceedings of the Royal Society of London, of the thermonuclear ignition of stars by nuclear fission, and the corollary, non-ignition of stars. The possibility of galactic thermonuclear ignition is discussed from that framework and leads to my suggestion that the distribution of luminous stars in a galaxy may simply be a reflection of the galactic distribution of the heavy elements.

J. Marvin Herndon

2006-04-13T23:59:59.000Z

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Response to Comment on ďEnvironmental Implications on the Oxygenation of Gasoline with Ethanol in the Metropolitan Area of Mexico CityĒ  

Science Journals Connector (OSTI)

Motor vehicle population in the MAMC has a model-year distribution typical of developing countries:? Old cars (unequipped with any emissions control technology) make up a great portion of the total population. ... Recently, Mexico's economic stability and lower inflation rates have prompted motor vehicle dealers to lower their down payments and interest rates, thus making it feasible for low income people (e.g., those that own an old car) to buy a new one. ... We have reported recently that TWC performance in brand new vehicles deteriorates considerably after 60?000 km, either because of defective TWC materials or because of the high sulfur content of Mexican gasoline (8). ...

I. Schifter; M. Vera; L. DŪaz; E. GuzmŠn; F. Ramos; E. Lůpez-Salinas

2001-11-15T23:59:59.000Z

322

IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE  

E-Print Network [OSTI]

IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE SURVEYS By Michael J. Moran, Rick M. Clawges, and John S. Zogorski U.S. Geological Survey 1608 Mt. View Rapid City, SD 57702 Methyl tert-butyl ether (MTBE) is commonly added to gasoline

323

June 11, 1999: National Ignition Facility  

Broader source: Energy.gov [DOE]

June 11, 1999Secretary Richardson dedicates the National Ignition Facility target chamber at DOE's Lawrence Livermore National Laboratory.

324

Heating National Ignition Facility, Realistic Financial Planning...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOEEIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic...

325

Laser ablation based fuel ignition  

DOE Patents [OSTI]

There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

1998-01-01T23:59:59.000Z

326

Laser ablation based fuel ignition  

DOE Patents [OSTI]

There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

Early, J.W.; Lester, C.S.

1998-06-23T23:59:59.000Z

327

Confinement of ignition and yield on the National Ignition Facility  

SciTech Connect (OSTI)

The National Ignition Facility Target Areas and Experimental Systems has reached mid-Title I design. Performance requirements for the Target Area are reviewed and design changes since the Conceptual Design Report are discussed. Development activities confirm a 5-m radius chamber and the viability of a boron carbide first wall. A scheme for cryogenic target integration with the NIF Target Area is presented.

Tobin, M.; Karpenko, V.; Foley, D.; Anderson, A.; Burnham, A.; Reitz, T.; Latkowski, J.; Bernat, T.

1996-06-14T23:59:59.000Z

328

Why Are Gasoline Prices Rising so Fast  

Gasoline and Diesel Fuel Update (EIA)

Statement of John Cook Statement of John Cook Before the Committee on Government Reform Subcommittee on Energy Policy, Natural Resources and Regulatory Affairs U.S. House of Representatives June 14, 2001 Thank you Mr. Chairman and members of the Committee for the opportunity to testify today. Gasoline prices have begun declining, as expected, from this spring's apparent peak price of $1.71 on May 14, with the national average for regular gasoline at $1.65 per gallon as of June 11 (Figure 1). Between late March and mid-May, retail prices rose 31 cents per gallon, with some regions experiencing even greater increases. Like last year, Midwest consumers saw some of the largest increases, and along with California, some of the highest prices. Prices in the Midwest increased 43 cents per

329

Detailed Kinetic Modeling of Gasoline Surrogate Mixtures  

SciTech Connect (OSTI)

Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

2009-03-09T23:59:59.000Z

330

A polar-drive shock-ignition design for the National Ignition Facility  

SciTech Connect (OSTI)

Shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs use a high-intensity laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the hot spot of an imploding capsule. A shock-ignition target design for the NIF is presented. One-dimensional simulations indicate an ignition threshold factor of 4.1 with a gain of 58. A polar-drive beam-pointing configuration for shock-ignition experiments on the NIF at 750 kJ is proposed. The capsule design is shown to be robust to the various one- and two-dimensional effects and nonuniformities anticipated on the NIF. The target is predicted to ignite with a gain of 38 when including all anticipated levels of nonuniformity and system uncertainty.

Anderson, K. S.; McKenty, P. W.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Marozas, J. A.; Skupsky, S.; Shvydky, A. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States) [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14627 (United States); Hohenberger, M.; Theobald, W.; Lafon, M.; Nora, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States) [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States)

2013-05-15T23:59:59.000Z

331

Load expansion of naphtha multiple premixed compression ignition (MPCI) and comparison with partially premixed compression ignition (PPCI) and conventional diesel combustion (CDC)  

Science Journals Connector (OSTI)

Abstract In previous studies, multiple premixed compression ignition (MPCI) has been proposed as a novel combustion concept in gasoline compression ignition engines which has great potential to achieve high thermal efficiency and low emissions simultaneously. MPCI mode was realized by a sequence of ďsprayĖcombustionĖsprayĖcombustionĒ around the compression top dead center (TDC). This study is aimed for the high load expansion of naphtha MPCI. In addition, the study investigated advantages and disadvantages of MPCI compared with partially premixed compression ignition (PPCI) and conventional diesel combustion (CDC). Engine operating range successfully reached indicated mean effective pressure (IMEP) of 1.4†MPa with high thermal efficiency, low emissions and acceptable combustion noise by the optimization of the injection parameters and the intake management. For MPCI, earlier combustion phasing was possible even at the high load operation compared with PPCI and CDC. This was attributed to the separated heat release characteristics and pressure rise rate process. The divided pressure rise rate process caused considerably low maximum pressure rise rate (MPRR) characteristics such as 0.8†MPa/deg at IMEP 1.4†MPa condition. The earlier combustion phasing led to the higher thermal efficiency characteristics of MPCI combustion compared with PPCI and CDC. This was attributed to the lower exhaust heat loss characteristics. However, high level of hydrocarbon (HC) and carbon monoxide (CO) emissions with low combustion stability at the low load operation were considered as severe challenges to overcome.

Kihyun Kim; Zhi Wang; Buyu Wang; Shijin Shuai; Hongqiang Yang; Choongsik Bae

2014-01-01T23:59:59.000Z

332

This Week In Petroleum Gasoline Section  

Gasoline and Diesel Fuel Update (EIA)

Regular Gasoline Retail Prices (Dollars per Gallon) Regular Gasoline Retail Prices (Dollars per Gallon) Retail Average Regular Gasoline Prices Petroleum Data Tables more data Most Recent Year Ago 11/04/13 11/11/13 11/18/13 11/25/13 12/02/13 12/09/13 12/16/13 12/17/12 U.S. 3.265 3.194 3.219 3.293 3.272 3.269 3.239 3.254 East Coast (PADD 1) 3.289 3.243 3.282 3.386 3.389 3.382 3.373 3.350 Midwest (PADD 2) 3.188 3.074 3.126 3.191 3.121 3.132 3.079 3.144 Gulf Coast (PADD 3) 3.030 2.978 3.004 3.140 3.124 3.104 3.047 3.045 Rocky Mountain (PADD 4) 3.307 3.227 3.183 3.145 3.113 3.077 3.055 3.211 West Coast (PADD 5) 3.564 3.507 3.467 3.457 3.475 3.477 3.472 3.457 Retail Conventional Regular Gasoline Prices Petroleum Data Tables more data Most Recent Year Ago 11/04/13 11/11/13 11/18/13 11/25/13 12/02/13 12/09/13 12/16/13

333

The Extraction of Gasoline from Natural Gas  

E-Print Network [OSTI]

for the quantitative estimation of the condensable gasoline consti- tuents of so-called rtwetn natural gasĽ Three general lines of experimentation suggested themselves after a preliminary study of the problem. These were the separation of a liqui- fied sample... fractionation of a mixture of natural gases are, however, not available in the ordinary laboratory, so this method altho successful and accurate is hardly practical. Even after the fractionation of the gas has ^lebeau and Damiens in Chen. Abstr. 7, 1356...

Schroeder, J. P.

1914-05-15T23:59:59.000Z

334

European Lean Gasoline Direct Injection Vehicle Benchmark  

SciTech Connect (OSTI)

Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

Chambon, Paul H [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; Edwards, Kevin Dean [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL

2011-01-01T23:59:59.000Z

335

Progress Toward Ignition on the National Ignition Facility  

SciTech Connect (OSTI)

The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays for symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer pulse lengths produce unique plasma conditions for laser-plasma instabilities that could reduce hohlraum coupling efficiency. Initial experiments have demonstrated efficient coupling of laser energy to x-rays. X-ray drive greater than 300 eV has been measured in gas-filled ignition hohlraum and shows the expected scaling with laser energy and hohlraum scale size. Experiments are now optimizing capsule implosions for ignition. Ignition conditions require assembling the fuel with sufficient density and temperature for thermonuclear burn. X-rays ablate the outside of the capsule, accelerating and spherically compressing the capsule for assembling the fuel. The implosion stagnates, heating the central core and producing a hot spot that ignites and burns the surrounding fuel. The four main characteristics of the implosion are shell velocity, central hot spot shape, fuel adiabat, and mix. Experiments studying these four characteristics of implosions are used to optimize the implosion. Integrated experiments using cryogenic fuel layer experiments demonstrate the quality of the implosion as the optimization experiments progress. The final compressed fuel conditions are diagnosed by measuring the x-ray emission from the hot core and the neutrons and charged particles produced in the fusion reactions. Metrics of the quality of the implosion are the neutron yield and the shell areal density, as well as the size and shape of the core. The yield depends on the amount of fuel in the hot core and its temperature and is a gauge of the energy coupling to the fuel. The areal density, the density of the fuel times its thickness, diagnoses the fuel assembly, which is measured using the fraction of neutrons that are down scattered passing through the dense shell. The yield and fraction of down scattered neutrons, or shell rho-r, from the cryogenic layered implosions are shown in Figure 3. The different sets of data represent results after a series of implosion optimization experiments. Both yield and areal density show significant increases as a result of the optimiza

Kauffman, R L

2011-10-17T23:59:59.000Z

336

Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: October 15, 1: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries to someone by E-mail Share Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Facebook Tweet about Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Twitter Bookmark Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Google Bookmark Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Delicious Rank Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Digg Find More places to share Vehicle Technologies Office: Fact #491:

337

Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000  

Gasoline and Diesel Fuel Update (EIA)

Demand and Price Outlook for Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 Tancred Lidderdale and Aileen Bohn (1) Contents * Summary * Introduction * Reformulated Gasoline Demand * Oxygenate Demand * Logistics o Interstate Movements and Storage o Local Distribution o Phase 2 RFG Logistics o Possible Opt-Ins to the RFG Program o State Low Sulfur, Low RVP Gasoline Initiatives o NAAQS o Tier 2 Gasoline * RFG Production Options o Toxic Air Pollutants (TAP) Reduction o Nitrogen Oxides (NOx) Reduction o Volatile Organic Compounds (VOC) Reduction o Summary of RFG Production Options * Costs of Reformulated Gasoline o Phase 1 RFG Price Premium o California Clean Gasoline Price Premium o Phase 2 RFG Price Premium o Reduced Fuel Economy

338

DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE  

SciTech Connect (OSTI)

In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

Curran, Scott [ORNL; Briggs, Thomas E [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL

2011-01-01T23:59:59.000Z

339

Diagnostics for Fast Ignition Science  

SciTech Connect (OSTI)

The concept for Electron Fast Ignition Inertial Confinement Fusion demands sufficient laser energy be transferred from the ignitor pulse to the assembled fuel core via {approx}MeV electrons. We have assembled a suite of diagnostics to characterize such transfer. Recent experiments have simultaneously fielded absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256eV; spherically bent crystal imagers at 4 and 8keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung and electron and proton spectrometers (along the same line of sight); nuclear activation samples and a picosecond optical probe based interferometer. These diagnostics allow careful measurement of energy transport and deposition during and following laser-plasma interactions at extremely high intensities in both planar and conical targets. Augmented with accurate on-shot laser focal spot and pre-pulse characterization, these measurements are yielding new insight into energy coupling and are providing critical data for validating numerical PIC and hybrid PIC simulation codes in an area that is crucial for many applications, particularly fast ignition. Novel aspects of these diagnostics and how they are combined to extract quantitative data on ultra high intensity laser plasma interactions are discussed, together with implications for full-scale fast ignition experiments.

MacPhee, A; Akli, K; Beg, F; Chen, C; Chen, H; Clarke, R; Hey, D; Freeman, R; Kemp, A; Key, M; King, J; LePape, S; Link, A; Ma, T; Nakamura, N; Offermann, D; Ovchinnikov, V; Patel, P; Phillips, T; Stephens, R; Town, R; Wei, M; VanWoerkom, L; Mackinnon, A

2008-05-06T23:59:59.000Z

340

Energy Department Announces First Regional Gasoline Reserve to...  

Office of Environmental Management (EM)

Ernest Moniz today announced the creation of the first federal regional refined petroleum product reserve containing gasoline. Based on the Energy Department's lessons...

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Impacts of Ethanol in Gasoline on Subsurface Contamination.  

E-Print Network [OSTI]

??The increasing use of ethanol as a gasoline additive has raised concerns over the potential impacts ethanol might have on groundwater contamination. In North America,Ö (more)

Freitas, Juliana Gardenalli de

2009-01-01T23:59:59.000Z

342

TRUCK ROUTING PROBLEM IN DISTRIBUTION OF GASOLINE TO GAS STATIONS.  

E-Print Network [OSTI]

??This thesis aims at finding a daily routing plan for a fleet of vehicles delivering gasoline to gas stations for an oil company, satisfying allÖ (more)

Janakiraman, Swagath

2010-01-01T23:59:59.000Z

343

Gasoline Ultra Fuel Efficient Vehicle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace064confer2011o.pdf More Documents & Publications Gasoline...

344

Lean Gasoline System Development for Fuel Efficient Small Car...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace063smith2012o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

345

Lean Gasoline System Development for Fuel Efficient Small Car...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace063smith2011o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

346

Reductant Chemistry during LNT Regeneration for a Lean Gasoline...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory VW Scholar at the University of Tennessee Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Poster P-09 2010 DEER Directions...

347

Gasoline-Like Fuel Effects on Advanced Combustion Regimes | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Regimes Gasoline-Like Fuel Effects on Advanced Combustion Regimes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

348

Gasoline-like fuel effects on advanced combustion regimes | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

regimes Gasoline-like fuel effects on advanced combustion regimes 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

349

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to End...

350

Fast ignition of inertial confinement fusion targets  

SciTech Connect (OSTI)

Results of studies on fast ignition of inertial confinement fusion (ICF) targets are reviewed. The aspects of the fast ignition concept, which consists in the separation of the processes of target ignition and compression due to the synchronized action of different energy drivers, are considered. Criteria for the compression ratio and heating rate of a fast ignition target, the energy balance, and the thermonuclear gain are discussed. The results of experimental and theoretical studies of the heating of a compressed target by various types of igniting drivers, namely, beams of fast electrons and light ions produced under the action of a petawatt laser pulse on the target, a heavy-ion beam generated in the accelerator, an X-ray pulse, and a hydrodynamic flow of laser-accelerated matter, are analyzed. Requirements to the igniting-driver parameters that depend on the fast ignition criteria under the conditions of specific target heating mechanisms, as well as possibilities of practical implementation of these requirements, are discussed. The experimental programs of various laboratories and the prospects of practical implementation of fast ignition of ICF targets are reviewed. To date, fast ignition is the most promising method for decreasing the ignition energy and increasing the thermonuclear gain of an ICF plasma. A large number of publications have been devoted to investigations of this method and adjacent problems of the physics of igniting drivers and their interaction with plasma. This review presents results of only some of these studies that, in the author's opinion, allow one to discuss in detail the main physical aspects of the fast ignition concept and understand the current state and prospects of studies in this direction.

Gus'kov, S. Yu., E-mail: guskov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

2013-01-15T23:59:59.000Z

351

First Hot Electron Measurements in Near-ignition Scale Hohlraums on the National Ignition Facility  

SciTech Connect (OSTI)

On the National Ignition Facility (NIF), the hot electrons generated in laser heated hohlraums are inferred from the >20 keV bremsstrahlung emission measured with the FFLEX broadband spectrometer. New high energy (>200 keV) time resolved channels were added to meet requirements for ignition and to infer the generated >170 keV hot electrons that can cause ignition capsule preheat. First hot electron measurements in near ignition scaled hohlraums heated by 96-192 NIF laser beams are presented.

Dewald, E L; Suter, L J; Thomas, C; Hunter, S; Meeker, D; Meezan, N; Glenzer, S H; Bond, E; Kauffman, R L; Kilkenny, J; Landen, O

2009-10-08T23:59:59.000Z

352

The National Ignition Facility National Ignition Campaign Short Pulse Lasers High-Average-Power Laser  

E-Print Network [OSTI]

#12;The National Ignition Facility National Ignition Campaign Short Pulse Lasers High hole shields SSD, Polarization smoothing Improvements in ignition point designs have reduced laser Campaign NIF-0905-11310 09EIM/dj 1997 1.7 MJ ignition point design 0.5 0.4 0.3 0.2 0.1 0 0 0.5 1 1.5 Laser

353

Argonne TTRDC - Engines - Home - combustion, compression ignition,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Combustion Visualization * Combustion Visualization * Compression-Ignition * Emissions Control * Fuel Injection and Sprays * Idling * Multi-Dimensional Modeling * Particulate Matter * Spark Ignition Green Racing GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Engines Omnivorous engine tested by Thomas Wallner Thomas Wallner tests the omnivorous engine, a type of spark-ignition engine. Argonne's engine research is contributing to advances in technology that will impact the use of conventional and alternative fuels and the design of advanced technology vehicles. Compression Ignition

354

Laser Spark Distribution and Ignition System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

partners interested in implement- ing United States Patent Number 7,421,166 entitled "Laser Spark Distribution and Ignition System." Disclosed in this patent is NETL's laser...

355

Stoichiometric Compression Ignition (SCI) Engine Concept | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with...

356

Physics Guidelines for the Compact Ignition Tokamak  

Science Journals Connector (OSTI)

The Compact Ignition Tokamak Program / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15Ė19, 1986)

J. Sheffield; R. A. Dory; W. A. Houlberg; N. A. Uckan; M. Bell; P. Colestock; J. Hosea; S. Kaye; M. Petravic; D. Post; S. D. Scott; K. M. Young; K. H. Burrell; N. Ohyabu; R. Stambaugh; M. Greenwald; P. Liewer; D. Ross; C. Singer; H. Weitzner

357

Achieving laser ignition using zero index metamaterials  

Science Journals Connector (OSTI)

The possibility of laser ignition using zero index metamaterials (ZIM) is investigated theoretically. Using this method, multiple laser beams can be focused automatically regardless of...

Zhai, Tianrui; Shi, Jinwei; Chen, Shujing; Liu, Dahe; Zhang, Xinping

2011-01-01T23:59:59.000Z

358

Laser Fusion: The Uncertain Road to Ignition  

Science Journals Connector (OSTI)

In early 2014, the U.S. National Ignition Facility announced that it had achieved a fusion reaction that produced net positive energy. Fusion scientists have applauded that...

Rose, Melinda

2014-01-01T23:59:59.000Z

359

National Ignition Facility | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

other ICF high energy density facilities leading to demonstrate fusion ignition and thermonuclear burn in the laboratory. The NIF is also being used to support basic science and...

360

Fast Ignition Program in Japan "Progress of Fast Ignition Project; FIREX"  

E-Print Network [OSTI]

1 Fast Ignition Program in Japan "Progress of Fast Ignition Project; FIREX" Fast Ignition.4 Fusion , Laser Astrophysics, EUV, and so on are main projects Laser Spectroscopy NIFS, Okayama Univ., High Pressure EOS AIST Tokyo Inst. Tech Laser Acceleration, Terahertz Coherent X-Ray JAEA KPRI Fusion

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Assessment of Potential for Ion Driven Fast Ignition  

E-Print Network [OSTI]

mm radius ion beams Fast Ignition (laser or fast ion pulse)deg half cone angle Fast Ignition (laser or fast ion pulse)ion beam pulses for fast ignition, laser generated ion beams

2005-01-01T23:59:59.000Z

362

Conversion of methanol to gasoline commercial plant study. Coal to gasoline via methanol  

SciTech Connect (OSTI)

Under the joint sponsorship of the German Federal Minister of Research and Technology (BMFT) and the US Department of Energy (DOE), a research program was initiated concerning the ''Conversion of Methanol to Gasoline (MTG), Engineering, Construction and Operation of a Demonstration Plant''. The purpose of the 100 BPD demonstration plant was to demonstrate the feasibility of and to obtain data required for scale-up of the fluid-bed MTG process to a commercial size plant. As per requirements of Annex 3 of the Governmental Agreement, this study, in addition to the MTG plant, also includes the facilities for the production of methanol. The feedstock basis for the production of methanol shall be coal. Hence this study deals with the production of gasoline from coal (CTG-Coal to Gasoline). The basic objective of this study is to assess the technical feasibility of the conversion of methanol to gasoline in a fluid-bed system and to evaluate the process economies i.e., to evlauate the price of the product in relation to the price of the feedstock and plant capacity. In connection with technical feasibility, the scale up criteria were developed from the results obtained and experience gathered over an operational period of 8600 hours of the ''100 BPD Demonstration Plant''. The scale up philosophy is detailed in chapter 4. The conditions selected for the design of the MTG unit are detailed in chapter 5. The scope of the study covers the production of gasoline from coal, in which MTG section is dealt with in detail (refer to chapter 5). Information on other plant sections in this study are limited to that sufficient to: generate overall mass balance; generate rate of by-products and effluents; incorporate heat integration; generate consumption figures; and establish plant investment cost.

Thiagarajan, N.; Nitschke, E.

1986-03-01T23:59:59.000Z

363

Clearing the Air? The Effects of Gasoline Content Regulation on Air Quality  

E-Print Network [OSTI]

15 for retail gasoline stations and May 1 Ė September 15 forof one if retail gasoline stations in county c are requiredseason for retail gasoline distribution stations is June 1 -

Auffhammer, Maximilian; Kellogg, Ryan

2009-01-01T23:59:59.000Z

364

Do Gasoline Prices Resond Asymmetrically to Cost Shocks? The Confounding Effect of Edgeworth Cycles  

E-Print Network [OSTI]

t as determined by gasoline stations is unlikely to beshows a map of all gasoline stations i n central and easterni n Figure 5: Toronto Gasoline Stations Canadian cents per

Noel, Michael

2007-01-01T23:59:59.000Z

365

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of  

E-Print Network [OSTI]

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed 19, 2012 (received for review July 22, 2012) Emissions from gasoline and diesel vehicles composition, mass distribu- tion, and organic aerosol formation potential of emissions from gasoline

Silver, Whendee

366

Improving Accuracy in the Determination of Aromatics in Gasoline by Gas ChromatographyóMass Spectrometry  

Science Journals Connector (OSTI)

......was composed of five gasoline blendstocks: light straight run (LSR) naphtha...consisted of the 21 gasoline fuels used in various...naphtha; LSR, light straight run naphtha; reformate...Because these common gasoline blendstocks contain......

Michael D. Mathiesen; Axel J. Lubeck

1998-09-01T23:59:59.000Z

367

Blended Straight-Run Gasolines with Composite Additives Containing Watery Ethanol  

Science Journals Connector (OSTI)

Cranking and antiknock properties of gasoline-alcohol blends based on straight-run gasoline with additives containing watery ethanol and other ... components are studied. The composition of the gasoline-alcohol b...

Yu. O. Beiko; A. P. Pavlovskii; O. A. Beiko

2014-01-01T23:59:59.000Z

368

Advanced Motors  

SciTech Connect (OSTI)

Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?Motors and Generators for the 21st Century√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ě. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can be met with a variety of bonded magnet compositions. The torque ripple was found to drop significantly by using thinner magnet segments. The powder co-filling and subsequent compaction processing allow for thinner magnet structures to be formed. Torque ripple can be further reduced by using skewing and pole shaping techniques. The techniques can be incorporated into the rotor during the powder co-filling process.

Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

2012-12-14T23:59:59.000Z

369

Scope for reducing the concentrations of NO and CH /SUB X/ in forechamber flame ignition of a fuel mixture  

SciTech Connect (OSTI)

This article discusses the reduction of concentrations of toxic components in exhaust gases resulting from using the forechamber ignition method in gasoline engines containing homogeneous mixtures. A method was devised to calculate the pressure and average temperature in the combustion chamber, as well as the temperatures and concentrations for 11 equilibrium combustion products in individual local zones of the combustion chamber with allowance for the Mache effect, and also the true values for the molecular-change coefficients and the loss of heat of combustion due to dissociation, and the NO formation kinetics indicated by Zel'dovich's mechanism. It is concluded that the production of toxic components can be reduced in an engine with forechamber flame ignition and a high compression ratio only by using deliberate stratification and a displacing ring to prevent the fuel from entering peripheral and dead zones of the chamber before and after combustion.

Mekhtiev, R.I.

1983-09-01T23:59:59.000Z

370

Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications  

Broader source: Energy.gov [DOE]

Specific designs and material properties have to be developed for gasoline particulate filters based on the different engine and exhaust gas characteristic of gasoline engines compared to diesel engines, e.g., generally lower levels of engine-out particulate emissions or higher GDI exhaust gas temperatures

371

Author's personal copy Gasoline prices and traffic safety in Mississippi  

E-Print Network [OSTI]

Drive SE, Minneapolis, MN 55455, USA a b s t r a c ta r t i c l e i n f o Article history: Received 9-grade unleaded gasoline price data from the Energy Information Administration of the U.S. Department of EnergyAuthor's personal copy Gasoline prices and traffic safety in Mississippi Guangqing Chi a, , Arthur

Levinson, David M.

372

High-Efficiency Clean Combustion Design for Compression Ignition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Clean Combustion Design for Compression Ignition Engines High-Efficiency Clean Combustion Design for Compression Ignition Engines Presentation given at DEER 2006,...

373

Improving the Efficiency of Spark Ignited, Stoichiometric Natural...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Spark Ignited, Stoichiometric Natural Gas Engines Improving the Efficiency of Spark Ignited, Stoichiometric Natural Gas Engines This work focused on using camless engine technology...

374

Fuel Effects on Ignition and Their Impact on Advanced Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ignition and Their Impact on Advanced Combustion Engines Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines Presentation given at DEER 2006, August 20-24,...

375

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network [OSTI]

Includes gasoline, diesel, and electric. The following fourIncludes gasoline, diesel, and electric. In this study, weemissions from diesel-truck delivery and electric generation

Wang, Guihua

2008-01-01T23:59:59.000Z

376

Fact #858 February 2, 2015 Retail Gasoline Prices in 2014 Experienced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 February 2, 2015 Retail Gasoline Prices in 2014 Experienced the Largest Decline since 2008 Fact 858 February 2, 2015 Retail Gasoline Prices in 2014 Experienced the Largest...

377

SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines Presentation given at the...

378

Different Factors Impact Different Aspects of Gasoline Price  

Gasoline and Diesel Fuel Update (EIA)

1 1 Notes: In order to illustrate and quantify, to a large extent, the various market forces driving gasoline prices, we begin by decomposing those factors according to their location within the supply chain, i.e., the international crude market, U.S. wholesale gasoline markets, and the retail segment. Historically, variation in gasoline prices usually stems from changes in crude oil prices. As the major feedstock in the production of gasoline, shifts in the balance between supply and demand in crude markets explain a large portion of observed movements at the retail level. But shifts in the wholesale gasoline supply/demand balance also contribute to price pressure or movements at both the wholesale and retail levels beyond that stemming from crude oil markets.

379

DOE Gasoline Price Watch Website and Hotline | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gasoline Price Watch Website and Hotline Gasoline Price Watch Website and Hotline DOE Gasoline Price Watch Website and Hotline April 20, 2006 - 12:26pm Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today is reminding consumers about the Department of Energy's (DOE) gasoline price reporting system. Consumers can report activity at local gasoline filling stations that they believe may constitute "gouging" or "price fixing" by visiting gaswatch.energy.gov/. "There are many legitimate factors influencing the price consumers are paying at the pump, including growing demand, the high price of crude oil, the lingering effects of last summer's hurricanes on our refining sector and the regular transition of fuel blends as we head into the summer," said Secretary Bodman. "And while the majority of local merchants are fair and

380

Integrated process offers lower gas-to-gasoline investment  

SciTech Connect (OSTI)

Many natural gas fields are in remote locations and of a size which cannot justify construction of a pipeline or liquified natural gas (LNG) plant. In these situations, the natural gas price can be low and the manufacture of gasoline an attractive alternative to producing ammonia or other petro-chemicals. Haldor Topsoe A/S has developed an integrated process scheme to convert natural-gas-derived synthesis gas to gasoline in a single loop. The process, Topsoe integrated gasoline synthesis (Tigas), incorporates Mobil's methanol-to-gasoline (MTG) process. The first step is a synthesis of oxygenates. The second step is the MTG process run at conditions selected to achieve optimum operation of the integrated loop. An industrial pilot plant has been in operation since January 1984. The plant has been running successfully, with long catalyst life, producing high-octane gasoline.

Topp-Jorgensen, J.; Rostrup-Nielsen, J.R.

1986-05-19T23:59:59.000Z

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration  

SciTech Connect (OSTI)

Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

Choi, Jae-Soon [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Partridge Jr, William P [ORNL] [ORNL; Parks, II, James E [ORNL; Norman, Kevin M [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; Chambon, Paul H [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL

2010-01-01T23:59:59.000Z

382

Motor System Upgrades Smooth the Way to Savings of $700,000 at Chevron Refinery  

Broader source: Energy.gov [DOE]

Chevron, the largest U.S. refiner operating six gasoline-producing refineries, completed a motor system efficiency improvement project in 1997 at its Richmond, California, refinery that resulted in savings of $700,000 annually. This two-page fact sheet describes how they achieved the savings.

383

Gasoline prices, gasoline consumption, and new-vehicle fuel economy: Evidence for a large sample of countries  

Science Journals Connector (OSTI)

Countries differ considerably in terms of the price drivers pay for gasoline. This paper uses data for 132 countries for the period 1995Ė2008 to investigate the implications of these differences for the consumption of gasoline for road transport. To address the potential for simultaneity bias, we use both a country's oil reserves and the international crude oil price as instruments for a country's average gasoline pump price. We obtain estimates of the long-run price elasticity of gasoline demand of between ?†0.2 and ?†0.5. Using newly available data for a sub-sample of 43 countries, we also find that higher gasoline prices induce consumers to substitute to vehicles that are more fuel-efficient, with an estimated elasticity of +†0.2. Despite the small size of our elasticity estimates, there is considerable scope for low-price countries to achieve gasoline savings and vehicle fuel economy improvements via reducing gasoline subsidies and/or increasing gasoline taxes.

Paul J. Burke; Shuhei Nishitateno

2013-01-01T23:59:59.000Z

384

Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 1. Engine Load Range and Downsize Downspeed Opportunity  

SciTech Connect (OSTI)

The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in midlevel alcohol gasoline blends with 24% vol/vol isobutanol gasoline (IB24) and 30% vol/vol ethanol gasoline (E30). A single-cylinder research engine was used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air, and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions with = 1, using both 0% and 15% external cooled EGR. Higher octane number biofuel blends exhibited increased stoichiometric torque capability at this compression ratio, where the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with E30 as compared to 87 AKI, up to 20 bar IMEPg (indicated mean effective pressure gross) at = 1. EGR provided thermodynamic advantages and was a key enabler for increasing engine efficiency for all fuel types. However, with E30, EGR was less useful for knock mitigation than gasoline or IB24. Torque densities with E30 with 15% EGR at = 1 operation were similar or better than a modern EURO IV calibration turbo-diesel engine. The results of the present study suggest that it could be possible to implement a 40% downsize + downspeed configuration (1.2 L engine) into a representative midsize sedan. For example, for a midsize sedan at a 65 miles/h cruise, an estimated fuel consumption of 43.9 miles per gallon (MPG) (engine out 102 g-CO2/km) could be achieved with similar reserve power to a 2.0 L engine with 87AKI (38.6 MPG, engine out 135 g-CO2/km). Data suggest that, with midlevel alcohol gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol gasoline blends and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

Splitter, Derek A [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

2013-01-01T23:59:59.000Z

385

Enabling and Expanding HCCI in PFI Gasoline Engines with High...  

Broader source: Energy.gov (indexed) [DOE]

of High Efficiency Engines Vehicle Technologies Office Merit Review 2014: Accelerating Predictive Simulation of IC Engines with High Performance Computing Ignition Control for HCCI...

386

2003 California Gasoline Price Study (preliminary version)  

Gasoline and Diesel Fuel Update (EIA)

1 1 2003 California Gasoline Price Study: Preliminary Findings May 2003 Office of Oil and Gas Energy Information Administration U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts and Acknowledgments This report was prepared by the Office of Oil and Gas of the Energy Information Administration (EIA) under the direction of John Cook, Director, Petroleum Division. Questions concerning the report may be directed to Joanne Shore (202/586-4677),

387

Experimental study and modeling of dodecane ignition in a diesel engine  

SciTech Connect (OSTI)

Two experiments have been performed under conditions as close as possible to those existing in a diesel engine. The first is oxidation of n-dodecane in a motored diesel engine running under conditions close to ignition but avoiding it. The progress of chemical reactions is followed by measurements of the global temperature increase {Delta}T of the exhaust gases, and by continuous sampling of the combustion chamber gases, to measure the concentrations of hydroperoxides and molecular hydrogen; about 4.2% of the energy introduced as hydrocarbon is consumed, thus showing significant transformations during the ignition delay of n-dodecane. The location of the maximum concentration of hydroperoxides coincides with the fuel jet`s edge. Tarlike compounds are present in the unburnt dodecane at the engine exhaust. The second experiment is the study of ignition delay of an n-dodecane spray in an oxidation chamber filled with air, between 715 and 760 K and 15 and 25 bar. A reduced mechanism of 32 reactions, with three types of branching due to the species (RO{sub 2}, RO{sub 2}H), (HO{sub 2}, H{sub 2}O{sub 2}), and H, enable one to predict the ignition delay. Computer simulations are made with the KIVA II code. They show good agreement between the experimental and the calculated ignition delays. They also indicate that, during the ignition delay, reactions occur first at the boundary of the fuel spray. A temperature increase of about 100 K takes place at the hottest points, which correspond to concentration maxima of the three branching species. Time-dependent evolutions of average concentrations show that RO{sub 2}H reaches a maximum first, then H{sub 2}O{sub 2}, and lastly the H atom.

Sahetchian, K. [CNRS, Saint-Cyr-l`Ecole (France). Lab. de Mecanique Physique] [CNRS, Saint-Cyr-l`Ecole (France). Lab. de Mecanique Physique; Champoussin, J.C.; Brun, M. [Ecole Centrale de Lyon, Ecully (France). Lab. de Machines Thermiques] [Ecole Centrale de Lyon, Ecully (France). Lab. de Machines Thermiques

1995-11-01T23:59:59.000Z

388

Gasoline: An adaptable implementation of TreeSPH  

E-Print Network [OSTI]

The key algorithms and features of the Gasoline code for parallel hydrodynamics with self-gravity are described. Gasoline is an extension of the efficient Pkdgrav parallel N-body code using smoothed particle hydrodynamics. Accuracy measurements, performance analysis and tests of the code are presented. Recent successful Gasoline applications are summarized. These cover a diverse set of areas in astrophysics including galaxy clusters, galaxy formation and gas-giant planets. Future directions for gasdynamical simulations in astrophysics and code development strategies for tackling cutting edge problems are discussed.

Wadsley, J; Quinn, T; Wadsley, James; Stadel, Joachim; Quinn, Thomas

2003-01-01T23:59:59.000Z

389

Gasoline: An adaptable implementation of TreeSPH  

E-Print Network [OSTI]

The key algorithms and features of the Gasoline code for parallel hydrodynamics with self-gravity are described. Gasoline is an extension of the efficient Pkdgrav parallel N-body code using smoothed particle hydrodynamics. Accuracy measurements, performance analysis and tests of the code are presented. Recent successful Gasoline applications are summarized. These cover a diverse set of areas in astrophysics including galaxy clusters, galaxy formation and gas-giant planets. Future directions for gasdynamical simulations in astrophysics and code development strategies for tackling cutting edge problems are discussed.

James Wadsley; Joachim Stadel; Thomas Quinn

2003-03-24T23:59:59.000Z

390

Inertial Confinement Fusion: steady progressInertial Confinement Fusion: steady progress towards ignition and high gaintowards ignition and high gain  

E-Print Network [OSTI]

, Vilamoura, Portugal. #12;Main route to ignition: indirect laser drive with central hot-spot ignition and ignition implosion DT capsule hohlraum case ~ 30 m of Au (or Pb)¬Ķ laser beams 5.5 mm 9.5 mm ablator DT ice constantly accumulated on currently operating non- ignition-scale lasers at Rochester, LANL, ILE, UK

391

Fast Ignition: Nuclear Fusion with UltraFast Ignition: Nuclear Fusion with Ultra--intenseintense LASERsLASERs  

E-Print Network [OSTI]

pellet composed of deuterium and tritium. In the fast ignition regime a secondy p g g p p g g laser, nearly limitless, fuel source. Fusion via Fast Ignition MethodUltra-Intense Laser Research atFusion via Direct Drive Method U Strathclyde IgnitionCompression IgnitionCompression · Very intense lasers (shown

Strathclyde, University of

392

Hot electron measurements in ignition relevant Hohlraums on the National Ignition Facility  

SciTech Connect (OSTI)

On the National Ignition Facility (NIF), hot electrons generated in laser heated Hohlraums are inferred from the >20 keV bremsstrahlung emission measured with the time integrated FFLEX broadband spectrometer. New high energy (>200 keV) time resolved channels were added to infer the generated >170 keV hot electrons that can cause ignition capsule preheat. First hot electron measurements in near ignition scaled Hohlraums heated by 96-192 NIF laser beams are presented.

Dewald, E. L.; Thomas, C.; Hunter, S.; Divol, L.; Meezan, N.; Glenzer, S. H.; Suter, L. J.; Bond, E.; Celeste, J.; Bradley, D.; Bell, P.; Kauffman, R. L.; Landen, O. L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Kline, J. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kilkenny, J. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States)

2010-10-15T23:59:59.000Z

393

New EPA Fuel Economy and Environment Label - Gasoline Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasoline Vehicles Gasoline Vehicles Gasoline Vehicles Fuel Economy In addition to the MPG estimates displayed on previous labels, combined city/highway fuel use is also given in terms of gallons per 100 miles. New! Fuel Economy & Greenhouse Gas Rating Use this scale to compare vehicles based on tailpipe greenhouse gas emissions, which contribute to climate change. New! Smog Rating You can now compare vehicles based on tailpipe emissions of smog-forming air pollutants. New! Five-Year Fuel Savings This compares the five-year fuel cost of the vehicle to that of an average gasoline vehicle. The assumptions used to calculate these costs are listed at the bottom of the label. Annual Fuel Cost This cost is based on the combined city/highway MPG estimate and assumptions about driving and fuel prices listed at the bottom of the

394

Lean Gasoline System Development for Fuel Efficient Small Car...  

Broader source: Energy.gov (indexed) [DOE]

Small Car Lean Gasoline System Development for Fuel Efficient Small Car Vehicle Technologies Office Merit Review 2014: ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

395

FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

vehicles currently in service. FedEx Express has deployed 20 gasoline hybrid electric vehicles (gHEVs) on parcel delivery routes in the Sacramento and Los Angeles areas. This...

396

U.S. gasoline prices increase slightly (short version)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

average retail price for regular gasoline rose slightly to 3.55 a gallon on Monday. That's up 2-tenths of a penny from a week ago, based on the weekly price survey by the U.S....

397

U.S. gasoline prices continue to increase (short version)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

The U.S. average retail price for regular gasoline rose to 3.68 a gallon on Monday. That's up 4 12 cents from a week ago, based on the weekly price survey by the U.S. Energy...

398

U.S. gasoline prices continue to increase (short version)  

Gasoline and Diesel Fuel Update (EIA)

average retail price for regular gasoline rose to 3.61 a gallon on Labor Day Monday. That's up 5.6 cents from a week ago, based on the weekly price survey by the U.S. Energy...

399

U.S. gasoline prices increase slightly (long version)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

average retail price for regular gasoline rose slightly to 3.36 a gallon on Monday. That's up 6-tenths of a penny from a week ago, based on the weekly price survey by the U.S....

400

U.S. gasoline prices continue to decrease (short version)  

Gasoline and Diesel Fuel Update (EIA)

The U.S. average retail price for regular gasoline fell to 3.51 a gallon on Monday. That's down a penny from a week ago and down 13 cents from a month ago, based on the weekly...

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

U.S. average gasoline price up slightly  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

average retail price for regular gasoline rose slightly to 3.65 a gallon on Monday. That's up a tenth of a penny from a week ago, based on the weekly price survey by the U.S....

402

U.S. gasoline prices increase slightly (short version)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

average retail price for regular gasoline rose slightly to 3.36 a gallon on Monday. That's up 6-tenths of a penny from a week ago, based on the weekly price survey by the U.S....

403

U.S. gasoline prices continue to increase (long version)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The U.S. average retail price for regular gasoline rose to 3.68 a gallon on Monday. That's up 4 12 cents from a week ago, based on the weekly price survey by the U.S. Energy...

404

U.S. Gasoline prices continue to increase (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

average retail price for regular gasoline rose to 3.61 a gallon on Labor Day Monday. That's up 5.6 cents from a week ago, based on the weekly price survey by the U.S. Energy...

405

Gasoline Prices, Fuel Economy, and the Energy Paradox  

E-Print Network [OSTI]

It is often asserted that consumers purchasing automobiles or other goods and services underweight the costs of gasoline or other "add-ons." We test this hypothesis in the US automobile market by examining the effects of ...

Wozny, Nathan

406

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

407

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

408

Inertial-confinement fusion with fast ignition  

Science Journals Connector (OSTI)

...achieve ignition and thermonuclear burn. For a fusion power plant, gains...the ratio of the thermonuclear energy to the initial...released by the thermonuclear burn in unit mass...compressed spherical fusion fuel. Higher gain...

1999-01-01T23:59:59.000Z

409

History of the approach to ignition  

Science Journals Connector (OSTI)

...International Thermonuclear Experimental Reactor...recommended. plasma|fusion|tokamak|ignition...density plasma to thermonuclear temperatures...in the quest for fusion power. Such an...temperatures of thermonuclear interest, this...for an acceptable fusion reactor. By a...

1999-01-01T23:59:59.000Z

410

Effects of temperature on laser diode ignition  

Science Journals Connector (OSTI)

In this paper, the effects of temperature on laser diode ignition and the resulting consequences were discussed in detail through theoretical analysis, experiments and numerical calculations. The results indicated that the output power of laser diode decreases and the wavelength of laser redshifts with elevated working temperature under a certain condition. The threshold conditions of ignition for powders are easily satisfied with increase in ambient temperature. While the temperature reaches a high enough level, ignition can occur and also the self-combustion or thermal induced explosion can do, even if laser power is very low. Therefore, it is of great importance to carefully control the working temperature of laser diode and the ambient temperature of powder system, and in the meanwhile, to install necessary insurance apparatus in order to ensure the normal and safe operation of the ignition system.

Shi-Biao Xiang; Xu Xiang; Chang-Gen Feng

2009-01-01T23:59:59.000Z

411

Laser-induced ignition by optical breakdown  

Science Journals Connector (OSTI)

This paper is an experimental work of the applied methodical character in which as an attempt to optimize a laser ignition system a systematic study of the best incoupling geometry for the employed Nd:YAG laser w...

E. Schwarz; I. Muri; J. Tauer; H. Kofler; E. Wintner

2010-06-01T23:59:59.000Z

412

Ignition with Laser Break-Down  

Science Journals Connector (OSTI)

It is considered that ignition with laser break-down is one of the applications of solid-state lasers. This paper shows basic experimental results indicating the advantages of laser...

Furutani, Hirohide; Saito, Takeshi

413

Focus issue introduction: Laser Ignition Conference  

Science Journals Connector (OSTI)

The purpose of this feature issue is to share information on laser ignition and related sciences and technologies. This feature offers five papers in the field that cover aspects of...

Taira, Takunori; Furutani, Hirohide; Guo, Chunlei; Wintner, Ernst; Akamatsu, Fumiteru; Lucht, Robert; Washio, Kunihiko

2014-01-01T23:59:59.000Z

414

Laser Spark Distribution and Ignition System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spark Distribution and Ignition System Spark Distribution and Ignition System Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implement- ing United States Patent Number 7,421,166 entitled "Laser Spark Distribution and Ignition System." Disclosed in this patent is NETL's laser spark distribution and ignition system, which reduces the high-power optical requirements normally needed for such a system by using optical fibers to deliver low-peak-energy pumping pulses to a laser amplifier or laser oscillator. Laser spark generators then produce a high-peak-power laser spark from a single low power pulse. The system has ap- plications in natural gas fueled reciprocating engines, turbine combustors, explosives, and laser induced breakdown spectroscopy diagnostic sensors.

415

The relation of octane number, compression ratio, and exhaust temperature in the gasoline engine  

E-Print Network [OSTI]

THE RELATION OF OCTANE NUMHER& COMPRESSION RATIO& AND EXHAUST TEMPERATURE IN THE GASOLINE ENGINE A Tbeaie Donald George Jentsch THE RELATION OF OCTANE NUMBER, COMHKSSION RATIO, EXHAUST TEMPERATURE IN THE GASOLINE ENGINE By Donald George... throttle settings) a. Table VI - Aviation Gasolines 22 26 b. Table VI (a) ? Automotive Gasolines . . . 33 2. Spark set for maximum power at full throttle (Speed 2000 RPH at various throttle settings) a. Table VII ? Aviation Gasolines . . . . . 34 b...

Jentsch, Donald George

2012-06-07T23:59:59.000Z

416

CO2 Emission Benefit of Diesel (versus Gasoline) Powered Vehicles  

Science Journals Connector (OSTI)

Increased penetration of diesel powered vehicles into the market is a possible transition strategy toward a more sustainable transportation system. ... We report herein a quantitative analysis of the CO2 emission benefits of diesel vehicles versus their gasoline equivalents for 2001 MY and 2015 MY in European and North American markets. ... However, more stringent tailpipe NOx emissions standards are likely to have a greater negative impact on diesel engines, further reducing the advantages of future diesels relative to gasoline engines. ...

J. L. Sullivan; R. E. Baker; B. A. Boyer; R. H. Hammerle; T. E. Kenney; L. Muniz; T. J. Wallington

2004-05-13T23:59:59.000Z

417

Determination of lead in gasoline by atomic absorption spectroscopy  

Science Journals Connector (OSTI)

A procedure has been developed for the direct determination of lead in gasoline by atomic absorption spectroscopy. This procedure is rapid, does not require expensive equipment, is remarkably free from interference by other trace elements present, and allows considerable variation in the sulfur and nitrogen content of the gasoline. It compares favorably with other existing procedures for this determination, such as X-ray fluorescence, wet chemical methods, and flame photometry.

J.W. Robinson

1961-01-01T23:59:59.000Z

418

Conversion of methane and acetylene into gasoline range hydrocarbons  

E-Print Network [OSTI]

CONVERSION OF METHANE AND ACETYLENE INTO GASOLINE RANGE HYDROCARBONS A Thesis by AMMAR ALKHAWALDEH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 2000 Major Subject: Chemical Engineering CONVERSION OF METHANE AND ACETYLENE INTO GASOLINE RANGE HYDROCARBONS A Thesis by AMMAR ALKHAWALDEH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

Alkhawaldeh, Ammar

2012-06-07T23:59:59.000Z

419

Gas-chromatographic analysis of straight-run gasolines  

SciTech Connect (OSTI)

A method has been developed for the gas chromatographic determination of the individual hydrocarbons in a wide fraction of straight-run gasoline, using a simple chromatograph equipped with two capillary columns coated with stationary phases of differing polarity in conjunction with a system for the automated treatment of the data. About 150 hydrocarbons present in straight-run gasolines were identified; their retention indices were calculated for a linear temperature programmed regime.

Kvasova, V.A.; Leont'eva, S.A.; Grinberg, A.A.; Rabinovich, A.B.; Shurygina, N.N.

1986-11-10T23:59:59.000Z

420

Confinement scaling and ignition in tokamaks  

SciTech Connect (OSTI)

A drift wave turbulence model is used to compute the scaling and magnitude of central electron temperature and confinement time of tokamak plasmas. The results are in accord with experiment. Application to ignition experiments shows that high density (1 to 2) . 10/sup 15/ cm/sup -3/, high field, B/sub T/ > 10 T, but low temperature T approx. 6 keV constitute the optimum path to ignition.

Perkins, F.W.; Sun, Y.C.

1985-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The National Ignition Facility: Status of Construction  

E-Print Network [OSTI]

Bruce Warner Deputy Associate Director, NIF Programs Lawrence Livermore National Laboratory October 11, 2005 #12;NIF-0605-10997 27EIM/cld NIF-0605-10997-L2 27EIM/cld P LLNLLLNL P9266 #12;NIF-0605-10997 27EIM/cld NIF-0605-10997-L28 27EIM/cld P LLNLLLNL National Ignition FacilityNational Ignition Facility P9292 San

422

Gasoline-like Fuel Effects on High-load, Boosted HCCI Combustion Employing Negative Valve Overlap Strategy  

SciTech Connect (OSTI)

In recent years a number of studies have demonstrated that boosted operation combined with external EGR is a path forward for expanding the high load limit of homogeneous charge compression ignition (HCCI) operation with the negative valve overlap (NVO) valve strategy. However, the effects of fuel composition with this strategy have not been fully explored. In this study boosted HCCI combustion is investigated in a single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), laboratory pressurized intake air, and a fully-variable hydraulic valve actuation (HVA) valve train. Three fuels with significant compositional differences are investigated: regular grade gasoline (RON = 90.2), 30% ethanol-gasoline blend (E30, RON = 100.3), and 24% iso-butanol-gasoline blend (IB24, RON = 96.6). Results include engine loads from 350 to 800 kPa IMEPg for all fuels at three engine speeds 1600, 2000, and 2500 rpm. All operating conditions achieved thermal efficiency (gross indicated efficiency) between 38 and 47%, low NOX emissions ( 0.1 g/kWh), and high combustion efficiency ( 96.5%). Detailed sweeps of intake manifold pressure (atmospheric to 250 kPaa), EGR (0 25% EGR), and injection timing are conducted to identify fuel-specific effects. The major finding of this study is that while significant fuel compositional differences exist, in boosted HCCI operation only minor changes in operational conditions are required to achieve comparable operation for all fuels. In boosted HCCI operation all fuels were able to achieve matched load-speed operation, whereas in conventional SI operation the fuel-specific knock differences resulted in significant differences in the operable load-speed space. Although all fuels were operable in boosted HCCI, the respective air handling requirements are also discussed, including an analysis of the demanded turbocharger efficiency.

Kalaskar, Vickey B [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Splitter, Derek A [ORNL] [ORNL

2014-01-01T23:59:59.000Z

423

Laser Ignition in Internal Combustion Engines- a Novel Approach Based on Advanced Lasers  

Science Journals Connector (OSTI)

Laser ignition with its many potential advantages in comparison to conventional spark plug ignition has been investigated in detail. As ignition source several, to a certain extent...

Weinrotter, Martin; Kopecek, Herbert; Graf, Josef; Klausner, Johann; Herdin, GŁnther; Wintner, Ernst

424

Production of synthetic gasoline and diesel fuel from nonpetroleum resources  

SciTech Connect (OSTI)

In late 1985, the New Zealand Gas-to-Gasoline Complex was successfully streamed producing high octane gasoline from natural gas. The heart of this complex is the Mobil fixed-bed Methanol-to-Gasoline (MTG) section which represents one of several newly developed technologies for production of synthetic gasoline and diesel fuels. All of these technologies are based on production of methanol by conventional technology, followed by conversion of the methanol to transportation fuel. The fixed-bed (MTG) process has been developed and commercialized. The fluid-bed version of the MTG process, which is now also available for commercial license, has a higher thermal efficiency and possesses substantial yield and octane number advantages over the fixed-bed. Successful scale-up was completed in 1984 in a 100 BPD semi-works plant in Wesseling, Federal Republic of Germany. The project was funded jointly by the U.S. and German governments and by the industrial participants: Mobil, Union Rheinsche Braunkohlen Kraftstoff, AG; and Uhde, GmbH. This fluid-bed MTG project was extended recently to demonstrate a related fluid-bed process for selective conversion of methanol to olefins (MTO). The MTO process can be combined with Mobil's commercially available olefins conversion process (Mobil-Olefins-to-Gasoline-and-Distillate, MOGD) for coproduction of high quality gasoline and distillate via methanol. This MTO process was also successfully demonstrated at the Wesseling semiworks with this project being completed in late 1985.

Tabak, S.A.; Avidan, A.A.; Krambeck, F.J.

1986-04-01T23:59:59.000Z

425

Fractionation of reformate: A new variant of gasoline production technology  

SciTech Connect (OSTI)

The Novo-Ufa Petroleum Refinery is the largest domestic producer of the unique high-octane unleaded automotive gasolines AI-93 and AI-95 and the aviation gasolines B-91/115 and B-92. The base component for these gasolines is obtained by catalytic reforming of wide-cut naphtha; this basic component is usually blended with certain other components that are expensive and in short supply: toluene, xylenes, and alkylate. For example, the unleaded gasoline AI-93 has been prepared by blending reformate, alkylate, and toluene in a 65:20:15 weight ratio; AI-95 gasoline by blending alkylate and xylenes in an 80:20 weight ratio; and B-91/115 gasoline by compounding a reformate obtained with light straight-run feed, plus alkylate and toluene, in a 55:35:10 weight ratio. Toluene and xylenes have been obtained by process schemes that include the following consecutive processes: redistillation of straight-run naphtha cuts to segregate the required narrow fraction; catalytic reforming (Platforming) of the narrow toluene-xylene straight-run fraction; azeotropic distillation of the reformate to recover toluene and xylenes. A new technology based on the use of reformate fractions is proposed.

Karakuts, V.N.; Tanatarov, M.A.; Telyashev, G.G. [and others

1995-07-01T23:59:59.000Z

426

Conversion of gas-condensate straight-run gasolines to high-octane gasolines over zeolite catalysts modified with metal nanopowders  

Science Journals Connector (OSTI)

The acid and catalytic properties of zeolite catalysts modified with metal nanopowders (Cu, Zn, and W) were studied in the conversion of gas-condensate straight-run gasolines to high-liquid high-octane gasolines ...

V. I. Erofeev; A. S. Medvedev; I. S. KhomyakovÖ

2013-07-01T23:59:59.000Z

427

Combustion behavior of gasoline and gasoline/ethanol blends in a modern direct-injection 4-cylinder engine.  

SciTech Connect (OSTI)

Early in 2007 President Bush announced in his State of the Union Address a plan to off-set 20% of gasoline with alternative fuels in the next ten years. Ethanol, due to its excellent fuel properties for example, high octane number, renewable character, etc., appears to be a favorable alternative fuel from an engine perspective. Replacing gasoline with ethanol without any additional measures results in unacceptable disadvantages mainly in terms of vehicle range.

Wallner, T.; Miers, S. A. (Energy Systems)

2008-04-01T23:59:59.000Z

428

Combustion behavior of a spark ignition engine fueled with synthetic gases derived from biogas  

Science Journals Connector (OSTI)

Abstract Combustion results obtained from a spark ignition engine fueled with two synthetic gases obtained from catalytic decomposition of biogas are presented in this paper. These results are compared with those obtained when the engine was fueled with gasoline, methane and with the biogas from which synthetic gases are extracted. Experimental tests were performed under a wide range of speeds and at three equivalence ratios. Results showed that fractions of hydrogen in synthetic gases increased maximum pressures inside cylinder. Moreover, peak pressures were detected closer to top dead center than methane and biogas. Despite the fraction of diluents in the composition of synthetic gases, high speeds and lean conditions resulted in higher indicated efficiencies than those obtained with gasoline. Moreover, combustion speed and heat release rate were strongly influenced by the proportion of diluents and hydrogen in gaseous blends. CO and CO2 content in the composition of synthetic gases contributed to increase the exhaust concentrations of these pollutants compared with the other fuels, while HC decreased because of the small fraction of methane which remained unburned. Although \\{NOx\\} emissions were mitigated by diluents, like CO2 and air excess, high hydrogen fraction in composition of syngas involved elevated \\{NOx\\} emissions due to the increase in flame temperature that hydrogen produces.

J. Arroyo; F. Moreno; M. MuŮoz; C. Monnť; N. Bernal

2014-01-01T23:59:59.000Z

429

Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition  

SciTech Connect (OSTI)

Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2013-01-01T23:59:59.000Z

430

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels  

E-Print Network [OSTI]

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels are created and produced. The company has a proprietary technology for converting solar thermal en- ergy (the sun's heat) to fuel (e.g., gasoline, diesel, hydrogen

Jawitz, James W.

432

Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7: April 26, 7: April 26, 2004 State Gasoline Tax Rates to someone by E-mail Share Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Facebook Tweet about Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Twitter Bookmark Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Google Bookmark Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Delicious Rank Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Digg Find More places to share Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on AddThis.com... Fact #317: April 26, 2004 State Gasoline Tax Rates At 7.5 cents per gallon, Georgia had the lowest state gasoline tax in the

433

The role of the National Ignition Facility in energy production from inertial fusion  

Science Journals Connector (OSTI)

...in IFE attractive. inertial fusion energy|laser fusion|ignition (lasers)|thermonuclear gain|National Ignition Facility...inertial fusion energy; laser fusion; ignition (lasers); thermonuclear gain; National Ignition Facility...

1999-01-01T23:59:59.000Z

434

Translation of dilution tolerance for gasoline SI engine  

E-Print Network [OSTI]

There are a variety of fuel improvement strategies being developed for spark ignition engines which use dilution. Many of these technologies use a combination of different diluents. It is impractical in optimizing these ...

Niekamp, Troy S. (Troy Steven)

2013-01-01T23:59:59.000Z

435

Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems  

SciTech Connect (OSTI)

Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another.

Westbrook, C.K.

2000-07-07T23:59:59.000Z

436

Analytical model for fast-shock ignition  

SciTech Connect (OSTI)

A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ?4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ?0.3??micron and the shock ignitor energy weight factor about 0.25.

Ghasemi, S. A., E-mail: abo.ghasemi@yahoo.com; Farahbod, A. H. [Plasma Physics Research School, NSTRI, North Kargar Avenue, Tehran (Iran, Islamic Republic of); Sobhanian, S. [Department of Physics, Tabriz University, Tabriz (Iran, Islamic Republic of)

2014-07-15T23:59:59.000Z

437

Thermonuclear supernova simulations with stochastic ignition  

E-Print Network [OSTI]

We apply an ad hoc model for dynamical ignition in three-dimensional numerical simulations of thermonuclear supernovae assuming pure deflagrations. The model makes use of the statistical description of temperature fluctuations in the pre-supernova core proposed by Wunsch & Woosley (2004). Randomness in time is implemented by means of a Poisson process. We are able to vary the explosion energy and nucleosynthesis depending on the free parameter of the model which controls the rapidity of the ignition process. However, beyond a certain threshold, the strength of the explosion saturates and the outcome appears to be robust with respect to number of ignitions. In the most energetic explosions, we find about 0.75 solar masses of iron group elements. Other than in simulations with simultaneous multi-spot ignition, the amount of unburned carbon and oxygen at radial velocities of a few 1000 km/s tends to be reduced for an ever increasing number of ignition events and, accordingly, more pronounced layering results.

W. Schmidt; J. C. Niemeyer

2005-10-14T23:59:59.000Z

438

Farm Motorization, Consumption and Prices of Motor Fuels  

Science Journals Connector (OSTI)

... Development of Farm Motorization and Consumption and Prices of Motor ... of Motor Fuels in Member Countries is the title of a publication recently issued by the Organization for ...

1963-12-21T23:59:59.000Z

439

Use of ethers as high-octane components of gasolines  

SciTech Connect (OSTI)

This article reports on a study of the possible utilization of methyl tert-amyl ether (MTAE) as an automotive gasoline component, both by itself and in combination with methyl tert-butyl ether (MTBE). The naphtha used in these studies consisted of 80% reformer naphtha produced under severe conditions and 20% straight-run IBP-62/sup 0/C cut. The physicochemical properties of the MTAE, the MTBE, and the naphtha base stock are given. It is determined that MTAE, which has a slightly poorer knock resistance than MTBE, is fully equal to MTBE in all other respects and can be used as an automotive gasoline component; that a gasoline blend prepared from 89% naphtha base stock, 5.5% MTAE, and 5.5% MTBE meets all of the requirements of the standard GOST 2084-77 for Grade AI-93 gasoline; and that the use of MTAE offers a means for expanding the resources of high-octane components, lowering the toxicity of the gasolines and the exhaust gas (in comparison with organometallic antiknock agents), and bringing non-petroleum raw materials into the fuel production picture.

Gureev, A.A.; Baranova, G.N.; Korotkov, I.V.; Levinson, G.I.

1984-01-01T23:59:59.000Z

440

The Development of a Detailed Chemical Kinetic Mechanism for Diisobutylene and Comparison to Shock Tube Ignition Times  

SciTech Connect (OSTI)

There is much demand for chemical kinetic models to represent practical fuels such as gasoline, diesel and aviation fuel. These blended fuels contain hundreds of components whose identity and amounts are often unknown. A chemical kinetic mechanism that would represent the oxidation of all these species with accompanying chemical reactions is intractable with current computational capabilities, chemical knowledge and manpower resources. The use of surrogate fuels is an approach to make the development of chemical kinetic mechanisms for practical fuels tractable. A surrogate fuel model consists of a small number of fuel components that can be used to represent the practical fuel and still predict desired characteristics of the practical fuel. These desired fuel characteristics may include ignition behavior, burning velocity, fuel viscosity, fuel vaporization, and fuel emissions (carbon monoxide, hydrocarbons, soot and nitric oxides). Gasoline consists of many different classes of hydrocarbons including n-alkanes, alkenes, iso-alkanes, cycloalkanes, cycloalkenes, and aromatics. One approach is to use a fuel surrogate that has a single component from each class of hydrocarbon in gasoline so that the unique molecular structure of each class is represented. This approach may lead to reliable predictions of many of the combustion properties of the practical fuel. In order to obtain a fuel surrogate mechanism, detailed chemical kinetic mechanisms must be developed for each component in the surrogate. In this study, a detailed chemical kinetic mechanism is developed for diisobutylene, a fuel intended to represent alkenes in practical fuels such as gasoline, diesel, and aviation fuel. The fuel component diisobutylene usually consists of a mixture of two conjugate olefins of iso-octane: 1- or 2-pentene, 2,4,4-trimethyl. Diisobutylene has a similar molecular structure to iso-octane, so that its kinetics offers insight into the effect of including a double bond in the carbon skeletal structure of iso-octane. There are few previous studies on diisobutylene. Kaiser et al. [1] examined the exhaust emission from a production spark ignition engine with neat diisobutylene and with it mixed with gasoline. They found the exhaust emissions of diisobutylene to be similar to that of iso-octane. They saw a significant increase in the amount of 2-methyl-1,3-butadiene measured in the exhaust of the engine. They also found appreciable amount of propene in the exhaust, but could not explain the source of this product as they did others in terms of C-C bond beta scission of alkyl radicals. Risberg et al. [2] studied a number of fuel blends to evaluate their autoignition quality for use in a homogeneous charge compression ignition engine, using diisobutylene to represent olefins in one of their test fuels. In this study, experiments on the shock tube ignition of both isomers of diisobutylene will be described. Then, the development of a detailed chemical kinetic mechanism for the two isomers of diisobutylene will be discussed.

Metcalfe, W; Curran, H J; Simmie, J M; Pitz, W J; Westbrook, C K

2005-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fuel effects in homogeneous charge compression ignition (HCCI) engines  

E-Print Network [OSTI]

Homogenous-charge, compression-ignition (HCCI) combustion is a new method of burning fuel in internal combustion (IC) engines. In an HCCI engine, the fuel and air are premixed prior to combustion, like in a spark-ignition ...

Angelos, John P. (John Phillip)

2009-01-01T23:59:59.000Z

442

Laser ignition of a heterogeneous nickel-aluminum system  

Science Journals Connector (OSTI)

The ignition of a heterogeneous nickelóaluminum system by laser radiation is investigated experimentally. The ignition characteristics are investigated as a function of ... the samples. It is established that the...

Yu. S. Naiborodenko; V. M. Filatov

443

National Ignition Facility & Photon Science NIF AT A GLANCe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Photon Science NIF AT A GLANCe the national ignition Facility at a glance The National Ignition Facility (NIF) is the world's largest laser system, housed in a 10-story building...

444

Numerical simulation of laser ignition of a liquid fuel film  

Science Journals Connector (OSTI)

Numerical simulations were used to examine a set of interrelated physicochemical processes involved in the ignition of a liquid fuel film by a low-power laser beam. The delay time of ignition of a liquid fuel fil...

G. V. Kuznetsov; P. A. Strizhak

2010-08-01T23:59:59.000Z

445

Laser ignition in internal-combustion engines: Sparkless initiation  

Science Journals Connector (OSTI)

Laser ignition has been implemented in a single-cylinder ... pressure versus crank angle) were obtained for laser ignition with nano- and microsecond pulses of an Nd:YAG laser. The maximum power of microsecond pu...

A. A. Andronov; V. A. Gurin; A. V. Marugin; A. P. SavikinÖ

2014-08-01T23:59:59.000Z

446

National Ignition Facility & Photon Science NIF Fun Facts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 National Ignition Facility & Photon Science NIF Fun Facts niF Fun Facts The National Ignition Facility (NIF), became operational in march 2009. Planning began in the early 1990s,...

447

Target Visualization at the National Ignition Facility  

SciTech Connect (OSTI)

As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the targets used to achieve this goal. Techniques have been developed to measure target surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. Using these techniques we are able to produce a detailed view of the shell surface, which in turn allows us to refine target manufacturing and cleaning processes. However, the volume of data produced limits the methods by which this data can be effectively viewed by a user. This paper introduces an image-based visualization system for data exploration of target shells at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. It aims to combine multiple image sets into a single visualization to provide a method of navigating the data in ways that are not possible with existing tools.

Potter, D

2011-11-21T23:59:59.000Z

448

The velocity campaign for ignition on NIF  

SciTech Connect (OSTI)

Achieving inertial confinement fusion ignition requires a symmetric, high velocity implosion. Experiments show that we can reach 95 {+-} 5% of the required velocity by using a 420 TW, 1.6 MJ laser pulse. In addition, experiments with a depleted uranium hohlraum show an increase in capsule performance which suggests an additional 18 {+-} 5 {mu}m/ns of velocity with uranium hohlraums over gold hohlraums. Combining these two would give 99 {+-} 5% of the ignition velocity. Experiments show that we have the ability to tune symmetry using crossbeam transfer. We can control the second Legendre mode (P2) by changing the wavelength separation between the inner and outer cones of laser beams. We can control the azimuthal m = 4 asymmetry by changing the wavelength separation between the 23.5 and 30 degree beams on NIF. This paper describes our 'first pass' tuning the implosion velocity and shape on the National Ignition Facility laser [Moses et al., Phys. Plasmas, 16, 041006 (2009)].

Callahan, D. A.; Meezan, N. B.; Glenzer, S. H.; MacKinnon, A. J.; Benedetti, L. R.; Bradley, D. K.; Celeste, J. R.; Celliers, P. M.; Dixit, S. N.; Doeppner, T.; Dzentitis, E. G.; Glenn, S.; Haan, S. W.; Haynam, C. A.; Hicks, D. G.; Hinkel, D. E.; Jones, O. S.; Landen, O. L.; London, R. A.; MacPhee, A. G. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2012-05-15T23:59:59.000Z

449

Ignition of deuterium-tritium fuel targets  

DOE Patents [OSTI]

Disclosed is a method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom. 5 figures.

Musinski, D.L.; Mruzek, M.T.

1991-08-27T23:59:59.000Z

450

Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends  

SciTech Connect (OSTI)

Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Eibl, Mary A [ORNL] [ORNL; Nafziger, Eric J [ORNL] [ORNL; Kaul, Brian C [ORNL] [ORNL

2014-01-01T23:59:59.000Z

451

New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax  

E-Print Network [OSTI]

An Analysis of Hybrid Tax Credits and the Gasoline TaxAn Analysis of Hybrid Tax Credits and the Gasoline Tax byAn Analysis of Hybrid Tax Credits and the Gasoline Tax by

Martin, Elliot William

2009-01-01T23:59:59.000Z

452

New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax  

E-Print Network [OSTI]

An Analysis of Hybrid Tax Credits and the Gasoline TaxAn Analysis of Hybrid Tax Credits and the Gasoline Tax byAn Analysis of Hybrid Tax Credits and the Gasoline Tax by

Martin, Elliott William

2009-01-01T23:59:59.000Z

453

A Comparison of Ten Different Methods for the Analysis of Saturates, Olefins, Benzene, Total Aromatics, and Oxygenates in Finished Gasolines  

Science Journals Connector (OSTI)

......overview of the changing European gasoline specifications with time...combined. These reformulated gasolines may now contain straight run naphtha, fluid catalytically...analysis of hydrocarbon types in gasoline is the fluorescent indi- cator......

Jan Beens; Hans Thomas Feuerhelm; JŲrg-Christian FrŲhling; Jerry Watt; Gertjan Schaatsbergen

454

Gasoline Price Volatility Is a Concern This Summer  

Gasoline and Diesel Fuel Update (EIA)

5 of 5 5 of 5 Notes: March began with gasoline spot prices showing large increases over crude oil. Spot prices were nearly 20 cents per gallon over the already high crude oil prices, when normally the spread would be half that size. This spread was comparable to the spread seen in August 1997 when high demand, low stocks, and some refinery problems cause prices to surge. By the end of March the spread had fallen to about 16 cents per gallon, and by mid April was at about 11 cents per gallon as the inventory situation improved. Crude oil prices have also been falling, pulling gasoline spot prices down. Retail prices, which lag behind changes in the spot market, are turning down also. Regular gasoline prices peaked the week of March 20 at $1.53 and fell to $1.48 the week of April 10.

455

Gasoline Price Volatility Is a Concern This Summer  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Last summer's low stocks and transition to Phase 2 RFG added price pressure over and above the already high crude price pressure on gasoline. As we ended last winter, gasoline inventories were low, and the spread between spot prices and crude oil were higher than typical as a result. Inventories did not recover and the spread remained higher than average through most of the summer. In November and December, as gasoline demand eased, prices relaxed and spreads returned to average levels -- only to rebound again in January and February as refineries began to undergo maintenance and the market watched the already low stock cushion erode further. This February, spreads are higher than last year -- averaging 14 cents so far. This is about twice what we would typically see this time of

456

DOE/EIS-0236, Oakland Operations Office, National Ignition Facility...  

Energy Savers [EERE]

DOEEIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic...

457

Shock Ignition: A New Approach to High Gain Inertial Confinement Fusion on the National Ignition Facility  

Science Journals Connector (OSTI)

Shock ignition, an alternative concept for igniting thermonuclear fuel, is explored as a new approach to high gain, inertial confinement fusion targets for the National Ignition Facility (NIF). Results indicate thermonuclear yields of ?120Ė250??MJ may be possible with laser drive energies of 1Ė1.6†MJ, while gains of ?50 may still be achievable at only ?0.2??MJ drive energy. The scaling of NIF energy gain with laser energy is found to be G?126E??(MJ)0.510. This offers the potential for high-gain targets that may lead to smaller, more economic fusion power reactors and a cheaper fusion energy development path.

L. J. Perkins; R. Betti; K. N. LaFortune; W. H. Williams

2009-07-23T23:59:59.000Z

458

Scaling laws for ignition at the National Ignition Facility from first principles  

Science Journals Connector (OSTI)

We have developed an analytical physics model from fundamental physics principles and used the reduced one-dimensional model to derive a thermonuclear ignition criterion and implosion energy scaling laws applicable to inertial confinement fusion capsules. The scaling laws relate the fuel pressure and the minimum implosion energy required for ignition to the peak implosion velocity and the equation of state of the pusher and the hot fuel. When a specific low-entropy adiabat path is used for the cold fuel, our scaling laws recover the ignition threshold factor dependence on the implosion velocity, but when a high-entropy adiabat path is chosen, the model agrees with recent measurements.

Baolian Cheng; Thomas J. T. Kwan; Yi-Ming Wang; Steven H. Batha

2013-10-07T23:59:59.000Z

459

Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility  

SciTech Connect (OSTI)

A series of laser plasma interaction experiments at OMEGA (LLE, Rochester) using gas-filled hohlraums shed light on the behavior of stimulated Raman scattering and stimulated Brillouin scattering at various plasma conditions encountered in indirect drive ignition designs. We present detailed experimental results that quantify the density, temperature, and intensity thresholds for both of these instabilities. In addition to controlling plasma parameters, the National Ignition Campaign relies on optical beam smoothing techniques to mitigate backscatter. We show that polarization smoothing is effective at controlling backscatter. These results provide an experimental basis for forthcoming experiments on National Ignition Facility.

Froula, D H; Divol, L; London, R A; Berger, R L; Doeppner, T; Meezan, N B; Ralph, J; Ross, J S; Suter, L J; Glenzer, S H

2009-11-12T23:59:59.000Z

460

Laser-Plasma Coupling with Ignition-Scale Targets: New Regimes and Frontiers on the National Ignition Facility  

Science Journals Connector (OSTI)

It is very exciting that the National Ignition Facility (NIF) is now operational and being used to irradiate ignition-scale hohlraums. As discussed in the last ... Summer School in Physics on the topic of laser-p...

William L. Kruer

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation,  

Gasoline and Diesel Fuel Update (EIA)

5,473.9 5,473.9 12,853.1 71,584.0 229,911.0 21,437.8 2,118.5 14,630.3 38,186.5 February ................................. 152,443.6 12,574.1 74,038.8 239,056.4 21,643.8 2,053.6 14,806.9 38,504.4 March ...................................... 159,368.9 9,240.4 75,709.6 244,318.9 22,934.3 1,391.4 14,926.4 39,252.1 April ........................................ 166,869.6 7,329.4 77,383.5 251,582.4 23,130.1 1,079.9 14,885.7 39,095.8 May ......................................... 168,973.6 7,229.8 77,450.7 253,654.2 23,375.0 1,046.4 15,162.5 39,583.9 June ........................................ 176,397.4 7,802.8 78,867.3 263,067.5 24,193.9 1,133.7 15,555.5 40,883.1 July ......................................... 175,934.1 7,670.5 79,172.1 262,776.7 24,363.6 1,128.7 15,903.0 41,395.3 August ....................................

462

Table 8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1996 January ....................... 68.4 67.8 61.8 54.9 51.4 55.0 77.5 76.9 68.0 59.1 - 61.2 February ..................... 68.5 67.9 63.4 56.2 52.1 56.4 77.9 77.3 69.7 60.2 - 62.9 March .......................... 74.7 74.1 69.1 63.5 57.8 63.5 83.7 83.2 75.4 67.3 W 69.7 April ............................ 82.9 82.2 77.5 71.5 64.0 70.8 92.0 91.4 83.8 75.7 - 77.9 May ............................. 86.2 85.7 82.1 71.8 65.3 71.9 95.5 95.0 87.7 75.8 - 78.8 June ............................ 83.6 83.0 79.0 66.6 60.0 66.6 92.6 92.0 84.8 69.3 - 73.2 July ............................. 81.2 80.7 76.4 66.6 60.1 66.5 90.3 89.8 82.3 70.1 - 73.1 August ........................ 79.3 78.8 74.3 66.1 60.0 66.1 88.4 87.9 80.6 69.6 W 72.2 September .................. 79.9 79.4 74.7 67.1 60.9 67.1 88.7 88.2 81.0 70.7 - 73.3 October .......................

463

Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1997 January ....................... 35.6 37.6 45.0 122.6 33.7 201.3 8.8 9.1 12.1 15.0 W 27.1 February ..................... 37.8 39.9 46.7 127.7 38.1 212.6 9.1 9.4 12.4 15.5 W 27.9 March .......................... 38.4 40.5 47.0 129.9 35.1 212.0 9.3 9.6 12.3 15.5 NA 27.9 April ............................ 38.5 40.7 47.7 134.5 33.9 216.1 9.3 9.6 12.2 16.1 W 28.3 May ............................. 38.1 39.8 45.9 135.5 34.2 215.7 9.2 9.5 12.2 16.3 W 28.5 June ............................ 39.3 41.0 46.1 138.7 29.1 214.0 9.5 9.8 12.3 16.7 W 29.0 July ............................. 43.2 44.9 45.7 148.0 31.9 225.6 10.4 10.7 12.3 18.0 W 30.3 August ........................ 43.4 45.1 46.3 144.9 33.2 224.5 10.3 10.5 12.2 17.2 W 29.5 September .................. 42.8 44.5 45.2 137.6 33.1 215.9 10.0 10.2 11.6 16.2 W 27.9 October .......................

464

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

68.4 68.4 68.0 63.0 52.6 50.6 55.3 77.1 76.6 69.4 57.1 W 63.2 February ............................. 64.7 64.5 59.0 51.3 48.7 53.1 73.6 73.2 65.0 55.4 W 60.2 March .................................. 61.9 61.8 55.7 48.9 46.3 50.6 70.7 70.3 61.7 52.9 W 57.2 April .................................... 63.5 63.4 57.8 52.1 48.5 53.1 71.9 71.6 63.7 56.1 W 59.8 May ..................................... 66.6 66.4 61.5 54.7 49.6 55.8 75.0 74.6 67.5 58.6 W 63.0 June .................................... 65.8 65.6 60.1 52.0 46.7 53.4 74.6 74.0 66.3 55.9 W 61.0 July ..................................... 64.6 64.3 58.4 50.4 45.8 52.0 73.5 73.0 64.9 54.2 W 59.5 August ................................ 61.8 61.5 55.7 45.8 42.1 48.2 71.2 70.7 62.3 49.8 W 56.0 September .......................... 60.5 60.3 55.3 46.7 42.3 48.6 69.8 69.4 61.7 50.7 W

465

Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

3 3 January ....................... - - - - - - - - - - - - February ..................... - - - - - - - - - - - - March .......................... - - - - - - - - - - - - April ............................ - - - - - - - - - - - - May ............................. - - - - - - - - - - - - June ............................ - - - - - - - - - - - - July ............................. - - - - - - - - - - - - August ........................ - - - - - - - - - - - - September .................. - - - - - - - - - - - - October ....................... - - - - - - - - - - - - November ................... - - - - - - - - - - - - December ................... - - - - - - - - - - - - 1993 ............................... - - - - - - - - - - - -

466

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation,  

Gasoline and Diesel Fuel Update (EIA)

47,959.1 47,959.1 11,050.9 67,812.0 226,822.0 21,260.7 1,818.7 15,161.7 38,241.1 February ................................. 154,899.9 10,617.6 70,698.9 236,216.5 22,197.4 1,690.4 15,506.0 39,393.8 March ...................................... 162,738.2 6,536.2 71,600.9 240,875.3 23,091.5 984.2 15,507.0 39,582.7 April ........................................ 169,900.0 3,421.2 73,432.6 246,753.8 24,144.7 484.4 15,580.3 40,209.3 May ......................................... 170,818.8 4,569.6 73,375.3 248,763.8 24,330.4 617.2 15,767.0 40,714.6 June ........................................ 171,972.1 4,606.4 73,655.1 250,233.6 24,625.0 679.7 16,013.5 41,318.2 July ......................................... 178,120.4 4,586.2 75,480.7 258,187.3 26,160.7 674.2 16,449.8 43,284.8 August ....................................

467

Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

(Million Gallons per Day) Year Month Regular Midgrade Sales to End Users Sales for Resale Sales to End Users Sales for Resale Through Retail Outlets Total a DTW Rack Bulk Total Through Retail Outlets Total a DTW Rack Bulk Total 1994 ................................ 29.7 31.2 36.1 113.5 22.8 172.4 7.6 7.8 10.1 14.6 0.1 24.8 1995 January ....................... 18.5 19.6 13.2 88.3 22.4 123.8 4.9 5.1 3.8 W W 15.1 February ..................... 21.7 23.1 18.6 98.4 23.3 140.2 5.7 5.9 5.2 W W 18.0 March .......................... 23.5 24.8 21.2 103.4 25.1 149.7 6.2 6.5 5.4 W W 19.0 April ............................ 25.9 27.2 22.5 103.9 23.8 150.3 6.4 6.6 5.6 W W 19.1 May ............................. 27.0 28.3 23.1 111.4 25.0 159.5 6.4 6.6 5.8 W W 20.0 June ............................ 28.0 29.3 23.6 116.2 29.3 169.0 6.6 6.8 5.9 W W 20.6

468

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

1,312.3 1,312.3 32,821.9 41,410.1 112,727.4 28,125.2 182,262.7 8,740.5 9,015.4 W 15,226.6 W 27,455.8 February ............................. 33,062.4 34,813.3 43,506.0 120,110.9 28,668.6 192,285.5 9,196.3 9,492.7 W 16,071.5 W 29,126.3 March .................................. 32,634.8 34,295.4 43,645.3 122,321.7 30,937.8 196,904.8 9,385.0 9,689.1 W 16,559.0 W 29,420.1 April .................................... 34,010.4 35,657.9 43,864.5 121,891.1 27,743.2 193,498.9 9,410.9 9,694.5 W 16,548.6 W 29,584.3 May ..................................... 35,529.2 37,016.8 45,031.4 130,346.8 30,182.4 205,560.7 9,402.8 9,689.9 W 17,374.5 W 30,806.5 June .................................... 36,890.5 38,450.5 46,008.3 135,930.8

469

Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1995 January ....................... 7.1 7.4 19.6 W W 40.7 2.8 2.8 7.0 2.8 - 9.8 February ..................... 7.5 7.8 20.5 17.3 5.1 42.9 2.9 3.0 7.4 2.9 - 10.3 March .......................... 7.5 7.8 20.5 17.1 5.8 43.4 3.0 3.1 7.2 3.0 - 10.2 April ............................ 7.7 8.0 20.6 16.9 3.9 41.3 3.0 3.0 7.3 3.0 - 10.3 May ............................. 8.0 8.2 21.2 17.8 5.2 44.1 3.0 3.0 7.5 3.1 - 10.6 June ............................ 8.4 8.6 21.6 18.5 4.8 44.9 3.2 3.2 7.8 3.3 - 11.0 July ............................. 8.1 8.3 20.8 17.6 5.5 44.0 3.0 3.0 7.6 3.2 - 10.8 August ........................ 8.2 8.5 21.0 18.0 6.6 45.7 3.1 3.1 7.6 3.3 - 10.9 September .................. 8.0 8.3 20.4 W W 43.0 3.2 3.2 7.4 3.0 - 10.5 October ....................... 7.7 8.0 20.5 W W 42.8 3.0 3.0 W W - 10.5 November ...................

470

Petroleum Products Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

70.4 70.4 70.1 64.3 56.2 51.8 58.2 78.6 78.2 69.8 60.7 - 65.6 February ............................. 70.8 70.5 65.2 57.2 52.7 59.0 79.0 78.5 70.8 61.5 - 66.5 March .................................. 75.9 75.6 70.3 64.1 59.0 65.4 83.9 83.5 76.0 68.1 W 72.4 April .................................... 84.2 84.0 79.4 72.4 66.4 73.5 92.4 91.9 85.1 76.8 - 81.4 May ..................................... 87.9 87.6 83.2 72.7 68.1 75.2 96.2 95.7 88.8 76.8 - 83.3 June .................................... 85.5 85.1 79.8 67.5 61.3 70.1 93.9 93.1 85.7 70.8 - 78.8 July ..................................... 83.1 82.9 77.7 67.5 61.8 69.6 91.4 90.9 83.5 71.3 - 77.8 August ................................ 81.3 81.1 75.3 66.8 61.3 68.6 89.4 88.9 81.0 70.7 NA 76.1 September .......................... 81.1 81.0 74.9 67.8 61.9 69.2 89.1 88.7 80.1 71.6 W

471

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

70.4 70.4 70.1 64.3 56.2 51.8 58.2 78.6 78.2 69.8 60.7 - 65.6 February ............................. 70.8 70.5 65.2 57.2 52.7 59.0 79.0 78.5 70.8 61.5 - 66.5 March .................................. 75.9 75.6 70.3 64.1 59.0 65.4 83.9 83.5 76.0 68.1 W 72.4 April .................................... 84.2 84.0 79.4 72.4 66.4 73.5 92.4 91.9 85.1 76.8 - 81.4 May ..................................... 87.9 87.6 83.2 72.7 68.1 75.2 96.2 95.7 88.8 76.8 - 83.3 June .................................... 85.5 85.1 79.8 67.5 61.3 70.1 93.9 93.1 85.7 70.8 - 78.8 July ..................................... 83.1 82.9 77.7 67.5 61.8 69.6 91.4 90.9 83.5 71.3 - 77.8 August ................................ 81.3 81.1 75.3 66.8 61.3 68.6 89.4 88.9 81.0 70.7 NA 76.1 September .......................... 81.1 81.0 74.9 67.8 61.9 69.2 89.1 88.7 80.1 71.6 W

472

Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1996 1996 ................................ 10.7 11.1 26.1 20.5 8.0 54.6 3.3 3.4 7.9 3.3 W 11.3 1997 January ....................... 11.3 11.8 27.2 19.8 7.3 54.3 3.2 3.3 7.9 3.0 W 10.8 February ..................... 12.1 12.6 28.3 20.7 6.9 55.9 3.3 3.4 8.1 3.0 W 11.1 March .......................... 12.4 12.9 28.4 21.2 7.4 57.0 3.4 3.5 8.0 3.1 W 11.1 April ............................ 12.4 12.8 29.0 21.1 7.0 57.1 3.4 3.5 7.9 3.0 W 11.0 May ............................. 12.0 12.4 27.3 21.1 7.9 56.3 3.3 3.4 7.9 3.1 W 11.1 June ............................ 12.2 12.6 27.4 21.5 7.0 56.0 3.4 3.5 7.9 3.2 W 11.1 July ............................. 14.0 14.4 27.5 22.7 6.8 57.0 3.8 3.9 8.0 3.4 W 11.5 August ........................ 14.8 15.1 28.1 23.2 8.5 59.8 3.9 4.0 8.0 3.4 W 11.5 September .................. 14.7 15.1 27.7 22.0 7.3 57.0 3.7 3.8

473

Table 8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

January ....................... 59.4 58.8 54.2 46.0 41.8 46.6 69.8 69.2 60.4 49.8 NA 53.6 February ..................... 61.7 61.1 57.0 49.2 45.0 50.0 71.5 70.9 62.9 53.3 NA 56.9 March .......................... 62.2 61.7 57.4 49.9 46.2 51.3 72.0 71.4 63.3 54.0 NA 58.0 April ............................ 64.9 64.5 60.1 53.5 49.3 54.5 74.6 74.1 66.0 57.6 NA 61.2 May ............................. 66.6 66.2 62.0 54.7 50.3 56.0 76.4 75.9 67.7 58.4 NA 62.6 June ............................ 69.7 69.2 65.3 58.2 53.1 59.3 79.5 78.9 71.2 61.8 NA 65.9 July ............................. 72.6 72.2 68.0 61.0 56.0 62.2 82.3 81.8 73.8 63.9 NA 68.3 August ........................ 77.4 76.9 71.2 63.6 57.9 64.7 86.9 86.3 77.0 66.4 NA 71.0 September .................. 75.5 74.8 68.6 54.6 51.6 57.4 85.2 84.4 74.7 57.1 NA 64.6 October .......................

474

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

8,415.8 8,415.8 39,569.3 40,215.9 122,708.5 26,876.5 189,800.8 10,466.7 10,604.8 10,129.5 14,302.8 - 24,432.4 February ............................. 40,637.5 41,953.1 43,328.9 133,687.6 29,805.9 206,822.4 10,360.0 10,513.3 W 15,544.3 W 26,397.7 March .................................. 41,477.4 43,016.1 45,427.5 141,434.5 35,293.6 222,155.7 10,324.1 10,491.1 W 16,370.9 W 27,381.7 April .................................... 43,183.2 44,648.5 46,529.4 145,575.1 45,194.6 237,299.2 9,958.2 10,130.7 10,397.0 15,931.2 W 26,339.9 May ..................................... 42,591.4 44,151.1 46,198.6 146,358.6 40,692.6 233,249.8 10,265.8 10,423.0 W 16,051.1 W 26,538.5 June .................................... 43,545.0 44,890.8 46,463.3

475

Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD District  

Gasoline and Diesel Fuel Update (EIA)

PAD District I 1984 ...................................... 92.3 84.8 NA NA 102.5 92.4 91.6 84.2 1985 ...................................... 93.6 85.2 NA NA 104.2 93.3 93.4 85.2 1986 ...................................... 63.9 53.2 NA NA 76.1 62.1 65.3 55.2 1987 ...................................... 67.5 57.7 NA NA 80.5 68.2 69.9 60.6 1988 ...................................... 67.1 56.1 NA NA 81.3 68.7 70.8 60.2 1989 ...................................... 74.1 62.7 82.0 70.0 90.5 76.7 79.4 67.9 1990 ...................................... 87.6 77.7 94.8 83.2 101.9 89.0 91.8 81.5 1991 ...................................... 79.2 70.6 87.5 75.7 95.9 83.2 83.8 74.2 1992 ...................................... 74.0 65.1 84.1 71.4 93.0 78.4 79.6 69.3 1993 ...................................... 69.7 59.0 80.2 66.1

476

Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

January ....................... 22.2 23.4 20.4 96.1 20.6 137.2 6.3 6.5 6.5 11.7 0.1 18.3 February ..................... 24.6 26.0 25.6 104.0 19.9 149.6 6.9 7.1 7.9 W W 21.2 March .......................... 31.6 33.2 42.2 113.4 20.6 176.2 7.9 8.2 11.6 W W 26.8 April ............................ 32.9 34.5 43.5 117.7 23.8 185.0 8.1 8.4 11.7 W W 27.0 May ............................. 34.2 35.8 47.6 119.7 24.3 191.6 8.5 8.8 W W 0.1 28.9 June ............................ 35.3 37.1 W W 24.5 197.4 W W W W 0.3 W July ............................. 34.7 36.2 W 122.7 W 191.9 W W W W 0.2 W August ........................ 35.6 37.2 48.6 W W 200.6 W 8.9 13.0 16.6 0.2 29.8 September .................. 34.1 35.6 44.7 123.2 25.0 193.0 8.2 8.5 12.0 W W 27.8 October ....................... 26.7 28.1 27.4 110.9 22.9 161.2 7.2 7.5

477

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

83.0 83.0 73.6 72.4 92.4 79.2 79.1 101.0 83.3 84.5 87.2 75.5 75.0 February ............................. 82.4 72.4 70.4 91.9 78.9 77.5 100.2 84.0 82.6 86.5 74.5 73.0 March .................................. 80.4 70.4 68.7 90.1 78.5 76.0 98.3 82.1 80.6 84.6 72.6 71.4 April .................................... 80.3 68.7 67.7 89.9 79.3 75.4 97.9 NA 79.7 84.4 73.2 70.4 May ..................................... 81.0 69.7 68.6 90.2 77.1 75.7 97.9 86.5 80.5 85.0 73.8 71.3 June .................................... 79.7 67.3 65.6 89.1 73.6 73.0 96.8 82.4 77.5 83.8 70.8 68.4 July ..................................... 77.9 65.4 64.8 87.3 71.4 71.9 95.5 81.2 77.0 82.0 69.2 67.5 August ................................ 83.2 72.1 72.2 92.7 77.9 79.5 100.8 89.6 84.5 87.2 75.8 75.0 September .......................... 83.6 70.7 69.5 93.2 80.4 77.9

478

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

70.5 70.5 58.3 57.7 79.6 61.2 65.4 88.3 67.0 70.1 75.4 60.0 61.0 February ............................. 70.5 58.1 58.4 79.8 61.0 66.1 88.4 66.8 70.6 75.5 59.8 61.6 March .................................. 75.8 64.1 64.9 84.7 67.6 72.0 93.3 72.7 76.9 80.4 65.8 67.9 April .................................... 84.5 72.6 73.2 93.7 76.8 81.3 102.1 81.8 85.8 88.8 74.3 76.1 May ..................................... 89.3 77.4 75.2 99.1 81.0 84.2 106.6 85.6 87.9 93.3 79.0 78.0 June .................................... 86.9 71.5 70.0 96.5 73.6 79.4 103.9 79.2 83.0 91.0 72.8 73.0 July ..................................... 83.9 72.9 69.4 93.4 79.5 78.1 101.1 83.1 82.1 88.0 75.2 72.3 August ................................ 81.2 71.1 68.3 90.6 77.4 76.1 98.3 81.4 80.3 85.4 73.4 71.1 September .......................... 80.8 71.0 68.8 89.8 76.4

479

Table 8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1995 January ....................... 65.7 65.0 59.5 52.3 48.2 52.4 75.7 74.9 66.3 56.8 W 59.2 February ..................... 65.7 65.1 60.6 53.4 49.6 53.7 75.4 74.7 67.4 57.9 W 60.6 March .......................... 66.8 66.2 61.0 54.3 50.7 54.6 76.1 75.4 67.4 58.1 W 60.7 April ............................ 72.2 71.7 66.3 62.2 57.0 62.0 81.2 80.7 72.8 66.6 W 68.4 May ............................. 78.8 78.3 72.5 67.6 62.1 67.4 88.0 87.4 79.2 72.4 W 74.3 June ............................ 79.2 78.6 72.5 62.3 58.5 63.1 88.3 87.6 79.5 66.7 W 70.3 July ............................. 74.9 74.2 68.4 56.3 52.8 57.4 84.0 83.3 74.7 60.0 W 64.2 August ........................ 71.9 71.3 65.5 56.8 52.1 57.2 80.8 80.2 71.1 60.6 NA 63.5 September .................. 71.1 70.6 65.1 57.6 52.5 57.7 79.8 79.3 70.5 61.2 W 63.9 October .......................

480

Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

January ....................... - - - - - - - - - - - - February ..................... - - - - - - - - - - - - March .......................... - - - - - - - - - - - - April ............................ - - - - - - - - - - - - May ............................. - - - - - - - - - - - - June ............................ - - - - - - - - - - - - July ............................. - - - - - - - - - - - - August ........................ - - - - - - - - - - - - September .................. - - - - - - - - - - - - October ....................... - - - - - - - - - - - - November ................... 77.9 77.7 72.6 60.3 58.7 65.2 89.8 89.5 77.9 69.0 - 75.4 December ................... 76.4 75.7 72.0 56.7 53.3 63.7 87.8 87.2 77.0 62.5 W 72.6 1994 ...............................

Note: This page contains sample records for the topic "ignition motor gasoline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Table 8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1996 1996 ................................ 79.7 79.1 74.3 66.5 60.7 66.4 88.4 87.8 80.1 70.0 NA 72.6 1997 January ....................... 82.4 81.7 76.7 71.2 66.2 70.8 91.4 90.9 83.1 75.4 - 77.2 February ..................... 80.7 80.1 74.9 68.5 64.3 68.3 90.1 89.5 81.3 72.3 - 74.5 March .......................... 78.5 77.9 72.4 66.1 62.7 66.2 88.4 87.9 78.7 70.1 W 72.2 April ............................ 78.7 77.9 73.1 65.0 60.7 65.2 88.3 87.8 78.8 69.0 - 71.4 May ............................. 79.6 79.1 73.4 67.3 61.9 67.1 88.7 88.3 79.1 70.3 - 72.5 June ............................ 78.5 78.0 72.1 63.7 59.1 64.0 87.7 87.2 78.5 66.8 - 69.6 July ............................. 76.6 76.1 69.7 63.6 57.5 63.3 85.8 85.4 76.2 67.1 - 69.1 August ........................ 82.0 81.5 75.8 70.8 63.9 70.3 91.1 90.7 81.9 74.4 - 76.1 September ..................

482

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation,  

Gasoline and Diesel Fuel Update (EIA)

1,515.4 1,515.4 24,168.6 49,958.8 205,642.8 21,325.8 3,583.5 13,512.4 38,421.7 February ................................. 150,955.0 13,660.5 51,987.1 216,602.6 25,038.0 1,397.6 14,426.9 40,862.5 March ...................................... 163,625.6 5,783.8 52,023.6 221,433.1 26,758.2 374.3 14,421.6 41,554.1 April ........................................ 168,026.4 2,480.7 51,915.9 222,423.1 27,004.8 215.3 14,404.6 41,624.7 May ......................................... 176,606.8 2,535.4 54,024.9 233,167.2 27,876.2 223.5 14,812.1 42,911.8 June ........................................ 183,750.5 2,633.2 56,295.9 242,679.6 28,544.1 231.4 15,275.8 44,051.2 July ......................................... 178,005.9 2,548.4 53,761.7 234,316.0 28,345.2 228.4 15,005.0 43,578.6 August ....................................

483

Petroleum Products Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

1,312.3 1,312.3 32,821.9 41,410.1 112,727.4 28,125.2 182,262.7 8,740.5 9,015.4 W 15,226.6 W 27,455.8 February ............................. 33,062.4 34,813.3 43,506.0 120,110.9 28,668.6 192,285.5 9,196.3 9,492.7 W 16,071.5 W 29,126.3 March .................................. 32,634.8 34,295.4 43,645.3 122,321.7 30,937.8 196,904.8 9,385.0 9,689.1 W 16,559.0 W 29,420.1 April .................................... 34,010.4 35,657.9 43,864.5 121,891.1 27,743.2 193,498.9 9,410.9 9,694.5 W 16,548.6 W 29,584.3 May ..................................... 35,529.2 37,016.8 45,031.4 130,346.8 30,182.4 205,560.7 9,402.8 9,689.9 W 17,374.5 W 30,806.5 June .................................... 36,890.5 38,450.5 46,008.3 135,930.8

484

Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1997 January ....................... 83.0 82.5 77.2 71.9 67.8 72.4 92.4 92.0 82.9 76.1 W 79.1 February ..................... 82.4 81.9 77.3 69.3 65.8 70.4 91.9 91.5 82.8 73.2 W 77.5 March .......................... 80.4 79.9 76.6 66.9 64.9 68.7 90.1 89.7 82.3 71.0 74.8 76.0 April ............................ 80.3 79.7 77.7 65.5 62.4 67.7 89.9 89.6 82.9 69.6 W 75.4 May ............................. 81.0 80.5 76.5 67.6 62.3 68.6 90.2 89.9 82.3 70.8 W 75.7 June ............................ 79.7 79.2 74.9 63.9 58.9 65.6 89.1 88.7 80.8 67.2 W 73.0 July ............................. 77.9 77.4 72.4 63.9 57.9 64.8 87.3 86.9 78.4 67.5 W 71.9 August ........................ 83.2 82.8 79.2 71.4 66.1 72.2 92.7 92.3 85.4 75.3 W 79.5 September .................. 83.6 83.1 81.2 67.1 63.4 69.5 93.2 92.9 87.4 71.0 W 77.9 October .......................

485

Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

3 3 January ....................... - - - - - - - - - - - - February ..................... - - - - - - - - - - - - March .......................... - - - - - - - - - - - - April ............................ - - - - - - - - - - - - May ............................. - - - - - - - - - - - - June ............................ - - - - - - - - - - - - July ............................. - - - - - - - - - - - - August ........................ - - - - - - - - - - - - September .................. - - - - - - - - - - - - October ....................... 7.5 7.8 21.1 10.8 2.1 34.0 1.5 1.5 5.1 W W 7.0 November ................... 9.7 10.0 25.5 15.1 2.3 43.0 1.9 2.0 6.1 W W 8.4 December ................... 10.0 10.3 25.8 14.6 2.7 43.1 2.0 2.0 6.0 W W 8.3 1993 ............................... - - - - - - - - - - - -

486

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

69.6 69.6 54.8 54.8 78.5 58.1 63.1 87.0 63.8 67.2 73.7 56.2 57.6 February ............................. 65.2 53.7 52.5 74.8 55.7 59.7 83.0 61.4 64.4 69.4 54.9 55.1 March .................................. 61.7 51.4 49.7 71.2 52.6 56.4 79.4 58.3 61.1 65.9 52.5 52.3 April .................................... 63.9 53.9 52.3 73.2 56.3 59.2 81.3 62.4 63.8 68.1 55.3 54.9 May ..................................... 67.7 56.6 55.3 76.8 59.1 62.6 84.6 65.9 66.9 71.8 58.1 57.9 June .................................... 67.0 54.3 52.9 76.4 56.9 60.7 84.2 63.0 65.0 71.2 55.7 55.7 July ..................................... 65.5 52.5 51.5 75.3 56.1 59.1 83.4 61.9 63.7 69.9 54.1 54.3 August ................................ 62.7 48.0 47.6 72.8 51.3 55.6 80.7 56.1 60.1 67.2 49.5 50.6 September .......................... 61.5 48.1 48.1 71.4 51.3 55.6

487

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation,  

Gasoline and Diesel Fuel Update (EIA)

6,610.0 6,610.0 22,435.3 49,088.9 208,134.2 22,186.7 4,984.3 13,786.2 40,957.2 February ................................. 153,634.8 13,112.4 51,743.2 218,490.3 25,891.2 2,648.7 14,587.8 43,127.7 March ...................................... 164,511.0 5,627.4 54,891.2 225,029.5 27,541.1 1,003.3 14,659.5 43,203.8 April ........................................ 171,743.7 3,242.7 64,778.3 239,764.6 26,368.4 481.6 16,027.4 42,877.4 May ......................................... 174,844.7 3,228.7 71,439.4 249,512.7 24,576.4 457.5 16,101.8 41,135.6 June ........................................ 173,854.4 3,274.9 72,458.5 249,587.8 24,566.8 478.5 16,375.5 41,420.8 July ......................................... 177,228.5 3,307.7 70,689.0 251,225.3 25,495.0 485.5 16,323.6 42,304.1 August ....................................

488

Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

January ....................... - - - - - - - - - - - - February ..................... - - - - - - - - - - - - March .......................... - - - - - - - - - - - - April ............................ - - - - - - - - - - - - May ............................. - - - - - - - - - - - - June ............................ - - - - - - - - - - - - July ............................. - - - - - - - - - - - - August ........................ - - - - - - - - - - - - September .................. - - - - - - - - - - - - October ....................... - - - - - - - - - - - - November ................... 0.3 0.3 1.7 0.8 1.4 3.9 0.2 0.2 0.4 0.2 - 0.6 December ................... 6.7 7.0 23.0 W W 47.3 2.0 2.0 7.5 W W 10.7 1994 ...............................

489

Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

January ....................... 69.0 68.4 60.0 51.0 45.4 56.3 78.0 77.3 65.7 54.8 W 62.7 February ..................... 68.3 67.8 60.1 53.2 48.7 57.8 78.1 77.4 65.9 56.8 W 63.7 March .......................... 71.0 70.2 62.6 54.1 46.9 59.1 80.4 79.5 65.7 57.1 W 63.8 April ............................ 66.5 66.0 60.8 54.4 49.6 58.3 80.1 79.6 66.5 57.9 W 64.7 May ............................. 70.6 70.5 61.9 61.1 - 61.6 82.5 82.5 W W - 58.8 June ............................ 71.9 71.9 W 64.9 - 63.8 W W W W - W July ............................. 75.1 75.1 W 70.0 W 67.4 W W W W - W August ........................ 81.9 81.8 67.6 75.7 W 70.0 W 98.1 - 69.4 - 69.4 September .................. 80.9 80.5 74.1 65.4 54.6 67.8 94.1 93.5 77.1 62.1 W 71.6 October ....................... 78.7 78.3 73.5 63.7 57.8 69.5 89.5 89.2

490

Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1995 January ....................... 75.7 75.1 72.1 59.0 56.1 65.0 85.3 84.8 77.1 63.5 - 73.2 February ..................... 74.4 73.8 70.9 59.4 57.5 64.7 83.5 83.1 75.6 64.3 - 72.4 March .......................... 73.0 72.4 69.7 57.4 54.0 62.7 82.1 81.7 74.5 62.1 - 70.9 April ............................ 75.0 74.5 71.4 64.0 59.5 67.3 84.0 83.7 76.4 68.4 - 74.0 May ............................. 80.3 80.0 76.4 69.6 64.8 72.3 89.0 88.8 81.4 74.1 - 79.3 June ............................ 81.8 81.5 77.4 65.9 61.8 71.0 90.4 90.0 81.9 70.8 - 78.6 July ............................. 79.2 78.6 74.2 59.6 58.1 66.3 87.7 87.3 78.2 64.7 - 74.2 August ........................ 75.4 74.8 70.1 59.3 57.5 64.0 83.5 83.1 74.2 64.1 - 71.1 September .................. 72.6 72.2 68.3 60.5 58.0 63.9 80.5 80.2 72.4 64.7 - 70.2 October .......................

491

Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

3 3 January ....................... - - - - - - - - - - - - February ..................... - - - - - - - - - - - - March .......................... - - - - - - - - - - - - April ............................ - - - - - - - - - - - - May ............................. - - - - - - - - - - - - June ............................ - - - - - - - - - - - - July ............................. - - - - - - - - - - - - August ........................ - - - - - - - - - - - - September .................. - - - - - - - - - - - - October ....................... 27.2 28.7 26.9 105.7 16.1 148.6 7.3 7.5 8.0 W W 21.2 November ................... 25.0 26.3 22.1 105.9 14.6 142.6 6.7 7.0 6.7 W W 20.0 December ................... 24.6 25.9 22.2 107.5 18.0 147.6 6.6 6.9 7.0 W W

492

Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1996 January ....................... 71.4 71.0 67.6 59.2 56.0 63.1 80.9 80.6 72.3 63.8 - 69.9 February ..................... 72.2 71.7 67.8 59.8 56.8 63.2 81.3 81.0 73.1 64.2 - 70.5 March .......................... 76.7 76.3 72.0 65.8 65.5 68.8 86.0 85.7 77.9 70.0 - 75.6 April ............................ 87.7 87.3 83.5 77.0 77.3 80.2 96.5 96.2 88.8 81.4 - 86.7 May ............................. 95.7 95.3 91.7 77.0 74.8 83.4 105.1 104.7 96.8 81.4 - 92.2 June ............................ 93.5 92.9 89.1 70.5 68.0 78.9 103.0 102.4 94.0 75.1 - 88.3 July ............................. 88.8 88.4 85.3 70.7 68.7 77.3 98.6 98.3 90.3 75.2 - 85.6 August ........................ 84.3 84.0 79.9 68.9 65.2 73.4 94.0 93.7 85.1 73.4 W 81.5 September .................. 81.4 81.1 76.8 69.5 66.5 72.6 91.0 90.8 82.3 73.8 W 79.8 October .......................

493

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

2,177.8 2,177.8 33,696.7 41,031.4 115,778.7 25,866.5 182,676.6 9,536.5 9,794.2 12,905.9 15,962.1 - 28,868.0 February ............................. 33,085.6 34,725.7 42,808.2 121,887.8 32,127.0 196,822.9 9,746.2 10,022.4 13,588.9 16,896.7 - 30,485.6 March .................................. 34,978.9 36,685.7 45,070.0 122,489.6 28,845.0 196,404.5 9,984.6 10,254.2 W 16,980.4 W 30,689.3 April .................................... 36,627.7 38,654.6 46,870.7 132,107.0 39,827.2 218,805.0 9,633.1 9,933.5 13,367.1 17,002.1 - 30,369.2 May ..................................... 38,548.0 40,338.1 48,651.6 137,813.8 38,767.1 225,232.5 9,234.8 9,508.1 12,618.4 16,543.3 - 29,161.6 June .................................... 39,265.8 40,954.4 48,139.0 137,339.2 43,089.0

494

Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1996 1996 ................................ 2.4 2.5 2.6 2.9 W 5.6 0.5 0.5 0.5 0.4 - 0.9 1997 January ....................... 3.7 3.7 2.9 4.5 - 7.4 0.8 0.8 W 0.5 - 1.1 February ..................... 3.6 3.7 2.9 4.2 - 7.1 0.7 0.7 W 0.5 - 1.0 March .......................... 2.1 2.1 1.9 2.3 - 4.1 0.4 0.4 0.4 0.2 - 0.6 April ............................ 0.9 0.9 0.5 1.6 - 2.1 0.2 0.2 W 0.2 - 0.3 May ............................. 1.3 1.4 1.0 1.7 - 2.7 0.2 0.2 W 0.2 - 0.3 June ............................ 1.5 1.6 1.0 1.8 - 2.8 0.3 0.3 W 0.2 - 0.4 July ............................. 1.3 1.4 1.0 1.8 - 2.8 0.2 0.2 W 0.2 - 0.4 August ........................ 1.3 1.4 1.0 1.9 - 2.8 0.2 0.2 W 0.2 - 0.4 September .................. 1.6 1.6 1.3 2.4 - 3.7 0.2 0.2 W 0.4 - 0.6 October ....................... 2.1 2.2 2.0 4.2 - 6.3 0.4 0.4 W 0.7 - 1.1

495

Petroleum Products Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

7,592.9 7,592.9 38,697.1 41,234.1 134,916.3 28,778.0 204,928.3 8,469.6 8,591.2 8,752.4 13,409.9 - 22,162.3 February ............................. 41,372.4 42,768.1 45,617.8 152,433.3 25,868.1 223,919.1 8,902.4 9,050.1 9,576.8 15,164.2 - 24,741.0 March .................................. 43,908.9 45,486.6 48,663.0 159,013.0 26,574.1 234,250.2 8,334.4 8,483.4 9,042.9 14,281.9 - 23,324.8 April .................................... 41,453.4 42,873.1 46,118.2 157,990.7 37,856.7 241,965.6 8,146.0 8,304.1 8,624.2 14,057.8 - 22,682.0 May ..................................... 43,079.5 44,622.1 47,391.3 165,547.2 35,485.2 248,423.6 8,461.1 8,619.3 8,946.6 15,071.0 - 24,017.6 June .................................... 45,869.9 47,451.1 49,767.2 169,463.5 41,245.2 260,475.9

496

Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1996 January ....................... 70.5 69.9 66.3 55.9 52.2 57.7 79.6 79.1 71.7 60.3 - 65.4 February ..................... 70.5 70.0 66.4 57.0 53.0 58.4 79.8 79.3 72.2 61.1 - 66.1 March .......................... 75.8 75.3 70.9 64.0 59.3 64.9 84.7 84.3 77.0 67.9 W 72.0 April ............................ 84.5 83.9 81.0 72.4 66.6 73.2 93.7 93.2 87.0 76.9 - 81.3 May ............................. 89.3 88.8 88.0 72.7 68.0 75.2 99.1 98.6 93.7 77.0 - 84.2 June ............................ 86.9 86.3 85.2 67.4 61.6 70.0 96.5 95.9 91.0 70.6 - 79.4 July ............................. 83.9 83.4 81.9 67.3 62.0 69.4 93.4 93.0 87.6 71.2 - 78.1 August ........................ 81.2 80.7 78.0 66.7 61.5 68.3 90.6 90.2 83.7 70.5 NA 76.1 September .................. 80.8 80.4 76.4 67.7 62.4 68.8 89.8 89.4 82.1 71.5 W 76.1 October .......................

497

Petroleum Products Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State  

Gasoline and Diesel Fuel Update (EIA)

2,177.8 2,177.8 33,696.7 41,031.4 115,778.7 25,866.5 182,676.6 9,536.5 9,794.2 12,905.9 15,962.1 - 28,868.0 February ............................. 33,085.6 34,725.7 42,808.2 121,887.8 32,127.0 196,822.9 9,746.2 10,022.4 13,588.9 16,896.7 - 30,485.6 March .................................. 34,978.9 36,685.7 45,070.0 122,489.6 28,845.0 196,404.5 9,984.6 10,254.2 W 16,980.4 W 30,689.3 April .................................... 36,627.7 38,654.6 46,870.7 132,107.0 39,827.2 218,805.0 9,633.1 9,933.5 13,367.1 17,002.1 - 30,369.2 May ..................................... 38,548.0 40,338.1 48,651.6 137,813.8 38,767.1 225,232.5 9,234.8 9,508.1 12,618.4 16,543.3 - 29,161.6 June .................................... 39,265.8 40,954.4 48,139.0 137,339.2 43,089.0

498

Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

3 3 January ....................... - - - - - - - - - - - - February ..................... - - - - - - - - - - - - March .......................... - - - - - - - - - - - - April ............................ - - - - - - - - - - - - May ............................. - - - - - - - - - - - - June ............................ - - - - - - - - - - - - July ............................. - - - - - - - - - - - - August ........................ - - - - - - - - - - - - September .................. - - - - - - - - - - - - October ....................... 78.0 77.4 70.6 61.2 53.1 66.5 84.5 83.7 75.1 63.7 W 71.9 November ................... 75.9 75.3 66.8 55.2 47.0 61.6 85.0 84.2 72.1 58.4 W 68.3 December ................... 71.5 70.9 62.2 48.2 42.7 56.2 80.7 79.9 68.1

499

Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1994 January ....................... 31.4 32.9 44.3 108.4 22.6 175.3 8.1 8.4 12.1 13.6 0.2 25.9 February ..................... 32.5 34.2 46.7 112.6 21.0 180.2 8.3 8.6 12.2 14.4 0.1 26.7 March .......................... 34.4 36.2 48.0 116.1 21.1 185.3 8.4 8.7 12.8 15.4 0.2 28.4 April ............................ 34.2 35.8 48.0 119.8 24.1 191.9 8.4 8.7 12.9 15.5 0.1 28.6 May ............................. 34.6 36.3 48.2 120.2 24.3 192.7 8.5 8.8 12.9 15.9 0.1 29.0 June ............................ 35.8 37.5 49.2 124.7 24.5 198.4 8.6 8.9 13.3 16.5 0.3 30.1 July ............................. 35.1 36.6 48.4 123.3 21.3 193.0 8.6 8.8 13.0 16.2 0.2 29.5 August ........................ 36.0 37.6 49.0 128.1 25.0 202.0 8.6 8.9 13.0 16.7 0.2 30.0 September .................. 35.1 36.6 47.5 124.8 26.0 198.3 8.3 8.6 12.7 16.0 0.2 28.9 October

500

Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type  

Gasoline and Diesel Fuel Update (EIA)

1996 1996 ................................ 24.1 25.4 17.8 108.5 27.1 153.4 5.7 5.9 4.4 12.9 NA 17.3 1997 January ....................... 20.6 22.0 14.8 98.3 26.4 139.6 4.7 4.9 3.7 11.5 - 15.1 February ..................... 22.1 23.7 15.4 102.9 31.2 149.5 5.0 5.2 3.8 11.9 - 15.7 March .......................... 24.0 25.5 16.8 106.4 27.7 150.9 5.5 5.7 4.0 12.2 W 16.2 April ............................ 25.1 26.9 18.2 111.8 26.9 156.9 5.8 5.9 4.2 12.9 - 17.0 May ............................. 24.7 26.0 17.7 112.7 26.3 156.7 5.7 5.8 4.2 13.0 - 17.1 June ............................ 25.6 26.9 17.7 115.4 22.1 155.2 5.9 6.1 4.2 13.3 - 17.4 July ............................. 27.8 29.1 17.2 123.4 25.2 165.8 6.4 6.6 4.1 14.4 - 18.5 August ........................ 27.3 28.7 17.3 119.9 24.7 161.9 6.2 6.4 4.0 13.5 - 17.6 September ..................